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ABSTRACT OF THE DISSERTATION 
 

 
Interrogating in vivo Mechanisms of Kupffer Cell Transcriptional Regulation Using Natural 

Genetic Variation 
 
 
 

by 
 
 
 

Hunter Bennett 
 
 

Doctor of Philosophy in Biomedical Sciences 
 
 

University of California San Diego, 2021 
 
 

Professor Christopher K. Glass, Chair. 
 
 
 

Tissue macrophages are essential for the maintenance of organ homeostasis, but the 

cellular mechanisms specifying their phenotype are poorly understood. Here, we leverage natural 

genetic variation between inbred mouse strains as a tool to perturb Kupffer cell transcriptional 

regulation. We show that natural genetic variation disrupts Kupffer cell gene expression through 

cis-mediated disruption of transcription factor binding motifs and via trans-acting differences in 

the activity of gene regulatory machinery. We further divide trans-acting genetic variation into 

non-cell autonomous variation driven by changes in the Kupffer cell environment, and cell 

autonomous variation driven by changes in intracellular pathway activity. We show that careful 
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evaluation of each mode of genetic variation can reveal signaling pathways specifying Kupffer 

cell identity in vivo. Collectively, this work demonstrates a novel approach for understanding 

how genetic diversity impacts tissue macrophage behavior.



 

1 

Chapter 1: Introduction 

Elie Metchnikoff discovered macrophages in 1882 when he observed that, following 

injury, certain specialized cells of the starfish larva would surround and phagocytose foreign 

material. Although named for their ability to engulf pathogens, it is now understood that 

macrophages engage in remarkably diverse functions throughout the body (Metschnikoff, 1883, 

1891). 

The Hierarchal Collaborative Model of Transcription Factor Binding 
 

At homeostasis, tissue macrophages exist in equilibrium with the surrounding 

parenchyma. Niche specific signals within organs play major roles in specifying tissue 

macrophage phenotypes (Blériot et al., 2020). Transcriptomic and epigenomic surveys of tissue 

macrophages demonstrate that while tissue macrophages share expression of some core 

transcription factors (TFs), they also express distinct TFs capable of driving tissue-specific gene 

expression patterns (Lavin et al., 2014; Mass et al., 2016). TFs drive gene expression by binding 

to enhancers and promoters. While promoters are the essential start sites for initiation of 

transcription of mRNA, they frequently do not provide sufficient information necessary for 

developmental and physiologic regulation. This additional information is generally provided by 

enhancers, which are genetic sequences located upstream, downstream or within genes that act to 

modulate promoter activity. The mammalian genome is estimated to contain on the order of a 

million putative enhancer elements, with each cell type of the body typically exhibiting twenty to 

thirty thousand active enhancers (Meuleman et al., 2020).   The enhancer repertoire of a 

particular cell is a major determinant of its gene expression profile. The selection and activation 

of enhancers by TFs can be explained by a collaborative-hierarchal model of TF binding (Fig. 

1.1A) (Heinz et al., 2015). Enhancer selection is initially driven by collaborative interactions 
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between relatively simple combinations of lineage-determining TFs (LDTFs) that enable their 

binding to enhancers in regions of closed chromatin. Common macrophage LDTFs include the 

ETS domain TF PU.1, the CCAAT/enhancer binding proteins (C/EBPs), and activator protein 1 

(AP1) (Fig. 1.1A) (Heinz et al., 2010). The genome wide binding pattern of a particular 

transcription factor can be determined using chromatin immunoprecipitation followed by next 

generation sequencing (ChIP-seq) (Heinz et al., 2010). The collaborative binding of LDTFs to 

closed regions of chromatin results in remodeling of the nucleosome landscape from a closed 

chromatin structure to an open chromatin structure. Open chromatin regions can be detected by 

DNase hypersensitivity or the assay for transposase accessible chromatin followed by 

sequencing (ATAC-seq) (Adams & Workman, 1995; Boyes & Felsenfeld, 1996; Meuleman et 

al., 2020; Pham et al., 2013). These open regions of chromatin bound by TFs are known as 

primed or poised enhancers that contribute to basal levels of gene transcription from their target 

promoters and/or provide access to hierarchical binding of signal-dependent TFs (SDTFs) (Fig. 

1.1A). SDTFs are often widely expressed proteins responsible for responding to internal and 

external stimuli. In most cases, SDTFs alone cannot remodel chromatin to establish poised 

enhancers, but instead are recruited to the pre-existing poised enhancer landscapes established by 

LDTFs as well as promoters (Mercer et al., 2011; Yáñez-Cuna et al., 2012). SDTF binding to a 

poised enhancer recruits co-regulators and co-activators including histone acetyltransferases and 

histone methyltransferases, ultimately resulting in increased enhancer activity and target gene 

expression (Kaikkonen et al., 2013). An important consequence of the hierarchical dependence 

of SDTFs on the prior actions of LDTFs is that the resulting genome wide binding and function 

of the SDTFs is determined by each cell’s specific enhancer landscape, resulting in cell-specific 

transcriptional outputs (Fig. 1.1A). 
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Kupffer cells (KCs), the tissue-resident macrophages of the liver, were first described in 

1899 as hepatic cells that phagocytose India Ink (Kupffer, 1899). Today, KCs are understood to 

perform a diverse array of functions beyond phagocytosis. At homeostasis KCs scavenge iron, 

clear microbial products from the gut, and maintain a tolerogenic immune environment within 

the liver. KCs also sense the state of hepatic tissue. Their responses to changes in the 

environment play an important role in the pathogenesis of liver disease. 

KCs line the sinusoidal endothelium of the liver and are one of the first cells in the body 

exposed to portal blood, which carries metabolic products, nutrients, and compounds derived 

from the gut microbiota. KCs preferentially induce tolerogenic immunity in the absence of 

inflammation and are important for clearing gut-derived microbial material from the systemic 

circulation (Carpentier et al., 2019; Helmy et al., 2006; Liu et al., 2019; D. Sun et al., 2019). KCs 

express surface receptors that mediate the sampling and uptake of portal blood contents, 

including complement receptors, toll-like receptors, and other pathogen recognition receptors 

(Fig. 1.2A). In addition to sensing pathogenic material, recent work suggests that these pathways 

are important for sensing damage to the hepatic parenchyma.   

KCs express a variety of SDTFs that integrate the signals from their surface receptors. 

Similar to other myeloid lineage cells, many KC SDTFs are involved in innate immunity, 

including NFκB and the majority of the interferon response factor (IRF) transcription factors 

(Sakai et al., 2019; Seidman et al., 2020). The diversity of immune signaling pathways active in 

KCs suggests that KCs are capable of fine-tuned responses that integrate the particular pathogen 

and the status of the larger hepatic environment. Lipopolysaccharide, a pathogen associated 

molecular pattern of Gram-negative bacteria, binds to toll-like receptor 4 (TLR4), leading to a 

signaling cascade that results in the activation of NFκB, AP1, and IRF signaling, which induces 
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the expression of inflammatory genes including the inflammatory cytokines pro-IL1b and pro-

Il18. In their propeptide state IL1b and IL18 require cleavage by the inflammasome for 

activation, secretion, and inflammation. While at homeostasis there is evidence for NFκB 

activity as the NFκB motif is enriched in the total set of KC-specific enhancers compared to 

blood monocytes (Bonnardel et al., 2019; Sakai et al., 2019; Seidman et al., 2020), there is little 

evidence of inflammasome activation in KCs. This suggests a role of the TLR4-NFκB pathway 

in sensing and responding to portal lipopolysaccharide (LPS), a TLR4 agonist derived from 

Gram-negative bacteria, in a manner that does not result in IL1b-driven inflammation. However, 

inflammasome activation is an essential pathway in the progression of NASH, as will be 

discussed later in this review. 

Natural Genetic Variation Alters Binding of Macrophage LDTFs. 

Natural genetic variation results in phenotypic diversity across the tree of life 

(Maistrenko et al., 2020; Mets & Brainard, 2018). Genome-wide association studies (GWAS) of 

human populations demonstrate that specific genetic loci are associated with complex traits and 

disease susceptibility. Similar work in mouse genetics has been used to map loci associated with 

atherosclerosis, serum HDL levels, and gut microbiota diversity (Hui et al., 2015; Org et al., 

2015; Pamir et al., 2019). However, interpretation of the effects of genetic variation at a given 

locus has proven difficult because a) GWAS establish correlation between phenotype and 

genotype but do not establish a causal relationship between the risk variant and disease and b) 

over 80% of GWAS loci that are found in noncoding regions of the genome making the 

downstream effects of variants difficult to predict (Hindorff et al., 2009). 

One model for interpretation of non-coding genetic variants follows from the hierarchal 

collaborative model described above. Since the regulatory landscape of a particular cell type is 
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determined by a small combination of LDTFs and SDTFs in the hierarchal collaborative model, 

non-coding variants that alter the binding of these factors can be used to predict functional 

changes in the cell (Heinz et al., 2013). In mice, natural genetic variation between inbred strains 

can be used as an in vivo mutagenesis screen to examine how changes in DNA sequence lead to 

differences in LDTF and SDTF binding. Heinz and Romanoski used this approach to validate the 

hierarchal collaborative model of TF binding by performing ChIP-seq for the macrophage 

LDTFs PU.1 and C/EBPa in BALB/cJ and C57BL/6J thioglycolate elicited macrophages. 

Alignment of LDTF peaks with strain specific genomes revealed that roughly 40% of strain 

specific binding of the macrophage LDTFs PU.1 and C/EBPa were associated with motif 

mutations (Heinz et al., 2013). Sites of strain specific TF binding sites were 5-fold enriched for 

strain specific mutations compared to strain similar TF peaks (Heinz et al., 2013). Importantly, 

disruption of either a PU.1 or CEBP motif by a strain specific variant was correlated with 

decreased binding of both LDTFs. ChIP-seq for the p65 subunit of the SDTF NFkB revealed that 

Motif mutations in LDTF binding sites also impacted the recruitment of the SDTFs, providing 

another example of how small changes in DNA sequence affect multiple layers of transcriptional 

regulation (Heinz et al., 2013). Loss of LDTF and SDTF binding was associated with loss of 

downstream enhancer activation as assessed by H3K27ac ChIP-seq, supporting a collaborative 

model of enhancer selection by a defined set of TFs (Heinz et al., 2013). Subsequent work has 

leveraged the functional impact of motif mutations to create collaborative networks of TFs using 

generalized linear models (Link et al., 2018) and machine learning (Fonseca et al., 2019). 

Initial work studying the natural genetic variation of TF binding in macrophages raised 

another question - why do 60% of strain specific TF binding sites lack a motif mutation. Genetic 

theory holds that these sites could either be determined in cis by nearby or distant genetic 
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sequences on the same chromosome, or in trans by the action of a diffusible intracellular factor 

that acts on both chromosomes equally within the nucleus (Signor & Nuzhdin, 2018). To assess 

the effect of trans acting genetic variation on nascent transcription Link et al applied applied 5’ 

whole-genome run-on analysis coupled to deep sequencing (GRO-seq) to C57BL/6J, SPRET/EiJ 

and the F1 progeny of a C57BL/6J and SPRET/EiJ intercross to assess the effect of trans acting 

genetic variation on nascent transcription (Link et al., 2018). In this model, cis regulatory genetic 

variation can be identified when the allelic bias of a genomic locus observed in the parental 

strains is maintained in their F1 hybrid offspring, as this suggests that the variation is driven by 

local interactions on the parental chromosome. Using this framework, Link et al estimated that 

approximately 70% of strain specific sites are determined in cis (Link et al., 2018). This 

approach also identified instances of interconnected cis-regulatory domains, in which epigenetic 

signals vary in concert with each other over large (>1 megabase) contiguous regions of the strain 

genomes, even at sites lacking genetic variation (Link et al., 2018). This suggests that in some 

cases, through chromatin looping, local genetic variation can propagate large distances and 

establish strain specific regions. How local or distal genetic variation alters strain specific 

binding of transcription factors remains an important area for further study. 

Since disruption of LDTF binding often leads to decreased transcription of nearby genes 

(Heinz et al., 2013; Link et al., 2018), it follows that if the LDTF set and enhancer distribution of 

a given cell type is reasonably well characterized, this information alone can be used to prioritize 

variants likely to have a functional consequence in a cell type of interest. This framework has 

been successfully used in several studies to identify the functional consequences of GWAS 

variants in diseases such as Alzheimer’s disease, type 1 diabetes, and pancreatic cancer (Chiou et 

al., 2021; Gosselin et al., 2017; Nott et al., 2019). 
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Since the approach was published in 2013, many groups have used natural genetic 

variation coupled with high throughput sequencing to perform in vivo mutagenesis screens 

disrupting gene regulatory architecture. Detailed study of disrupted enhancers and promoters can 

then be used to trace regulatory mechanisms in cell types of interest. This approach has been 

used to gain mechanistic insight into genetic regulation in a number of cells and tissues, 

including bone marrow-derived macrophages (Fonseca et al., 2019; Heinz et al., 2013; Link et 

al., 2018), microglia (Gosselin et al., 2014; Yang et al., 2021), CD4+ and CD8+ T cells (Fasolino 

et al., 2020; van der Veeken et al., 2019, 2020), fibroblasts (Vierbuchen et al., 2017), and white 

adipose tissue (Li et al., 2019; Soccio et al., 2015). In macrophages, natural genetic variation has 

been used to validate the hierarchal collaborative model of enhancer selection (Link et al., 2018), 

identify collaborative TFs interacting with specific AP-1 family TFs (Fonseca et al., 2019), and 

identify lineage determining transcription factors in microglia (Gosselin et al., 2014).  

Homeostatic Transcriptional Regulation of KC function. 

KC cells are myeloid lineage cells derived from fetal yolk sac macrophages that seed the 

liver during embryogenesis (Perdiguero et al., 2015). As myeloid lineage cells, KCs express high 

levels of the monocyte/macrophage LDTFs PU1 (encoded by Spi1), CEBPɑ, and activator 

protein 1 (AP1) family of transcription factors (Heinz et al., 2015). Motifs for each of these TFs 

are significantly enriched in KC-specific enchancers. Comparative analysis of the epigenomes of 

tissue macrophages have also identified the nuclear receptor LXRɑ (encoded by Nr1h3) and 

SpiC as KC LDTFs (Fig. 1.1A) (Lavin et al., 2014; Mass et al., 2017). According to the 

collaborative-hierarchal model of TF binding, these lineage determining factors bind in a 

collaborative manner to open closed regions of chromatin, thereby creating a KC-specific 

enhancer landscape (Heinz et al., 2015). These open regions of chromatin then provide a location 
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for SDTFs to bind and further regulate transcriptional activity. Here we will review the SDTFs 

that have been studied in KCs and the homeostatic functions that they control. 

While NFκB is the most well studied inflammatory SDTF in KCs, many others are 

expressed at high levels, including the interferon regulatory factors (IRFs). In particular, Irf3 has 

been shown to mediate KC necroptosis in response to both viral and bacterial infections. In mice 

infected with Listeria monocytogenes, Irf3 mediated KC necroptosis leads to an early 

inflammatory response and late reparative response that ultimately results in the clearing of 

infection (Blériot et al., 2015; Di Paolo et al., 2013). Interestingly, this function of Irf3 does not 

require any of its known transcriptional activators (Di Paolo et al., 2013). 

Transcriptomic surveys of tissue-resident macrophages found relative enrichment for genes 

involved in lipid metabolism. Examples of lipid-metabolic genes include the TFs Nr1h2, Nr1h3, 

Ppard, Pparg, Srebf1, and Srebf2. Indeed, Nr1h3 encoding the liver x receptor ɑ (LXRɑ) is the 

highest expressed TF in KCs (Fig. 1.1B). The LXRs are type I nuclear receptors that control 

cellular cholesterol export and bind to DNA as a heterodimeric complex with the retinoid x 

receptor ɑ (Willy et al., 1995). In macrophages, LXR is activated by cholesterol derivatives and 

cholesterol synthesis intermediates, which then induce corepressor-coactivator exchange leading 

to transcription of LXRɑ target genes, including Abca1 and Abcg1 (Fig. 1.2A) (Laffitte et al., 

2001; Venkateswaran et al., 2000). LXRɑ and LXRb have both distinct and overlapping 

functions in macrophages. For example, both LXRa and LXRb activate expression of Abca1, 

but Cd5l induction requires LXRɑ while Apoc-I induction requires LXRb (Mak et al., 2002; 

Ramón-Vázquez et al., 2019).  Oxysterols such as 24-Hydroxysterol, 27-Hydroxysterol, and 24-

25 epoxycholseterol were the first endogenous LXR ligands discovered and were long thought to 

be the dominant LXR ligands in the liver. This theory has been challenged by recent lipidomic 
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analysis of LXR ligands in the liver at homeostasis and during NASH, which show that 

desmosterol is the predominant LXR ligand in the murine liver (Sakai et al., 2019; Seidman et 

al., 2020; Yang et al., 2006). Desmosterol, which is converted into cholesterol by Dhcr24 in the 

last step of the Bloch cholesterol synthesis pathway, was first described as a non-oxysterol LXR 

ligand by Helen Hobbs in 2006 (Yang et al., 2006). Desmosterol was also shown to control LXR 

activity in macrophage foam cells in vivo, suggesting that it could act as an LXR agonist across 

many tissue macrophage populations (Spann et al., 2012). Once LXR is bound by sterol ligands, 

it activates LXR target genes that facilitate export of cellular to high-density lipoprotein, which 

then delivers cholesterol to the liver in a process known as reverse cholesterol transport.  

KC specific deletion of LXRɑ does not result in decreased expression of the canonical 

macrophage specific LXR target genes that are linked to cholesterol homeostasis. Instead, LXRɑ 

functions predominantly as a KC LDTF by guiding expression of genes specific to the KC niche. 

