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ORIGINAL RESEARCH
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ABSTRACT
Tumor-resident immune cells play a crucial role in eliciting anti-tumor immunity and immunomodulatory drug 
responses, yet these functions have been difficult to study without tractable models of the tumor immune 
microenvironment (TIME). Patient-derived ex vivo models contain authentic resident immune cells and there-
fore, could provide new mechanistic insights into how the TIME responds to tumor or immune cell-directed 
therapies. Here, we assessed the reproducibility and robustness of immunomodulatory drug responses across 
two different ex vivo models of breast cancer TIME and one of renal cell carcinoma. These independently 
developed TIME models were treated with a panel of clinically relevant immunomodulators, revealing remark-
ably similar changes in gene expression and cytokine profiles among the three models in response to T cell 
activation and STING-agonism, while still preserving individual patient-specific response patterns. Moreover, we 
found two common core signatures of adaptive or innate immune responses present across all three models 
and both types of cancer, potentially serving as benchmarks for drug-induced immune activation in ex vivo 
models of the TIME. The robust reproducibility of immunomodulatory drug responses observed across diverse 
ex vivo models of the TIME underscores the significance of human patient-derived models in elucidating the 
complexities of anti-tumor immunity and therapeutic interventions.
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Introduction

The field of immuno-oncology has revolutionized cancer care. 
Nevertheless, the effectiveness of immunotherapies on solid 
tumors has been notably modest, a phenomenon largely attributed 
to the complex interplay between tumor cells and immune- 
modulating factors within the tumor immune microenvironment 
(TIME).1 A comprehensive examination of the tumor resident 
immune landscape, both pre-and post-immunotherapeutic inter-
ventions, has yielded insights into underlying factors contributing 
to the unresponsiveness of certain cancer types to 
immunotherapies.2 This increasing understanding of the TIME 
holds immense promise for advancing the frontiers of solid tumor 
immunity.

Solid tumor types such as breast cancer (BC) and renal cell 
carcinoma (RCC) exhibit distinct TIMEs that influence their 
responses to immunotherapies. BC often develops an immu-
nosuppressive tumor microenvironment characterized by ele-
vated levels of regulatory T cells and myeloid-derived 
suppressor cells,3,4 which can reduce the effectiveness of 
immune checkpoint inhibitors like programmed cell-death 1 
and its ligand (PD-1/PD-L1).5 In contrast, RCC is typically 
more immunogenic and responds better to these therapies.4 

To enhance the immunogenicity of solid tumors, strategies 
targeting immunosuppressive innate immune cells, such as 
tumor-associated macrophages, are gaining significant 
attention.6 Another promising approach involves directly
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stimulating antigen-presenting cells (APCs) to prime CD8+ 
T cells for targeting tumor antigens, ultimately promoting 
both localized and systemic antitumor responses. One example 
is the direct activation of the stimulator of interferon genes 
(STING) pathway in APCs, which induces type I interferons 
and proinflammatory cytokines.7,8 The success of immu-
notherapy relies on the intricate and variable nature of the 
TIME, underscoring the necessity of evaluating it to guide 
personalized treatment selection and effectively stratify 
patients.

Several patient-derived ex vivo models have been developed 
in pursuit of uncovering resident immune cell interactions 
within the TIME.2,9–11 However, uncertainty remains regard-
ing the optimization of ex vivo models for immuno-oncology 
research. On one hand, it is crucial to mimic the natural tumor 
tissue characteristics to understand interactions that occur 
under physiological conditions and tumor architecture.12 

However, creating more physiological models embedded in 
stiff materials and microfluidics devices, for example, may be 
prohibitively costly, or limit downstream applications. On the 
other hand, disregarding physiological conditions may induce 
artificial results and unwanted effects like immune cell efflux in 
the absence of added extracellular matrix.

To investigate how various culture techniques influence the 
response of resident immune cells to immunomodulation, we 
developed distinct ex vivo patient-derived explant culture 
(PDEC) models of breast cancer (BC) and renal cell carcinoma 
(RCC) independently in three different research groups. These 
models of breast and renal cell cancer-associated TIME repre-
sented increasing layers of processing defined as the manipula-
tion of original tumor architecture and the addition of 
chemical cues. We used gene expression profiling and cytokine 
analyses to dissect the responses of immunotherapies targeting 
adaptive and innate immune cells. Our study demonstrates 
consistent patterns of immune activation across diverse ex 
vivo models of the TIME, revealing shared core signatures of 
adaptive and innate responses to immunomodulatory drugs, 
irrespective of the specific model or cancer type.

