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Abstract 

We examine representation assumptions for learning in the 
artificial grammar task. Strings of letters can be represented 
by first building vectors to represent individual letters and 
then concatenating the letter vectors into a vector of larger 
dimensionality. Although such a representation works well in 
selected examples of artificial-grammar learning, it fails in 
examples that depend on left-to-right serial information. We 
show that recursive convolution solves the problem by 
combining item and serial-order information in a stimulus 
item into a distributed data structure. We import the 
representations into an established model of human memory. 
The new scheme succeeds not only in applications that were 
successful using concatenation but also in applications that 
depend on left-to-right serial organization.  

Keywords: Artificial grammar learning; Holographic 
representation; Exemplar model 

Introduction 
In an artificial-grammar learning (AGL) classification task, 
participants study strings of symbols. Following study, the 
participants are told that the studied items were constructed 
according to the rules of an artificial grammar and are 
invited to sort novel rule-based (grammatical) exemplars 
from novel rule-violating (ungrammatical) ones. Even 
though the participants are unable to describe the rules, they 
can discriminate the two classes of stimuli. 

Initial accounts proposed that the participants abstracted 
the grammar and used that knowledge to judge the status of 
the exemplars (e.g., Reber, 1967, 1993). Later investigators 
argued that the participants judged grammaticality without 
reference to the grammar. To support the latter position, 
investigators identified several sources of information that 
discriminate the two classes of test strings. Brooks (1978) 
suggested that whole-item similarity between training and 
test strings is used to infer grammaticality. Perruchet and 
Pacteau (1990) argued that bigram overlap is used to infer 
grammaticality. Vokey and Brooks (1992) identified edit 
distance as a predictor, and Brooks and Vokey (1991) 
argued that patterns of repetition within a string are used to 
infer grammaticality. Knowlton and Squire (1996) identified 
associative chunk strength (ACS), and Johnstone and 
Shanks (1999) identified chunk novelty. Finally, Jamieson 
and Mewhort (2009a, 2010) showed that global similarity 
predicts performance in the task. Regression analyses 

designed to sort the various predictors have confirmed a role 
for all of them (e.g., Johnstone & Shanks, 1999). Factorial 
designs that have pitted predictors against one another have 
been unable to identify a single dominant predictor (e.g., 
Kinder & Lotz, 2009; Vokey & Brooks, 1992). 

We think that many of the predictors (e.g., ACS, bigram 
over, etc) point to a common underlying factor, namely left-
to-right serial structure. If so, the problem is not to 
determine which predictor dominates but, rather, to decide 
how subjects encode material so that they have access to the 
left-to-right serial structure in the exemplars.  

In this paper, we explore an encoding mechanism that 
folds several orders of left-to-right serial structure in a string 
into a coherent and distributed data structure (i.e., single 
letters, bi-grams, trigrams, and whole strings). To begin,we 
describe the representation scheme. After, we show that the 
new representations predict judgement of grammaticality 
when used in an established theory of retrieval (Jamieson & 
Mewhort, 2009a, 2010). 

Holographic representation in memory 
Many investigators have proposed that light holography 
provides a mathematical basis for memory representation 
(Borsellino & Poggio, 1973; Gabor, 1968; Khan, 1998; 
Longuet-Higgins, 1968; Poggio, 1973). Murdock’s (1982, 
1983, 1997) TODAM is probably the best-known use of the 
idea in experimental psychology. In TODAM, stimulus 
associations are formed using linear convolution and 
associations are unpacked using correlation (deconvolution).  

More recently, Jones and Mewhort (2007) used recursive 
circular convolution (Plate, 1995) to develop a self-
organizing model of semantic memory (BEAGLE). 
BEAGLE captures judgements of semantic typicality, 
categorization, priming, and syntax from word order. 
BEAGLE’s ability to handle so many phenomena of 
semantic memory is in itself impressive. However, from our 
perspective, BEAGLE’s strength is that it shows how 
holographic representation can account for complex 
decision behaviour without adding control structures (e.g., 
learning and the application of rules). BEAGLE’s success 
suggests that holographic stimulus representation should be 
explored in related models of learning and memory. The 
present work adapts BEAGLE’s representation scheme to 
represent strings in the artificial grammar classification task.  
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Recursive circular convolution 
Circular convolution is a mathematical operation that forms 
an associative representation, z, for two input vectors, x and 
y, 

 

 , [1] 

 
where i indexes the element in z and where n is the 
dimensionality of z, x, and y. Briefly, circular convolution 
forms the outer-product matrix—long used to represent 
associations in neural networks (e.g., Anderson, 1995)—and 
then collapses it into a vector (see Figure 1). Circular 
convolution is associative, commutative, and distributes 
over addition. 