Genetic ablation LXRɑ specifically in KCs was associated with decreased expression of KC 

specific genes such as Cd5l, Kcna2, and Il18b (Sakai et al., 2019), suggesting a key role in 

pioneering regulatory regions for controlling expression of linked genes. In line with this, in the 

absence of LXR, KCs were found less fit for establishment in the KC niche (Bonnardel et al., 

2019). Similarly, splenic marginal zoned and metallophilic macrophages also depend on LXR for 

proper existence in the tissue (A-Gonzalez et al., 2013). In addition to controlling lineage 

survival of some tissue macrophage populations, LXRɑ ablation in KCs also resulted in large 

scale changes in open chromatin as defined by ATAC-seq, indicating a direct role as a LDTF in 

enhancer selection. LXR signaling has also been shown to decrease inflammatory activity of 

macrophages in response to LPS (Ito et al., 2015; Tall & Yvan-Charvet, 2015). Whether this 

pathway is active in KCs has not been determined.  
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In addition to the LXRs, Srebf1 and Srebf2, which encode sterol response binding protein 

1 and 2 (SREBP1 and SREBP2), are expressed by KCs and have key roles in lipid metabolism 

(Fig. 1.1B). Srebf1 expression is induced by LXR activation, leading to increased levels of 

SREBP1 protein (Repa et al., 2000). In settings of low cellular cholesterol, SREBPs are 

translocated from the ER to the Golgi in a SCAP-dependent manner, where they are 

proteolytically processed to generate active forms that translocate to the nucleus. Srebp1 

primarily induces fatty acid synthesis whereas SREBP2 primarily induces cholesterol synthesis 

(Brown & Goldstein, 1997). The SREBPs are also linked to macrophage inflammatory 

pathways: following LPS activation, SREBP1 is required for synthesis of monounsaturated fatty 

acids that mediate inflammation resolution (Oishi et al., 2017) while SREBP2 is required for the 

resolution of inflammation mediated by tumor necrosis factor (TNF) (Kusnadi et al., 2019). 

Production of anti-inflammatory lipids is important for macrophages to return to homeostasis 

following tissue injury. Prolonged inflammatory activation following liver damage could lead to 

chronic hepatic inflammation and permanent tissue damage such as fibrosis. Genetic studies will 

be essential in evaluating the functional role of the SREBP pathway in KCs in both homeostasis 

and disease. 

The peroxisome proliferator-activated receptors (PPARs) bind DNA in heterodimers with 

retinoid X receptors and are activated by fatty acids and fatty acid metabolites. In the context of 

atherosclerosis, PPARγ regulates transcriptional responses of macrophages invading 

atherosclerotic plaques.  PPARγ does this in part by controlling expression of Cd36 and Msr1 

(encoding SR-A), key scavenger receptors involved in lipid updtake (Bouhlel et al., 2007; Ricote 

et al., 1998). Activation of PPARγ also induces expression of LXRɑ, resulting in increased 

expression of target genes such as Abca1 and cholesterol efflux (Chawla et al., 2001). Beyond 
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lipid metabolism, PPAR activation promotes an anti-inflammatory state in macrophages by 

blocking inflammation-induced expression of Il1b, Il6, and Nos2) (Bouhlel et al., 2007; Ricote et 

al., 1998). Consistent with this, synthetic ligands of PPARγ have been shown to reduce 

atherosclerosis in mouse models (Ricote et al., 1998).  Myeloid deletion of PPARδ, but not 

PPARγ, led to decreased expression of alternative activation markers in KCs, suggesting that 

PPARδ signaling exerts more transcriptional control in homeostatic KCs than PPARγ (Fig. 1.1B) 

(Odegaard et al., 2007, 2008). Specific roles addressing PPARδ or PPARγ in KCs during disease 

are currently unknown. 

KCs also participate in iron recycling by scavenging senescent red blood cells, heme, and 

hemoglobin. Iron from ingested heme is shuttled to hepatocytes for recycling via ferroportin 

(encoded by Slc40a1) (Nairz et al., 2017). This activity is in part controlled through elevated 

expression of Bach1, Nfe2l2 (encoding NRF2), and Spic, the three key factors that control 

macrophage iron homeostasis (Fig. 1.1A) (Scott et al., 2016; Scott & Guilliams, 2018). 

Accumulation of heme in the KC in settings of extravascular hemolysis leads to degradation of 

BACH1, which promotes activation of NRF2 and increased transcription of Spic, resulting in the 

induction of genes required for heme degradation (Nairz et al., 2017). Notably, SPIC is also 

required for the development of iron-scavenging red pulp macrophages in the spleen. 

Interestingly, the iron recycling capacity of KCs may not be sufficient in cases of extreme 

hemolysis. In such cases, KCs that are overloaded with heme have been shown to undergo 

ferroptosis, leading to the recruitment of monocytes from the bone marrow. Upon entry into the 
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liver, bone marrow monocytes rapidly increase the transcription of SPIC, which then activates 

the iron recycling gene program (Theurl et al., 2016). 

 
Figure 1.1: The Kupffer cell epigenome. In the collaborative-hierarchal model of TF binding, 
closed chromatin is remodeled by lineage determining transcription factors, which bind to DNA 
collaboratively to create poised enhancers(A). Signal dependent transcription factors are then 
recruited to poised enhancers upon activation of cellular signaling pathways. Kupffer cell LDTFs 
include LXRa and SPIC. Circulating monocytes recruited to the liver following KC depletion 
rapidly assume a TF profile similar to resident KCs (B). TFs associated with lipid metabolism 
are particularly enriched during monocyte to Kupffer cell differentiation. Data for Fig. 1.1B 
taken from Sakai et al. The blue-red expression heatmap in Fig. 1.1B shows expression (in TPM) 
normalized such that expression in blood monocytes is equal to 1 (Sakai et al., 2019). 

 

Signals in the sinusoidal niche guide the expression of KC TFs. 

Recent studies show that KCs extend cellular processes into the perisinusoidal space, 

where they make contact with hepatocytes and hepatic stellate cells in addition to their contacts 

with the sinusoidal endothelium (Bonnardel et al., 2019). This close cellular contact suggests 

integrated cell-cell communication between KCs and the surrounding cells of the liver 

parenchyma (Fig. 1.2A).  Recently, two papers identified liver-derived signals that instruct KC 
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identity by leveraging KC depletion/repopulation in the mouse as a model system (Bonnardel et 

al., 2019; Sakai et al., 2019). Treatment of mice expressing the diphtheria toxin receptor (DTR) 

specifically in KCs with diphtheria toxin (DT) resulted in rapid and nearly complete ablation of 

the KC population (Scott et al., 2016). Loss of KCs induced the transient expression of 

chemokines and adhesion molecules in hepatic stellate cells and liver sinusoidal endothelial cells 

(LSECs), resulting in rapid colonization of the empty sinusoidal niche by circulating monocytes 

(Fig. 1.2A) (Bonnardel et al., 2019). Within hours of their recruitment to the liver, these blood 

monocytes began differentiating to KC-like liver macrophages. A week after KC depletion, the 

transcriptional profiles of the recruited macrophages were nearly indistinguishable from 

embryonic KCs (Fig. 1.1B) (Bonnardel et al., 2019; Sakai et al., 2019; Scott et al., 2016). This 

KC-DTR depletion model provided a powerful system for identifying molecules and pathways 

required for KC differentiation. 

 In two recent papers, Sakai et al. and Bonnardel et al. used the KC-DTR model to 

discover three signals in the hepatic sinusoid, Notch ligand DLL4, TGFβ/BMP family ligands, 

and endogenous LXR ligands that sequentially drive KC differentiation (Bonnardel et al., 2019; 

Sakai et al., 2019). Bonnardel et al. utilized deep transcriptional profiling of hepatic non-

parenchymal cells coupled with the bioinformatic algorithm NicheNet to identify putative signals 

that induce KC differentiation following DT mediated KC depletion (Bonnardel et al., 2019). 

NicheNet predicts ligand-receptor interactions using transcriptomic data and known gene 

regulatory networks (Browaeys et al., 2020). NicheNet predicted that hepatic stellate cell derived 

Csf1 and bone morphogenic proteins (BMPs) including BMP4, BMP5, BMP9, BMP10, and 

GDF6 could influence blood monocytes within the hepatic niche (Fig. 1.2A) (Bonnardel et al., 

2019). LSECs were also shown to express ligands that could bind receptors expressed during KC 
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differentiation, including BMPs (BMP2, BMP, INHBB) as well as the Notch pathway ligands 

DLL1 and DLL4 (Fig. 1.2A) (Bonnardel et al., 2019). In parallel, Sakai et al. studied the 

transcriptional and epigenetic landscape of blood monocytes as they differentiated into KCs. 

H3K27Ac ChIP-seq identified large changes in the enhancer landscape of recruited liver 

macrophages 24h after KC depletion. The majority of activated enhancers were associated with 

pre-existing open chromatin regions as determined by ATAC-seq, including enhancers upstream 

of highly expressed KC transcription factors such as LXRɑ, SPIC, and MAFb, whose 

transcription is rapidly induced upon recruitment of monocytes into the hepatic parenchyma (Fig. 

1.2B) (Sakai et al., 2019). As discussed above, ligands for the LXRɑ and SPIC pathways are 

abundant in the hepatic sinusoid, including desmosterol, hydroxysterols, and heme (Chen et al., 

2007; Janowski et al., 1996; Muse et al., 2018; Yang et al., 2006). Motif enrichment analysis of 

enhancers activated in recruited liver macrophages at 24h revealed enrichment for the motif of 

the Notch pathway TF RBPJ (Sakai et al., 2019). This finding supports Bonnardel’s 

identification of the Notch ligands DLL1 and DLL4 as essential for KC differentiation (Fig. 

1.2B). Sakai et al. then demonstrated that the TFs LXRɑ and SMAD4 were essential for 

maintenance of homeostatic KC identity (Sakai et al., 2019). Notably, SMAD4 signaling is 

downstream of the BMP signals identified as essential for KC differentiation by Bonnardel et al. 

Collectively, these results suggest a model where DLL1 and DLL4 on LSECs induce rapid 

activation of a poised enhancer landscape in monocytes, leading to the rapid increase in 

expression of KC LDTFs such as LXRɑ and SPIC. Once translated into protein, collaborative 

interactions between LXRɑ, SPIC, and existing macrophage LDTFs such as PU.1 and CEBP 

establish the KC specific cistrome (Fig. 1.2B). 
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The Notch-RBPJ pathway is essential for the differentiation of specific tissue 

macrophages, including tumor-associated macrophages (Franklin et al., 2014) and mammary 

gland stromal macrophages (Chakrabarti et al., 2018). In the mammary glands, stem cells 

express the ligand DLL1 to activate macrophage Notch signaling and induce Wnt family ligand 

expression (Chakrabarti et al., 2018). Interestingly, the consequences of Notch activation differ 

in each of these examples and the mechanisms by which Notch activation induces cell specific 

responses is a promising area for future study. The diverse consequences of Notch activation in 

macrophages might be caused by other tissue-specific signals acting in concert with Notch 

signaling. Support for this idea comes from in vitro studies showing that stimulation of bone 

marrow progenitor cells with TGF-β in addition to DLL4 induces more KC-specific genes than 

either DLL4 or TGFβ alone (Sakai et al., 2019). In addition to different ligand co-expression 

patterns, diversity in tissue macrophage responses to Notch activation could depend on the 

particular Notch ligand expressed in a given niche. The Notch ligands DLL1 and DLL4 activate 

distinct targets by pulsatile or sustained Notch activation dynamics (Nandagopal et al., 2018). 

Whether these differences in Notch dynamics could result in the establishment of different 

macrophage transcriptional responses is an interesting area for further study. 

SPIC is a transcription factor known to be expressed in iron-recycling macrophages. As 

discussed above, heme is the most well-known activator of SPIC expression in macrophages, and 

SPIC is highly expressed in KCs (Fig. 1.1B) (Haldar et al., 2014). Interestingly, Notch signaling 

also induced SPIC expression in KCs (Bonnardel et al., 2019; Sakai et al., 2019). Furthermore, 

Spic expression is upregulated in SMAD4 knockout KCs, even as other KC TFs such as Nr1h3 

are downregulated (Sakai et al., 2019). BMP2 and BMP6 secreted by LSECs are involved in  
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Figure 1.2: Hepatic niche signals induce monocyte to Kupffer cell differentiation. Following 
depletion of KCs by diptheria toxin, hepatic stellate cells and liver sinusoidal endothelial cells 
secrete chemokines and adhesion molecules, recruiting circulating monocytes to the hepatic 
sinusoid (A). Notch signaling subsequently activates expression of KC LDTFs (B), which in turn 
establish the Kupffer cell cistrome. 
 

iron-regulated hepcidin expression by hepatocytes (Parrow & Fleming, 2017).  BMPs might also 

regulate iron metabolism in KCs though Spic suppression via SMAD signaling in KCs. 

 
These studies provide an example of how transcriptomic and epigenetic-led hypothesis 

generation can be used to predict key molecular pathways coordinating monocyte to tissue 
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resident macrophage differentiation. Using molecules which mimic liver environment signals, it 

is possible to partially induce KC-specific genes in mouse bone marrow-derived macrophages 

(Bonnardel et al., 2019; Sakai et al., 2019). This technology will provide improved in vitro 

systems for modeling pathological features of KCs in metabolic and inflammatory liver 

diseases.  However, the transcriptome of bone marrow-derived macrophages treated with DLL4, 

TGF-b, and the synthetic LXR agonist DMHCA still does not recapitulate the transcriptome of 

ex vivo KCs or repopulating liver macrophages. This disparity indicates the limitations of the in 

vitro study of tissue macrophages (Sakai et al., 2019).  There are likely to be many contributing 

factors to the remaining differences, including a requirement for additional liver-derived factors 

and inhibitory effects of the in vitro environment. For example, the enrichment of NFκB motifs 

in KC-specific enhancers may reflect exposure of KCs to gut-derived LPS present in portal blood 

(Sakai et al., 2019). The in vitro environment also lacks the three-dimensional structure of the 

hepatic environment as well as the hepatic cells that KCs are in close contact with in vivo 

(Bonnardel et al., 2019). Collectively, these studies provided significant new insights into the 

sequential mechanisms by which niche signals induce the selection and action of LDTFs during 

KC differentiation.  

NAFLD and NASH alter regulation of the KC epigenome. 

NAFLD is a growing threat to public health in Westernized societies. In the United States 

alone, liver-related deaths amongst individuals with NAFLD are predicted to grow exponentially 

over the next ten years, reaching 206,300 deaths by 2030 (Estes et al., 2018). The development 

and progression of NAFLD is associated with sequential changes in the hepatic environment. 

Simple NAFLD is diagnosed by the presence of hepatic steatosis without clinically significant 

consumption of alcohol (Kleiner et al., 2005). A subset of NAFLD patients subsequently develop 
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non-alcoholic steatohepatitis (NASH) which is associated with histologically observable 

hepatocyte dysfunction and immune infiltration (Kleiner et al., 2005). Roughly 20% of patients 

with NASH will go on to develop hepatic fibrosis, in which areas of the hepatic parenchyma are 

replaced with collagen scars (Sanyal et al., 2019). Hepatic fibrosis is a feature of severe NAFLD 

and a strong clinical predictor of liver related mortality (Angulo et al., 2015). 

KCs express a suite of TFs that respond to the metabolic and inflammatory signals found 

in both NAFLD and NASH. Lipid metabolic TFs such as the LXRs, SREBPs, and PPARs 

respond to changes in nutrient levels while inflammatory TFs such as NFκB respond to tissue 

damage (Fig. 1.3C).  However, early studies of KCs were limited due to the difficulty of 

resolving different myeloid cell populations in the liver during NAFLD. Recent advances in 

immunology and single-cell sequencing have provided deep insight into the transcriptional and 

epigenomic profile of KCs and other hepatic macrophages during the progression of NAFLD. 

Early in NASH, KCs produce cytokines such as TNFa and IL1b, which worsen hepatic steatosis 

by inhibiting hepatic PPARa activity (Stienstra et al., 2010) and act as paracrine signals by 

increasing KC and hepatic stellate cell expression of CCL2, which recruits inflammatory 

monocytes to the liver (Lanthier et al., 2010; Tosello-Trampont et al., 2012). Interestingly, a 

recent single cell study of hepatic macrophages in NASH suggests that KCs do not upregulate 

inflammatory gene expression early in NASH (Remmerie et al., 2020). It is possible that 

apoptotic KCs are the source of TNF during NASH progression, as KC apoptosis in the KC-DT 

model system induces TNF dependent upregulation of CCL2 in stellate cells (Bonnardel et al., 

2019). KCs also contribute to metabolic disease, as depletion of KCs after 3 days, 2 weeks, and 3 

weeks of high fat diet improves glucose tolerance and insulin resistance (Huang et al., 2010; 

Neyrinck et al., 2009). During later stages of NASH, the myeloid population of the liver 
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increases in size and complexity to include KCs, Ly6Chi and Ly6Clo macrophages (Fig. 1.3A). 

While at homeostasis embryonic KCs are self-renewing and constitute the majority of hepatic 

macrophages (Huang et al., 2010), but in late-stage NASH embryonic KCs coexist with bone 

marrow derived KCs that arise from Ly6Chi hepatic macrophages recruited from the systemic 

circulation (Devisscher et al., 2017). Upon entry into the liver, Ly6Chi monocytes differentiate 

into F4/80+ macrophages. Eventually, a subset of F4/80+ BM-MΦ differentiate into BM-KCs 

expressing the KC marker gene CLEC4F. CLEC4F+ BM-KCs are transcriptionally similar to 

embryonic derived KCs; however, a small subset of genes remains differentially expressed 

(Sakai et al., 2019). Importantly, embryonic derived KCs can be differentiated from BM-KCs by 

expression of the surface marker Timd4 (TIM4+) (Scott et al., 2016). Whether BM-KCs and 

embryonic derived KCs function differently in NASH is unclear. One recent study showed that 

replacement of embryonic derived KCs with BM-KCs prior to initiation of the methionine-

choline deficient NASH model diet resulted in impaired hepatic triglyceride storage and 

increased hepatocyte damage as measured by ALT (Tran et al., 2020). In contrast, a second study 

found no changes in inflammatory cytokines or NASH histology in livers populated by BM-KCs 

compared to livers populated by embryonic KCs (Seidman et al., 2020). 

