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ABSTRACT OF THE DISSERTATION

Using Particle Swarm Optimization to

Find Efficient Designs for Mixed Effects Models with Sparse Grid and

Predict Progression of Idiopathic Pulmonary Fibrosis using Baseline

High Resolution Computed Tomography Scans with Random Forest

by

Yu Shi

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2019

Professor Weng Kee Wong, Co-Chair

Professor Grace Hyun Jung Kim, Co-Chair

There are many challenging optimization problems in the health sciences. Problems in health

sciences are increasingly complex, and frequently the most advanced optimization techniques

are required to tackle them. Researchers thus need various types of flexible optimization tools

that are easily accessible and efficient. In this dissertation, we utilize a stochastic optimiza-

tion technique called particle swarm optimization (PSO) and demonstrate its usefulness and

flexibility using two applications in the biomedical field. For the first application, we propose

a sparse grid hybridized PSO (SGPSO) algorithm to find different types of optimal or highly

efficient designs for various longitudinal models. In particular, we consider non-linear mixed

effects models useful in pharmacokinetic/pharmacodynamic studies and show SGPSO is a

powerful tool for finding optimal or efficient designs that were previously thought to be in-

tractable. For the second application, we propose a random forest hybridized quantum PSO

algorithm for predicting disease progression of idiopathic pulmonary fibrosis (IPF) using

quantitative information on high-resolution computed tomography (HRCT) imaging. IPF is

a fatal type of lung disease with unpredictable functional progression at the time of diagno-

sis. We leverage single time point HRCT scans to predict the 6 months to 1 year follow-up

status of IPF subjects. Results show that the two hybridized PSO approaches tackle im-
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portant biomedical optimization problems effectively, and since the proposed methodology

is not problem specific, there is potential for further applications to solve other biomedical

optimization problems.
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of France Mentré, Thu Thuy Nguyen, Jérémy Seurat, and Sebastian Ueckert for their help

on developing the software for Project I.

Lastly, I wish to thank my family and friends. I am forever thankful for my friends who

keep me happy and cheerful. Special thanks to Di, Xinke, Gao, and Haoli for being there

with me during hard times. I also wish to thank my parents for their unconditional love and

support throughout my entire life. Not a single moment they stop believing in me, and their

unwavering trust has been my source of strength.

This research is partially sponsored by National Institute of General Medical Sciences

under the Award Number R01GM107639, the National Heart, Lung, and Blood Institute

of the National Institutes of Health under the Award Number R21HL123477-01A1 and

R21HL140465-01A1, UCLA graduate summer research mentorship, and UCLA disserta-

xv



tion year fellowship. Sections 1.2 and 3.5.4 were adapted from Yu Shi, Zizhao Zhang, and

Weng Kee Wong. “Particle swarm based algorithms for finding locally and pseudo-Bayesian

D-optimal designs.” Journal of Statistical Distributions and Applications, 6(1):3, Apr 2019.

Sections 1.3 and 4.1-4.4 were adapted from the Yu Shi, Weng Kee Wong, Jonathan Goldin,

Matthew Brown, and Grace Hyun Kim. “Prediction of Progression in Idiopathic Pulmonary

Fibrosis using CT Scans at Baseline: A Quantum Particle Swarm Optimization - Random

Forest Approach.” Artificial Intelligence in Medicine. (Under review). Sections 3.3, 3.4, 3.6.1

and 3.6.2 were adapted from Yu Shi, Thu Thuy Nguyen, Jérémy Seurat, France Mentré, and
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CHAPTER 1

Introduction

Optimization is widely involved in many public health problems. Researchers often attempt

to solve problems that involve sophisticated objective functions without easily exploitable

mathematical properties. Thus an optimization tool should be helpful to public health

researchers. Ideally the tool is versatile and able to handle various objective functions and

constraints. It also should be computationally efficient and easy to implement. In this

work, we propose particle swarm optimization (PSO) as a generic optimizer to tackle hard

optimization problems in health sciences, and demonstrate its usefulness and flexibility using

two applications in the biomedical field.

Researchers use PSO for various public health related problems. [FLW09] used PSO to

choose screening spots at public transportation stations during period of infectious disease

outbreak so that population covered by screening can be optimized. [IP12] used PSO to op-

timize the scanning window to determine disease clusters. [WMN15] used PSO to optimize

an environmental/economic dispatch problem to reduce emissions that cause air-borne con-

taminants due to electricity generation. [CM11] used PSO to allocate health infrastructure

in a living area so that routes to infrastructures are optimized. [LD13] used PSO to optimize

the architecture and weights of the artificial neural network to identify the factors related to

common mental disorders. [SRJ13] used PSO to train a risk estimation technique to predict

spatial PM10 concentrations at un-sampled locations using sampled and measured location

information. [KSD15] used PSO to study geographical pattern of cardiac attack happened in

public areas so that cardiac rehabilitation defibrillators can be installed accordingly. There

are also many others not listed above.

In this dissertation, we use PSO hybridized with other techniques to tackle two difficult

1



problems in biomedical sciences. The first project focuses on finding efficient exact designs

and pseudo-Bayesian optimal approximate designs for models commonly used in biomedical

studies, and in particular, we try to find efficient designs for non-linear mixed effects models

(NLMEMs). Design issues are rarely discussed for NLMEMs and one major challenge is

to handle multi-dimensional numerical integration nested in the optimization process. It is

critical to set up efficient yet robust designs for this class of models, as experimental costs

keep rising and there is a constant need to reduce the number of repeated measures from

subjects, especially when there are neonates, infants and/or children [DPK11]. Efficient data

collection designs are critically important in making meaningful statistical inferences. By

using optimal design theory, we can help scientists produce the most reliable results that are

more likely to translate into useful biomedical applications at minimum cost.

The second project aims to accurately predict the progression outcomes of idiopathic

pulmonary fibrosis (IPF) disease subjects using single time point high-resolution computed

tomography (HRCT) images. IPF is a progressive and ultimately fatal lung disease with

heterogeneous progression status. From 2001-2011, among newly diagnosed IPF subjects

with Medicare, the median survival time was 3.8 years [RCY14]. The prevalence estimate of

IPF in the US ranges from 14.0 to 42.7 per 100,000 persons depending on the case definition

used [RCE11]. The disease exhibits a highly heterogeneous natural history, and time to the

disease progression is not predictable at the time of diagnosis: some subjects may experience

episodes of acute respiratory worsening even though the disease was stable before [RCE11].

Therefore it is critical to distinguish subgroups of IPF subjects who are expected to progress

from those who are expected to stay stable. The identification of subgroups helps clinicians

decide whether to switch the current treatment, or refer the subject for a lung transplantation

at an early stage. HRCT imaging has shown its potential in detection of lung disease pattern

at an early stage [RSD16]. However, HRCT data are usually hard to analyze because they

are heterogeneous, spatially correlated, and high dimensional. Using HRCT information, and

in particular, using only single time point HRCT information, to predict IPF progression is

both clinically important and technically challenging.
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1.1 Aims and novelty

In this study, we hybridize PSO with other techniques to tackle these two problems, that

both involve hard optimization process. Specifically, the first project hybridizes PSO with a

sparse grid technique that finds exact and pseudo-Bayesian optimal approximate designs for

various generalized linear models (GLMs) and non-linear mixed effects models. In the second

project, we propose a random forest hybridized PSO algorithm to mine the rich information

in HRCT images and build a predictive model for IPF subjects. Thus the dissertation work

has two aims that both use PSO for the core optimization process:

1. Build a computational tool that finds efficient exact designs and pseudo-Bayesian op-

timal approximate designs for GLMs and NLMEMs efficiently, under different model speci-

fications. Pseudo-Bayesian optimal designs are obtained from averaging the classical design

criteria over the parameter space [RDM16]. The tool will be flexible and facilitate us to

find more efficient designs more effectively than those recently reported in the literature

[RMB02, ME06, WLE06, GJS09, NM14a, RUM16]. PSO is utilized because the closed-form

solutions are unavailable and the numerical integration nested in the optimization process

makes the objective function computationally hard to tackle.

2. Collect a labeled training data set on baseline HRCT images and develop a model

that predicts the IPF disease progression at the follow-up visits. We implement a study

design that makes it possible to collect a labeled training set at regions of interest (ROI)

level to build a supervised learning model. We develop a feature selection and classification

algorithm that selects a small subset of HRCT texture features and gives superior classi-

fication performance relative to other commonly used algorithms. We train and validate

the algorithm at the ROI level and expand the algorithm to the whole lung level so that

the algorithm can be more readily applicable in practice. An advanced version of PSO is

utilized to deal with the feature selection process involved because the objective function is

not analytically available.

The two projects are novel and results of the proposed work have potential impact in
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practice. For project I, we develop a novel method for finding efficient designs for non-linear

mixed effects models for which the efficient designs have remained largely elusive. Finding

efficient designs for such models will likely result in more efficient biomedical studies in

practice. For project II, our study design makes it possible to collect labeled ROI information

at baseline scans. The integrated predictive approach of radiological imaging texture feature

selection and pattern prediction is new and has potentially superior classification performance

to traditional filter methods and many wrapper methods. We show that it is possible to

predict the IPF disease progression using only single time point HRCT images: clinicians

should be able to make more informed and timely medical decisions on IPF treatment based

on the prediction results.

The rest of the dissertation is organized as follows. Section 1.2 and 1.3 cover background

knowledge and the motivations of the two projects. Chapter 2 covers the basics of PSO,

including its variants and applications. Project I is discussed in chapter 3. Section 3.1

briefly reviews algorithms for finding optimal designs. Section 3.2 discusses the sparse grid

technique used to tackle multi-dimensional integration process. Section 3.3 discusses non-

linear mixed effects models and the difficulty in finding efficient designs for such models.

Section 3.4 proposes the main methodology for Project I. We find pseudo-Bayesian optimal

approximate designs for GLMs in section 3.5, and efficient exact designs for non-linear mixed

effects models in section 3.6. Project II is discussed in Chapter 4. Section 4.1 is a brief

literature review on the project background. Section 4.2 covers the implementation of study

design and data acquisition that enabled a supervised learning approach. The methodology

is proposed in section 4.3. The preliminary results at the ROI level are discussed in section

4.4. Section 4.5 discusses an expansion of the ROI level to the whole lung level in predicting

progression. Chapter 5 concludes the dissertation, with some limitations and future work

direction discussed.
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1.2 Optimal designs

Designing efficient experiments is often the first step in a scientific study. To design an

experiment and extract scientific conclusions from it, scientists often need to utilize optimal

design theory to make decisions on data collection strategy. Optimal designs are a class of

experimental designs that are optimal with respect to some statistical criteria. Biomedical

researchers have applied optimal design theory and constructed various efficient studies in

biomedicine, such as in dose-response studies and design of early phase clinical trials. For

longitudinal models, there are some advance in this area, see for example, [OGG05, OTB02,

PS16, JM16].

Finding optimal designs often involve complicated numerical computation, and designs

that involve numerical integration are especially challenging. One of such problem is finding

pseudo-Bayesian optimal designs. A pseudo-Bayesian approach accounts for model uncer-

tainty by specifying prior distributions to model parameters [CL89], and pseudo-Bayesian

optimal designs are usually more robust to model mis-specification [DPW09]. Another such

problem is finding efficient designs for non-linear mixed effects models. The evaluation of

Fisher information matrix for such models often involve multi-dimensional integration over

the random effects, which makes it expensive to evaluate the quality of one design. For some

complicated models, existing work usually avoids direct optimization and compares a small

number of candidate designs. This approach is simple but is likely to miss the efficient design

over the design space and therefore lose efficiency. In our work, we propose to use PSO to

search the design space, and use a sparse grid technique to evaluate numerical integration

nested in the optimization processes.

We consider both exact and approximate designs in this work. For a pre-fixed sample

size n and a given criterion, an exact design specifies the number of observations to take at

each support point and where these support points are. There is no general method to verify

the optimality of exact designs. An alternative is to work with optimal approximate designs,

which for a fixed sample size, determine the total number of support points (k), the locations

of the design points and the proportions (pi’s) of observations to take at these points. In
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practice, the number of observations at the point xi is np∗i after rounding each npi to the

nearest integer np∗i , i = 1, . . . , k and subject to the constraint np∗1 + np∗2 + · · · + np∗k = n.

In contrast to optimal exact designs, there is a theoretical and unified framework for finding

optimal approximate designs, including established algorithms for finding many of them, see

[KBO85].

The general framework of optimal designs for non-linear models is given as follows. Let

Y (x) be the response and let η(x; θ) be its nonlinear mean function. We assume that

Y (x) = η(x; θ) + ε, ε ∼ N(0, σ2), x ∈ X,

and experimental subjects are independent. Following convention, the worth of a design

ξ is gauged by its Fisher information matrix (FIM). The information matrix M(θ, ξ) is

proportional to the negative of the expectation of the second derivatives of the log-likelihood

function with respect to the model parameters in the mean function. It depends on the

model, parameters in the mean function and the variance structure, and also on the model

parameters when the model is nonlinear. The FIM plays a crucial role in the determination

of optimal designs.

The optimality design criterion is usually formulated as a convex or concave function of

the information matrix. The popular D-optimality criterion is formulated as the negative

of the log determinant of the information matrix and it is a convex function [Fed72]. The

D-optimal design minimizes the volume of the confidence ellipsoid of the model parame-

ters when errors are independent and normally distributed. This means that the D-optimal

design provides the most accurate inference for the model parameters. The D-optimal de-

sign for estimating all model parameters using θ0 as nominal values is the design ξD that

maximizes the determinant of information matrix

ξD = argmax
ξ∈Ξ

{log(det[M(θ0, ξ)])}, (1.1)

where Ξ is the set of all feasible designs. The larger the criterion values is, the better is
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the design. When prior information on the model parameter θ is available in the form of

a density π(θ), a pseudo-Bayesian D-optimal design ξBayesD maximizes the same criterion

after averaging out the model parameters with respect to the prior density. It is defined by

ξBayesD = argmax
ξ∈Ξ

∫
{log(det[M(θ, ξ)])}π(θ) dθ, (1.2)

and as before, the larger the pseudo-Bayesian D-optimality criterion values is, the better

is the design. Clearly, when the prior density is degenerate, the resulting design becomes

locally D-optimal. Both criteria are appropriate for estimating model parameters.

When the design criterion is convex in Ξ, an equivalence theorem is available to verify

optimality of a design over all designs on the design space X. Such a theorem comes from

directional derivative considerations of a convex functional and is discussed in design mono-

graphs like [Fed72, BW05]. For example, if m is the dimension of θ and δx is a design that

takes all observations at x, it can be shown that the design ξD is locally D-optimal if and

only if

tr{M(ξD, θ)
−1M(δx, θ)} −m ≤ 0, for all x ∈ X,

with equality at the support points of ξD. The function on the left is sometimes called the

sensitivity function. Different convex design criteria lead to different sensitivity functions but

they all have a similar form. In practice, the optimality of a design is verified by plotting the

sensitivity function against the design space and checking whether the equivalence theorem

is satisfied. If it is not, the design is not D-optimal. Similarly, ξBayesD is a pseudo-Bayesian

D-optimal with respect to the prior density π(θ) if and only if

∫
θ

tr{M(ξBayesD, θ)
−1M(δx, θ)}π(θ)dθ −m ≤ 0, for all x ∈ X,

with equality at the support points of ξBayesD.

We compare designs using relative efficiency, which is commonly defined as the ratio

of the two criteria values or a function of the ratio for better interpretation. When one

of the designs been compared is the optimal design, relative efficiency becomes the design
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efficiency. For example, if the θ0 is the vector of nominal value for the nonlinear model and

the criterion is D-optimality, we compare two designs ξ1 and ξ2 via the mth root of the ratio

of the determinants of their information matrices:

{ |M(ξ1, θ0)|
|M(ξ2, θ0)|

}1/m

.

The relative efficiency ratio compares performance of the two designs for estimating the

model parameters. If the above ratio 0.5 or 50% efficiency, this means that the design ξ1

needs twice as many observations for it to do as well as the design ξ2. When ξ2 is the D-

optimal design, the above ratio is simply the D-efficiency of the design ξ1. A pseudo-Bayesian

efficiency lower bound on the D-efficiency of a design ξ is defined as e−sm/m, where sm is the

maximum positive value of the sensitivity function across the design space [Paz86].

In this work we develop a hybridized algorithm that combines sparse grid and PSO to

efficiently find optimal designs that involve numerical integration and optimization. We im-

plements our algorithm and demonstrate its efficiencies for finding pseudo-Bayesian optimal

design and efficient exact designs for non-linear mixed effects models. In particular, we show

that our algorithm is able to find pseudo-Bayesian optimal approximate designs and their

optimality can be verified by the equivalence theorem. For exact designs, there is no theo-

retical tool to confirm optimality of the design. In this case, we compare our designs with

designs reported in the literature or designs currently adopted in clinical trials and show

that our algorithm can find more efficient designs for the given setting or in a broader setup.

1.3 Idiopathic pulmonary fibrosis

Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by an unpredictable

progressive decline in lung function. Natural history of IPF is unknown and the predic-

tion of disease progression at the time of diagnosis is notoriously difficult. Because of the

heterogeneous natural history of IPF, scientists and clinicians have devoted many efforts to

build predictive tools to diagnose and treat IPF subjects [RCE11, RRM18]. Some predictive
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clinical models have been developed but few incorporate HRCT imaging data. HRCT plays

an important role in diagnosis and detection of IPF. HRCT provides a non-invasive, 3D

perspective of lung morphology with disease distributions and can reflect regional anatomic

changes over time. Studies have shown that HRCT features can be good representation of

disease severity [KBC15] and they are considered useful and sensitive to predict survival

in subjects with IPF [KBW16]. A predictive model for IPF progression at voxel-wise level

has never been developed using only baseline HRCT scans. Mainly, there are two chal-

lenges: (a) obtaining a data set of features for region of interest (ROI) on baseline HRCT

scans and their follow-up status; and (b) simultaneously selecting important features from

high-dimensional space, and optimizing the prediction performance. We resolved the first

challenge by implementing a study design and having an expert radiologist contour ROIs

at baseline scans, depending on its progression status in follow-up visits. For the second

challenge, we integrated the feature selection with prediction by developing an algorithm

using a wrapper method that combines quantum particle swarm optimization to select a

small number of features with random forest to classify early patterns of progression.

In this dissertation, we build a predictive model using only baseline (single time point)

HRCT information. We seek to leverage the HRCT imaging data to build a predictive

model that 1) select a small subset of HRCT features; 2) has high prediction accuracy; and

3) achieves balanced sensitivity-specificity. The main difficulty in selecting HRCT texture

features is that these features are usually high-dimensional and are correlated in a compli-

cated manner (see figure 1.1 for a visualization), and many commonly used methods such as

forward/backward selection or penalized function can search only a fraction of feature space,

but often not able to quantify important interactions between features [Tib96, FL01].
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Figure 1.1: The extracted 71 texture features on X and Y axis and the color shades show the

magnitude of their paired correlations. The features are correlated in a complicated manner.

Intuitively, the texture features distributions of progressed IPF subjects and stable IPF

subjects seem to be different. Figure 1.2 shows the distributions of a few statistical HRCT

texture features of progressed vs stable groups. An integrated model that leverages these

differences can be useful in predicting the disease outcome.
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Figure 1.2: Histograms of descriptive statistics at population level. Metrics stratified by

progression status: entropy (left upper), kurtosis (middle upper), mean32 (right upper),

median (left lower), skewness (middle lower), standard deviation (right lower). The two

groups have different distributions.

We first collect data at the ROI level labeled by an experienced radiologist for model

training, and then seek to expand the model to predict at the whole lung level. The prediction

in whole lung eliminates the bias of ROI contouring and makes the prediction more robust.

The expansion could be automated in the prediction process with little radiologist input.

The ROI level progression status is based on the examination of IPF subjects’ baseline

versus follow-up scans (“progression” or “non-progression”). The whole lung level outcome is

defined as the quantitative lung fibrosis (QLF) score change between the baseline and follow-

up images. QLF is a classifier-model-derived score and is a measure of IPF disease extent

[KTC10]. Research has shown that quantitative scores that are summated for the whole

lung correlates with PFT results, and is related to extent and severity of interstitial lung

disease [TVT16]. We aim to extract one baseline metric for each subject that is associated

with the follow-up QLF changes at the whole lung level.
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CHAPTER 2

Particle swarm optimization algorithm

Research on optimization methods has a long history, and is still an area under much study

nowadays. The mathematical optimization theories have been well developed for many algo-

rithms. In particular, the theories for convex optimization are particularly well developed,

and these methods usually assume convexity, differentiability or twice differentiability of the

objective function or functions. Even then, there is no guarantee that a derivative-based

method will converge to the global optimum when the objective function lacks good prop-

erties [Sho13]. When assumptions on the objective function is not tenable, metaheuristic

algorithms are useful. Metaheuristic algorithms typically do not impose any assumption

on the objective functions; in particular, they do not assume the functions to be convex or

differentiable.

Metaheuristics mean “to discover by trial and error”. They have not made their way into

mainstream statistics yet, but they are increasingly used in various disciplines, including in

public health research because of their flexibility and versatility. Researchers in engineering

and computer science have demonstrated their ability to solve different types of hard op-

timization problems that may be high-dimensional or the objective function is non-convex

or non-differentiable. These algorithms typically involve a combination of randomness and

local searches. The randomization process makes these algorithms non-deterministic even

when the inputs are the same each time, but end up with frequently not too different results

[Yan10]. There is no guarantee that the best solutions can be found as the mathematical

properties of these algorithms remain unclear. The hope is that the algorithms find quality

solutions to a tough optimization problem in a reasonable amount of time, and can also be

validated by other metaheuristic algorithms.
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This dissertation focuses on one of a relatively recent metaheuristic algorithms called Par-

ticle Swarm Optimization (PSO). PSO was first developed in 1995 by Kennedy and Eberhart

[EK95]. Motivated by swarm intelligence, PSO simulates candidate designs using them as

birds in a swarm looking for food on the ground. The swarm collectively acts and communi-

cates to update where each bird believes where the food is (personal best) and flies toward it

in the direction of the group best, which is where the flock believes the food lies after sharing

information within the flock. The best candidate design gets updated at each iteration as

the bird flies over time in search of a quality solution. PSO has been widely used in machine

learning and data mining research in computer science and engineering. Research has shown

that PSO has the same effectiveness (finding the true global optimal solution) as Genetic

Algorithm (GA), which is another very popular metaheuristic algorithm, but with signifi-

cantly better computational efficiency (less function evaluations) [HCD05]. GA was inspired

by the principles of genetics and evolution, and mimics the reproduction behavior observed

in biological populations [BGH89]. In general, the main advantages of PSO are its flexibil-

ity and simplicity of its operators [Eng06, BE06]. Below is the pseudo-code for PSO [Ken06]:

Begin

Initialize particle position and velocity

While maximum iterations or minimum error criteria is not attained

Do

For each particle

Evaluate objective function

Update particle personal best

End

Set particle with the best objective function value as the group best

For each particle

Update particle velocity: vt+1
id = wvtid + c1ψ1(ptid − xtid) + c2ψ2(ptgd − xtid)
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Update particle position: xt+1
id = xtid + vt+1

id

End

End

In the pseudo-code, w is inertia weight, vtid and xtid are velocity and position of dth di-

mension of ith particle at iteration step t, c1, c2 are weight constants, ψ1 and ψ2 are random

values from uniform[0, 1] distribution, pid is the personal best of dth dimension of particle i

(the best position particle i ever visited), pgd is the dth dimension of the group best of the

swarm (the best position the group ever visited).

There are many applications of PSO in the field of engineering, computer science and

public health. We briefly review some of its applications in public health to demonstrate its

success in solving real-world optimization problems. We also briefly review the use of PSO

on feature selection problems. Further, since its first introduction in 1995, there are now

many variants of PSO with various enhancements. The enhancements are motivated by both

the theoretical study of PSO movements and empirical experiments with many benchmark

functions and real-world experience. We briefly summarize some of the enhancements, and

choose one of the variants, named quantum-inspired particle swarm optimization, to tackle

project II which leads to superior results.

2.1 Application of particle swarm optimization (PSO)

2.1.1 PSO for optimization in public health

Optimization techniques are increasingly used in public health research. Many problems

can be formulated as an optimization problem, for example, we may want to develop a

policy to maximize facility utilization or minimize paths to optimal health infrastructure.

Examples can be found in all aspects of public health research, from experimental design

[KGR07] and data collection [PPM14] to data analysis and decision-making [DB10]. Public

health data is often large and heterogeneous, and the problems researchers want to solve often
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involve sophisticated objective functions that may not be convex, differentiable or continuous.

