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Globally, terrestrial aquatic interfaces, like deltas, face a large number of ecosystem stressors. 

Monitoring and characterizing mechanisms of change in these areas is relevant to supporting 

human populations while maintaining ecological integrity. This requires high spatial and 

temporal resolution satellite-based observations, which have only recently become available 

to observe rapid changes in these dynamic systems. Sentinel-2, launched in 2016, provides a 

5-day temporal resolution and 10 m spatial resolution which allows for detecting fine-scale 

changes in both water quality and aquatic vegetation. This dissertation is motivated by two 

primary interacting themes: 1) using remote sensing to study water quality, vegetation 

composition and phenology across aquatic ecosystems, and 2) providing knowledge and 

insight to support ecosystem management and informed decision making. Using the high 

spatial and temporal resolution capabilities of Sentinel-2, this dissertation addresses three 

main research objectives that correspond to three manuscripts (Chapters 1 – 3). The study site 

for all works is the California Sacramento San Joaquin Delta. Chapter 1 evaluates the impacts 

of an emergency drought barrier on turbidity and endangered fish habitat suitability. This 

manuscript is already published in the Journal of American Water Resource Association. The 

results demonstrate how high spatial, high temporal resolution satellite data enhances field 

observations by providing additional spatial context. Chapter 2 provides a framework for 

mapping aquatic vegetation, specifically distinguishing between two types of invasive floating 

aquatic vegetation at the genus level – water primrose and water hyacinth. Classification 

accuracy assessments and comparisons to maps derived from higher resolution airborne 

imaging spectroscopy data demonstrate that Sentinel-2 can be used to fill in inter-annual gaps 

in aquatic vegetation maps from summer to fall. Chapter 3 builds off Chapter 2 and reveals 

the phenology of water primrose may be a key component of its recent invasion success. Water 

primrose patches show examples of niche breadth, priority effects, and environmental 

plasticity relative to water hyacinth and emergent vegetation. Our findings highlight the need 

for spatially resolved phenology metrics. Overall, this dissertation provides insights into water 

quality and aquatic vegetation invasion ecology and provides improved methods for 

ecosystem managers to continue to investigate ecosystem stressors. 
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1. Introduction  
Terrestrial aquatic interfaces (TAI), such as freshwater tidal estuaries and wetlands, are 

some of the most biologically and geochemically diverse ecosystems on Earth (DOE, 

2017). Although these areas only represent a small portion of the Earth’s surface, they 

provide a large array of ecosystem services, including food, water, habitat, flood protection, 

sediment and carbon storage (Ward et al., 2020). However, these systems are under threat 

due to natural and anthropogenic climate change, as well as changes in land use resulting 

from increasing populations and urban expansion (Gardner et al., 2015). These areas are 

also some of the most anthropogenically modified ecosystems on earth, and the demand 

for water and energy by a rapidly growing global population negatively impacts 

biodiversity and ecosystem functions (Carpenter et al., 2011; Newton et al., 2020). 

Characterizing mechanisms of change in these areas is relevant to understanding the Earth's 

system as a whole and sustainably managing TAI systems. 

The spatio-temporal variability of TAIs makes studying these areas challenging. 

Traditional field measurements can be difficult to collect, labor intensive and costly, 

limiting their temporal frequency and areal coverage. As a result, coastal habitats and 

wetlands, comprise some of the most understudied ecosystems globally. Characterizing 

these ecosystems to meet conservation, socioeconomic, or scientific goals requires 

sensitive measurements at a sufficient temporal frequency and over an area that ideally 

covers the full area of interest. Additionally, such measurements should also be cost 

effective. 

 

Developing satellite-based remote sensing (RS) capabilities has been the systematic 

technological response of the environmental community to fill the gaps of field work and 

has transformed our knowledge and understanding of ecosystem function and change 

(Cohen and Goward, 2004, Wulder et al., 2012). RS observations have been used to track 

changes in wetland vegetation  and surface waters (Chen et al., 2014; Henderson and 

Lewis, 2008; Huang et al., 2018; Mccombs et al., 2016), and offer relevant information for 

improved management practices and policy (Kachelriess et al., 2014; Richardson and 

Ledrew, 2006). While several of previous and current satellite missions do not provide the 

measurement resolutions needed to fully resolve properties and processes in TAIs,  the 

ability of more recent missions to detect changes in water quality, biodiversity and 

ecosystem function is still extremely valuable and remains understudied (Hestir et al., 

2015; Muller-Karger et al., 2018).  

The overall goal of my dissertation is to utilize high frequency, high spatial resolution 

satellite remote sensing for resolving key water quality parameters, aquatic vegetation 

composition and phenology interannually and annually and how this relates to species 

invasion and management objectives. Consequently, my work focuses on exploiting 

Sentinel-2 satellite capabilities, which provides several documented improvements over 

other commonly used sensors, like MODIS and Landsat, for studying complex ecosystems 

with high spatio-temporal variation, such as wetlands and estuaries (Hedley et al., 2012; 

Lefebvre et al., 2019; Sánchez-Espinosa and Schröder, 2019; Villa et al., 2018) . In addition 

to supporting our ability to answer questions related to ecosystem function, my methods 
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and research outcomes can provide support for management and monitoring these areas by 

focusing on the Sacramento San Joaquin Delta (the Delta), one of the most heavily altered 

and invaded estuaries globally (Cohen and Carlton, 1998; Nichols et al., 1986). 

This dissertation is motivated by two primary interacting themes: 1) using remote sensing 

to study water quality, vegetation composition and phenology across aquatic ecosystems, 

and 2) providing knowledge and insight to support ecosystem management and informed 

decision making. Since the main chapters of my thesis are organized as self-contained, 

standalone manuscripts with the intent and complete commitment to get them all published 

in the peer-reviewed literature, main findings are only summarized here and the reader is 

referred to these chapter for more details.  

Chapter 1 focuses on mapping turbidity in the Delta during the 2015 drought using 

Spot5Take5 an experimental Sentinel-2 dataset. Using this dataset, a high-frequency and 

high-resolution timeseries of turbidity was generated and used to examine two management 

relevant case studies concerning endangered fish habit and the installation of an emergency 

saltwater intrusion barrier. Turbidity derived habitat frequency maps indicated areas of 

potential refuge for endangered Delta Smelt with limited connectivity. Maps also indicated 

a potential increase in turbidity as a result of barriers in two locations, thereby enhancing 

previous findings with spatial context. This work is relevant to management decisions in 

the Delta because it highlights the use of high-resolution satellite imagery to compliment 

field campaigns with systematic snapshots providing context and the ability to supplement 

areas with limited in situ data. (Ade et al., 2021) 

Chapter 2 investigates the ability of Sentinel-2 to distinguish between invasive floating 

aquatic vegetation (FAV) at the genus level while also identifying emergent and submerged 

aquatic vegetation at the community level. FAV target classes are water primrose and water 

hyacinth. Previous studies rely on airborne imaging spectroscopy (AIS) to separate these 

different covers, but due to cost imagery is acquired only once a year. In order to determine 

if Sentinel-2 could be used to fill in AIS temporal gaps with acceptable detection of two 

FAV covers, classification model accuracies and maps between the two datasets were 

compared visually and by difference percent class coverage. Maps matched well visually 

and by area, with some caveats related to pixel size, spectral resolution, and image timing.  

Chapter 3 builds off Chapter 2, by investigating the phenology of floating and emergent 

vegetation in the context of invasion. It is generally acknowledged that phenology may 

play an important role in the success of invasive aquatic vegetation species, the mechanism 

of which can be categorized into four ecological theories: vacant niche, priority effects, 

niche breadth, and environmental plasticity. In order to understand the general link between 

growth cycles and invasions in aquatic ecosystems and the presence of any or all of these 

four theories, we analyzed Sentinel-2 derived phenology metrics of competing invasive 

floating vegetation, water primrose (Ludwigia spp) and water hyacinth (Eichhornia 

crassipes) and emergent macrophytes at the community level in the Sacramento San 

Joaquin Delta. We were specifically interested in why water primrose has become such an 

effective invader. Results show that water primrose has the earliest start of the growing 

seasons, higher rates of increase and decrease, longer growing seasons and later end dates 

than water hyacinth or emergent vegetation, thereby, suggesting that priority effects, niche 
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breadth and environmental plasticity all play a role in the invasion success of water 

primrose. We also noted several spatial patterns and within-class variability, which 

highlights the need for spatially resolved phenology dynamics, especially in spatio-

temporally complex areas like wetlands. Overall, these findings show mechanisms of 

invasion and may be able to support management by providing spatial context of phenology 

supporting decision and monitoring of herbicide treatments.  

1.2 References 

Ade, C., Hestir, E.L., Lee, C.M., 2021. Assessing Fish Habitat and the Effects of an 

Emergency Drought Barrier on Estuarine Turbidity Using Satellite Remote Sensing. 

J. Am. Water Resour. Assoc. 57, 752–770. https://doi.org/10.1111/1752-

1688.12925/FORMAT/PDF 

Bailey, V., Rowland, J., Megonigal, J.P., Troxler, T., DeForest, J., Stover, D., 2017. 

Research Priorities to Incorporate Terrestrial-Aquatic Interfaces in Earth System 

Models. Workshop Report, September 7-9, 2016. https://doi.org/10.2172/1471229 

Carpenter, S.R., Stanley, E.H., Vander Zanden, M.J., 2011. State of the World’s 

Freshwater Ecosystems: Physical, Chemical, and Biological Changes. 

https://doi.org/10.1146/annurev-environ-021810-094524 36, 75–99. 

https://doi.org/10.1146/ANNUREV-ENVIRON-021810-094524 

Chen, L., Jin, Z., Michishita, R., Cai, J., Yue, T., Chen, B., Xu, B., 2014. Dynamic 

monitoring of wetland cover changes using time-series remote sensing imagery. 

Ecol. Inform. 24, 17–26. https://doi.org/10.1016/J.ECOINF.2014.06.007 

Cohen, A.N., Carlton, J.T., 1998. Accelerating Invasion Rate in a Highly Invaded 

Estuary. Science (80-. ). 279, 555–558. 

https://doi.org/10.1126/science.279.5350.555 

Gardner, R., Barchiesi, S., Beltrame, C., Finlayson, C., 2015. State of the world’s 

wetlands and their services to people: a compilation of recent analyses. 

Hedley, J., Roelfsema, C., Koetz, B., Phinn, S., 2012. Capability of the Sentinel 2 

mission for tropical coral reef mapping and coral bleaching detection. Remote Sens. 

Environ. 120, 145–155. https://doi.org/10.1016/J.RSE.2011.06.028 

Henderson, F.M., Lewis, A.J., 2008. Radar detection of wetland ecosystems: a review. 

http://dx.doi.org/10.1080/01431160801958405 29, 5809–5835. 

https://doi.org/10.1080/01431160801958405 

Hestir, E.L., Brando, V.E., Bresciani, M., Giardino, C., Matta, E., Villa, P., Dekker, A.G., 

2015. Measuring freshwater aquatic ecosystems: The need for a hyperspectral global 

mapping satellite mission. Remote Sens. Environ. 167, 181–195. 

https://doi.org/https://doi.org/10.1016/j.rse.2015.05.023 

Huang, C., Chen, Y., Zhang, S., Wu, J., 2018. Detecting, Extracting, and Monitoring 

Surface Water From Space Using Optical Sensors: A Review. Rev. Geophys. 56, 



 

 

21 

333–360. https://doi.org/10.1029/2018RG000598 

Kachelriess, D., Wegmann, M., Gollock, M., Pettorelli, N., 2014. The application of 

remote sensing for marine protected area management. Ecol. Indic. 36, 169–177. 

https://doi.org/10.1016/J.ECOLIND.2013.07.003 

Lefebvre, G., Davranche, A., Willm, L., Campagna, J., Redmond, L., Merle, C., 

Guelmami, A., Poulin, B., 2019. Introducing WIW for Detecting the Presence of 

Water in Wetlands with Landsat and Sentinel Satellites. Remote Sens. 2019, Vol. 

11, Page 2210 11, 2210. https://doi.org/10.3390/RS11192210 

Liang, Q., Zhang, Yuchao, Ma, R., Loiselle, S., Li, J., Hu, M., Zhang, Yunlin, Giardino, 

C., Li, L., Mishra, D.R., Gloaguen, R., Thenkabail, P.S., 2017. A MODIS-Based 

Novel Method to Distinguish Surface Cyanobacterial Scums and Aquatic 

Macrophytes in Lake Taihu. Remote Sens. 2017, Vol. 9, Page 133 9, 133. 

https://doi.org/10.3390/RS9020133 

Mccombs, J.W., Herold, N.D., Burkhalter, S.G., Robinson, C.J., 2016. Accuracy 

assessment of NOAA coastal change analysis program 2006-2010 land cover and 

land cover change data. ingentaconnect.com. 

https://doi.org/10.14358/PERS.82.9.711 

Muller-Karger, F.E., Hestir, E., Ade, C., Turpie, K., Roberts, D.A., Siegel, D., Miller, 

R.J., Humm, D., Izenberg, N., Keller, M., Morgan, F., Frouin, R., Dekker, A.G., 

Gardner, R., Goodman, J., Schaeffer, B., Franz, B.A., Pahlevan, N., Mannino, A.G., 

Concha, J.A., Ackleson, S.G., Cavanaugh, K.C., Romanou, A., Tzortziou, M., Boss, 

E.S., Pavlick, R., Freeman, A., Rousseaux, C.S., Dunne, J., Long, M.C., Klein, E., 

McKinley, G.A., Goes, J., Letelier, R., Kavanaugh, M., Roffer, M., Bracher, A., 

Arrigo, K.R., Dierssen, H., Zhang, X., Davis, F.W., Best, B., Guralnick, R., Moisan, 

J., Sosik, H.M., Kudela, R., Mouw, C.B., Barnard, A.H., Palacios, S., Roesler, C., 

Drakou, E.G., Appeltans, W., Jetz, W., 2018. Satellite sensor requirements for 

monitoring essential biodiversity variables of coastal ecosystems. Ecol. Appl. 28, 

749–760. https://doi.org/10.1002/EAP.1682 

Newton, A., Icely, J., Cristina, S., Perillo, G.M.E., Turner, R.E., Ashan, D., Cragg, S., 

Luo, Y., Tu, C., Li, Y., Zhang, H., Ramesh, R., Forbes, D.L., Solidoro, C., Béjaoui, 

B., Gao, S., Pastres, R., Kelsey, H., Taillie, D., Nhan, N., Brito, A.C., de Lima, R., 

Kuenzer, C., 2020. Anthropogenic, Direct Pressures on Coastal Wetlands. Front. 

Ecol. Evol. 8, 144. https://doi.org/10.3389/FEVO.2020.00144/BIBTEX 

Nichols, F.H., Cloern, J.E., Luoma, S.N., Peterson, D.H., 1986. The Modification of an 

Estuary. Science (80-. ). 231, 567–573. 

https://doi.org/10.1126/SCIENCE.231.4738.567 

Richardson, L.L., Ledrew, E.F., 2006. Remote Sensing of Aquatic Coastal Ecosystem 

Processes Science and Management Applications. 

Sánchez-Espinosa, A., Schröder, C., 2019. Land use and land cover mapping in wetlands 

one step closer to the ground: Sentinel-2 versus landsat 8. J. Environ. Manage. 247, 



 

 

22 

484–498. https://doi.org/10.1016/J.JENVMAN.2019.06.084 

Villa, P., Pinardi, M., Bolpagni, R., Gillier, J.-M., Zinke, P., Nedelcut, F., Bresciani, M., 

2018. Assessing macrophyte seasonal dynamics using dense time series of medium 

resolution satellite data. bioRxiv 216, 230–244. https://doi.org/10.1101/279448 

Ward, N.D., Megonigal, J.P., Bond-Lamberty, B., Bailey, V.L., Butman, D., Canuel, E.A., 

Diefenderfer, H., Ganju, N.K., Goñi, M.A., Graham, E.B., Hopkinson, C.S., 

Khangaonkar, T., Langley, J.A., McDowell, N.G., Myers-Pigg, A.N., Neumann, R.B., 

Osburn, C.L., Price, R.M., Rowland, J., Sengupta, A., Simard, M., Thornton, P.E., 

Tzortziou, M., Vargas, R., Weisenhorn, P.B., Windham-Myers, L., 2020. 

Representing the function and sensitivity of coastal interfaces in Earth system models. 

Nat. Commun. 11, 2458. https://doi.org/10.1038/s41467-020-16236-2 

  

  



 

 

23 

2. Chapter 1: Assessing Fish Habitat and the Effects of an 

Emergency Drought Barrier on Estuarine Turbidity 

Using Satellite Remote Sensing* 
Christiana Ade, Erin L. Hestir, Christine M. Lee 
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*This chapter is published in the Journal of American Water Resources 

Association. Ade, C., Hestir, E.L., Lee, C.M., 2021. Assessing Fish Habitat and the 

Effects of an Emergency Drought Barrier on Estuarine Turbidity Using Satellite 

Remote Sensing. J. Am. Water Resour. Assoc. 57, 752–770.  doi/full/10.1111/1752-

1688.12925  

Abstract 

Estuaries worldwide are experiencing stress due to increased droughts, which often prompt 

intervention by environmental managers and government agencies. Effective management 

of water resources in estuarine systems can be enhanced by new technologies and 

methodologies to support decision-making processes. Here, we evaluate the use of high 

frequency, high resolution satellite remote sensing within two management-relevant case 

studies in the San Francisco Estuary and the Sacramento-San Joaquin River Delta. We used 

a remote sensing-derived time series of turbidity maps to 1) identify favorable turbidity 

conditions for the endangered fish species, delta smelt (Hypomesus transpacificus), during 

the height of the great California drought in the dry season of 2015, and 2) evaluate changes 

in turbidity following the installation of an emergency saltwater intrusion barrier. The 

mapping results indicate several persistent areas of turbidity refugia throughout the summer 

in the north and west Delta; however, there was infrequent connectivity. A comparison of 

images captured during ebb tides before and after barrier installation showed a mean 

increase of 6.6 Nephelometric Turbidity Units (NTU) in the San Joaquin River and 4 NTU 

in Fisherman’s Cut. Our assessment of the barrier supports previous findings, which used 

field samples to conclude barrier installation may have resulted in increased turbidity near 

the barrier and enhances these findings by providing spatial context. 