During NASH KCs recruit BM-MΦ at least in part by TLR4- and TNF-mediated 

upregulation of CCL2. Both genetic and pharmacologic approaches to blocking CCR2 mediated 

infiltration of bone marrow derived macrophages decrease fibrosis, inflammation, and metabolic 

disease during NASH (Heymann & Tacke, 2016; Mossanen et al., 2016). Cenicriviroc, a 

CCR2/CCR5 antagonist, is in phase III clinical trials for the treatment of fibrosis in NASH 

(Lefebvre et al., 2016). Collectively, hepatic macrophages (BM-MΦ, BM-KCs, KCs) augment 

metabolic disease during NASH; hepatic steatosis, insulin resistance, and oral glucose tolerance 
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improve in mice with fibrotic NASH following depletion of hepatic macrophages (Krenkel & 

Tacke, 2017; Miura et al., 2012; Reid et al., 2016; Tosello-Trampont et al., 2012). 

Hepatic macrophages can also be found in areas of hepatic fibrosis. These Scar associated 

macrophages (SAMacs) can be distinguished from other macrophage populations by their high 

expression of TREM2, CD9, and SPP1, as well as their close physical association with areas of 

hepatic fibrosis in both mice and humans (Fig. 1.3A) (Ramachandran et al., 2019; Remmerie et 

al., 2020; Xiong et al., 2019). The SAMac phenotype is evolutionarily conserved between mice 

and humans, as SAMacs have been observed in multiple different mouse models of hepatic 

fibrosis. SAMacs are transcriptionally similar to KCs and BM-KCs (Krenkel et al., 2019; 

Ramachandran et al., 2019; Xiong et al., 2019). Ontologically SAMacs have been shown to arise 

from embryonic derived KCs and BM-KCs in mice, whereas in humans in silico pseudotemporal 

analysis of human SAMacs suggests that SAMacs derive mainly from recruited BM-MΦ 

(Krenkel et al., 2019; Ramachandran et al., 2019; Seidman et al., 2020; Xiong et al., 2019). 

While it is possible that these results reflect a species-specific difference in KC biology, in our 

view it is more likely that SAMacs can arise from either embryonic KCs or bone marrow derived 

KCs. Therefore, the differences in results in mice and humans could instead reflect a much 

higher proportion of bone marrow derived KCs in the human liver compared to the mouse. 

The SAMac phenotype appears to be linked to disease burden. In human NAFLD 

patients, TREM2 mRNA levels correlated with markers of liver damage and fibrosis (Xiong et 

al., 2019). However, the functional role of SAMacs during NASH progression is not understood. 

Current evidence suggests that the functions of SAMacs in NASH are complex. scRNA-seq data 

from fibrotic human livers shows that SAMacs express the profibrotic ligands TGFβ, IL1β, and 

PDGFβ, suggesting that SAMacs could promote collagen deposition by stellate cells (Fig. 1.3A) 
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(Ramachandran et al., 2019). However, SAMacs also express high amounts of TREM2, which 

has been associated with protective macrophage functions in Alzheimer’s disease and obesity 

(Jaitin et al., 2019; Keren-Shaul et al., 2017).  Future studies will be needed to fully assess the 

functions of SAMacs in the fibrotic liver. 

The development of NASH is associated with increased diversity in the hepatic myeloid 

compartment. NASH is also associated with changes in the behavior of KCs themselves. 

However, knowledge gained from studying homeostatic KCs cannot always be extended to KCs 

in diseased tissue. KCs from healthy livers can behave quite differently than KCs from NASH 

livers (Heymann et al., 2015; Leroux et al., 2012). One notable study showed that KCs from 

healthy livers preferentially promoted expansion of Foxp3+ CD25+ T cells when presented with 

ovalbumin coated antigenic particles, suggesting that KCs act as tolerogenic antigen presenting 

cells. However, KCs from mice fed the methionine choline deficient NASH diet displayed 

decreased surface PDL1 and increased surface levels of the activating marker CD80. Following 

this result, KCs lost their ability to induce Foxp3+ CD25+ T cells expansion during NASH 

(Heymann et al., 2015). The hierarchal collaborative model holds that differences in a cell’s 

response to the same stimulus can be explained by changes in the enhancer landscape and 

LDTFs of that cell. Using these studies as a guide, we can begin to study the epigenetic circuits 

that guide macrophage behavior during NASH and delineate both adaptive and maladaptive gene 

expression programs. Here we review the current understanding of the transcriptional control of 
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hepatic macrophages during NASH and how these pathways may be targeted by future 

therapeutic strategies. 

 
Figure 1.3: The NASH environment induces changes in the Kupffer cell niche. NAFLD and 
NASH alter the Kupffer cell microenvironment. Within the sinusoid, NASH increases the 
amount of LPS, oxidized LDL, and cholesterol circulating in portal blood(A). In Kupffer cells 
NASH is associated with a loss of LXR at Kupffer cell specific enhancers and the recruitment of 
LXR to de novo NASH enhancers in collaboration with ATF3(B). The blue-red expression 
heatmap shows expression (in TPM) normalized such that expression in homeostatic Kupffer 
cells is equal to 1 (C). Data from Fig. 1.3C adapted from Seidman et al. (Seidman et al., 2020). 
 
NASH induced reprogramming of LXR 

LXRs function in cholesterol metabolism was first described in 1998, when it was shown 

that mice lacking LXRa develop NASH when fed a 2% cholesterol diet due to impaired 
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hepatocyte cholesterol excretion (Peet et al., 1998). Following this pioneering work, LXRs have 

been shown to control important functions in stellate cells, LSECs, and KCs during NASH. It is 

well established that LXR activation inhibits inflammatory signaling in macrophages both in vivo 

and ex vivo. This function of LXR extends to KCs, as activation of LXR signaling led to 

decreased TNF production by KCs in a mouse model of endotoxemia (Wang et al., 2009). 

Conversely, loss of LXR signaling in KCs is associated with increased inflammation in response 

to LPS. Mice lacking one or both LXRs were fed a NASH model diet and subsequently injected 

with LPS. Macrophages from mice lacking LXRɑ or both LXRɑ and LXRb produced more 

inflammatory cytokines following LPS injection than control mice (Endo-Umeda et al., 2018). 

This could be due to loss of LXR mediated trans-repression of inflammatory signaling, as LXR 

activation in ex vivo KCs was shown to inhibit inflammatory activation in  a neuron-derived 

orphan nuclear receptor-1 dependent manner (He et al., 2015). Increased inflammatory activation 

of KCs lacking LXR could also be due to changes in endoplasmic reticulum cholesterol levels or 

direct competition with the inflammatory TF IRF3 for binding with transcriptional co-activators 

(Ito et al., 2015; Miao et al., 2016). These studies convincingly demonstrate the involvement of 

LXR signaling in modulating KC inflammatory signaling. 

In a recently published paper, Seidman et al. demonstrate that KC LXR signaling is 

fundamentally altered during NASH pathogenesis. RNA-seq revealed that KCs from NASH 

livers expressed lower amounts? of KC specific genes such as Timd4, Pcolce2, and Arg2. Timd4 

and Arg2 were also decreased in KCs lacking LXRa knockout, suggesting that loss of LXR 

activity at their enhancers results in deactivation in the NASH environment (Seidman et al., 

2020).  Genome wide analysis of LXR binding in KCs revealed that the NASH environment 

significantly alters the localization of LXR in KCs and that of the sites with reduced LXR 
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binding during NASH, 39% were linked KC specific gene Fig. 1.3B) (Seidman et al., 2020). 

Similar analysis of KC specific enhancers demonstrated that LXR binding was required to 

maintain the homeostatic KC enhancer landscape during NASH (Seidman et al., 2020). Taken 

together, this result suggests a loss of LXR LDTF function in KCs during NASH. The loss of KC 

specific genes could have important functional consequences in NASH (Fig. 1.3B). Tim-4 

(encoded by Timd4) is a phosphatidylserine receptor involved in the clearance of apoptotic cells 

(Morioka et al., 2019). Il18bp is another KC specific gene with decreased expression during 

NASH. Il18bp blocks Il18 signaling by binding Il18 with higher affinity than Il18 receptors 

(Dinarello et al., 2013). Il18 is required for metabolic homeostasis in the liver, as genetic 

deletion of Il18 leads to development of NASH in chow-fed mice (Yamanishi et al., 2016). Loss 

of Il18bp expression by KCs during NASH could therefore adaptively promote proper 

metabolism, however this hypothesis has not been explicitly tested. In contrast to the decrease in 

LXR LDTF function, LXR ChIP-seq also showed that LXR retained many of its canonical 

targets (Abca1, Abcg1, Mylip) in KCs during NASH (Seidman et al., 2020).  How the loss of KC 

specific gene expression affects the development of NASH has not been studied but remains a 

promising area for future research. 

Globally, NASH was associated with loss of LXR binding at over 1000 genomic loci. In 

loci that lost LXR binding during NASH the SPIC motif was highly enriched, suggesting that 

loss of the SPIC-LXR collaborative pair leads to enhancer deactivation and histone deacetylation 

at NASH deactivated loci (Fig. 1.3B). KC expression of SPIC steadily decreased as mice 

developed NAFLD and then NASH (Fig. 1.3C). KC expression of SPIC target genes such as 

Hmox1 was also decreased during NASH, suggesting that this loss of SPIC also led to less 

transcriptional activity at its target enhancers (Fig. 1.3B). Based on these observations, it is 
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tempting to speculate that NASH KCs have a lower capacity for erythrophagocytosis and iron. 

The striking loss of SPIC transcription that occurs in KCs during NASH progression could be 

explained by a loss of an activating homeostatic signal or gain of a repressive NASH-associated 

signal. The interplay of NASH and iron homeostasis in KCs could be a promising area for future 

research. 

The most enriched motif in NASH-specific LXR binding sites was the AP1 motif 

(Seidman et al., 2020). The AP1 motif is bound by many transcription factors, including c-FOS, 

c-JUN, and the activating transcription factor (ATF) family of TFs. Amongst these TFs, ATF3 is 

highly induced in KCs during NASH. Subsequent ChIP-sequencing of ATF3 bound genomic 

loci found that the NASH environment roughly tripled the number of loci bound by Atf3 in KCs 

(Seidman et al., 2020), with a substantial fraction of new ATF3 binding sites occurring and new 

LXRa binding sites.  These findings support the hypothesis that activation of ATF3 promotes 

relocalization of LXR during NASH to genomic locations that contain combinations of ATF3 

and LXR binding motifs (Fig. 1.3B).  Of particular interest, genes with NASH induced enhancer 

that are occupied by increased levels of ATF3 and LXRa include Trem2 and Cd9, which are 

markers of the SAMac phenotype. ATF3 is canonically induced by endoplasmic reticulum (ER) 

stress along with Atf4 and Xbp1, and activates a gene expression program necessary for the 

restoration of cellular homeostasis (Hernandez et al., 2020; Rong et al., 2013). ER stress can be 

induced by the accumulation of cholesterol in the ER, which has a low tolerance for the changes 

in membrane fluidity associated with increased levels of cholesterol. Recently cholesterol has 

begun to be appreciated as an important mediator of NASH pathogenesis: cholesterol was shown 

to be correlated with hepatic fibrosis in mice fed high fat diets with different concentrations of 

cholesterol (McGettigan et al., 2019), and cholesterol has a direct fibrogenic role in mouse 
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hepatocytes (Wang et al., 2020). The connection between ER stress and epigenetic 

reprogramming of KCs remains an interesting area for future study. 

Inflammasome Activation and NFκB signaling 

NASH is associated with increases in gut permeability and increased translocation of gut-

derived microbial products from the intestinal lumen to the portal blood (Fig. 1.3A) (Carpino et 

al., 2019; Mouries et al., 2019; Schnabl, 2013). Patients with NASH had higher serum levels of 

lipopolysaccharide compared to healthy controls. NASH patients also had a higher concentration 

of TLR4+ macrophages in their liver (Carpino et al., 2019). Ligand mediated activation of TLR4 

leads to activation of a number of TFs, including NFκB , AP1, IRF3 and others. Collectively, 

these signal dependent TFs promote a large transcriptional response in LPS stimulated 

macrophages (Kawai & Akira, 2010). This response includes increased expression of the 

proinflammatory cytokines Il1b, Il6, and Tnf as well as components of the inflammasome. 

Inflammasome activation lies downstream of multiple important NASH pathways. Cholesterol 

crystals have been shown to activate the inflammasome in macrophages within atherosclerotic 

plaques (Duewell et al., 2010). Furthermore, cholesterol crystals have been shown to accumulate 

in KCs and hepatic macrophages in murine models of NASH (Fig. 1.3A) (Ioannou et al., 2017). 

Similar to pathogen associated molecular patterns, damage associated molecular patterns from 

dying hepatocytes such as mitochondrial DNA and ATP and reactive oxygen species produced 

by metabolic dysfunction are also thought to activate the inflammasome during NASH (Fig. 

1.3A). Finally, activation of TLR4 by LPS alone has been shown to lead to inflammasome 

activation via IRAK-1 activation (Fernandes-Alnemri et al., 2013; K.-M. Lin et al., 2014). This 

pathway is essential for the progression of NASH, as deletion of the NLRP3 inflammasome 

resulted in decreased inflammation and fibrosis in mice (Mridha et al., 2017). Targeted inhibition 
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of hepatic NLRP3 is a promising approach in the treatment of NASH.  NFκB is an upstream 

activator of inflammasome transcription, therefore therapeutic approaches that block NFκB 

activation could also prove beneficial in NASH. However, this approach is limited by non-

transcriptional mechanisms of inflammasome activation, many of which occur during NASH. 

Histone modifications. 

TFs are one class of many DNA binding proteins within the nucleus. Histones are 

structural proteins that bind DNA into a unit known as the nucleosome. The core nucleosome 

consists of an octamer of four histones, H2A, H2B, H3, and H4, encircled by roughly 147 bp of 

DNA (Bannister & Kouzarides, 2011; Zhou et al., 2011). TFs act in concert with histone 

modifying enzymes that covalently alter histone proteins at specific amino acid residues (Zhou et 

al., 2011). Histone modifications subsequently impact chromatin structure and the binding of 

effector molecules, resulting in activation or repression of enhancers and promoters. Here we 

will briefly review key concepts in histone modifications, but interested readers are encouraged 

to consult a number of excellent reviews in this area, including a review of the relevance of 

histone modification to innate immunity (Bannister & Kouzarides, 2011; Dai et al., 2020; Smale 

et al., 2014). Two of the most common modifications are histone acetylation and histone 

methylation. The most well studied of these modifications occur at lysine residues in the N-

terminal histone tail. Histone acetylation is determined by histone acetyltransferases (HATs) and 

histone deacetylases (HDACs) while histone methylation is determined by histone lysine 

methyltransferases (HKMTs) and histone demethylases (Bannister & Kouzarides, 2011). 

Genome wide studies of histone modifications show that particular histone modifications are 

enriched in certain regions of the genome (Zhou et al., 2011). Histone acetylation eliminates the 

positive charge of lysine residues and results in the relaxation of chromatin locally, allowing 



 

28 

increased access to DNA by TFs and other modifying enzymes (Bannister & Kouzarides, 2011). 

The bromodomain region of bromodomain and extraterminal (BET) proteins such as BRD2 and 

BRD4 binds specifically to ε-aminoacetyl groups present on acetylated histones. BRD2 recruits 

E2F proteins, HATs and HDACs that induce both additional chromatin remodeling and active 

transcription (Belkina & Denis, 2012). Notably, the BET BRD4 is important for macrophage 

inflammatory signaling in response to LPS (Filippakopoulos & Knapp, 2014). Inhibition of 

BRD4 with the synthetic inhibitor JQI was shown to suppress NFκB mediated activation of Il1b 

and Il6 in vitro (Nicodeme et al., 2010). Due to the downstream activity of BETs, acetylation of 

lysine 27 on histone 3 (H3K27Ac) is predominantly associated with active regions of chromatin, 

particularly active enhancers and promoters (Zhou et al., 2011). The function of histone 

methylation depends on the particular lysine that is methylated and whether the loci is mono-, di-

, or tri-methylated. This is due in part to the high specificity of effector proteins for particular 

histone modifications. H3K4 mono- and di-methylation are associated with active enhancers 

while H3K4 di- and tri-methylation are associated with active promoters. In contrast, H3K9 di- 

and tri-methylation are associated with inactive promoters (Zhou et al., 2011). 

Aberrant gene expression is a feature of diseases, including NASH. Studying the 

H3K27Ac landscape of cells therefore allows the inference of active transcriptional pathways. 

KC have a distinct H3K27Ac landscape compared to blood monocytes (Sakai et al., 2019). The 

KC H3K27Ac landscape is also sensitive to environmental perturbations. When KCs isolated 

from murine livers with NASH were compared to KCs isolated from homeostatic murine livers, 

over 6000 enhancers were found to have significant differences in H3K27Ac. Activated 

enhancers (defined by increased H3K27Ac) were enriched for the AP1, NFAT, RUNX, and EGR 

motifs, while repressed enhancers (defined by decreased H3K27Ac) were enriched for the MITF, 
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MAF, IRF, and LXR motifs (Seidman et al., 2020). The H3K27Ac data from the two studies 

cited here provide a map of putative active enhancers in murine KCs. However, no comparable 

map exists for human KCs. 

Given that chromatin modifications lie upstream of changes in gene expression, the 

chromatin remodeling enzymes discussed above are compelling targets for correcting 

dysregulated gene expression. However, given the broad functions of many histone effector 

proteins, it is difficult to predict the exact consequences of the inhibition or activation of a given 

histone modifier (Szyf, 2009). HDAC inhibitors (HDACis) have had some success in the 

treatment of cancer and show promise for the treatment of type 2 diabetes, a disease closely 

linked to NAFLD (Szyf, 2009). However, current HDACis are limited by their low target 

specificity, leading to off target effects. Targeted HDACis, such as MGCD0103, which is 

selective for HDAC1, are being developed (Szyf, 2009). The use of targeted HDACis or other 

epigenetic drugs requires a deep understanding of the cell specific functions of a given histone 

modifier.  