Consequently many traditional and effective mathematical programming tools may not be

applicable to solve the optimization problems in public health. A desirable optimization tool

should be one that is capable of solving a wide range of problems, computationally efficient,

and easy to implement so that practitioners can use easily without having to have special

expertise in optimization algorithms.

Particle swarm optimization (PSO) is an ideal tool that can serve as a black box where

researchers can easily input their objective functions and constraints in and the algorithm

is able to generate optimal or near-optimal solutions. Researchers have used PSO to solve

various optimization problems. [IP12] used PSO to optimize the scanning window to de-

termine disease clusters, which is helpful to develop an early outbreak detection system for

unusual public health events. The method has capabilities to find irregular shaped clusters,

with higher likelihood ratio, in comparison with traditional approach. [WMN15] used PSO

to optimize an environmental/economic dispatch (EED) problem in order to reduce emis-

sions that cause air-borne contaminants due to electricity generation. The results show that

the approach is effective in minimizing the overall electricity production cost over a given

period with considerations on both fuel cost and emission factors. [FLW09] used PSO to

choose screening spots at public transportation stations during period of an infectious dis-

ease outbreak so that an appropriate segment of the population can be optimally screened

for further spread of the disease. [CM11] used PSO to allocate health infrastructure in a

living area so that routes to infrastructures are optimized. [LWJ12] used PSO to solve a

weighted multi-objective land-use zoning problem with constraints. PSO is also increasingly

used in bioinformatics, which is an emerging interdisciplinary research area that holds great

promise in the advancement of research and development in public health and related disci-

plines; examples include RNA secondary structure prediction, gene clustering, phylogenetic

tree construction, energy minimization and protein modeling [AS15].

Like other metaheuristic algorithms, PSO has also been used with other methods to

enhance its performance. For example, [LD13] used PSO to optimize the architecture and

weights of the artificial neural network (ANN) in order to identify the factors related to
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common mental disorders, and showed that when PSO is appropriately hybridized with

another algorithm, it has a higher classification accuracy compared to ANN alone. [ZLB10]

used PSO to choose optimal parameters for kernel functions of support vector machine

(SVM) model in order to identify influential determinants of effects of children’s health and

socioeconomic status on educational attainment, The approach is efficient in performing

dimensionality reduction and identifying important features. Similarly, [SA14] used PSO as

an optimization technique for parameters selection for least squares support vector machine

in order to classify type II diabetes subjects and the results show the superiority of the hybrid

approach in terms of classification accuracy and robustness. Likewise, [SRJ13] used PSO

to train a risk estimation algorithm to predict spatial PM10 concentrations at un-sampled

locations using sampled and measured location information and the result shows that the

hybrid approach is more accurate for modeling uncertainty in the process prediction of PM10

data.

2.1.2 PSO for feature selection

In feature selection, there are broadly two types of algorithms: filter methods and wrapper

methods. Filter methods assess the relevance of features by looking only at the intrinsic

properties of the data [YL06, PLD05]. For example, step-wise regression adds or eliminates

individual variables sequentially until there is no statistically significant change in model

performance. The selected variables then serve as inputs to the classification algorithm.

Filter methods separate feature selection from classification, and typically, feature selection

is performed only once before the classification task.

For filter methods, there are different optimality criteria: commonly used are model-

based Akaike information criterion (AIC) and Bayesian information criterion (BIC). AIC

and BIC incorporate a measure of accuracy penalized by the number of features selected.

Many greedy search algorithms such as forward inclusion, backward elimination, etc. suffer

instability in the selection process [Bre96] and not effective for high-dimensional data. These

algorithms only search for a fraction of all predictor combinations, as the possible subsets
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number
(
k
q

)
increase exponentially with k, making it an NP-hard problem, and thus may

only achieve a local optimum.

Model-based feature selection has different format of penalized terms. The L0-penalized

least squares takes the form:

argmin
β
||y −Xβ||22 + nλ2I(|βj| 6= 0),

where AIC sets λ = σ
√

2/n, BIC sets λ = σ
√
log(n)/n. For large p and small n problems,

L1-penalized least squares, which is often termed as regularized regression methods are

commonly employed. The most popular least absolute shrinkage and selection operator

(LASSO) [Tib96] takes the form

argmin
β
||y −Xβ||22 + λ

d∑
j

|βj|,

where users can tune λ. If the response is binary then a logistic link is employed

log
P (yi = 1)

P (yi = 0)
= Xβ.

Alternatively, a revised regularized regression method that uses L0-penalized least squares

term is smoothly clipped absolute deviation penalty (SCAD) [FL01], which takes the form:

argmin
β
||y −Xβ||22 + λ{I(Xβ ≤ λ) +

(aλ− β)+

(a− 1)λ
I(Xβ > λ)}.

SCAD penalty is a smooth transition from L1 penalty to L0 penalty. It has so-called “oracle”

property that includes unbiasedness, sparsity and continuity.

The main advantage of filter techniques is that they are computationally simple and

fast. However, filter methods ignore the interactions of the feature selection step and the

classification step, which may result in a compromised classification performance [SIL07].

Different from filter methods, wrapper methods evaluate predictors holistically using pro-

cedures that add and/or remove predictors simultaneously, in order to find a combination
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that optimizes the performance [CYK08, MPD15]. Wrapper methods treat different feature

subsets as inputs and the performance of the models as outputs [JKP94, LY05]. There are

two components in a wrapper method: an optimizer and a classifier. The metrics from the

classifier serve as the objective function for the optimizer to search the best feature sub-

set. Compared to filter methods, wrapper methods are usually computationally expensive

because many candidates of subsets have to be evaluated against the previous best subset

[KJ97]. Wrapper methods also have a higher risk of over-fitting due to the lack of established

criteria of a penalized function [SIL07]. On the other hand, wrapper methods are able to

directly relate feature subsets to the classification performance. They include the interaction

between feature subset search and model selection, and they are able to take into account

feature dependencies [SIL07].

Evolutionary computation (EC) has received much attention from the feature selection

community because of the good global optimization properties of many state-of-the-art EC-

based feature selection techniques. Compared with traditional searching methods, EC tech-

niques do not need domain knowledge and do not make any assumptions about the fea-

ture space, such as linear separability and differentiability [XZB16]. EC algorithms such as

genetic algorithms and PSO are increasingly used for feature selection purposes [XZB16],

mostly in a wrapper setting. EC searches the feature space efficiently, optimizing single or

multi-objective functions of different classification performance metrics.

PSO is one of the most used EC in the feature selection task [XZB16]. Typically PSO is

coupled with a classifier to form a wrapper. Examples of the classifiers include support vector

machines [UMC11, AGJ07, ZH05, TSY05, ACC07, HD08]; K-nearest neighbors [XZB12,

RSF12, ZGH15]; artificial neural network [AC02, VMF12, HH07]; etc. Some variants of

PSO were also specifically proposed for the feature selection task [XZB14].

We propose a wrapper method that incorporates a quantum-inspired PSO (QPSO) as

the optimizer and uses a random forest as a classifier to build a novel wrapper for HRCT

texture feature selection and IPF prediction. We performed a comparative study and show

that QPSO yields superior performance.
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2.2 Algorithm properties and enhancements

PSO has been shown in the literature to have advantages over many other metaheuristic

algorithms. As an example, [ANA15] shows that PSO outperforms genetic algorithm, ant

colony, artificial bee colony, cuckoo search, and other swarm intelligence algorithm on 30

benchmark functions. A very detailed, comprehensive review of PSO and its properties,

modifications, and hybridization is provided in [BM17]. In this section, we only briefly

discuss some of the algorithm properties and enhancements.

We call the PSO version proposed in [SE99] as the standard PSO. The standard PSO

has two theoretical limitations: convergence and transformation invariance [BM14]. For

convergence, it is proven that the PSO is only locally convergent for one-dimensional but not

higher dimensional problems [SW15]. Transformation invariance means that the algorithm

performance is independent of how the coordinate axes are placed on the search space.

Analysis show that standard PSO is rotation variant [WKG07]. In practice, however, people

concern mostly about the quality of the solution found, and how fast the optimization

algorithm is able to find the solution. Most algorithm comparisons are based on these

two criteria.

Numerous variants have been proposed since the inception of PSO in 1995. In the year

of 2014 alone there are more than 2000 publications on PSO [BM17]. Many studies of the

original PSO inspired the modification of the algorithm and led to different variants that

improves different aspects of algorithm performance. We briefly summarizes some research

work on the topology, parameter selection (including inertia weights, coefficients c1 and c2),

and the velocity and position update rule. We work with standard PSO for project I because

it is computationally efficient and we could obtain optimal or highly efficient designs. We

choose to work with one of the variants called quantum-inspired particle swarm optimization

in project II to obtain superior optimization performance.

1. Topology. This may be viewed as strategies to determine neighboring particles that

contribute to the velocity update rule. Examples include global best topology (the origi-
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nal PSO), ring topology, wheel topology, pyramid typology, etc. [CE14] showed that the

topology does not affect the convergence boundaries, but it might affect the speed of conver-

gence/divergence. [Eng13] claims that the performance of particles depends largely on the

problem at hand and general claims about topologies are not correct.

One variant which considered hierarchical structure used a tree structure to rank the

particles and update the velocity based on each particle’s parent node [JM05]. Another

variant, “scale-free fully informed particle swarm optimization” [ZY11], uses the analogue of

weak network of social network and categorized particles into active and inactive groups. The

inactive particles are not updated until they become activated by connecting to one of the

existing active particles at each iteration. Another variant uses an analogue of “six degree

of separation” in sociology [GZ13]. Particles update different dimensions using different

network of particles. Empirical comparison on limited number of benchmark functions show

superior performance of such variants over the original PSO.

An extensive comparison based on 60 benchmark functions between the global best and

local best topologies showed similar results with a slight favor toward the global best topol-

ogy; it also emphasizes that the best topology depends on the problems at hand [Eng13]. In

our work, we use the global best topology and show that it performs well on our problems

at hand in general.

2. Coefficients. The selection of coefficients is critically important in particles’ behavior,

because they affect their exploration and exploitation abilities, theoretical local convergence

properties, and empirical performance. These coefficients include the inertia weight and

acceleration coefficients. Inertia weight, originally introduced in [SE99], controls the influence

of the previous velocity on the updated velocity. Acceleration coefficients are c1 and c2 in

the velocity update rule. Some convergence analyses have shown that certain parameter

settings enable convergence to a point in probability [OM99, CK02, Tre03, JLY07], and

such parameters greatly affect the convergence speed [BE06]. These convergence analyses

are usually simplified by ignoring the randomness that comes from the coefficients ψ1 and

ψ2. Moreover, these parameters affect the oscillation patterns of particles (smooth or zig-

zag) [Tre03]. Empirically, many studies found that the best values for the inertia weight is

20



somewhere between 0.4 and 1.1 and the best values for the acceleration coefficients falls in

1.5 to 3, for most experiments [Cle99, SE98a, ES00]. When the acceleration coefficients are

fixed, larger values of the inertia weight result in a better exploration and smaller values

of the inertia weight result in a better exploitation. [SE98a] proposed a linear decreasing

inertia weight from 0.9 to 0.4 and showed that such a strategy has good performance. Similar

adaptive coefficients were also proposed in [ZZL09, NES11, LY12].

3. Velocity and position update rule. Inspired by the study on the trajectory of the

original PSO particles, there are many variants of PSO that change the velocity and position

update rule. For basic PSO and many of its variants, the particles follow trajectories and

continuously aim for the local optima. Sometimes, this can result in premature convergence.

One variant that addresses this premature convergence is the competitive swarm optimizer

(CSO) algorithm [CJ15]. CSO proposes to remove the strong influence of personal and global

best in the velocity update formulas by pairing up particles and let the “loser” (particle with

inferior objective function value) learn from the “winner” (particle with superior objective

function value). Another variant that shifts the paradigm of the original PSO is a quantum-

inspired particle swarm optimization (QPSO). Inspired by basic particles in quantum physics,

QPSO let particles move based on an uncertainty principle: particles appear in different

locations with probabilities, and do not follow trajectories. In QPSO, the velocity term is

removed from the algorithm and thus simplifies the algorithm and also increases the chances

to escape from local optima at the same time. When the tunning parameters are properly

selected, local convergence is guaranteed. In project II, we work with a binary encoded QPSO

to take advantage of its local convergence theoretical properties and its empirical superior

performance over standard PSO using several benchmark functions [SFX04, SXF07, SLW11,

ZSX13]. Section 2.2.1 provides details of QPSO and [SLW11] gives a comprehensive review

of the algorithm.

There are additional ways to enhance the PSO performance. For example, [ARC08]

borrowed the ideas of having mutation and crossover operations from genetic algorithms and

incorporate them into the PSO algorithm. In project II, we include such operations in the

quantum particle swarm optimization algorithm for enhanced performance.
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2.2.1 An enhanced variant: quantum-inspired PSO (QPSO)

Inspired by basic particle movements in the quantum mechanics framework, quantum-

inspired PSO (QPSO) is a global optimization algorithm [SFX04] with superior searching

capabilities compared to other EC algorithms [SLW11]. It is different from traditional PSO

algorithms in that particles have no trajectory, instead, the particles appear in positions

with probabilities. See [SLW11] for a comprehensive summary of the characteristics and

properties of the QPSO algorithm.

The QPSO algorithm is suitable for project II because it is hard to exploit any math-

ematical properties of the objective function; in fact, the objective function couldn’t be

written down analytically. More importantly, we use QPSO due to its superior capability

in searching high-dimensional space and its successful applications in real-world problems

including those in the imaging field [LJS15, JJ15].

To prevent QPSO from premature convergence, we also enhanced the algorithm by using

probabilistic cross-over operations and random mutation operations, as cross-over and mu-

tation operators have shown to improve the PSO performance in feature selection [NXA17].

We coded each particle in QPSO using a binary coding scheme. As an example, suppose a

feature space has 5 features and a particle is encoded as (1, 0, 0, 1, 1). This means that the

1st, 4th, and 5th features are included and the 2nd and 3rd are excluded in selection.

A binary QPSO follows the steps as [ZSX13]
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Algorithm 1 Binary QPSO Algorithm

Input: Pre-specified parameters of the algorithm: number of particles, maximum number
of iterations maxiter, particle dimension d.

Output: the global best solution when the stopping criteria are met. Here we use the
maximum number of iterations as the stopping criterion.
Initialization : Algorithm initialization

1: for i ≤ maxiter: do
2: Determine the mean best (mbest) for each particle:

mbest
d =


1, 1

p

∑p
i x

pbest
i,d > 0.5

0, 1
p

∑p
i x

pbest
i,d < 0.5

1 with prob = 1
2
, 1

p

∑p
i x

pbest
i,d = 0.5

and select one of the offspring randomly.
3: For each dimension, flip the particle with mutation probability defined as

min(
β × dH(xi, x

mbest)× ln 1
u

p
, 1)

where dH is the counts of bits different in the two strings, u is a random variable
from unif(0,1) and β is a tuning parameter set to decrease from 1.4 to 0.4 over the
iterations.

4: Evaluate.
5: end for
6: return global best solution at the last iteration.

In project I, we largely work with the standardized PSO, with a global topology and a

linearly decreasing inertia weight. This is because the standard PSO works well for most of

problems at hand and is computationally efficient, obtaining superior results than many other

commonly used metaheuristic algorithms. Scientists and practitioners also have easy access

to PSO code. In project II, we work with quantum particle swarm optimization to achieve

superior prediction results [SLW11]. Many parameters we work with are consistent with the

recommendations in the literature. For certain parameters such as the maximum number

of iterations and swarm size, their choices are based on the available computational budget.

In the literature, many recommendations on whether one algorithm outperforms another is
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based on testing the algorithms using benchmark test functions. In our case, we prefer to

choose proper configurations empirically based on our actual problems at hand. We do not

claim that we use the best configuration for each problem, since there are many variations

and possible enhancements and running experiments are subject to budgetary constraints.

Further, PSO might not be the best algorithm for every problem we tackled here. As the

famous “no free lunch theorem” [WM97] suggests, there is no optimization algorithm that

universally works better than all the other algorithms for all problems. The “best” algorithm

should be discussed on a case-by-case basis. When we find optimal approximate designs, we

have theoretical tools to confirm whether PSO finds the optimum and if not, we are able

to provide an assessment on how far the design is from the optimum without knowing the

latter, however, for finding efficient exact designs and feature selection problems, there is

no such theoretical underpinning and we show that PSO finds quality solutions which are

empirically better than many other commonly used approaches.
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CHAPTER 3

Project I: finding efficient designs for generalized linear

models and non-linear mixed effects models using

sparse grid hybridized PSO

3.1 Background

Longitudinal models are frequently used in biomedical studies. The outcomes are measure-

ments for the same experimental unit over a period of time or under a series of experimental

conditions, and the measurement process is repeated for all units. While there are some

analytic results available on constructing efficient designs for linear models, the widely used

generalized longitudinal models resembles the nature of response curve better but lacks an-

alytic results.

This chapter focuses on design issues for longitudinal models, especially nonlinear mixed

effects models (NLMEMs). NLMEMs are frequently used in model-based drug development

to analyze pharmacokinetic/pharmacodynamic (PK/PD) data [LKH07]. Different methods

and software have been developed for maximum likelihood estimation of population pa-

rameters or function of the population parameters. For example, the median value of the

parameters in the studied population and their inter- or intra-subject variabilities and effects

of the covariates are frequently of interest [MU12, MU13, MU14]. NLMEMs can compensate

for the lack of individual information by borrowing information from the whole population.

In particular, they allow for precise parameter estimation even with sparse designs, where

few samples are collected from each subject. Such designs are particularly useful when the

experiment involves infants or children. NLMEMs are therefore increasingly used for the
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analysis of longitudinal clinical studies, for both continuous and discrete outcomes (binary,

count or time-to-event).

Before modelling, it is crucial to choose an appropriate design to obtain good precision of

parameter estimates. A design in NLMEMs, called a population design, is composed of the

number of elementary designs it has, and the number of subjects in each of these elementary

designs. In this setting, the term “elementary design” describes a group of subjects all with

identical design characteristics, i.e. each subject in the same elementary design has the

same number of sampling times and at the same time points or dose levels. To evaluate

designs, two approaches have been proposed. The first approach is based on clinical trial

simulation (CTS), which can be very time-consuming when the number of possible time

points is large. For instance, if the total possible number of time points is 5 and we assumed

a simplified case when only equal number of subjects at each time point is allowed, there

are 5+10+10+5+1=31 elementary designs to compare. If we relax the equal number of

subjects at each sampling time restriction, this number depends on the number of subjects

and becomes large quickly. This greatly limits the number of population designs that can

be properly evaluated in practice.

Alternatively, the expected Fisher Information Matrix (FIM) can be used [ADT09, FL14,

PP13], as its inverse provides a lower bound of the variance-covariance matrix of any unbi-

ased estimated parameters, according to the Cramer-Rao inequality. However, the FIMs of

NLMEMs have no analytic form and their computation, which requires multi-dimensional

integration, can be challenging. An approach that uses the first order (FO) linearization of

the model around the expectation of random effects or around a guess value of the fixed

effects has been widely used [MMB97, MS10] and implemented in several software programs

[NBO14]. Although this method is generally efficient [BRM09, HV05, NBM12], FO has

limitations when it is applied to NLMEMs with discrete outcomes [Riv16].

Alternative methods have been developed to compute the FIM for both continuous and

discrete NLMEMs, such as Laplace approximations. Another method is to use Monte Carlo

(MC) integration combined with Adaptive Gaussian quadrature (AGQ). This approach has

been shown to be viable when designing studies based on NLMEMs with moderate number
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of random effects [UM17]. A recent extension of this approach uses quasi-random Monte

Carlo (QRMC) instead of MC and results in huge reduction in the computational effort

[UM15]. Another approach would be to use Markov chain Monte Carlo (MCMC) to replace

AGQ [Riv16].

Experiments show that AGQ and CTS agrees quite well whereas Laplace approximation

has quite large discrepancies. Empirically, FO works well for continuous models but not

well for discrete models [RUM16]. This might be attributed to the fact that the discrete

response surface could not be accurately approximated with only first-order terms in the

Taylor expansion. MCMC only agrees well when the sampled observation is large enough,

and the numerical results do not stabilize until thousands of observation samples [Riv16].

[Riv16] reported that evaluating just one design using MCMC takes over 134.8 minutes for

a longitudinal continuous model, 149.9 minutes for a logistic model and 242.6 minutes for a

Poisson model. In contrast, FO takes 0.1 minute and AGQ are also generally much faster

than MCMC. These results suggest that for NLMEMs with several random effects, the most

effective and accurate approach is FO for continuous models or AGQ for both continuous

and discrete models. In summary, there are two reasons we do not use Monte Carlo based

sampling techniques: (a) they are too time-consuming for the iterative optimization that

requires the evaluation of hundreds of candidate designs; and (b) the random effects are

usually normally distributed so we can directly sample them, and an indirect sampling

technique such as MCMC is usually not needed.

Once the FIM is evaluated, optimality criteria based on FIM can be computed and

optimized to produce efficient designs. In this work we focus on the D-criterion, which

maximizes the determinant of the FIM after it is normalized by the number of parame-

ters to be estimated. Several algorithms have been developed for this purpose [ADT09].

Conventional algorithms for finding optimal experimental designs include Dykstra’s method

[Dyk71], DETMAX [Mit74] and modified Fedorov exchange methods ([OGG05], [Fed72])

and more recently, multiplicative algorithms ([DPZ08], [Yu10]) and coordinate exchange al-

gorithm [MN95, GJS09]. A recent review of such algorithms is [MWY15] where they alerted

that such algorithms for finding optimal experimental designs can be limiting. For exam-
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ple, some assume the design criterion is differentiable or require that the design space be

discretized. Some are narrowly focused for finding a specific optimal design for a particular

model. These methods are usually not flexible enough for practical use.

Finding efficient designs for NLMEMs can be very challenging and frequently, one ap-

proach in the literature is to simply compare a small number of candidate designs and select

the best among this finite set of designs [HW08b]. A justification for this approach is that the

finite set of designs are the only implementable designs approved by the clinicians or physi-

cians. Thus, one selects the best among the few designs using a statistical-based criterion for

more precise inference. An alternative approach to find an efficient design is by discretizing

the search space and selecting the design points. However, this method is feasible only when

the design region is small; otherwise, the grid size on the design space can be extremely large

when we have a high-dimensional model [NLS18]. A more advanced approach “population

Fisher information matrix” (PFIM) is described at www.pfim.biostat.fr [DLL18]. Two algo-

rithms are used in the optimization process and they are the Simplex [NM65] and Fedorov

[Ret07] algorithms. The Simplex algorithm is used to find efficient designs over a continuous

design space and the Fedorov algorithm is used when we have discrete design space. Each

of these algorithms uses a different optimization strategy. However, for complicated models

defined on a continuous design space, there is still a lack of efficient yet easy to use algorithm

that finds quality designs. PSO is found to be a powerful approach, particularly when han-

dling complicated design criteria [CCW15, KW17, PCW16, WCH15]. In this work, we show

that PSO combined with FIM evaluation techniques makes it possible to thoroughly explore

a continuous design space and find highly efficient designs that provides valuable insights on

efficient designs for NLMEMs in pharmacometrics.

A general non-linear longitudinal model for studying repeated responses is

Yi(t) = η(t; θ) + ε, ε ∼ N(0, σ2),

where Yi is the response variable, i=1,...n, η is a mean response function, t is a series of

sampling time points, dose levels, or other experimental conditions, and θ is the model
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parameters vector. Under the pseudo-Bayesian design framework, an n-run exact design

ξ=(t1, ..., tn) has Fisher information M(θ; ξ) for θ proportional to

M(θ; ξ) ∝
n∑
i=1

(
∂η(ti, θ)

∂θ
)(
∂η(ti, θ)

∂θT
).

For an approximate design ξ = {(t1, p1), ..., (tK , pK)} with K distinct support points and

0 < pi < 1 with
∑
pi = 1, the Fisher information for θ is approximated by

M(θ; ξ) ∝
K∑
i=1

pi(
∂η(ti, θ)

∂θ
)(
∂η(ti, θ)

∂θT
).

where pi are weights we put at each support point.

The numerical computation required for finding a pseudo-Bayesian D-optimal design

includes integration and optimization. The design is

ξBayesD = argmax
ξ

∫
{log(det[M(θ, ξ)])}π(θ) dθ︸ ︷︷ ︸

Integration︸ ︷︷ ︸
Optimization

, (3.1)

where the integrals are often multi-dimensional and corresponds to the dimension of θ.