Materials and methods

Isolation of biological material and patient-derived 
models

PDEC”BC1” minimal manipulation; intact tissue architecture
Tumor tissue samples were collected in RPMI medium (Gibco) 
from treatment-naïve patients with breast cancer undergoing 
mastectomy surgery at the Turku University Hospital from 
Jan 2021 to Aug 2021. Written informed consent was obtained 
from each participant and the study was conducted under the 
approval of The Ethics Committee of the Hospital District of 
Southwest Finland (decision number: ETMK 132/2016) and in 
accordance with the ethical principles of the declaration of 
Helsinki.

Fresh tumor tissues were cut into small pieces with a scalpel 
to a diameter of <2 mm and frozen in RPMI (Sigma, cat. 
R5886) + 10% FCS + 1% GlutaMAX + penicillin-streptomycin 
(P/S, 12.8 U/mL, Gibco, cat.15140–122) supplemented with 
10% DMSO at −150°C. The frozen tissue pieces were thawed 

in a 37°C water bath and pelleted by centrifugation at 300g for 
10 min at 10°C. The pieces were further cut (Æ <1.5 mm) and 
transferred on a 96-well low-attachment plate (Corning, 
cat.7007) for ex vivo treatment. The treatments were performed 
in quadruplicates in 200 μL of RPMI + 10% FCS + 1% 
GlutaMAX + P/S and three tissue pieces per well.

PDEC “BC2” moderate manipulation; partial dissociation 
and embedding
Fresh tissue was obtained from the treatment-naïve elective 
breast cancer surgeries performed at the Helsinki University 
Central Hospital from 2020–2023 (Ethical permit: 243/13/03/ 
02/2013/TMK02 157 and HUS/2697/2019 approved by the 
Helsinki University Hospital Ethical Committee), and in 
accordance with the ethical principles of the declaration of 
Helsinki. Patients participated in the study by signing 
a written informed consent form. As previously reported,11 

explants were made by incubating fresh primary tumor tissue 
overnight in collagenase A (3 mg/mL; Sigma) in MammoCult 
media (StemCell technologies) supplemented with mammo-
cult proliferation supplement (StemCell technologies) with 
gentle shaking (130 rpm) at 37°C. The resulting tissue frag-
ments were washed once with 1×PBS by centrifugation at 
353g for 5 min. The fragments were resuspended in Cultrex 
Reduced Growth Factor Basement Membrane Extract, Type 2 
(R&D Systems), and 37.5 μL of matrix/fragment mixture was 
pipetted in the center of each well of an 8-chamber slide 
(Thermo Scientific). After matrix solidification (30 min), 
500 μL of supplemented MammoCult media was pipetted on 
top of each well.

PDEC “RCC” high manipulation; single cell dissociation, 
embedding, and media supplementation
Renal cell carcinoma tumor tissue was obtained from treat-
ment-naïve patients undergoing radical or partial nephrect-
omy at the HUS Helsinki University Hospital. Studies were 
approved by the Helsinki University Hospital Ethical 
Committee (Dnro 115/13/03/02/15) and in accordance with 
the ethical principles of the declaration of Helsinki. Samples 
were obtained upon written informed consent. Tissues were 
preserved in MACS® tissue storage solution during transpor-
tation to the laboratory. Upon arrival, tumor tissue was 
dissociated using Miltenyi’s Tumor Dissociation kit 
(Miltenyi Biotec), and dissociated cells were live-frozen in 
10% DMSO-FBS and stored at −150°C until use. Frozen 
tumor dissociates were thawed in AIM-V media, resus-
pended in Cultrex 3D Culture Matrix BME (Trevigen), and 
35 μL of matrix/cell suspension per treatment was applied on 
8-well chamber slides (Lab-Tek). Following matrix solidifi-
cation (20 min, +37 degrees), 400 μL of AIM-V media sup-
plemented with recombinant FGF (100 ng/mL), EGF (50 ng/ 
mL), IL-2 (60 IU/mL), sodium pyruvate (10 mm), B-27 
(1.5%), and r-spondin (50 ng/mL) was pipetted on top.