Certain histone modifiers have been shown to have functional roles in KCs during liver 

disease. Histone deacetylace 11 (HDAC11) is induced in KCs from mice exposed to a model of 

alcoholic liver disease and is associated with decreased IL10 expression (Bala et al., 2017). 

Furthermore, knockout of HDAC11 resulted in increased IL10 expression and decreased TNF 

secretion by RAW 264.7 macrophages, suggesting a role for HDAC11 in promoting 

inflammation (Bala et al., 2017). HDAC11 is the only class IV HDAC, suggesting that targeted 

inhibition of HDAC11 could be feasible. However, further work is required to establish whether 

this pro-inflammatory function of HDAC11 in KCs is due to acetyltransferase activity or a 

separate function of the protein.  



 

30 

Histone methylation is an epigenetic mark associated with both activation and repression. 

In KCs histone H3 lysine 4 trimethylation of the TNF promoter was required for full induction of 

TNF expression by LPS (Ara et al., 2008). Inhibition of KC methyltransferase activity of KCs 

with the methyl group donor S-adenosylmethionine or its metabolite methyladenosine blocked 

LPS mediated TNF expression and secretion and iNOS expression by murine KCs by inhibiting 

promoter H3K4 trimethylation (Ara et al., 2008). The transcription factor and HKMT EZH2 acts 

as a methyltransferase to promote H3K27 trimethylation (H3K27Me3) at promoters, which 

ultimately results in gene repression. Induction of acute liver failure in mice using LPS/d-

galactosamine led to increased expression of KC TNF and decreased H3K27Me3 and EZH2 

occupancy at the TNF promoter in KCs (T. Zhou et al., 2018). These studies establish a 

functional role for histone methylation in KCs at the TNF promoter. Extending these findings to 

the whole genome level studies using ChIP-seq would yield deeper insight into the function of 

each of these histone marks and the TFs that guide their deposition across the genome. 

DNA methylation 

DNA methylation is a covalent epigenetic mark found on cytosine nucleotides, 

predominately within regions of the genome enriched for cytosine-guanine dinucleotide repeats. 

When deposited at promoters, DNA methylation is predominately associated with transcriptional 

repression. DNA methylation can be transmitted to offspring. In mice, maternal high-fat diet is 

associated with changes in methylation at metabolic genes in offspring (Wankhade et al., 2017). 

DNA methylation at certain genomic loci can also be used as a proxy for aging, also known as an 

‘epigenetic clock’. Epigenetic clocks are constructed by performing a supervised machine 

learning regression linking chronological age with epigenetic marks such as DNA-methylation 

(Horvath & Raj, 2018). While the exact mechanisms underlying the clock are unknown, the 
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correlation of groups of methylation loci with chronological age is well established across a 

variety of tissues. In humans, NASH is associated with accelerated aging as measured by the 

Horvath clock in peripheral blood monocytes (Loomba et al., 2018). DNA methylation patterns 

vary by cell type and thus more detailed work is required to unravel its cell specific functions 

during NASH (Deaton et al., 2011). DNA methylation patterns have also been shown to be 

heritable, and a deep understanding of the function of DNA methylation during NASH could 

shed light on non-coding contributions to NASH heritability through actions in KCs and other 

hepatic cell types. 

Long noncoding RNA signaling. 

Non-transcriptional mechanisms of gene regulation are highly relevant in metabolic 

disease. In particular, the role of RNA-mediated gene regulation by micro-RNAs (miRNAs) and 

long noncoding RNAs (lncRNAs) is increasingly recognized as important to understanding the 

progression of liver disease. LncRNAs are non-coding, transcribed RNA molecules greater than 

200bp in length. LncRNAs engage in a diversity of cellular functions, including activating or 

repressing genes via the recruitment of transcriptional co-activators or co-repressors, acting as 

scaffolds for the formation of large biological complexes, and acting as decoys for RNA and 

DNA binding proteins (Wang & Chang, 2011). Similar to TFs, lncRNAs act in a cell specific 

manner by modulating gene expression at the level of enhancer and promoter activity. In the 

hepatic environment lncRNAs have an established role in the progression of hepatocellular 

carcinoma (HCC). The lncRNA downregulated in liver cancer stem cells (lnc-DILC) controls 

proliferation of liver cancer stem cells and is downregulated in aggressive subtypes of HCC 

(Wang et al., 2016). Lnc-DILC acts as a transcriptional repressor by binding to the IL6 promoter 

and blocking its transcription downstream of NFκB activation. Loss of autocrine IL6 signaling 
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led to decreased expansion of liver cancer stem cells both in vitro and in vivo (Wang et al., 

2016). In contrast, increased expression of lncRNA-ROR is associated with HCC. lncRNA-ROR 

acts as a molecular decoy for miR-145, preventing miRNA mediated repression of the 

transcription factor ZEB2 (Li et al., 2017). Increased expression of ZEB2 downstream of 

lncRNA-ROR promoted epithelial to mesenchymal transformation and metastasis of HCC (Li et 

al., 2017). The lncRNA-ROR signaling pathway is of interest in myeloid cells, as ZEB2 is a 

LDTF for KCs and other tissue macrophages. Another well studied lncRNA is MeXis, which 

amplifies LXR mediated activation of the gene Abca1 in bone marrow macrophages and in 

macrophages within the aortic plaque (Sallam et al., 2018). While LXR and Abca1 are highly 

expressed in KCs, this pathway has not been confirmed to be active in KCs in vivo. 

A number of lncRNAs have been also associated with NASH in human studies, but in 

contrast to lncRNAs in HCC, the cell specific mechanisms by which these lncRNAs act remain 

largely unknown (Atanasovska et al., 2017; Leti et al., 2017; Sun et al., 2015). Lnc18q22.2 was 

recently shown to be upregulated in whole liver tissue from patients with NASH compared to 

those with NAFLD. In vitro knockdown of lnc18q22.2 in hepatocyte cell lines resulted in slower 

cell growth and increased apoptosis in response to cisplatin or hydrogen peroxide challenge, 

suggesting that lnc18q22.2 is required for hepatocyte growth and viability (Atanasovska et al., 

2017). RNA-seq studies of lnc18q22.2 knockdown suggest that it could have a role in regulating 

the response of hepatocytes to oxidative stress (Atanasovska et al., 2017). However, much 

remains to be learned regarding the function of lnc18q22.2 and other NASH associated 

lncRNAs. Pertinent areas for further study include deeper study of the molecular mechanisms of 

NASH lncRNAs, the identification of transcriptional pathways upstream of lncRNA expression 

in NASH and investigation of the cell type specific function for NASH lncRNAs, particularly 
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those that act by modulating chromatin activity and gene expression. Notably, the lncRNA 

MeXis has well described functions in macrophages (Sallam et al., 2018). MeXis amplifies LXR 

mediated activation of the gene Abca1 in bone marrow macrophages and in macrophages within 

the aortic plaque (Sallam et al., 2018). While LXR and Abca1 are highly expressed in KCs, 

pathway has not been confirmed to be active in KCs in vivo. 

MicroRNA signaling. 

miRNAs are short noncoding RNAs that act in concert with the RNA-induced silencing 

complex (RISC) to repress translation of target messenger RNAs (mRNAs). There are a number 

of reviews on the functions of miRNAs in inflammatory cells, including macrophages in the 

setting of liver disease (Lin et al., 2020; McDaniel et al., 2014; O’Connell et al., 2012; Szabo & 

Satishchandran, 2015). Here we will briefly review important miRNAs known to function in 

myeloid cells during NASH. 

miR-155 was one of the initial miRNAs to be directly implicated in inflammation. In 

macrophages, miRNA-155 is a target of NFκB and acts to repress inflammatory signaling by 

repressing translation of PU.1, SOCS1, and SHIP1 in RAW 264.7 macrophages (O’Connell et 

al., 2009). When fed a NASH model diet, mice lacking global miRNA-155 have less histological 

steatosis and inflammation, as well as lower liver triglycerides and ALT (Csak et al., 2015). KCs 

extracted from mice in a model of alcoholic liver disease expressed more miR-155 than control 

KCs. In contrast, treatment of miR-155 deficient murine KCs with LPS in vitro led to increased 

expression of the anti-inflammatory cytokine IL10 and decreased expression of TNF. The in 

vitro function of miR-155 in KCs was attributed in part to interaction of miR-155 with the 

IRAK-M mRNA, suggesting that miR155 might have a different function in KCs than in other 

NASH relevant cell types (Bala et al., 2017). IRAK3, encoding IRAK-M, is specifically 
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expressed in monocytes and macrophages and is induced by TLR4 signaling (Kobayashi et al., 

2002). The IRAK-M protein negatively regulates TLR4 signaling by inhibiting IRAK and 

IRAK2 activation by TLR4 (Kobayashi et al., 2002). Cellular responses to TLR4 activation can 

therefore be toggled by adjusting the amount of IRAK-M protein available in the cytosol 

(Kobayashi et al., 2002). Loss of IRAK-M repression by miR-155 should therefore lead to 

increased NFκB activity in the nucleus of KCs stimulated with LPS, making the observation that 

loss of mIR-155 leads to increased IL-10 expression a surprising result (Bala et al., 2017). A 

possible explanation for this observation is the presence of NFκB responsive enhancer regions 

near IL-10 in KCs. Careful study of dynamic enhancer regulation from ex vivo KCs could yield 

deeper insight into the role this signaling network plays in the KC LPS response. 

miRNAs can also act intercellularly. Hepatocytes derived from high-fat high-cholesterol 

diet treated rats secreted exosomes laden with miR-192-5p (Bala et al., 2017). Treatment of 

macrophages with miR-192-5p in vitro induced inflammation as assessed by upregulation of IL6 

and TNF. miR-192-5p was shown to bind and inhibit the translation of Rictor, which has 

previously described roles in macrophage inflammatory pathways (Bala et al., 2017). This 

mechanism is not specific to miR-192-5p, as hepatocytes treated with ethanol produced 

exosomes with miR-122, which sensitized macrophages to LPS mediated activation in vitro 

(Momen-Heravi et al., 2015). Collectively, this work suggests that miRNAs are important 

modulators of KC inflammatory signaling. Notable KC TFs such as PU.1, STAT1, and LXR are 

indeed targets of miRNA regulation, which suggests the possibility that miRNAs can also tune 

KC transcription. However, further work with KC specific knockouts will be necessary to 

understand the specific function of miRNAs in KCs during NASH. 

Transcription factors as therapeutic targets 



 

35 

Cholesterol / ER stress modulators 

Cholesterol accumulation in hepatic macrophages is emerging as a key feature of NASH 

(Ioannou, 2016; Leroux et al., 2012; McGettigan et al., 2019). KCs have increased 

concentrations of cholesterol and other lipids during NASH and cholesterol crystals have been 

shown to directly activate the NLRP3 inflammasome (Ioannou et al., 2017). Cholesterol 

accumulation also induces ER stress and augments inflammatory TLR4 signaling in 

macrophages (Fig. 1.3A) (Ito et al., 2015; Tall & Yvan-Charvet, 2015). Furthermore, prolonged 

ER stress has been shown to induce inflammation on macrophages (Hotamisligil, 2010). 

Clinically, patients treated with cholesterol lowering drugs such as statins tend to have improved 

liver histology compared to matched, untreated patients, although the effect is slight (Ioannou, 

2016; Park et al., 2011; Takeshita et al., 2014). Cell specific therapies that directly reduce KC 

ER stress or lower KC cholesterol levels may dampen NASH associated inflammation and slow 

or reverse disease progression. 

Activation of LXRs promotes cholesterol export from macrophages to high density 

lipoprotein via Abca1 (Venkateswaran et al., 2000), and this transcriptional circuit remains 

active despite significant reprogramming of LXR in KCs during NASH (Seidman et al., 2020). 

Treatment of Ldlr-/-  mice with the LXR agonist 27-hydroxycholesterol decreased hepatic 

infiltration of macrophages, T cells, and neutrophils when mice were fed a high-fat, high-

cholesterol diet (Bieghs et al., 2013). Treatment with 27-hydroxycholesterol during NASH was 

also associated with decreased appearance of foamy macrophages and cholesterol aggregates in 

the liver, suggesting that 27-hydroxycholesterol promotes cholesterol export in KCs during 

NASH (Bieghs et al., 2013). Subsequently, the same group also showed that raising the levels of 

27-hydroxycholesterol in myeloid lineage cells alone also improved hepatic inflammation 
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independently of increased serum levels of 27-hydroxycholesterol (Hendrikx et al., 2015). 

Historically, the development of LXR agonist drugs has been limited by their induction of 

steatohepatitis via activation of SREBP transcription (Repa, Turley, et al., 2000). However, 

recently a class of LXR agonists termed “desmosterol-mimetics” raises the potential of 

circumventing this side effect by simultaneously blocking SREBP processing through inhibition 

of their association from INSIGs in the endoplasmic reticulum (Muse et al., 2018; Yu et al., 

2016). Furthermore, one of these compounds, DMHCA, specifically activated LXR in 

macrophages but not hepatocytes (Muse et al., 2018). The observation that DMHCA does not 

activate LXR signaling in hepatocytes is promising, as LXR activation in hepatocytes is 

associated with adverse side effects of LXR agonists, most notably hypertriglyceridemia and 

hepatosteatosis (Joseph et al., 2002; Repa et al., 2000). The combination of cholesterol-lowering 

and anti-inflammatory actions make desmosterol-mimetic LXR agonists a promising therapy in 

the treatment of NASH. 

Macrophage ER stress can also be alleviated by activation of the vitamin D receptor 

(VDR) (Riek et al., 2012). VDR is expressed by hepatic macrophages and activation interferes 

with TLR4 signaling, making it an appealing candidate for the treatment of NASH (Fig. 1.3C) 

(Zhang et al., 2012). Treatment of mice with a VDR agonist and tunicamycin, an ER stress 

inducer, resulted in less hepatic inflammation than mice treated with tunicamycin alone. 

Subsequent experiments determined that VDR exerted its effect by decreasing inflammatory 

activation of KCs (Ying Zhou et al., 2019). Recently, Dong et al. showed that the VDR 

activation decreases hepatic inflammation in a diet-induced model of NASH (Dong et al., 2020). 

Mice treated with the VDR agonist calcipotriol showed decreased hepatic inflammation, 

decreased steatosis, and improved insulin resistance compared to vehicle treated controls. 



 

37 

Furthermore, hepatic macrophages were shown to be the primary target of calcipotriol, as 

depletion of hepatic macrophages with clodronate liposomes abrogated the effect of the 

treatment (Dong et al., 2020). 

Hippo pathway modulation 

The Hippo pathway has an established role in promoting hepatocellular carcinoma. 

Recently, members of the Hippo pathway have also been shown to be activated in the 

development of human and murine NASH (Xiaobo Wang et al., 2016). In NASH, Hippo-

mediated activation of the transcriptional coactivator yes-associated protein (YAP) was essential 

for hepatic stellate cell activation and production of collagen. Blocking YAP with verteporfin or 

siRNAs led to decreased HSC activation in vitro. In hepatocytes the YAP paralogue TAZ was 

found to promote both features of inflammation and fibrosis development (Xiaobo Wang et al., 

2016, 2020).  Intriguingly, the Hippo pathway was recently found to be active in KCs during 

NASH. Song et al. found that YAP promotes inflammatory signaling downstream of TLR4 in 

KCs (Fig. 1.3C) (Song et al., 2019). Treatment of KCs with LPS led to increased transcription of 

YAP in a TLR4 and AP1 dependent manner (Song et al., 2019). YAP was then found to bind to 

the promoters of Cxcl1 (also known as monocyte-chemoattractant protein 1), Il6, and Tnf, 

facilitating their transcription following LPS stimulation. Deletion of YAP in myeloid cells 

decreased hepatic inflammatory infiltration, AST, and ALT in a mouse model of NASH. These 

results suggest that targeting the Hippo pathway could ameliorate NASH through cell specific 

actions in multiple hepatic cell types. 

PPARγ agonists 

The metabolic and anti-inflammatory functions of PPARγ have made it an appealing 

target for the treatment of NASH. In humans, administration of thiazolidinedione class PPARγ 
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ligand pioglitazone improved steatosis and hepatic inflammation, but was also found to promote 

weight gain, which has limited its clinical use thus far (Sanyal et al., 2010). The PPARγ ligand 

rosiglitazone was also found to have a beneficial effect on NASH while also promoting weight 

gain (Ratziu et al., 2010). A meta-analysis of thiazolidinediones in NASH echoed these findings, 

showing that as a class they slightly improve histological evidence of disease but also cause 

significant weight gain (Mahady et al., 2011). Research in animal models suggests that this effect 

is at least in part due to the effect of PPARγ ligands on myeloid lineage cells, including KCs. 

Luo et al. found that treatment of RAW macrophages with the PPARγ agonist GW1929 

decreased expression of the inflammatory genes iNos2, Tnf, and Il6 in response to palmitic acid 

treatment. The anti-inflammatory effect of PPARγ agonism was correlated with decreased 

activity of the NFκB signaling pathway in vitro (Luo et al., 2017). Treatment of mice with 

rosiglitazone during the final 4 weeks of a 16-week course of high-fat diet led to decreased 

macrophage infiltration in the liver as measured by F4/80 histological staining. KCs from mice 

treated with rosiglitazone also expressed lower levels of Tnf, Il6, and IL1b compared to mice 

treated with vehicle (Luo et al., 2017). Further research will be needed to determine whether the 

effect of rosiglitazone is due to improved lipid homeostasis in the liver, decreased inflammation 

in KCs, or a combination of each of these effects. As mentioned above, PPARγ agonism also 

increases expression of LXRɑ, so it is possible that some of the anti-inflammatory effect of 

rosiglitazone is induced by activation of LXR target genes in KCs. 
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Chapter 2: Predicting Transcriptional Mechanisms in Kupffer Cells Using Natural Genetic 

Variation. 

