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ABSTRACT OF THE THESIS 

Integrative Genomics Analysis Reveals Tissue-specific Pathways and Gene Networks for Type 1 
Diabetes 

 
by 

Montgomery Charles Thomas Blencowe 

Master of Science in Physiological Science 

University of California, Los Angeles, 2019 

Professor Xia Yang, Chair 

Type 1 diabetes (T1D) is a complex disease, involving a genetic predisposition that interacts with 

environmental triggers, leading to the loss of insulin producing beta cells in the pancreas. However, 

the molecular cascades underlying T1D are poorly understood and remain to be explored. We 

hypothesize that genetic risk factors of T1D perturb tissue-specific biological pathways and gene 

networks, which ultimately leads to the pathogenic end point in beta cells. We sought to identify the 

gene networks and key regulators for T1D by conducting a comprehensive, data-driven multi-omics 

analysis that integrates human genome-wide association studies (GWAS) of T1D, tissue-specific 

genetic regulation of gene expression in the form of expression quantitative trait loci (eQTLs), and 

tissue-specific gene network models using a computational pipeline Mergeomics. Our integrative 

genomics approach revealed immune pathways such as adaptive immune system, cytokines and 

inflammatory response, ZAP70 translocation, primary immunodeficiency and immunoregulatory 

interactions between a lymphoid and non-lymphoid cell, across various tissues. We also identified 

tissue-specific signals such as regulation of complement cascade in adipose tissue, macrophages, and 

monocytes, NOTCH signaling in adipose tissue and macrophages, protein folding, calcium signaling, 

chemotaxis and lysosomal pathways in the pancreas, adipose, and monocytes, and viral infection in 

macrophages and monocytes. Network modelling of these pathways highlights a number of key 

regulator genes such as GBP1, USP18, STAT1, RPL17, HLA genes (HLA-A,-B,-C, and –G), and 
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immunomodulatory genes (LCK, VAV1, ZAP-70), each of which has suggestive roles in the 

pathophysiology of T1D or other autoimmune disorders. Together, our integrative genomics 

approach offers comprehensive insights into the tissue-specific molecular networks and regulators as 

well potential between-tissue interactions underlying T1D, which may guide future development of 

therapeutic strategies targeting the disease. 
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INTRODUCTION  
 

Type 1 diabetes (T1D) is characterized as the autoimmune loss of pancreatic beta cells and resultant 

impairment of glucose homeostasis. Currently, T1D accounts for 5-10% of all diabetic individuals 

worldwide, approximately 40 million cases, with an increasing incidence rate of 2-3% per year (Maahs, 

West, Lawrence, & Mayer-Davis, 2010). Risk of developing T1D is increased by ~5.6% and ~50% 

with a diseased parent or diseased monozygotic twin, respectively, when compared to the general 

population. Parental heritability estimates predict that diabetic fathers confer an increased risk of T1D 

development of about 12% while mothers at around 6% (Steck et al., 2005). Thus, there is a strong 

genetic component predisposing T1D pathogenesis. However, T1D is not usually present in 

individuals with a family history, with only ~10% of patients having a first/second-degree relative 

with the disease, and a significant environmental contribution has been highlighted (Knip & Simell, 

2012). Interestingly, there seems to be an increased disposition for developing T1D if one lives in 

regions of Northern Europe, independent of genetic background which is highlighted by an increase 

in T1D incidence in migrants living within these regions (Oilinki, Otonkoski, Ilonen, Knip, & 

Miettinen, 2012; Söderström, Åman, & Hjern, 2012). This environmental contribution has several 

potential manifestations, with alterations in gut microbiota (Kostic et al., 2015) or pre and post-natal 

dietary factors, including intake of gluten (Norris et al., 2003), vitamin D (Weets et al., 2004), and 

polyunsaturated fatty acids (Sørensen, Joner, Jenum, Eskild, & Stene, 2012) as suggested factors. 

Furthermore, a longstanding hypothesis predicts that the exposure to viral infection may also be a 

causal factor (Gamble, Kinsley, FitzGerald, Bolton, & Taylor, 1969), particular enteroviruses 

(Coppieters, Wiberg, Tracy, & von Herrath, 2012) which seem to target pancreatic islet cells (Yeung, 

Rawlinson, & Craig, 2011). Therefore, both genetic and environmental components contribute to 

T1D incidence and progression, yet a large gap exists in understanding the complex genetic and 

environmental architectures as well as the interaction between the two.  
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From the genetics perspective, with the ease and power of Genome-Wide Association Studies 

(GWAS) we have uncovered ~60 T1D genetic risk loci. The main genes predisposing T1D patients 

are located within the HLA region on chromosome 6, encoding the major histocompatibility complex 

(MHC) which is critical for adaptive immunity. While HLA-encoding genes have the strongest 

association and account for up to 50% of the total genetic T1D risk (Lambert et al., 2004; Noble et 

al., 1996), loci outside of the HLA region including protein tyrosine phosphatase, non-receptor type 

22 (PTPN22), the interleukin 2 receptor, alpha (IL2RA), insulin gene (INS) and cytotoxic T-

lymphocyte-associated protein 4 (CTLA4), have also been associated with disease development 

(Noble & Erlich, 2012).  

 

While GWAS have played an essential role in identifying T1D-associated candidate genes, typically 

only the top loci reaching genome-wide association significance of p<5e-8 are reported, and these top 

loci cannot fully explain the total genetic heritability of T1D. Identifying the missing genetic risks, or 

the “dark matter”, is important to gain a full understanding of the genetic underpinnings of T1D 

pathogenesis. In addition, growing lines of evidence support an “omnigenic” disease model (Boyle, 

Li, & Pritchard, 2017), which states that a large proportion of genes on the genome may contribute to 

disease development through intimate gene-gene interactions in networks within and between tissues, 

and key network regulators likely play more central roles than other peripheral disease genes in the 

networks. More interestingly, GWAS loci for complex diseases have been found to be more 

concentrated in the periphery of gene networks and less likely to be network regulators. Therefore, 

simply focusing on the top GWAS hits will likely miss crucial regulatory genes, and understanding 

how T1D genetic risks interact in gene networks and identifying key regulators will offer novel insights 
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into T1D pathogenesis and help prioritize regulators for targeted therapeutic strategies (Chan et al., 

2014; Chella Krishnan et al., 2018; Makinen et al., 2014; Shu et al., 2017). 