Drug treatments

Before experimentation, all drugs were aliquoted and distrib-
uted to ensure that each research group had access to the exact 
same lots. Each drug was aliquoted to minimize freezing/
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thawing cycles. The explants were either left untreated or 
treated with 25 μL/mL Immunocult (Stemcell, cat.10970), 
10 μM ADU-S100 (MedChemExpress, cat. HY-12885), 50 μg/ 
mL pembrolizumab (MedChemExpress, cat. HY-P9902A), 
10 μg/mL magrolimab (Icosagen, clone 5F9) or 50 μg/mL pem-
brolizumab and 10 μg/mL magrolimab (combo). Drugs were 
added to the explant cultures immediately upon processing. 
After 48 h of ex vivo treatment at 37°C and 5% CO2, cell culture 
supernatants were collected into fresh tubes and frozen at 
−70°C until analysis, while tissue fragments and cells were 
collected as described below in “nanostring gene expression 
profiling.”

Nanostring gene expression profiling

BC1 tissue pieces from replicate wells were collected in 1  
mL of TRIsure (BioLine, cat. BIO-38032) and homogenized 
in gentleMACS M tubes (Miltenyi Biotec, cat. 130-093-236) 
using gentleMACS dissociator (Miltenyi Biotec, cat. 130- 
093-235) with program RNA.01_01. RNA was extracted 
according to the manufacturer’s protocol for TRIsure. 
Shortly, the samples were mixed with 200 μL chloroform 
and centrifuged at 12’000g for 15 min at 4°C. The aqueous 
phase containing the RNA was collected and precipitated 
with 500 μL cold isopropyl alcohol for 10 min at RT, and 
samples were centrifuged at 12’000g for 10 min at 4°C. 
Pellets were washed once with 1 mL 75% ethanol, air- 
dried, and dissolved in nuclease-free water (Ambion, cat. 
AM9930).

For BC2 and RCC, samples were centrifuged at 
300–353g for 5 min to aspirate the remaining supernatant. 
The resulting tissue/cell pellets were extracted and total RNA 
was isolated using RNeasy (Qiagen) according to manufacturer 
instructions. BC1, BC2, and RCC model DNAse removal and 
RNA concentration were performed using a commercial kit 
(Zymo Research, cat. R1013) according to the manufacturer’s 
instructions.

All samples went through QC (Qubit) (BC1 RIN 5.0–9.0; 
BC2 RIN 5.5–8.2; RCC RIN 6.4–9.5) before gene expression 
analysis on the NanoString nCounter gene expression plat-
form (NanoString Technologies). nCounter Human 
PanCancer Immune Profiling Panel consisting of 770 
genes to identify different immune cell types and their 
abundance, checkpoint molecules, cancer-testis (CT) anti-
gens, and genes covering both the adaptive and innate 
immunological function. Per sample, 50 ng of total RNA 
in a final volume of 5 μL was mixed with a reporter code-
set, hybridization buffer, and capture codeset. Samples were 
hybridized overnight at 65°C for 20 hours. Hybridized sam-
ples were run on the NanoString nCounter SPRINT 
profiler.

NanoString gene expression profiling results were analyzed 
using the nSolver advanced analysis software. During the nor-
malization step, the housekeeping genes with AvgCount of less 
than 100 were removed. Differential expression analysis expres-
sion was performed with the Patient_id as a confounding factor. 

P-values were adjusted by the Benjamini & Yekutieli method.13 

Venn diagrams show differentially expressed genes that are 
statistically significant with a P-value of less than 0.05. 
Pathway scores are calculated as the first principal component 
of the pathway genes’ normalized expression. Pathway scores 
were adjusted with Patient_id as a confounding factor.

Pearson correlation between the estimated cell abundance 
in the untreated samples and the fold-change in immune 
activity pathways (treated/untreated) was calculated.

Cytokine profiling

Cytokine secretion was analyzed from cleared PDEC culture 
supernatants using Bio-Plex Pro Human Cytokine 27-plex 
assay kit (Bio-Rad, cat. M500KCAF0Y) and Bio-Plex 200 
System (Bio-Rad) according to the manufacturer’s instruc-
tions. Results analyzed using Bio-Plex Manager 6.0 software 
(Bio-Rad Laboratories). Cytokines with > 10% of data points 
outside the detection range were excluded from the analyses. 
The remaining values lower than the detection limit were 
replaced by 0.5 ´ lowest measured value. Cytokines were visua-
lized using GraphPad Prism (v.9.5.1). To identify changes in 
cytokine secretion following treatment, log2FoldChanges were 
calculated.