 

 

Abstract: 

Noncoding genetic variation is thought to drive substantial phenotypic variation within 

species. Tissue-resident macrophages exhibit diverse phenotypes based on tissue environment, 

but the degree to which these phenotypes vary across genetically diverse individuals is poorly 

understood. Here, we evaluated the phenotypic diversity of Kupffer cells from three inbred 

strains with genetic distances between 2.5-5 million single nucleotide polymorphisms and small 

insertions and deletions, a distance similar to that observed between an average human individual 

and the human reference genome. Over 10% of core Kupffer cell identity genes varied in at least 

one pairwise comparison of inbred strains. Transcriptomic and epigenetic profiling chimeric and 

F1 hybrid mouse Kupffer cells was utilized to estimate the relative effect of cis and trans genetic 

variation in Kupffer cells and was able to quantify the effects of cell autonomous and non-cell 

trans effects on Kupffer cell transcriptional output. By applying a bioinformatic model of 

cellular signaling networks, we show that transcriptional variation of the Kupffer cells can be 

used to infer biological pathways that control transcription within the Kupffer cell niche. These 

studies quantify the degree to which natural genetic variation affects the phenotype of tissue 

macrophage and establish a framework for leveraging the effects of natural genetic variation to 

identify signaling pathways that act to control cellular identity in vivo.  
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Introduction: 

Tissue macrophages populate all mammalian organs and enact specific functional 

programs that maintain homeostasis within their tissue of residence (Lavin et al., 2014). Recently 

discovered examples of this behavior include metabolism of dysfunctional cardiomyocyte 

derived mitochondria by cardiac macrophages (Nicolás-Ávila et al., 2020) and the formation of 

cell-cell junctions by microglia in response to neuronal activity (Cserép et al., 2019). Studies of 

macrophage tissue specific functions have found that the tissue environment, or niche, is capable 

of instructing macrophage function (Lavin et al., 2014; Mass et al., 2016). 

The transcriptional identity of Kupffer cells, the resident macrophages of the liver, is 

specified by interactions with the three other cell types of the liver: hepatocytes, liver sinusoidal 

endothelial cells, and hepatic stellate cells (Bonnardel et al., 2019; Sakai et al., 2019). Clearance 

of the Kupffer cell niche results in recruitment of blood monocytes into the hepatic sinusoids. 

Within the sinusoids LSEC derived NOTCH ligands DLL1 and DDL4 activate a poised enhancer 

landscape to induce transcription of Kupffer cell specific transcription factors, including the 

Kupffer cell lineage determining transcription factors SPIC and LXRa (Bonnardel et al., 2019; 

Sakai et al., 2019). Subsequently, LSEC and stellate cell derived bone morphogenic protein 

(BMP) signaling activates SMAD signaling, and hepatocyte derived desmosterol activates 

LXRa, resulting in a monocyte derived Kupffer cell with a similar transcriptional profile to an 

embryonic derived resident Kupffer cell (Bonnardel et al., 2019; Sakai et al., 2019). Genetic 

disruption of this transcriptional network or experimental blockade of niche signals leads to loss 

of tissue fitness, Kupffer cell apoptosis, and replacement of dying Kupffer cells by circulating 

monocytes (Bonnardel et al., 2019; Sakai et al., 2019). This raises the intriguing possibility that 

natural genetic variation could alter Kupffer cell function. This concept is supported by the 
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recent finding that BALB/cJ Kupffer cells phagocytosed less apoptotic hepatocytes compared to 

Kupffer cells in genetically distinct FVB mice (An et al., 2020).  We hypothesized that natural 

genetic variation could alter Kupffer cell transcriptional regulation via two mechanisms: 1. 

Alteration of the environmental levels of Kupffer cell niche signals and 2. Disruption of Kupffer 

cell gene regulatory networks via alteration of TF binding motifs, a process that has been shown 

to occur in bone marrow derived macrophages (BMDMs) and T cells (Fasolino et al., 2020; 

Heinz et al., 2013; Link et al., 2018; van der Veeken et al., 2019, 2020). However, current 

studies of Kupffer cell transcription have been performed in the inbred C57BL/6J mouse strain 

and are unable to test these hypotheses. 

Here we use the genetic diversity between three inbred strains of mice, C57BL/6J, 

BALB/cJ, and A/J to assess the stability of the Kupffer cell transcriptional and epigenetic 

program. While the core Kupffer cell transcriptional program is stable across diverse inbred 

strains, many strain dependent genes were found to be cis-regulated. Interestingly, a larger 

fraction of Kupffer cell specific genes were non-cell autonomous than predicted from 

comparison with prior in vitro studies. We also provide evidence that differential activity of 

leptin and lipopolysaccharide signaling pathways act to establish strain specific Kupffer cell gene 

expression programs in vivo. 

Methods: 

Experimental models and subject details 

Mice 

A/J, BALB/cJ, C57Bl/6J, and CB6F1/J mice used in this study were sourced directly from 

Jackson laboratories. Immunodeficient NOD-scid IL2Rgnull mice were obtained from the UC San 

Diego Moore’s Cancer Center. For leptin treatment mice were injected with mouse recombinant 
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leptin (rmLeptin, R&D Systems, Stock No.498-OB) at a concentration of 1 mg/kg body weight 

intraperitoneally 6 hours prior to Kupffer cell isolation. Leptin was reconstituted at 1 mg/mL in 

20 mM Tris-EDTA pH 8.0. Prior to injections Leptin was diluted to 0.33 mg/mL in PBS. For 

LPS treatment mice were injected with 0.1 mg/kg body weight LPS (Sigma Aldrich LPS E. Coli 

O111:B4, LPS25) intraperitoneally 2 hours prior to Kupffer cell isolation  

Mixed bone marrow chimera 

NOD-scid IL2Rgnull mice were conditioned with the myeloablative agent busulfan at 25 mg/kg 

for 2 consecutive days, as previously described (Peake et al., 2015). On the third day, mice were 

engrafted with 200-400 thousand erythrocyte lysed bone marrow cells at a 1:1 ratio from 

BALB/cJ and C57BL/6J donors. Engraftment was monitored at 4 weeks and 8 weeks in the 

peripheral blood by flow cytometry using antibodies targeted to strain specific haplotypes. 

NASH-Model Diets 

Mice were fed for up to 30 weeks with a NASH-model diet (Research Diets, D09100301 or 

D17010103) composed of 40 kcal% from fat, 20 kcal% from fructose, and 2% cholesterol by 

mass. 

 

Method details 

Hepatocyte purification and RNA isolation 

Primary hepatocytes were isolated from C57BL/6J, A/J, and BALB/cJ mice as described 

previously (Sakai et al., 2012, 2019). Briefly, livers were perfused through the inferior vena cava 

with HBSS with Ca2+ or Mg2+ (GIBCO) supplemented with 10 mM HEPES (GIBCO for 3 

minutes at 5 mL/min. to clear blood from the hepatic circulation. Next, livers were perfused for 

18 minutes with the same base solution, this time supplemented with 0.32 mg/mL collagenase 
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type I (Worthington) and protease inhibitor cocktail complete - EDTA free (Roche). Hepatocytes 

were subsequently isolated using a Percoll (Sigma) density gradient centrifugation method. 

Purified hepatocytes were dissolved in Trizol (ThermoFisher 15596026)  and hepatocyte RNA 

was extracted using the Direct-zol RNA Microprep isolation kit (Zymo Research, R2062). 

Cell sorting a flow cytometry 

Non-parenchymal cells from digested livers were prepared as previously described (Troutman et 

al., 2021). The resulting non-parenchymal cells were labeled with fluorescent antibodies and 

desired cell populations were purified using a Beckman Coulter Mo-Flo Astrios EQ configured 

with spatially separated 355 nm, 405 nm, 488 nm, 561 nm, and 642 nm lasers. Kupffer cells were 

defined as 355:FSCLow, SSCLow, CD146Neg, CD45Pos, F4/80High, CD11bIntermediate, 

Live, Singlets. Liver sinusoidal endothelial cells were defined at 355: FSCLow, SSCLow, 

CD45Neg, CD146Pos, Live, Singlets. Hepatic stellate cells were defined as 355: FSCHigh, 

SSCIntermediate, Live, Singlets. 

 

Next generation sequencing libraries 

ATAC-seq 

Transposase reactions and sequencing libraries were generated as described previously 

(Buenrostro et al., 2013) using 25,000 to 50,000 FACS purified Kupffer cells. For each 

biological replicate, tagmented DNA was purified using Zymo ChIP Clean & Concentrate 

columns and PCR amplified for 14 cycles using barcoding primers. Libraries were size selected 

by gel excision to 175-225 bp (Link et al., 2018) and purified as previously outlined (Texari et 

al., 2021). 
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ChIP-seq 

Chromatin immunoprecipitation and sequencing libraries were generated as outlined in a recent 

publication (Texari et al., 2021) with modifications to lysis, immunoprecipitation buffer, and 

washing buffer (Eichenfield et al., 2016; Seidman et al., 2020). In brief, FACS purified cells 

were fixed with 1% paraformaldehyde for 10 min at room temperature. Next, 2.625M glycine 

was added to 125mM to quench fixation and cells were collected by centrifugation with the 

addition of 0.01% Tween-20 at 1,200 X G for 10 min at 4C. Cells were washed once with 0.01% 

Tween-20 in PBS and collected by centrifugation at 1,200 XG for 10 min at 4C. Cell pellets 

were then snap frozen and stored at -80C. For ChIP reactions, cell pellets were thawed on ice and 

lysed in 80 ml LB3 (10mMTris/HCl pH 7.5, 100mMNaCl, 1mMEDTA, 0.5mM EGTA, 0.1% 

deoxycholate, 0.5% sarkosyl, 1 3 protease inhibitor cocktail, and 1 mM sodium butyrate). Lysate 

was sonicated using a Covaris for 12 cycles with the following setting: time, 60 s; duty, 5.0; PIP, 

140; cycles, 200; amplitude, 0.0; velocity, 0.0; dwell, 0.0. Samples were collected and sufficient 

10% Triton X-100 was added to produce 1% final concentration. One percent of the sonicated 

lysate was saved as a ChIP input. For each chromatin immunoprecipitation, aliquots of ~500,000 

cells were added to 20 ml Dynabeads Protein A with 2 mg anti-H3K27ac (Active Motif) and 

incubated with slow rotation at 4C overnight. The following day, beads were collected using a 

magnet and washed three times each with wash buffer I (20 mM Tris/HCl pH 7.5, 150 mM 

NaCl, 1% Triton X-100, 0.1% SDS, 2 mM EDTA, and 1 3 protease inhibitor cocktail) and wash 

buffer III (10 mM Tris/HCl pH 7.5, 250 mM LiCl, 1% Triton X-100, 0.7% Deoxycholate, 1 mM 

EDTA, and 1 3 protease inhibitor cocktail). Beads were then washed twice with ice cold 10 mM 

Tris/HCl pH 7.5, 1 mM EDTA, 0.2% Tween-20. Sequencing libraries were prepared for ChIP 
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products while bound to the Dynabeads Protein A initially suspended in 25 ml 10 mM Tris/HCl 

pH 8.0 and 0.05% Tween-20. 

 

RNA-seq 

Poly-A RNA-seq libraries were generated as previously described (Gosselin et al., 2017; Heinz 

et al., 2013; Oishi et al., 2017) using 50,00 to 100,000 FACS purified cells stored in lysis/Oligo 

d(T) Magnetic Beads binding buffer and stored at -80˚ C, or 500 ng of purified RNA using the 

Zymo Research Direct-zol RNA microprep kit. mRNAs were enriched by incubation with Oligo 

d(T) Magnetic Beads (NEB, S1419S) and then fragmented/eluted by incubation at 94˚C for 9 

min. Poly A enriched mRNA was fragmented in 2x Superscript III first-strand buffer with 10 

mM DTT (Invitrogen), by incubation at 94C for 9 min, then immediately chilled on ice before 

the next step. The 10 µL of fragmented mRNA, 0.5 µL of Random primer (Invitrogen), 0.5 µL of 

Oligo dT primer (Invitrogen), 0.5 µL of SUPERase-In (Ambion), 1 µL of dNTPs (10 mM) and 1 

µL of DTT (10 mM) were heated at 50C for three minutes. At the end of incubation, 5.8 µL of 

water, 1 µL of DTT (100 mM), 0.1 µL Actinomycin D (2 mg/mL), 0.2 µL of 1%Tween-20 

(Sigma) and 0.2 µL of Superscript III (Invitrogen) were added and incubated in a PCR machine 

using the following conditions: 25C for 10 min, 50C for 50 min, and a 4C hold. The product was 

then purified with RNAClean XP beads according to manufacturer’s instruction and eluted with 

10 µL nuclease-free water. The RNA/cDNA double-stranded hybrid was then added to 1.5 µL of 

Blue Buffer (Enzymatics), 1.1 µL of dUTP mix (10mMdATP, dCTP, dGTP and 20 mMdUTP), 

0.2 µL of RNase H (5 U/mL), 1.05 µL of water, 1 µL of DNA polymerase I (Enzymatics) and 

0.15 µL of 1% Tween-20. The mixture was incubated at 16C for 1 h. The resulting dUTP-

marked dsDNA was purified using 28 µL of Sera-Mag Speedbeads (Thermo Fisher Scientific), 
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diluted with 20% PEG8000, 2.5M NaCl to final of 13% PEG, eluted with 40 µL EB buffer (10 

mM Tris-Cl, pH 8.5) and frozen at -80C. The purified dsDNA (40 µL) underwent end repair by 

blunting, A-tailing and adaptor ligation as previously described (Heinz et al., 2010) using 

barcoded adapters (NextFlex, Bioo Scientific). Libraries were PCR-amplified for 9-14 cycles, 

size selected by gel extraction, quantified using a Qubit dsDNA HS Assay Kit (Thermo Fisher 

Scientific) and sequenced on a Hi-seq 4000, NextSeq 500, or a NovaSeq 6000 (Illumina) 

according to the manufacturer’s instructions. 

 

Quantification and statistical analysis 

Sequencing data analysis 

FASTQ files from sequencing experiments were mapped to strain specific genome assemblies 

for A/J, BALB/cJ, C57BL/6J (Keane et al., 2011) as described previously (Link et al., 2018). 

RNA-seq files were mapped using STAR with default parameters (Dobin et al., 2013). ChIP-seq 

and ATAC-seq files were mapped using Bowtie2 with default parameters (Langmead & 

Salzberg, 2012). SAM files generated by STAR and Bowtie2 were shifted from the strain of 

interest to the mm10 reference genome using MMARGE (Link, et al., 2018b). Tag directories 

were generated from shifted SAM files using the HOMER (version 4.10, 

http://homer.ucsd.edu/homer/) command “makeTagDirectory” (Heinz et al., 2010). 

ATAC-seq and ChIP-seq analysis 

ATAC-seq and H3K27Ac ChIP-seq were used to generate genome wide maps of accessible and 

active chromatin. ATAC-seq peaks were called using the HOMER command with the following 

parameters: -style factor -L 0 -C 0 -fdr 0.9 -minDist 200 -size 200 (Heinz et al., 2010). 

Irreproducible discovery rate (IDR) (Q. Li et al., 2011) was used to test for reproducibility of 
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ATAC-seq peaks; only ATAC-seq peaks with an IDR < 0.05 were used for subsequent analysis. 

For sample groups with > 2 ATAC-seq libraries, peak sets from all pairwise IDR combinations 

were merged into a final set of peaks for further analysis. For differential peak analysis ATAC-

seq tags were annotated over the merged set of ATAC-seq peaks using the HOMER command 

“annotatePeaks.pl” with the following parameters: -size 200 -raw. Visualization of ATAC-seq 

peaks was performed using normalized peak counts generated using “annotatePeaks.pl” with the 

following parameters -size 200 -norm 1e7. Differential H3K27ac ChIP-seq analysis was 

performed by annotating merged ATAC-seq peaks with ChIP-seq tag directories using the 

HOMER command “annotatePeaks.pl” parameters -size 1000 -raw (Heinz et al., 2010) and 

visualization of ATAC-seq peaks was performed using normalized peak counts generated using 

“annotatePeaks.pl” with the following parameters -size 1000 -norm 1e7 (Heinz et al., 2010). 

Differential ATAC and H3K27ac sites were called using the HOMER command 

“getDiffExpression.pl” with the following parameter: -peaks (Heinz et al., 2010). 

RNA-seq analysis 

Gene expression data was quantified using the HOMER command analyzeRepeats. Raw count 

data was aggregated using the following parameters: rna mm10 -condenseGenes -count exons -

noadj. TPM count data was aggregated using the following parameters: rna mm10 -count exons -

tpm (Heinz et al., 2010). TPM values were matched to the isoforms with the highest raw count 

values. Only genes with an average expression level > 8 TPM were considered for differential 

gene analysis. Differentially expressed genes were identified using DESeq2 with betaPrior set to 

TRUE (Love et al., 2014). Spider plots were generated using gene ontology enrichment analysis 

performed by the HOMER command “findGO.pl” (Heinz et al., 2010). All other gene ontology 

enrichment analyses were performed using Metascape (Zhou et al., 2019). 
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Motif Enrichment 

Motif enrichment for experiments was performed using the MMARGE command denovo_motifs 

with the strain of interest set as the foreground and background strain and the -len parameter set 

to 8,10,12,14,16. (Link, et al., 2018b). MMARGE denovo_motifs utilizes the HOMER command 

findMotifsGenome.pl (Heinz et al., 2010) to perform motif enrichment while also incorporating 

the strain specific sequence at a given genomic locus. Background sequences were either drawn 

from random GC matched sequences from the strain of interest or from background peaks as 

identified in each analysis. 