 

Integration of GWAS data with functional data such as tissue-specific expression quantitative trait loci 

(eQTLs) and gene networks has proven to be a powerful tool to pinpoint causal genes and their 

associated pathogenic mechanisms and regulators within the context of particular tissue type (Chella 

Krishnan et al., 2018; Foroughi Asl et al., 2015; Hauberg et al., 2017; Makinen et al., 2014; Shu et al., 

2017; Zhong, Yang, Kaplan, Molony, & Schadt, 2010). Our lab has previously developed a 

computational pipeline, Mergeomics, to facilitate such analysis (Shu et al., 2016). We hypothesize that 

T1D genetic risks with a wide spectrum of effect sizes (strong, moderate to subtle) interact and perturb 

tissue-specific gene networks through a select set of regulatory genes, resulting in variations in T1D 

susceptibility, and application of Mergeomics to T1D GWAS datasets in conjunction with other 

orthogonal functional genomics data will help reveal these networks and regulators. 

  

Though the integration of the largest T1D GWAS studies to date with tissue-specific functional 

information such as genetics of gene expression and gene regulatory networks, our analysis confirmed 

the importance of immune pathways across various tissues, such as adaptive immune system, 

cytokines and inflammatory response, ZAP70 translocation, primary immunodeficiency, and 

immunoregulatory interactions between a lymphoid and non-lymphoid cell. Signals demonstrating 

certain tissue specificity include regulation of complement cascade (adipose, macrophage, and 

monocytes), NOTCH signalling (adipose tissue and macrophages), chemotaxis and lysosomal 

pathways (pancreas, adipose tissue, and monocytes), and genes involved in viral infection/interferon 

signaling (macrophages and monocytes). The finding related to infection suggests a potential 

interaction between genetic predisposition and environmental perturbation. Importantly, we found 
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key genes associated with pathways that are not directly associated with immune function, such as 

spliceosome, proteasome, calcium, Wnt, and cell cycle related pathways, however they may have 

modulatory or interactive effects on the immune system within the context of T1D. Of these, we find 

cell cycle to be enriched in the pancreatic tissue which highlights the potential for tissue specific 

dysregulation of this key cellular process directly leading to a local environment which promotes beta 

cell death. These results provide us with a novel area to further explore in disease progression and 

exploit as potential therapeutic targets.	

 

MATERIALS AND METHODS 

 

Overview of study design  

We utilized an integrative genomics approach that leverages multiple large-scale human genetic and 

genomic datasets to elucidate the genetic networks and regulators of T1D pathogenesis (Figure 1). 

The datasets utilized included T1D GWAS from two independent cohorts, tissue specific eQTLs from 

diverse human tissues or cell types, various network models including gene coexpression networks, 

Bayesian gene regulatory networks and protein-protein interaction networks, and biological pathway 

information (detailed in subsequent sections). To address reproducibility, we ran the integrative 

analysis on each GWAS study independently and then focused on the findings that are consistent 

between the two cohorts. For each GWAS, we mapped the single nucleotide polymorphisms (SNPs) 

to genes using tissue/cell-specific eQTL data. The use of eQTLs helps inform on the most likely genes 

affected by GWAS SNPs based on functional evidence. Next, we grouped the genes based on whether 

they belong to the same biological pathways or show coexpression, which indicates functional 

relevance, in data-driven gene co-expression networks. We then assessed which pathways or gene 

coexpression modules (a module contains genes that show coexpression patterns) demonstrated 
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stronger genetic associations with T1D compared to randomly generated gene sets using a Marker Set 

Enrichment Analysis (MSEA). After carrying out the MSEA process for each T1D GWAS dataset, 

we subsequently used a Meta-MSEA to meta-analyze the two independent GWAS data sets to look 

for shared pathways/modules that showed significant T1D associations, which we further simplified 

into independent “supersets” to reduce redundancy between pathways/modules. Integrating these 

T1D supersets with gene regulatory networks (Bayesian) and protein-protein interaction networks, we 

carried out the weighted key driver analysis (wKDA) to identify key drivers (KDs), which are central 

network genes whose network neighborhoods are highly enriched for genes in the T1D pathways and 

coexpression modules. These KDs were then visualized in tissue-specific networks. Furthermore, we 

carried out in silico validation via literature mining (T-HOD, PolySearch 2.0, DisGeNET) to seek if 

these key drivers are novel, suggestive, or known to be linked with T1D (Cheng et al., 2008; Dai, Wu, 

Tsai, Pan, & Hsu, 2013; Pinero et al., 2017). 

 

T1D GWAS datasets 

The summary statistics of GWAS for T1D was obtained from the JDRF/Wellcome Diabetes and 

Inflammation Laboratory, University of Oxford (Barrett et al., 2009; Cooper et al., 2017). 

 

The study is comprised of 5913 T1D individuals of European descent (Barrett et al., 2009; Cooper et 

al., 2017), among which 3983 were genotyped using Illumina HumanHap550v3 (550k) Infinium 

Beadchip from the UK GRID and 1930 T1D individuals genotyped using Affymetrix 500K from the 

WTCCC. There were a total 8828 Controls, with 3999 genotyped using Illumina HumanHap550v3 

(550k) Infinium Beadchip from the 1958 Birth Cohort (1958BC), 1490 genotyped using Affymetrix 

500K (1958BC), 1455 genotyped using Affymetrix 500k from the UK Blood Services (UKBS) and 

1884 genotyped using Affymetrix 500K from a cohort of Bipolar disorders. 
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Inclusion criteria for the UK GRID are: T1D diagnosed between 6 months to 16 years of age, insulin 

dependent for greater than 6 months, a UK resident and self-identified as white European (average 

diagnosis age = 7.8 years of age, SD = 3.9, 47% female). Inclusion criteria for the WTCCC are: T1D 

diagnosed less than 17 years of age, insulin dependent for greater than 6 months and self-identified 

white European (average diagnosis age = 7.2 years of age, SD = 3.8, 49% female). Control inclusion 

criteria for UKBS and 1958BC included being residents in the UK and self-identified white 

Europeans. For the Bipolar cohort, control individuals greater than 16 years old and resident in the 

UK and of European descent were included.  

 

The above T1D and control individuals were partitioned into two independent cohorts based on 

matching genotyping platforms (i.e., Illumina or Affymetrix) between cases and controls. Cohort 1 

was comprised of 1930 T1D patients and 4830 Controls. Cohort 2 was comprised of 3983 T1D 

patients and 3999 Controls. 