 

Keywords: remote sensing; turbidity; drought; spot-5 take-5; delta smelt; hypomesus 

transpacificus; sacramento-san joaquin delta; san francisco estuary)  
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2.1 Introduction  

While estuaries provide important ecosystem services to humans, they are also one of 

the most endangered and modified habitats on earth (Barbier et al. 2011). Droughts can 

further exacerbate estuarine habitat degradation by diminishing water flow and 

connectivity between fresh and saltwater sources, thereby impacting water speed, clarity 

and salinity of estuaries worldwide (Wetz and Yoskowitz 2013). As climate change 

continues to affect the amount and timing of precipitation and increases the frequency and 

severity of low flow in certain regions, estuarine water quality and ecology will likely be 

degraded (Wetz and Yoskowitz 2013, IPCC 2007). To mitigate negative drought impacts, 

such as increased salinity on water resources, water resource managers often modify water 

flows. However, these alterations may inadvertently alter water quality in ways that 

negatively impact ecosystem function and habitat quality. Consequently, there is a need to 

monitor water quality changes due to drought and management interventions in order to 

track potential competing impacts on the ecosystem and management for threatened and 

endangered species.  

The 2012-2016 California drought was one of the longest and warmest droughts on 

record caused by an anomalously persistent ridge of high pressure in the Pacific Ocean 

(Swain et al. 2017). Low inflows to the Sacramento-San Joaquin River Delta, the hub of 

California’s water system, resulted in a precipitous drop in Delta exports to Southern 

California and San Francisco Bay area cities, from 6.5 million acre feet in 2011 before the 

drought to 1.8 million acre feet in 2015 (Lund et al. 2018). The low inflows and follow-on 

effects on exports and environmental flows prompted a response by state agencies tasked 

with managing the balance between a healthy ecosystem and sustainable water supply. In 

May 2015, the California Department of Water Resources (CDWR) erected an emergency 

rock wall barrier to reduce salinity intrusion into the Central Sacramento- San Joaquin 

Delta. The objective was to prevent saltwater contamination of drinking water supplies and 

conserve water in upstream reservoirs that would otherwise have to be released to maintain 

flows during the peak of the drought (Lund et al. 2018, CDWR 2016). This barrier impacted 

tidal current speed of the San Joaquin River (Kimmerer et al. 2019), which could have 

influenced the spatial distribution of turbidity. Large shifts in turbidity are of particular 

concern because native species, like the endangered delta smelt (Hypomesus 

transpacificus), thrive within a specific turbidity window (12 – 80 Nephelometric Turbidity 

Units; NTU) (Hasenbein et al. 2016), and the State is obligated to manage pumping 

operations based on this water quality parameter (CDWR 2012). Potential changes as a 

result of the barrier were previously studied and reported conflicting conclusions regarding 

impacts on turbidity (Kimmerer et al. 2019, ICF 2015). However, these conclusions were 

drawn mainly from point-based data from continuous monitoring stations and discrete 

sampling. Available satellite data presents an opportunity to evaluate changes in turbidity 

across larger areas of interest and with spatial continuity.  

Satellite remote sensing offers ‘wall-to-wall’ spatial coverage with a systematic 

repeated sampling interval, enabling evaluation of spatial dynamics that are unobservable 

using in situ sampling alone (Lymburner et al. 2016, Giardino et al. 2019, Vanhellemont 

and Ruddick 2014). Turbidity is a water quality parameter that represents the amount of 

light absorption and scattering with a water column and is highly amenable for assessment 

via optical remote sensing methods. While there is no dedicated satellite sensor for 
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monitoring inland water quality, turbidity can be mapped from two classes of satellite 

remote sensing instruments: land imaging systems and ocean color sensors. Ocean color 

sensors, such as VIIRS, MODIS, MERIS, Sentinel-3 OCI, and SeaWIFs are characterized 

by a high repeat period (1-2 days) necessary to capture the dynamic changes in water 

conditions but have too coarse of a spatial resolution for many inland water bodies 

(typically 300 m – 1 km). Land imaging systems such as Landsat, Sentinel-2 and SPOT 

have the spatial resolution necessary for mapping inland waters (~ 10 – 60 m), but this 

comes with a trade of a decreased swath width and thus a longer revisit interval (~10-16 

days), reduced signal to noise, and use of spectral information optimized for evaluating 

terrestrial features.  

Turbidity is most commonly mapped from remote sensing imagery using empirical or 

semi-analytical spectral inversion methods that calculate turbidity from water-leaving 

reflectance values. Empirical algorithms relate a spectral band or combination of spectral 

bands to in situ turbidity measurements. This method has been used to accurately retrieve 

turbidity in several inland and coastal water bodies (Bustamante et al. 2009, Petus et al. 

2010, Kabbara et al. 2008). However, empirical algorithms often result in poor retrievals 

when used in waters with different optical, biogeochemical, or hydrographic conditions 

than those used in initial algorithm development and are specific to a given sensor’s 

spectral bands. Semi-analytical inversion algorithms are developed using underwater light 

transfer properties and radiative transfer models to estimate the optical conditions of the 

water quality (i.e., absorbance, attenuation and backscattering) and related optical water 

quality parameters (e.g., chlorophyll-a, suspended matter, colored dissolved organic 

matter) (Nechad et al. 2010, Brando et al. 2012). These parameters are then related to in 

situ turbidity measurements and have also been successfully applied in optically complex 

water bodies around the world (Dogliotti et al. 2016, Kuhn et al. 2019). These methods can 

be used for any optical sensor that has a spectral range encompassing the green to near-

infrared regions of the spectrum (500-900 nm) (Dogliotti et al. 2015). While these methods 

are generalizable across a range of different sensors, they still often require regional 

calibration with empirically derived coefficients (Odermatt et al. 2012, Dogliotti et al. 

2015).  

In this study, we used an experimental satellite dataset created by the French Space 

Agency, CNES, SPOT-5 Take-5 (S5T5), to map turbidity in a drought-impacted estuary, 

and used the maps to 1) assess the habitat extent of an endangered fish during the peak of 

the drought, and 2) assess the impact of the emergency saltwater intrusion barrier on 

turbidity. The S5T5 dataset was acquired over the upper San Francisco Estuary and its 

delta, the Sacramento-San Joaquin during the height of the great California drought, from 

April-September 2015. The dataset was created by maneuvering the SPOT-5 satellite 

sensor into a 5-day repeat orbit, thus capturing multispectral images at 10 m pixel 

resolution. The S5T5 experiment provides the only high temporal and spatial resolution 

satellite dataset that covers the time period around the barrier installation. As a result of 

our analysis, we present the first delta smelt turbidity refugia map derived using remote 

sensing data. 
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2.2 Study Area  

The Sacramento-San Joaquin River Delta in California (henceforth “The Delta”) 

provides fresh water to 27 million urban users and supports California’s $50 billion 

agricultural industry (CDFA 2018). Additionally, the Delta is considered a biodiversity 

hotspot, providing critical habitat to several threatened and endangered fish, bird, and 

mammalian species (IUCN 2014). The Delta is a heavily managed and highly altered 

system where anthropogenic modifications such as scheduled dam releases, cross-channel 

gates, and pumping stations constrain hydrodynamic variability (Delta Stewardship 

Council 2013). To meet California’s legislated co-equal goal of providing a reliable water 

supply while protecting, restoring and enhancing Delta ecosystems, water management 

decisions are often informed by water quality characteristics – including turbidity - that 

correspond with suitable habitat for native fish species.  

The delta smelt (Hypomesus transpacificus) is a pelagic fish endemic to the San 

Francisco Estuary and Suisun Bay. It is listed as threatened under the Federal Endangered 

Species Act and endangered under the California Endangered Species Act. Turbidity is an 

important component of the habitat occupied by the delta smelt along with temperature and 

salinity (Brown et al. 2013, Sommer et al. 2011, Feyrer et al. 2011, Feyrer et al. 2007). The 

fish are most likely to survive at turbidities greater than 12 NTU, a threshold that influences 

current water management practices in the Delta, including the quantity and timing of 

exports (Hasenbein et al. 2016). However, maintaining favorable fish habitats has been 

challenged by long droughts and a decrease in sediment supply from the Sacramento River 

(Cloern and Jassby 2012). The number of delta smelt sightings has decreased over time 

and the drought pushed delta smelt counts to a record low level in 2014-2015 and adult fish 

have not been observed during the Fall Midwater Trawl since 2018 (Moyle et al. 2016, 

Lund et al. 2018) (https://www.dfg.ca.gov/delta/data/fmwt/indices.asp). Their habitats are 

strongly associated with turbidity in the Spring – Fall period and environmental managers 

are concerned that spatial changes in the distribution and extent of high turbidity areas 

could draw the fish closer to the water pumps in the south Delta (Grimaldo et al. 2009). 

The State of California is required to shut off water pumps when specific in situ stations in 

the Central Delta measure turbidity greater than 12 NTU and the flow of the Sacramento 

River Freeport station is less than 80,000 cubic feet per second (CDWR 2012).  

The year of 2015 was the fourth year in one of California’s most severe droughts and 

the possibility of saltwater intrusion into the Central Delta prompted the California 

Department of Water Resources (CDWR) to install a temporary rock wall barrier 

(hereafter, the “barrier”) as a preventative measure. The barrier spanned across False River 

in the Central Delta (Figure 2-1) to prevent saltwater intrusion into Franks Tract by 

reducing tidal dispersion across False River. The channel was officially closed on May 

28th, 2015 and the barrier was fully removed by November 15th, 2015. A retrospective 

analysis of the impacts caused by the barrier were evaluated by Kimmerer et al. (2019) 

through hydrodynamic modeling (UnTrim) and in situ measurements. They determined 

that the barrier succeeded in decreasing the tidal prism into False River and Franks Tract, 

but that it increased the prism in Fisherman’s Cut and potentially the Sacramento San 

Joaquin River. However, they were unable to conclude if these tidal prism changes 

impacted turbidity. The impacts of the barrier were also studied throughout the barrier 

installation and removal by ICF International in collaboration with CDWR (ICF 2015), in 
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which they determined the barrier increased turbidity at two locations through additional 

discrete samples.  

 

 

Figure 2-1. Maps of the study area including general locations discussed in the text. (a) The 

SPOT-5 Take-5 (S5T5) waterways in the Sacramento–San Joaquin River Delta, Suisun, and 

Grizzly Bays are shaded gray. Continuous in situ turbidity stations are represented by circles 

(Nephelometric Turbidity Units; NTU). (b) Four subregions areas used to evaluate the potential 

influence of the emergency saltwater intrusion barrier, including 1. The portion of the San-Joaquin 

River, 2. Fisherman’s Cut, 3. Franks Tract, 4. Little Frafnks Tract. The barrier location is shown in 

red. CDEC, California Data Exchange Center. 



 

 

28 

2.3 Methods 

We used the time series of SPOT5-Take5 (S5T5) satellite imagery to derive turbidity 

maps that were calibrated with in situ turbidity measurements collected in NTU at fixed 

near continuous monitoring stations (every 15 minutes). The error of the maps was 

quantified using a jackknife approach. The resulting maps were then used to create a map 

of delta smelt potential habitat based on the 12 NTU management threshold for delta smelt 

to assess the effects of the drought on their habitat and the potential impacts the barrier had 

on turbidity.  

2.3.1 Satellite Data and Image Pre-processing  

The S5T5 experiment was designed by the ESA (European Space Agency) and CNES 

(Centre National d’Etudes Spatiales) to mimic Sentinel-2 A & B satellite data prior to their 

launch in June 2015 (A) and March 2017 (B). The SPOT-5 satellite orbit was modified 

allowing the sensor to acquire multispectral data over 150 targets across the globe every 

five days at a 10-m pixel resolution from April 16th to September 8th, 2015. The Delta was 

one of two sites in the United States selected for the experiment. The instrument collects 

information in four spectral bands (Table 2-1) and has been used for decades to map 

turbidity in various coastal and inland water bodies (Dekker et al. Peters 2001, Gernez et 

al. 2015, Doxaran et al. 2006). 

Although both Sentinel satellites successfully launched, there was approximately a 3-

month commissioning phase before each satellite sensor was shifted into routine 

operations, and global coverage at a 5-day repeat interval was not available until late 2017. 

Thus, the S5T5 experiment is the only existing high spatial, high temporal resolution 

publicly available satellite dataset we are aware of that can be used to study the effects of 

the installation of the barrier on dry season turbidity and delta smelt habitat availability in 

the Delta.  

Level 2A surface reflectance products and accompanying masks were downloaded 

through the S5T5 client (www.theia-land.fr, Accessed February 2021). Level 2A products 

are created using the atmospheric correction algorithm MACCS (Multi-sensor 

Atmospheric Correction and Cloud Screening) (Hagolle et al. 2015). Images were 

converted from bit signed integer to reflectance values using a scale factor of 1,000. Clouds 

and cloud shadows were screened using the provided cloud masks at the most stringent 

thresholds. Ten scenes were excluded from analysis if there was greater than 5% cloud 

cover within the Delta boundary or excluded after visual inspection if the cloud mask was 

unsuccessful (e.g., large patches of haze and fog were missed by the mask). A total of 16 

scenes from the S5T5 experiment (April 16 - September 8, 2015) were used to construct 

the turbidity time series (Table 2-2). The image boundary of each S5T5 scene did not 

directly overlap, so they were all cropped to the area visible in every swath (Figure 2-1 A, 

waterway labeled in grey).  

 Land and vegetation masking   

A land/vegetation mask was created using a high resolution vegetation map from Ustin 

et al. (2016) and the California Aquatic Resource Inventory (CARI) Version 0.1 (SFEI 

2015). The CARI dataset was used here to delineate waterways from wetlands west of the 

confluence of the Sacramento and San Joaquin Rivers. The Ustin et al. (2016) dataset is 
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based on airborne hyperspectral vegetation surveys and captures detailed vegetation 

coverage for wetlands east of the river confluence. Areas mapped by Ustin et al. (2016) as 

soil, riparian, emergent, non-photosynthetic and floating vegetation were masked in all 

S5T5 scenes. On an image by image basis, pixels not suitable for mapping water quality 

(e.g., those with sun-glint or mats of aquatic macrophytes and algae) were also removed 

by thresholding the SWIR band > 0.068 (Vanhellemont and Ruddick 2016) and calculated 

Normalized Difference Vegetation Index (NDVI ) > 0.23 (based on NDVI values where 

submerged aquatic vegetation was present). 

 

Table 2-1. Spectral Bands of the S5T5 instrument and their corresponding wavelengths in 

micrometers. 

Band Name Wavelength (µm) 

Green 0.500 – 0.590 

Red 0.610 – 0.680 

Near Infrared (NIR) 0.781 – 0.890 

Shortwave infrared (SWIR) 1.580 – 1.750 

Table 2-2. Image acquisition dates, the number of in situ turbidity sensors used for site 

calibrated turbidity retrievals (units: NTU) and their turbidity ranges for each date. 

Image date Number of in situ NTU 

sensors used for calibration 

Measured in situ turbidity range 

(NTU) 

2015-04-16  6 10.6 – 38.6 

2015-05-01  8 2.6 – 22.7 

2015-05-06 6 3.4 – 29.0 

2015-05-16  8 4.1 – 24.5 

2015-06-15  9 0.6 – 20.6 

2015-06-25  12 2.9 – 19.8 

2015-07-05  12 3.6 – 20.8 

2015-07-15  12 4.2 – 27.1 

2015-07-25  10 3.9 – 12.3 

2015-07-30  12 1.9 – 14.4  

2015-08-09 10 3.9 – 34.2 

2015-08-14  12 3.3 – 22.3 

2015-08-19  13 0.9 – 18.3 

2015-08-24  12 1.2 – 14.1 

2015-09-03  12 2.4 – 16.4 

2015-09-08  13 3.1 – 19.3 
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2.3.2 Turbidity Data 

Turbidity measurements in NTU were retrieved from California Data Exchange Center 

(CDEC: https://cdec.water.ca.gov/, Accessed September, 2019), which provides data from 

water quality sensors at 15-min intervals. NTU measurements are acquired by measuring 

scattering using a white light at a 90-degree angle. Fourteen NTU stations were used for 

algorithm calibration because we wanted to achieve the best possible calibration model 

related to management decisions which are made relative to the threshold units of NTU.  

For each image date, the in situ measurement acquired closest to satellite acquisition 

time (approx. 10:50 am) was selected. Station dates with NA or a negative value were 

removed, as were those with a rapid change greater than 15 NTU that was not sustained 

for more than 1 or 2 readings. Removed NTU readings include the station SOI on 2015-

07-30. Additionally, three stations in the western Delta (GZL, RYC, and HON) were 

excluded because they were installed halfway through the timeseries and provided only a 

few data points after masking. Although this eliminated some high turbidity calibration 

points (>100 NTU), this was not of concern for the focus of this study, which requires 

accurate calibration for low to medium turbidity conditions that center around the 

management threshold of 12 NTU for the delta smelt. 

2.3.3 Turbidity Mapping: Model Calibration and Validation 

Turbidity Calculation. 

A widely used semi-analytical algorithm developed by Nechad et al. (2010) to retrieve 

surface turbidity from remote sensing reflectance of a single band was applied using the 

S5T5 red band (0.610 – 0.680 µm) (Eq. 1) 

  

Turbidity (FNU) =
Aλρω(λ)

1−
ρω(λ)

Cλ

     Eq 1. 

 

where ρω (λ) is the water reflectance at a specific wavelength, A and C are band specific 

calibration coefficients. This model was developed for Formazin Nephelometic Units 

(FNU); however, for the Delta FNU and NTU have been considered as interchangeable 

(Morgan-King and Schoellhamer 2013). Here we used A = 253.51, C = 0.1641 which are 

related to a band center of 645 µm as determined in Nechad et al. (2010). To ensure 

accurate mapping near the 12 NTU standard, we selected a single red band algorithm over 

NIR/SWIR band-switching algorithms (e.g., Dogliotti et al. 2015) because high correlation 

has been demonstrated between in situ turbidity and the reflectance in the red band for low- 

moderate turbidity values (1.5-45 NTU) (Goodin et al. 1996, Maltese et al. 2013, 

Bustamante et al. 2009).  

 

Turbidity Calibration 

Resulting turbidity maps from Eq. 1 were further tuned for local conditions by 

calibrating them with in situ turbidity measurements (NTU) (Figure 2-2). Turbidity values 

from Eq. 1 were extracted from all pixels within a 30-m buffer of each station location 

using ArcMap 10.5.1 (ESRI 2016) and R 3.6.1 (R Foundation for Statistical Computing, 

Vienna, Austria). Stations with less than 10 pixels were excluded from further analysis 

because this indicated too much of the channel was occupied by vegetation or other 
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unsuitable pixels. The calibration model was determined by calculating the ordinary least-

squares regression for the mean turbidity of pixels within the buffer regressed against the 

value recorded by the station (Figure 2-2 A). Model stability was evaluated using a 

jackknifing procedure in which each station reading was removed once, and correlation 

coefficients and root mean squared error (RMSE) were recomputed (Efron 1981). The 

recomputed values and their associated standard error related to the jackknife approach 

were slope of 0.63 ± 0.07, y-intercept of -0.34 ± 1.21 and RMSE 8.29 ± 0.36. The final 

calibration model using all station data was:  

 

StationNTU =  0.634 ∗ SatelliteNTU –  0.336 Eq 2. 