Results

Ex vivo TIME landscape of breast cancer and renal cell 
carcinoma

To see how culturing conditions affect ex vivo immunotherapy 
responses, we compared three established patient-derived ex 
vivo models in increasing levels of manipulation (Figure 1a). 
The breast cancer model “BC1” represents the least disruptive 
system as it has very little hands-on processing, and the tumor 
architecture is mostly preserved. The breast cancer model 
“BC2”11 is fragmented through mild enzymatic digestion, also 
resulting in intact tumor fragments with original tumor 
architecture.12 BC2 fragments are further embedded into 
a 3D matrix, which provides structural support for several 
cell types. The renal cell carcinoma model “RCC” has the 
most amount of processing featuring enzymatic digestion of 
tumor material down to single cells, which are embedded in 
a 3D matrix and supplemented with IL-2 and growth factors.

In order to characterize the immunotherapy responses, the 
baseline immune cell composition and cytokine secretion pro-
files of the three model systems were assessed. Based on esti-
mated cell abundances through gene expression profiling, the 
baseline immune cell composition differed across the three 
models, with RCC being richer in all immune cell types except 
mast cells and B cells in comparison to the BC models 
(Figure 1b). This is in line with a reported RNA-based pan- 
cancer analysis of 33 cancer types, which shows that RCC has 
more immune infiltrate and is considered more inflammatory.4 

Between the two BC models, BC2 had higher estimated 
immune cell abundances (Figure 1b). Normalizing the immune 
cell abundances to the amount of tumor-infiltrating leukocytes
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revealed that BC1, BC2, and RCC samples had comparable 
macrophage infiltration, but the BC models had higher relative 
proportions of B cells and mast cells, and a lower relative 
proportion of cytotoxic cells (Figure 1c). Baseline cytokine 
profiling showed that all models were largely secreting similar 
chemokine profiles, including G-CSF, MCP-1 (CCL2), IP-10 
(CXCL10), RANTES (CCL5) and MIP-1a/b (CCL3/4) 
(Figure 1d–f). This is in line with the high myeloid and lym-
phoid immune cell infiltration within the tumor models 
(Figure 1b),11 and consistent with chemokines associated 
with these tumor types. Cell numbers were not calculated 
prior to culturing because that would have required the dis-
sociation of the tumor fragments, therefore, we assessed cyto-
kine relationships to each other rather than cytokine amounts 
across the models. The pleiotropic cytokine IL-6 was the most 
secreted cytokine in the TIME of each model (Figure 1d–f). IL- 
6 may be secreted by various immune cell types as well as 

cancer cells, and its overexpression is reported ubiquitously 
in many cancer types.14,15 High levels of other pro- 
inflammatory cytokines, such as TNF-α, and interleukins 
with T-cell and NK-cell stimulatory properties (eg. IL-15) 
were also present in each model. As expected, RCC samples 
which consist of a highly vascularized tumor type16 showed 
proportionally increased vascular endothelial growth factor 
(VEGF) secretion in relation to cytokines that were expressed 
at similar levels in BC, like IL-15 (Figure 1d–f). Furthermore, 
we detected higher IL-2 levels in RCC as a result of IL-2 media 
supplementation (Figure 1f). When comparing the cytokine 
trends in BC1 and BC2 in comparison to a reference cytokine 
IP-10, BC2 had an increased trend toward higher baseline 
secretion of a T helper 2 type cytokines (IL-10, IL-4, IL-13), 
proinflammatory cytokines (IL-17, IFN-y, IL-12, IL-1b), and 
growth factors and regulators (GM-CSF, IL-7, IL-2), possibly 
reflecting distinct immune landscape and composition in BC2

Figure 1. Ex vivo tumor landscape of breast cancer and renal cell carcinoma. a, Schematic representation of the processing of the patient-derived explant models, n=6 
for each model, ‘BC1’, ‘BC2’ and ‘RCC’ b, Comparison of the estimated cell type abundances (mean ± SD) based on gene expression profiling ‘BC1’ = light pink, ‘BC2’ = 
dark pink and ‘RCC’ = grey. Cell abundance score refers to mean log2 normalized counts of cell type specific markers. c, Estimated cell type score per patient normalized 
to tumor immune infiltration, depicting relative immune cell composition for each patient. Samples clustered with Ward’s minimum variance method. Scale is 
z-score. d-f, Box and whisker (min to max) plot of baseline cytokine secretion of each patient presented as log2 of the raw pg/ml (+1 as a small constant value).
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cultures. Similarly, G-CSF was generally expressed higher 
in BC than RCC (Figure 1d–f), perhaps due to the higher 
relative abundance of neutrophils and mast cells in BC 
(Figure 1c).