Under this framework, we consider several types of models assuming observations are all

independent: a logistic model and a compartmental model inspired by [GJS09]; a generalized

linear model (GLM) with Gamma distributed outcome, inspired by [DW15]; and a series of

exponential models with real-world applications in HIV studies.

We also apply our proposed algorithm to find efficient exact designs for NLMEMs. Such

efficient designs are rarely reported in the literature because they are very challenging to

find due to the nonlinearity of the regression function in the random parameters. In partic-

ular, a closed-form likelihood function of the observations does not exist unless the model is

very simple [MS10]. We denote the ni-vector of continuous observations obtained with the

elementary design ξi for individual i by yi (i = 1, . . . , N). Let f be a known nonlinear func-

tion with unknown parameters and represents the mean response. The vector of unknown
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parameters for subject i is expressed as a function g comprising fixed effects and random

effects. The parameters for the fixed effects are µ and covariate effects β. The random effects

are bi and covariates zi in the following model:

yi = f(g(µ, bi, zi, β), ξi) + εi,

where εi is a vector of errors. It is assumed that bi ∼ N(0,Ω) where Ω is the variance-

covariance matrix of the random effects, and εi ∼ N(0,Σ) where Σ is a diagonal variance-

covariance matrix of the errors. The variance terms in Σ can be a function of the parameters

or depend on the structural model f . We let Ψ denote the vector composed of all unknown

parameters to be estimated in µ, β, Ω and Σ, and let λ denote the vector composed of

random effects parameters Ω and the error term Σ.

For discrete data, we model the probability for all observations j = 1, . . . , ni from an

individual i as follows:

p(yi, ψ|bi) =

ni∏
j=1

l(yij, g(µ, bi, zi, β), ξi),

where l is a known link function describing the probability model of observing the value yij

with the elementary design ξi for subject i. The individual parameters vector is expressed

as a function g of fixed effects µ, random effects bi, the covariates zi for individual i, and

the covariate effects β. It is assumed that bi ∼ N(0,Ω) where Ω is the variance-covariance

matrix of the random effects composed of unknown parameters. Let Ψ denote the vector

composed of all unknown parameters to be estimated in µ, β and Ω.

We assume individuals are independent, and the population FIM, MPF (Ψ,Ξ), for a pop-

ulation design Ξ, is defined as the sum of the N information matrices MF (Ψ, ξi) computed

for each individual,

MPF (Ψ,Ξ) =
N∑
i=1

MF (Ψ, ξi). (3.2)
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The FIM for individual i is defined by

MF (Ψ, ξi) = Eyi

(
∂ logL(Ψ, yi)

∂Ψ

∂ logL(Ψ, yi)

∂ΨT

)
, (3.3)

where logL(Ψ, yi) is the log-likelihood of the vector of observations from individual i for

parameter vector Ψ. This likelihood function is

L(Ψ, yi) =

∫
bi

p(yi|bi,Ψ)p(bi|Ψ) dbi, (3.4)

where p(yi|bi,Ψ) is the probability density function (p.d.f.) of yi given the random effects bi,

and p(bi|Ψ) is the p.d.f. of the random effects.

Optimizing the design criterion is generally computationally expensive and in the current

literature, the criterion is simply used to select the best design among a few selected designs

after simulating data from a predictive distribution and examining the distribution of the

posterior loss from the candidate designs [NM14a, RUM16]. In practice, the candidate

designs come from experts’ opinion or are based on feasibility requirements. In what is to

follow, we show that it is possible to hybridize PSO with sparse grid technique to effectively

find efficient designs.

We apply our algorithm to find efficient designs for a variety of NLMEMs. The first

application is inspired by a study of a monoclonal antibody indicated in the treatment of wet

age related macular degeneration (wet-AMD) [BUF18]. We used the previously developed

mixed effects model for a continuous outcome and optimize both the measurement times

and the different doses for the subjects. The second application is a randomized two arm

clinical trial with repeated binary outcomes, and modelled by a mixed logistic model [LUM16,

SNMon]. We also consider a Poisson model with repeated counts outcomes for each subject

at different dose levels [NKH09, OA11]. The last application is a HIV clinical trial using an

exponential model [WD99]. As explained earlier, finding efficient designs for these models

are very difficult problems and we show next that the proposed algorithm can provide a

viable option to solve the design problems.
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3.2 Sparse grid

Numerical integration is an inevitable process for computing pseudo-Bayesian optimal design

criterion values and calculating information matrices for NLMEMs. This is clear from equa-

tion (3.1) and equation (3.3). There are different numerical integration techniques in the

design literature, and many are based on various Monte-Carlo types of techniques. A plain

Monte Carlo may take 100,000 samples [NKH09], and an MCMC may need 10,000 iterations

[HW08b, Wak96] to obtain a stable result. Another example is Hamiltonian Monte Carlo,

which is similar to MCMC [RUM16]. Hamiltonian Monte Carlo reduces the correlation be-

tween successive samples and converges to high-dimensional target distributions much more

quickly than simpler methods such as Metropolis-Hastings or Gibbs sampling [HG14]. Such

methods are time consuming and not efficient for finding optimal designs. [Kuo03] used 71

benchmark functions and compared performance of the Gaussian quadrature, Monte Carlo

and adaptive methods and found that Gaussian quadrature provides the most accurate re-

sults and has short CPU times, relative to those from the adaptive methods and plain MC

methods. This is not surprising because the number of function evaluations required to

obtain an accurate estimate is usually impractically large. Further, the iterative optimiza-

tion process for finding the efficient design needs to approximate the FIM often hundreds of

times, and it is critically important that we have efficient yet accurate approximation meth-

ods. Gaussian quadrature based algorithms are often much more efficient and in particular,

adaptive Gaussian quadrature (AGQ) has shown to be useful in finding efficient designs

for NLMEMs [UM17]. In the following section, we show that using sparse grid to extend

the 1-dimensional Gaussian quadrature to multi-dimensional can further save computational

efforts.

3.2.1 Numerical integration

A fast algorithm to approximate integrals is a Gaussian quadrature. We first discuss the

rationale of 1-dimensional Gaussian quadrature and extend the method to multi-dimensional

using a sparse grids technique.
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In general, numerical integration approximates a definite integral with a weighted sum

of function values evaluated at the nodes xi, i.e.,

∫
f(x)w(x)dx ≈

n∑
i

wif(xi). (3.5)

Gaussian quadrature is a way to select a small number of nodes and weights to obtain a

relatively accurate approximation. The rationale of Gaussian quadrature is to use poly-

nomial functions to approximate f(x). Integrals for polynomial functions are analytically

available and computationally very efficient. Theoretically, polynomial approximations can

be justified by the Weierstrass approximation theorem. The theorem states that every con-

tinuous function defined on a closed interval [a, b] can be uniformly approximated as closely

as desired by a polynomial function. Furthermore, due to Taylor’s expansion, any k-times

differentiable function can be approximated by means of a polynomial of degree k, suggesting

that it is possible to integrate any function well when we use a relatively small number of

systematic draws.

As an illustrative example, suppose we want to approximate the following integral

∫ +∞

−∞
f(x)e−x

2

dx

by replacing the weighting function e−x
2

by carefully selected weights wi’s. A quadrature

aims to obtain n nodes (ζ1, ..., ζn) and n weights (w1, ..., wn) so that the approximation

is exact if f(x) is a polynomial of order 2n − 1. For example, to obtain exact answer for

f(x) = 1 we set: ∫ 1

−1

1e−x
2

dx =
n∑
i=1

wi1

To obtain exact answer for f(x) = x we set:

∫ 1

−1

xe−x
2

dx =
n∑
i=1

wiζi
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etc. In general, to obtain exact answer for f(x) = xj, j=0, ..., 2n− 1:

∫ +∞

−∞
xje−x

2

dx =
n∑
i=1

wiζ
j
i , j = 0, 1, ..., 2n− 1

Solving the 2n equations for the 2n unknowns provides us the required nodes and weights.

This is the technique we used when we have a normal prior distribution. We note that the

format is not exactly consistent with the normal probability density function, so we apply a

change of variables trick for y ∼ N(µ, σ2) as:

∫ +∞

−∞
f(y)

1

σ
√

2π
exp(−(y − µ)2

2σ2
)dy =

n∑
i=1

1√
π
wif(
√

2σζi + µ)

A simple scaling and translation makes the nodes widely applicable to different normal priors.

For many commonly used w(x) functions in equation (3.5), efficient quadrature rules

(nodes and weights) are readily available. A different quadrature rule is required for each

form of the weight function. Common quadrature rules include Gauss-Legendre quadrature

for uniform distribution weight functions, Gauss-Hermite quadrature for normal distribu-

tion weight functions, Gauss-Stieltjes-Wigert quadrature for log-normal distribution weight

functions, Gauss-Jacobi quadrature for Beta distribution weight functions, Gauss-Laguerre

quadrature for Gamma distribution weight functions, etc. Users specify types of distribu-

tions and parameters of the distributions (mean, variance, etc.) based on their problems at

hand. Many software provide such quadratures, for example, there are R packages “stat-

mod”, “gaussquad”, “cubature”, a MATLAB function numeric::quadrature, etc.

3.2.2 Sparse grid integration

Sparse grid is a technique to extend the 1-dimensional quadrature to multi-dimensions. In

the AGQ paradigm, the multi-dimensional quadrature is extended from a 1-dimensional

quadrature using a tensor product. A tensor product of two vectors is the pair of every

possible combinations of the components. For example, if a 1-dimensional quadrature has

the nodes equally at [-1, 0, 1], then an extended 2-dimensional quadrature has the nodes
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equally at [-1, 0, 1] ⊗ [-1, 0, 1] = [(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 0), (0, 1), (1, -1), (1,

0), (1, 1)]. Using tensor product rule, we need 32=9 nodes for a 2-dimensional integration,

35=243 nodes for a 5-dimensional integration and 310=59049 nodes for a 10-dimensional

integration. The exponential increase in the number of nodes required is often referred to as

“curse of dimensionality”.

To mitigate this problem when dealing with moderate to high dimensional integration

problems, we use a sparse grid (SG) method to limit the number of nodes. The fundamental

idea behind quadrature is to use polynomial functions to approximate the integrand function.

The main idea of SG is to limit the total order of polynomials used for approximation. Total

order is the sum of polynomial order of each dimension. For instance, a 2-dimensional

polynomial that extended to second order (1, x, x2)⊗ (1, y, y2) includes 9 terms if extended

by tensor product, but when we limit the total order of polynomials to 2, the expansion will

only include terms that has a sum of order less or equal to 2, i.e. 1, x, y, x2, xy, y2 but not

terms like x2y, xy2 (which has a total order of 3) and x2y2 (which has a total order of 4).

As a result, SG uses far fewer nodes than tensor product when limiting the total order to a

relatively low level. Adopting SG methodology reduces the number of function evaluations

for integrals and substantially saves computational efforts.

Formally, we work with a quadrature that follows the format in equation (3.5). One of

the properties of a quadrature rule is whether or not the points are nested. Nestedness means

that some or all points from a lower level are re-used for higher levels, implying that fewer

points are required overall for higher level approximations. In this dissertation, we mostly

work with nested Gaussian quadrature as basis abscissa [GK96].

We define the 1-dimensional quadrature approximation of the integral as

V [f ] =
n∑
k

f(xk)w(xk).

For multivariate integrals, the most commonly used approach is a tensor product rule. Tensor

product multi-dimension rule states that for a D-dimensional integral, the quadrature is the
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product of each dimension’s quadrature:

I[f ] = V (1) ⊗ V (2) ⊗ ...V (D)[f ]

where V (d), d = 1, ...D are d-th dimensional quadrature. Tensor product nodes grows expo-

nentially with dimensions. Sparse grid sampling, on the other hand, only employs the lower

order of quadratures and is thus able to produce a sparser sampling grid. The procedure for

building a set of multi-dimensional nodes follows the below recipe [GG98]:

1. Consider 1-dimensional quadrature formulas for function f at accuracy level k:

Vk =
n∑
i=1

wkif(xki)

2. Define the difference in quadrature formula by

∆k[f ] = (Vk − Vk−1)[f ]

with V0[f ] = 0.

3. D-dimensional function f for accuracy level (pre-determined) l ∈ N

I[f ] =
∑

k1+...+kD≤l+D−1

(∆k1 ⊗ ...⊗∆kD)f.

Alternatively, an equivalent polynomial expression of the formula of sparse grid is

κ−1∑
q=κ−D

∑
i∈ND

q

∑
x1∈Xi1

...
∑

xD∈XiD

f(x1, ..., xD)(−1)κ−1−q
(

D − 1

κ− 1− q

) D∏
d=1

wid(xd), (3.6)

where D is the dimension, κ is the accuracy level sought (i.e. total orders limitation),

i = [i1, ..., iD], q is a nonnegative integer and ND
q = {i ∈ ND :

∑D
d=1 id = D + q}. We take a

2-dimensional SG as an example to demonstrate the construction of such grids. Let D=2,

κ=3, 1 ≤ q ≤ 2. When q = 1, we have N2
1 = {[1, 2], [2, 1]}, (−1)3−1−1

(
2−1

3−1−1

)
= −1; Similarly,
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when q = 2, we have N2
2 = {[1, 3], [2, 2], [3, 1]}, (−1)3−1−2

(
2−1

3−1−2

)
=1. The construction is thus

−X1 ⊗X2 −X2 ⊗X1 + X1 ⊗X3 + X2 ⊗X2 + X3 ⊗X1 and figure 3.1 shows the SG has much

fewer nodes compared to the nodes extended from the tensor product rule. Since there are

pluses and minuses in equation (3.6), the sparse grid rule does not always preserve convexity,

even if the quadrature rule is convex.

Figure 3.1: An example of a 2-dimensional grid set constructed by sparse grids [HW08a].

The number of nodes grows polynomially with higher dimensions rather than expo-

nentially as tensor product rule [BG04]. Empirically, [HW08a] showed that the compu-

tational costs for SG to achieve a negligible approximation error are considerably lower

than with simulation techniques like pseudo-random Monte Carlo and quasi-random Monte

Carlo. For N 1-dimensional nodes and a D-dimensional problem, the complexity of SG is

O(N(logN)D−1) instead of tensor product’sO(ND), with error bound increased from O(N−2)
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to O(N−2(logN)D−1). For proofs, see [Plu14]. Many properties of sparse grid depends on

the quadrature used to build the multi-dimensional quadrature. Different quadrature rules

have different error bounds [GG98].

We next demonstrate our proposed methods that approximate FIMs accurately are also

able to evaluate the FIMs for models with more random effects parameters and able to search

the design space more thoroughly for an efficient design.

3.3 Non-linear mixed effects models

3.3.0.1 FIM computation by FO

There is no analytic expression for the likelihood of NLMEMs and techniques such as lin-

earization is often used to approximate the FIM [MMB97, MS10]. When linearizing the

model around a nominal value of the fixed effects, the variance of the observations does not

depend on the fixed effects, which leads to a block-diagonal expression of the FIM [MS10]. If

an elementary design ξ is used for the model, a first-order approximation ignores the higher

order terms in Taylor expansion of the mean response function:

Yi(ξ) = f(ξ; β, bi) + ε = f(ξ; β, 0) +
∂fT (ξ; β, 0)

∂bi
bi + ...

≈ f(ξ; β, 0) +
∂fT (ξ; β, 0)

∂bi
bi,

and the resulting FIM is approximated by a block-diagnal matrix of the form:

MF (Ψ, ξ) =

∂f
T (ξ; β, 0)

∂β
V −1∂f(ξ; β, 0)

∂β
0

0 1
2
F



where V = var(yi) =
∂fT (ξ; β, 0)

∂bi
Ω
∂f(ξ; β, 0)

∂bi
+ σ2In and jkth element of F is Fjk =

tr(V −1 ∂V

∂λj
V −1 ∂V

∂λk
). The off-diagonal elements are zeros because V does not depend on the

fixed effects. We recall that λ is the vector of random effects parameters and error terms.
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For details, see [DLL18].

[NBO14] shows that this expression of the FIM in general performs well for models with

continuous outcomes, in that they provide results close to those obtained by clinical trial

simulations. In section 3.6.1, we will use this approach, implemented in PFIM program v4.0,

to evaluate the FIM with continuous outcomes. However, it empirically has relatively large

discrepancy when the NLMEMs have discrete outcomes [Riv16], which might be attributed

to the fact that the non-linearity in such models could not be approximated closely using

linear expansions.

3.3.0.2 FIM computation by QRMC-AGQ

[NM14b, UM17, Riv16] showed that adaptive Gaussian quadratures (AGQ) are more ac-

curate than first-order approximation and Laplace approximation for analyzing our models

with discrete outcomes across different models and scenarios. For example, to evaluate the

FIM in equation (3.3), one computes two integrals in equation (3.4): one over the distribu-

tion of the random effects bi and one over the observations yi. Here we evaluate the former

by AGQ as proposed in [UM17] and the latter by quasi-random MC as proposed in [UM15],

Specifically, in equation (3.3), let

h(y,Ψ) =
∂log(L(y,Ψ))

∂Ψ

∂log(L(y,Ψ))

∂ΨT
=

∂L(y,Ψ)

∂Ψ

∂L(y,Ψ)

∂ΨT

L(y,Ψ)2
. (3.7)

Since the FIM can be expressed as MF (Ψ, ξ)=
∫
h(y,Ψ)p(y,Ψ)dy, this outer integral can be

approximated using quasi-random sequences with R observation samples (y1, . . . , yR):

MF (Ψ, ξ) =
1

R

R∑
r=1

h(yr,Ψ),

where R is a user-specified value.

To approximate h(y,Ψ), different approaches can be used and AGQ is one of them

[NM14a]. Gaussian quadrature uses a weighted sum of function evaluations at pre-determined
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“nodes” to approximate the integral. To approximate the likelihood L(y,Ψ) in h(y,Ψ), we

sample k nodes s1, ...sk and corresponding weights w1,...,wk from a Gauss-Hermite quadra-

ture. The nodes are then centered and scaled according to the areas of high density to

improve the approximation. The approximated likelihood in equation (3.7) is then com-

puted as

L(ym,Ψ) ≈
k∑
j=1

wkp(ym|sk,Ψ),

where ym is a sampled observation and sk, wk, k are AGQ nodes and weights. Since normal

distribution p.d.f. can be easily computed, the approximation is computationally efficient.

More details can be found in [UM15, UM17]. In section 3.6.2, we use this approach, imple-

mented in R by [UM15],to evaluate the FIM with binary outcomes.

3.3.0.3 FIM computation by QRMC-SG

A further improvement is to use sparse grid to obtain multi-dimensional nodes for integration.

Similar to AGQ, to approximate the likelihood L(y,Ψ) in h(y,Ψ), we sample k nodes x1,

..., xk and corresponding weights w1,...,wk from a Gauss-Hermite quadrature. Then we use

the sparse grid rule to extend the 1-dimensional quadrature to the required dimension. The

multi-dimensional nodes are then centered and scaled according to the areas of high density

to improve the approximation. The approximated likelihood in equation (3.7) is

L(ym,Ψ) ≈
k∑
j=1

wkp(ym|xk,Ψ),

where ym is a sampled observation and sk, wk, k are SG nodes and weights. Since it employs

a sparser scheme, the number of required function evaluations is smaller than that of AGQ

and is thus more efficient. With the improved methods to approximate FIMs, we gain

computational efficiency that allows us to evaluate FIMs containing more random effects

parameters for more candidate designs. Consequently, our proposed method can search the

design space more thoroughly. The iterative optimization process for finding efficient designs

needs to approximate the FIM often hundreds of times, and it is critically important that
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we have efficient yet accurate approximation methods.

3.4 Proposed methodology

We develop an algorithm for finding optimal designs for longitudinal models using sparse grid

for the numerical integration and PSO for optimizing criterion values (objective functions).

The SG method could be replaced by other numerical integration techniques. We demon-

strate below that our proposed methods is fast and computational results are reasonably

accurate for finding optimal designs. The flowchart of the proposed sparse grid - particle

swarm optimization (SGPSO) algorithm is as follows:

Figure 3.2: The flowchart of the SGPSO algorithm.
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We choose to work with PSO but not conventional optimization algorithm because: (1)

sparse grid does not preserve convexity, and many conventional algorithms assume that

the objective function is convex or has nice mathematical properties. PSO does not use

mathematical properties of the objective function and is thus applicable in our case. and (2)

PSO has superior computational efficiency and empirically works well for finding optimal or

highly efficient designs for our problems.

We denote an n-run design by ξ = {t1, ..., tn} ∈ X where n is user-specified and each ti is

a design point representing a sampling time point or a dose level to observe the outcome. We

initiate particles in an n dimensional design space to determine the optimal values of t1, ..., tn.

We apply sparse grid sampling on the random effects parameter space. For approximate

designs with k support points, we denote by ξ = {(t1, p1), ..., (tK , pk)} ∈ R2k subject to

p1 + p2 + ... + pk = 1 and pi ≥ 0, i = 1, ..., k. We initiate particles in a 2k − 1 dimensional

design space (we subtract one because of the weights sum up to one constraint). Then

we apply sparse grid sampling on the parameter space with uncertainty and its dimension

is the same as the number of unknown parameters in the model. To fix ideas, we use

D-optimality and take the normalized determinant of information matrix as the objective

function. These values then serve as fitness values when evaluating the performance of a

selected design. PSO then searches the design space for an optimizer. The iterations stop

when some pre-determined algorithm stopping criteria are met. Some typical stopping rules

are the maximum number of iterations allowed and relative improvement in the fitness values

from iteration to iteration, which should be very small and specified by the user.

It is often difficult to determine the number of support points of pseudo-Bayesian optimal

designs because they usually have more support points than the number of parameters in

the model. SGPSO finds the number of support points heuristically. One can put arbitrary

number of support points into the algorithm (usually more than number of parameters in the

model) and the algorithm can find the correct number of support points, by either collapsing

some points to zero weights or dividing the weights appropriately.
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3.4.1 R programs

The SGPSO methodology is coded in R. We used version 3.3.0 “Supposedly Educational”.

The program requires installation of Rtools (https://cran.r-project.org/bin/windows/Rtools/).

Packages required include R6, pracma, compiler, statmod, Matrix, SparseGrid, and ppso.

We compare performance of our SGPSO with other metaheuristic algorithms and they in-

clude Quantum PSO (QPSO), genetic algorithm (GA) and differential evolution (DE). We

used the package “GA” for the GA and DE algorithms, manually coded QPSO and used

several benchmark functions to compare their performances.

These algorithms have varying numbers of tunning parameters and users have to select

appropriate values for them. The parameters for PSO are generally more flexible and can

be adjusted based on the problem at hand, and the most important parameters for compu-

tational efficiency are the stopping criteria and the maximum number of iterations. Users

could test each problem using a small number of iterations to get a sense of the number

of iterations that is computationally feasible. The accuracy level of sparse grid could also

be adjusted to fit the computational needs. In general, the higher this value is, the more

accurate is the integral approximation but more computationally intensive.

Users need to code their models as R functions, and specify the parameters that need to

be integrated. Users will also need to pre-specify the design parameters (number of sampling

times, dose levels, number of subjects, etc.), although for the optimal approximate designs

setting, users could assign a relatively large number of support points and the program could

find the correct number of support points by collapsing the weights. The interested reader

can write to the author and request a copy of the program codes.

3.5 Bayesian exact and approximate designs for generalized linear

models

We use a variety of model and design space configurations to test if our proposed algorithm

works well under the pseudo-Bayesian framework. In the following examples, we show our
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algorithm finds optimal or highly efficient designs for generalized linear models (GLMs). In

this section, we use Monte Carlo-PSO (MCPSO) and SGPSO for finding optimal designs

and compare their performances. In the examples to follow, we seek pseudo-Bayesian exact

designs and optimal approximate designs. They maximize the criterion value in equation

(1.2) in a continuous design space. Throughout this section, we use 40 particles for PSO and

set the maximum number of iterations to be 1000. The inertia weight from 0.9 to 0.4 and

c1 = c2 = 2 [SE98b].

3.5.1 A logistic model

One of the commonly used non-linear model is a logistic models where the outcomes are

binary and independent. As an example, we consider a five-parameter additive logistic

model on the design interval X=[-1,1]. We let the probability of a response y at the dose

level x be

E(y) = p(x, θ) =
eβ0+β1x1+...β4x4

1 + eβ0+β1x1+...β4x4

and we want to estimate all the five parameters as accurately as possible using a D-optimal

design. Following [WLE06], we assign independent uniform priors for the parameters as

follows: β0 ∼ unif [−3, 3], β1 ∼ unif [4, 10], β2 ∼ unif [5, 11], β3 ∼ unif [−6, 0], and β4 ∼

unif [−2.5, 3.5].