Applying the calibration model Eq. 2 to all turbidity maps from Eq. 1 resulted in a final 

RMSE of 4.7 NTU and percent normalized RMSE (%NRMSE) of 12.4 % (Figure 2-2B).  

 

 
 

Figure 2-2. Raster turbidity as calculated by Equation (1) vs. the corresponding station in situ 

turbidity (n = 167). (b) The calibrated raster turbidities (determined by applying a linear model 

fitted in a) vs. the corresponding station turbidity measurements. Stations are grouped by color 

relating to different geographic zones of the Delta: west (green), north (orange), central (purple), 

and south (pink). RMSE, root mean squared error; FNU, Formazin Nephelometic Units; 

%NRMSE, percent normalized RMSE. 

2.3.4 Habitat Mapping  

Water Quality Suitability Maps 

A turbidity suitability map was created for delta smelt by thresholding the calibrated 

turbidity time series for 12 NTU and above. A binary raster for each image was created 

where all pixels greater than 12 NTU received a value of 1 (suitable turbidity) and all below 

received a value of 0 (unsuitable turbidity). The frequency of occurrence of suitable 

turbidity was then calculated as the number of times a pixel was above 12 NTU divided by 

the number of images in the time series (16 images) and converted to a percent. The upper 

and lower bound estimates of percent frequency of suitable turbidity was calculated by 
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subtracting or adding the calibrated RMSE (4.7 NTU) to each turbidity map and applying 

a threshold at 12 NTU to each resulting map. The three maps (estimate, upper and lower 

bounds) were then categorized by the percent of time a pixel was suitable for delta smelt 

throughout the time series. The six categories are 0%, 6 - 20%, 20 - 40%, 40 - 60%, 60 - 

80%, 80 - 100%. The estimate map was evaluated to identify areas of frequently suitable 

turbidity conditions that may be acting as turbidity refugia for delta smelt and were 

assessed for connectivity of frequently suitable turbidity conditions. While the upper and 

lower bound maps were used to determine the range of percent waterways within each 

frequency category. 

  

Fish Trawl Habitat Evaluation 

We compared the number of fish caught during the 2015 20-mm trawl survey to the 

habitat frequency map produced using the first 7 binary rasters created above (image dates: 

2015-04-16 – 2015-07-05), which correspond to the dates over which the trawl survey 

occurred. The California Depart of Wildlife surveys 67 stations every two weeks between 

March – July to record sub-juvenile and juvenile delta smelt abundance 

(https://wildlife.ca.gov/Conservation/Delta/20mm-Survey; Accessed May 2020). All fish 

counts taken between April 13th and July 7th (7 field campaigns) were totaled by station. 

Spatial similarity was visually compared between suitable turbidity frequency hotspots and 

fish capture locations.  

2.3.5 Impacts of the Emergency Saltwater Intrusion Barrier on Turbidity 

Potential impacts of the barrier on turbidity were assessed for a focal area around the 

barrier and were divided into four sub-regions based on previous findings by Kimmerer et 

al. (2019) and MacWilliams et al. (2016): the lower portion of the San Joaquin River, 

Fisherman’s Cut, Franks Tract, and Little Franks Tract & False River to the east of the 

barrier (henceforth referred to as Little Franks Tract) (Figure 2-1B). This portion of the 

San Joaquin River was observed by Kimmerer et al. (2019) to have an increase in tidal 

speed and particle transport due to the barrier, therefore, we anticipated higher turbidity 

post-installation. Turbidity was anticipated to increase or remain the same in Fisherman’s 

Cut due to the increased tidal speed in the San Joaquin River. Turbidity was hypothesized 

to decrease in Frank’s Tract because the barrier would disrupt the flow of water entering 

the Tract through False River, commonly described as the “nozzle” (Kimmerer et al. 2019). 

A similar decrease was expected for Little Frank’s Tract; however, any decreases might be 

negated if there is a large enough increase in Fisherman’s Cut which connects directly to 

Little Frank’s Tract. 

The potential impacts of the barrier were assessed by comparing pairs of pre-and post-

installation turbidity maps with similar stage height and tidal conditions. Pairs were 

selected using CDEC river stage sensors (ANH and FAL) and NOAA tide cycle 

information (Antioch and Rio Vista). One map pair with similar tidal flood conditions was 

identified for April 16th and August 9th and one with similar tidal ebb conditions was 

identified for May 6th and July 7th. It is impossible to have a directly comparable day for 

before and after barrier installation because of the complexities of this system and the 

nature of remote sensing measurements, but these two image pairs were the closest in terms 

of tidal cycle. There is no supporting evidence based on CDEC turbidity sensor time series 
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that turbidity would be consistently different between April/May and August/July, thus we 

assumed that detectable changes would be due to barrier influence and not seasonal 

turbidity trends. For both map pairs, turbidity patterns were visually interpreted, and mean 

turbidity for each of the four sub-regions described above was calculated.  

2.4 Results 

2.4.1 Turbidity Suitability for Endangered Fish 

Turbidity Suitability Maps 

Figure 2-3 shows the turbidity suitability estimate map for delta smelt derived from 

the NTU calibration. Figure 2-4 shows percent of waterways within each frequency 

percentage bin of suitable turbidity including the lower and upper bound estimates. The 

upper and lower bound maps are provided in Appendix 2-7. The estimate map indicated 

that only 5.6% of waterways were suitable delta smelt habitat for more > 60% of the study 

period (Figure 2-4). These areas of persistent turbidity suitability are indicative of potential 

turbidity refugia and are located in the upper portion of Grizzly Bay, where adult delta 

smelt are known to live and Liberty Island, a recognized spawning area (Moyle et al. 2016) 

(Figure 2-3). The 40 – 60% frequency bin comprised 10% of waterways and included 

portions of the Cache-Lindsey Slough complex (base of Liberty island), Montezuma 

Slough and Honker Bay, which are documented common habitat for the delta smelt 

(Murphy and Hamilton 2013, Sommer et al. 2011). There was little connectivity between 

areas of persistent turbidity suitability: 30% of waterways were labeled as never suitable 

and 50% of waterways including the Sacramento River were labeled between 6 – 20% 

frequency of suitably. The Sacramento River is the primary corridor between the North 

Delta and Suisun Bay and is important for the migration of some delta smelt (Hobbs et al. 

2019), which may have been possible at least once or more often during the summer 

drought season based on turbidity conditions. Additionally, there was little to no 

connectivity to the Southern Delta and the Clifton Court Forebay, an area of concern for 

managers because it is the entry way to water pumps where the fish would become 

entrained (Grimaldo et al. 2009, Sommer et al. 2011).  

The maps of lower and upper bounds displayed large differences in suitability 

frequency and connectivity between the potential refugia identified above (Figure 2-4 & 

Appendix 2-7). The map of turbidity suitability resulting from the upper bound estimates 

of turbidity indicates that as much as ~100% of waterways were suitable for delta smelt at 

some point during the time series, while the lower bound map labelled 75% of waterways 

as never suitable. Despite this difference in percent frequency, all three maps consistently 

indicated that portions of Grizzly Bay and Liberty Island had suitable turbidity conditions 

> 20%. However, the lower bound map only identifies 40% of Liberty Island as habitable 

(northeastern portion) while the estimate and upper bound maps identified 90 -100% of the 

region to be habitable at some point. The upper bound map also labels portions of 

Montezuma Bay, Cache Slough, the Sacramento Deep Water Channel, and the San Joaquin 

River as highly suitable. It is also the only map to identify the Sacramento River as a 

persistently suitable area that is connected to the central and south Delta at least > 40% of 

the time series. While Sherman Lake, located at the confluence of the Sacramento and San 

Joaquin Rivers, is also labeled as suitable at least some of the time in all maps, it is unlikely 

this is another potential zone for turbidity refugia. The turbidity retrieval results in Sherman 
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Lake may be highly influenced by the presence of mud banks and deep submerged aquatic 

vegetation that was not masked. The reflectance signal from the bottom could have 

increased retrieved turbidity values, and areas infested with submerged vegetation are not 

considered to be favorable for Delta Smelt (Sommer and Mejia 2013).  

 

Figure 2-3. Using 16 acquisitions from April 16 to September 8, 2015, percent of total 

waterways within certain levels of percent frequency of suitable turbidity. The orange bar is the 

waterways percentage for the estimated map (in Figure 2-3). Gray bars show the range of 

waterways percentage when considering the upper and lower bound maps as determined from the 

RMSE of the turbidity retrievals (4.7 NTU). 
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Figure 2-4. Delta smelt habitat potential as determined by the frequency of suitable turbidity 

>12 NTU over the course of the time series April 6–September 8, 2015. 

 

Fish Trawl Habitat Evaluation 

Our suitable turbidity frequency map (April – July) matched eight of nine fish trawl 

stations, including Montezuma Slough, portions of the Sacramento River, the San Joaquin 

River, Liberty Island, and the Sacramento Deep Water Channel (Figure 2-5). The highest 

fish count was 76 fish in the Sacramento Deep Water Channel which corresponded to an 

area of > 50% suitable turbidity frequency (4-7 days). In the southern Delta, one fish was 

counted in an area characterized as unsuitable and there was little to no connectivity 

between this southern station and the persistent refugia.  
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Figure 2-5. Seven S5T5 images that were acquired during the 20-mm fish trawl from April to 

July 2015 were used to match the frequency of suitable turbidity conditions during this period to 

fish counts. 

2.4.2 Turbidity Time Series: Evaluation of Barrier Effect 

One of the largest drivers of changes in turbidity in this system is tidal influences, where 

tidal stage has variable impacts in sub-regions in terms of water level and turbidity (Wright 

and Schoellhamer 2005). To account for tidally driven changes, images were grouped using 

tidal stage and river height. As a result, this study was able to map differences in turbidity 

during flood and ebb tidal stages and under pre- and post-barrier status (Figure 2-6) for all 

waterways visible in S5T5. The mean turbidity in each sub-region was evaluated for all 

pre- and post-barrier installation images throughout the time series with special attention 

to the flood and ebb pairs (Figure 2-7). When considering all image dates pre- and post-

barrier installation, three of the four subregions had lower average turbidity after barrier 

installation (marked by black horizontal lines), except for the San Joaquin River. For 

Franks and Little Franks Tract, this matched our hypothesis that decreases in turbidity 

levels associated with the installation of the barrier may be due to reduction in flow; 

however, the differences were small and within the range of turbidity retrieval error, 

ranging from a difference of 0.4 – 2.1 NTU in mean turbidity. In the tidal pair comparisons, 

the ebb pairs showed greater changes in turbidity (0.4 – 6.6 NTU) than flood pairs (0.1 – 

1.7 NTU).  
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San Joaquin River. The reach of the San Joaquin River that was evaluated in this study 

showed the greatest difference in the ebb pair; there was a 6.6 NTU increase in mean 

turbidity for the sub-region after barrier installation. When considering the standard 

deviation of the region, there is still a detectable increase is of approximately 3 NTU (pre: 

7.3 ± 1.9 NTU; post: 13.9 ± 1.7 NTU). However, this is less than the turbidity retrieval 

error estimate (4.7 NTU). Overall, this finding matched our hypothesis that the increased 

tidal speed reported by Kimmerer et al. (2019) would result in increased particle transport 

and thus higher turbidity values for the post-barrier image. This was not reflected in the 

flood pair – the difference was less than 0.5 NTU, thus providing evidence against our 

hypothesis that an increase in turbidity would be sustained after the installation of the 

barrier.  

Fisherman’s Cut. Fisherman’s Cut was the only other area to show a large difference 

in an ebb pair. There was a 4 NTU increase in mean turbidity of the sub region after the 

barrier (pre: 11.3 NTU ± 2.1; post: 15.3 NTU ± 2.9). In the July 7th map (post ebb), this 

increase appears to be a result of increased turbidity in the San Joaquin River (Figure 2-

7). This matches our hypothesis that there would be increased turbidity in the region due 

to the increased tidal flows in the San Joaquin River resulting from the barrier. However, 

the increase in NTU is smaller than the difference in standard deviation and turbidity 

retrieval error estimate indicating that there is no detectable change in this region. 

Unsuitable pixel masking in the pre-barrier flood image removed much of the channel, 

making it impossible to draw a definitive conclusion for the flood pair. In the post flood 

image, there is a higher turbidity value within Fisherman’s Cut channel than in the San 

Joaquin River, indicating that some changes in turbidity could be related to sediment 

resuspension rather than barrier installation.  

Franks Tract. Both tidal pairs showed little change in turbidity, of the two the flood 

pair had a higher difference with a 1.8 NTU ± 1.4 decrease in mean turbidity. When 

considering the standard deviation there was no detectable, change which contrasted our 

hypothesis that the barrier would reduce flow into the region and result in a lower turbidity. 

The pre-barrier flood image matches the previously described “nozzle” effect because it 

shows higher turbidity flowing into the bottom portion of the Tract via False River. This 

pattern is not present in the post-image, but most of the area of Franks Tract is masked out 

due to large patches of submerged vegetation (Kimmerer et al. 2019), making it difficult 

to resolve any spatial patterns. Increased abundance in submerged vegetation from July – 

September which corresponds to increased masking of unsuitable pixels may be the cause 

of lower turbidity values in several post barrier images rather than the barrier itself. The 

post barrier ebb image does not include a ‘nozzle’ effect and areas of higher turbidity within 

Franks Tract appear to be originating from the San-Joaquin River (Figure 2-7). The 

additional flow and consequently an additional turbidity input from the San Joaquin River 

into the top of Franks Tract explains the minimal difference in turbidity between the pre 

and post ebb images.  

Little Franks Tract. Turbidity in Little Franks Tract decreased for both tidal pairs; the 

flood pair had a higher difference of 1.4 NTU ± 1.4. Although this supported our hypothesis 

that reduced flows through False River would result in a turbidity decrease in Little Franks 

Tract, the overlap in standard deviation makes results inconclusive. The ebb post image 

shows an apparent inflow of turbidity from Fisherman’s Cut, which may be minimizing 
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the difference between the pre and post turbidity values. Similar to Franks Tract, spatial 

patterns are difficult to discern in the post-barrier flood image due to vegetation and 

‘unsuitable’ water pixel masking.  

 

 

Figure 2-6. Site adjusted turbidity maps in NTU for two pairs of pre- and post-barrier 

installation images. The top pair has similar flood tide conditions and the bottom pair has similar 

ebb tide conditions. The barrier was installed on May 28, 2015 and removed November 15, 2015. 

The increase in masked pixels on August 9 corresponds to the increased presence of submerged 

vegetation patches. 
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Figure 2-7. Turbidity maps for pre and post tide pairs centered on the four substudy areas (A). 

Mean turbidity and standard deviation for each subregion is shown for all image dates (B). The ebb 

and flood pairs are highlighted in turquoise and yellow, respectively. Horizontal lines represent 

mean turbidity for all images before the barrier installation, and after the barrier installation 

separately. 

 

 

2.5 Discussion 

2.5.1 Turbidity Algorithm Calibration 

Image calibration resulted in a RMSE of 4.7 NTU and an r2 of 0.44 (compared to an 

RMSE of 8.3 NTU uncalibrated) and was within the range of acceptable values reported 

during calibration/validation of turbidity products in other optically complex waters 
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(Dogliotti et al. 2015, Vanhellemont 2019). Other studies may report lower RMSE and 

higher r2 values because the algorithms are applied to a single date rather than a time series 

or across a larger range of values. Here, sources of error include a mismatch between the 

satellite turbidity products and in situ NTU measurements due to vertical turbidity 

gradients. CDEC stations are located about one meter below the water surface while optical 

remote sensing instruments are making on integrated measurement of the surface water 

through approximately the photic zone (Bukata et al. 1995). Thus, any areas of high lateral 

variability or vertical turbidity gradients could result in a mismatch between turbidity 

retrieved from satellites and in situ measurements used during calibration. Additionally, 

there is a spatial mismatch between the two measurements, the in situ stations are point 

measurements whereas the corresponding satellite derived turbidities are the average of a 

3 by 3-pixel window (900 m2). Although, this method is a common noise-reducing 

procedure and is based on the assumption that turbidity conditions are similar up to ~1km 

based on averaged particle size settling velocities (Hestir et al. 2016), it is possible that 

there is a larger turbidity variability near certain station locations (ICF 2015). Other sources 

of potential error are related to the algorithm application; the Nechad et al. 2010 algorithm 

outputs values in FNU rather than NTU. Both measure light scattered at a 90-degree angle, 

but NTU measurements are made with a white light whereas FNU are measured with an 

860 nm (NIR) light. This difference in units might account for some error; however, the 

two measurement have been considered as interchangeable in the Delta (Morgan-King and 

Schoellhamer 2013). Also, site specific A and C coefficients may further improve 

algorithm accuracy, as these coefficients were derived for the ocean color sensors using 

reflectance spectra collected in the North Sea and they may not be applicable in certain 

optically complex waters (Nechad et al. 2010). We were unable to include site specific 

coefficients because the required measurements were not collected during the 2015 

overpasses; however, we recommend that future studies consider parameterizing A and C 

coefficients to their system.  

This study did not consider high turbidity conditions, which require different handling 

of atmospheric correction and turbidity algorithms with more sensitive NIR and SWIR 

bands than those available on SPOT 5 (Giardino et al. 2019, Vanhellemont 2019, Pahlevan 

et al. 2017). In fact, atmospheric correction is the biggest source of uncertainty between 

remote sensing turbidity products and in situ measurements (Salama and Stein 2009). The 

atmosphere accounts for up to 90% of the signal over water and thus accurate remote 

sensing retrievals over water require more accurate atmospheric correction models than 

terrestrial remote sensing applications. The atmospheric correction method, MACCS, used 

to produce S5T5 to surface reflectance products was created for terrestrial applications and 

although we were able to get reasonable turbidity retrievals, future users of satellite data 

should use improved methods designed for water. We were unable to apply more 

sophisticated atmospheric correction over water in this study due to the limitations of the 

SPOT sensor’s spectral band configuration. However, Sentinel-2, the satellite that S5T5 

was created to mimic, is now fully operational and has more spectral information in the 

blue and SWIR regions, and higher signal to noise over water. Further, there are specific 

atmospheric correction algorithms designed for retrieving water quality parameters with 

Sentinel-2, which might result in improved match-up with in situ measurements 

(Vanhellemont 2019).  
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2.5.2 Habitat Maps: Frequency of Turbidity Suitability 

Several areas of potential delta smelt refugia were identified from turbidity suitability 

maps, despite differences in suitability frequency and levels of connectivity between the 

estimate, upper and lower bound maps. The largest and most consistent areas of turbidity 

were Grizzly Bay and Honker Bay in the west, and Liberty Island in the north, which are 

locations of adult delta smelt habitat and spawning ground (Moyle et al. 2016). The 

estimate and upper bound maps also indicated additional turbidity refugia in Montezuma 

Slough, the lower portion of San Joaquin, the Cache Slough Complex, and the Sacramento 

River and the Sacramento Deep Water Channel. These areas are similar to historical and 

present refugia described in Merz et al. (2011), Moyle et al. (2016) and Sommer et al. 