Importantly, while patient cytokine profiles were generally 
consistent for each model and cancer type, ex vivo modeling 
did not mask patient-specific variation (S1A-C). For example, 
“BC1” patient H72 with a clinical diagnosis of triple-negative 
breast cancer (TNBC) (S1D) displayed higher baseline secre-
tion of cytokines like GM-CSF and G-CSF (S1A) compared to 
patients of the same model, consistent with previously pub-
lished findings of high G-CSF secretion by TNBC cells com-
pared to cells of other breast cancer types.17 Therefore, we 
found that the baseline immune contexture of each model 
was concordant with literature for these cancer types, and 
consistent across models (BC1 vs BC2) supporting further 
exploration of differences in immune response.

Effects of adaptive and innate immune modulation on 
immune cell abundance and cytokine secretion

To measure immunotherapy responses in our ex vivo models, 
we selected adaptive and innate immunomodulatory drugs 
with diverse mechanisms of action, clinical relevance, promis-
ing early-phase data, and prioritized one innate and one adap-
tive drug with maximal immune activation as benchmarks 
(Figure 2a). Anti-PD-1 (pembrolizumab) was included because 
it shows efficacy in RCC,18–21 and in TNBC in combination 
with chemotherapy22,23 despite limited application in other 
breast cancer subtypes. Magrolimab is a first-in-class huma-
nized monoclonal CD47-binding antibody that prevents tumor 
cells from escaping macrophage phagocytosis, and is being 
tested in BC in combination with standard therapies 
(NCT04958785, NCT05807126). CD47 is also highly expressed 
in RCC patients and has been suggested as a candidate for anti- 
CD47 blockade.24 Additionally, HX009, a PD1/CD47 bispecific 
mAB is under phase II clinical trial in solid tumors 
(NCT04886271), further prompting investigation of pembro-
lizumab and magrolimab alone and in combination in our 
models. To achieve maximal immune modulation, we also 
included non-clinical T-cell-activating Immunocult (anti- 
CD3/CD28/CD2), and the cyclic GMP-AMP synthase 
(cGAS)/stimulator of interferon genes (STING) pathway ago-
nist (ADU-S100) to induce robust adaptive and innate immune 
activation, respectively.

Other drug candidates for the study included anti-HER2 
(trastuzumab), anti-EGFR (cetuximab), as well as positive con-
trols lipopolysaccharide (LPS) and a cocktail of IL-2/IL-15 (S2, 
S3). The final drug panel was narrowed down to 6 conditions 
based on clinical relevance and/or benchmark signal intensity 
to ensure all samples from one patient fit on the same nano-
string cartridge to prevent differences due to batch effects. 
Positive control compounds like LPS and IL-2/IL-15 were 
removed from the limited final panel as they were mainly 
included to optimize the readout and timepoints. Selecting 
drug candidates with adequately robust adaptive or innate 
inflammatory signal induction (Immunocult; ADUS100) 
ensured that there was a strong enough response to compare 

across all three models. Pilot gene expression profiling (n =  
1 per treatment) revealed that Immunocult, ADU-S100, LPS 
and anti-CD47 evoked a stronger response at 48hrs compared 
to 24hrs (S2A), prompting the selection of the 48 hr timepoint. 
The remaining treatments showed little effect (S2). Similarly, 
cytokine profiling of the same samples showed a modest 
response to anti-PD-1, anti-EGFR, anti-HER2, and IL-2/IL- 
12 supplementation, although some immune activation was 
observed, evident by the induction of IP-10 (S3A-H).

Thus, BC1, BC2 and RCC were treated with the panel of 
drugs (Figure 2a) for 48 hrs, and 6 out of 8 patient samples for 
each model with the highest cytokine responses following 
treatment were further analyzed with gene expression profiling 
(S1A-C). First, we analyzed immune cell abundances following 
treatment to give context to the subsequent gene expression 
pathway and cytokine analyses. The estimated CD45+ leuko-
cyte abundances were mostly unaffected, aside from 
a statistically significant decrease in total leukocytes in BC2 
following ADU-S100 (Figure 2b). The leukocytes that were 
depleted in BC2 following ADU-S100 likely represent 
a combination of cell types that are slightly depleted following 
treatment, but not significantly as individual cell types. 
Examples would include T cells and B cells, which are slightly 
decreased in BC2 (S4A-B). A similar trend was not seen in the 
other BC model, nor with RCC embedded in the same matrix, 
suggesting there may be additional cytokines in BC1 and RCC 
which may support T cells and B cells following STING- 
agonism. T cells, CD8+ T cells, B cells, DCs, and mast cells 
did not change in numbers following immunomodulation with 
any of the tested compounds (Figure 2c–d, S4A-D). However, 
T cell activation achieved with Immunocult did have 
a significant positive impact on the amount of NK cells (BC1, 
BC2, RCC), cytotoxic CD8+ T cells (BC1), and exhausted CD8 
+ T cells (BC1, RCC), and a significant negative effect on 
macrophages (RCC), and neutrophils (RCC) (Figure 2D–H). 
These findings are relevant for subsequent interpretation of 
pathway and cytokine analyses, where gene expression changes 
and cytokine secretion following treatments with sustained cell 
numbers are more likely biological responses than reflections 
of changing cell numbers.