The maximum likelihood estimator of the vector of parameters has an asymptotic variance-

covariance matrix that is the inverse of the Fisher information matrix

M(θ, ξ) = XTWX

where W = diag{w(xj)} and w(xj) = pj(1−pj) are the weights for the logistic link function.

We compare the SGPSO results with those in [GJS09, WLE06] using 1000 Monte Carlo

samples. We set the SG accuracy level at 4 and for this 5-dimensional integral, we use 151

nodes in total. One way to assess the performance of a GLM design under model uncertainty

is through comparison with locally optimal designs across a range of model assumptions
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with different simulated parameters. Following [WLE06], we calculate local efficiencies by

randomly sampling 100 sets of parameters in the parameter space to perform the procedure.

Table 3.1 summarizes the results.

Table 3.1: Comparison of performance for finding pseudo-Bayesian exact designs using SG-

PSO, MCPSO, and the methods due to Gotwalt et al. (2009) and Woods et al. (2006).

Asterisk marked values were reported in Gotwalt et al. (2009) and local efficiencies are

D-efficiencies of locally exact design averaged over simulations.

Woods (2006) Gotwalt (2009) MCPSO SGPSO

criterion value (to minimize) 4.043233 4.319407 3.884441

CPU time (s) <10 1579.01 462.83

local efficiency (median) 42.3%* 44.8%* 46.58% 51.73%

local efficiency (sd) 8.90% 8.79% 10.09%

It is clear that SGPSO approach finds the most efficient design, in terms of the mean and

median local efficiencies under simulated parameter sets. Although SGPSO is much slower

than the approach proposed in [GJS09], it is a general optimizer and is versatile for many

more scenarios. Compared to the similar but more general algorithm MCPSO, SGPSO only

used 29% of the computational time required by MCPSO.

3.5.2 A compartmental model

Compartmental models are widely used in pharmaceutical research to ascertain how the drug

distributes itself after administration into the body by one of several ways. Design questions

may pertain how best to sample blood or urine from the subject to ascertain properties of the

drug, such as its average time inside a specific organ, the maximum dose of the drug in the

organ and the time it takes to reach the maximum dose in the target organ. Such models are

also used in non-clinical research. For example in veterinary science, [Fre84] used a simple

compartmental model to study the effect of Theophylline on horses in a veterinary science

study. In biomedical studies, [DBJ99] used a compartmental model to predict biological
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levels of tetrahydrofuran under different exposure scenarios. Other common use of such

models are in toxicokinetic experiments [BBU92]. To fix ideas, in what is to follow, we

consider a 3-parameter compartmental model commonly used to understand characteristics

after a drug is administered and we wish to estimate specific features of the drug.

Let us revisit the design proposed in [Fre84], where each of the six horses received 15

mg/kg of theophylline and a decision was made to collect 18 measurements of the theophylline

concentration over a user-specified time period. Let θT = (θ1, θ2, θ3) be the three parameters

in the compartmental model. The mean concentration of the drug at time t > 0 (minute)

after administration in the targeted compartment (organ) is

η(t, θ) = θ3{exp(−θ2t)− exp(−θ1t)},

after accounting for the inflow and outflow of the drug in the compartment.

Pseudo-Bayesian exact designs were also found for estimating the model parameters in

the above problem [GJS09, ACH93]. We compare their results with ours and for this reason,

we use the same prior distributions they had for the parameters: θ1 ∼ unif(0.01884, 0.09884),

θ2 ∼ unif(0.298, 8.298), and assume they are independent with 21.8 as the nominal value of

θ3. The priors on θ1 and θ2 reflect parameter values actually estimated from experimental

data in [But79]. For θ3, it is easy to show that the design efficiency does not depend on the

value of this parameter.

We apply our approach to derive a 18-run pseudo-Bayesian D-optimal exact design for

this model. A total of 1000 MC samples were used, and the SG accuracy level was set at 6 (33

nodes in total). Table 3.2 displays designs found by SGPSO and MCPSO, along with results

reported in [GJS09, ACH93], using the same experimental settings. We compared the three

designs in terms of their criterion values and local efficiencies under simulated parameters.

Local efficiencies are D-efficiencies of locally exact design averaged over simulations. All

designs are compared and their properties are summarized in table 3.3 after rounding the

support points to the fourth decimal places. Atkinson et al. (1993) did not provide details on

how they computed the average log determinant criterion. Gotwalt et al. (2009) found the
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design by integration over just a “small set of points” in the parameter space. We compare

designs’ local efficiencies based on 100 parameter vectors sampled from the parameter space.

Table 3.2: 18-run pseudo-Bayesian exact designs found by four methods: SGPSO, MCPSO,

the methods due to Gotwalt et al. (2009), and Atkinson et al. (1993) for the compartmental

model.

Time Atkinson et al. (1993) Gotwalt et al. (2009) SGPSO MCPSO
1 0.2034 0.2030 0.2031 0.2028
2 0.2034 0.2030 0.2031 0.2028
3 0.2034 0.2030 0.2031 0.2028
4 0.2034 0.2030 0.2031 0.2028
5 0.2034 0.2030 0.2031 0.2028
6 1.1967 0.9717 1.2122 1.1655
7 1.1967 0.9717 1.2122 1.1655
8 1.1967 0.9717 1.2122 1.1655
9 1.1967 0.9717 1.2122 1.1655
10 2.8323 3.3439 3.2812 3.0310
11 2.8323 3.3439 3.2812 3.0310
12 7.8229 3.3439 7.2340 6.3436
13 20.1899 20.1917 20.2754 20.4242
14 20.1899 20.1917 20.2754 20.4242
15 20.1899 20.1917 20.2754 20.4242
16 20.1899 20.1917 20.2754 20.4242
17 20.1899 20.1917 20.2754 20.4242
18 20.1899 20.1917 20.2754 20.4242

The distributions of support points roughly follow a similar pattern, with more support

points near the boundary of the design space and fewer points in the middle. The differences

after the first decimal places seem minimal: the experiments in practice may not have such

high precision.

It is clear for the compartmental model from table 3.3 that although our approach sam-

ples a relatively large amount from the sample space, the design formed by our approach

has higher criterion value, and better local efficiencies. Our approach does not make any

assumptions, so the method is applicable to other optimal design problems.
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Table 3.3: Performance of the four methods for finding a 18-run Bayesian exact design for

the compartmental model.

Approach Atkinson (1993) Gotwalt (2009) SGPSO MCPSO

# support points 5 4 5 5

criterion value 7.1059 7.0951 7.1115 7.1141

CPU time not reported not reported 47.82 860.54

local efficiency (mean) 82.82% 82.73% 82.58% 82.74%

local efficiency (median) 85.19% 84.84% 84.81% 85.28%

local efficiency (sd) 9.52% 8.70% 8.79% 8.90%

3.5.3 A generalized linear model with Gamma distributed response

To further demonstrate the flexibility of our algorithm, we apply it to find optimal approx-

imate designs for various models in this and the next sections. Equivalence theorems and

sensitivity plots are then used to confirm optimality of the designs found by our algorithm.

First, we consider a model with six parameters and two predictors here with a Gamma dis-

tributed response y defined on the design space X ∈ [0, 1]2 and the mean function is given

by

g(µ) = β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1x2

where g(µ) =
1

µ
is the selected link function. We want to find locally optimal approximate

designs and pseudo-Bayesian optimal approximate designs for estimating all parameters in

this model. The region for parameter values is Θ = [βL0 , β
U
0 ]× [βL1 , β

U
1 ]× [βL2 , β

U
2 ]× [βL3 , β

U
3 ]×

[βL4 , β
U
4 ] ×[βL5 , β

U
5 ]. All the parameters are assumed to be normally distributed. To fix ideas,

we assume each parameter to be between 0 and 1. [DPZ13] provides a derivation of the

information matrix of this model.

Finding locally and pseudo-Bayesian optimal approximate designs for this model is proven

to be a hard problem [DW15]. We resort to PSO, use the default values for the tunning

parameters and set the maximum number of iterations to be 10000 and the number of
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particles to be 40. The SG accuracy level is set at 4, and for this 6-dimensional integral, we

use 257 nodes in total. These choices are arrived at after several initial experiments and they

seem to work well for finding relatively efficient designs; users can also set different values

for the tuning parameters on their own.

We seek a 8 support points design for a pseudo-Bayesian optimal approximate design. An

experiment with more support points is possible, where PSO automatically split the weights

among the design points. This phenomena is also reported in [QCW14]. Figure 3.3 shows the

optimal design found, along with pseudo-Bayesian efficiency lower bound, and CPU time.

We recall that a pseudo-Bayesian efficiency lower bound on the D-efficiency of a design ξ

is defined as e−sm/m, where sm is the maximum positive value of the sensitivity function

across the design space. Figure 3.4 displays the sensitivity function plot to confirm the

optimality of the design. This figure not only enables us to check if the equivalence theorem

is satisfied at all points over the design space, but also confirms the number of locations of

the support points of the optimal design. We observe that on average, generating a pseudo-

Bayesian optimal design takes about 891 seconds (about 15 minutes) and confirming the

locally optimal design by the equivalence theorem and calculating a efficiency lower bound

take about 135 seconds (about 2 minutes). The algorithm produces a 8-point design with

an efficiency lower bound of 99.9%; so it is optimal for all practical purposes.
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Figure 3.3: Results found by SG-

PSO for the Gamma distributed

generalized linear model model.

Figure 3.4: Sensitivity function

plot of the pseudo-Bayesian op-

timal approximate design with

Gamma distributed responses

We note that, for the configuration we used for this example, the design points x1 and

x2 are inside the [0, 1] design interval. We note that our algorithm works fine when we allow

the design space for each factor to be [0, u] and u >1. If we allow negative values in the

design space, the algorithm becomes less robust.

3.5.4 An exponential model for HIV studies

In HIV studies, exponential models are frequently used to characterize viral load changes

with time after administration of a potent inhibitor of HIV-1 protease in vivo [PNM96].

Derived from a series of ordinary differential equations that describes the virus change in

different compartments, such models are good representations of longitudinal HIV dynamics.

The important parameters in such models include virus clearance rate and infected cell life

span [WD99].

We adopt a simplified framework developed in [WD99] which models the the total virus
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copies or its log-transformation for the i-th subject at time tj as:

Ytj =
∑
r

Pre
−δrtj + εtj,

where Pr represents the initial viral production rate, δr represents the exponential decay rate

of virus in the compartment and εtj ∼ N(0, σ2) are normally distributed isotropic residual.

For the exponential model under fairly unrealistic conditions, some analytic locally optimal

designs and pseudo-Bayesian optimal designs are available [HC03, DN97], but they may not

be flexible for practical use.

To study the drug effect and understand the longitudinal viral dynamics, a schedule

to sample plasma to measure the HIV-1 RNA copies must be set up in advance. In this

subsection, we show that SGPSO can directly find optimal designs for exponential regression

models, such as those summarized in [HC03]:

Yj = P1e
−δtj + εj (3.8)

Yj = P0 + P1e
−δtj + εj (3.9)

Yj = log(P0 + P1e
−δtj) + εj (3.10)

where Yj is the viral load at time tj, εj
iid∼ N(0, σ2), P0, P1, δ > 0 are unknown parameters,

and tj ∈ [tmin, tmax] ⊆ [0,+∞) are the sampling times to be determined. We follow [HC03]

and use the following independent priors: P0, P1 ∼ unif(0.5, 1.5), and δ ∼ unif(0.9, 1.1).

Additionally we have a different specification for model 3.10 with the same prior distributions

for P0 and P1 but with δ ∼ unif(0, 0.2) on t ∈ [0, 60]. We call model (3.10) with the

former specification model 3.10-1 and the latter model 3.10-2, and compare properties of the

resulting pseudo-Bayesian optimal designs under different specifications. The priors can be

quite flexible and they do not have to be independent. Specifically, model 3.10 describes

the trajectory of plasma HIV RNA level under antiviral treatment [WD99]; model 3.8 and

3.9 are special cases when P0 is treated as a nuisance parameter. [HC03] reported pseudo-

Bayesian optimal design for model 3.8 when t ∈ [0, 2] and SGPSO is able to replicate the
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result. The above three models are simplified exponential regression models with two to

three parameters, and one can easily extend them to more complicated models with more

parameters based on the disease stages. The computation should be similar.

We compare performances of SG and MC for the numerical integration process. We used

1000 MC samples and set the SG accuracy level at 3. The PSO parameters were set similarly

to other examples except that the maximum iteration number was set to 1000. Table 3.4

reports pseudo-Bayesian optimal designs for these models and the CPU time required by

SGPSO to generate them.

Table 3.4: SGPSO-generated optimal designs for exponential models.

Model #Parameters
Design CPU time(s)

(time, weight) SG/MC

3.8 2 ((0, 1/2), (1.01, 1/2)) 2.31/80.39

3.9 3 (1 nuisance) ((0, 1/3), (1, 1/3), (tmax, 1/3)) 4.75/94.25

3.10-1 3 ((0, 1/3), (1.27, 1/3), (tmax, 1/3)) 6.99/113.23

3.10-2 3 ((0, 0.32), (10.17, 0.28), (28.30, 0.10), (60, 0.30)) 6.55/142.53

The sensitivity function plots of the four SGPSO-generated designs are shown below and

they all confirm that the designs are pseudo-Bayesian optimal.
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Figure 3.5: Sensitivity function plots of the SGPSO-generated designs for the exponential

regression model 3.8 (left) and model 3.9 (right).

Figure 3.6: Sensitivity function plots of the SGPSO-generated designs for exponential re-

gression model 3.10 under specification 3.10-1 (left) and specification 3.10-2 (right).

The sensitivity function plots of the four PSO-generated designs are shown in figure

3.5 and 3.6 and they all confirm that the designs are pseudo-Bayesian optimal. The plots

suggest that the design remains optimal if t = 14 instead of tmax. We note that changing

prior specifications considerably changes the optimal design. For example, model 3.10-2 and
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model 3.10-1 have different prior specifications on two parameters and we observe that the

locations of the support points and the number of support points of the pseudo-Bayesian

optimal designs also change. The optimal design for model 3.10-2 requires 4 support points

compared to 3 support points for model 3.10-1. Moreover, the optimal design support points

for model 3.10-2 are more dispersed, and include middle and end time points, whereas the

optimal design support points for model 3.10-1 are concentrated in the earlier time. As is

shown in figure 3.7, the differences in designs might be attribute to the fact that larger δ

values in equation (3.10) flatten out responses quickly, and design points drawn at earlier

time points are critical in providing insights on the exponential decay rate. In contrast,

small δ values mean the response curve decay smoothly, and later time points are still on

the decreasing curve so that more information can be obtained by allocating design points

sparsely.

Figure 3.7: Mean response curves of model 3.10 with δ fixed at 1 (left) and 0.1 (right) from

mean values of the parameters.
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3.6 Exact designs for non-linear mixed effects models

In the following section, we seek to find exact designs for NLMEMs. In practice, the number

of repeated measure scientists or practitioners could obtain from the experimental subjects

is highly limited, and we use a population approach to find sparse designs that could be

useful in real-world settings.

When evaluating optimal exact designs, another criterion value is often used. The optimal

design satisfies

ξD = argmax
ξ∈Ξ∗

{(det[M(θ0, ξ)])
1/m},

where Ξ∗ is the set of all designs on the design space, and m is the number of parameters

in the model. This normalized FIM determinant is the D-criterion value and the larger this

value is, the better is the design. In this section, we will use this normalized FIM as the

criterion.

3.6.1 An Emax model with continuous outcomes

This example is inspired by the clinical development of a monoclonal antibody indicated

in the treatment of wet age related macular degeneration (wet-AMD) [RBH06]. The treat-

ment reduces vessel leakiness and improves visual acuity (VA) by neutralizing the vascular

endothelial growth factor (VEGF) in the retina. The trial duration was 24 months with sev-

eral VA measurements per subject randomized to receive one of into different dose groups.

We intend to use our proposed algorithm to optimize the VA measurement times, doses

levels and subject allocations to these dose levels for a similar but hypothetical study, which

has a published model for disease progression and anti-VEGF treatment effect [BUF18].

In wet-AMD, disease progression and treatment effect are assessed using a VA test based

on the early treatment diabetic retinopathy study (ETDRS) chart which contains 14 lines

(70 letters). The ETDRS chart is used to measure the number of letters successfully read

by the subject at a given visit. We use the following model to describe the time course of
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VA in wet-AMD subjects, with or without anti-VEGF treatment:

f(d, t, θ) = V A0 + (1− e−k t) ∗
( Emax d

ED50 + d
− β V A0

)
. (3.11)

The vector of model parameters θ has 5 elements: θT = (V A0, k, β, Emax, ED50). V A0 is

the visual acuity at baseline and in the absence of treatment. VA exponentially decreases

over time t in untreated subjects, reaching an asymptote V A0 × (1− β) at a rate k. Based

on k, one can derive the average time to steady state (5× log(2)
k

) which equals approximately

24 months and corresponds to the end of the trial. In line with the literature, the model

mimics a mixture of both disease modifying and symptomatic effects. The dose-response

relationship is assumed to be an Emax function, where Emax represents the maximum number

of letters that an individual can gain and ED50 is the dose at which 50% of the maximal

effect is achieved. For a very high dose and at a steady state, the predicted visual acuity is

V A0 × (1− β) + Emax.

Inter-individual variability is assumed for parameters V A0, k, β, and Emax, with var-

ious variances. We assume that the Emax parameter has a normal distribution, namely,

Emax=µEmax +bEmax where bEmax ∼ N (0, ω2
Emax

). We assume the remaining vector of param-

eters (V A0, k, β) follows log-normal distributions, namely, (V A0, k, β) = (µV A0 exp(bV A0),

µk exp(bk), µβ exp(bβ)) where (bV A0 , bk, bβ) ∼ N (0, diag( ω2
V A0

, ω2
k, ω

2
β)). Table 3.5 displays

nominal values of the model parameters.
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Table 3.5: Parameter settings of the model (3.11) (µ is the fixed effects, ω2 represents the

variance of each of the variance components, and σ2 is the variance of the errors).

Parameter distribution µ ω2 σ2

V A0 (Letter) log-normal 55 0.07 -

k (Day−1) log-normal 0.005 0.5 -

β log-normal 0.2 1.0 -

Emax (Letter) normal 30 150 -

ED50 (µg) log-normal 150 - -

σ2 (Letter2) - - - 28

Figure 3.8 displays the predicted VA time course curves from 0 to 24 months for the four

dose groups (0, 50, 100, 500 µg) used in simulations in [BUF18].

Figure 3.8: The time course of the visual acuity (VA, in Letter) predicted by model (3.11)

for the four dose groups: 0, 50, 100 and 500 µg.

In the problem at hand, there are 300 subjects to be randomized to different dose groups

or levels between 0 to 500 µg. The reference (non-optimized) design has 4 doses (0, 150, 300,

500 µg) and 4 measurement times were taken from each of the dose groups at 0, 224, 420,

672 days.

We now apply PSO to optimize the sampling time points and dose levels under various

assumptions in four scenarios. For the “Fix patient allocation” scenario, we fix the subject
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allocation the same as the reference design, and find dose levels (4 levels) and sampling times

(16 time points) that maximizes the D-criterion value. Similarly, for the “Fix sampling

times” scenario, we fix the sampling time points the same as the reference design, and

optimize the four dose levels and subject allocations in the four groups. For the “Fix doses”

scenario, we fix the four dose levels and optimize the four time points in each group and the

subject allocation in each group. For the “All flexible” scenario, we search for the optimal

four dose levels, sampling time points and subject allocation. In each case, the constraint is

that the total cohort is 300 patients for the study.

The population FIM is evaluated using first-order approximation of the model with the R

program PFIM 4.0 [DLL18]. Following convention, we set PSO parameters for this example

as follows: 1000 maximum number of iterations, 40 particles, inertia linearly decreasing from

0.9 to 0.4 and c1 = c2 = 2 [SE99].

Table 3.6 summarizes results obtained by PSO for the scenarios. The D-criterion values

for the four PSO-generated designs are reported. The four PSO-generated designs and their

D-efficiencies relative to the reference design are reported in the parentheses under the D-

criterion value. Table 3.6 also shows that the FO computation is highly efficient and CPU

times for 1000 iterations are all under 25 seconds for the four scenarios.
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Table 3.6: PSO-generated designs for model (3.11) under four scenarios. When appropriate,

the optimized doses (µg), or the sampling times (days), or the number of subjects per group

are shown in the middle columns. The criterion values and relative efficiencies of the designs

are displayed in the second to the last column. The CPU time required to generate each

design in the last column is the averaged time in seconds for the 10 runs.

Doses Sampling times
# subjects

per group

D-criterion

(RE)
CPU time

Reference

design

0 (0, 224, 420, 672) 75

15.451
150 (0, 224, 420, 672) 75

300 (0, 224, 420, 672) 75

500 (0, 224, 420, 672) 75

Fix

patient

allocation

0 (0, 180.86, 180.86, 672) 75
19.525

(126%)
17.169.15 c(0, 0, 672, 672) 75

500 (0, 170.36, 170.36, 672) 75+75

Fix

sampling

times

0 (0, 224, 420, 672) 110
17.721

(115%)
18.177.8 (0, 224, 420, 672) 57

500 (0, 224, 420, 672) 133

Fix

doses

0 (0, 179.62, 179.62, 672) 116
19.028

(123%)
18.0150 (0, 0, 672, 672) 58

500 (0, 170.73, 170.73, 672) 126

All

flexible

0 (0,178.90, 179.36, 672) 105

19.714

(128%)
23.1

74.8 (0, 0, 672, 672) 47

75 (0, 0, 672, 672) 14

500 (0, 171.08, 171.54, 672) 134

Compared to the reference design, the designs we generated have higher D-criterion

values and their D-efficiencies relative to the reference design range from 114.7% to 127.6%.

Not surprisingly, the “All flexible” scenario has the highest efficiency. The results show that

optimizing the sampling time points has the greatest impact on the D-criterion value and
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the “Fix sampling times” scenario has the least efficiency gain. The optimized sampling

time points tend to concentrate at the end points and earlier time points compared to the

reference design before the response curve becomes flat. We observe that the PSO-generated

designs have one fewer dose levels for the “Fix patient allocation”, “Fix sampling times”

and “Fix doses” scenarios. There are two dose levels for the “All flexible” scenario that are

fairly close (74.8 and 75). The designs with fewer dose levels might save costs and reduce

the number of subjects exposed to high and potentially unsafe dose levels.

3.6.2 A logistic model

3.6.2.1 A 2-parameter example

This example is a one-year study with repeated binary outcomes (responder vs non-responder)

in two balanced treatment groups, inspired from [LUM16, SNMon]. The response probabil-

ity over time is described by a mixed logistic model, including a covariate for the treatment

effect. We aim to determine the location of a limited number of measurement times between

0 and 12 months.

Specifically, we have binary responses (y = 0 or 1) recorded over time (t = 0 to 12

months) in two different treatment groups. The response probability at time t is given by

p(y = 1|b) =
exp

(
θ1 + θ2(1 + β × 1T )t

)
1 + exp

(
θ1 + θ2(1 + β × 1T )t

) , (3.12)

where 1T is the treatment group indicator variable (with 1T = 0 if placebo group and 1T = 1

if treated group) and β is the treatment effect. We assume the parameters θ1 and θ2 follow

a normal distribution: (θ1, θ2) = (µθ1 , µθ2) + (bθ1 , bθ2) where (bθ1 , bθ2) ∼ N (0, diag(ω2
θ1
, ω2

θ2
)).

The nominal values of the model parameters are given in table 3.7.
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Table 3.7: Parameter settings of the model (3.12) (µ is the fixed effects, ω2 is the variance

of the random effects and β is the treatment effect).

Parameter distribution µ ω2 β

θ1 normal -2 0.49 -

θ2 normal 0.09 0.03 -

β - - - 5

Figure 3.9 displays the model predicted curves from 0 to 12 months for the two groups.

Figure 3.9: Mean of the logit of the response probability (f) over 12 months predicted by the

model (3.12). The corresponding parameter values are in table 3.7. The solid line represents

the control group and the dashed line represents the treated group.