(2011). The higher frequency and persistently turbid areas mapped in this study also match 

hotspots mapped in Polansky et al. (2018) and high density areas mapped in Murphy and 

Hamilton (2013). Our maps differed from Polansky et al. (2018) and Murphy and Hamilton 

(2013) in two ways - we identified a specific hotspot in the northeast of Liberty Island and 

the suitable area in the San Joaquin River extends further upstream. This extended area 

may reflect potential effects of the barrier on turbidity and subsequently delta smelt habitat 

because we detected increased turbidity in this portion of the San Joaquin River and 

Kimmerer et al. (2019) concluded this area experienced an increased tidal speed post 

barrier. 

Suitable turbidity maps indicate that there may have been limited connectivity between 

delta smelt refugia during the dry season of the peak of the 2012 – 2016 drought (April – 

September 2015). The spatial patterns of refugia and connectivity of suitable turbidity 

conditions may have different implications for the three distinct life-history phenotypes of 

delta smelt – freshwater resident, brackish-water resident, and semi-anadromous (Hobbs et 

al. 2019). The Sacramento River had a low frequency of turbidity suitability over from 

April-September 2015, which may have been problematic for the semi-anadromous fish 

because this waterway serves as a main corridor between their northern spawning ground 

and adult habitat in the west Delta. The areas of persistent turbidity suitability in Liberty 

Island and the Sacramento Deep Water Channel correspond with previous research that 

indicated a small portion of the fish population live year-round in freshwater or brackish 

water, commonly in these regions (Sommer et al. 2011, Sommer and Mejia 2013, Hobbs 

et al. 2019). These resident fish would be unaffected by the lack of connectivity in the 

lower Sacramento River, but they might have been forced into very specific areas of their 

historical habitat because of limited turbidity. The correspondence of 20-mm trawl fish 

catches with areas mapped as frequently suitable further supports these findings (Figure 

2-5). Our maps show limited connectivity between the Southern Delta and persistent smelt 

refugia, which may indicate why delta smelt are rarely present in this area during summer 

months (Moyle et al. 2016) and indicates that despite concerns, fish may not have migrated 

close to the water pumping stations. However, the potential extended area of suitable 

habitat in the San Joaquin may be of concern because fish that travel downriver could get 

trapped in reverse flows and become entrained at the water pumping facility (Grimaldo et 

al. 2009).  

The variation between the turbidity suitability estimate map and its upper and lower 

bounds make it difficult to reach a definite conclusion about the frequency of connectivity 

patterns. However, the observed “hotspot” of 76 fish in the Sacramento Deep Water 
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Channel is consistent with our observation of this area as being a persistent refuge. While 

significant numbers of fish were not recovered in other refuges, we also did not observe 

hotspot counts of fish in areas that were not refuges or only infrequently refuges. 

Improved/additional accounting of delta smelt habitat characteristics would support a more 

robust detection of habitat refugia and connectivity. Here we focused on the 12 NTU 

standard because of its importance to management decisions, but delta smelt thrive best 

between 12-80 NTU, thus we recommend future suitability maps also incorporate the upper 

bound of favorable turbidity for Smelt (Hasenbein et al. 2016). Including the whole 

turbidity window was not possible with this dataset because it would require improved 

characterization of highly turbid regions like the Western Delta. This will be achievable in 

future maps that are derived from more sophisticated satellites with improved atmospheric 

correction for turbid waters and additional calibration stations in high turbidity areas. Here 

we identified refugia based on turbidity suitability; however, turbidity is only one aspect 

of delta habitat and definitive refugia should be identified through habitat suitability maps 

which by adding other known habitat variables requirements and their windows, such as 

salinity and temperature, which may also be derived from remote sensing products 

(Varunan and Shanmugam 2018, Schaeffer et al. 2018).  

2.5.3 Evaluation of Emergency Saltwater Intrusion Barrier Impacts on Turbidity    

There is some evidence the barrier had an impact on turbidity in Fisherman’s Cut and 

a portion of the San Joaquin River during an ebb tide, but not a flood tide. This aligns with 

findings by the ICF International (2015), which determined turbidity increased in 

Fisherman’s Cut and Old River mouth (connected to the San Joaquin River near Franks 

Tract) as a result of the barrier. Through additional field sampling, they reported the largest 

difference occurred at the end of flood and ebb tides because of sustained higher velocities. 

This may support why we were only able to detect substantial changes in turbidity for the 

ebb pair; during satellite overpass the tide was near the end for the ebb pair, but near the 

middle of the flood tide. For both regions, the standard deviation and/or turbidity retrieval 

error estimate were greater than the observed change; however, this was only true for the 

San Joaquin River when considering both the standard deviation and retrieval error 

simultaneously. Therefore, there is likely still a detectable change between the pre-and 

post-barrier ebb images for the San Joaquin River because the retrieval error estimate had 

regional differences in performance with the Central Delta potentially having smaller errors 

than the global RMSE (Figure 2-2B). This sub-region shifted to >12 NTU post-barrier 

which may have negative implications for delta smelt as it might encourage travel further 

upstream closer to water pumps. Despite visual differences between pre-and post-barrier 

turbidity maps, potential changes in Franks Tract and Little Franks Tract were small or 

difficult to detect because of unsuitable pixel masking – largely due to increased patches 

of vegetation in late summer through Fall (Kimmerer et al. 2019). However, it does appear 

as though there was a slight decrease in turbidity for both areas because of the reduced tidal 

speed entering False River.  

Although we calculated the mean turbidity condition by sub-region for our pre-and 

post-barrier comparison, the addition of spatially contiguous turbidity data is still useful 

for environmental assessments because it offers visual support of differences detected in 

and between the study areas. Turbidity products also allow users to ‘sample’ any sub-
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region, rather than being limited by a priori determined station locations or the cost/time 

for additional discrete sampling campaigns. For example, the increased turbidity observed 

in Fisherman’s Cut during the ebb tide is likely due to increased turbidity from the San 

Joaquin River and not to local resuspension near the in situ turbidity sensor because the 

turbidity increased across both locations simultaneously. Additionally, the maps show the 

difference between the pre and post ebb pair in Franks Tract may have been minimized by 

the additional turbidity inputs at the north end of Franks Tract from the increased turbidity 

in San Joaquin River. This allows us to update the Kimmerer et al. (2019) conclusion, in 

which they detected decreased water clarity near Prisoners Point in San Joaquin River but 

could not confidently conclude it was due to the barrier. Our maps show increased turbidity 

throughout the San Joaquin River which leads us to conclude that the barrier potentially 

affected turbidity. Future studies may consider a multi-sensor approach to enable greater 

data density and longer time series. 

2.6 Conclusions 

We used high spatial resolution satellite imagery to demonstrate the potential of remote 

sensing for aiding management decisions by evaluating two case studies related to turbidity 

during a drought. Turbidity refugia for the delta smelt were mapped based on the percent 

frequency that a pixel met turbidity thresholds important to management decisions in the 

Sacramento-San Joaquin Delta. To our knowledge, this is the first suitable turbidity 

frequency map created for the delta smelt derived with remote sensing imagery and the 

only time series map created from high frequency repeat data collected during the peak of 

the California drought. It is also the first evaluation of potential impacts the 2015 

emergency saltwater intrusion barrier had on turbidity using remote sensing data. Our 

results are consistent with findings determined by the state using discrete field samples and 

supplement these with spatially continuous data. The addition of remote sensing derived 

water quality maps could facilitate or enhance future management decisions by 1) 

complementing extensive field campaigns with synoptic, systematic regular snapshots of a 

larger region for spatial context and scaling , 2) allowing users to ‘sample’ any area rather 

than relying on point measurements and 3) providing measurements in areas with limited 

in situ data.. Although suitability mapping was demonstrated with delta smelt, a similar 

procedure could be conducted for any estuarine species including vegetation that require 

certain turbidity windows or thresholds for survival.  

The recent launch of Sentinel-2A & B by the European Space Agency, provides 10 to 

20 m spatial resolution at a 5-day repeat period and has been proved useful for mapping 

inland waters. As the temporal and spatial resolution of satellites improves, methodology 

should be developed to evaluate the effectiveness and impacts of conservation and 

mitigation strategies in response to a drought and extend turbidity products further, so they 

can be used for supporting improved management decision making.  

2.7 Appendices  

Lower and Upper Bound Turbidity Suitability Maps 

This appendix displays the upper and lower bound maps of suitable turbidity 

conditions. The upper and lower bound estimates of percent frequency of suitable turbidity 

was calculated by subtracting or adding the calibrated RMSE (4.7 NTU) to each turbidity 
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map and applying a threshold at 12 NTU to each resulting map. The maps were binned into 

six categories by the percent of time a pixel was suitable for delta smelt throughout the 

time series. 

 

 
3A-1. Lower bound delta smelt habitat potential as determined by the frequency of suitable 

turbidity >12 NTU for calibrated turbidity images minus the 4.7 NTU RMSE over the course of 

the time series April 6–September 8, 2015.  
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3A-2. Upper bound delta smelt habitat potential as determined by the frequency of suitable 

turbidity >12 NTU for calibrated turbidity images minus the 4.7 NTU RMSE over the course of 

the time series April 6–September 8, 2015.  
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Abstract 

Invasive floating aquatic vegetation negatively impacts wetland ecosystems and 

mapping this vegetation through space and time can aid in designing and assessing 

effective control strategies. Current remote sensing methods for mapping floating aquatic 

vegetation at the genus-level relies on airborne imaging spectroscopy, resulting in temporal 

gaps because routine hyperspectral satellite coverage is not yet available. Here we achieved 

genus level and species level discrimination between two invasive aquatic vegetation 

species using Sentinel 2 multi-spectral satellite data and machine-learning classifiers in 

summer and fall. The species of concern were water hyacinth (Eichornia crassipes) and 

water primrose (Ludwigia spp). Our classifiers also identified submerged and emergent 

aquatic vegetation at the community level. Random forest models using Sentinel-2 data 

achieved an average overall accuracy of 90%, and class accuracies of 79-91% and 85-95% 

for water hyacinth and water primrose, respectively. To our knowledge, this is the first 

study that has mapped water primrose to the genus level using satellite remote sensing. 

Sentinel-2 derived maps compared well to those derived from airborne imaging 

spectroscopy and we also identified misclassifications that can be attributed to the coarser 

Sentinel-2 spectral and spatial resolutions. Our results demonstrate that the intra-annual 

temporal gaps between airborne imaging spectroscopy observations can be supplemented 

with Sentinel-2 satellite data and thus, rapidly growing/expanding vegetation can be 

tracked in real time. Such improvements have potential management benefits by improving 

understanding of the phenology, spread, competitive advantages, and vulnerabilities of 

these aquatic plants. 
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3.1 Introduction 

Invasive floating aquatic vegetation (FAV) species are a global concern due to their 

negative impacts on fragile wetland ecosystem processes such as nutrient cycling, 

hydrology, and energy budgets (Gordon 1998, Scheffer et al. 2003, Dukes and Mooney 

2004, O’Farrell et al. 2009, Pejchar and Mooney 2009). Their introduction threatens 

ecosystem biodiversity and function, and often results in economic impact to fisheries, 

hydropower generation and transportation services (Ongore et al., 2018; Pimentel et al., 

2005; Thouvenot et al., 2013a). Understanding invasion pathways, processes, impacts and 

triggers of change is an essential step in effective wetland management and is dependent 

on accurate mapping of vegetation and species prevalence though time (Thamaga and 

Dube, 2018a). 

Satellite remote sensing is a favored tool for monitoring invasive vegetation due to its 

synoptic views and repeat coverage; however, discrimination of multiple aquatic species 

in areas of high spatio-temporal complexity is often difficult due to spectral similarity 

between species and high spectral variation within a class (Adam et al., 2010; Gallant, 

2015; Guo et al., 2017). Imaging spectroscopy has historically been the favored tool for 

mapping vegetation at the species or genus level because it offers the high spectral 

resolution capable of discriminating between multiple aquatic species within the same 

functional type (Everitt et al., 2011; Hestir et al., 2008; Khanna et al., 2011; Santos et al., 

2012; Schmidt and Skidmore, 2003). Airborne imaging spectroscopy (AIS) also commonly 

has a high spatial resolution, which is important for mapping multiple FAV species that 

often co-occur within the same patch (Bolch et al., 2021; Hestir et al., 2008; Khanna et al., 

2012). However, spaceborne imaging spectrometers with systematic, repeat sampling 

capabilities are currently rare and commercial AIS campaigns to collect such data are 

expensive – often resulting in annual and intra-annual data gaps. Such gaps hinder the 

ability to relate invasive species distribution to environmental and anthropogenic drivers 

of change during the growing season (Kleinschroth et al., 2021). Newer multispectral 

satellites such as Sentinel-2A & B (S2) have a repeat period of 5 days at improved spectral 

and spatial resolutions compared to older multispectral satellites often used in wetland 

studies like Landsat or MODIS. This makes S2 an attractive contender for mapping FAV 

species that are mobile and rapidly expand throughout the growing season.  

The S2 sensors provide the opportunity to discriminate between multiple FAV at the 

species and genus level throughout the growing season because of their high revisit 

frequency and high spatial resolution along with additional bands (relative to Landsat) that 

are intrinsically linked to vegetation traits (Drusch et al., 2012). S2 has been used to 

distinguish between multiple emergent aquatic vegetation species (e.g. Spartina 

alterniflora, Phragmites australis) but the potential to spectrally discriminate between 

different types of FAV has yet to be determined (Dong et al., 2020; Gong et al., 2021). 

Although S2 has previously been used to map invasive FAV, such as water hyacinth, most 

study sites in the literature focus on relatively homogenous environments and community 

types, or target only one invasive species (Dersseh et al., 2020; Singh et al., 2020; Thamaga 

and Dube, 2018b). These prior studies also do not demonstrate the extent of S2’s utility 
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across a range of environments, nor do they differentiate floating vegetation at the genus 

or species-level. 

The Sacramento-San Joaquin Delta (henceforth the Delta) is an extensively modified 

wetland system comprised of multiple tidally influenced habitat types including open lake-

like and channelized riverine environments. The spatial heterogeneity and range of wetland 

environments in the Delta make it a unique setting for testing the potential of S2 to 

distinguish FAV at the species or genus-level, while simultaneously mapping submerged 

and emergent aquatic vegetation at the community level to provide holistic wetland maps 

that can inform and assess management actions. Currently, aquatic vegetation in the Delta 

is mapped to the species, genus, and community level using annual AIS acquisitions 

(Khanna et al., 2022, 2011). However, the imagery is costly and thus only consists of one 

annual snapshot per year, which does not allow for intra-annual tracking of aquatic 

vegetation composition and coverage. At times, lack of funding has resulted annual data 

gaps as well, further increasing the temporal gaps.  

Here, we demonstrate for the first time that separation between invasive FAV at the 

genus and species level is possible using Sentinel-2. We compared our Sentinel-2 maps to 

those derived from AIS, the current near-operational method employed for aquatic 

mapping in the Delta. Our classifiers distinguish between invasive FAV water hyacinth 

(Pontederia crassipes; formerly Eichornia crassipes) and water primrose (Ludwigia spp.) 

and identify submerged and emergent aquatic vegetation at the community level for both 

summer and fall imagery, demonstrating that the intra-annual temporal gap can be closed, 

and rapidly expanding vegetation can be tracked throughout the growing season. Such 

improvements have multiple possible management benefits. For example, the State of 

California spends millions of dollars each year to control IAV in the Delta and costs are 

likely to continue to rise (Jetter et al., 2018). Gaining a better understanding of invasive 

FAV distribution and spread within the year can lead to more informed and effective 

control strategies. 

3.2  Materials and Methods  

3.2.1 Experimental Design  

Two floating aquatic macrophytes, water hyacinth (Pontederia crassipes) and water 

primrose (Ludwigia spp.), were targeted in this study. Water primrose, although nominally 

rooted, develops adventitious roots that can draw nutrients directly from the water. This 

allows water primrose to form floating canopies that extend several meters into the channel 

from the shore (Rejmánková, 1992). In contrast, water hyacinth is truly free-floating 

aquatic macrophyte – often anchoring itself to nearby emergent vegetation (Penfound and 

Earle, 1948). Both are among some of the most invasive aquatic macrophytes globally and 

are frequently referred to as ‘ecosystem engineers’ because of their ability to alter physical, 

biological and chemical processes to their benefit (Grewell et al., 2019; Malik, 2007; 

Thouvenot et al., 2013b). For these reasons, we focused our extension of mapping 

capabilities on these two FAV aquatic macrophytes. Overall, our classification scheme is 

comprised of 8 classes - water hyacinth, water primrose, emergent aquatic vegetation 

(EAV), submerged aquatic vegetation (SAV), riparian vegetation, open water, non-

photosynthetic vegetation (NPV), and soil (Figure 3-1).  
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This study was conducted for the Delta, which is the hub of California’s water system 

spanning approximately 2220 km2 in Northern and Central California. It is a heavily 

engineered system comprised of a diverse network of channels and freshwater tidal 

marshes at the confluence of the Sacramento and the San Joaquin rivers (Figure 3-2) The 

Delta is also recognized as one of the most invaded estuaries in the world (Cohen and 

Carlton, 1998). In the past few decades, water primrose and water hyacinth have negatively 

impacted water quality, water pumping, and native species, and there are ongoing efforts 

to control persistence and spread (DBW, 2019; Jetter et al., 2018; Khanna et al., 2019).  