Immunocult induced a robust effect on cytokine secre-
tion in all models, however, the magnitude and the diver-
sity of the response were strikingly different with model- 
specific log2FC ranging from 2 (BC2) to 20 (BC1) 
(Figure 3a). Cytokines representing immune activation 
(IP-10, TNF-α) after T cell stimulation were following 
a similar trend, and detected across all three explant mod-
els. However, BC1 and RCC models additionally exhibited 
numerous statistically significant secretion of chemokines 
(eg. GM-CSF, MIP-1a/b, RANTES, eotaxin) and cytokines 
(eg. IL-12, IL-10, IL-17, IL-13). Individual patient samples 
from all models showed induction of T helper type I and 
type II cytokines (S5A-C). The STING agonist ADU-S100 
triggered distinct activation patterns based on the unique 
thresholds of each model, leading to increased secretion of 
RANTES, MIP-1α, MIP-1β, and TNF-α (Figure 3a). The 
remaining compounds, pembrolizumab, magrolimab and 
their combination showed more modest and selective

ONCOIMMUNOLOGY 5



stimulation in comparison to Immunocult and STING- 
agonism in each model, revealing more patient-specific 
stimulation (S5A-C). Notably, IL-2-supplemented RCC 
showed a significant drop in IL-2 levels following 
Immunocult treatment (Figure 3a).

In summary, the tumor immune cell abundances and cyto-
kine secretion profiles demonstrated consistent qualitative 
responses to immune modulation across models, even though 
the intensity of the responses varied significantly.

PDECs reflect biological changes in response to 
immunomodulation

We further confirmed the activation of immune-related path-
ways using transcriptional profiling with Nanostring 
(Figure 3b, S6A-D). As observed with the secreted cytokines, 
Immunocult led to robust T cell activation in each model, 
stimulating chemokine, cytokine, and interleukin pathways. 
As with the cytokines, the magnitude of this response can be

Figure 2. Effect of adaptive and innate immune modulation on cell abundances. a, Schematic of treatments selected for the study b, Box and whisker (min to max) of 
total estimated cell abundances after immunomodulation. c, No significant changes in CD8+ T cell numbers, but significant changes in d, exhausted CD8+ T cells e, NK 
cells f, cytotoxic cells g, macrophages, and h, neutrophils. Statistical significance was tested with a two-way ANOVA with Fishers LSD. All data are presented as mean 
values ± SD. (p= **** = <0.0001; p= *** = <0.001; p= ** = <0.01; p= * = <0.05).
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Figure 3. Ex vivo cultures reflect biological changes in response to immunomodulation. a. BC1, BC2 and RCC cytokine responses of each treatment shown as log2FC 
(treated explants to untreated controls). Statistical significance was tested with a two-way ANOVA with Fishers LSD. (p= **** = <0.0001; p= *** = <0.001; p= ** = <0.01; 
p= * = <0.05) b, heatmap of average BC1, BC2 and RCC patient pathway score determined by gene expression profiling. The scale reflects the treated pathway score – 
the untreated pathway score.
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interpreted as the maximum T cell activation threshold for that 
specific model, and can be used as a reference when testing 
whether patients have the ability to respond to immunomodu-
lation (S6A). The STING-agonist ADU-S100 also showed 
a strong response, although more restricted to expected path-
ways (eg. chemokines) in innate immune modulation 
(Figure 3b). The RCC samples presented the most notable 
response to PD-1 blockade, which resembled Immunocult 
responses albeit at a lower stimulation magnitude. This was 
accompanied by an increase in various cell functions (B-, NK- 
and T-cell, leukocyte, and macrophage functions) as well as 
stimulation of interleukin, cytokine, and chemokine pathways 
(Figure 3b) . These effects were more modest in the BC models 
(Figure 3b). However, without clinical response data to anti- 
PD-1, it is not clear whether the addition of IL-2 in the RCC 
culture medium primed anti-PD-1 resistant tumor samples to 
ICB, as seen in ex vivo melanoma cultures with low baseline 
secretion of IL-2,25 or whether the higher response in compar-
ison to BC is because RCC is generally more sensitive to anti- 
PD-1 therapy.