 

SNPs genotyped were imputed to ~10 million SNPs (1000 Genomes Phase III) using IMPUTE2, and 

routine quality controls were conducted as described in Cooper et al. (Cooper et al., 2017). Statistical 

association between SNPs and T1D was carried out using a Bayesian analysis. All statistical association 

p values for all imputed SNPs that passed quality control, regardless of significance level for T1D 

association, were used in our downstream analyses. 

 

Mapping SNPs to genes 

In order to link GWAS SNPs to their potential target genes, tissue-specific eQTLs were used as they 

can provide functional insight for the role of SNPs in gene expression regulation within a given tissue. 
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Thirteen eQTLs sets were obtained from the GTEx database including subcutaneous adipose, visceral 

omentum adipose, blood, brain, colon, heart, liver, lymphocyte, muscle, pancreas, pituitary, spleen and 

stomach (Consortium, 2015). Additionally, we obtained macrophage and monocyte eQTLs from the 

Cardiogenics Consortium (Rotival et al., 2011). A broader spectrum of tissues was considered at this 

step to help objectively infer which tissues might be more informative for T1D association. GWAS 

was mapped to each tissue eQTL set separately to derive individual SNP-gene mapping sets reflecting 

tissue origins to allow assessment of tissue-specific signals. 

 

A high degree of linkage disequilibrium (LD) was observed in the eQTL data, which may cause biases 

in the downstream analysis. For this reason, we removed redundant SNPs that had LD of r2 >0.7 with 

a chosen SNP. Briefly, a GWAS SNP was compared against other SNPs for LD and T1D association. 

If the SNP was in LD of r2 >0.7 with other SNPs, the one with the strongest T1D associations was 

chosen. This process was repeated until all remaining SNPs were not in LD based on the r2 >0.7 cut-

off. These non-redundant SNPs were used for downstream analyses. 

 

Data-driven modules of co-expressed genes 

In order to assess whether T1D GWAS signals are enriched in specific gene subnetworks, we derived 

gene co-expression networks from transcriptomic data sets from genomic studies of subcutaneous 

adipose, visceral omentum adipose, blood and pancreas (Shu et al., 2016). These tissues were chosen 

due to their relevance to T1D. The WGCNA (Weighted Gene Correlation Network Analysis) package 

was used to reconstruct co-expression networks based on gene expression profiles (Langfelder & 

Horvath, 2008). Each tissue network contains multiple “modules” and each module is comprised of 

tens to hundreds or thousands of genes that show coexpression. A total of 272 co-expression modules 

were curated. 
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Knowledge-based biological pathways 

We used a total of 1827 canonical pathways from Reactome (Version 45) (Croft et al., 2014), Biocarta 

(Nishimura, 2001) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases (Kanehisa 

& Goto, 2000) . In addition to the knowledge-based pathways, we constructed a T1D positive control 

gene set based on candidate causal genes curated in GWAS catalog (p<5.0E-8) (MacArthur et al., 

2017). Similar control gene sets for coronary heart disease (CHD), type 2 diabetes (T2D), and height 

were also constructed to compare with the T1D positive control set. 

 

Marker Set Enrichment Analysis (MSEA) 

To identify co-expression modules and pathways that show evidence for genetic association with T1D, 

we applied MSEA from the Mergeomics (Shu et al., 2016) package on each of the GWAS cohorts 

separately in conjunction with the eQTL sources. MSEA employs a chi-square-like statistic with 

multiple quantile thresholds to assess whether a co-expression module or pathway shows enrichment 

of functional disease SNPs (i.e., those likely regulate gene expression as captured in eQTLs) compared 

to random chance. 10,000 permuted gene sets were generated for each co-expression module and 

pathway. As detailed in Shu et al., the enrichment statistics from the permutations were used to 

approximate a Gaussian distribution from which enrichment P-values were determined. Benjamini-

Hochberg (BH) false discovery rate (FDR) was estimated across all co-expression modules and 

pathways tested for each GWAS. Gene sets were considered to be statistically significant if FDR < 

5% in at least one SNP-gene mapping set. To evaluate gene sets across both GWAS studies, we 

followed up with a meta-analysis at the module/pathway level using the meta-MSEA function in 

Mergeomics, to retrieve robust gene sets across both cohorts. Stouffer’s Z score method was used to 

calculate meta P-values based on the P-values from the multiple MSEA runs. Meta-FDR was 
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calculated using the Benjamini-Hochberg method, as described above.     

 

Merging overlapping pathways into supersets  

The curated pathways and gene coexpression modules may carry redundant information. For example, 

a KEGG pathway “insulin signalling” can have largely overlapping genes with a Reactome pathway 

“insulin receptor signalling”. To reduce redundancy, we compared the significant modules and 

pathways associated with T1D at FDR <5% and merged the overlapping ones using a merging 

algorithm in Mergeomics to produce independent, non-overlapping “supersets”. The algorithm 

employs an overlap ratio r between two gene sets A and B as r = (rAB x rBA)0.5, where rAB is the 

proportion of genes in A that are also present in B and rBA is the proportion of genes in B which are 

also in A. The overlap ratio cut-off was set to r >= 0.33 and Fisher’s exact test was used for assessing 

the statistical significance of gene overlap between modules/pathways. BH FDR < 5% was considered 

significant. Resultant supersets containing more than 500 genes were trimmed down to contain core 

genes shared among the overlapping gene sets. 

 

Tissue-specific gene regulatory networks and key driver analysis (KDA) 

Tissue-specific Bayesian gene regulatory networks of adipose, blood, and pancreas tissue were 

obtained (Shu et al., 2016) as well as protein-protein interaction (PPI) networks obtained from the 

Human protein reference database (Keshava Prasad et al., 2008). We chose to focus on these tissue 

networks due to our MSEA results showing the strongest statistical significance for these tissues. With 

these networks, we performed a key driver analysis using a KDA algorithm in Mergeomics to identify 

potential key drivers (KDs) whose network neighbors are enriched for genes within the T1D 

associated supersets uncovered by MSEA. The algorithm employed a chi-square like statistic similar 

to that described for MSEA, and FDR < 5% was used to focus on top robust KDs. 
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In silico validation of KDs 

To determine the relevance of the top ranked KDs to T1D, we used literature-mining methods such 

as PolySearch 2.0 (Liu, Liang, & Wishart, 2015), DisGeNET (Pinero et al., 2017) and T-HOD (Dai 

et al., 2013).  