We next apply PSO to optimize measurement times ξ = {t1, t2, t3, t4} from 0 to 12 months

for subjects in both treatment arms based on the D-optimality. We assume N = 100 subjects

equally distributed in the two treatment groups. The end points t1 and t4 can either be fixed

at 0 and 12 months (i.e. at the start and the end of the study) and only optimize the middle

two points t2 and t3, or optimize all four time points at the same time. We then consider

two situations: one uses the same elementary designs for both arms and the other uses

different elementary designs for the two arms. In total, we want to apply our algorithms

to generate designs for model (3.12) for four scenarios. To this end, we first apply the

QRMC-AGQ method, implemented in R by [UM15], to evaluate the FIM for the repeated

binary responses. Several settings were evaluated and the following settings were chosen:
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the number of QRMC samples were fixed to 1000 and the number of AGQ nodes to 7.

We set PSO parameters for this example as follows: 100 maximum number of iterations,

40 particles, inertia linearly decreasing from 0.9 to 0.4 and c1 = c2 = 2. The optimization

for this task is more time consuming than that in application 1 because of the numerical

integration process that application 1 avoided by the FO method. We used 100 iterations for

the computational feasibility consideration and depending on the scenario, the 100 iterations

can take up to 2.2 hours.

Table 3.8: PSO-generated designs for model (3.12) for the four scenarios. The sampling

times are in months and the CPU times are in seconds.

Group Sampling times
D-criterion

(RE)
CPU time

Reference
Treated (0, 4, 8, 12)

36.673
Placebo (0, 4, 8, 12)

Same

elementary

designs for

2 groups

Fix end

points

Treated (0, 1.5, 6.2, 12) 40.889

(111%)
6542.5

Placebo (0, 1.5, 6.2, 12)

Flexible end

points

Treated (0, 1.51, 6.17, 11.98) 40.980

(112%)
7253.2

Placebo (0, 1.51, 6.17, 11.98)

Different

elementary

designs for

2 groups

Fix end

points

Treated (0, 1.5, 2.8, 12) 43.243

(118%)
6859.7

Placebo (0, 4.2, 9.1, 12)

Flexible end

points

Treated (0, 1.4, 2.0, 7.6) 44.542

(121%)
7942.1

Placebo (0, 3.9, 9.7, 11.6)

Table 3.8 contains the results and they show that maximizing 2 time points (fix 0 and 12)

or 4 time points often give similar design. The PSO-generated designs have D-efficiencies

relative to the reference design that range from 111% to 122%. Allowing different elementary

designs for the treatment and the placebo groups results in higher efficiency, and the most

flexible scenario that has the most design aspects to optimize gives the highest efficiency.

The best results found under this scenario suggests that the sampling times should be set
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up differently for the treated and the placebo groups. A key conclusion is that the treated

group should have more earlier time points.

3.6.2.2 A higher dimensional example: gains of using sparse grid

This example is a more complicated version of application 2 with binary outcomes. The

model now has four random effects parameters and we show that it is possible to use PSO

coupled with sparse grid to quickly find more efficient designs than the reference design for

moderately high dimensional models under different scenarios.

Our model describes binary responses (y = 0 or 1) recorded over time (t = 0 to 12

months) for two treatment groups. The response probability at time t is

p(y = 1|b) =
exp

(
θ1 + θ2(1− β1T ) exp(θ3t− 1)

)
1 + exp

(
θ1 + θ2(1− β1T ) exp(θ3t− 1)

) , (3.13)

where 1T is a treatment group indicator variable (with 1T = 0 for the placebo group and

1T = 1 for the treated group) and β is a treatment effect covariate. The parameters θ1, θ2, β

and θ3 follow normal distributions: (θ1, θ2, β, θ3) = (µθ1 , µθ2 , µβ, µθ3) + (bθ1 , bθ2 , bβ, bθ3) where

(bθ1 , bθ2 , bβ, bθ3) ∼ N (0, diag(ω2
θ1
, ω2

θ2
, ω2

β, ω
2
θ3

)), and table 3.9 displays the nominal values of

the model parameters.

Table 3.9: Parameter settings of model (3.13) where µ are the fixed effects and ω2 represents

the variance of each of the variance components.

Parameter distribution µ ω2

θ1 normal -1 0.5

θ2 normal 4 4

β normal 0.4 0.11

θ3 normal 0.33 0.11

Figure 3.10 shows the predicted curves from 0 to 12 months for the two treatment groups.
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Figure 3.10: Mean of the logit of the response probability (f) over 12 months predicted by

model (3.13) using parameter values in table 3.9. The solid line represents the control group

and the dashed line represents the treated group.

PSO is used to optimize measurement times from 0 to 12 months for subjects in both

treatment arms based on the D-optimality. The PSO parameters for this example are:

50 maximum number of iterations, 40 particles, inertia linearly decreasing from 0.9 to 0.4

and c1 = c2 = 2. The optimization for this task is much more time consuming than that

in applications 1 and 2 because of the higher-dimensional numerical integration process

and more complicated model structure. We used 50 iterations for computational feasibility

consideration.

Under the same design settings as in the previous example, we applied the QRMC-

SG method, implemented in R, to evaluate the FIM for the repeated binary responses.

Several settings were evaluated and the following settings were chosen: the number of QRMC

samples were fixed to 500 and the number of 1-dimensional SG nodes to 3. We also compare

QRMC-SG to QRMC-AGQ to show the benefit of SG. The number of 1-dimensional AGQ

nodes is also fixed to 3. In total, AGQ requires 34=81 grid points while SG requires only

33 grid points. The choice of these parameters considered both approximation accuracy

and computational budget. Increasing 1-dimensional nodes number from 2 to 3 provides

significant accuracy gain while from 3 to 4 provides not much improvement.

Table 3.10 displays the SGPSO results and CPU times required by SGPSO and AGQ.

We observe from the table that (i) the D-efficiency of PSO-generated designs relative to the

reference design range from 140% to 191%, (ii) optimizing all 8 time points has almost twice
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efficiency as the reference design, (iii) fixing the end time points (0 and 12 months) limits

the overall efficiency, (iv) allowing different elementary designs for treatment and placebo

groups results in higher efficiency, and (v) the CPU time is generally tolerable, ranging from

45 to 51 minutes, depending on the complexity of the problem.

Table 3.10: PSO-generated designs for model (3.13) for four scenarios. CPU time is in

seconds.

Group Sampling times
D-criterion

(RE)

CPU time

(SG/AGQ)

Reference
Treated (0, 4, 8, 12)

16.555
Placebo (0, 4, 8, 12)

Same

elementary

designs for

2 groups

Fix end

points

Treated (0, 2.4, 5.6, 12) 23.120

(140%)
2714/5011

Placebo (0, 2.4, 5.6, 12)

Flexible end

points

Treated (0, 0.2, 2.3, 9.0) 29.658

(179%)
2735/6433

Placebo (0, 0.2, 2.3, 9.0)

Different

elementary

designs for

2 groups

Fix end

points

Treated (0, 3.1, 10.1, 12) 26.495

(160%)
2758/6447

Placebo (0, 0.8, 4.3, 12)

Flexible end

points

Treated (0.7, 3.1, 4.3, 9.0) 31.640

(191%)
3083/6489

Placebo (0, 2.4, 3.5, 8.6)

If AGQ were to be used, even the simplest scenario takes 1.4 hours, almost twice as much

time but not better results. This is not surprising, since AGQ requires as many as 145%

more nodes to be evaluated compared to SG. However, we note that PSO/AGQ and PSO/SG

find designs for the four scenarios have similar D-efficiencies relative to the reference design

and they are 137.7%, 171.7%, 173.9% and 211.3% respectively. The computational gain by

PSO/SG in time is critically important when we need to evaluate more candidate designs,

tackle models with more random effects parameters, and allows us to find efficient designs

for more complicated models, which are increasingly more common in practice.
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3.6.2.3 A comprehensive comparison of using adaptive Gaussian quadrature vs.

sparse grid on logistic models

Here, we conduct a more comprehensive comparison of utilities of adaptive Gaussian quadra-

ture (AGQ) versus sparse grid (SG) for our models and problems. To this end, we consider

a series of longitudinal logistic NLMEMS with different numbers of random effects and use

two techniques to integrate out the random effects. This section only compares AGQ and SG

to show the computational gains of using SG over AGQ for moderate dimensional problems,

and does not involve the optimization processes. Below are the models we consider and listed

in increasing order of their complexity.

The simplest model with 2-dimensional random effects is:

logit E(y) = θ1 + θ2(1− 0.4× 1T )t

where (θ1, θ2) = µ + b, the fixed effects are µ=(-1, 4) and the vector of random effects b

follows a joint normal distribution N(0, diag(0.5, 4)).

A 3-dimensional random effects is:

logit E(y) = θ1 + θ2(1− β1T )t

where (θ1, θ2, β) = µ + b, the fixed effects are µ=(-1, 4, 0.4), and the vector of random

effects b follows a joint normal distribution N(0, diag(0.5, 4, 0.01)).

Next, a model with 4-dimensional random effects is:

logit E(y) = θ1 + θ2(1− β1T )exp(θ3t− 1)

where (θ1, θ2, β, θ3) = µ + b, the fixed effects are µ = (-1, 4, 0.4, 0.33), and the vector of

random effects b follows a joint normal distribution N(0, diag(0.5, 4, 0.01, 0.01)).
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The most complicated case we consider is a model with 5-dimensional random effects:

logit E(y) = θ1 + θ2(1− β0 − β11T )[exp(θ3t)− 1]

where (θ1, θ2, β0, β1, θ3) = µ + b, the fixed effects are µ = (-1, 4, 0, 0.4, 0.33), and the vector

of random effects b follows a joint normal distribution N(0, diag(0.5, 4, 0.01, 0.01, 0.01)).

We compare designs found by the two techniques based on nodes of different accuracy

levels, the corresponding the CPU times and the criterion values. The outer integration with

respect to the observations are integrated out by QRMC. For the purpose of comparison of

AGQ and SG. We used 500 QRMC samples and used the same 1-dimensional Gaussian

quadrature. The reference design used for comparison allocates 50 patients to each of the

treated and placebo groups and the sampling times are at month 0, 4, 8, and 12.

Figure 3.11 shows the number of AGQ and SG node points at different accuracy levels

for the 2-5 dimensional models. The number of node points directly relates to the number

of objective function evaluations. More node points require more evaluations. When the

dimension is 2, AGQ is more efficient than SG; when the dimension is 3, SG is slightly more

efficient than AGQ; and when the dimensions are 4 and 5, it is clear that SG requires much

fewer node points than AGQ. It is clear that AGQ suffers “curse of dimension problem”

while SG mitigates this problem to some extent. Table 3.11 summarizes the number of

points required by AGQ and SG for different dimensions.

Figure 3.11: Numbers of 2-5 dimensional node points at different accuracy levels
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Table 3.11: Numbers of 2-5 dimensional node points required by AGQ and SG at different

accuracy levels.

accuracy level AGQ2 SG2 AGQ3 SG3 AGQ4 SG4 AGQ5 SG5

3 9 9 27 19 81 33 243 51

4 16 17 64 39 256 81 1024 151

5 25 37 125 93 625 201 3125 401

6 36 45 216 165 1296 441 7776 993

7 49 61 343 237 2401 761 16807 2033

8 64 77 512 381 4096 1305 32768 3793

9 81 97 729 513 6561 2129 59049 6913

10 100 133 1000 703 10000 3065 100000 11323

The number of node points affects CPU times, but not in a linear way because of other

computer system related factors. Nevertheless, we clearly observe the same trend in the CPU

time comparison as we observed in number of node points comparison. Figure 3.12 shows

that the CPU times required by AGQ and SG at different accuracy levels for evaluating the

2-5 dimensional models. We observe that for the 2-dimensional case, AGQ outperforms SG;

then SG starts to outperform AGQ for the 3-dimensional case, and the the trend becomes

pronounced for the 4- and 5-dimensional model. In particular, we note that for the 5-

dimensional case, SG saves up to 87% of CPU time. Table 3.12 summarizes the CPU time

for 2-5 dimensional models using AGQ and SG at various accuracy levels.
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Figure 3.12: CPU times (seconds) required by AGQ and SG for evaluating the 2-5 dimen-

sional models at different accuracy levels.

Table 3.12: CPU times (seconds) required by AGQ and SG for evaluating the 2-5 dimensional

models at different accuracy levels.

accuracy level AGQ2 SG2 AGQ3 SG3 AGQ4 SG4 AGQ5 SG5

3 11.79 12.12 24.84 22.96 68.15 41.9 200.1 68.66

4 15.14 16.98 44.87 37.06 185.4 81.72 789.7 162.47

5 20.26 27.85 80.96 69.9 436.61 178.6 2446.45 390.17

6 25.89 32.57 130.83 113.81 891.44 362.87 6139.61 928.72

7 32.62 41.62 200.53 161.03 1627.55 618.89 13317.84 1860.11

8 40.42 51.56 296.1 250.1 2720.44 1050.75 24644.29 3365.9

9 49.77 62.41 418.03 332.45 4373.07 1657.87 44401.22 6195.67

10 61.83 82.18 585.39 452.97 6760.44 2374.22 75047.77 10111.11

We also compare the criterion values approximated by the two techniques. Ideally, we

want the two techniques to have the same or very similar values. The criterion here is the

normalized Fisher information matrix determinant. We observe that AGQ and SG agrees

well, especially at higher accuracy levels. Figure 3.13 shows the criterion values obtained by

the two techniques for the 2-5 dimensional models at different accuracy levels. At accuracy
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level 5 or 6, the difference becomes indistinguishable. Both methods have some discrepancy

at lower accuracy but become negligible at higher accuracy levels. As the model becomes

more complicated, higher accuracy levels are needed as in the 5-dimensional model. Table

3.13 summarizes the criterion values. There is no magnitude difference across models at

different accuracy levels, and it is clear that SG gives the same or very close evaluation,

while saving computational efforts considerably.

Figure 3.13: Criterion values of 2-5 dimensional models at different accuracy levels
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Table 3.13: Criterion values of 2-5 dimensional models at different accuracy levels.

accuracy level AGQ2 SG2 AGQ3 SG3 AGQ4 SG4 AGQ5 SG5

3 7.329 7.329 12.194 12.298 3.976 4.084 2.451 2.295

4 7.310 7.398 11.960 12.316 3.935 4.024 2.179 2.625

5 7.350 7.350 12.037 12.142 3.940 3.944 1.284 1.938

6 7.344 7.346 12.039 12.027 3.940 3.939 1.325 1.457

7 7.344 7.347 12.033 12.043 3.940 3.940 0.984 0.904

8 7.347 7.346 12.041 12.036 3.940 3.941 0.758 0.877

9 7.345 7.347 12.038 12.042 3.940 3.940 0.695 0.802

10 7.346 7.346 12.039 12.041 3.940 3.940 0.524 0.761

We conclude this section by discussing on the proper accuracy level to use to approximate

FIMs for NLMEMs with different number of random effects. Sparse grids have a great

advantage when the dimension is moderately high. A 2-dimensional model doesn’t benefit

much from using SG, but a higher dimensional model using SG is computationally much

more efficient than using AGQ. We emphasize that for the types of problems and models

we have, our work shows for moderate dimensional NLMEMs, SG is a highly accurate, and

computationally efficient algorithm, compared to AGQ.

3.6.2.4 A comparison of optimization algorithms for finding efficient designs of

a 4-parameter logistic NLMEM

In this subsection, we compare PSO with three other competing metaheuristic optimization

algorithms and show that PSO is computationally efficient and finds comparable or better

designs. The algorithms we considered include genetic algorithm (GA) [BGH89], differential

evolution (DE) [SP97], and a variant of PSO called quantum-inspired PSO (QPSO) [SFX04].

We discussed GA and QPSO in Chapter 2. DE adopts similar evolution strategy as GA and

creates new candidate solutions based on the weighted difference between two randomly

selected population members added to a third population member [SP97]. We use these
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algorithms coupled with SG to find efficient designs for the 4-parameter logistic NLMEM

in section 3.6.2.2. We consider the most flexible scenario, which allows different elementary

designs for the treated and placebo groups, and we optimize all four time points for both

groups.

The parameters of GA are set as follows: the population size is 50, the number of

generations is 50, elitism is 2, cross-over probability is 0.8, and mutation probability is 0.1.

The parameters of DE are set as follows: the population size is 80, the number of generations

is 50, step size is 0.8, and cross-over probability is 0.5. The parameters of QPSO are set

as follows: the alpha is linearly decreasing from 1.4 to 0.4, the population size is 40, the

maximum number of iterations is 50.

Table 3.14 summarizes the results of using PSO, QPSO, GA, and DE when we hybridize

them with SG for finding D-optimal exact designs. It is clear that PSO finds designs with

better D-criterion values than GA and DE, and its value is comparable with the one found

by QPSO. However, PSO is computationally more efficient than QPSO; even though we note

from the table that the designs found by the three algorithms are not the same. Another

advantage of using PSO is that scientists and practitioners can easily find codes for PSO but

not QPSO. We thus conclude that PSO is efficient and is good for practical use.

Table 3.14: A comparison of using different optimization algorithms for finding efficient

designs for the 4-parameter logistic NLMEM.

Optimizer Group sampling times D-criterion Relative efficiency

PSO
Treated (0.7, 3.1, 4.3, 9.0)

31.64 100.0%
Placebo (0, 2.4, 3.5, 8.6)

QPSO
Treated (0.8, 2.0, 8.4, 9.1)

31.87 100.7%
Placebo (0.7, 1.3, 2.0, 7.4)

GA
Treated (1.9, 3.0, 4.1, 8.7)

27.92 88.2%
Placebo (1.8, 3.7, 5.0, 8.5)

DE
Treated (1.0, 2.0, 2.1, 8.3)

30.90 97.7%
Placebo (1.1, 1.8, 3.4, 7.9)
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3.6.3 A Poisson model with count outcomes

Count data often arise in biomedical studies. For instance, in a toxicity study, the outcome

could be the number of organisms or cells that survive when exposed to different doses of

toxicants. There is limited work to address design issues for such models and they usually

only have one or two explanatory variables in the model [RWL09, WMS06, Qiu14]. Inspired

by a previous work [UM17], we consider a Poisson NLMEM with various dose levels. To

fix ideas, we consider designs that use the same elementary designs for each subject and all

responses are non-negative integer values.

Similar to the previous section, we first compare AGQ and SG performances for evaluating

designs to show the advantages of SG at higher dimensions. We then work with a 4-parameter

Poisson NLMEM to show that SGPSO can find highly efficient designs in a reasonable

amount of time.

3.6.3.1 Finding efficient designs for a 4-parameter Poisson NLMEM

The response probability at dose level D = Di is given by

p(yi = k|b) =
λexp(λ)

k!
with log(λ) = θ1

(
1− θ4 −

θ2Di

Di + θ3

)
(3.14)

where θ1, θ2, θ3 follow a log-normal distribution: (θ1, θ2, θ3) = (µ1, µ2, µ3)exp(b1, b2, b3) where

(b1, b2, b3) ∼ N(0, diag(ω2
1, ω

2
2, ω

2
3)), and θ4 follows a normal distribution: θ4 = µ4 + b4 where

b4 ∼ N(0, ω2
4). Table 3.15 provides the nominal values of model parameters.
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Table 3.15: Parameter settings of model (3.14) where µ are the fixed effects and ω2 represents

the variance of each of the variance components.

Parameter distribution µ ω2

θ1 log-normal 1.0 0.09

θ2 log-normal 0.5 0.09

θ3 log-normal 1 0.01

θ4 normal 0 0.01

We assume 20 subjects in total, each contributes 90 observations at different dose levels.

The dose levels are to be chosen from 0 to 1. The reference (non-optimized) design has 3

doses (0, 0.4, 0.7) and 30 observations at each level [Riv16, UM17].

We evaluate the population FIM using QRMC-AGQ and QRMC-SG. PSO is used to

optimize the dose levels and observation allocations based on D-optimality. We consider

two scenarios. For “Fix allocation” scenario, we fix the observation allocation the same as

the reference design, and find 3 dose levels that maximize the D-criterion value. For the

“Flexible” scenario, we additionally search for the three dose levels. We set PSO parameters

for this example as follows: 100 maximum number of iterations, 40 particles, inertia linearly

decreasing from 0.9 to 0.4 and c1 = c2 = 2 [SE99]. We use 1000 QRMC samples and use the

same 1-dimensional 3-points Gaussian quadrature for AGQ and SG. The maximum number

of iterations considered the computational budget.

Table 3.16 reports the results for the two scenarios, along with the D-criterion value

for each design. Relative efficiencies for the four PSO-generated designs compared to the

reference design are reported in the parentheses under D-criterion values.
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Table 3.16: PSO-generated designs for model 3.14 under two scenarios. AGQ and SG were

used for comparison. CPU time is in seconds.

Dose levels Observations allocations D-criterion (RE) CPU time

Reference

Design

0 30

57.691 N/A0.4 30

0.7 30

Fix allocation -

AGQPSO

0 30
73.098

(135.4%)
27164.470.25 30

0.88 30

Fix allocation -

SGPSO

0 30
75.694

(131.2%)
16203.580.25 30

0.94 30

Flexible -

AGQPSO

0 19
76.699

(132.9%)
27455.370.21 29

0.78 42

Flexible -

SGPSO

0 19
76.699

(132.9%)
16259.360.21 29

0.78 42

We observe from table 3.16 that the we found much more efficient designs than the

reference design: our deisngs have relativeD-efficiencies ranging from 131% to 135%. SGPSO

approach finds equivalent or better designs than AGQPSO; in terms of CPU time, the former

can require less than 60% of CPU time than AGQPSO used.

3.6.3.2 A comparison of using adaptive Gaussian quadrature and sparse grid

on Poisson NLMEMs

This subsection compares the performances of using adaptive Gaussian quadrature (AGQ)

and sparse grid (SG) for Poisson NLMEMEs. We use a series of Poisson regression models
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with different numbers of random effects via AGQ and SG. Similar to section 3.6.2.3, in this

section we only compare AGQ and SG to show the computational gains of using SG over

AGQ on moderate dimensional problems, and does not involve the optimization processes.

The responses recorded over time are non-negative integer values (counts). The simplest

2-dimensional NLMEM models the response probability at dose level D = Di by:

p(yi = k|b) =
λexp(λ)

k!
with log(λ) = θ1

(
1− Di

Di + θ2

)
where θ1, θ2 follow a log-normal distribution: (θ1, θ2) = (µ1, µ2)exp(b1, b2). We assume

(µ1, µ2)=(1, 0.5) and (b1, b2) ∼ N(0, diag(0.09, 0.09)).

A more complicated 3-dimensional Poisson NLMEM is:

p(yi = k|b) =
λexp(λ)

k!
with log(λ) = θ1

(
1− θ3Di

Di + θ2

)
where θ1, θ2, θ3 follow a log-normal distribution: (θ1, θ2, θ3) = (µ1, µ2, µ3)exp(b1, b2, b3). We

assume (µ1, µ2, µ3)=(1, 0.5, 0.1) and b1, b2, b3 ∼ N(0, diag(0.09, 0.09, 0.01)).

The most complicated case we consider is a 4-dimensional Poisson NLMEM:

p(yi = k|b) =
λexp(λ)

k!
with log(λ) = θ1

(
1− θ4 −

θ3Di

Di + θ2

)
where θ1, θ2, θ3 follow a log-normal distribution: (θ1, θ2, θ3) = (µ1, µ2, µ3)exp(b1, b2, b3). We

let (µ1, µ2, µ3)=(1, 0.5, 0.1), (b1, b2, b3) ∼ N(0, diag(0.09, 0.09, 0.01)). We assume θ4 follows

a normal distribution: θ4 = µ4 + b4 where µ4=0 and b4 ∼ N(0, 0.01).

As before, we compare the two techniques by their number of node points at different

accuracy levels, CPU times, and criterion values. The outer integration with respect to

the observations are integrated out by QRMC. For the purpose of comparison AGQ and

SQ, we fixed all other conditions, including using 1000 QRMC samples and the same 1-

dimensional 3-points Gaussian quadrature. We assume 20 subjects in total, each contributes

90 observations at different dose levels between 0 (0%) to 1 (100%). The reference design
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has 20 patients with 30 observations at each level of the three doses at 0, 0.4, 0.7.

Table 3.11 shows the numbers of AGQ and SG node points at different accuracy levels.

Again, we observe a similar and clear trend in the CPU times as in section 3.6.2.3. Figure

3.14 shows the CPU times required by AGQ and SG at different accuracy levels for 2-4

dimensional models. For the 2-dimensional case, AGQ outperforms SG; then SG starts to

outperform AGQ for the 3-dimensional case, and the the trend becomes pronounced in 4-

dimensional models, with saving in CPU time up to 67% for the 4-dimensional SG. Table

3.17 summarizes the CPU times for 2-4 dimensional models using AGQ and SG at various

accuracy levels.