We next explored the possibility that tumor properties 
correlate with ex vivo treatment responses. We analyzed the 
correlation of baseline immune cell abundance with treatment 
response (S7A-E). For instance, baseline T-cell abundance did 
not influence the magnitude of the increase in ‘T cell functions’ 
following treatments aiming at T-cell activation (S7A). 
Meanwhile, the number of DCs at baseline seemed to closely 
correlate with macrophage functions following T cell activa-
tion, STING agonism, and treatment with anti-PD-1 (S7B). 
Other studies have shown that major physiological functions 
of type I interferons are directed toward DCs,26 making it 
plausible that DC numbers correlate with treatment response.

Core innate and adaptive immune response signatures as 
potential biomarkers

As BC and RCC ex vivo models generally responded similarly 
to immunomodulation, we pooled the Nanostring gene expres-
sion analyses from all samples together and generated a core 
response signature for T cell activation (adaptive, Immunocult) 
and interferon signaling (innate, ADU-S100). Among the dif-
ferent treatment approaches, Immunocult induced the highest 
number of differentially expressed genes (Figure 4a), and this 
was more robustly seen in BC1 and RCC models. Interestingly, 
the three PDEC models generated a shared upregulated ‘core 
response’ gene set for Immunocult: CCL2, CCL7, CCL8, 
CD274, CFB, CX3CL1, CXCL10, CXCL11, CXCL9, ICAM1, 
IDO1, IL15RA, IRF1, JAK2, SERPING1, SOCS1, TAP1, TAP2, 
XCL2 (Figure 4b). The models did not share any downregu-
lated genes following Immunocult treatment (Figure 4b). The 
pathways associated with the upregulated core response signa-
ture were analyzed in the Metascape27 validating the responses 
to the activation of an adaptive immune response and more 
selectively to type 2 interferon signaling (Figure 4c). Then we 
tested our “Adaptive signature” of T cell activation using the 
Tumor Immune Dysfunction and Exclusion (TIDE) computa-
tional framework of post PD-1-treated melanoma patients, and 
found that our “Adaptive signature” was able to stratify 

patients treated with anti-PD-128–30for better overall survival 
on par with existing biomarkers for immunotherapy including 
IFNg, CD8+ infiltration, and a biomarker developed by Merck 
(Figure 4d–e).

Through a similar analysis, STING-agonism through ADU- 
S100 also induced robust but more modest gene expression 
changes than direct T cell activation, as determined by com-
paring the magnitude of the fold-change response (Figure 4f). 
The shared upregulated core genes for innate activation were: 
BST2, CCL5, CXCL11, DDX58, IFI27, IFI35, IFIH1, IFIT1, 
IFIT2, IFITM1, IRF7, ISG15, ISG20, M1X1, NT5E, OAS3, 
STAT2 (Figure 4g). Interestingly, BC2 had more unique upre-
gulated genes following ADU-S100 treatment, while BC1 had 
more upregulated genes following T cell activation (Figure 4b, 
g). Activating the STING pathway had an expected effect of 
downregulating CD14 which was seen in all three models 
(Figure 4g). Upregulated innate core genes were involved in 
type I interferon response and interferon alpha/beta signaling 
(Figure 4h). This signature was comparable in terms of pre-
dicting overall survival as the T cell signature, presumably 
reflecting the overall positive association of the baseline pro- 
inflammatory tumor immune microenvironment on ICB clin-
ical response (Figure 4i–j). Individual genes were not signifi-
cantly upregulated following pembrolizumab, magrolimab, or 
pembrolizumab + magrolimab treatments from pooled sam-
ples (S8A-C). Notably, genes (CMKLR1, CCL18, IL6R) within 
the NF-κΒ-IL6 pathway were downregulated only with the 
combination of pembrolizumab + magrolimab, although not 
significantly.

Discussion

Human ex vivo tumor models have been used to dissect early 
immunotherapy responses2,9,10 with promising predictive 
potential for patients receiving immune-checkpoint blockade 
(ICB) therapy.2 However, the development of human-derived 
ex vivo models is not standardized, and it is unclear how the 
disruption of the tissue architecture and ex vivo culture condi-
tions influence immunotherapy responses. We compared 
immunotherapy responses across three independently devel-
oped ex vivo patient-derived explant systems. Our findings 
demonstrated that while the magnitude of the response varied 
between model systems, the qualitative nature of the responses 
was remarkably consistent, revealing shared signatures of 
adaptive and innate immune activation.