 

RESULTS 

Identification of T1D-associated knowledge-based biological pathways   

We first assessed which knowledge-based biological pathways were enriched for T1D GWAS signals. 

The use of tissue-specific eQTLs served to guide SNP-to-gene mapping, allowing us to capture tissue 

specific results. From the 15 eQTLs sets used, we found the following six to be the most informative 

in terms of whether and how many significant pathways were identified: blood, macrophage, 

monocyte, pancreas, subcutaneous adipose and visceral omentum adipose. We therefore focused on 

reporting the results from these six informative tissues only, with other tissues serving to supplement 

the main results.  

 

Out of the 1827 curated canonical pathways, we identified 224 pathways enriched from Cohort 1 at 

an FDR <5%. Of these 224 pathways, 154 were significant at FDR <5% in at least one of the six 

chosen tissues based on MSEA and the remaining 70 significant pathways passed FDR <5% when 

meta-analyzed across tissues using meta-MSEA. The top pathways enriched from Cohort 1 included 

T1D positive control group, CHD positive control, Adaptive Immune system, G-protein coupled 

receptor related processes, and positive control set for Height. In the remaining 70 pathways that 

collectively passed meta-MSEA significance across tissues, Influenza life cycle, Nuclear envelope 

breakdown and PLC-gamma-1 signalling showed top significance. From the Cohort 2 dataset we 
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found a total of 158 pathways enriched at an FDR <5%, with 129 pathways significant in at least one 

tissue in MSEA and the remaining 29 passed FDR<0.05 in meta-MSEA across tissues. The top 

pathways were confirmatory with Cohort 1, with T1D, CHD, and Height positive control sets all 

showing strong statistical significance. Additionally, Adaptive Immune system, interactions between 

lymphoid and non-lymphoid cells, ER-Phagosome pathways, Antigen processing, Wnt signaling, 

transfer in endocytosis and recycling, and SNARE interactions in vesicular transport were our top 

pathways.  

 

When comparing Cohort 1 and Cohort 2 for shared pathways, as expected we found largely 

confirmatory and overlapping pathways heavily related to immune processes and importantly the T1D 

positive control gene set. Between the two datasets we found 111 pathways significant in both, 113 

unique for Cohort 1 and 47 unique for Cohort 2 (Figure 2A). Some unique pathways for Cohort 1 

include Influenza life cycle, HIV life cycle, and nuclear envelope breakdown. For Cohort 2 the unique 

pathways included purine and inositol phosphate metabolism and RNA degradation.  

 

We found largely confirmatory results with the other tissue types tested across both Cohorts, with the 

spleen, adrenal, liver and lymphocyte revealing largely immune related signals. The pituitary gland also 

showed significance in Wnt signaling and insulin receptor signalling. 

 

Identification of T1D associated gene co-expression modules 

The above biological pathways were curated based on known knowledge. To increase the chance to 

uncover novel biology, we collected data-driven gene coexpression modules which reflect functionally 

related gene sets based on gene expression patterns. This approach has previously helped derived 
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novel biological insights into various diseases (Chella Krishnan et al., 2018; Makinen et al., 2014; Shu 

et al., 2017). 

 

From our WGCNA networks we generated 272 co-expression modules, with which we ran our 

Cohort 1 and Cohort 2 data sets independently. Cohort 1 showed enrichment in a total of 40 unique 

modules of which 36 modules passed an FDR <5% in at least one tissue and four modules were 

deemed significant collectively across the six tissues (Figure 2B). The top annotated modules for 

Cohort 1 included interferon signaling, translocation of ZAP70, Stress related pathways, 

destabilization of mRNA, focal adhesion, and diabetes pathways. On the other hand, the Cohort 2 

dataset showed significance in 46 modules (FDR <5%), with 37 significant in at least one tissue and 

9 collectively across the six tissues (Figure 2B). The top modules included cytokine signaling, 

interferon signalling, antigen processing, DNA repair, metabolism, pre-NOTCH processing in golgi, 

and Pitx2 pathway. 

 

When comparing the two cohorts we found that the majority of the modules reach significance in 

both, with a total of 30 overlapping modules. The top modules found in both were consistent with 

immune related pathways such as interferon signaling, and Antigen processing/presentation. In terms 

of unique pathways, we saw 16 unique modules for Cohort 2 including mTOR pathways, extracellular 

matrix (ECM) organization and DNA repair. In Cohort 1 we find 10 unique modules consisting of 

AKT signaling, complement pathway and ion transport (Figure 2B). 

      

Comparing these 30 overlapping modules to the 111 canonical pathways uncovered in our pathway-

based analysis, we see similar signals enriched across both. These signals include complement and 
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coagulation cascade, DNA repair, cell cycle, NOTCH signaling, metabolism of amino acids and 

derivatives, transcription, and translation.  

 

Merging of pathways and co-expression modules into independent supersets 

We chose to focus on the shared 141 significant gene sets uncovered in our meta-analysis between 

Cohort 1 and Cohort 2 (30 co-expression modules and 111 canonical pathways) as they reflect 

reproducible signals for T1D association (Figure 2A, 2B). As the co-expression modules and pathways 

were obtained from various sources, the gene sets may share a high number of overlapping gene 

members. To decrease the redundancy, we merged 83 overlapping gene sets into 12 independent 

supersets (Table 1). Interestingly, canonical pathways tend to merge with canonical pathways and 

coexpression modules tend to merge with coexpression modules, suggesting different biological 

properties of the two types of gene sets. The supersets represented diverse biological pathways 

including activation of adaptive immune system, antigen processing, ubiquitination & proteasome 

degradation, HIV infection, protein folding, RNA Polymerase I/III, mitochondrial transcription, 

signaling by GPCR, signaling by NOTCH, signaling by the B-cell receptor (BCR) and tRNA 

aminoacylation. The other 58 non-overlapping gene sets were kept intact, producing a total of 70 non-

overlapping supersets.  