Figure 3.14: CPU times (seconds) required by the AGQ and SG for evaluating 2-4 dimen-

sional models at different accuracy levels
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Table 3.17: CPU times (seconds) required by the AGQ and SG for evaluating 2-4 dimensional

models at different accuracy levels

accuracy level AGQ2 SG2 AGQ3 SG3 AGQ4 SG4

3 34.39 35.06 88.71 81.83 228.25 132.86

4 44.14 47.58 147.38 114.45 609.84 255.33

5 57.32 77.6 258.03 220.14 1405.89 552.57

6 73.77 90.98 432.1 363.89 2873.53 1136.06

7 92.99 114.9 667.89 506.42 5429.69 1910.34

8 115.11 139.41 967.62 788.23 8986.94 3260.36

9 140.54 169.53 1338.39 1050.98 14347.99 5160.50

10 168.38 224.5 1824.84 1425.42 22019.89 7334.63

We also compare the criterion values approximated by using the two techniques. The

criterion here is the normalized Fisher information matrix determinant. Results from the

AGQ and SG techniques agree well, especially at higher accuracy levels. Figure 3.15 shows

the criterion values for the generated designs for the 2-4 dimensional models at different

accuracy levels. At higher accuracy levels, the difference becomes indistinguishable. Both

methods have some discrepancy at lower accuracy levels, and becomes quite small at accuracy

level 4. As the model becomes more complicated, higher accuracy levels are needed, as

evident from the 4-dimensional model. Table 3.18 summarizes the criterion values. There

is no magnitude difference across models at different accuracy levels, and it is clear that SG

gives results similar to those from AGQ, while saving computational efforts considerably. In

summary, we reach a similar conclusion as we had in section 3.6.2.3: SG is a highly accurate

and computationally efficient algorithm compared to AGQ.
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Figure 3.15: Criterion values of the generated designs for the 2-4 dimensional models at

different accuracy levels.

Table 3.18: Criterion values of the generated designs for the 2-4 dimensional models at

different accuracy levels.

accuracy level AGQ2 SG2 AGQ3 SG3 AGQ4 SG4

3 286.174 286.174 10.148 10.140 4.307 4.406

4 286.269 287.058 10.108 11.050 2.922 4.724

5 286.628 286.845 10.129 10.215 2.350 3.609

6 286.588 286.636 10.123 10.127 1.741 3.286

7 286.635 286.645 10.124 10.124 1.491 2.342

8 286.637 286.633 10.124 10.124 1.517 2.284

9 286.630 286.631 10.124 10.123 1.533 1.723

10 286.634 286.630 10.12 10.125 1.532 1.732
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3.6.3.3 A comparison of optimization algorithms for finding efficient designs of

a 4-parameter Poisson NLMEM

In this section, we compare PSO with three other competing metaheuristic optimization

algorithms and show that PSO is computationally efficient and finds comparable or better

designs. Similar to section 3.6.2.4, the algorithm we considered include genetic algorithm

(GA), differential evolution (DE), and quantum-inspired PSO (QPSO). We use these al-

gorithms coupled with SG to find efficient designs for the 4-parameter Poisson NLMEM

in section 3.6.3.1. We consider the most flexible scenario, which optimizes dose levels and

patient allocations.

The parameters of GA are set as follows: the population size is 50, the number of

generations is 100, elitism is 2, cross-over probability is 0.8, and mutation probability is 0.1.

The parameters of DE are set as follows: the population size is 80, the number of generations

is 100, step size is 0.8, and cross-over probability is 0.5. The parameters of QPSO are set

as follows: the alpha is linearly decreasing from 1.4 to 0.4, the population size is 40, the

maximum number of iterations is 100.

Table 3.19 summarizes the results of using PSO, QPSO, GA, and DE hybridized with SG

for finding efficient exact designs. It is clear that PSO finds designs with better D-criterion

values than all other three algorithms. We reach the same conclusion that PSO is efficient

and is good for practical use.
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Table 3.19: A comparison of using different optimization algorithms for finding efficient

designs of the 4-parameter Poisson NLMEM.

Dose levels Patient allocations D-criterion (relative efficiency)

PSO

0 19
76.70

(100%)
0.21 29

0.78 42

QPSO

0 46
65.08

(84.9%)
0.26 29

0.97 15

GA

0.02 29
69.89

(91.1%)
0.31 30

0.88 31

DE

0.01 7
70.24

(91.6%)
0.22 47

0.97 36

3.6.4 Exponential models with real-world applications

In this section, we use a real-world application to show the usefulness of SGPSO in finding

efficient designs for NLMEMs. In HIV trials, blood samples are drawn at a few time points.

We focus on a NLMEM and call it simply an exponential model. It models the response

curve as follows [WD99]

yij = log(Vij) = log(eθi−δitj + eγi−λitj) + eij.

Let βi = (θi, γi, δi, λi) and assume we have a homogeneity error term eij|βi ∼ N(0, σ2).

The outcome variable yij is the log-transformation of the total viral load measurement for

the i-th subject at j-th time point, i = 1, ..., n and j = 1, ...m. The vector of parameters

(θi, γi) represents the initial viral production rate, and the parameters (δi, λi) represent the
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exponential decay rate of virus in the corresponding compartment. We let βi = β+ bi where

the fixed effects are β = (θ, γ, δ, λ) and we assume the random effects bi = (b1, b2, b3, b4) each

has a normal distribution; bi ∼ N(0, D). We use nominal values estimated from viral load

data in the AIDS clinical trial group (ACTG) 315 protocol data of 46 subjects and they are

β̂ = (12.142, 7.624, 0.442, 0.032)T , σ̂ = 0.267, and D̂ = diag(1.3972, 1.5452, 0.1372, 0.0152)

[WD99].

We seek efficient designs for different clinical trial protocols when we have three different

schedules:

1) ACTG Protocol 5055 protocol (Schedule 1): this was a phase 1/2, randomized, open-

label, 24-week comparative study of the pharmacokinetic (PK), tolerability, safety, and ARV

effects of combined antiviral drugs in HIV-1-infected subjects failing their first protease

inhibitor (PI)-containing regimen combination therapy [AWH04]. The design space, i.e. the

time span allowed for drawing blood samples, is from day 0 to day 168 (24 weeks). The

reference design implemented in practice took observations at 0, 7, 14, 28, 56, 84, 112, 140,

168 days after trial entry.

2) ACTG Protocol 315 (Schedule 2): HIV infected subjects were treated with potent

antiviral drugs (ritonavir, 3TC, and AZT) and Plasma HIV-1 RNA was repeatedly quanti-

fied. The design space is from day 2 to day 84 as the data is only available after day 2 and

viral load is only detectable before day 84. The reference design, which was implemented

in practice, took observations at 2, 7, 12, 13, 21, 27, 55, 84 days after entry into the trial

[WD99].

3) The standard sampling schedule (Schedule 3): this is a sampling schedule currently

used in many AIDS clinical trials. The study design reduces the visits for individual subjects

from 9 times in Schedule 1 to 6 visits. The reference design took observations during a 24

weeks period at 0, 28, 56, 84, 112, 168 days [HW08b].

We set the PSO parameters as follows: 100 maximum number of iterations, 40 particles,

inertia linearly decreasing from 0.9 to 0.4 and c1 = c2 = 2. The SG uses 81 nodes in total to

evaluate the FIMs. The efficient designs generated for the three protocols are summarized
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in table 3.20.

Table 3.20: SGPSO-generated designs for the exponential model for different protocols in

the HIV studies, and their D-criterion values and CPU times.

Schedule Reference Design Sampling times
D-criterion

CPU time
(RE)

1
0, 7, 14, 28, 56,

84, 112, 140, 168

0, 8.6, 14.3, 18.9, 30.3,

157.9, 164.5, 167.8, 168

174.55

(276%)
1983

2
2, 7, 12, 13, 21,

27, 55, 84

2, 2.3, 15.8, 16.2,

34.1, 37.7, 65.1, 83.0

93.48

(138%)
1847

3
0, 28, 56, 84,

112, 168
0, 29.3, 29.4, 32.3, 168, 168

142.28

(242%)
1688

We observe from the table 3.20 that compared to the reference designs adopted in the

protocols, the SGPSO algorithm generates more efficient designs within a reasonable amount

of time. Specifically, the SGPSO generated designs have efficiencies ranging from 138% to

276%, suggesting that the designs implemented in practice may not be the most efficient ones.

The SGPSO algorithm is very flexible and can accommodate different model specifications,

including various design spaces, number of design points and various priors for the random

effects. It is therefore a very useful tool and the SGPSO-generated designs can provide very

good compelling alternatives for practical applications.

In summary, our proposed SGPSO algorithm is fast and efficient for finding pseudo-

Bayesian optimal designs for GLMs in section 3.5, and efficient exact designs for non-linear

mixed effects models in section 3.6. We showed that the algorithm works quite well for

finding pseudo-Bayesian optimal approximate designs. It also seems to work well for finding

more quality exact designs than the the reference designs, for complicated and moderately

large dimensional models that were previously deemed intractable. SGPSO is able to fully

exploit the design space and find designs more efficient than the implemented designs and
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in a relatively short time. It has great potential for further applications in practice without

requiring a lot of mathematics. We conclude our Project I with a note that there is no

absolute guarantee that our proposed algorithm works well for finding all types of optimal

designs. In fact, it should be noted that there is no guarantee that our algorithm finds the

optimal exact design because there is no theoretical ways to confirm optimality. We recall the

so-called “no free lunch theorem” [WM97], which states that each random search technique

has its own advantages on a certain set of problems over other methods and there is not a

universally best algorithm for all problems. We also note that the sparse grid technique tends

to work better with normal priors. We plan to apply the SGPSO algorithm to construct

optimal designs for other design criteria for non-linear mixed effects models and other models

in the future.
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CHAPTER 4

Project II: single time point prediction of idiopathic

pulmonary fibrosis progression using random forest

hybridized QPSO

Idiopathic Pulmonary Fibrosis (IPF) is a chronic irreversible and ultimately fatal interstitial

lung disease (ILD) with unknown etiology. It is characterized by an unpredictable progres-

sive decline in lung function and typically affects people in the age group of 50-70 years.

The disease exhibits a highly heterogeneous natural history, and the disease progression is

unpredictable at the time of diagnosis: some subjects may experience episodes of acute res-

piratory worsening despite being previously stable [RCE11]. It is critically important to

distinguish subgroups of IPF subjects who are likely to progress from those who are likely

to remain stable. The identification of a candidates who is likely to progress or to be stable

helps clinicians to make a decision of continuing or switching a treatment, or to refer for a

lung transplantation at an early stage.

High-resolution Computed Tomography (HRCT) plays an important role in the diagno-

sis of IPF [RCE11]. Studies have shown that HRCT features are useful and sensitive in

predicting progression in IPF subjects based on the patterns changes of usual interstitial

pneumonia (UIP) between two scans [KSB01, Tib96]. Research shows that UIP patterns

on HRCT are associated with high mortality and disease progression in subjects with IPF

[Tib96]. Changes in quantitative HRCT measures provide a sensitive indication of disease

progression and response to treatment [KTG16, KBW17, RSD16]. Features extracted from

HRCT images are usually high-dimensional, which pose a challenge for image recognition

systems because redundant or non-informative features sometimes reduce classification ac-
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curacy. For this reason we need a model using artificial intelligence, and feature selection is

one of important steps for robust model to stratify the groups of subjects who are likely to

progress or not.

Several methods have been proposed to select features and build classification mod-

els in the medical imaging field. Regularization methods, such as least absolute shrinkage

and selection operator (LASSO) [FCT03] and smoothly clipped absolute deviation (SCAD)

[FL01], are handy and popular methods in the field [MTS14, MRR13]. The field has increas-

ingly used the advanced techniques [BBM15], such as random forest [CS13], support vector

machine (SVM) [FCD00, MZA09, Mot15], neural network (NNET) [US18], etc. However,

most of studies either has no feature selection step, or separate the feature selection from

classification steps, which fail to select the optimized feature subset that leads to the best

classification performance.

An appropriate approach to integrate feature selection and classification is a wrapper

method, which directly uses the classification performance of a given model to assess selected

subsets of features [XZB16]. Efficient search strategies are critical for a wrapper method to

identify the best feature subset. Evolutionary computation (EC) is particularly useful in

our case because the objective function in our problem does not have an analytical form,

and the common optimization techniques which require leveraging mathematical properties

of the objective function cannot be used. Evolutionary computation is a problem-solving

paradigm that simulates the powerful process of natural evolution, such as reproduction,

competition, mutation, and selection [BFM97]. Evolution is essentially an optimization

process [May88], and through iterations the evolution can discover highly precise functional

solutions to particular problems. EC has been used in a wide spectrum of areas, and [BFM97]

broadly categorize the applications into areas including planning, design, simulation and

identification, control, and classification. The obvious success of EC application on many

problems makes EC attractive in practice, although the “no free lunch theorem” clearly

states that there is no universally superior algorithm on all problems [WM97].

In this work, we propose to use a type of EC algorithm called quantum-inspired particle

swarm optimization (QPSO), coupled with a random forest algorithm (RF) as a wrapper
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method to build a prediction model that has high accuracy and a good balance between

sensitivity and specificity. Inspired by wave functions in quantum physics, QPSO has en-

hanced searching ability and improved optimization results over many other commonly used

EC algorithms [SFX04, SLW11, LJS15, FDZ12, LMW18]; empirically, it is superior based

on comparative experiments using benchmark test functions [XSX08]. It has been applied

in the imaging field in recent years [LJS15, JJ15] and shows promising potential in dealing

with high-dimensional imaging data.

To our best knowledge, this work is the first ROI-based computer-aided-diagnostic (CAD)

model that can be applied to a baseline HRCT scan for predicting progression at 6 months

to 1 year follow-up. The methodological contributions of this work include two aspects: (a) a

study design of collecting a data set with ground truth for prediction via visual registration

by a radiologist; and (b) the development of an objective metric and an algorithm that

simultaneously achieves high prediction accuracy, balanced sensitivity and specificity with

a parsimonious feature subset, using a relatively small number of subjects. Further, we

apply the classifier trained at the ROI level to the voxels extracted from whole lungs. We

hypothesize that a whole lung level metric derived from a baseline scan is associated with

progression in a follow-up scan.

4.1 Background

Because of the heterogeneous natural history of IPF, a multidisciplinary team of pulmonolo-

gists, radiologists, and pathologists has devoted to build a guidance of diagnostic models

of IPF for subjects with interstitial lung disease [RCE11]. According to the guidelines, a

HRCT scan is required for diagnosis of IPF. Quantitative image analyses (QIA) using texture-

based features from HRCT scans have been utilized intensively in pulmonary related diseases

[UHS99, KGK05, KLG08]. For example, QIA are used for robust classification of interstitial

lung disease patterns. Scores from QIA can be a good representation of IPF disease severity

[KBC15]. The models that leverage HRCT quantitative imaging data usually require mea-

surements of changes from baseline to follow up [KSB01]. However, not many subjects have
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a starndard clinical follow-up with utilization of HRCT scans unless they have experienced

shortness of breath or suspicion of progression. Given that HRCT scans are not utilized for

monitoring purposes but for confirmation of progression, and subjects with IPF with the

longitudinal HRCTs tend to have short median survivals. Considering the clinical suspicions

of longitudinal HRCT scans, it would be desirable to develop a prediction model for the IPF

progression using only a baseline or single time point HRCT scan.

Texture features extracted from images can be considered as a mathematical character-

ization of images. They reflect granular spatial information quantitatively. They describe

the grey levels of voxels along different orientations and spatial relationships of voxels within

a local neighborhood. We extract features using a grid sampling procedure described in

[KLG08]. Grids composed of 4-by-4 voxel squares were placed contiguously. From each grid,

a voxel was selected. The grid sampling was used to assure complete coverage of regions of

interest. We extract 71 imaging features from each sampled voxel. In one of classification

modeling problems, a critical step is to carefully select a small number of features for pre-

diction. This selected subset of features can substantially reduce the processing time, and

give robust and superior results to using the full set of features [MHS95].

While deep learning has gained popularity in the medical imaging field recently, it suffers

from overfitting and underfitting problems when the training samples are small [GLO16].

Deep learning framework is not practical to our design of data collection. The goal of this

study is to use supervised voxel-wise level for predicting the progression. Deep learning

approach can provide a subject-level of predicting progression or not, but not necessary at

the voxel-level. Alternatively, a promising approach is a wrapper method with a machine

learning algorithm in the task of texture feature selection and classification. In the following

sections, we show that this approach is feasible and can provide a method of a supervised

learning at voxel-level of predicting a likelihood of progression.
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4.2 Study design and data acquisition

For the pilot study of prediction at the ROI level, a total of 50 anonymized HRCT images of

subjects with IPF from a multi-center clinical trial were selected. At least two consecutive

HRCT scans were available for each subject for the purpose of model building. We collected

a data set with well-characterized HRCT scans from subjects of IPF and the dates of baseline

scan ranged from 2011 to 2015. Anonymized HRCT images of these subjects were archived

at the UCLA Computer Vision and Imaging Biomarkers Laboratory. The use of anonymous

image data was approved by local institutional review board. The population had a mean

age of 65.9 years and a mean forced vital capacity (FVC) percentage predicted value of

69.2%.

We collected a baseline scan and a 7.3 month (SE ± 1.6 months) follow-up HRCT scan

from each subject with IPF. The first task is for a radiologist to visually mark ground truth

of the regions of interest (ROI) at baseline scans to collect the textural information. Three

steps of radiologist’s assessment were: (1) a thoracic radiologist identified the ROI in chest

CT as reflecting progression or non-progression by reviewing the two paired longitudinal

HRCT scans; (2) contoured the ROI at baseline scan (before the changes occurred), the

ROIs were contoured to avoid airways and blood vessels; and (3) labeled the ROI type as

progression or non-progression. The visual registration was used to matches the baseline and

follow-up in the anatomical correspondence of ROIs. This step was performed by a single

radiologist (more than 20 years of experience).

Table 4.1 provides the baseline characteristics of the subject population by ROI status,

namely, whether or not a subject had at least one progressed ROI (progression vs. no

progression). Demographic profiles and the percent predicted FVC between the two groups

are comparable (66.7% vs 68.1%). Quantitative lung fibrosis (QLF) is a classifier-model-

derived score and is a measurement of disease extent [KBC15]. The means of QLF scores were

also similar between two groups who had progressed ROI and those who had no progressed

ROI (14.2% vs 13.4%). This suggests that the progression at the ROI level provides insights

beyond disease extent and visual patterns of IPF, and is promising for detecting early signs

89



of disease progression. Within each contoured ROI, a square of 4-by-4 grid sampling was

implemented to generate voxel instances, and texture features were calculated based on these

local neighborhoods of voxels. See [Har79, SHB14] for texture feature computation details.

Table 4.1: Baseline characteristics of the IPF cohort.

Visual assessment

Subjects with

≥ 1 progressed ROI

Subjects with

no progressed ROI

# Subjects 33 17

# ROIs 166 84

# Progression ROIs 72 0

# Non-progression ROIs 94 84

Age (mean ± SE), yrs 66.7 ± 7.7 68.1 ± 7.1

% Female 17 23

Baseline % predicted FVC

(mean ± SE), %
68.7 ± 3.3 69.8 ± 2.8

Follow up % predicted FVC

(mean ± SE), %
63.2 ± 3.0 67.8 ± 2.4

Baseline QLF (mean ± SE), % 14.2 ± 1.4 13.4 ± 1.4

Follow up QLF (mean ± SE), % 16.1 ± 1.8 15.3 ± 1.7

Importantly, the radiologist labeled a ROI on the baseline scan (before the changes

occurred) as “expected to be progressed” if the ROI got worse in the follow-up scan, or

“expected to be non-progression” if the ROI got better or stayed stable on the follow-

up scan. Figure 4.1 depicts this data acquisition procedure. We say that our model is

predictive because texture features were only obtained from baseline scans when we built the

classification model. The model is evaluated and compared with the ground truth obtained

by a thoracic radiologist assessment. The procedure of data acquisition enables a supervised

learning approach since we collected HRCT images from subjects with follow-up scans. The

ultimate application of this algorithm is to predict a subject’s status for those who does not
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necessarily have follow-up scans.

Figure 4.1: The baseline and follow-up HRCT scans of an IPF subject. A radiologist com-
pared the two ROIs and determined the progression status based on the imaging pattern
change.

4.3 Proposed methodology

There are two components in a wrapper method: an optimizer and a classifier. The classi-

fication metrics returned from the classifier serve as objective function(s) for optimization.

We use a QPSO algorithm as the classifier; details of QPSO has been provided in section

2.2.1.We use a random forest as the optimizer.

4.3.1 The objective function

In this work, we want to build a prediction model that has a good balance between sensi-

tivity and specificity. The previous IPF studies in machine learning have often focused on

improving sensitivities, as it is clinically meaningful to detect progression, when there were

no effective therapeutic treatments [MPB12, RDC17]. With effective anti-fibrotic IPF ther-

apeutic treatments now being available [KBC14], there is an increasing need to understand

the early signs of improvement or stabilization (not only progression), which led to the need

of optimizing specificity. As such, we developed an objective metric to be maximized as the

minimum of sensitivity and specificity. This metric is beneficial for a balanced classification.

We compare the proposed algorithm to other wrappers and non-wrapper methods in terms
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of accuracy, sensitivity, specificity, and number of selected features.

Empirically, directly optimizing accuracy of classification would produce a skewed re-

sult with high specificity and low sensitivity, since non-progression is the majority class and

specificity is the main driver of accuracy in an unbalanced data. To build a more balanced

classifier, we need to consider a composite metric that includes both sensitivity and speci-

ficity. In computer science, a commonly used metric is F1 score, which is a harmonic mean

of precision and recall. One can think of F1 score as a smoothed minimum of precision

and recall [Lia05]. However, F1 score only compromises mildly when we have unbalanced

classification results.

In this work, we propose a new objective metric to maximize the minimum of the sen-

sitivity and specificity, produced by the classification algorithm. To our best knowledge,

there is only one similar metric in the 2012 PhysioNet/Computing in Cardiology Challenge

[SMS12], which sought to maximize the minimum of positive predictive value (also known

as precision) and sensitivity (also known as recall). Their choice stimulated competitors to

optimize the Precision-Recall (PR) curve of classifiers, whereas our metric optimize the usual

receiver operating curve (ROC). The classification results on our data set suggest that this

metric is beneficial for a balanced sensitivity and specificity. Specifically, the objective is

argmax
Fs

min(sensitivity, specificity)

where Fs is any feature subset, and both sensitivity and specificity are classification metrics

on the test set returned by the classification algorithm built upon Fs.

The solution to this optimization problem does not have an analytical form, which means

that it is hard to derive mathematical properties, such as convexity or differentiability of the

objective function. Consequently, we resort to heuristic algorithms such as QPSO, and show

that it can be particularly useful in this case.
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4.3.2 The classifier: random forest

We build the classification model based on selected features using the random forest algo-

rithm [Bre01]. Research has shown that tree-ensemble-based machine learning techniques

such as random forest are effective for solving real world problems [DBP12, LWV14, ZSW17].

Random forest has also been widely used in the medical imaging field and is highly success-

ful in many classification tasks [CS13, HBL18]. For high-dimensional data, random forest

is easily applicable in distributed systems. A random forest classifier is particularly suit-

able for our problem because: 1) it is computationally fast and reasonably easy to train for

high-dimensional data; 2) it minimizes storage, and this is especially important in our future

work when we want to scale our algorithm to expand to whole lung level as is discussed in

section 5; and 3) it tends to provide feature diversity, which is particularly important when

dealing with heterogeneous data [Die00].

The parameters we used in the random forest classifier were set as follows: the maximum

depth of each tree is 20, the number of trees is 100, the proportions of subsample from the

data set is 0.5, and the proportion of features randomly selected at each node of each tree

is 0.5. The guidelines for selecting parameters such as tree depth, forest size and sampling

density remain an open question [CS13]. Since we have 71 features in total, a depth of 20

uses up to 30% features in individual trees and is sufficient in our case. We also observe

that when the depth further grows, RF tends to over-fit, compromising the classification

results; the memory required also increases exponentially as the trees grow deeper. On the

other hand, a shallow tree will produce low-confidence, high entropy posteriors. The choice

of the number of trees considered the computational budget of running the experiments and

empirical experiences of many other studies [KKK13, Zha15, YP13]. In section 4.5.1, a 5-fold

cross validation is used to select the best tree depth as 33; this depth has been used in the

whole lung expansion study.