NicheNet analysis 

NicheNet is a computational model that ranks ligands expressed by one or more cell types by 

their ability to induce target gene expression in a cell of interest (Browaeys et al., 2020). To 

assess putative strain specific ligand activity we first filtered the NicheNet ligand-target matrix to 

only consider ligands in which: 

1. The ligand was expressed by a cell of the hepatic niche within that strain at > 10 TPM . 

2. The receptor was expressed by Kupffer cells from that strain at > 10 TPM. 

We also included selected metabolic ligands for which expression data were not available. Target 

genes were selected to be any gene that had significantly higher expression in a pairwise 

comparison of that strain (“union” gene set, adjusted p value < 0.05, log fold change > 2, TPM > 

10 expression in Kupffer cells). As a background we considered all genes that were expressed at 

TPM > 10 in Kupffer cells.  The NicheNet ligand activity score was then computed as the 

Pearson correlation coefficient between the ligand-target score and the binary vector indicating 

whether a target gene was differentially expressed. For heatmaps two top scoring ligands from 

each strain were aggregated and displayed with ligand z-scores. Ligand receptor interaction 
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scores were displayed for ligand-receptor pairs with a receptor expressed by Kupffer cells in at 

least one strain. For the circos plot analysis ligand-target interaction scores were displayed as 

arrow thicknesses linking a ligand to its target gene. 

Deep learning 

We implemented a neural network model for predicting accessible and active enhancers in 

C57BL6/J Kupffer cells using the DeepSea model architecture (Zhou & Troyanskaya, 2015) in 

Keras v2.3.1. Accessible enhancers were defined as IDR replicated ATAC-seq peaks with > 16 

normalized ATAC-seq tags. Active enhancers were defined as IDR replicated ATAC-seq peaks 

with > 32 normalized H3K27Ac ChIP-seq tags. We trained two models: accessible enhancers vs. 

random background (auROC = 0.950) and active enhancers vs. random background (auROC = 

0.902). Models were trained on 300 bp enhancer sequences, spanning ± 150bp around the peak 

center. Sequences from chromosome 8 and chromosome 9 were held out of model training and 

used as validation and testing sets, respectively. As described previously, a binary cross-entropy 

was used as the loss function and random background was generated using nearby GC matched 

sequences drawn from mm10. The fully trained models were then used to generate nucleotide 

‘importance scores’ at base pair resolution using DeepLIFT (Shrikumar et al., 2017) for both the 

forward and reverse complement sequence at each peak. These scores were collapsed into a 

single score per bp by taking the maximum score at a given base pair.  

Statistical Analysis 

Genome wide signals for RNA-seq, ATAC-seq, and ChIP-seq were evaluated for differential 

levels using DESeq2 (Love et al., 2014). The raw p-values from DESeq2 for a given peak or 

gene were corrected for multiple testing using the Benjamini-Hochberg procedure. The 

significance of differences in promoter H3K27Ac ChIP-seq and ATAC-seq levels for particular 
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gene sets was evaluated using a two-sided student’s t-test. To evaluate overlap between gene sets 

induced by LPS or leptin treatment and strain specific gene sets, we used the Fisher’s exact test 

with the total number of genes in the contingency table set to genes with an average expression > 

8 TPM in any of the sub-groups being compared. Divergence of the relative overlap of F1 and 

NSG strain specific genes and F0 strain specific genes was tested using the two-sided χ2 test. 

Data Visualization 

Data were visualized using the UCSC genome browser (Kent et al., 2002) and custom R and 

Python scripts. 

 

Results: 

Genetic variation in mice alters the transcriptional programs of hepatic cells 

Three in-bred mouse strains, A/J, BALB/cJ, and C57BL/6J, were selected as a genetically 

diverse cohort for study. These strains were selected based on publicly available genome 

assemblies and documented trait diversity using common models of liver disease (An et al., 

2020; Farrell et al., 2014; Hui et al., 2015). A/J mice are the most genetically distant strain from 

the C57BL/6J reference strain, and have 1,175,330 private SNPs and 178,775 private InDels, 

while BALB/cJ mice have 851,619 private SNPs and 156,033 private InDels. A/J and BALB/cJ 

are the most closely related of the three strains with 2.0 million pairwise SNPs, whereas 4.2 

million and 3.9 million SNPs separate A/J or BALB/cJ from the C57BL/6J reference strain 

(Supplementary Fig. 1A). Of note, the total genetic diversity between the strains is similar to the 

divergence between a typical human genome and the human reference genome (Auton et al., 

2015); however, this is only a fraction of the diversity existing between C57BL/6J mice and 

wild-derived mouse strains such as CAST/EiJ and SPRET/EiJ (Keane et al., 2011) 
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 Genetic variation contributes to trait diversity; the underlying transcriptional changes are 

mediated by both cis- and trans-regulatory effects. Significant progress has been made in the 

study of cis regulatory genetic variants, as well as estimation of the relative contribution of cis 

and trans genetic variation in cells in vitro and whole tissues (Bryois et al., 2014; Goncalves et 

al., 2012; Link et al., 2018). However, in vivo models studying natural genetic variation in a 

specific cell type are complicated by the effect of natural genetic variation in the tissue 

environment as a whole—these non-cell autonomous trans effects can alter the cellular niche and 

affect transcriptional output of the cell type being studied. These trans-effects can lead to 

qualitative state changes in transcriptional programs independent of cell-autonomous cis and 

trans genetic variation.  

To understand the contribution of genetic variation to hepatic niche alterations, 

hepatocytes, Kupffer cells, liver sinusoidal endothelial cells, and hepatic stellate cells were 

purified from three mouse strains for transcriptomic comparisons (Fig. 2.1A, Supplemental 

Figure 2.1B). The transcriptomic data clustered predominantly by cell type and displayed cell 

specific gene expression patterns (Fig. 2.1B, Supplemental Figure 2.1C). We noticed 

contamination of stellate cells with LSEC and Kupffer cells and decided to filter these cells from 

subsequent analysis. We then performed pairwise comparisons of the strains to identify strain 

dependent transcripts. A total 4,526 genes were identified as differentially strain dependent 

across the cells of the hepatic niche (false discovery rate [FDR] of 0.05, 2-fold cutoff) (Fig. 1C, 

Supplemental Figure 2.1D). We then asked whether the effect of natural genetic variation on 

transcription was the same across cell types. We found that the three cell types studied displayed 

similar amounts of strain-dependent transcriptional diversity (Fig. 1C). Transcriptional diversity 
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tended to increase with the genetic distance of the strains being compared, in line with previous 

studies (Fig. 1D) (Link et al., 2018).  

 Due to the observed strain dependent variation in cellular transcription, we assessed 

whether the core Kupffer cell transcriptional program was differentially expressed using an 

orthogonal dataset. We quantified the overlap between an established list of Kupffer cell identity 

genes that were generated by comparison of Kupffer cells to other tissue macrophage (Lavin et 

al., 2014). Of the 303 Kupffer cell identity genes identified in this dataset, 33 were found to vary 

in at least one pairwise comparison of strains (Fig. 2.1E). By comparison, Kupffer cell specific 

deletion of the LDTF LXRa only altered expression of 25 out of 303 Kupffer cell identity genes 

using similar cutoffs (Sakai et al., 2019). Kupffer cell identity genes that were differentially 

regulated between strains included genes involved in core macrophage functions including 

efferocytosis, recruitment of effector cells, and response to reactive oxygen species (Fig. 2.1F). 

Ccl24 (eotaxin-2), which is highly expressed by BALB/cJ Kupffer cells and involved in 

recruitment of eosinophils (Lee et al., 2020). BALB/cJ Kupffer cells also express a relatively low 

amount of Trpm2, a gene involved in the processing of reactive oxygen species and essential in 

the mucosal immune response to H. pylori in mice (Beceiro et al., 2017). A/J mice are depleted 

for expression of Nr4a1 a transcription factor that promotes efferocytosis and is required for 

proper differentiation of Ly6Clow monocytes (Fig. 2.1F) (Hanna et al., 2012; Thomas et al., 

2016). Deletion of Nr4a1 in hematopoietic stem cells led to increased inflammatory polarization 

of macrophages within the atherosclerotic plaque (Hanna et al., 2011).  This reveals an 

unexpected level of variation in the core Kupffer cell transcriptional machinery across inbred 

strains of mice. 
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Figure 2.1: Transcriptional diversity of the hepatic niche. (A) Study design: four hepatic cell 
types were sorted from three inbred strains of mice. RNA-seq was performed on all cells while 
ATAC-seq and ChIP-seq were performed on Kupffer cells. (B) Genome browser tracks of cell-
type specific genes. (C) DE genes in each pairwise comparison of strains for each cell type. (D) 
Relationship between mutational distance between strains and number of differentially expressed 
genes as determined by DESeq2. (E) Number of Kupffer cell identity genes differentially 
expressed in each pairwise comparison of strains. Fraction of Kupffer cell identity genes out of 
total differential expressed genes is shown in the corners of each scatter plot. (F) Expression of 
Kupffer cell identity genes varies across inbred strains. N=2 mice per group for Kupffer cell 
experiments and n=3-4 mice per group for all other cell types. Kupffer cells, LSECs and stellate 
cells were sorted from the same mice for RNA-sequencing data.  
 
Kupffer cells from inbred strains have divergent epigenomes 

We hypothesized that strain diversity of the Kupffer cell transcriptome is in part driven 

by strain differences in the Kupffer cell epigenome. We evaluated this hypothesis by performing 
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assay for transposase-accessible chromatin using sequencing (ATAC-seq) and chromatin 

immunoprecipitation followed by next generation sequencing (ChIP-seq) for histone 3 lysine 27 

acetylation (H3K27ac) in homeostatic Kupffer cells from A/J, BALB/cJ, and C57BL/6J mice. 

IDR analysis identified a set of 86,302 ATAC peaks present in at least one strain. We then 

performed differential peak analysis for the three possible pairwise combinations of strains and 

identified peaks that were strain specific by selecting peaks that demonstrated increased tag 

counts (FDR of 0.05, 2-fold cutoff) across both comparisons. Examples of strain specific 

epigenetic loci are shown in Fig. 2.2A. A total of 9,282 ATAC peaks were differentially 

accessible in at least one comparison and 5,465 ATAC peaks were differentially acetylated 

(Supplemental Fig. 2.2A). We found between 594 and 1551 strain specific ATAC peaks, 

indicating substantial variation of the open chromatin landscape of Kupffer cells across the 

strains (Fig. 2.2B). Overall H3K27Ac signal was strongly correlated with ATAC signals; 

Spearman Rho values for intra-strain correlations of ATAC-seq and H3K27Ac ChIP-seq signal 

were between 0.575 and 0.586 (Supplemental Figure 2.2B). Next, we asked whether 

differentially acetylated regions were also differentially accessible and vice versa. We found that 

roughly 20-30% of differentially accessible regions were also differentially acetylated and that 

over 50% of differentially acetylated regions were differentially accessible (Supplemental Fig. 

2.2D-E). This observation is consistent with the hierarchal collaborative model of enhancer 

activation, which holds that that activity of pioneering transcription factors is often required to 

open strain specific regions of the genome but requires the collaborative binding of other 

transcription factors to generate strain specific active enhancers. 

Increased H3K27Ac signal at promoters is correlated with active gene expression (Nott et 

al., 2019). We investigated whether ATAC and H3K27Ac signal at the promoter of strain 
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specific genes would be highest in the corresponding strain. We found that levels of both marks 

at strain specific genes were significantly higher in the corresponding strain in comparison with 

the two other strains (Fig. 2.2C).  Collectively this data suggests that strain specific levels of 

gene expression are due to upstream changes in the gene regulatory landscape. 

 Altered enhancer transcription factor binding due to motif mutations can alter 

transcriptional output at target promoters (Heinz et al., 2013; Hoeksema et al., 2021; Link et al., 

2018; Shen et al., 2020). This phenomenon can be leveraged to identify transcription factors 

associated with an epigenetic mark of interest such as histone acetylation or transcription factor 

binding. We applied the tool MAGGIE to detect motifs whose disruption was associated with the 

loss or gain of ATAC-seq or H3K27Ac ChIP-seq signal. We found that MAGGIE predominantly 

detected transcription factors known to be important for Kupffer cell function, including PU.1, 

ETS factors, AP-1 family members, and IRF family members (Supplemental Fig. 2.2C). 

Next, we sought to assess whether differences in the enhancer landscape were attributable 

to differential activity of transcription factors or local genetic variation. We assessed the 

potential of local genetic variation to drive strain specific opening/activation of enhancers by 

annotating strain specific regions with mutations using MMARGE. In support of prior work, we 

found that loci with strain specific ATAC and H3K27Ac signal were also associated with a 46-

55% rate of mutation compared to 15-18% strain similar genomic loci (Fig. 2.2D) (Heinz et al., 

2013; Link et al., 2018). Notably, this finding suggests that the remaining 50% of strain specific 

epigenetic loci are established by distal cis regulatory variation or trans effects. 

Trans mediated changes in gene expression are driven by a diffusible factor existing 

within the nucleus. Conceptually, trans changes result either from alterations in the function of 

transcriptional regulators (“regulatory trans”) or from changes in the activity of upstream 
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signaling pathways (“sensory trans”) (Tirosh et al., 2009). Regardless of mechanism, 

transcriptional regulators often act as this diffusible factor, and differences in transcription factor 

concentration or activity generate downstream trans effects (Bryois et al., 2014; Emerson & Li, 

2010; Goncalves et al., 2012). Following this model, differential trans signaling pathway activity 

between the strains should be detectable by motif enrichment analysis of strain specific 

enhancers. We performed de novo motif enrichment analysis of strain specific open chromatin 

regions using both ATAC-seq and H3K27Ac ChIP-seq signal. We found that each strain was 

enriched for a distinct set of de novo motifs (Fig. 2.2E and 2.2F), suggesting that differential 

activity of these transcription factors could be partially responsible for establishing strain specific 

patterns of gene expression. Notably, the motifs for IRFs were found in nearly 10% of A/J-

specific accessible regions (Fig 2.2E), and motifs for the MITF family of TFs were found in 

25.67% of BALB/cJ-specific activated regions (Fig 2.2F). The high level of enrichment of these 

motifs at strain specific loci suggests they function to establish the regulatory landscape of A/J 

and BALB/cJ Kupffer cells, respectively. 

We further explored the possibility that differential activity of TFs could explain strain 

specific loci by comparing motif enrichment scores for known transcription factor motifs in 

HOMER 4.10 across all strain specific peaks to enrichment scores at all accessible or active 

genomic loci. When calculating enrichment of motifs in a particular strain, we utilized a 

MMARGE wrapper function to extract strain-specific sequences from mm10 based peak 

coordinates. We found that the motif enrichment scores were highly correlated when all peaks 

were considered (R >0.99 for accessible and active peaks), but markedly less so when only strain 

specific peaks were considered (Fig. 2.2G). These data suggest trans acting differences in 
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transcription factor activity are responsible for a subset of differences in gene expression 

observed in genetically diverse Kupffer cells.  
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Figure 2.2: Epigenetic diversity of Kupffer cells. (A) Browser tracks of strain specific loci. (B) 
Heatmaps of strain specific ATAC-seq peaks and associated ATAC-seq (right) and H3K27Ac 
ChIP-seq (left) tag density. Each column is 3kb wide. (C) Strain specific genes are associated 
with increased promoter ATAC-seq and H3K27Ac levels. P values calculated by students t-test. 
* indicates p < 0.001. (D) Mutational burden at strain similar and strain differential loci (fold 
change cutoff indicated in table, adjusted p value < 0.05). (E-F) Strain specific de novo motif 
enrichment in ATAC-seq (E) and H3K27Ac ChIP-seq (F) data, for each motif, we provide the 
percent of peaks within the set that contain the motif, and a p-value indicating the significance of 
motif enrichment within the set. (G) Correlation of known motif enrichment scores at all poised 
or active loci or at strain specific ATAC and H3K27Ac loci. ATAC-seq peaks were calculated 
using 4 biological replicates. H3K27Ac ChIP-seq data was generated using 3 biological 
replicates pooled from 6 mice. 
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Non-cell autonomous genetic variation drives a majority of trans mediated gene expression 

differences in Kupffer cells 

Kupffer cells reside in contact with liver sinusoidal endothelial cells, hepatocytes and 

stellate cells; given their residence in lumen of hepatic sinusoids, they are also exposed to 

putative ligands in the portal circulation. We suspected that differences in extracellular signaling 

ligands in the Kupffer cell niche were driving a substantial amount of the observed 

transcriptional variation between the strains. We also considered an alternative model in which 

cell-intrinsic differences in signaling pathway sensitivity or activity could explain trans 

differences in gene expression. We refer to these two models as cell-autonomous trans effects 

and non-cell autonomous trans effects.  To discern the impact of cell autonomous and non-cell 

autonomous trans genetic variation we used a combination of model systems. First, we 

transplanted bone marrow from C57BL/6J mice or BALB/cJ mice into NOD-Scid-gamma 

recipient mice whose bone marrow had been ablated by busulfan treatment (Fig. 2.3A) (Peake et 

al., 2015). Busulfan treatment also depletes resident hepatic macrophages allowing bone-marrow 

derived monocytes from the donor strain to repopulate the liver of the NSG recipient mice. 

Kupffer cells from NSG chimeric mice exist within a matched hepatic niche but retain a strain 

specific intracellular environment (Supplemental Fig. 2.3A). The second model used mice from 

the first-generation intercross of C57BL/6J male mice and BALB/cJ female mice (CB6F1/J 

mice). In CB6F1/J mice the autosomal BALB/cJ and C57BL/6J genomes exist within a matched 

extracellular and intracellular environment, thereby exposing each genome to the same set of cell 

autonomous and non-cell autonomous trans effects of genetic variation (Fig. 2.3A). 