 

Second round of MSEA on the 70 supersets 

After using our merging algorithm of similar pathways, we ran a second round of MSEA to confirm 

whether our merged modules retained significance for T1D association. We confirmed 40 supersets 

derived from canonical pathways to show statistical significance in our combined Cohort 1 and Cohort 

2 datasets (Figure 3A). Our results from the monocyte and macrophage-based analysis showed the 

strongest and most consistent enrichment of pathways including Natural Killer Cell mediated 
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cytotoxicity, lymphoid and non-lymphoid cell interaction, and mitotic G1/S phase. The adipose 

pathways included systemic lupus erythematosus, complement cascade, Natural Killer Cell mediated 

cytotoxicity and signaling by NOTCH. The blood tissue-derived pathways contained ABC 

transporters, Antigen processing and presentation, Secretin receptors, cell cycle and neuroactive 

ligand-receptor interaction. The pancreas showed pathways involved in Natural Killer Cell mediated 

cytotoxicity, secretin receptors, protein folding, calcium signaling and Wnt signaling. When looking at 

the remaining 30 supersets derived from our co-expression modules (Figure 3B). Again, monocyte 

and macrophage were informative across most of the listed supersets (Figure 3B). Pancreas and 

subcutaneous adipose tissue were also informative for 14 and 25, respectively, of the 30 supersets 

(FDR <5%). The blood appeared to be the least informative for these supersets, with only a few 

supersets related to DNA replication, interferon signaling, mitotic cell cycle, and TCR signalling being 

significant. Across all six tissues we found that translocation of ZAP70, calcium signaling, interferon 

signalling, and Stress pathways were significant.  

 

Identification of central regulators for T1D via a weighted key driver analysis 

To identify central regulatory genes, or key drivers (KDs), among the potential T1D associated 

supersets, we performed a weighted key driver analysis (wKDA) on our independent supersets using 

tissue-specific Bayesian gene regulatory networks as well as using the PPI networks (Figure 4).  

 

The total number of unique KDs found from our Bayesian network included 299 across blood, 

monocyte, macrophage, adipose and pancreatic islet networks at an FDR <5% (Supplement Table). 

To focus on the most central regulators, for each superset in each tissue-specific network, we chose 

the top five ranked KDs satisfying an FDR <5%, to derive 60 KDs, of which 13 were shared among 

>=2 supersets and two (RPS29 and RPS18) were shared across the adipose, blood, monocyte and 
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macrophage networks. In terms of tissue specific KDs we found that the adipose network contained 

the most with 45 KDs, and 13 unique KDs were shared between blood, monocyte and macrophage 

networks (Supplement Table). There were no KDs discovered for our pancreatic tissue Bayesian 

network, potentially due to the sparseness of this network. The key drivers uncovered can generally 

be categorized under cell cycle, metabolism and immune related pathways. Interestingly, many of the 

KDs have been found to be involved in viral infections, autoimmune and childhood onset disease, all 

of which are associated with T1D. These KDs include RPS29, RPLP2, CD19, OAS2, IFIH1 and 

PTPN6. 

 

To expand our search for KDs and look for consistencies between networks, we ran the PPI network 

for adipose, blood, monocyte. macrophage and pancreatic tissues. Focusing on the top five ranked 

KDs in each tissue specific network within each superset, we found a total of 113 KDs, five specific 

to adipose (CASP9, FLNA, BRF1, CD74, HLA-DRA), three specific to blood (PTPRC, MYC, 

GNA11), one for the pancreas (JAK1), two for monocyte (AKT1, ESR1) and two for macrophage 

(POLR2G, PROS1). 

 

When comparing the PPI network with the Bayesian network we find 17 overlapping KDs for tissue 

specific networks (15 for adipose, two for blood) including complement related genes such as CD19 

and CD74, DNA replication genes such as MCM2 and MCM6, as well as those linked to autoimmunity 

such as STAT1, SERPINE1 and GZMB. Those shared in the Top 5 KDs (FDR <5%) of the same 

supersets for both the Bayesian and PPI networks include LCK, VAV1, PTPN6 for Natural Killer 

Cell Cytotoxicity and F2 and PLG for Complement and Coagulation pathways (Table 2). 

 

In silico validation of the Key Drivers  
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To determine the relevance and functional significance of the unique KDs from our Bayesian and PPI 

network analysis to T1D from our study, we cross-validated the genes by performing a comprehensive 

in silico analysis using three literature mining methods: PolySearch 2.0, DisGeNET, and T-HOD. 

  

Our search yielded 6 KDs that are known T1D GWAS hits (HLA-DRB1, IFIH1, PGM1, HLA-DQB1, 

HLA-B and HLA-DRA) as well as 43 KDs such as GC, PLG, LCK, STAT1 and PPARG which were 

suggested to be associated with T1D due to previously being implicated in one or more studies to play 

a potential role in T1D pathogenesis.  

 

Our study further uncovered a total of 107 potential novel KDs for T1D, many of which have viral 

infection associations (OAS2, IFIH1, ISG15, SLC15A3 and RTP4). Additionally, we find large overlap 

of KDs with genes previously associated with autoimmune diseases such as Lupus Erythematosus, 

Psoriasis and Rheumatoid Arthritis (PTPN6, MCM2, LCK, OAS2 and CD3G). 

 

DISCUSSION 

At present, genetic studies have uncovered >60 loci linked with T1D development, yet our 

understanding of the intricate mechanisms underlying these associations is still lacking. In addition, 

GWAS loci alone cannot provide the level of insights required for intervention. To this end, we utilised 

a multi-omics integrative approach to advance our understanding of T1D etiology and prioritize 

potential therapeutic targets among the large numbers of disease associated signals. Through the use 

of multiple T1D GWAS data sets, functional genomics data represented as tissue-specific eQTLs, 

knowledge-driven pathways, and data-driven networks, the perturbed pathways and key regulators 

which potentially drive the etiology of T1D were further elucidated.  
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This computational strategy confirmed known genes and biological pathways in T1D and revealed 

novel genes and their corresponding networks and biological processes. Among the biological 

networks which are perturbed to initiate or exacerbate T1D, are a significant number of immune and 

apoptosis related processes which are known to be involved in T1D, and several novel pathways such 

as viral infection, NOTCH signaling, Wnt signaling, protein folding, and calcium signaling. Our tissue 

specific analyses reveal consistent enrichment of antigen processing/presentation and INF-α/β/γ 

signalling across tissues, supporting the immune origin of T1D highlighted in the literature and 

emphasizing the presence of systemic dysregulation of immune function beyond insulitis. For the 

multi-tissue immune pathways for T1D, top KDs predicted by our analyses are HLA-DR/DQ alleles 

(Hu et al., 2015). Although HLA genes have been known to confer the greatest genetic risk for T1D, 

our network analysis uniquely highlights the critical regulatory roles of these genes in T1D 

development.  