The pseudo code is as below:

After the maximum number of trees to grow, we obtain the final decision tree H, which
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Algorithm 2 Random Forest Algorithm

Input: a data set S, a feature set F, and a selected number of trees in forest B.
Output: the final decision tree H, which can then be used to classify the test set.

Initialization : Start with an empty forest H.
for i ≤ B: do

2: Bootstrap a subsample S(i) from S.
At each node, select a small subset of F split on the best feature in this feature subset.
Save the tree hi learned from this feature subset.

4: Add hi to H.
end for

6: return H

can then be used to classify the test set.

4.3.3 The re-sampler: SMOTE

In our data set, we observe pattern imbalance, which is a common problem in machine learn-

ing. Class imbalance can have significant impact on classification performance, especially

for minority classes. Re-sampling is a routinely used pre-processing technique in statis-

tics [FHT01] to obtain balanced pattern frequencies and thus promising to achieve more

balanced classification. Various re-sampling techniques have been developed in pulmonary

imaging studies. Two general re-sampling approaches are up-sampling and down-sampling.

Up-sampling is any technique that simulates or imputes additional data points to improve

balance across classes, and down-sampling refers to any technique that reduces the number

of samples to improve the balance across classes. Research has shown that a combination of

over-sampling the minority class and under-sampling the majority class can achieve better

classification performance than using either alone, so we apply a synthetic minority over-

sampling technique (SMOTE) [CBH02] to carry out the re-sampling task. In SMOTE, the

over-sampling approach for minority class is to over-sample by creating “synthetic” exam-

ples rather than by over-sampling with replacement. The majority class is under-sampled

by randomly removing samples from the majority class population until the minority class

becomes some specified percentage of the majority class. The procedure follows as:

In this work, we apply SMOTE technique on the training set and let the test set untouched

94



Algorithm 3 SMOTE Algorithm

Input: a data set S and a feature set F.
Output: a resampled data set S1.

Create Synthetic minority samples:
Take the difference between a feature vector and one of its k nearest neighbors (k is set
to 5);

3: Multiply this difference by a random uniform[0,1] scalar;
Add the difference to the feature value of the original feature vector.
Under-sampling the majority samples:

6: Randomly remove until we have a class balance.
return The resampled data set.

to be more consistent with the nature of the data. We compare approaches with and without

SMOTE to illustrate its usefulness.

4.3.4 Random forest hybridized QPSO algorithm

We propose QPSO-RF as an integrated novel algorithm that performs HRCT feature selec-

tion and imaging pattern prediction effectively in this section. First in the resampling step,

we use SMOTE to resample the training set. We then use QPSO as the optimizer to search

the feature subsets (Step: 1-6), and random forests are built upon selected subsets (Step:

7-12) which produces the evaluation metrics. The iterative process of QPSO-RF searches

the feature space in all the particle best (pbest) and returns the global best (gbest) at the

last iteration as the best feature subset that gives the maximized objective function.

The parameters in our QPSO algorithm are the same as those recommended in [ZSX13]:

the number of particles is 40, the dimension of each particle is 71 (as we have 71 features), the

maximum number of iterations is 1000 and each iteration involves 5-dimensional mutation at

any one time (See the steps 1-5 in Algorithm 4). The choices of the number of particles and

the maximum number of iterations follow the convention, which were used and suggested in

many PSO literatures for their good performance on the benchmark functions [Sug99, RC11].

A binary encoded QPSO determines the probability of flips using a function in step 6 in

Algorithm 4, which is inspired by a wave function in quantum mechanics [SFX04]. We note

that the solution may not be optimal or unique, as in practice we use only a limited number
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of iterations, and there might be several feature subsets that produce the same or similar

fitness values, which is a typical problem in feature selection.

Figure 4.2 is the procedure flowchart of the random forest hybridized QPSO algorithm,

which describes the steps of the algorithm. QPSO-RF uses the QPSO to select features from

a resampled data set to build a random forest classifier, and uses the objective function to

guide the algorithm to find a best feature subset.

Figure 4.2: Flowchart of random forest hybridized QPSO algorithm for IPF prediction
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Algorithm 4 QPSO-RF Algorithm

Input: a data set S, a feature set F, pre-fixed parameters including number of particles p,
dimension of the particles d, maximum iteration number maxiter, and a decision tree H
as a learning algorithm. Set QPSO parameters as: maxiter = 1000, p = 40, and d = 71.
Additionally, set RF parameters as: the number of trees B = 100, the maximum depth
of each tree = 20 and the proportions of subsample from the data set = 0.5.

Output: a feature subset Fs that gives the best fitness value.
Resampling : use SMOTE algorithm to resample the training set.
Initialization of QPSO : randomize binary bits for particles, particles’ personal best pbest
and swarm’s global best gbest. Twelve steps are the procedure of QPSO-RF, where RF
is nested into each iteration of QPSO.

1: for iter ≤ maxiter: do
2: for i ≤ p: do
3: Perform mutation operation on each particle.
4: Determine the mean best (mbest) for each particle at dimension d:

mbest
d =


1, 1

p

∑p
i x

pbest
i,d > 0.5

0, 1
p

∑p
i x

pbest
i,d < 0.5

1 with prob = 1
2
, 1

p

∑p
i x

pbest
i,d = 0.5

5: Select one of the offspring randomly.
6: For each dimension, flip the particle with mutation probability defined as

min(
β × dH(xi, x

mbest)× ln 1
u

p
, 1)

where dH is the counts of bits different in the two strings, u ∼ unif(0,1) and β is a
tuning parameter set to decrease from 1.4 to 0.4 over the iterations. The decreasing
values of β allow more localized search as the swarm evolves.

7: On the resampled training set, evaluate each particle using random forest:
8: Start with an empty forest H.
9: for i ≤ B: do
10: Bootstrap a subsample from S.
11: At each node, split on the best feature represented by the particle. Save the tree

hi learned from this feature subset.
12: Add hi to H.
13: end for
14: Obtain minimum of sensitivity and specificity from H. Each particle is evaluated

using this metric; update pbest as the best feature subset one particle visited so far
and gbest as the best feature subset of the swarm visited so far.

15: end for
16: end for
17: return gbest vector that represent the best feature subset, which has maximum

min(sensitivity, specificity).

97



The implementation of the algorithm is primarily done in R. The procedure for doing

the prediction and result visualization are fully automated and has been tested locally on a

Windows platform. The SMOTE re-sampling is carried out by “unbalanced” package. The

realization of the random forest classifier is by “XGBoost” package. The use of XGBoost

allows potential scalable future applications and convenience when merging the algorithm

into the CVIB pipeline. Some pre-processing and simple descriptive statistical analysis are

done in Stata.

4.3.5 Statistical analysis plan

We implemented statistical procedures to test if the differences of prediction accuracy be-

tween the proposed QPSO-RF and other comparator methods were statistically significant.

We used conditional logistic regression models for analysis, which is a standard method for

analyzing matched case-control data [HLS13]. The outcome is whether the ROI prediction

is accurate (binary), and the covariate is the indicator of method. Since each subject may

contribute multiple ROIs, we used a clustered sandwich estimator as the variance structure.

The clustered sandwich estimator allows for intragroup correlation within ROIs that were

from the same subjects, and maintains the independence across ROIs from different subjects

[BH95]. The p-values for each model’s coefficient are reported in table 4.2 and 4.3.

We also addressed the multiple comparison using a Benjamini–Hochberg procedure con-

trolling the false discover rate (FDR) at 0.05 significance level [BH95]. In total, we have

23 pairwise comparisons of the proposed algorithm to comparators trained on resampled or

original training data set.

4.3.6 R programs

We use R to code the QPSO-RF method. The packages used include dplyr, xgboost, caret,

sqldf, and e1071. We coded binary QPSO algorithm manually.

The texture features were generated from the in-house pipeline, and we omit the details

here. The denoised texture features used for whole lung expansion is also generated from
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the pipeline.

There are several parameters that users can adjust. The most important parameter

that affects the computational budget is the maximum number of iterations of QPSO. The

hyper-parameters of random forest can be selected using cross-validation.

During the model training process, we input the texture feature data of the training set,

the QPSO parameters, and an objective function to select the feature subset. The output

is the feature subset selected as the group best at the last iteration and the random forest

classifier built on the selected feature subset. After the model training, we apply the classifier

trained to the texture feature data of the test set, at the ROI or whole lung level, and the

output is the prediction results of each input voxel.

4.4 Preliminary results at regions of interest level

We split the data into a training set and a test set at the subject level. The training set

had 26 subjects, and the test set had a different group of 24 subjects. The training set had

77 non-progression and 50 progression ROIs, adding up to 127 ROIs; at the voxel level the

training set had 1172 non-progression and 582 progression voxels, adding up to 1754 voxels.

The test set had 101 non-progression and 22 progression ROIs, adding up to 123 ROIs; at

the voxel level the test set had 1605 non-progression and 336 progression voxels, adding

up to 1941 voxels. In our data set, the progression and non-progression lung morphology

outcomes had an unbalanced ratio. At the voxel level the ratio was 1:3 (918 progression:

2777 non-progression instances) and at the ROI level the ratio was 1:2.5 (72 progression vs

178 non-progression). For the training set we applied the re-sampling SMOTE technique

as a class imbalance remedy; the post-SMOTE training set had 1746 progression and 1746

non-progression voxel instances and the model was trained on this re-sampled set. The test

set was evaluated without any resampling modifications. Texture features were calculated

at the voxel level and the radiologist references were ROI-based, we therefore performed a

majority voting strategy to transform the classifier outcome from voxel to ROI level.

We compared the performance of our algorithm with other feature selection and clas-
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sification techniques. Firstly we considered a range of wrapper methods that use different

optimizers and classifiers. The classifiers used included support vector machine (SVM) and

shallow neural network (NNET); classifiers using all features (without feature selection) were

also included in the comparison. The optimizers used for comparison included the basic ver-

sion PSO and the Genetic Algorithm (GA). The GA employs the “survival of the fittest”

principle in its search process to select and generate individuals (in our case, feature subsets)

that are adapted to their environment (objectives). The desirable traits tend to over-express

over a number of generations (iterations), leading to better and better solutions. GA has

also been frequently used in feature selection problems [YH98]. Research has shown that

PSO has the same effectiveness as a Genetic Algorithm (GA) with significantly improved

computational efficiency [HCD05].

We also compared the method to non-wrapper, model-based methods including LASSO

and SCAD. LASSO and SCAD were used to perform feature selection by employing penalties.

They have been widely adopted and can effectively enhance the prediction performance of

the regression model [MTS14, MRR13].

The comparators used in this work are commonly used methods in the medical imaging

field [BBM15] and have comparable computational efforts. The configurations of each com-

parator algorithm were set as follows. For LASSO and SCAD, we standardized the feature

set and then used cross validation to choose the best penalty parameters for prediction. We

then applied the cross-validated LASSO or SCAD model to the test set. For GA, we used

1000 iterations, 40 populations, cross over rate of 0.8 and mutation rate of 0.02, which was

comparable to QPSO and PSO parameter settings. For SVM, we used a Gaussian radial

basis function (RBF) kernel with a scaling factor 1 [MZA09, Mot15]. For NNET, we used

a two-layer feedforward network with 10 hidden-layer neurons, a sigmoid transfer function

in the hidden layer, and a softmax transfer function in the output layer [US18]. These

parameters for the comparator optimizers and classifiers were pre-specified based on the

computational feasibility consideration and best practices reported in the literature.

Despite our best intent to compare the proposed methods to other methods used in feature

selection and classification tasks, it was hard to do an exhaustive comparison. Potentially,
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there could be other methods that are even more effective in our data set.

The QPSO-RF algorithm yielded a model with 19 texture features and achieved 81.8%

sensitivity, 82.2% specificity and 82.1% accuracy at the ROI level on the test set in predicting

progression at 6 months to 1 year follow-ups. Table 4.2 compares the results from different

methods trained on resampled training sets and then applied on the test set. It is clear

that QPSO-RF is superior compared to other wrapper methods and model-based methods,

in a sense that QPSO-RF selects a smaller set of texture features than most of the other

algorithms, has a higher and more balanced classification sensitivity and specificity, and has

higher accuracy. Compared to LASSO, SCAD, other wrapper methods, and classification

models without feature selection, QPSO-RF provides the only solution that both sensitivity

and specificity achieves above 80%. It also achieves the highest classification accuracy with

the smallest feature set. Using conditional logistic regressions and controlling the overall

FDR at the significance 5% level, we observe that QPSO-RF accuracy is statistically signifi-

cantly higher than all other methods except for the SVM without feature selection; the latter

method is not ideal because it classifies all ROIs as non-progression. The QPSO-RF selected

features include 2 summary statistical features, mean and mean32 (gray-level mean of 32

brightest voxels), and 17 gray-level co-occurrence matrices (GLCM) features. These features

are important to understand the characteristics of the images and are good representations

of the images.

In addition, a re-sampling technique is helpful to achieve better classification results.

Table 4.3 compares results from same comparators trained without resampling. There is no

method that achieves above 80% for both sensitivity and specificity. The resampled QPSO-

RF achieves statistically significantly higher classification accuracy than six other methods

in table 4.3. Generally, wrappers trained without resampling produce higher specificity, but

much lower sensitivity and reduced overall accuracy compared with the wrappers trained

with resampling. This is because that the data without resampling has under-representative

progression class, and as a result, it’s hard for the models to pick up the minority class. In

particular, if QPSO-RF was applied without re-sampling, 30 features were selected and the

sensitivity dropped to 72.7%, specificity dropped to 76.2%, with overall accuracy reduced to
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75.6%. We note that compared to other algorithms in table 4.3, QPSO-RF without SMOTE

still achieves one of the highest accuracy levels, balanced sensitivity and specificity, and

select one of the smallest feature sets.

Empirically, random forest was to be the superior classifier in our data set. On the

resampled data set, RF (without feature selection) and PSO-RF had the highest accuracy

among all methods following QPSO-RF; on the data set without resampling, RF (without

feature selection) had the highest classification accuracy, and QPSO-RF and PSO-RF also

had higher accuracy than most other methods. These results suggest that RF is a superior

classifier for this data set. Further, QPSO method was found to be the best optimizer

for our data set, and it selected a parsimonious feature subset compared to PSO and GA

optimizers. As a result, the resampled QPSO-RF was found to be clearly a superior method

that achieved all of our goals of high accuracy, balanced sensitivity and specificity, with a

smaller number of selected features.
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Table 4.2: Classification results at the ROI level from different algorithms applied on the test

set using SMOTE in the training set. Asterisk mark indicates significance after controlling

the overall false discovery rate at 0.05 significance level.

Sensitivity Specificity Accuracy P-value #features

QPSO-RF 0.818 0.822 0.821 19

LASSO 0.864 0.554 0.61 <0.001 * 56

SCAD 0.818 0.564 0.61 <0.001 * 47

RF w/o feature selection 0.727 0.723 0.724 0.022 * 71

SVM w/o feature selection 0 1 0.82 1 71

NNET w/o feature selection 0.727 0.574 0.602 0.001 * 71

PSO-RF 0.864 0.663 0.699 0.004 * 29

PSO-SVM 0.864 0.653 0.691 0.017 * 39

PSO-NNET 0.818 0.594 0.634 0.001 * 39

GA-RF 0.909 0.584 0.642 0.001 * 38

GA-SVM 0.864 0.663 0.699 0.019 * 36

GA-NNET 0.909 0.604 0.659 0.001 * 37

103



Table 4.3: Classification results at the ROI level from different algorithms applied on the test

set without SMOTE in the training set. Asterisk mark indicates significance after controlling

the overall false discovery rate at the 0.05 significance level.

Sensitivity Specificity Accuracy P-value # Features

QPSO-RF 0.727 0.762 0.756 0.159 30

LASSO 0.636 0.713 0.711 0.024 * 54

SCAD 0.682 0.772 0.756 0.108 10

RF w/o feature selection 0.682 0.802 0.78 0.367 71

SVM w/o feature selection 0.909 0.644 0.691 0.012 * 71

NNET w/o feature selection 0.727 0.733 0.732 0.016 * 71

PSO-RF 0.818 0.743 0.756 0.089 48

PSO-SVM 0.909 0.644 0.691 0.017 * 20

PSO-NNET 0.682 0.792 0.772 0.241 39

GA-RF 0.682 0.762 0.748 0.097 38

GA-SVM 0.864 0.693 0.724 0.032 * 31

GA-NNET 0.636 0.733 0.727 0.012 * 29

As we have coordinates of each voxel, we can visualize the voxel level classifications

within each ROIs. Table 4.4 is a summary table that gives readers intuition about the

algorithm classification. Four typical cases are provided in the table. Our algorithm correctly

classified ROI patterns in case 1 and case 2 but fails in case 3 and 4. Case 1 is a non-

progression ROI, and PSO-RF classified 97.4% voxels as non-progression, which transformed

to a “non-progression” label to the ROI. Case 2 is a progression ROI with 83.3% voxels

classified as progression, which transformed to a “progression” label to the ROI. Case 3

is a progression ROI with 62.5% voxels classified as non-progression, which transformed to

a “non-progression” label to the ROI. Case 4 is a non-progression ROI with 85.7% voxels

classified as progression, which transformed to a “progression” label to the ROI.
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Table 4.4: Classification visualization, green dots=voxels QPSORF classified as non-progres-

sion, red dots=voxels PSORF classified as progression.

We observe that the ROI-level classification relies on voxel numbers within ROI, and this

may affect the classification outcome: if not a significant proportion of voxels are classified

as “progression” then the progression ROI might be easily mis-classified, which makes the

error tolerance rate low for ROIs with few voxels. Furthermore, as images were obtained

from multi-center trials, the image quality may be inconsistent throughout ROIs and in

particular, image brightness may affect the classification performance. To address this issue,
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we apply the classifier trained at the ROI level to the voxels extracted from whole lungs.

The prediction in whole lung eliminates the bias of ROI contouring and makes the prediction

robust. The expansion could be automated in the prediction process with little radiologist

input. Research has shown that quantitative scores that are summated for the whole lung

correlates with PFT results, and is related to extent and severity of interstitial lung disease

[TVT16]. We hypothesize that a whole lung level metric derived from a baseline scan is

associated with progression in a follow-up scan.

Further, we validated the algorithm with a larger data set of 172 IPF subjects. We col-

lect anonymized longitudinal serial volumetric HRCT scans from IPF. Radiologists visually

contoured regions of interest (ROI) and annotated lung morphology types into progression

or non-progression, at the previous visits before the changes occurred. 191 texture features

were extracted from the grid sampled voxels of baseline ROIs. Using the QPSO hybridized

random forest algorithm, we calibrated the algorithm on a data set of 99 subjects (577 ROIs)

using 5-fold cross validation and tested the algorithm on a separate test set of 73 subjects

(414 ROIs). The algorithm yields a parsimonious model with 23 features (12% features

selected) and achieves 70.8% sensitivity, 70.1% specificity and 70.4% accuracy at the ROI

level on the cross-validation set, and 68.2% sensitivity, 65.4% specificity and 66.6% accuracy

on the independent test set. Compared to other state-of-the-art algorithms, our approach

selects a smaller feature subset, has higher prediction accuracy and achieves more balanced

classification. As a conclusion, we validated the proposed QPSO hybridized random forest

algorithm with a much larger set and showed that the algorithm stably achieves superior

prediction performance.

In summary, our proposed algorithm works well for our data set in that it outperforms

other methods by giving higher accuracy, higher and more balanced sensitivity and specificity,

with a smaller number of selected features. The ROI-based prediction provides insights

beyond disease extent and visual parenchymal patterns of IPF.
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4.5 Prediction at the whole lung level

We consider an expansion of the current algorithm from the ROI level to the whole lung

level, which is a typical practice for interstitial lung disease. The prediction in whole lung

eliminates the bias of ROI contouring and makes the prediction robust. The expansion could

be automated in the prediction process within a boundary of a segmented lung. Research

has shown that quantitative scores that are summated for the whole lung correlates with

PFT results, and is related to extent and severity of interstitial lung disease [TVT16].

To ensure that we extract robust texture features from images with different acquisi-

tion protocols, we apply a denoising technique [KLG08] on baseline HRCT images before

extracting the texture features. Further, as a quality control, we removed subjects who 1)

have post-contrast images in their baseline or follow-up visits; 2) have incomplete lung seg-

mentation; or 3) have their two visits fall outside 5 - 13 months window. We extract features

using a grid sampling procedure composed of 4mm-by-4mm voxel squares to assure complete

coverage. From each grid, one voxel was selected. We computed 52 denoised texture features

for each selected grid voxel.

We retrospectively collected anonymized longitudinal HRCT images of 193 IPF subjects

from multiple clinical trials. Such images were collected for IPF diagnosis purposes. ROIs

of 71 subjects were annotated and used to build the classifier, and 122 subjects were used

to test the baseline metric generated by the classifier at the whole lung level. In total, the

71 subjects contributed 434 annotated ROIs, including 193 (44.5%) progression ROIs and

241 (55.5%) non-progression ROIs. Each subject contributed 3-16 ROIs. Among the 434

ROIs, 149 (34%) are from the upper lung, 185 (43%) are from the middle lung, and 100

(23%) are from the lower lung. 423 ROIs (97%) lie wholly or partially on the peripheral of

the lung, which is consistent with the nature of the disease. This cohort has a mean age

of 70.0 (SD ±7.5), 73% male/27% female, with the percent predictive FVC of 67.8% (SD

±12.3%). The baseline quantitative lung fibrosis (QLF) score is 15.4% (SD ±8.7). QLF is

a classifier-model-derived score and is a measure of IPF disease extent [KBC15].
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Using a prediction model from the feature selection and classification in the training

set, we generate a summary metric called Single-scan Total Probability (STP) for each

subject. In detail, there are 4 steps of obtaining a STP metric: (1) extract texture features

selected by QPSO from denoised HRCT images; (2) run random forest classifier, which was

developed using the radiologist’s assessment as the ground truth; (3) record the number of

progression voxels predicted by the classifier and total number of voxels per each slide; (4)

sum the number of progression voxels and total number of voxels across slides and calculate

the metric using the former divided by the latter. STP is a metric that only uses the

information from baseline imaging (i.e. a single time point), and we showed that STP is

statistically significantly associated with the 6-12 months follow-up changes of quantitative

lung fibrosis (QLF) score. Figure 4.3 is flow chart of STP generation.
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Figure 4.3: The flowchart of the whole lung expansion of the QPSO-RF algorithm.

There are different variations that we could add to the selected feature subset or to the

classifier. Below we discuss three ways of generating such a summation metric: (1) using

texture features alone, (2) adding axial distribution information, and (3) adding craniocaudal

distribution information.
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4.5.1 Robust classifier using textural information

As a first step, we consider building a classifier using only textural information. ROIs from

80% subjects were used as cross-validation training set to choose hyper-parameters for the

random forest under each selected feature subset, and the random forest with the selected

best parameter was then tested on the data for the rest 20% subjects to evaluate how well

the selected feature subset is. The global best solution at the last iteration of QPSO was

chosen as the best feature subset. QPSO-RF algorithm were run for 100 iterations, and at

the last step, 27 features were selected for the best classifier. The parameters of random

forest selected in the cross validation process were: the sub-sample rate of the data was

50%, the sub-sample rate of the variables was 100%, and the maximum tree depth was 33.

The voxel level sensitivity is 82.1%, specificity is 65.1% and overall accuracy is 73.1%. After

locking the model, we applied the classifier trained at the ROI level to the voxels extracted

from whole lungs.

Below we examine two sample subjects’ visualizations in detail. The first subject has an

increased QLF of 23.5% from baseline to a 7-month follow-up, and has experienced more

than 10% drop of FVC percent predicted value. Figure b in figure 4.4 is a visualization of

this subject’s upper lung change, and figure c in figure 4.4 is a level plot visualization of the

same case on the same slide. We can generate such a level plot because we used a logistic link

in our random forest classifier and has raw values for the predicted probabilities. We observe

from figure 4.4 that peripheral voxels tend to be more progressive, which is consistent with

the nature of the disease. We observe from figure b that our prediction model is able to pick

up many progressive voxels in its exact locations.
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Figure 4.4: Generation of baseline Single-scan Total Probability (STP) for a sample subject.

The subject has a QLF of 22% at baseline and 45.5% in a 7-month followup. Figure a.