We then performed RNA-sequencing on Kupffer cells from CB6F1/J mice and NSG 

chimeric mice. In order to discern allelic bias from CB6F1/J RNA-seq data we mapped the raw 
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sequence to each parental genome and compared the levels of perfectly mapped reads spanning 

mutations between the parental strains, as described previously (Heinz et al., 2013; Link et al., 

2018). NSG and F1 Kupffer cells displayed similar levels of strain bias using identical statistical 

thresholds (Fig. 2.3B). This was surprising as we were only able to compare a total of 4407 

genes in the F1 due to the relatively small amount of genetic diversity between the mRNA 

sequences of the two strains, whereas in NSG mice we considered all transcripts that met a 

minimum level of gene expression. We then compared the strain bias of NSG and F1 Kupffer 

cell transcripts to the strain bias observed in parental (F0) Kupffer cells. We found that 150/361 

genes that were differential between BALB/cJ and C57BL/6J F0 Kupffer cells were also 

differential between BALB/cJ and C57BL/6J Kupffer cells isolated from NSG chimeras, while 

83/361 transcripts showed allelic bias in RNA isolated from F1 Kupffer cells (Fig. 2.3B). Direct 

comparison of differential gene sets from each pairwise comparison shows that F0 and NSG 

mice share more differential genes than F0 and F1 mice (150/244 overlap in NSG versus 83/244 

in F1, P=1.7e-9) (Fig. 2.3C). These observations support a model in which both cell-autonomous 

and non-cell autonomous (environmental) effects drive strain specific expression in Kupffer 

cells. 

Cell-autonomous changes in gene expression can be mediated in cis or by trans changes 

in the activity of signaling pathways independent of extracellular ligand levels. In order to more 

accurately quantify the relative contribution of cis, cell autonomous trans, and cell-non 

autonomous trans variation, we compared the fold change C57Bl/6J and BALB/cJ specific genes 

between F0 and NSG or F0 and F1 Kupffer cells (Fig. 2.3D). We defined cis regulated genes to 

be genes that displayed significant (Fold Change > 2, adjusted p value < 0.05) strain specific bias 

in the same direction, trans genes as genes that displayed strain specific bias in the F0 but not the 
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NSG or F1, and mixed genes as those that displayed strain specific bias in the NSG or F1 but not 

the F0. We found that evidence that 172 genes were regulated in trans in the NSG hybrid, while 

only 124 genes were regulated in trans in the F1 hybrid Kupffer cells (Fig. 2.3D). We then 

filtered the set of trans genes that lacked mutations from both comparisons to only consider 

genes in which we were able to detect allelic bias in the F1 (Fig. 2.3E). We then asked whether a 

given transcript was determined to be trans in the NSG, F1, or both. We found that of the 

transcripts in which we were able to establish allelic bias in the F1, the majority (79/125) were 

detected to be trans in both the NSG and F1 mice and are likely to be driven by environmental 

trans effects in the F0 parental strain that are lost in both the NSG and F1 models. Many of the 

remaining transcripts (38/125) were found to be trans in the F1 mouse but not the NSG mouse, 

suggesting that they are caused by cell-autonomous differences upstream of transcription factor 

binding. A small proportion (8/125) genes were found to be trans regulated in the NSG mouse 

but not the F1. Examples of each type of trans gene are shown in Fig. 2.3F. Based on these data, 

we estimate that roughly 2/3 of trans mediated genetic variation in Kupffer cells is driven by cell 

non-autonomous differences in environmental signals, while 1/3 of trans mediated genetic 

variation is due to cell-autonomous differences in signaling or transcriptional activity. 

  



 

64 

Figure 2.3: Regulation of gene expression by cell autonomous and non-autonomous trans 
effects. (A) Graphic depicting model systems used to resolve cell autonomous and non-
autonomous trans effects of genetic variation. (B) Scatter plots demonstrating genetic diversity 
in NSG chimeras and F1 hybrids and the overlap of strain specific genes in this system with 
strain specific genes in the F0 mice. (C) Overlap of differential gene sets from each pairwise 
comparison. (D) Log-log plots illustrating the identification of cis, trans, and mixed gene sets. 
(E) Separation of trans regulated genes into genes that are trans in one or both model systems. 
(F) Bar plots showing expression of trans regulated genes that are shared by NSG and F1 or 
NSG/F1 specific, fold change between strains is noted above the bar plot for each comparison. 
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F1 hybrid transcriptomics reveal differential lipopolysaccharide - toll like receptor 4 

signaling pathway activity in Kupffer cells 

Our studies of the NSG and F1 models suggest that a substantial fraction of strain-

differential genes observed in F0 Kupffer cells were driven by differences in the Kupffer cell 

niche between the F0 strains. We reasoned that differences in environmental signaling should 

result in the activation of distinct transcriptional modules within the strains. Therefore, 

bioinformatic analysis of trans gene sets could identify signaling pathways that are differentially 

active in F0 mice but lost when Kupffer cells are transplanted into a matched environment. 

We identified trans regulated genes as those differentially expressed (fold change > 2, 

adjusted p value < 0.05) between C57BL/6J and BALB/cJ that also show significant differences 

in allelic expression in CB6F1/J mice. By these criteria 124 genes are trans regulated, where 61 

have greater expression in C57BL/6J mice and 63 have greater expression in BALB/cJ mice. 

Gene ontology analysis revealed that C57BL/6J trans regulated genes are enriched for genes 

involved in antigen presentation and response to lipopolysaccharide, including Aoah, Lbp, and 

Tnfaip3, whereas BALB/cJ trans regulated genes were enriched for cell removal and chemokine 

signaling programs, including Cxcr4 and Pf4 (Fig 2.4A, B). Kupffer cells are exposed to portal 

lipopolysaccharide and other microbial endotoxins derived from the gut microbiota (Carpino et 

al., 2019). Differences in C57BL/6J trans gene expression could be due to upstream differences 

in toll-like receptor signaling. Known motif enrichment analysis of C57BL/6J trans gene 

promoters revealed enrichment for motifs bound by NFκB, as well as a motif for the PU1:IRF8 

heterodimer (Fig 2.4C). In total, 22.95% of C57BL/6J trans promoters displayed a functional 

NFκB-p65 motif, including the C57BL/6J trans gene Tnfaip3 (Fig. 2.4D). Collectively, these 
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data suggest that a subset of trans differences in C57BL/6J and BALB/cJ gene expression is due 

to differences in NFκB activity at target promoters. 

 Next, we asked whether differential recruitment of inflammatory transcription factors 

such as NFκB or the IRF family could be detected when comparing BALB/cJ and C57BL/6J 

Kupffer cell epigenetic data. When comparing ATAC-seq and H3K27Ac ChIP-seq levels at 

IDR-validated ATAC-seq peaks, we observed 6,527 genetic loci at which BALB/cJ and 

C57BL/6J Kupffer cells differed in ATAC-seq signal intensity and 4,871 sites at which they 

differed in H3K27Ac signal intensity (Fig. 2.4E, F). Known motif enrichment of strain specific 

sites revealed that C57BL/6J specific regions of both open and active chromatin were enriched 

for sequences containing the ISRE motif and that C57BL/6J-specific regions of open chromatin 

were enriched for sequences containing the NFκB motif (Fig. 2.4G). In comparison BALB/cJ-

specific regions of open and active chromatin were enriched for AP-1 factor, RUNX, and MITF 

family member motifs (Fig. 2.4G).  

Based on these results, we predicted that treating BALB/cJ mice with lipopolysaccharide 

would increase expression of C57BL6/J trans genes in BALB/cJ Kupffer cells. We tested this 

hypothesis by isolating Kupffer cells from BALB/cJ mice treated with 0.1 mg/kg intraperitoneal 

LPS for 2 hours (Fig. 2.4H). RNA-seq on LPS-treated BALB/cJ Kupffer cells demonstrated that 

1,452 transcripts were induced by LPS treatment (Fig. 2.4I). We found significant overlap 

between LPS-induced genes and C57BL/6J trans-specific genes but not between LPS-repressed 

genes and C57BL/6J trans-specific genes (26/61 transcripts, P=3.0e-7, 0/61 of LPS-repressed 

genes in C57BL/6J trans-specific gene sets, P=1.0) (Fig. 2.4J, K). This finding provides 

additional evidence that differential activity of inflammatory pathways contributes to strain 

specific differences in Kupffer cell gene expression. 



 

68 

Figure 2.4: Trans genetic diversity between the strains is putatively regulated by 
differential NF-kB signaling. (A) Metascape pathway enrichment for C57BL/6J and BALB/cJ 
trans genes. (B) Fold change comparisons of select C57BL/6J and BALB/cJ trans genes. (C) de 
novo motif enrichment at promoters of C57BL/6J trans genes. (D) Browser shot of H2-Q7 locus, 
a trans expressed gene whose promoter contains an NFkB motif. (E-F) Epigenetic differences 
between C57BL6/J and BALB/cJ. Differential genes calculated using DESeq2 for ATAC (E) 
and H3K27Ac (F) data. (G) Motif enrichment scores for known HOMER motifs at BALB/cJ and 
C57BL/6J specific ATAC-seq and H3K27Ac ChIP-seq peaks. (H) Graphic illustrating the 
approach used for the LPS study. (I) Kupffer differential gene expression induced by LPS 
treatment of BALB/cJ mice. (J) Convergence of the BALB/cJ and C57BL/6J Kupffer cell 
transcriptomes following treatment of BALB/cJ mice with LPS.  
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Leptin, amyloid precursor protein, and apolipoprotein E are putative trans acting factors 

driving Kupffer cell transcriptional variation 

Our observations in the F1 mouse suggest that strain specific hepatic environment 

controls a substantial amount of Kupffer cell gene expression differences. According to this 

model, strain specific differences could be driven by genetic diversity in expression levels of 

signaling ligands in the hepatic niche or by expression levels of cognate receptors in Kupffer 

cells. We next sought to identify signals driving strain specific transcriptional profiles using 

NicheNet, a bioinformatic model of cell signaling that connects ligands to downstream target 

genes (Browaeys et al., 2020). Of the curated NicheNet ligands, 88 had strain specific expression 

in at least one cell of the hepatic niche, while 37 NicheNet curated receptors displayed strain 

specific expression in Kupffer cells (Fig. 2.5A).  

We used NicheNet to predict hepatic niche ligands that could contribute to strain specific 

gene expression. As Kupffer cells are also exposed to portal blood, we also included a selection 

of hormones that could alter Kupffer cell gene transcription. The top 2 ligands from each strain 

specific analysis and their expression levels in the hepatic niche are shown in Fig. 2.5B. Potential 

hepatocyte derived ligands included ApoE, a secreted apolipoprotein that binds the low-density 

lipoprotein receptor, which was predicted to induce BALB/cJ specific Kupffer cell gene 

expression (Fig. 2.5B). ApoE expression levels are significantly higher in BALB/cJ hepatocytes 

compared to both A/J and C57BL/6J hepatocytes, suggesting that differential levels of hepatic 

APOE production could lead to changes in Kupffer cell transcription (Fig. 2.5B, lower panel). 

LSEC-derived ligands included Bmp2, a member of the bone morphogenic (BMP) ligand family. 

BMPs are known to influence Kupffer cell expression via SMAD signaling (Bonnardel et al., 

2019; Sakai et al., 2019). Adam17 and App were identified as putative ligands that were 
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expressed at similar levels in LSECs and hepatic stellate cells. App, or amyloid precursor protein, 

was predicted to drive the C57BL/6J gene expression profile, including a selection of C57 

specific inflammatory genes including Ccl5 and Tnfaip3. Lep, encoding the adipokine Leptin, 

was the top scoring ligand for prediction of BALB/cJ-upregulated Kupffer cell genes (Fig. 2.5B, 

upper panel). We then used the NicheNet model to link these ligands to target receptors 

expressed on Kupffer cells and assessed the expression of target receptors across the strains (Fig. 

2.5C, upper panel). Strain specific expression of Lepr, the transcript encoding the leptin receptor, 

correlated with the NicheNet ligand activity score for leptin in each strain, with BALB/cJ 

expressing the most leptin receptor, followed by C57BL/6J, and A/J expressing the least (Fig. 

2.5C, lower panel). Finally, we used a circos plot to link top scoring NicheNet ligands to their 

target genes (Fig. 2.5D). This visualization emphasizes the role of leptin in driving BALB/cJ 

upregulated genes and APP in driving C57BL/6J specific gene expression (Fig. 2.5D). 

Next, we probed the NicheNet model to extract a putative list of TFs downstream of the 

top identified ligands and plotted the expression and motif enrichment values for the associated 

TF motifs across the inbred strains (Supplementary Fig. 2.4A). Activation of the leptin receptor 

by leptin leads to activation of the Janus kinase-signal transducer and activator of transcription 

(JAK-STAT) signaling pathway in macrophages (Maeda et al., 2009). Stimulation of 

macrophages with leptin has been shown to induce chemokine expression (Kiguchi et al., 2009), 

as well as expression of the anti-inflammatory gene suppressor of cytokine signaling 3 (Socs3). 

While we did not observe any differences in STAT motif enrichment or SOCS3 expression 

between the strains, we did observe enrichment for IRF motifs in A/J specific enhancer 

sequences (Fig. 2.2A), suggesting that the relative absence of leptin signaling in this strain could 

result in the increased activation of IRF family TFs due to decreased inhibition in A/J mice. 
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Collectively, these results suggest that a relative absence of leptin receptor signaling in A/J mice 

could contribute to strain specific differences in gene expression, particularly in comparison to 

BALB/cJ mice.  

We tested this hypothesis by isolating Kupffer cells from A/J mice treated with 1 mg/kg 

leptin for 6 hours (Fig. 2.5E). We performed RNA-seq and ATAC-seq to assess the effect of 

leptin on the A/J transcriptome and epigenome. We found that at this timepoint and dose leptin 

was associated with a modest effect on gene expression (Supplemental Fig. 2.4B). However, 

there was significant overlap between genes expressed significantly higher in BALB/cJ Kupffer 

cells compared to A/J Kupffer cells and genes induced by treatment of A/J Kupffer cells with 

leptin. (10/37 leptin induced, P< 1e-6). By comparison the overlap between leptin repressed 

genes and those expressed highly by BALB/cJ Kupffer cells was not significant (1/27 leptin 

repressed, P=0.69) (Fig. 2.5F). Similarly, 4/27 genes were leptin-repressed were also repressed in 

A/J Kupffer cells relative to BALB/cJ Kupffer cells (P< 0.01) (Fig. 2.5E). Treatment of A/J mice 

with leptin altered the open chromatin landscape of Kupffer cells (Supplemental Fig. 2.4D). 

Motif enrichment analysis of enhancers with decreased accessibility following leptin treatment 

were for IRF3 and NFκB motifs in repressed enhancers, suggesting that leptin treatment could 

suppress the activity of these transcription factors in Kupffer cells (Supplemental Fig. 2.4E). 

Motif analysis also detected enrichment for the ZEB2 motif (Supplemental Fig. 2.4E). ZEB2 is 

essential for specification of Kupffer cell identity (Scott et al., 2018), raising the possibility that 

leptin signaling is involved in Kupffer cell differentiation. In full, these results demonstrate that 

the transcriptional diversity of inbred strains of mice can be leveraged to identify putative ligand-

receptor interactions that determine strain specific programs of gene expression. 
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Figure 2.5: NicheNet analysis identifies leptin as trans acting Kupffer cell ligand in inbred 
strains. (A) Expression diversity of NicheNet annotated receptors in Kupffer cells and NicheNet 
annotated ligands in other hepatic cell types. (B) Scoring of top 2 ligand per strain in NicheNet 
(upper panel).  Expression of ligands identified by NicheNet in cells of the hepatic niche (lower 
panel). (C) Ligand-receptor affinity scores in the NicheNet model (upper panel). Expression of 
the cognate receptors of top scoring NicheNet ligands (lower panel). (D) Circos plot 
demonstrating regulatory gene targets of top scoring NicheNet ligands. (E) Design of leptin 
treatment experiment. (F, G) Convergence of A/J transcriptome towards BALB/cJ following 
treatment with intraperitoneal leptin. 
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Combination of parental chromosomes within a shared cellular environment generates new 

instances of allelic bias. 

In our study of the F1 hybrid and NSG models we found a set of genes that displayed no 

allelic bias in F0 strains but large fold changes between the C57BL/6J and BALB/cJ alleles in 

the F1 or NSG mice. Strikingly, many mixed genes in the F1 mice had > 2-fold differences in 

allelic bias, whereas most NSG mixed genes had fold change < 2 (Fig. 2.6A). We hypothesized 

that mixed genes could be caused by the activation of novel transcription networks in F1 mice 

due to the de novo interactions of BALB/cJ and C57BL/6J in the same nucleus. 

We investigated the gene regulatory mechanisms acting upstream of mixed genes by 

performing ATAC-seq and H3K27Ac ChIP-seq on Kupffer cells from CB6F1/J mice. We 

filtered ATAC-seq and ChIP-seq reads to consider only those that were perfectly mapped and 

spanned a mutation between the two strains. Prior to determining allelic bias, we compared the 

distribution of reads spanning mutations to the distribution of perfectly aligned reads. We found 

that mutation spanning reads were relatively depleted for low expression genes but showed an 

overall similar distribution shape as perfectly mapped reads (Supplemental Fig. 2.5A). We also 

noted substantially more diversity in mutation spanning reads compared to perfectly aligned 

reads, suggesting that we could detect allele-specific genomic loci (Supplemental Fig. 2.5B). We 

then compared mutation spanning ATAC-seq and ChIP-seq data aligned to either the C57BL/6J 

and BALB/cJ genome and found many instances of allelic bias in the F1 Kupffer cells 

(Supplemental Fig. 2.5C). 

We found evidence of trans, cis, and mixed genetic regulation in both ATAC-seq and 

H3K27Ac ChIP-seq data (Fig. 2.6A-B). To aid in the interpretation of the role of motif mutations 

in cis regulatory loci, we trained two machine learning models to predict regions of open and 



 

76 

active chromatin, respectively. Our model was built using the DeepBind framework and showed 

good predictive power on our validation set of Kupffer cell peaks (AUC 0.950 for accessibility-

trained model, 0.902 for activity-trained model) (Alipanahi et al., 2015; Hoeksema et al., 2021). 

We then used DeepLift to assign importance scores on a single nucleotide basis and identify 

nucleotides likely to alter chromatin activation or accessibility (Shrikumar et al., 2017; Zheng et 

al., 2020). We found many instances in which cis-regulated peaks were associated with high 

scoring mutations in putative TF motifs. An example is shown in Fig. 2.6C at the Marco locus, 

in which a single nucleotide polymorphism disrupts an LXR binding motif and is associated with 

loss of ATAC and H3K27Ac signal. We overlaid this region with LXR ChIP-seq data and found 

that the motif lies within an LXR binding peak (Seidman et al., 2020). 