As part of the control and monitoring programs, AIS efforts to map these invasive 

floating species have been led by the Center of Spatial Technologies and Remote Sensing 

(CSTARS) at UC Davis from 2004-2008 and 2014-2021 (Hestir et al., 2012, 2008; Khanna 

et al., 2011, (Khanna et al., 2022; Ustin et al., 2021). An imaging spectrometer is flown on 

a low-altitude aircraft collecting high spatial resolution (~1.7-3 m pixels) and high spectral 

quality data. These data are used to prepare maps for California State Agencies and for 

assessing annual invasive species spread and community dynamics.  

To evaluate the potential of S2 for filling intra-annual data gaps, we compared the 

performance of a machine learning classifier using Sentinel-2 data to the current state of 

the art approach for FAV mapping in the Delta derived from AIS (Ustin et al. 2021). To 

compare the two products, we identified the closest S2 overpass to AIS acquisition with 

low cloud cover, we refer to these date pairs as “match up dates” that include fall 2018, fall 

2019, and summer 2020 (Table 3-2). We label our mapping efforts FAV genus-level 

because multiple Ludwigia species are present in the Delta, but the exact number is 

unknown; they are difficult to visually distinguish in the field let alone from space.  

While we mapped the entire Delta and made Delta-wide comparisons, for visualization 

and demonstration, map results are presented for four smaller sub-regions representative 

of the range of different habitat types in the Delta (Figure 3-2). Big Break is a brackish, 

shallow flooded island located downstream of the confluence of the Sacramento and San 

Joaquin Rivers. Liberty Island, an abandoned, flooded island, is a freshwater site 

influenced by the Sacramento River. Rhode Island and Ward Cut are islands along the San 

Joaquin River, that include a diverse mix of upland riparian and freshwater marsh habitats 

with large areas of deep open water bound by levees.  
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Figure 3-1. Field photos of vegetation classes and list of species in each vegetation community 

type. See Ta et al. 2017 for more in-depth descriptions of targeted invasive aquatic vegetation.  
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Table 3-1. Target classes and their descriptions.  

Map Class Description 

Water Hyacinth Pontederia crassipes 

Water Primrose Ludwigia spp. 

Emergent 

Vegetation 

(EAV) 

Cattail (Typha spp.) 

Common reed (Phragmites australis) 

Tule (Schoenoplectus spp.) 

Riparian 

For example: Willow species (Salix spp.), 

Oak species (Quercus spp), and 

Cottonwood (Populus spp.)  

Submerged 

Aquatic 

Vegetation  

(SAV) 

Algae mats 

Brazillian waterweed (Egeria densa) 

Coontail (Ceratophyllum demersum) 

Curly leaf pondweed (Pomatogedon 

crispus) 

Fanwort (Cabomba caroliniana) 

Sago pondweed (Stuckenia pectinata) 

Watermilfoil (Myriophyllum spicatum) 

Waterweed (Elodea canadensis) 

Non-

Photosynthetic 

Vegetation  

(NPV) 

Senescent or dead vegetation 

Soil Soil 

Water Water 
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Figure 3-2. Map of the Delta sub-study areas. RGB images were created using imaging 

spectroscopy acquisitions.  

Table 3-2. Match-up dates and tidal ranges1 for corresponding imaging spectrometer 

acquisitions and Sentinel-2 over passes. 

Match up 

date  

Imaging 

Spectrometer 

Acquisition Date 

Closest 

Sentinel-2 

Image Date 

Imaging 

Spectrometer 

Sentinel-2 

Sensor 

Tidal range 

AIS1 (m) 

Tidal 

Range S2 

(m) 

Fall 2018 2018-10-06 – 

2018-10-09 

2018-10-07 HyMap S2B 0.01-0.25 0.49 - 0.64 

 

Fall 2019 2019-09-23 – 

2019-09-27 

2019-10-02 HyMap S2B 0.01 -1.02 0.28 – 0.39 

 

Summer 

2020 

2020-07-15 – 

2020-07-18 

2020-07-18 Fenix 1K S2B 0.01-0.37 0.17-0.30 

 

 1 
Tidal ranges were downloaded from NOAA for the sensors at Antioch and Rio Vista (Station ID: 9415064 

and 9415316, respectively). The ranges include measurements from stations.  

3.2.2 Acquisition and pre-processing of Sentinel-2 imagery  

Level-1C (L1C) top of atmosphere (TOA) reflectance products for Sentinel-2 tiles 

capturing the legal Delta boundary (10SFH, 10SFG and 10SEH) were downloaded from 

the Copernicus Open Access Hub for each of the three match-up dates listed in Table 2. 

Products were atmospherically corrected to Level-2A (L2A) bottom of atmosphere 
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reflectance (BOA) using Sen2Cor version 2.8.0. Sentinel-2A and 2B collect information 

in 13 spectral bands at 10, 20, and 60 m resolutions (Table 3). The Sen2r 1.4.0 R package 

was used to resample 20 – 60m bands to a 10 m spatial resolution, mosaic tiles, and convert 

products from their native SAFE file format to ENVI files (Ranghetti et al., 2020).  

Table 3-3. Sentinel-2 band characteristics. Asterix indicates band was not used during 

classification. 

Sentinel-2 Bands              Wavelengths (μm) Spatial Resolution (m) 

Band 1 – Coastal Aerosol 0.430 – 0.457 60 

Band 2 – Blue 0.440 – 0.538 10 

10 Band 3 – Green 0.537 – 0.582 10 

Band 4 – Red 0.646 – 0.684 10 

Band 5 – Vegetation Red Edge 

1 

0.694 – 0.713 20 

Band 6 – Vegetation Red Edge 

2 

0.731 – 0.749 20 

Band 7 – Vegetation Red Edge 

3 

0.769 – 0.797 20 

Band 8 – NIR 0.785 – 0.900 10 

Band 8A – Narrow NIR* 0.849 – 0.881 20 

Band 9 - Water Vapor* 0.932 – 0.958 60 

Band 10 – Cirrus* 1.337 – 1.412 60 

Band 11 – SWIR 1 1.539 – 1.682 20 

Band 12 – SWIR 2 2.078 – 2.320 20 

3.2.3 Imaging spectroscopy acquisitions and classification process 

In fall 2018 and 2019, HyMap imaging spectroscopy data were collected over the 

Delta at a 1.7x1.7m ground resolution in 126 bands (400 – 2,500 nm, bandwidth ~15nm) 

with a 20% overlap in flightlines by HyVista Corporation (Sydney, Australia). HyVista 

performed atmospheric calibration and delivered the data to CSTARS at UC Davis with 

geo-location files (GLT) for further processing. In July of 2020, SpecTIR LLC (Reno, 

Nevada, USA), flew their Fenix 1K hyperspectral imager over the Delta. The Fenix sensor 

measures 323 spectral bands across the visible to shortwave infrared spectrum (397nm - 

2450nm) at a nominal spatial resolution of 2x2m. SpecTIR also provided data to CSTARS 

after atmospheric calibration and included geographic lookup table files to associate each 

pixel with a geographic location. All airborne spectroscopy campaigns were conducted 

during low tide and flown to minimize sunglint.  

Locations of aquatic vegetation species, riparian vegetation, and water are collected 

within a two-week window of image acquisition (~800–2000 points per campaign) using 

handheld high precision (sub-meter accuracy) GeoXT and GeoXH Trimble DGPS units 

(Trimble Navigation Limited, Sunnyvale, California) with Wide Area Augmentation 

System (WAAS) differential correction. Each location marks a dominant species, along 

with information on patch size, percent cover of each species present, and vegetation 

condition. Patch width and length are labeled as small (3-5 m), medium (5-10 m), large 

(10-15 m), and extra-large (>15 m). Classification training and validation polygons are 
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then created through photointerpretation using field collected points and ground reference 

photos as a reference, in ArcMap (ArcGIS 10, Redlands, California) (Ustin et al. 2021).  

CSTARS classifies the spectroscopy data using a random forest algorithm trained 

and validated with the field collected reference data. A separate random forest model is 

developed for each campaign. Input data include a suite of spectral indexes, spectral angle 

mapper rule images, linear spectral unmixing fractional cover, and continuum removal of 

absorption features (Khanna et al., 2018). The polygons are randomly split into 50/50 

training and validation data. Class accuracies are evaluated using confusion matrices that 

report an overall accuracy, user’s and producer’s accuracies, and the Kappa statistic 

(Rosenfield and Fitzpatrick-Lins, 1986; Story and Congalton, 1986). The overall accuracy 

indicates the probability that the label of a pixel in the classified image agrees with 

validation data at the location. The user’s accuracy indicates the probability that an image 

pixel labeled as a certain class is that class at the field location. producer’s accuracy 

measures omission error – the probability that a predicted class matches the labeled 

reference data. The Kappa statistic (K) also indicates the level of overall agreement 

between the field data and the classification map, but it accounts for the probability of 

random agreement between the two datasets (Rosenfield and Fitzpatrick-Lins, 1986). 

Kappa values range from 0 to 1 with values greater than 0.5 indicating good agreement and 

values greater than 0.8 indicating exceptional agreement between the classification map 

and the validation dataset.  

We used these previously generated maps, associated accuracy assessments, and 

training and validation polygons to conduct a visual and percent coverage comparison 

between AIS and S2 aquatic vegetation maps. AIS maps range from nine to sixteen classes 

depending on the year and we adjusted the classes to match ours. Tule/cattail and 

phragmites were grouped together into EAV. Arundo donax (giant cane) was grouped with 

riparian vegetation because it is generally found on higher ground and levees adjoining 

channels. Floating vegetation such as Azolla, duckweed and pennywort were excluded 

from comparisons because they occupy less than 0.5% of mapped waterways. Non-

photosynthetic floating vegetation was grouped with NPV. The summer 2020 classification 

map identifies areas of water primrose encroachment into emergent marsh as a separate 

class “emergent primrose” (Ustin et al., 2021), which we did not re-assign as either water 

primrose or EAV.  

3.3 Sentinel-2 Image Classification  

3.3.1 Training and validation data 

Training and validation pixels were primarily selected from the same GPS points 

collected for AIS classification. Point locations of field observations were adjusted to 

match the courser resolution of Sentinel-2 by eliminating points in patches that were 

heavily mixed or too small to be detected at a 10 m spatial resolution. Since the boats used 

for data collection often record GPS locations at the edge of a patch due to potential 

propeller entanglement, observation points labeled extra-large or large (>10-15m) were 

spatially nudged to the nearest vegetation or water patch center visible in Sentinel-2 
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imagery. Water, soil and NPV locations were randomly sampled from training and 

validation polygons created for the AIS classifications. Additional points were added via 

photo interpretation from careful examination of Google Earth Imagery and 2017 LiDAR 

digital surface models. A separate adjustment was made for each of the three match-up 

images listed in Table 3-2, which resulted in a total of ~2,400 points available for selection 

during the classification experiments. Each class ranged from 80-120 points per date 

depending on class and not all points were marked as suitable for each match-up date. The 

water hyacinth class had the least amount of points across all dates because it occurs in 

small patches and occupies the least area of our target classes during the period of study. 

3.2.2 Sentiel-2 Random Forest Model Selection  

Following the AIS classifications process, we also used random forest to create our 

classifications. Random forest (RF) models are commonly used for remote sensing image 

classification across sites and sensors (Berhane et al., 2018; Magidi et al., 2021; 

Mahdianpari et al., 2017; Singh et al., 2020). Such models have been successful for aquatic 

vegetation mapping in the Delta using AIS data collected from both UAV and manned 

aircraft (Khanna et al. 2018, Bolch et al. 2021). Random forest is an automated algorithm 

that builds hundreds of classification tree models and then selects the most frequent 

solution (Breiman 2001). Although RF models often result in improved classification 

accuracies over other traditional image classification methods, they are sensitive to training 

data selection (Liaw and Wiener, 2002). To account for this issue and select the optimal 

RF model, different sets of labeled training and testing data were examined using a 

bootstrapped approach. For each match-up date, 100 RF models were built by randomly 

dividing points into 50% training and 50% independent test data. The ‘best’ performing 

RF model was selected based by first selecting ranking the models on overall accuracy, 

and then selecting a high overall accuracy model that also had high class-specific 

accuracies of target FAV classes. The ‘best’ performing model was then applied to the 

Sentinel-2 image. We chose to construct a separate model for each match-up date to align 

our classification process with the AIS classification process, ensuring a fair comparison. 

The models were constructed and evaluated using the caret (Kuhn, 2008) and 

randomForest (Liaw and Wiener, 2002) R packages. The model was built with default 

number of trees (ntrees = 500) (R Foundation for Statistical Computing, Vienna, Austria). 

The random forest model inputs included Sentinel-2 reflectance bands (Table 2) and nine 

spectral indices (Table 4). We selected these indices due to their correlation with plant 

biophysical properties and previously documented success in other aquatic vegetation 

classification models (Bolch et al., 2021; Hestir et al., 2008; S Khanna et al., 2018; 

Thamaga and Dube, 2018a). Similar to the AIS process, overall accuracy, user’s and 

producer’s accuracy and a K statistic were calculated for each date. The K was calculated 

to compare the two datasets, but was not used as a metric for best model selection due to 

its similar functionality to overall accuracy (Foody, 2020).  

 

Table 3-4. Vegetation and water indexes used in the Sentinel-2 classification process.  
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Index Formula Source 

NDVI 𝜌𝑁𝐼𝑅 −  𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 +  𝜌𝑅𝐸𝐷
 (Rouse et al., 1974) 

NDAVI 𝜌𝑁𝐼𝑅 −  𝜌𝐵𝐿𝑈𝐸

𝜌𝑁𝐼𝑅 +  𝜌𝐵𝐿𝑈𝐸
 (Villa et al., 2013) 

WAVI (1 + 𝐿)
𝜌𝑁𝐼𝑅 −  𝜌𝐵𝐿𝑈𝐸

𝜌𝑁𝐼𝑅 +  𝜌𝐵𝐿𝑈𝐸 + 𝐿
 

*Here, L = 0.5 

(Villa et al., 2014) 

SAVI (1 + 𝐿)
𝜌𝑁𝐼𝑅 −  𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 +  𝜌𝑅𝐸𝐷 + 𝐿
 

*Here, L = 0.5 

(Huete, 1988) 

NDVIRe2  𝜌𝑁𝐼𝑅 −  𝜌𝑉𝑅2

𝜌𝑁𝐼𝑅 +  𝜌𝑉𝑅2
 (Gitelson and 

Merzlyak, 1994) 

NDVIRe3 𝜌𝑁𝐼𝑅 −  𝜌𝑉𝑅3

𝜌𝑁𝐼𝑅 +  𝜌𝑉𝑅3
 (Fernández-Manso et 

al., 2016) 

NDWI 𝜌𝐺𝑟𝑒𝑒𝑛 −  𝜌𝑁𝐼𝑅

𝜌𝐺𝑟𝑒𝑒𝑛 +  𝜌𝑁𝐼𝑅
 (McFeeters, 1996) 

NDMI 𝜌𝑁𝐼𝑅 −  𝜌𝑆𝑊𝐼𝑅

𝜌𝑁𝐼𝑅 +  𝜌𝑆𝑊𝐼𝑅
 (Gao, 1996) 

MNDWI 𝜌𝐺𝑟𝑒𝑒𝑛 −  𝜌𝑆𝑊𝐼𝑅

𝜌𝐺𝑟𝑒𝑒𝑛 +  𝜌𝑆𝑊𝐼𝑅
 (Xu, 2006) 

 

3.3 Results  

3.3.1 Model Accuracies  

The Sentinel-2 and AIS performance by match-up date is summarized in Table 3-

5. S2 FAV genus-level RF models yielded overall accuracies of 87-90%. Water primrose 

had the highest producer’s accuracy from 91-96%, while water hyacinth had the second 

highest user’s accuracy ranging from 85-94%. Producer’s and user’s accuracies for SAV 

and water were above 90% for fall 2019 and summer 2020 and were slightly lower for fall 

2018, the S2 date with the highest tide (Table 3-2). Riparian vegetation had the lowest 

producer’s accuracy followed by water hyacinth. Riparian and emergent vegetation had the 

lowest user’s accuracies (74-85%). Although not listed in the tables below, Soil and NPV 

user’s and producer’s accuracies were between 93-100 %. These classes were mostly 

confused with each other or NPV was confused with vegetation pixels labeled as partially 

dry in the GPS field data. The primary source of confusion was between class pairs with 

similar spectral signatures: water primrose and water hyacinth, emergent and riparian 

vegetation, and water and SAV. Qualitative examination of imagery revealed that 
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misclassification commonly occurred at class boundaries and in smaller vegetation patches 

where pixels are more likely to be mixed. 

S2 overall accuracy results (87-90%) are just slightly below the overall accuracy 

reported for AIS maps (90-91%) (Table 3-5). S2 producer’s accuracies for water primrose 

91-96% were comparable with AIS producer’s accuracies of 91-94%, while user’s 

accuracies were lower 80-92% (S2) vs 89-95% (AIS). S2 water hyacinth had higher user’s 

accuracy than AIS in Fall 2018 and summer 2020. The EAV class had relatively lower 

producer’s and user’s accuracies for both S2 and AIS data at 77-68% and 61-88%, 

respectively. EAV has the lowest class accuracies for AIS, indicating that in some locations 

this class is difficult to detect even with high spatial and spectral resolution data. The 

riparian class had the greatest differences in accuracy between the two sets of imagery and 

S2 was always lower. SAV and water class accuracies were comparable between the two 

datasets. S2 had higher SAV and water accuracy in fall 2019, potentially because some 

AIS flightlines were acquired at higher tidal stages than S2 (Table 3-2). 

   

Table 3-5. Sentinel-2 and airborne imaging spectrometer classification performance by match-

up date. Overall accuracy = OA, Producer's accuracy = PA, User’s Accuracy = UA. SAV = 

submerged aquatic vegetation. Soil and non-photosynthetic vegetation (NPV) accuracies are not 

listed but were 93 – 100% and primarily confused with each other. 