 

Of the immune related pathways, a notable process which shows perturbation in macrophage and 

monocyte is ubiquitination and proteasome degradation within the context of Class I MHC mediated 

antigen processing. Many of the key drivers which were highlighted in our analysis relate directly to 

the immunoproteasome and the maturation of the MHC I complexes, including GBP1 (Lundberg, 

Krogvold, Kuric, Dahl-Jorgensen, & Skog, 2016), PSMA6 (Sjakste et al., 2016) , and PSMA4 (Jin et 

al., 2013), each of which have been previously implicated in T1D susceptibility. Additionally we 

identified several HLA genes, including HLA-A, -B (Nejentsev et al., 2007), -C (Genetic Analysis of 

Psoriasis et al., 2010), and -G (Eike, Becker, Humphreys, Olsson, & Lie, 2009), which have been 

previously associated with T1D or autoimmune disease susceptibility. Dysregulation of the MHC class 

I binding peptides produced by the cytosolic multicatalytic proteasome may play a fundamental role 

in the development of T1D causing autoimmunity. These MHC class I molecules are a major inducer 
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of the host immune response and alterations in MHC I peptide presentation have a putative role in 

autoimmune pathogenesis, with links to ankylosing spondylitis (Evans et al., 2011), multiple sclerosis 

(Guerini et al., 2012), and Crohn’s disease (Barrett et al., 2008). Previous evidence also supports the 

role of the immunoproteasome in the induction of T1D through the generation of aberrant 

polypeptide derived epitopes which act as β-cell neo-autoantigens (Thomaidou, Zaldumbide, & Roep, 

2018), which is another potential avenue of disease development.	

 

Furthermore, a number of the identified KDs relate to the modulation of immune response and 

autoimmunity, most notably IFIH1, a DEAD box RNA helicase which has been linked to T1D 

susceptibility. Additionally, we identify JAK1 via our PPI KDA, which has previously been shown to 

regulate pediatric autoimmunity and local inflammatory response via its interactions with STAT and 

INF signaling, thus acting as an intriguing target for further study. Moreover, the inhibition of JAK1 

levels via AZD1480 blocked MHC class I upregulation via cytokine signaling within both mouse and 

human beta cells (Trivedi et al., 2017). Through this, the infiltration of immune cells into the pancreatic 

islets was dramatically slowed, as the T cells were no longer able to directly associate with beta cells, 

protecting NOD mice from insulitis. These results affirm the previous predictions made regarding the 

etiology of T1D, with significant emphasis on the failure of the immune system to recognize beta cell 

autoantigens as self, thus resulting in the destruction of these cells. Our results here further emphasize 

the potential of these immune related genes as central regulators and targets to ameliorate the 

pathogenesis of T1D.  

 

Our results also support the importance of T cells and cytokine signalling in T1D pathogenesis. FYN 

(Figure 4A) is one of the most central key regulators in the T1D tissue networks and is connected a 

number of previously identified T1D associated GWAS loci (IL7R, MAPT, TYK2). Importantly, this 
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gene has been shown to be essential in T cell signaling and related processes, through its interaction 

with ZAP-70 (Michel, Grimaud, Tuosto, & Acuto, 1998) and VAV1 (Garcia-Bernal et al., 2005), 

which are both key components of T cell mediated immune response and have been identified as key 

drivers in our network analysis. The role of T-cell signaling and autoimmunity within the context of 

T1D progression is further highlighted by KD LCK (Stanley, Trivedi, Sutherland, Thomas, & Gurzov, 

2017), which has also been previously shown to preclude autoimmunity through its interaction with 

DUSP22, serving as a negative regulator of T-cell activation. Also, the KDA identifies PTPN6, which 

has been shown to modulate cytokine signaling within pancreatic beta cells, in coordination with the 

action of PTPN1 to connect the beta cells with the immune system. Finally, several other KDs were 

noted using the Bayesian network blood tissue data, including SEMA4A (Chapoval, Vadasz, 

Chapoval, & Toubi, 2017) and TCF7 (Noble et al., 2003) . SEMA4, coding for Semaphorin 4A, has 

been shown to play a role in a number of autoimmune diseases including multiple sclerosis, Systemic 

lupus erythematosus, and Rheumatoid arthritis through its action in activating regulatory T cells 

(Delgoffe et al., 2013). Furthermore, it may have a potential role in inhibiting angiogenesis which may 

further perpetuate the T1D disease progression (Toyofuku et al., 2007). Similarly, polymorphisms 

within TCF7, a T cell transcription factor, have also been identified as being associated with T1D and 

may be an essential locus in the etiology of T1D through its downstream action of modulating immune 

response. Our analysis thus provides confirmation for the importance of T cell genes and pathways, 

as well as pinpointing the essential regulators to explore further within the context of T1D. 

 
More globally, we identified several pathways which imply a pathogenic change in the molecular 

machinery coordinating protein production and processing, including spliceosome, mRNA 

metabolism, tRNA aminoacylation, gene expression, translation, and proteasome in our meta-MSEA. 

Kracht et al. reported that the production of a non-conventional products due to mRNA processing 

errors produces an autoimmune polypeptide that is detected by T cells in T1D patients (Kracht et al., 
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2017). It is also predicted that the formation of hybrid insulin peptides within beta cells activates CD4 

T cells in NOD mice (Delong et al., 2016), thus further supporting the association between T1D and 

the failure of proteins to be processed correctly. It is plausible that variations within genes governing 

protein formation and processing components induce antigenic protein products within the pancreatic 

tissue itself or within immune cells, which results in the activation of an autoimmune response, beta 

cell death, and development of T1D.	