 

 
 

Figure 1. Collapsing an outer-product matrix with 
circular convolution, where x and y are the 
argument vectors and z represents the resulting 
compressed vector from collapsing the outer-
product matrix. The values i and j represent the 
row and column indices, respectively, for an 
element in the outer-product matrix. 

 
In the work that follows, we apply circular convolution 

recursively to encode a series, such as a sequence of letters. 
Consider the string ABCD. To represent ABCD as a series, 
first, generate a unique random vector for each of the 
individual letters in the string {a, b, c, d}. Next, apply 
circular convolution in a recursive fashion to bind the first 
letter to the second, the product of that binding to the third, 
and so on, until each letter has been folded into the 
representation. At this point, using z to represent the string 
ABCD, z = ABCD = ((a * b) * c) * d, where * denotes 
circular convolution. No matter the length of the string, z 
has the same dimensionality as the input (i.e., letter) vectors. 

Why holographic representation? 
In previous studies of AGL, we represented exemplars by 
concatenating letters. For example, a string ABCD was 
represented by concatenating the vectors for A, B, C, and D 
to form a single vector a//b//c//d, where // denotes 
concatenation. The scheme captured a swath of data from 
the artificial grammar task and from serial reaction time 
tasks (see Jamieson & Mewhort, 2009a, 2009b, 2010). 
Nevertheless, concatenated representations are problematic.  

In models using vector representation, it is traditional to 
compute the similarity between x and y, using a vector 
cosine. Thus, with concatenated strings, similarity is 
computed by comparing information in corresponding serial 
positions of two strings (i.e., element-for-element). Because 
of the serial-position constraint, a model using the 
concatenated representation scheme treats the strings ABCD 
and CDAB as if they shared no overlapping features—a 
judgement that is at odds with data. In contrast, a 
holographic representation scheme distributes information 
throughout the vector so that each part of it contains some 
information about the whole. Thus, in difference to the 
concatenation scheme, the cosine calculation compares all 
parts of x (i.e., ABCD) and y (i.e., CDAB) simultaneously 
and, thereby, acknowledges similarity between ABCD and 
CDAB. Because participants appreciate the similarity 
between ABCD and CDAB, the holographic scheme is 
preferred. 

Critically, holographic stimulus representation finesses the 
problem of encoding serial structure. Importantly, it does so 
without requiring a change in the similarity calculation or 
other aspects of retrieval. This occurs because a 
representation of ABCD that is formed using recursive 
circular convolution superimposes overlapping orders of 
serial structure onto a single distributed structure. Because 
different orders of serial information about a string are 
superimposed in a single representation, a standard cosine of 
two vectors supports parallel comparison of multiple orders 
of serial structure.  The question we pose, then, is if we 
import the holographic representations into an established 
model of retrieval, will the previously successful model still 
work; that is, can we still explain peoples’ judgements in the 
artificial grammar task? 

Minerva 2 
Minerva 2 is an established model of retrieval (Hintzman, 
1986, 1988). When a participant studies an item, an event is 
encoded to memory as a unique trace.  

In Minerva 2, a stimulus is represented by a vector of n 
elements; each element takes values: +1 or -1. To represent 
stimuli in the artificial grammar task, we first, generate a 
unique random vector for each of the letters in the English 
alphabet and then apply recursive circular convolution to 
those vectors to represent a string of letters. Thus, a string 
TXXV is represented by a trace: ((t * x) * x) * v.  

Memory is a matrix, M. Encoding an event involves 
copying its corresponding vector representation to a new 
row in the memory matrix. Encoding is sometimes 
imperfect. Imperfect encoding is implemented by setting 
some vector elements to zero (indicating that the element is 
indeterminate or unknown). A parameter, L, controls the 
probability with which an element is stored. As L increases, 
encoding quality improves.     

All retrieval is cued. When a retrieval cue is presented, it 
activates each trace in memory in proportion to its similarity 
to the cue. The activated traces are aggregated into a 
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composite called the echo; the contribution of each trace to 
the echo is based on its activation. 