 

Class Type of 

Accuracy 2018F 2019F 2020S 

  S2 AIS S2 AIS S2 AIS 

  OA (%) 87 91 89 90 90 90 

  Kappa 0.85 0.9 0.88 0.89 0.89 0.89 

Water 

Hyacinth 

PA (%) 79 86 78 94 80 88 

UA (%) 94 89 85 89 93 92 

Water 

Primrose 

PA (%) 91 94 94 95 96 91 

UA (%) 83 92 92 95 80 89 

Emergent 
PA (%) 82 83a|73b 81 83a|84b 86 85a|61b 

UA (%) 77 87a |83b
  79 87a|88b 86 81a|76b 

Riparian 
PA (%) 74 97 78 90 78 92 

UA (%) 80 94 75 90 85 84 

SAV 
PA (%) 86 91 90 79 96 91 

UA (%) 84 83 92 82 91 97 

Water 
PA (%) 88 91 92 84 90 99 

UA (%) 90 92 90 83 96 91 
a Tule/cattail class in AIS maps 
b Phragmites class in AIS maps 
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3.3.2 S2 Random Forest Variable Importance  

Figure 3-3 shows the random forest variable importance for S2 models: variables 

are ordered by the mean decrease accuracy considering all models. Spectral indexes were 

consistently ranked with high importance, along with the green spectral reflectance band 

followed by SWIR and NIR spectral reflectance bands (Figure 3-3). High importance of 

spectral indexes has been previously identified in other aquatic vegetation classification 

studies targeting floating vegetation (Bolch et al., 2021; Thamaga and Dube, 2018c). The 

NIR band contributes to separation of different FAV covers and emergent vegetation while 

the SWIR bands are critical to differentiating emergent and FAV from water (Khanna et 

al., 2011). Although ranked lower than most other spectral bands in our models, the red 

edge bands have reasonably high mean average decrease values indicating they were 

valuable to model performance. The two red edge indexes, NDVIre2 and NDVIre3, were 

the least important in all models. 

 

Figure 3-3. Variable importance for Sentinel-2 random forest models for each match-up date. 

Mean Decrease Accuracy (left) and Mean Decrease Gini (right). Variables are ordered by average 

decrease across all three models. Spectral indices consistently rank high in importance across all 

three model dates.  
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3.3.3 S2 and AIS genus-level map comparison  

Visual comparison in two sites 

Classification results between the two sensors were visually similar for all three dates 

throughout much of the Delta, here we show this by comparing 2019 Fall Sentinel-2 and 

AIS maps of Ward Cut and Rhode Island in Figure 4. We chose to display these two sites 

because they contain all study classes and exhibit a range of different vegetation patch sizes 

and shapes. Generally good agreement between maps is observed at the FAV genus level 

between locations of larger water primrose (yellow) and water hyacinth patches (purple); 

however, there are some thinner water hyacinth patches present in AIS maps that are 

undetected at the coarser S2 resolution (Figure 4A). The largest differences between the 

two maps result from EAV and riparian confusion and the detected SAV coverage relative 

to tidal stage during image acquisition (Table 2).  

 

Percent coverage comparison 

To characterize over- or underestimation of classes in S2 maps relative to AIS 

maps, we calculated the percent area each class occupied in both maps and subtracted AIS 

percent area from that of S2 in 4 key study sites and the Delta as a whole (Table 3-6). Thus, 

negative values in Table 3-6 indicate S2 underestimation while positive values indicate S2 

overestimation. Actual percent coverages are reported in Appendix 6 A1. We compared 

percent coverage rather than individual pixel agreement because the AIS maps have their 

own classification errors and reports to state agencies characterizing AIS mapping results 

primarily focus on percent coverage comparison across years. Similar to class accuracy, 

we only compare the five vegetation classes and open water.  

Water hyacinth percent coverage was overestimated compared to AIS for all 

comparisons except Ward Cut in fall 2018 and 2019 and Delta wide in fall 2019; however, 

the difference for all these sites was quite small (0.1-0.2 %). The largest differences in 

water hyacinth percent coverage were in Rhode Island (0.4 -1.8 %) and across the Delta in 

summer 2020 (0.4 %). Rhode Island fall 2019 maps are displayed in Figure 3-4 and show 

good matchup between medium and large patch locations and extent, despite having the 

largest percent coverage difference compared to AIS. 

Water primrose was underestimated relative to AIS in all locations except Big 

Break in fall 2019 (no difference), and Big Break and Liberty Island in summer 2020. 

Water primrose percent differences in summer 2020 are impacted by the additional 

emergent primrose class in AIS maps which was included to characterize areas of water 

primrose encroachment on emergent habitat (Khanna et al., 2018). Potential explanations 

for difference in water hyacinth and water primrose percent coverage are provided in the 

discussion. 

Emergent and riparian vegetation have relatively high percent coverage differences 

between datasets and exhibit a less distinct pattern of over- or under-estimation across years 

unlike the two FAV classes, although they appear to be inversely related, likely due to their 

class confusion. The largest difference between maps is S2 SAV underestimation and 
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consequently water overestimation in fall 2018 for Big Break (Table 3-6), which may be 

due to tidal height (Table 3-2).  

 

Figure 3-4. Ward Cut (top) and Rhode Island (bottom) comparison between Sentinel-2 and 

Imaging spectrometer maps. Shows good agreement at the FAV genus level between locations of 

larger water primrose (yellow) and water hyacinth patches (purple). Orange non-photosynthetic 

vegetation (NPV) patches on the edge of islands in 2019 AIS maps are patches of floating NPV 

which cannot be detected by S2 spatial or spectral resolution.  

 

 

Table 3-6. Difference in percent coverage between Sentinel-2 and airborne imaging 

spectrometer (AIS) classification maps for 4 sub study areas and Delta wide. AIS percent coverage 
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was subtracted from that of S2; therefore, negative values indicate S2 underestimation (blue), while 

positive values indicate S2 overestimation (yellow) relative to AIS maps.  

Date 
 Water  

Hyacinth 

Water  

Primrose 
EAV Riparian SAV Water 

2018

F 
Ward Cut -0.2 -0.3 -2.9 2.8 0.7 -2.1 

 Rhode  0.4 -6.5 -1.3 10.4 1.9 -5.2 

 Big Break  0.2 -0.8 -2.2 1.8 -31.5 32.1 

 Liberty 0 -0.5 -1.3 2.6 -2.2 2.7 

 Delta  0.2 -0.6 -2.7 2 -5.8 -0.5 

2019

F 
Ward Cut -0.2 -0.2 2.3 -2.6 -0.4 -0.1 

 Rhode  1.8 -1.9 -2.2 5.4 0.8 -2.1 

 Big Break 0.3 0 0.1 -1.1 6.7 -6.2 

 Liberty 0.2 -0.7 6.3 -6.8 7 -4.5 

 Delta -0.1 -0.3 4.1 -4.6 -2.4 0.1 

2020

S 
Ward Cut 0.4 -1.9* 2.5* 1.2* -2.7 -1 

 Rhode  1.1 -3.7* 1.1* 7.7* 7.4 -12.7 

 Big Break 0.3 0.6* -0.5* -0.4* -8 9.3 

 Liberty 0 1.1* 5.7* -3.1* 7.8 -8.3 

 Delta 0.4 -0.4* 5.3* -3.3* -0.4 -6.3 

* AIS emergent primrose class was not re-grouped as either primrose or emergent in S2 maps 

3.4 Discussion  

 RS classification of multiple FAV classes is sparse in the published literature, 

especially in complex aquatic systems such as the Delta. Most previous works target only 

a single floating invasive species or classify at the community level and are conducted in 

areas with low spatial variability and large contiguous patches making it easier to separate 

FAV species from other neighboring aquatic vegetation (Dogliotti et al., 2016; Thamaga 

and Dube, 2019; Villa et al., 2015). Previous studies in the Delta rely on airborne imaging 

spectroscopy (AIS) to separate different FAV covers (Bolch et al., 2021; Khanna et al., 

2011; Shruti Khanna et al., 2018). In order to determine if Sentinel-2 could be used to fill 

in AIS temporal gaps with acceptable detection of FAV at the genus level, we compare 

classification model accuracies (Table 3-5) and maps between the two datasets visually 

(e.g. Figure 3-4) and by difference percent class coverage (Table 3-6) and discuss 

dependence on patch size and within class variability relative to sensor spatial and spectral 

resolution and the influence of external factors such as tidal stage. We further compare 

differences for both summer and fall imagery to determine if S2 maps could be created for 

multiple dates throughout the growing season thereby enabling tracking of patch expansion 

and movement of these motile aquatic species. 

3.4.1 Model Accuracies  

Following a similar procedure to the near-operational AIS mapping in the Delta, 

we were able to achieve similar overall accuracies (OA) of 89-91% with S2 compared to 

90-92% of AIS while mapping the same classes – water hyacinth (species level), water 
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primrose (genus level), SAV, EAV, and riparian vegetation at the community level, and 

open water, soil and non-photosynthetic vegetation. Our overall S2 accuracies are also 

comparable to other multispectral RS studies which target 4 macrophyte classes and open 

water 90% (Villa et al., 2015; Wang et al., 2012) (although neither target multiple FAV 

classes). 

The average S2 class accuracy statistics for our target FAV classes – water hyacinth 

(PA: 79%, UA: 91%) and water primrose (PA: 95%, UA: 85%) are lower or comparable 

with AIS water hyacinth (PA: 89%, UA: 90%) and water primrose (PA: 93%, UA: 93%). 

Our performance is also better than, or in line with, other Sentinel-2 studies targeting water 

hyacinth, which achieved user’s accuracies of 75-89 % and producer’s accuracies 61-94% 

using random forest models (Thamaga and Dube, 2018a, 2019). To our knowledge, this is 

the first study to demonstrate water primrose mapping using multispectral satellite remote 

sensing; therefore, we are unable to compare class specific accuracies to other sites, but 

generally our accuracies were quite high. 

The spatial resolution of the data relative to target patch size influences the 

detection capability of the classifiers, and subsequent differences in percent coverage 

calculated from Sentinel 2. Generally, larger pixel sizes lead to poorer accuracy statistics, 

though the relationship is not linear; the effect of pixel size on accuracy is dependent on 

the heterogeneity of the landscape and the design and geolocational precision and accuracy 

of field data (Frazier, 2015; Knight and Lunetta, 2003). Spatial resampling S2 bands of 

varying spatial resolution to 10 m may have further impacted the ability to detect small 

scale features. Nearest neighbor resampling is recommended to be both computationally 

efficient while best preserving pixel spectral information (Roy et al., 2016) and has been 

shown to be suitable S2 land cover classification (Zheng et al., 2017). More specialized 

downscaling algorithms could be explored in future research, although the effects of 

downscaling on classification accuracy are highly variable (Morrison et al., 2019; 

Vanderbilt et al., 2007). The pixel size influence on accuracy was minimized in this study 

through the field data collection and curation process, which paid special attention to patch 

size relative to the spatial resolution of the two RS datasets. Unfortunately, this same data 

design process may have possibly introduced lower quality training data into the models 

resulting in confusion between water hyacinth and water primrose and EAV and riparian 

vegetation. AIS observations indicate that water hyacinth patches are commonly 

interspersed with or surrounded by water primrose; therefore, patches labeled as majority 

water hyacinth in the field data may contain enough water primrose coverage to influence 

the spectral signature at the S2 pixel size. EAV commonly forms narrow patches which are 

difficult to photo-interpret and observe in the field due to logistical challenges associated 

with access and plant density and height obscuring field observations. This poses an issue 

particularly for S2 discrimination because at coarser spatial resolutions it becomes even 

more difficult to separate emergent vegetation from the riparian vegetation located directly 

behind it. It is recommended that future field data collection focus on building training 

datasets of large and heterogenous aquatic vegetation patches and better characterization 

of fractional cover and patch sizes relative to S2 pixel size. 



 

 

69 

3.4.2 Percent coverage comparison: Differences between S2 and AIS and S2 

limitations  

The primary differences between visual and percent coverage difference between 

S2 and AIS (Table 6) are likely caused by mixed pixels at class boundaries, AIS ability to 

resolve additional classes and flexible acquisition timing to control for environmental 

factors such as tidal stage. For example, as pixel size increases, the likelihood of a mixed 

pixel containing several different target classes also increases. This has several variable 

effects on the final mapping products. Mean patch size has been shown to increase as pixel 

size increases (Saura 2002). Sparse and rare classes and smaller patches decrease in 

abundance, or are not detected at all, while abundant classes tend to become more abundant 

and overestimated (Morrison et al. 2019, Bolch et al. 2021). Overall, each pixel will be 

assigned to the majority class, which can cause identified areas to be larger or smaller in 

the Sentinel-2 imagery due to pixel size rather classifier performance. 

3.4.3 Percent coverage of FAV classes  

Our S2 maps matched well with AIS maps visually (Figure 3-4), but our areal 

comparison analysis indicated that S2 classifiers generally overestimated water hyacinth 

and underestimated water primrose area relative to AIS (Table 3-6). Infrequent classes 

with small patches, such as water hyacinth, are actually expected to be underestimated 

since small patches are likely to be undetected at coarser spatial resolutions – this was 

exhibited for certain patches, for example the long and thin patch in Ward Cut is missed 

by S2 (Figure 3-4). However, under-detection of small and narrow water hyacinth patches 

is outweighed in percent coverage estimates because of S2 pixel size, confusion with 

riparian vegetation due to similar spectral signatures in multispectral space (Figure 3-5), 

and ‘sporadic’ misclassification likely due to other mixed pixels or within class spectral 

variability not accounted for in the training dataset. This confusion could be reduced with 

higher spectral resolution data, as it enables spectral unmixing of spectrally complex and 

similar classes (Hestir et al., 2008; Khanna et al., 2012). However, even previous AIS 

studies in the Delta found some confusion between these classes (Khanna et al. 2012). 

These studies reduced misidentification of riparian vegetation as water hyacinth by creating 

a riparian mask based on spatial information regarding wetland and channel configuration 

derived from ancillary GIS layers and LiDAR data, which we recommend for future studies 

(Khanna et al., 2012).  

Water primrose coverage was likely underestimated due to S2 mixed pixels at class 

boundaries exemplified in Figure 3-6, which shows patch edges that are more likely to be 

mixed with water or SAV are classified as emergent or riparian vegetation in S2 imagery. 

Such effects are more pronounced for water primrose patches than water hyacinth because 

water primrose shares a larger interface with other classes due to its dominance in the 

system. In recent years, water primrose has rapidly increased in abundance and distribution 

in the Delta, and several regions across the Delta have experienced marsh encroachment of 

water primrose, where water primrose has been “terrestrializing” and creeping up on top 
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of emergent reeds (Khanna et al. 2018). The AIS summer 2020 maps label this as a separate 

class (“emergent primrose”), but S2 does not have the spectral or spatial resolution required 

to do so. Instead, S2 identifies the dominant class representing whichever vegetation is on 

top of the heterogeneous 3D structure, thereby resulting in percent coverage differences 

that are not directly related to misclassification.  

 

 

Figure 3-5. Spectral response of a riparian vegetation pixel that was misclassified as water 

hyacinth and a water hyacinth pixel.  
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Figure 3-6. Comparison of the impact of limited spatial resolution in S2 data using water 

primrose patches. Coarse pixel resolution is more likely to cause misclassification at class 

boundaries due to pixel mixing. 

3.4.4 Impact of environmental conditions: tidal stage 

Other large mismatches in visual and percent area assessments occurred for the SAV and 

water classes, these differences are likely explained by differences in tidal stage during 

image acquisition rather than S2 misclassification. Figure 3-8 explores the impact of tide-

stage mismatch between datasets more extensively by comparing a good tidal match-up 

date (fall 2019) with one of lesser quality (fall 2018). Fall 2018 Sentinel-2 acquisition 

occurred during a flood tide, which impedes detection of full SAV extent. Fall 2019 

Sentinel-2 acquisition occurred at a low tide and shows a much closer match-up between 

S2 and AIS maps. This indicates that SAV is detectable with Sentinel-2, but images should 

be selected at low tide to reduce the impacts of water height and increased turbidity, which 

inhibit detection of the full extent for SAV coverage. Such an approach would mirror the 

current operations for AIS-based SAV mapping, which only acquires data during periods 

of low tide and during times of the day that avoid effects from sunglint (Khanna et al. 2018, 

Hestir et al. 2008). Tidal stage did not strongly impact FAV mapping because the leaves 

are above the water column hence spectral reflectance is not affected by tidal stage. Both 

water hyacinth and water primrose exhibit a good visual match and smaller quantitative 

differences as listed in Table 3-6.  
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Figure 3-7. Tidal stage comparison for fall match-ups at Big Break. Fall 2018 Sentinel-2 

acquisition occurs during a flood tide which impedes detection of full SAV extent. Fall 2019 

Sentinel-2 acquisition occurs at a low tide and shows a much closer match-up between S2 and 

imaging spectrometer maps. 

3.4.5 Sentinel-2 characteristics that enable differentiation between FAV classes 

and the neighboring vegetation 

The detection of water hyacinth and water primrose in this spatially complex system 

of wetlands was possible due to the 10-20m pixel size of S2 images and the moderate 

spectral resolution. While some previous multi-spectral RS studies targeting water 

hyacinth detection have successfully used Landsat (30m pixels; 7 bands),– (Singh et al., 

2020)– these studies occurred in simpler systems with fewer target species. Thamaga and 

Dube (2018b) compared the performance of Landsat and S2 and determined that S2 

resulted in higher class accuracies. In an environment as spatially complex as the Delta, 
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the 10 m spatial resolution of S2 supports water primrose and water hyacinth detection 

because these vegetation patches are generally small (~40-60 m) wide with few large 

patches (90-100 m). Large patches would be contained within a single 30m pixel, but 

smaller patches would not.  

Spectral resolution and range also play important roles in FAV separation. Although 

the three S2 red-edge bands were not ranked as high as several spectral indexes or spectral 

bands in S2 RF model variable importance, the mean decrease accuracy values (~20%) 

suggest that the red edge bands still played an important role in class discrimination. The 

importance of the red edge bands to aquatic vegetation classification has been 

demonstrated in other studies (Thamaga and Dube, 2018c; Tian et al., 2020). These works, 

like ours, determined that spectral indexes and other VSWIR spectral bands are more 

important to classification accuracy than red edge bands, but this does not negate the 

usefulness of these additional S2 bands. However, red edge indices were consistently 

among the least important variables, their importance has varied in other aquatic vegetation 

classification studies (Amani et al., 2018; Tian et al., 2020). Additional testing is 

recommended to determine if these red edge indexes could be excluded in future models. 

Spectral range is also an important consideration. The SWIR region, and spectral indexes 

calculated with SWIR bands were important for RF model performance. Previous work 

has also documented the importance in the SWIR region for discriminating aquatic 

vegetation from water (Hestir et al. 2012, Khanna et al. 2012).  