	

Viral infection (Allen, Kim, Rawlinson, & Craig, 2018) and its association with T1D has been 

suggestive as the potential causal environmental trigger, particularly with regard to antenatal maternal 

infection and subsequent incidence of T1D. In support of this theory we found a number of pathways 

associated with HIV and influenza virus infection across multiple tissues tested. Given that these 

pathways are genetically perturbed as informed by our T1D GWAS datasets, our finding implies that 

genetic variants in genes involved in viral infection may confer vulnerability to infections and/or 

promote over-reactive viral response that induces autoimmunity, which explains how viral infection 

may trigger T1D pathogenesis. We have identified several KDs which may be susceptible to viral 

perturbation resulting in modulation of immune response, which includes PSMA7 (Apcher et al., 

2003), TRAF6 (Yoboua, Martel, Duval, Mukawera, & Grandvaux, 2010), CD3G (Willard-Gallo, 

Furtado, Burny, & Wolinsky, 2001) , PIK3R2 (Ylosmaki, Schmotz, Ylosmaki, & Saksela, 2015), and 

MCM6 (Gautier et al., 2009). Of these, proteasomal alpha subunit PSMA7 enables the human 

immunodeficiency virus-1 (HIV-1) Tat protein to disrupt proteasome function through its interaction 

with the subunit, thus highlighting a potential region which is susceptible to viral modulation (Apcher 

et al., 2003). The association with this protein and potential T1D pathogenesis goes further as it may 

modulate both cellular stress response (Li, Zhang, Zhang, & Wei, 2011) and antigen processing (Du 

et al., 2009), which may collectively impact beta cell survivability. Also, TRAF6, a TNF receptor, has 
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been previously shown to modulate viral load in hepatitis C virus patients (Pu et al., 2017) as well as 

the immunogenic inflammatory response in dengue virus infected patients (Motaleb, Nabih, 

Mohamed, & Elhalim, 2017), thus serving as a connection between viral infection and immune 

response (Fang et al., 2017). Additionally, there is evidence suggesting that viral infection alters the 

expression and local chromatin landscape of the T cell receptor complex subunit CD3G (Akl et al., 

2007; H. Yu et al., 2015), with further reports associating this subunit with autoimmunity (Tokgoz et 

al., 2013). The other two predicted key driver genes, MCM6 (Tan et al., 2017) and PIK3R2 (Kim, 

Hollenbaugh, Kim, & Kim, 2011) are predicted to influence antiviral and inflammatory response after 

viral infection.  

      

Another immune-related pathway is the SNARE interaction with vesicular transport pathway 

(Offenhauser et al., 2011), which is significant in that the protein complex seems to act as a negative 

regulator of macrophage activity and is associated with familial hemophagocytic lymphohistiocytosis 

type 4 (FHL-4) (zur Stadt et al., 2005), a hyper-inflammatory disease. Moreover, SNARE also regulates 

cross presentation of antigens within dendritic cells through the action of Sec22b (Cebrian et al., 2011) 

which enables the delivery of antigens from the phagosome into the  cytosol, thus further 

corroborating this complex’s role within immune response.  

 

Further, we identify NOTCH signaling as a potential contributor to T1D, which has been implicated 

in rheumatoid arthritis (Yabe, Matsumoto, Tsurumoto, & Shindo, 2005), another proposed 

autoimmune disease. There is evidence that Notch receptors are constitutively expressed on 

macrophages and dendritic cells, thus play a direct role in immunity (Zhang et al., 2012). NOTCH 

signaling has also been identified within the context of viral response (Ito et al., 2011), with its signal 

integral in influenza pathogenesis. These previous results highlight the integral role Notch signals play 
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within many of the proposed mechanisms of T1D initiation, thus our predictions serve as further 

evidence of this mechanism as a potentiation route to explore further mechanistically and 

therapeutically. Our KDA results also support this finding, with NOTCH1, 2, 3, and 4 all arising as 

significant KDs within blood, adipose, macrophage, and monocyte tissue/cell types. Furthermore, in 

a recent publication by Bartolome et al., chronic NOTCH activation is shown to impair beta cell 

function through a loss of maturity combined with increased proliferation rate during T2D related 

physiological stress (Bartolome, Zhu, Sussel, & Pajvani, 2018). Our results suggest that this may also 

contribute to the loss of beta cells function throughout T1D disease progression. 

 

Finally, we highlight calcium signaling as a perturbed pathway in the pancreatic tissue. Dysregulation 

of this signaling process has been previously identified as a pathogenic mechanism in acute pancreatitis 

(Frick, 2012) and its perturbation is generally predicted to play a significant role in apoptotic pathways 

(Orrenius, Zhivotovsky, & Nicotera, 2003). Moreover, this pathway was identified within the 

macrophage and blood tissues which may further link calcium signaling and immune dysfunction. 

Previous reports show that modulation of the calcium signal transducer, calmodulin, mitigates the 

development of systemic lupus erythematosus in mice and suppresses INFγ production in human 

SLE cells (Ichinose, Juang, Crispín, Kis-Toth, & Tsokos, 2011). Furthermore, calcium alters B cell 

reactivity and anergy, thus critically regulating the development of autoreactivity (Bouillet et al., 1999) 

and inflammatory response (P. Yu et al., 2005). Interestingly, the B cell adaptor protein CD19  which 

integrates calcium signalling and B cell mediated immunity (Tedder, Haas, & Poe, 2002), was identified 

as a KD within the blood tissue, which has a protective role in slowing the decline in beta cell function 

within T1D models (Vonberg et al., 2018). 
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Overall, our integrative genomics analysis recapitulates previously known pathways, processes and 

genes associated with T1D pathogenesis, primarily components of the immune system, confirming 

the robustness of our study. We additionally uncover possible avenues to explore further with 

suggested pathways and key genes involving the pancreas to be potentially contributing significantly 

to the T1D outcome through genetic perturbations, including those that can interact with 

environmental factors such as viral infections. The KDs prioritized through our comprehensive 

integrative analyses may serve as putative T1D targets for therapeutic development. Future efforts to 

validate the predicted novel regulators and pathways are warranted. 
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Table 1. Top pathways associated with T1D identified across multiple tissues at an FDR <5%. 

Blood: 1, Macrophage: 2, Monocyte: 3, Pancreas: 4, Subcutaneous Adipose: 5 and Visceral Omentum 

Adipose: 6. 