This shared qualitative nature was unexpected, given the 
numerous variables in the data – patient heterogeneity, two 
cancer types with multiple subtypes, and three culturing condi-
tions. Direct head-to-head comparisons of treatment responses 
using the same material across three distinct models were not 
feasible due to limited tissue availability, constrained by the 
tumor size received in the lab. Nevertheless, common responses 
were especially surprising given possible changes in the immune 
composition, such as a potential immune efflux in the BC1 
model in the absence of matrix embedding, as evidenced by 
lower CD45 infiltration, or potential benefits of the extracellular 
matrix (ECM) for maintaining cell types like dendritic cells 
(DCs).31 These ECM-driven effects could explain why BC2 
exhibited more pronounced gene expression changes following
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Figure 4. Core innate and adaptive response signatures as potential biomarkers. a, Differentially expressed genes of pooled explant samples following Immunocult 
treatment. Genes above the solid like are adjusted p-value <0.01, genes above dotted line are adjusted p-value <0.05. b, venn diagram of significantly (adjusted p-value 
< 0.5) upregulated genes following Immunocult, shared core gene signature of 19 genes is bolded, and core genes are listed below the plot, and venn diagram of 
significantly downregulated genes following Immunocult c, Metascape analysis of pathways associated with the core signature, circle size refers to the number of core 
genes (=count) matching the pathway, and the numerical value is the percentage of all of the user-provided genes that are found in the given ontology term. “Log10 
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innate activation. The ability of the core response signatures to 
predict PD-1 responses is less surprising, as high IFN-γ signa-
tures have been shown to correlate with PD-1 responsiveness,32 

highlighting the consistencies of ex vivo observations with exist-
ing clinical literature. We believe that the shared signatures are 
partly due to short-term culturing, where the limited duration 
minimizes the impact of the culture method on the phenotype of 
immune and cancer cells.11,12 Over time, as certain immune cell 
subsets are lost and cancer cells adapt to the new microenviron-
ment, a common response may become less likely. Additionally, 
ex vivo explants may reveal treatment responses that are difficult 
to capture in vivo, where drug penetration into solid tumors can 
be a limiting factor. By preserving the native tumor-immune 
microenvironment, we suggest that short-term explant cultures 
provide a robust platform for investigating TIME responses in 
immuno-oncology, despite technical variations and tumor type 
differences.

Mechanistically, patient-derived ex vivo cultures provide valu-
able insights into the pathways altered in tumor-resident immune 
cells following treatment, even when the primary target of the 
therapy is not the immune system.11 The combination of pem-
brolizumab and magrolimab uniquely, but not significantly, 
downregulated genes within the NF-κB-IL6 pathway, an effect 
not observed with either drug alone. Although the sample size 
and experimental setup do not support detailed mechanistic con-
clusions, this observed synergy warrants further investigation. 
Previous in vitro studies suggest that targeting this pathway in 
cancer-associated fibroblasts in breast cancer could normalize the 
tumor stroma, potentially enhancing anti-cancer effects.33

Statistically, patient-derived ex vivo models present unique 
challenges, particularly due to the influence of culture condi-
tions on the maximum response threshold. For instance, the 
BC2 model consistently demonstrated modest changes in cyto-
kine secretion and gene expression, even at peak levels, com-
pared to other models. This relatively limited variability 
between min and max makes it unreasonable to compare 
responses between methods using the same statistical assump-
tions. Instead, robust empirical methods like the Boolean 
implication network that takes into account the qualitative 
relationships between genes rather than the p-value, may 
become the benchmark for comparing future ex vivo 
studies.34 Nevertheless, as all findings will ultimately be vali-
dated using alternative methods, we argue that subtle but 
consistent responses should not be prematurely dismissed 
due to a lack of statistical significance, especially when they 
align with expected mechanistic pathways. The next step 
involves leveraging these results to build on established clinical 
benchmarks, where larger-scale validation and clinical data can 
provide a more precise interpretation of their biological 
relevance.

In summary, our study presents immunotherapy treatment 
responses across three independent ex vivo models of breast 
cancer and renal cell carcinoma. We observed robust activation 
of both adaptive and innate immune responses, leading to the 
identification of two shared core immune signatures – adaptive 
and innate – that could serve as potential exploratory biomar-
kers for predicting treatment outcomes. This work not only 
reveals several consistencies between ex vivo observations and 
previously published clinical data but also highlights the value 
of patient-derived ex vivo models in uncovering immune 
mechanisms. Such insights could inform future research 
aimed at improving patient stratification and optimizing ther-
apeutic strategies.
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