3.5 Conclusions  

Analysis of Sentinel-2 classifications maps demonstrates two types of invasive 

floating aquatic vegetation, water hyacinth and water primrose, can be distinguished in 

heterogeneous wetlands during summer and fall. Our results indicate that Sentinel-2 

imagery can supplement AIS mapping efforts by filling temporal gaps and enabling 

studying of annual and intra-annual changes in FAV community composition as a response 

to environmental or anthropogenic disturbance events. Extensive time series will in 

particular enhance the understanding of invasion processes. Future research should 

investigate differences in spring and winter and incorporate a riparian vegetation mask to 

reduce misclassification of floating vegetation. Further, the near-operational pipeline 

developed during this study will lead to an operational mapping pipeline for generating 

wetland vegetation maps for California agencies that enable new methods of management 

and monitoring to identify where aquatic invasive species control is effective. 
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3.7 Appendix 

A1. Percent coverage 
Table A1. Percent coverage of each class by sensor  

 

Date 

 
Water 

Hyacinth 

Water 

Primrose 
Emergent Riparian SAV Water 

  S2 AIS S2 AIS S2 AIS S2 AIS S2 AIS S2 AIS 

2018 Ward Cut 1.2 1.4 5.0 5.3 14.7 17.6 10.3 7.5 19.5 18.8 39.6 41.7 

 Rhode  5.0 4.6 32.3 38.8 4.1 5.4 14.7 4.3 19.1 17.2 22.2 27.4 

 Big Break  1.5 1.3 5.6 6.4 11.0 13.2 7.7 5.9 19.1 50.6 51.8 19.7 

 Liberty  0.3 0.3 1.9 2.4 21.9 23.2 7.2 4.6 24.2 26.4 42.1 39.4 

 Delta  0.9 0.7 1.6 2.2 11.8 14.5 7.5 5.5 13.6 19.4 49.9 50.4 

2019 Ward Cut 1.4 1.6 6.0 6.2 14.2 11.9 10.8 13.4 13.6 14.0 45.0 45.1 

 Rhode  5.8 4.0 30.0 31.9 6.0 8.2 17.4 12.0 15.6 14.8 22.4 24.5 

 Big Break 0.7 0.4 6.6 6.6 12.0 11.9 6.8 7.9 53.4 46.7 17.3 23.5 

 Liberty  0.4 0.2 1.6 2.3 25.5 19.2 5.5 12.3 33.2 26.2 32.4 36.9 

 Delta 0.6 0.7 1.7 2.0 15.7 11.6 6.1 10.7 15.5 17.9 47.2 47.1 

2020 Ward Cut 2.0 1.6 5.0 6.9 13.3 10.8 13.2 12 14.9 17.6 41.8 42.8 

 Rhode  6.0 4.9 30.7 34.4 6.0 4.9 30.7 34.4 6.0 4.9 30.7 34.4 

 Big Break 1.4 1.1 5.9 5.3 12.2 12.7 7.6 8.0 42.6 50.6 27.1 17.8 

 Liberty 0.5 0.5 1.9 0.8 25.3 19.6 5.9 9.0 38.1 30.3 26.1 34.4 

 Delta 1.4 1.0 1.5 1.9 15.4 10.1 6.9 10.2 13.1 13.5 47.5 53.8 
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4. Chapter 3: Priority effects, niche breadth and 

environmental plasticity of invasive floating aquatic 

vegetation phenology revealed by satellite remote 

sensing* 
 

Abstract 

Phenology may play an important role in the success of invasive aquatic vegetation 

species, which can be explained by four ecological theories- vacant niche, priority effects, 

niche breadth, and plasticity. In order to understand the link between growth cycles and 

invasions in aquatic ecosystems, we analyzed Sentinel-2 derived phenology metrics of 

competing invasive floating vegetation, water primrose (Ludwigia spp) and water hyacinth 

(Eichhornia crassipes) and emergent macrophytes at the community level in the 

Sacramento San Joaquin Delta. Results show that water primrose has the earliest start of 

the growing seasons, higher rates of increase and decrease, longer growing seasons and 

later end dates than water hyacinth or emergent vegetation, thereby, providing examples of 

priority effects, niche breadth and environmental plasticity. We also noted several spatial 

patterns and within-class variability, which highlights the need for spatially resolved 

phenology metrics, especially in spatio-temporally complex areas like wetlands. Our 

results help to shed light on the link between phenology dynamics and invasion processes 

and contribute to the development and prioritization of spatial management strategies using 

remote sensing. 
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4.1 Introduction 

Phenology, the timing of growth, plays an important role in structuring population 

and community dynamics as it influences resource access, mating success, vulnerability to 

herbivores, and competition (Thackeray et al., 2016; Visser and Both, 2005; Wolkovich 

and Cleland, 2014). Differences in phenology of invasive species relative to native species 

can enhance their ability to capture and utilize resources, which may change under 

projected climate-change and disturbance regimes (Piao et al., 2019; Wolkovich and 

Cleland, 2014, 2011). The link between phenology and invasion success can be explained 

by four non-mutually exclusive hypotheses proposed by Wolkovich and Cleland, 2011, all 

of which may be impacted by global warming: vacant niche, priority effects, niche breadth, 

and plasticity. 

These mechanisms of invasion related to phenology are currently underexplored 

for aquatic plant communities (Fleming and Dibble, 2015). Some studies have compared 

the phenology of invasive aquatic species relative to native species and their phenological 

response to warming within submerged (Calero and Rodrigo, 2019; Verhoeven et al., 

2020), floating (Peeters et al., 2013) and emergent communities (Alahuhta et al., 2011; 

Harms and Cronin, 2021), while others examined relationships across multiple growth 

forms (Gillard et al., 2021). However, the vast majority of studies are focused on in-situ 

observations of vegetation density and biomass; therefore, they are not generalizable across 

large spatial and temporal scales. The ability to map key phenological metrics, such as 

start, duration, and end of the growing season, with spatial and temporal continuity would 

enhance our understanding of aquatic vegetation community invasion and the responses of 

different plant community types or species environmental characteristics and drivers of 

change (Dronova et al., 2021; Pinardi et al., 2021; Tóth et al., 2019) 

Remotely sensed (RS) phenology metrics have already provided key insights on 

ecosystem sensitivity to climatic fluctuations, shifts in species composition, and general 

ecosystem health (Piao et al., 2019; Richardson et al., 2013). However, most of these 

studies are focused on terrestrial ecosystems and there is less information available about 

extracting RS phenology metrics in aquatic ecosystems. Although, there are RS studies 

centered around aquatic vegetation phenology they primarily focus on improving 

classification map accuracy (Ai et al., 2017; Luo et al., 2016; Sun et al., 2021; Wang et al., 

2012), extract phenology metrics at the community level (Dronova et al., 2021; Miller et 

al., 2021; Taddeo and Dronova, 2020), or occur at too large of spatial scales to monitor 

smaller scale invasions process (O’Connell et al., 2017; Zhao et al., 2009). 

The sparsity of aquatic RS phenology studies is related to the spatial and temporal 

heterogeneity of wetland environments, and a long-standing mismatch between the sensor 

resolution requirements for observing these ecosystems and actively available sensors. 

However, recent advancements provided by the high temporal resolution and spatial 

resolution of Sentinel-2 enabled researchers to map RS derived phenology metrics in 

aquatic systems and link these variables to species invasions. Villa et al., 2018 and  Tóth 

et al., 2019 derived seasonal dynamics in a shallow freshwater lake using Sentinel-2 and 

determined that Ludwigia hexapetala may have phenological advantages over native 

floating species. Specifically, it was observed that L. hexapetala has a longer growth season 
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than native species by extending growth longer into the fall – providing an example of 

niche breadth. Several studies have confirmed that Ludwigia spp. has high morphological 

and seasonal plasticity, which allows it to tolerate and efficiently colonize over a broad 

range of environmental conditions (Lambert et al., 2010; Thouvenot et al., 2013). It is 

unknown if the results and approach by Tóth et al. 2019 apply to other aquatic ecosystems 

invaded by water primrose, such as the Sacramento San-Joaquin Delta in California. 

Additionally, there are no previous studies examining invasive floating aquatic species 

interactions in a tidally influenced system using RS phenology metrics.  

The Sacramento San-Joaquin Delta is the largest tidal freshwater estuary in the 

western United States and is heavily invaded by water primrose (Ludwigia spp.) and water 

hyacinth (Eichhornia crasspies). Water primrose increased in coverage four-fold in the 

Sacramento San Joaquin Delta (The Delta, henceforth), replacing water hyacinth as the 

most dominate floating invasive species, between 2004 and 2016 as observed by airborne 

imaging spectroscopy (AIS) (Khanna et al 2018). Two growth forms, aquatic and 

terresterialized, extend the adaptive capabilities of water primrose by allowing it to first 

populate open water and when running out of suitable habitat, the terrestrialized form can 

invade regions of emergent vegetation (Khanna et al. 2018). Spatially resolved maps of 

phenology dynamics may be able to provide more information about underlying 

mechanisms of the invasion process related to phenology and the more recent success of 

Ludwigia spp, as well as, providing management with information on concerning timing 

of pesticide treatments.  

The objective of this work is to use RS derived phenology metrics to quantitatively 

examine differences in phenology for competing invasive floating aquatic vegetation at the 

genus level, water hyacinth and water primrose, and emergent vegetation at the community 

level in the Delta. And assess how these differences may be influencing the invasion 

process in the Delta relative to the four hypotheses delineated in Figure 1.  

We hypothesize that: 1) The relationship between water primrose and emergent 

vegetation may show an example of niche breadth and priority effects based on the works 

of Tóth et al., 2019 and Khanna et al., 2018. 2)  The relationship between water primrose 

and water hyacinth may demonstrate priority effects or niche in favor of water primrose 

based on estimates Tóth et al., 2019 and observations of water hyacinth growth in the Delta 

by (CDBW, 2012).  

4.2 Study Site 

The Sacramento San Joaquin is the largest tidal freshwater estuary in the western 

United States, spanning approximately 2220 km2 in Northern and Central California 

(Figure 4-1). It is a heavily managed system including complex waterways and several 

flooded islands that support lake-like and wetland environments. The Delta is also one of 

the most invaded ecosystems in the world, and the spread and persistence of invasive 

aquatic vegetation species has been determinantal to water quality, water pumping and 

native species (DBW, 2019; Jetter et al., 2018). 

Aquatic vegetation in the Delta consists of three plant community types: floating, 

emergent and submerged. The majority of the floating aquatic vegetation community is 

comprised of competing invasive species - water primrose and water hyacinth (Ustin et al., 

2021). Water hyacinth and water primrose are in the top 200 invasive aquatic plants 
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globally (Cronk and Fuller, 2014). Water primrose, although nominally rooted, forms 

floating canopies (Rejmánková, 1992). Water hyacinth is a free-floating aquatic 

macrophyte – often anchoring itself to nearby emergent vegetation (Penfound and Earle, 

1948). The emergent vegetation community in the Delta primarily consists of two cattail 

species (Typha latifolia and Typha angustifolia) and two tule species (Schoenoplectus 

acutus and Schoenoplectus californicus) and their hybrids, and the invasive Phragmites 

australis (Khanna et al., 2012). While invasive submerged aquatic vegetation is highly 

prevalent in the Delta, it was excluded from analysis because detected changes in RS 

phenology metrics dynamics would likely reflect changes in water height rather than 

vegetation growth.  

Although statistics are reported Delta wide, our analysis and visualizations focus 

on three study sites, Liberty Island, Rhode Island, and Lower Sherman Island, which are 

representative of a range of hydrological and environmental characters present in the Delta 

(Figure 4-1).  

Lower Sherman Island is located at the confluence of the Sacramento and the San 

Joaquin Delta and is the most tidally influenced of the three sites. This area receives a 

considerable amount of freshwater input and has low salinity during wet years and high 

inflow periods (winter), but during dry years and summer becomes brackish (8,000 to 

10,000 µS/cm) (Tuxen et al., 2011).  

Rhode Island is a small partially submerged island located along Old River in the 

central Delta. Between 2004 and 2017 there was a major shift from submerged aquatic 

community to floating aquatic community (Ustin et al., 2017). Between 2015 to 2019, 

water primrose dominated the area, likely due to a reduction in water hyacinth from 

treatment (Ustin et al. 2021). This site was selected because it is one of few areas with large 

persistent water hyacinth patches. 

Liberty Island is a naturally restored freshwater shallow tidal wetland created by 

flooding a reclaimed agricultural tract. The emergent marsh forms triangular areas that are 

separated by the original roads between agricultural fields. Differences in stream flow, tidal 

exposure, elevation have facilitated emergent vegetation to recolonize more rapidly in 

northern and western portions of the island than the eastern side (Whitley and Bollens, 

2014). Water primrose has been documented in the area for at least two decades, but has 

substantially increased its coverage since 2004, and in recent years has been encroaching 

on emergent marsh habitats (Khanna et al. 2012, Khanna et al. 2018).  
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Figure 4-1. The three sub study areas in the Delta. 
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4.3 Methods  
4.3.1 Acquisition and pre-processing of Sentinel-2 Imagery 

All Level-1C top of atmosphere (TOA) reflectance products from 2018–2020 of the 10SFH 

Sentinel-2 tile with cloud cover less than 25% were downloaded from the European Spacy 

Agency Copernicus Hub. Following additional cloud screening and quality control, 79 

dates were atmospherically corrected to Level-2A bottom of atmosphere (BOA) 

reflectance using Sen2cor v2.8. (Figure 4-2) Sentinel-2A and 2B collect information in 13 

spectral bands at 10, 20, and 60 m resolutions (Table 4-1). Here, only bands collected at 

the 10 m spatial resolution were used. The 10,000 scale factor was applied and any pixels 

with reflectance greater than 1 were marked as NA.  

 

 

Figure 4-2. Sentinel-2 image dates used in time series analysis.  

Table 4-1. Sentinel-2 band characteristics. Asterisk indicates band was used in vegetation 

index calculation.  

 
Sentinel-2 Bands Wavelengths 

(μm) 

Spatial 

Resolution (m) 

Band 2-Blue* 0.440-0.538 10 

Band 3-Green* 0.537-0.582 10 

Band 4-Red* 0.646-0.684 10 

Band 8-NIR* 0.733-0.908 10 

 

4.1.1 Seasonal Dynamics Maps 

Variations in the vegetation growth cycle are manifested in changes of spectral 

indicators, vegetation indexes (VIs), of plant greenness (Gu et al., 2003; Richardson et al., 

2013). Here, we report findings using the Enhanced Vegetation Index (EVI), which 

indicates vegetation abundance based on the ratio of red light absorbed by plant chlorophyll 
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and near infrared light reflected by cells in the spongy mesophyll, while correcting for soil 

background and atmospheric effects (Huete et al., 2002). EVI was selected due to its wide 

use in RS phenology studies (Klosterman et al., 2014; Toomey et al., 2015) and previous 

use in Delta phenology studies (Dronova et al., 2021; Miller et al., 2021), including field-

based studies which indicated a higher correlation between EVI and biomass than other 

VIs (Knox et al., 2017). 

 

EVI =  2.5
𝜌𝑁𝐼𝑅 −  𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 +  𝐶1 ∗ 𝜌𝑅𝐸𝐷 −  𝐶2 ∗ 𝜌𝐵𝐿𝑈𝐸 + 𝐿
C1 =  6;  C2 =  7.5;  L =  1

 

Eq 1. Enhanced vegetation index.  

 

Quantitative maps of phenology metrics were derived for each year 2018 – 2020 using 

TIMESAT (Eklundh and Jönsson, 2015). TIMESAT enables users to input VI time series 

and select a model fitting function from which phenology metrics can be extracted (Figure 

4-3). Five TIMESAT metrics of seasonal dynamics were considered: 1) start of the growing 

season (SoS, expressed as the day of the year: DOY), 2) end of the growing season (EoS), 

3) length of growing season (LoS), 4) rate of increase during early growth (Growth rate), 

and 5) rate of decrease during senescence (Senescence rate) (Figure 4-3, Table 4-2).  

Following Villa et al. 2020, TIMESAT was set to run with no spike filtering, 

asymmetric Gaussian curves as the fitting method, with two iterations envelope fitting (Gao 

et al., 2008; Villa et al., 2018), and start date and end date were defined as 0.5 of the 

seasonal amplitude. The minimum index value was set to 0 and all missing dates were 

filled with void layers (value = -1) that were assigned a weight of 0 during the fitting 

process.  

 

 

 

Figure 4-3. Metrics of seasonal dynamics derived from EVI time series using TIMESAT (a) 

Start of growing season (SoS), (b) end of growing season (EoS), (c) length of growing season, (d) 
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Growth rate at beginning of season, (e) Senescence rate at end of growing season. Grey dots 

represent EVI derived from satellite time series for a single water hyacinth pixel in Rhode Island. 

Black line represents the fitted asymmetric gaussian curve calculated by TIMESAT. Figure adapted 

from (Eklundha and Jönsson, 2017). 

Table 4-2. Phenology metrics extracted from TIMESAT and corresponding definitions.  

Phenology parameter Definition  

Start of the growing season (SoS)  Day of year for which the left edge has increased to a user 

defined threshold (here 0.5) of the seasonal amplitude measured 

from the left minimum level.  

End of the growing season (EoS) Day of year for which the right edge has decreased to user 

defined threshold (here 0.5) of the seasonal amplitude measured 

from the right minimum level. 

Length of growing season (LoS) Time from the start to end of the season (number of days) 

Rate of increase at the beginning of 

the growing season (Growth rate) 

The ratio of the difference between the left 20% and 80% levels 

and the corresponding time difference 

Rate of decrease at the end of the 

growing season (Senescence rate) 

The ratio of the difference between the right 20% and 80% levels 

and the corresponding time difference (positive value) 

4.3.3 Vegetation regions of interest statistical analysis  

Phenology metrics were extracted for water hyacinth, water primrose, and emergent 

vegetation across the three years and statistical differences between groups were evaluated 

(Figure 4-4). Floating aquatic vegetation genus-level classification maps (described in 

Chapter 2) were used to create regions of interest (ROIs) for these three vegetation classes. 

To reduce the influence of mixed pixels and misclassified pixels in comparisons, all maps 

were converted to a polygon layer and buffered inwards by 10 meters using ENVI 5.5 and 

R 4.3.1, respectively. Through this process most riparian vegetation pixels that were 

misclassified as water hyacinth were removed. For regions where the buffer eliminated 

most emergent vegetation pixels (e.g Rhode Island), additional polygons were added using 

classification maps and expert knowledge of the area. Pixels with start dates greater than 

190 days were removed, as this suggests the pixel was not vegetated for over half the year. 

These pixels typically corresponded to floating vegetation facing the SAV/water edge, 

which may indicate areas of new growth. 

Statistical analysis of median differences between vegetation classes, sites and 

years, was preformed using R v.4.1.3 with FSA v0.9.3and rcompanion v2.4.15 packages. 