Supersets Module 
Size 

Tissues Pathways 

T1D positive control 60 1, 2, 3, 4, 5, 6 Positive control gene set for T1DM 

S1:  
Mitotic G1-G1/S 

phases 
  

186 1, 2, 3, 5, 6 
  

Mitotic G1-G1/S phases; Cell Cycle Checkpoints and 
Regulation; DNA Replication; Vpu mediated degradation of 
CD4; Disease; Antigen Processing-Cross presentation 
  

S2: HIV Infection 222 2, 3 HIV Infection; Host Interactions of HIV factors 

S3: Signaling by 
NOTCH 

122 3, 5, 6 Signaling by NOTCH 
Pre-NOTCH Expression and Processing 

S4: Protein folding 53 3, 4, 5 Protein folding; Chaperon-mediated protein folding; 
Association of TriC/CCT with target proteins during 
biosynthesis 

S5:  Signaling by B 
Cell Receptor (BCR) 

170 2, 3 Signaling by the B Cell Receptor (BCR); Downstream 
Signaling Events of B Cell Receptor (BCR) 

S6:  RNA Polymerase 
I, RNA Polymerase 

III, and Mitochondrial 
Transcription 

95 3, 5 RNA Polymerase I, RNA Polymerase III, and Mitochondrial 
Transcription; RNA Polymerase I Transcription; RNA 
Polymerase I Promoter Clearance; RNA Polymerase I Chain 
Elongation 

S7:  Antigen 
processing: 

Ubiquitination & 
Proteasome 
degradation 

211 2, 3 Antigen processing: Ubiquitination & Proteasome 
degradation; Class I MHC mediated antigen processing & 
presentation 

S8:  Adaptive 
Immune System 

261 2, 3 Adaptive Immune System; Immune System 

S9: tRNA 
Aminoacylation 

46 2, 3, 5 tRNA Aminoacylation; Aminoacyl-tRNA biosynthesis; 
Mitochondrial tRNA aminoacylation 

S10:  Mitotic M-
M/G1 phases 

172 2, 3 Mitotic M-M/G1 phases; Mitotic Metaphase and Anaphase; 
Cell Cycle; Cell Cycle, Mitotic; M Phase; Mitotic Anaphase; 
Separation of Sister Chromatids 

S11: Signaling by 
GPCR 

230 3 Signaling by GPCR; GPCR downstream signaling  
GPCR ligand binding 

S12: Activation of 
GABAB receptors 

39 3 Activation of GABAB receptors; Activation of GABA B 
receptors 
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Table 2. T1D genetic supersets with KDs for both Bayesian and PPI networks.  Only supersets with at least one KD (FDR <5%) were 

shown. For supersets with more than five KDs, only the top 5 KDs are shown. 

 
 

Supersets 
Bayesian Network PPI Network 

Adipose Blood Adipose Blood Pancreas 

Metabolism of mRNA RPL31, FAU, RPS29, 
RPS18, RPS27 
 

RPL38, RPS29, RPL7A, 
RPLP2, RPL7 
 

UPF2, EXOSC6, NDRG1, 
EXOSC8, EXOSC4 
 

UPF2, EXOSC6, NDRG1, 
EXOSC8, EXOSC4 
 

 

Signal Transduction BC052328, LGMN, 
EMR1, EVI2B, SLC15A3   DOK1, PIK3R2, MMP9, 

GNAI2, CCR5     

Gene Expression RPL31, RPS29, RPS18, 
RPS27, FAU   NCOA6, RXRG, NR0B2, 

PPARGC1A, MED1     

Systemic Lupus 
Erythematosus  

HIST1H2BM, 
HIST1H2BC   PTMA PTMA, ASF1A   

Mitotic M-M/G1 
phases 

RAD51, MCM2, CDCA8, 
MKI67, FIGNL1   CDK2, PLK1, PCNA, 

CDKN1A, MCM7 
CDK2, PLK1, PCNA, 
CDKN1A, MCM7   

Natural Kill Cell 
Cytoxicity  

PTPN6, FERMT3, 
ARHGAP30, NCKAP1L, 
LCK 

  LCK, SHC1, SYK, PTPN6, 
VAV1 

LCK, SHC1, SYK, PTPN6, 
VAV1 

LCK, SHC1, SYK, 
PTPN6, VAV1 

RNA Polymerase I, 
RNA Polymerase III, 
and Mitochondrial 
Transcription 

HIST1H2BM, 
HIST1H2BC   TBP, ERCC3, CDK7, RB1, 

BRF1     

Complement & 
Coagulation  

F2, FGG, PLG, AHSG, 
GC   F2, SERPINA5, PLG, C3, F10 F2, SERPINA5, PLG, C3, 

F10   

Disease RPS18, RPL27, MYO1F, 
ACTR3, FAU   PIK3R2, FGFR1, ERBB4, 

NOTCH1, STAT5B 
PIK3R2, FGFR1, ERBB4, 
NOTCH1, STAT5B   

Immunoregulatory 
interactions between a 
Lymphoid and a non- 
Lymphoid cell 
 

CD3G, LCK   HLA-C, HLA-G, CD3D, 
HLA-B, ITGA4 

HLA-C, HLA-G, CD3D, 
HLA-B, ITGA4   
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Figure 1. Overview of Study. 1) T1D GWAS SNPs are mapped onto genes using tissue specific 

eQTLs. Genes found are then linked to canonical pathways and co-expression modules. 2) MSEA of 

Cohort 1 and Cohort 2 are carried out independently for pathway/co-expression module enrichment. 

3) Meta-MSEA of the combined cohorts for pathway/co-expression module enrichment. Similar 

modules are then categorized into independent supersets and input into a wKDA. 4) wKDA 

implemented using both protein-protein interaction (PPI) and Bayesian networks independently for 

key driver gene identification, followed by in silico validation.



      27 

 

 
Figure 2. Venn Diagram of enriched canonical pathways and co-expression modules for both 

T1D GWAS cohorts. A) Venn diagram of the independent and overlapping knowledge driven 

biological pathways for both cohorts (FDR <5%). B) Venn diagram of the independent and 

overlapping co-expression modules for both cohorts (FDR <5%). 
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Figure 3. Heatmap of the tissue-specific meta-MSEA from the combined Cohort 1 and Cohort 

2 datasets for the supersets derived from the canonical pathways and co-expression network 

modules. A) Heatmap for the statistical significance of T1D genetic association across the supersets 

derived from the Canonical pathways (FDR <5%) in the tissue-specific and cross-tissue analyses. B) 

Heatmap for the statistical significance of T1D genetic association across the supersets derived co-

expression modules (FDR <5%) in the tissue-specific and cross-tissue analyses. 
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Figure 3. Tissue specific Key Driver Subnetworks. A) Pancreas PPI network. B) Blood Bayesian 

Network. C) Adipose Bayesian Network. 
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