Baseline HRCT; b. Dichotomized classification of STP of figure a (green dots = stable

voxels, red dots = progressive voxels, with 0.5 probability cutoff), the STP is 42.6% on this

slide; c. STP result of figure a; d. 7-month follow-up HRCT showing progression.

Below is a sample slide showing our classifier is also able to predict the signs of stabi-

lization. This subject has no QLF change in the follow-up scan, and has not experienced

over 10% drop in FVC. Figure 4.5 shows that the majority of voxels were able to pick up

the non-progression signals.
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Figure 4.5: Generation of baseline Single-scan Total Probability (STP) for a sample subject.

The subject has a QLF of 4% at baseline and 4% in a 12-month follow-up. Figure a. Baseline

HRCT; b. Dichotomized classification of STP of figure a (green dots = stable voxels, red

dots = progressive voxels, with 0.5 probability cutoff), the STP is 8.7% on this slide; c. STP

result of figure a; d. 12-month follow-up HRCT showing progression.

We use a Cox regression model to determine whether the baseline metric STP is associated

with the follow-up changes in population. We consider two types of outcomes, an imaging

based outcome using quantitative lung fibrosis (QLF) score, and pulmonary function test

based outcome using percentage predicted forced vital capacity (FVC). For the former, the

event “progression” is defined by 4% increment or more of QLF score in the follow-up scan.

The mean of imaging based progression free survival is 7.6 months (SE ± 0.2 months).

The PFT based event was defined as 10% or more drop in percentage predicted FVC. PFT

were typically performed as needed, so the duration might fall beyond the 5-13 months time

window. The mean of PFT based progression free survival is 8.0 months (SE ± 0.4 months).

The agreement between PFT and imaging based outcomes was poor with a kappa of 0.0823.

This might be attributed to the fact that QLF based imaging changes are more sensitive in
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picking up early progressive signals, and may precede a future decrease of FVC [KWBon].

Table 4.5: The agreement between the imaging based outcomes and PFT based outcomes.

PFT progression
Total

0 1

QLF

progression

0 68 11 79

1 31 6 37

Total 99 17 116

In the statistical analysis, we observe that STP was well correlated with the QLF changes

in the follow-up scan. Higher STP is associated with higher risk of progression in a univariate

analysis (hazard ratio=1.03; p = 0.027), and in a multivariate analysis after adjusting sub-

jects’ age and gender (hazard ratio=1.04; p = 0.041). We do not observe statistically signif-

icant trend using PFT based outcome, the percent predicted forced vital capacity (FVCpp),

(hazard ratio=0.97, p=0.30 for univariate analysis; hazard ratio=1.00, p=0.99 for multivari-

ate analysis adjusting for gender and age). Table 4.6 summarizes Cox regression results using

imaging-based QLF change as the event outcome and FVC change as the event outcome.
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Table 4.6: Summary of survival analysis results and baseline STP by the progression status

in the follow-up.

STP

Imaging

outcome

Mean (± SE)

∆ QLF > 4 40.0 (± 1.8)

∆ QLF ≤ 4 35.4 (± 1.2)

Total 36.8 (± 1.0)

Univariate hazard ratio (p-value) 1.03 (p=0.027*)

Dichotomized #subjects (%)

> 40% 44 (36%)

≤ 40% 78 (64%)

logrank test p=0.020*

Multivariate hazard ratio (p-value) 1.04 (p=0.041*)

PFT

outcome

Mean (± SE)

∆ FVCpp ≤ -10 36.7 (± 2.0)

∆ FVCpp > -10 37.8 (± 1.1)

Total 37.6 (± 1.0)

Univariate hazard ratio (p-value) 0.97 (p=0.30)

Dichotomized logrank test p=0.536

Multivariate hazard ratio (p-value) 1.00 (p=0.99)

We observe that the STP is well correlated with imaging based progression. The STP

is higher in progression group, is statistically significant in univariate and multivariate Cox

regression results, and a log-rank test using STP cutoff at 40% show statistically significance.

Using a STP cutoff at 40%, we plot the Kaplan-Meier curve using imaging based outcome

as figure 4.6. It is clear that having a STP over 40% is a risk factor that leads to shorter

progression free survival.
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Figure 4.6: Kaplan-Meier curve for the STP cutoff at 40%. The event is defined by QLF

score increase by 4% from baseline to follow-up.

We do not observe the same trend when using FVC percentage predicted values as out-

comes. The STP is not statistically significant in either univariate or multivariate Cox

regression results. When using STP cutoff at 40%, a log-rank test does not show statisti-

cally significance. We plot the Kaplan-Meier curve using FVC based outcome as figure 4.7.

The curve does not separate well for subjects with and without a STP over 40%.
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Figure 4.7: Kaplan-Meier curve for the STP cutoff at 40%. The event is defined by FVC

percentage predicted values drop by over 10% from baseline to follow-up.

We further considered the refined predicted probabilities at subject level. Since we used

a logistic link function, we have the original predicted values before dichotomizing the raw

values into binary classes. We consider four ranges in the raw values: (i) 0 ≤ P ≤ 0.25; (ii)

0.25 < P ≤ 0.5; (iii) 0.5 < P ≤ 0.75; (iv) 0.75 < P ≤ 1. For each subject, we sum up the

number of voxels that fall in these four ranges, and calculate the percentages of voxels of the

four ranges for each subject. By construction, the four percentages sum up to 1.

Figure 4.8 are scatter plots of the baseline QLF against the four probability ranges at

the subject level. The 122 subjects in the test set were used in this analysis. We observe

clearly that the range 0 ≤ P ≤ 0.25 negatively correlates with the baseline QLF the most,

with a R2 of 0.46. This suggests that the low STP is correlated with a low baseline disease

severity. On the other hand, the range 0.5 < P ≤ 0.75 positively correlates with the baseline

QLF the most, with a R2 of 0.59. This suggests that the high STP is correlated with a high

baseline disease severity. This provides the connection of STP and baseline QLF.
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Figure 4.8: Baseline QLF against decomposed percentages of STP: [0, 25%], (25%, 50%],

(50%, 75%], and (75, 100%] .

Overall, higher STPs are associated with higher baseline QLF. There is also a positive

correlation trend in the QLF change and the STP. Figure 4.9 shows visualizations of baseline

and delta QLF against STP.
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Figure 4.9: Baseline QLF against STP (left) and change in QLF between two visits against

STP (right).

A statistical analysis using Cox regression models suggests the same trend we observe

in figure 4.8: the range 0 ≤ P ≤ 0.25 and 0.5 < P ≤ 0.75 seem to be the most relevant

probability ranges in predicting the disease progression. Table 4.7 summarizes the Cox

regression analysis results. The higher the percentage of 0 ≤ P ≤ 0.25 in STP, the lower

the hazard of getting progressed; the higher the percentage of 0.5 ≤ P ≤ 0.75 in STP, the

higher the hazard of getting progressed.

Table 4.7: Cox regression of decomposed percentages, using imaging outcomes. Reported

results include hazard ratios (standard error) and p-values of univariate and multivariate cox

regression analyses.

0≤ P ≤0.25 0.25< P ≤0.5 0.5< P ≤0.75 0.75< P ≤1

Univariate
HR (SE) 0.97 (0.02) 1.04 (0.07) 1.08 (0.04) 1.04 (0.02)

p-value (0.049*) (0.610) (0.036*) (0.083)

Multivariate

(age, gender)

HR (SE) 0.97 (0.02) 1.03 (0.08) 1.08 (0.05) 1.05 (0.03)

p-value (0.078) (0.718) (0.078) (0.076)

What’s important about this prediction model is that it provides insights beyond the

baseline disease severity. While the disease extent at baseline is an important factor in

the disease natural history, this model seems to capture signals other than severity as well.
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Specifically, we list two example cases to demonstrate this point. One example case has

high disease severity at baseline (high QLF score at baseline), but is a non-progression case;

this case has a baseline QLF of 42%, and a 6.4 months follow-up HRCT image has a QLF

of 44%. The increase does not exceed 4% and is thus a non-progression case. The STP is

35.8%, suggesting progression is unlikely. Figure 4.10 is a visualization of a sample slide of

this case.

Figure 4.10: A sample case that experienced no progression but has high baseline QLF score.

QLF at baseline is 42%, follow-up QLF is 44%, STP is 35.8%.

Another example case has low disease severity at baseline (low QLF score at baseline),

but is a progression case; this case has a baseline QLF of 12.6%, and a 6.9 months follow-up

HRCT image has a QLF of 17.3%. Since there is a more than 4% increase in QLF, this case

is a progression case. The STP is 59.3%, suggesting progression is likely. Figure 4.11 is a

visualization of a sample slide of this case.
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Figure 4.11: A sample case that experienced progression but has low baseline QLF score.

QLF at baseline is 12.6%, follow-up QLF is 17.3%, STP is 59.3%.

We also show two cases that were mis-classified. The first example case has experienced

progression but has a low whole lung STP of 29.4%. QLF at baseline is 13%, a 12-month

follow-up QLF is 19%. The FVC percentage predicted value dropped from 75.2% at baseline

to 60.7% at follow-up. Figure 4.13 is a visualization of 5 sample slides from different locations

of the lung for this case. This subjects has 320 slides in total, and the selected slides are slide

73, 122, 172, 221 and 271. We observe that not enough voxels were classified as progression

for this case, leading to a mis-classification. This is especially the case for the upper and

middle lungs.
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Figure 4.12: A sample case that experienced progression but has less than 40% STP. QLF

at baseline is 13%, follow-up QLF is 19%, STP is 29.4%.

Another mis-classification example concerns a sample subject that did not experience

progression but has a high whole lung level STP of 49.3%. The baseline QLF is 18%, and

a 5-month follow-up had QLF of 18%. The FVC percentage predicted value increased from

70.3% to 74%. Figure 4.13 is a visualization of 5 sample slides from different locations of the

lung for this case. This subjects has 259 slides in total, and the selected slides are slide 62,

101, 141, 180 and 220. We observe that STP was too sensitive and over-calls progression,

leading to a mis-classification. This is especially the case for the lower lung.
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Figure 4.13: A sample case that did not experience progression but has higher than 40%

STP. QLF at baseline is 18%, follow-up QLF is 18%, STP is 49.3%.

In summary, the STP model is able to capture insights beyond the baseline disease

severity because we implemented a study design that made it possible to provide a training

sample that considered a variety of different scenarios of progressive patterns of ROIs. The

non-progression ROIs in the training sample captures not only the normal lung patterns that

stayed stable from baseline to follow-up, but also ground glass and fibrotic patterns that did

not show worsening signs in the follow-up images. On the other hand, the progression ROIs

in the training sample not only captures ROIs that got worse from gound glass or fibrotic

patterns at baseline, but also those from normal at baseline and developed ground glass or

fibrotic patterns at follow-up visits. Also, the even craniocaudal distribution of ROIs in the

training sample also contributes to the stable prediction across different slides. The concern

remains for the uneven axial distribution of ROIs, but this might be attributed to the nature

of the disease.

In detail, table 4.8 summarizes the craniocaudal distributions of ROIs in the training

sample. There are seven sub-types of ROIs in our training sample:

(i) expected better normal lung (eBNL) are regions in baseline that improve and become

normal lung in follow-up. For example, a ROI that has ground glass in baseline and goes to
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normal lung in follow-up.

(ii) expected better ground glass (eBGG) are regions in baseline that improve, and end up

as ground glass in follow-up. For example, a ROI that has worse ground glass in baseline

becomes improved ground glass in follow-up, OR lung fibrosis in baseline becomes ground

glass in follow-up.

(iii) expected stable normal lung (eStNL) are normal lung in both follow-up and baseline.

(iv) expected stable ground glass (eStGG) are ground glass regions in baseline that are stable

in the follow-up. Importantly, delineated region must contain voxels that are visually the

same in follow-up.

(v) expected stable lung fibrosis (eStLF) are regions in baseline expected to be stable lung

fibrosis in follow-up. Again, every voxel within region must contain voxels that are visually

the same in follow-up.

(vi) expected progressive ground glass (ePrGG) are regions in baseline get worse, and end

up as ground glass in the follow-up. For example, ground glass in baseline gets worse, and

becomes worsened ground glass in follow-up, OR normal lung in baseline goes to ground

glass in follow-up.

(vii) expected progressive lung fibrosis (ePrLF) are regions in baseline that get worse, and

end up as lung fibrosis. For example, ground glass in baseline becomes lung fibrosis in follow-

up, OR normal lung becomes lung fibrosis, OR lung fibrosis in baseline becomes even worse

lung fibrosis in follow-up.

123



Table 4.8: The distribution of different ROI types in the training sample.

ROI type Upper Lung Middle Lung Lower Lung Total

eBNL 0 2 1 3

eBGG 3 1 5 9

eStNL 37 21 21 79

eStGG 31 39 19 89

eStLF 22 27 22 71

ePrGG 14 31 12 57

ePrLF 42 64 30 136

Total 149 185 100 434

4.5.2 Classifier with axial distribution information

In this section, we consider a classifier that takes advantage of axial distribution information.

In each slides, we could classify voxels into two groups: voxels located within the 1cm radius

of circle from the peripheral lesions, and voxels located outside of the 1cm radius of circle

from the peripheral lesions. We create a variable named “outer2cm” and refer to peripheral

voxels as “outer2cm=1” and other voxels as “outer2cm=0”. Figure 4.14 is a visualization of

the axial distribution in a sample slide.
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Figure 4.14: An example slide to show axial distribution information. Grey dots represent

voxels located within the 1cm radius of circle from the peripheral lesions and black dots

represent voxels located outside of the 1cm radius of circle from the peripheral lesions.

We combine the classifier we built using only textural information with the outer2cm

variable. After we generate the prediction STPs, we re-weight the classification results

using axial distribution information with three different weights combinations. The first re-

weighting scheme, referred to as “RWT I”, down-weights the peripheral voxels in the middle

lung by 90% and voxels in the lower lung by 80%; namely, we multiply 90% on the voxels if

they are in the middle lung and have “outer2cm”=1, and multiply 80% on the voxels if they

are in the lower lung and have “outer2cm”=1. The second re-weighting scheme, referred

to as “RWT II”, down-weights the peripheral voxels in the middle lung by 60% and lower

lung by 50%. The third re-weighting scheme, referred to as “RWT III”, over-weights the

peripheral voxels by multiplying 60% on voxels in the middle lung and have “outer2cm”=1,

multiplying 40% on voxels in the middle lung and have “outer2cm”=0, and multiplying

50% to voxels in the lower lung. Table 4.9 summarizes the descriptive statistics and Cox

regression outcomes of re-weighted STPs.
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Table 4.9: Reweighted single-scan total probability summary table.

RWT I RWT II RWT III

Imaging

outcome

Mean

(± SE)

∆ QLF>4 39.5 (± 1.8) 38.2 (± 1.8) 38.9 (± 1.8)

∆QLF≤4 34.9 (± 1.2) 33.4 (± 1.2) 34.2 (± 1.2)

Total 36.3 (± 1.0) 34.9 (± 1.0) 35.7 (± 1.0)

Univariate HR (p-value) 1.04 (p=0.02*) 1.04 (p=0.02*) 1.04 (p=0.02*)

Dichotomized

#subjects (%)

> 40% 41 (33%) 38 (31%) 38 (31%)

≤ 40% 81 (67%) 84 (69%) 84 (69%)

logrank test p=0.04* p=0.02* p=0.02*

Multivariate HR (p-value) 1.04 (p=0.04*) 1.04 (p=0.03*) 1.04 (p=0.03*)

PFT

outcome

Mean

(± SE)

∆FVC≤-10 36.1 (± 2.0) 34.3 (± 2.0) 35.4 (± 2.0)

∆FVC>-10 37.3 (± 1.1) 35.9 (± 1.1) 36.6 (± 1.1)

Total 37.1 (± 1.0) 35.7 (± 1.0) 36.4 (± 1.0)

Univariate HR (p-value) 0.97 (p=0.30) 0.97 (p=0.32) 0.97 (p=0.30)

Dichotomized logrank test p=0.57 p=0.57 p=0.57

Multivariate HR (p-value) 1.00 (p=0.97) 1.00 (p=0.94) 1.00 (p=0.93)

We observe that all the conclusions in section 4.5.1 hold in the reweighted STP analysis.

In the univariate analysis using ∆QLF ≥ 4 as the event, the hazard ratios are all beyond

1 and statistically significant. The multivariate analysis adjusting for age and gender also

shows statistically significant hazard ratios beyond 1. We do not observe similar trends when

using PFT-based events.

It seems that the weights do not have strong impact on the outcome. We thus conclude

that the classifier using textural information is robust when incorporating axial distribution

information.
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4.5.3 Classifier with axial and craniocaudal distribution information

Since we are dealing with a series of slides, we could also leverage the information of cranio-

caudal distribution. Adding the z-axis distributions of the annotated ROIs into the feature

selection process, we were able to obtain a feature subset that contains craniocaudal distri-

bution information.

We standardize the craniocaudal distribution information for each subject using (slide

number - first slide number)/(last slide number - first slide number). We re-selected a feature

subset from 54 features (52 texture features for feature selection + craniocaudal variable +

axial variable). QPSO-RF were run for 100 iterations, and at the last iteration, the best

fit error rate was 25.0%, with 19 feature selected, including the axial and craniocaudal

distribution variables.

While the Cox regression at population level showed significant association (hazard ra-

tio=1.04, p=0.02 for univariate analysis; hazard ratio=1.07, p=0.02 for multivariate analysis

adjusting for gender and age), the visual examination of the sample slides show that the over-

arching dominance of the craniocaudal distribution variable in the classifier leads to unstable

prediction. We lose the generalizability at different locations in the lungs using this retrained

classifier. Specifically, it over calls prediction in lower lungs, and under calls prediction in

upper lungs. We thus conclude that the classification model is not robust when adding

craniocaudal distribution information.

We conclude that the QPSO-random forest algorithm is stably effective in prediction

when expanding to the whole lung level. A baseline STP metric from a model-driven per-

centage of progression is shown to be useful. This baseline metric can be explored further

for predicting the clinical progression or the QLF changes in the follow-up HRCT scans.
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CHAPTER 5

Discussion and conclusions

In this work, we proposed to use PSO as an efficient optimization algorithm coupled with

different techniques for finding efficient designs and for predicting progression of IPF disease.

The algorithm makes it possible to explore the design space or feature space more thoroughly.

In particular, it finds optimal or highly efficient designs that were previously deemed to be

intractable and also helps to generate a robust outcome from an algorithmic approach that

predicts the IPF follow-up status of progression or not.

We note that there is no guarantee that PSO always outperforms other optimization

algorithms. As the famous “no free lunch theorem” [WM97] suggests, there is no optimization

algorithm that universally works better than all the other algorithms for all problems. The

“best” algorithm should be discussed on a case-by-case basis. For project I, we note that there

is no tool to confirm optimality of exact designs. Further, for high dimensional problems, we

could only let PSO run so many iterations because of computational budget, and may not

be able to find designs with the best efficiency. However, in our problems of finding optimal

designs for biomedical studies, and the feature selection and classification problem in IPF

prediction, PSO is able to provide high quality solutions.

Since PSO was proposed, there are many enhanced versions that provide various improve-

ments for the basic PSO. Directions for future work include using one of these algorithms or

a hybridized algorithm, that incorporates the best features of one or more algorithms into

one and making the algorithm robust to a variety of mis-specifications in the model, prior

distributions, and design criteria.

One potential issue in constructing high-dimensional or pseudo-Bayesian designs is that

the computational time will increase when the model becomes large and the number of the
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design points increases. Parallel computing techniques can be applied to accelerate the com-

putations. [HW12] proposed a GPU-accelerated PSO (GPSO) algorithm by using a thread

pool model and implemented GPSO on a Graphic Processing Unit (GPU). The authors

demonstrated that the proposed GPSO can significantly reduce the computational burden

with satisfactory parallel efficiency. Likewise, [CHH13] proposed a discrete PSO approach,

named LaPSO, to search for an optimal Latin hypercube design. The authors accelerated

LaPSO by using GPU and showed that the GPU implementation can save computational

time significantly for large optimization problems. We expect that the programs in this

article can also be accelerated on parallel computers such as GPU. The parallelization will

likely produce computing tools with faster response time and better user experience.

There are continuing challenging problems in our work. For project I, we do not claim

we are able to find all types of optimal designs in a regression setup using the types of

algorithms we proposed here. We point out a few of these problems: (i) we have experiences

with metaheuristic algorithms that work well for some nominal values for a model but not

for other nominal values; similarly, the same algorithm may not work well when the design

space is changed, and especially when it is enlarged. These are likely scaling problems

that we can address and understand later on. (ii) Confirming optimality of a generated

design can be challenging because sometimes the verification is carried out graphically and

it is difficult to appreciate interesting features in a high dimensional plot. An alternative

is to find an efficiency lower bound, which amounts to solving another high-dimensional

optimization problem to find the maximal value of the sensitivity function. This means

that the metaheuristic algorithm has to be applied twice or find another more appropriate

metaheuristic algorithm to solve this second optimization problem.

For project II, there are several limitations of the study. Firstly, we used a retrospec-

tively collected data set and it remains a question whether the model can be applied to

a prospective setting. Secondly, the training of the model is limited to the classical rep-

resentation of small ROIs. Thirdly, the reference of gold standard was based on a single

reader’s visual assessment. This is mainly due to the time and budget constraints. Analyti-

cal and clinical validations are warranted in future to evaluate a predictive biomarker and to
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test the generalizability of algorithm in practice. Further, we only compared our algorithm

to selected popular methods, with parameters reported as best practices in the literature.

There are possibly better implementations of comparator methods, or other methods that

are also suitable for our problem. Lastly, we do not observe a signal in the progression in

FVC percentage predicted values, and this might be attributed to the study design to collect

the PFT data. Currently, the PFT data was only collected when the subjects: (1) have a

baseline and follow-up HRCT images; and (2) have PFT information close to the CT date.

This study design did not collect the PFT information from subjects who dropped out at an

early stage, and also missed PFT information that was collected in dates far from CT dates.

Some lost information could not be recovered, and it is unclear whether the imaging based

predictor could anticipate PFT changes.

In conclusion, our main contributions in this paper are 1) use PSO coupled with sparse

grid to find efficient designs for non-linear mixed effects models; and 2) implement a novel

study design, and use PSO coupled with random forest to build a model for IPF disease

prediction using high dimensional CT images. These are challenging tasks with solutions

largely unavailable before.

We close with several cautionary notes: (i) an optimal design should not be used reli-

giously but should serve as a guide or benchmark. This is because the optimal design is

found under a fixed set of assumptions that may not adequately reflect reality and so may

not satisfy the needs of the practitioners. Different optimal designs under various settings

should be compared carefully before the design is implemented. The guiding principle is

that the implemented design should not stray too far from the optimum as measured by its

efficiency relative to the optimum. (ii) The disease prediction model has not been validated

prospectively and is only at the exploratory stage. While validating a biomarker takes years

with prospective clinical evaluation, we hope that our model is a useful starting point for

future model development.
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“politically robust” experimental design for public policy evaluation, with appli-
cation to the Mexican universal health insurance program.” Journal of Policy
Analysis and Management, 26(3):479–506, 2007.

[KJ97] Ron Kohavi and George H John. “Wrappers for feature subset selection.” Arti-
ficial intelligence, 97(1-2):273–324, 1997.
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based analysis of longitudinal clinical data. Presented at PODE meeting, June
20, Uppsala, Sweden.” 2016.

[LWJ12] Yaolin Liu, Hua Wang, Yingli Ji, Zhongqiu Liu, and Xiang Zhao. “Land use
zoning at the county level based on a multi-objective particle swarm optimiza-
tion algorithm: A case study from Yicheng, China.” International journal of
environmental research and public health, 9(8):2801–2826, 2012.

139



[LWV14] AV Lebedev, Eric Westman, GJP Van Westen, MG Kramberger, Arvid Lun-
dervold, Dag Aarsland, H Soininen, I K loszewska, P Mecocci, M Tsolaki, et al.
“Random Forest ensembles for detection and prediction of Alzheimer’s disease
with a good between-cohort robustness.” NeuroImage: Clinical, 6:115–125, 2014.

[LY05] Huan Liu and Lei Yu. “Toward integrating feature selection algorithms for classi-
fication and clustering.” IEEE Transactions on knowledge and data engineering,
17(4):491–502, 2005.

[LY12] Min-Shyang Leu and Ming-Feng Yeh. “Grey particle swarm optimization.” Ap-
plied Soft Computing, 12(9):2985–2996, 2012.

[May88] Ernst Mayr. Toward a new philosophy of biology: Observations of an evolutionist.
Number 211. Harvard University Press, 1988.
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