Due to non-normality of samples, multivariate differences within years were tested using 

Kruskal-Wallis One Way Analysis of Variance on Ranks. Post-hoc pairwise multiple 

comparisons were performed using Dunn’s test and adjusted p-value scores were calculated 

using the Benjamin-Hochberg method (Dunn, 1964). Effect size of pairwise sample 

differences between vegetation classes were calculated using Vargha and Delaney’s A 

(VDA) (Vargha and Delaney, 2000). VDA scores range from 0 to 1, where 0.5 indicates 

the two groups are stochastically equal while and extreme values indicate dominance of 
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one group over the other. VDA values less than 0.29 and greater than 0.71 indicate large 

effects.  

 

 

 
 

Figure 4-4. Example of TIMESAT extracted start dates and end dates throughout the three-

year time series for water primrose (green), water hyacinth (purple), and emergent vegetation 

(orange). Large dots on the left side of curves represent TIMESAT extract start dates while those 

on the right indicate end dates.  

4.4 Results 

Maps of macrophyte seasonal dynamics derived from 2020 for Liberty Island, Rhode 

Island, and Sherman Island along with classification maps from Chapter 2 are shown in 

Figure 6. additional maps for the remaining years are shown in supplementary materials by 

site (4A-1, 4A-2, 4A-3). Figure 4-6 and Figure 4-7 display violin plots of extracted metrics 

from vegetation ROIs across the three sites and for all water ways, respectively. Estimated 

phenology metrics differed across aquatic vegetation groups, sites and years with notable 

spatial patterns. 

Across all years and sites water primrose had the earliest median start dates ranging 

from late March to early May (83- 123 DOY), followed by emergent vegetation from mid-

April- May (109-135 DOY) and water hyacinth mid-May- early June (129-159 DOY). 

Median rates of increase were also highest for water primrose (0.059-0.104) followed by 

water hyacinth (0.027-0.052) and emergent vegetation (0.014-0.025), indicating water 

primrose not only starts greening earlier, but faster. Median EoS dates were later for water 

primrose (313-362 DOY) than water hyacinth (306-341 DOY) and emergent vegetation 

(291-307 DOY). EoS dates were more similar between water hyacinth and water primrose 

than other phenology metric. Differences in rate of decrease were smaller between classes 

than those in rate of increase, but water primrose patches senescenced more rapidly even 
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though they have a later EoS. Resulting from both earlier SoS and later EoS dates, water 

primrose also had the longest growth cycle (214-238), followed by water hyacinth (179-

209) and then emergent vegetation (153-182).  

Some within class variation in statistical comparisons may stem from misclassification 

or mixed pixels. Although the influence of mixed pixels was minimized by creating a 10 

meter inward buffer, the two floating classes are mobile and may shift throughout the 

season resulting in poorly fitted curves or pixels with mixed phenologies (Chen et al., 

2018). Classification maps from 2020 may be better aligned with vegetation patches 

because they are derived from summer rather than fall imagery.  

Spatially, emergent vegetation community had the highest variability across all metrics, 

which is expected as it is comprised of more species than either of the two floating classes 

and occupies the largest area (Ta et al., 2017). Water primrose also exhibited spatial 

differences within patches, which were most evident in Rhode and Liberty Island (Figure 

6). For several primrose patches, the outer edge had earlier EoS dates, higher rates of 

increase and decrease, and longer growing seasons. Some of the variability within both 

classes may be related to documented encroachment of water primrose into tule and cattail 

marshes (Khanna et al. 2018). These areas may lead to possible overlaps in the ROI 

extracted phenology metrics of water primrose and emergent vegetation.  

Rhode Island is the only site that clearly depicts water hyacinth patches and differences 

are most visible for SoS and rate of increase. Length, rate of decrease, and EoS also show 

detectable differences, but water hyacinth and the inner group of water primrose more 

closely resemble each other (Figure 4-5). Although not clearly visible in Sherman and 

Liberty Island maps, extracted statistics for water hyacinth patches show a similar pattern 

across all sites which further confirmed by the results across the Delta (Figure 4-7). Water 

hyacinth in these two areas generally occurs in thinner patches, which are more likely to 

be influenced by neighboring pixels resulting in mixed phenologies or poor curve fits 

possibly explaining the higher variation in extracted metrics.  

 All results were statistically significant with a p-value less that 0.05 except for 

comparisons between water primrose and water hyacinth for 1) Liberty Island rates of 

increase and decrease in all years and 2018 EoS, 2) Sherman Island 2018 EoS, rate of 

increase and decrease, and water hyacinth and emergent vegetation length for Rhode Island 

2020. This was reflected in the VDA analysis for Sherman 2018 end (0.557) and Liberty 

Island 2018 rate of increase (0.599). 
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Figure 4-5. The classification map and five phenology metrics extracted for Sherman Island, 

Rhode Island, and Liberty Island for 2020.  
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Figure 4-6. Violin plots with encompassed box plots of seasonal dynamics across the Sherman 

Island, Rhode Island, and Liberty Island for  water primrose, water hyacinth, and emergent 

vegetation from 2018 – 2020.  
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Figure 4-7.Violin plots with encompassed box plots of seasonal dynamics across the Delta for  

water primrose, water hyacinth, and emergent vegetation from 2018 – 2020.  
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4.5 Discussion  

Phenology metrics derived from satellite RS provide a synoptic view of vegetation 

growth dynamics and can substantially improve our knowledge of the link between 

vegetation phenology and aquatic species invasion. However, studies focused on RS based 

phenology metrics are limited for aquatic macrophytes. Here, we mapped phenology 

metrics using TIMESAT for a three year Sentinel-2 timeseries and used previously created 

classification maps (Chapter 2) to compare derived phenology metrics for water primrose 

and water hyacinth at the genus level and emergent vegetation at the community level. We 

discuss our results in relation to other aquatic RS phenology studies and then frame our 

results in context of the four phenology niche theories- vacant niche, priority effects, niche 

breadth, plasticity and climate presented by Wolkovich and Cleland 2011. 

4.5.1 Selective comparison to prior RS studies  

As discussed in the introduction, Toth et al provides an example of niche breadth as a 

mechanism of invasion between two floating species in a freshwater site. We compare our 

results to see if we see similarities. Specifically, one species of water primrose (Ludwigia 

hexapetala) had later EoS and thus a longer growing season than other native floating 

species by 40 – 60 days thereby providing it with a phenological advantage (Tóth et al., 

2019). Although the locations and abundance of specific water primrose species is not well 

documented in the Delta, we compare our SoS, length, and EoS metrics to those reported 

by Tóth et al. 2019. Overall, our results have higher variability in all extracted phenology 

metrics, which may relate to local or yearly environmental conditions or reflect variation 

and abundance of different water species. Liberty Island, our most freshwater site, had 

median SoS of 114-123 DOY which was in line with dates of 116-30 reported by Toth et 

al. 2018. While our more brackish/central sites, Rhode Island and Sherman Island, had 

earlier start dates: 95-98 and 83-107, respectively. EoS dates for Sherman and Rhode Island 

2020 were similar to those reported by Toth et al 2018., but generally all sites had later 

median EoS with some sites ending in early December compared end dates of September 

in the Mantua system. Thus, the duration of water primrose growth in the Delta was also 

longer than Toth et al. 2018 by 21 – 71 days (~40 on average). Differences in SoS between 

sites suggest that water temperature or salinity levels may influence extracted dates, since 

Rhode Island likely has warmer water conditions and Sherman Island has a higher salinity 

than Liberty Island (Vroom et al., 2017). Due to the relatively short time series available 

from Sentinel-2, we cannot currently confirm if some of the site or yearly differences are 

due to specific environmental conditions, species traits, or image processing. 

Additionally, we compare to field observations and confirm that the start of season for 

water hyacinth in the Delta is around May – end of June (CBDW 2012; Spencer and 

Ksander 2005). Dronova et al., 2021 computed phenology metrics for managed freshwater 

restoration sites in the Delta dominated by cattails (Typha spp.) and tule (Schoenoplectus 

acutus) reeds. Although all three sites contain similar emergent vegetation, a direct 

comparison between Dronova et al., 2021 and this study is not possible because of 

differences in the selection and definition of phenology metrics. Rather than defining start 

and end at 50% of the amplitude metrics Dronova et al., 2021 extracts the start of greening, 

end of greening, start of senescence and end of senescence using the first and second major 

curvature points in VI time series. Thus, our SoS and EoS values should lie in between 
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these two estimates. Approximate median values for start ranged from 75-50 DOY and end 

from 275-330 DOY (Dronova et al. 2021). SoS EMR values ranged from 109-144 and EoS 

from 290-308, indicating that our values are within the acceptable ranges although both 

might be a bit higher than Dronova et al. 2021.  

4.5.2 Phenology & potential mechanisms of invasion success  

Here, we discuss our results in the context of the four phenology niche theories presented 

in Wolkovich and Cleland 2014 by sharing examples from Liberty and Rhode Island.  

Liberty Island shows at least two distinct sub-groups of emergent vegetation and water 

primrose across years (Figure 4-5, Figure 4A-3). Figure 4-8 shows example TIMESAT 

fitted phenology curves for aquatic and terrestrial water primrose, and emergent tule and 

cattail. Aquatic primrose shows a higher rate of increase and earlier start date than 

terrestrial primrose (Figure 4-8) which supports findings by Khanna et al. (2018), who 

demonstrated the marsh encroachment of water primrose and proposed a bilateral 

expansion mechanism of invasion in which water primrose expanded into marsh after 

exhausting available niche space in aquatic environments. Both forms have also been 

observed in other systems with the terrestrial form exhibiting slower growth than the 

aquatic (Haury et al., 2014; Lambert et al., 2010; Meisler, 2009). Both types of water 

primrose exhibit earlier SoS dates, rates of increase and length of growing season compared 

to tule and cattail – providing examples of priority effects and niche breadth (Figure 4-8). 

The earlier start date and longer growing season allows water primrose to plausibly 

establish an advantage in terms of productivity and resource competitiveness over 

emergent vegetation early in the growing season (Wolkovich and Cleland 2011; Tóth et al. 

2019). Thereby, allowing water primrose the time and resources to grow taller and overtake 

emergent vegetation prior to the start of its growth cycle (Khanna et al., 2018). However, 

it appears that cattail has an earlier growing season compared to tule and the start of its 

growth matches more closely to water primrose, especially in 2019 which was a wet year 

(Figure 4-8). Thus, suggesting that Cattail patches may be more resistant to invasion by 

water primrose than Tule, but this may vary due to yearly precipitation and flow conditions. 

However, this difference between emergent types needs to be validated by a larger scale 

comparison in terms of both time and space and supplemented with field data.  

Rhode Island maps show clear differences between SoS of water hyacinth and water 

primrose, but remaining metrics suggest the presence of two water primrose groups 

(Figure 4-5, Figure 4-9). The outer edge of the detected primrose patch (Prim_out) shows 

faster rates of increase, longer duration and a later EoS than the inner edge (Prim_in) 

(Figure 4-9). Thus, the relationship between water hyacinth and Prim_out also 

demonstrates priority effects and niche breadth in favor of water primrose. Providing a 

phenology explanation for water primrose overtaking water hyacinth as the dominant 

floating invasive species in the Delta over the past decade in addition to herbicide 

treatments (Ustin et al., 2021). Water hyacinth and Prim_in show a similar duration of 

growth, but water hyacinth peaks later and has a later EoS (Figure 4-9). Thereby, 

potentially demonstrating niche partitioning rather than priority effects, in which resources 

are shared by the two invasive species at different times. This may explain why water 

hyacinth patches continue to expand in size across our time series, despite the earlier SoS 

date of water primrose (Figure 4-9, 4A-2). Although niche partitioning was not one of the 
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four niche theories discussed in Wolkovich and Cleland, 2011, we suggest that it may be 

added in the case of competing invasive species. However, future research is required to 

confirm the different water primrose species, locations of sites treated by herbicide, and 

environmental characteristics across the Delta to supplement this suggestion.  

 Both examples shown discussed here and general mapping results also indicate that 

water primrose also exhibits environmental plasticity which is expected to increase under 

climate change (Gillard et al., 2021) and is confirmed by several other field studies 

(Lambert et al., 2010; Skaer Thomason et al., 2018), including Thouvenot et al., 2013a who 

reported higher biomass and morphological plasticity was found particularly at the 

beginning of the life cycle when considering water depth and light intensity. Offering a 

potential explanation for differing EoS across sites and years.  Although, the current S2 

time-series is too short to determine if any differences are related to environmental 

characteristics or the curve fitting process. Examples of vacant niche theory may also be 

present in the Delta (especially when considering the impacts of herbicide treatment); 

however, we do not possess the ancillary data required to investigate this specific theory.  

Additional work is required to characterize the phenology of classes and sub-classes 

over time and their relation to yearly environmental variation and site characteristics, since 

the phenology of any species varies in type due to fluctuations in local environment (Diez 

et al., 2012; Rudolf, 2019). Future research should consider the effects of precipitation and 

flow (e.g., wet versus dry years), as well as the influence of site-level and annual variability 

in salinity, water depth, water temperature, air temperature, light availability, and herbicide 

control. 

 To provide support for ecosystem management regarding timing of herbicide 

application; additional quantification of uncertainty regarding estimated SoS and EoS dates 

in the Delta is recommended. This includes exploration of uncertainty related to image 

timing and frequency (Villa et al., 2018; Vrieling et al., 2018) , curve fitting and VI 

selection (Hill et al., 2021; Sun et al., 2020), and additional or alternative definitions of the 

RS phenology metrics presented here (Dronova et al., 2021; Eklundh and Jönsson, 2015). 

  



 

 

96 

 

Figure 4-8. Differences in phenology between two emergent vegetation genus types (EMR-

Cattail and EMR-Tule) and aquatic and terrestrialized water primrose (Prim-Aqua and Prim-Terra) 

present in Liberty Island. Points were selected via field data and photointerpretation. Phenology 

curves for both types of water primrose show breadth and priority effects relative to Cattail and 

Tule. However, tule patches neighboring terrestrialied water primrose have later shifted 

phenologies compared to Cattail, which may make tule more susceptible to invasion by water 

primrose.  

 

Figure 4-9. Differences in phenology between two sub-classes of water primrose from the 

outer (Prim_out) and inner patch (Prim_in) and water hyacinth in Rhode Island. Points were 

selected via field data and photointerpretation. Prim_out and water hyacinth phenologies 

demonstrate examples of niche breadth and priority effects, while Prim_in and water hyacinth 

suggest potential niche partition between the two invasive.  

4.6 Conclusion  

We observed that water primrose may have a phenological advantage compared to 

water hyacinth and emergent vegetation though the following invasion mechanisms - 

priority effects and niche breadth. We also found potential evidence of niche partitioning 

between water hyacinth and water primrose in one site. Water primrose patches exhibited 

earlier SoS, higher rates of increase and decrease, longer growing seasons and later EoS 

than water hyacinth or emergent vegetation. The earlier start date and rate of increase allow 

water primrose to establish an advantage in terms of productivity and resource 
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competitiveness over water hyacinth and emergent vegetation early in the growing season. 

Our results also highlight the need for spatially resolved phenology metrics for improved 

understanding of the link between phenology and invasion processes in aquatic systems 

and have the potential to provide management support for planning herbicide treatment 

application.  
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4.7 Appendix  

Figure 4A-1.The classification map and five phenology metrics extracted for Sherman Island 

across 2018 – 2020.   
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Figure 4A-2 The classification map and five phenology metrics extracted for Rhode Island across 

2018 – 2020.   
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Figure 4A-3. The classification map and five phenology metrics extracted for Rhode Island across 

2018 – 2020.   
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5. Conclusions  
Satellite remote sensing can be used as a tool to answer fundamental ecology questions, 

monitor changes, and provide management support in aquatic ecosystems. This dissertation 

demonstrates the value and need for high temporal and spatial resolution space based 

observations to map estuarine turbidity (Chapter 1); detect invasive floating aquatic 

vegetation at the genus level (Chapter 2); and reveal mechanisms of aquatic species 

invasion related to phenology (Chapter 3).   

5.1 Main Findings and future goals 

Chapter 1 results from the emergency barrier case study indicate that construction of 

the barrier impacted turibidty during ebb tides but had little effect during flood tides. This 

supported previous field measurements and provided additional spatial context. Delta smelt 

habitat suitability maps revealed that potential refugia were present throughout the drought 

with little connectivity. We show that the barrier installation may have extended suitable 

turbidity habitat for Delta Smelt in the San Joaquin river, thereby potentially jeopardizing 

the fish as they may get stuck in reverse flows caused by water pumping.  

Fish habitat suitability is normally determined by models and the methods outlined in 

this chapter provide the ability to validate these models with observations.  The addition of 

spatially continuous data to in situ monitoring efforts enhances management decisions by 

providing regional scaling and measurements for areas with limited or no in situ data. 

Turbidity is one of many water quality variables influencing habitat suitability, thus future 

work should incorporate actual Sentinel-2 data and other parameters derived from satellite 

remote sensing (e.g salinity and temperature).  

Chapter 2 results demonstrate that Sentinel-2 can be used to distinguish multiple 

floating vegetation classes and enhance current high-resolution mapping efforts of invasive 

floating aquatic vegetation in the Delta. Sentinel-2 imagery can be used to fill inter-annual 

and annual gaps in summer and fall, thereby enabling the tracking of vegetation patch 

expansion throughout peak growth and in response environmental or anthropogenic 

disturbance events. This will compliment current imaging spectroscopy flights which are 

still recommended for detecting smaller patches particularly of water hyacinth. This work 

documents the first time water primrose has been mapped using satellite data. Future work, 

should include additional improvements in masking riparian vegetation, classifying patch 

edges, and evaluation of winter and spring images.  

Chapter 3 results revealed that water primrose has a phenological advantage over its 

competitors explained by ecological theories – priority effects, niche breadth, and 

environmental plasticity. Our results demonstrate the need to spatially resolve phenology 

metrics and future work should investigate differences in floating and emergent vegetation 

sub classes. Future maps should also improve characterization of actual start and end dates 

and evaluate the relationship between phenology and other environmental variables. 

Remote sensing derived maps of phenology metrics could be useful to managers, as they 

not only revealed mechanisms of invasion, but also demonstrate how to track aquatic 

phenology over multiple years, which can support decisions related herbicide treatment in 

terms of tracking application success and selection of application window on a site-by-site 

basis. 
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All three chapters support management objectives in the Sacramento San Joaquin Delta 

related to endangered species habitat and invasive species control. However, findings and 

methods could be extended to other areas of the globe, as deltas worldwide are facing 

similar pressures due to climate change and invasive species. 

This dissertation provides the foundation of a new frontier in remote sensing where 

researchers are able to better characterize changes and drivers of change in terrestrial 

aquatic interfaces.  

 