We were able to detect more total sites of differential regulation in H3K27Ac ChIP-seq 

data due to the increased number of mutations that could be detected in the 1000 bp window 

used to aggregate H3K27Ac ChIP-seq data. We observed a slightly increased fraction of mixed 

loci in each dataset (~1.1% of ATAC-seq peaks, ~1.7% of H3K27Ac ChIP-seq peaks), 

suggesting that activation of a pre-existing Kupffer cell enhancer landscape could be more 

important for driving mixed gene expression. 

To determine whether the same set of transcription factors was responsible for 

establishing each cis, trans, and mixed genetic loci, we assessed enrichment of known HOMER 

motifs in context-specific peaks detected in ATAC-seq and ChIP-seq data and compared the 

known motif enrichment scores for each strain.  We found that cis genetic loci were well-

correlated in ATAC-seq data (spearman Rho 0.39), but markedly less so in H3K27Ac ChIP-seq 

data (spearman Rho -0.09) (Fig. 2.6D). By comparison, we found that trans were anti-correlated, 

indicating that most trans motifs were strain specific. This suggests that trans loci are 
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determined by distinct sets of transcription factors in C57BL/6J and BALB/cJ, further supporting 

our transcriptomic observations. 

We then examined the top enriched known motifs in the mixed gene sets. C57BL/6J and 

BALB/cJ mixed ATAC-seq peaks were enriched primarily for macrophage LDTFs such as PU.1 

and CEBP despite being compared to all other IDR peaks in F1 mice. This suggests that some 

mixed loci are opened by LDTFs only in the F1 strain. We hypothesize that this could be due to 

collaboration between LDTFs and SDTFs that were not detected in this analysis due the small 

number of total peaks. Interestingly, BALB/cJ H3K27Ac mixed peaks were enriched for the 

IRF2 motif, which was also enriched in C57BL/6J specific ATAC-seq and ChIP-seq peaks (Fig. 

2.6E), while C57BL/6J H3K27Ac mixed peaks were enriched for a progesterone receptor motif 

that was found to be highly enriched in BALB/cJ specific peaks in F0 mice (Fig. 2.6E). This 

result supports a model in which the activity of certain transcription factor pathways is 

maintained cell autonomously in the F1, thereby exposing the genome of the additional parental 

strain to new trans acting factors, resulting in their activation and the opening or activation of 

new regions of chromatin in the additional parental strain. In this model the lack of chromatin 

modification in the ‘donor’ strain would be due to cis regulatory genetic variation.  

Collectively, these data provide a quantitative estimation of the relative contributions of 

trans and cis acting genetic variation in murine Kupffer cells. Our data supports a model in 

which local genetic variation drives cis regulated genomic loci, while loss of activity in strain 

specific transcription factors from F0 mice leads to loss of allelic specificity in trans regulated 

loci in the F1. Finally, we identify and describe mixed regulation genomic loci that show allelic 

bias in the F1 strain but not in the F0 parental mice. 
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Figure 2.6: Epigenetic assessment of mixed genomic loci suggests model for their 
transcriptional regulation. (A-B) Log-log plots of ATAC-seq (A) and H3K27Ac ChIP-seq (B) 
data between CB6F1/J mice and their F0 parental strains. (C) Example of cis-regulated genetic 
locus. DeepLift score of each nucleotide within highlighted peak is shown in the bottom panel. 
The mutation in BALB/cJ disrupts a putative LXR motif. (D) Correlation of motif enrichment 
scores in cis, mixed, and trans peak sets. (E) Top scoring known motifs in mixed gene sets for 
both strains in ATAC-seq and H3K27Ac ChIP-seq data. Motif rank is shown in parentheses, 
percentage indicates percent of peaks in which the motif is found. 
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Discussion:  

These studies report systematic analysis of the cell autonomous and non-cell autonomous 

effects of natural genetic variation in ex vivo murine Kupffer cells. We find that roughly half of 

transcriptional variation within inbred strains of mice is due to cis-acting genetic variation and 

half is due to trans-acting differences in transcription factor activity. Using F1 hybrids and NSG 

chimeric mice, we show that approximately 2/3 of trans acting variation in Kupffer cells is 

driven by non-cell autonomous differences in the Kupffer cell niche, while the remaining 1/3 is 

due to cell autonomous differences such as ligand-receptor expression or sensitivity to 

intracellular signal transduction. We show that trans and cis regulated variation can be detected 

at both the mRNA transcript level and at epigenetic loci using allele specific analyses of F1 

mice, and that this can be leveraged to infer transcription factor pathways controlling gene 

expression differences in the parental strains. We used this approach to identify the NFκB 

signaling pathway as a putative driver of differential gene expression in C57BL6/J mice 

compared to BALB/cJ mice and validated this prediction by treating mice with the TLR4 agonist 

LPS, which induced expression of nearly 50% of C57BL/6J biased trans genes in BALB/cJ 

mice. 

Comparison of F1 and F0 mice also revealed genes that displayed large levels of allelic 

bias in F1 mice but not in F0 mice or NSG mice. We termed these to be mixed genes and set out 

to characterize them. Mixed genes did not cluster into functional modules or contain clear 

patterns of promoter motif enrichment, suggesting that in contrast to trans genes they were not 

driven by a small, distinct set of transcription factors. We therefore extended our studies to the 

active enhancer landscape as determined by H3K27Ac, and chromatin accessibility as 

determined by ATAC-seq. We found evidence for mixed genomic loci that demonstrated allelic 
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bias in the F1 but not the F0. Mixed H3K27Ac loci were enriched for transcription factor motifs 

that were associated with trans activation of chromatin of the opposite parental strain (IRF in 

BALB/cJ mixed loci and the PR nuclear receptor motif in C57BL/6J mixed loci). One possible 

mechanism for specification of mixed loci involved epistatic interactions between cis and trans 

variants. These interactions can either be enhancing (cis and trans genetic variants exert effects 

in the same direction) or compensating (cis and trans genetic variants exert effects in the 

opposite direction). Studies in several model organisms have provided evidence that 

compensating cis-trans pairs are preferentially selected over enhancing pairs, suggesting that it is 

a mechanism for stabilizing gene expression amidst the effects of natural genetic variation 

(Brawand et al., 2011; Goncalves et al., 2012; Signor & Nuzhdin, 2018). Compensating variation 

could plausibly explain mixed loci observed in the F1 model, as cis acting variants compensating 

for changes in trans transcription factor activity within the strains are exposed to a higher (or 

lower) functioning transcription factor from the other parental strain, resulting in an enhancing 

rather than compensating effect on gene expression. This is supported by the observation that 

mixed genes are more common and pronounced in the F1 model, in which transcription factors 

from both strains can operate within a shared nucleus, than in the NSG chimeric model, in which 

cells retain their distinct intracellular composition. However, it is also possible that the mixed 

genes are driven by changes in the extracellular environment that are dominantly inherited in the 

F1 mouse and subsequently sensed by F1 Kupffer cells. Transplantation of C57BL/6J or 

BALB/cJ bone marrow into CB6F1/J chimeric mice could provide deeper insight into whether 

cell-autonomous or non-autonomous trans effects are responsible for mixed genetic regulation by 

exposing C57BL/6J or BALB/cJ Kupffer cells to the CB6F1/J environment. 
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Under a model of compensating variation, motifs corresponding to transcription factors 

with differential activity should be enriched within mixed genetic loci because of enhancing 

epistatic interactions. The observation that IRF motifs are enriched both in C57BL/6J specific 

H3K27Ac peaks from parental Kupffer cells and BALB/cJ specific H3K27Ac mixed peaks from 

F1 Kupffer cells follows this pattern, suggesting that BALB/cJ could have a cell-autonomous 

defect in Kupffer cell IRF signaling. Such a defect would be consistent with the observation that 

BALB/cJ derived macrophages respond less intensely to lipopolysaccharide treatment than 

C57BL/6J derived macrophages (Watanabe et al., 2004).  

We also show that tools generated for the analysis of transcription factor motif mutations 

can be used to identify transcription factors controlling Kupffer cell identity despite the 

interference of trans driven variation that is not correlated with motif mutations. We also used 

the DeepBIND and DeepLIFT machine learning network to identify nucleotides whose 

mutations are likely to alter chromatin activation or accessibility (Alipanahi et al., 2015; 

Shrikumar et al., 2017). Notably, we identified a genetic variant between C57BL/6J and 

BALB/cJ mice that disrupts an LXR binding element in an enhancer upstream of Marco, which 

is expressed at a significantly lower level in BALB/cJ mice than C57BL/6J mice. Whether this 

mutation alters LXR binding in BALB/cJ mice is an important question for future research. 

Marco encodes the protein macrophage receptor with collagenous structure (MARCO), a 

scavenger receptor mediating phagocytosis. Prior work has shown that hepatic induction of 

Marco transcription in response to infection with Listeria monocytogenes is LXR dependent 

(Joseph et al., 2004). Here, we provide evidence that basal transcription of Marco is also LXR 

dependent. Interestingly, BALB/cJ Kupffer cells have been observed to be less phagocytic in 

comparison with FVB mice, resulting in increased susceptibility of BALB/cJ mice to 
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thioacetamide induced liver damage (An et al., 2020). Prior work has shown that LXR is a 

Kupffer cell LDTF essential for establishment of Kupffer cell identity, raising the intriguing 

possibility that LXR-mediated control of MARCO is required for the maintenance of a 

phagocytic Kupffer cell population, and that loss of MARCO could predispose mice to liver 

disease. Deeper study of the role of LXR in the control of MARCO expression during the 

development of murine NASH is a promising area for further research. 

The utility of natural genetic variation as a genome-wide mutagenesis screen has proved 

to be valuable in the study of transcriptional regulation. Since its introduction nearly a decade 

ago, this approach has yielded insight into transcriptional regulation across many cell types, 

including macrophages, microglia, T-cells, and white adipose tissue (Fasolino et al., 2020; Heinz 

et al., 2013; Soccio et al., 2015; van der Veeken et al., 2020). Here we show that, when applied 

ex vivo, natural genetic variation can be used to discover trans acting drivers of genetic variation 

via natural perturbations of the cellular environment. We provide evidence that signaling ligands 

and receptor levels vary widely within the hepatic niche and show that bioinformatic tools can be 

used to infer differential activity in upstream signaling pathways. We used this framework to 

identify leptin as a putative trans acting factor driving expression differences between A/J and 

BALB/cJ mice. We provide some evidence that treatment of A/J mice with leptin results in 

convergence A/J and BALB/cJ Kupffer cell transcriptomes. However, it is unclear why treatment 

of A/J mice with leptin resulted in a large change in chromatin accessibility but a small change in 

gene expression. It is possible that the effect we are observing is due to indirect effects of leptin 

on other cells and tissues. It has been reported that intraperitoneal injection of leptin results in 

activation of STAT3 in target tissues within 30 minutes (Ozcan et al., 2009). Furthermore, 

injection of leptin was found to alter hepatic lipid composition within 2 hours. In this study, we 
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injected leptin 6 hours prior to isolating Kupffer cells, so it is plausible that rapid changes in 

other tissues could result in the delayed activation of Kupffer cells, which could then drive 

changes in the ATAC-seq profile of Kupffer cells without resulting in robust gene expression 

differences. More work will need to be done to assess the effect of acute leptin treatment in 

Kupffer cells, including the testing of different doses and different durations of treatment prior to 

Kupffer cell isolation. 

Notably, leptin signaling was not identified in two recent papers describing the Kupffer 

cell niche; in part this could be due to the models used in these studies, which relied on 

repopulation of the Kupffer cell niche by bone marrow derived monocytes. The leptin receptor is 

not expressed by monocytes or monocyte-derived Kupffer cells, rendering them incapable of 

responding to leptin (Bonnardel et al., 2019; Sakai et al., 2019). Expression of the leptin receptor 

in myeloid derived cells is required for proper response of the hepatic compartment to acute 

leptin treatment (Metlakunta et al., 2017). Treatment of mice with leptin was shown to sensitize 

Kupffer cells to lipopolysaccharide, in part via upregulation of CD14 (Imajo et al., 2012). Our 

transcriptomic profiling of the four major hepatic cell types reveals that only LSECs and Kupffer 

cells express leptin, so any response of hepatocytes to leptin signaling is likely mediated in part 

by these two cell types. How Kupffer cell responses to leptin signaling influence hepatic 

metabolism is an intriguing area of future research. Finally, leptin is also an important circadian 

hormone whose levels cycle throughout the day and are highest between ZT12 and ZT24. The 

disruption of circadian rhythms has been shown to lead to metabolic syndrome, which is 

associated with the development of NAFLD and NASH. Furthermore, a large fraction of the 

Kupffer cell transcriptome has been shown to vary in a circadian fashion. It is intriguing to 
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speculate that leptin is involved in establishing Kupffer cell circadian rhythms, and that 

disruption of this pathway could be involved in the development and progression of NAFLD. 

Overall, we believe this approach could provide significant utility in the study of tissue 

macrophages by providing a simple, tractable way to perturb the cellular niche. Furthermore, a 

niche-focused analysis of genetic variation would only require the collection of transcriptional 

data for the cell of interest and the surrounding niche. While the cell of interest would benefit 

from the preparation of a deeply sequenced transcriptional library, the niche could be 

approximated using bulk tissue or profiled using single cell RNA-sequencing. NicheNet has 

already been shown to be useful in the analysis of single cell RNA-seq data. 

Collectively, the work described in this thesis reveals complex interactions between cis 

regulatory genetic variation and trans regulatory differences in the activity of intracellular and 

extracellular signaling networks. Deeper profiling of the epigenomes of the strains studied in this 

work using transcription factor ChIP-seq will help elucidate underlying mechanisms of cis 

variation and the regulatory pathways controlling the specification of mixed loci in F1 

intercrosses. The relatively close relationship of the three strains used in this study is a limitation 

of the work described in this thesis. SPRET/EiJ and CAST/EiJ mice contain roughly 10-fold 

more mutations compared to C57BL/6J as BALB/cJ or A/J (Keane et al., 2011). Studying such 

wild-derived strains of mice is likely to yield even more insight into the transcriptional regulation 

of Kupffer cells. However, we show that even the amount of genetic variation present between 

closely related mouse strains (C57BL6/J, BALB/cJ, and A/J) provides sufficient resolution to 

detect differential pathway activation.  This bodes well for extension of the approaches outlined 

in this paper to human studies, as the mice used in this study carry the same level of genetic 

variation as the average human individual does from the reference genome. Extension of this 
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approach to human studies will be challenged by the lack of independent biologic replicates with 

matched genomic backgrounds, but this could be potentially overcome by using study designs 

that leverage shared genetic information, such as the study of parents and their offspring.  
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Supplementary Information: 

 
Supplemental Figure 2.1: Sample acquisition and purity. (A) Degree of natural genetic 
variation between the three inbred strains used in this study. (B) Sorting strategy used to isolate 
hepatic cell types by FACS. (C) Principal component analysis of transcriptomes of four hepatic 
cell types across the inbred strains. (D) Total amount of genetic variation observed between all 
pairwise comparisons of transcriptional data. 
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Supplemental Figure 2.2: Correlation of H3K27Ac ChIP-seq and ATAC-seq signals. (A) 
All pairwise differential peaks for ATAC-seq and H3K27Ac ChIP-seq data. (B) Correlation of 
H3K27Ac and ATAC-seq data within a strain, correlation calculated using Spearman’s Rho. (C) 
Motifs positively (red) or negatively (blue) associated with accessible chromatin or active 
chromatin. Correlation p value determined using MAGGIE. (D-F) amount of overlap between 
pairwise significant H3K27Ac and ATAC peaks for each possible pairwise comparison of the 
inbred strains. N=3 independent replicates for ChIP-seq studies, N=4 independent replicates for 
ATAC-seq studies. 
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Supplemental Figure 2.3: Characterization of cis and mixed gene sets. (A) Scatter plot 
showing fraction of chimerism in NSG chimeras. Following bone marrow ablation busulfan, 
NSG mice were transplanted with C57BL/6J or BALB/cJ bone marrow. Busulfan treatment also 
depleted hepatic Kupffer cells, allowing for repopulation with C57BL/6J or BALB/cJ monocyte 
derived Kupffer cells. (B) Expression of mixed genes in F0, mixed genes displaying allele 
specific bias in the F1 are also expressed in F0 mice, as a comparison we include the expression 
of the Kupffer cell specific gene list from Lavin et al. (C, D) Degree of overlap between cis and 
mixed regulated genes between the F1 and NSG model systems. 
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Supplemental Figure 2.4: Motif enrichment downstream of NicheNet ligands. (A) 
Expression and motif enrichment scores of transcription factors predicted to be downstream of 
top NicheNet ligands. (B) Scatter plot of leptin effect on A/J gene transcription. Colored genes 
are significant at Fold Change > 1.5 and adjusted p value < 0.05.  (C) Functional enrichment of 
leptin sensitive A/J genes performed using Metascape. (D) Effect of leptin treatment on open 
chromatin in A/J Kupffer cells. Colored peaks are significant at Fold Change > 2 and adjusted p 
value < 0.05. (E) HOMER known enrichment in leptin repressed and induced peaks 
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Supplemental Figure 2.5: Distributions of perfectly aligned and mutation spanning ChIP-
seq and ATAC-seq reads. (A) Distribution of tag counts at all genomic loci using perfectly 
mapped reads (upper panels) or perfectly mapped reads spanning a mutation. (B) Scatter plots 
demonstrating strain specific tag counts for perfectly mapped reads (left panels) or perfectly 
mapped reads spanning a mutation (right panels). (C) DESeq2 assessment of allelic bias 
identified instances of allelic bias at genetic loci with low variance. Relationship of tag count and 
allelic imbalance is shown on right, relationship of tag count and sample variance is shown on 
left panels. 
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