The similarity of trace, i, to the probe, P, is computed 
using a vector cosine, i.e.,  

 

  ,  [2]
 

 
where Pj is the value of the jth feature in the probe, Mij is the 
value of jth feature of the ith row in memory. Like the 
Pearson r, the similarity of the ith item to the probe, Si, is 
scaled to the interval [-1, +1]. Similarity equals +1 when the 
trace is identical to the probe, 0 when the trace is orthogonal 
to the probe, and -1 when the trace is opposite to the probe.  

The ith trace’s activation, Ai, is the cube of its similarity to 
the probe, i.e.,  
 
   .  [3] 
 

The activation function exaggerates differences in 
similarity between a probe and items in memory by 
attenuating activation of exemplars that are not highly 
similar to the probe. This allows traces most similar to the 
probe to dominate the information retrieved. Note that the 
exponent in the activation function preserves the sign of the 
argument, Si.   

The information retrieved by a probe is a vector, c, called 
the echo. The echo is computed by weighting each of the i = 
1 ... m traces in memory by their activations and, then, 
summing all m traces into a single vector,  
 

  .  [4] 

 
The information in the echo is converted to decision 

variable called echo intensity, I, by computing the cosine 
similarity (see Equation 2) of the echo and probe. In the 
context of the artificial grammar task (i.e., classification), 
echo intensity is a proxy for judgement of grammaticality. 

In the remainder of this paper we apply the model to data 
from the judgment of grammaticality task.  

Evaluating the model  
The judgement of grammaticality task was introduced by 
Reber (1967). In his experiment, participants memorized 
grammatical exemplars. After, they judged the grammatical 
status of novel test probes. Reber’s subjects discriminated 
novel grammatical from novel ungrammatical test probes, 
but they could not articulate the rules of the grammar. 

We have shown previously that Minerva 2 captures 
discrimination of grammatical from ungrammatical test 
probes in Reber’s (1967) task, without reference to 
grammatical rules (Jamieson & Mewhort, 2009a, 2010). But 

we used concatenated stimulus vectors in that work. In the 
simulations that follow, we retest the model using the 
holographic rather than concatenated stimulus vectors. 

To simulate Reber’s (1967) task we began by representing 
his stimuli in our model.1  First, we constructed a unique 
100-element vector to represent each letter used to construct 
letter strings: {T, V, P, X, S}. Second, we generated a vector 
for each training and test string using recursive circular 
convolution. Third, we filled successive rows on the 
memory matrix with the training vectors. Fourth, we 
introduced moderate data-degradation to the items in 
memory, i.e., L = 0.7. Finally, we calculated the mean echo 
intensity for each of the 24 grammatical and 24 
ungrammatical test strings. 

The new model successfully discriminated grammatical 
from ungrammatical test items. The mean echo intensity for 
the 24 grammatical test strings was .57 (SD = .03); the 
corresponding value for the 24 ungrammatical test strings 
was .49 (SD = .02), t(48) = 2.15, p < .05.  

In other simulations, we varied the integrity of data in 
memory (e.g., Jamieson, Holmes, & Mewhort, in press). As 
shown in Figure 2, the magnitude of the difference in mean 
echo intensity for grammatical and ungrammatical test 
strings (i.e., the model’s discrimination of grammatical and 
ungrammatical items) grew as a function of L.  

 

 
Figure 2. Mean echo intensity for grammatical and 
ungrammatical test strings as a function of data 
integrity in memory, L.   

 
The simulation illustrates several points. First, it shows 

that the distributed stimulus representations generated using 
recursive circular convolution support discrimination of 
grammatical from ungrammatical test items. Second, 
because the model discriminated the two classes of stimuli 
without reference to grammatical rules, the simulation 
serves as an existence proof that grammatical strings can be 

                                                           
1 Reber did not list the specific study and test items that he used in 
his original paper. He did, however, provide a list of representative 
strings from the same grammar in another source (Reber, 1993, p. 
36). We took our strings from there. 
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discriminated from ungrammatical test strings without 
knowledge of the grammatical rules. Thirdly, the simulation 
shows that we can import holographic stimulus 
representations into Minerva 2 without a deleterious impact 
on the effects that the model captures using concatenated 
vectors (see Jamieson & Mewhort, 2009a, 2010).  

Next, we test the new representation scheme by applying 
it to data collected by Kinder and Lotz (2009). Their data 
provide a more detailed challenge. 

Kinder and Lotz (2009) 
Kinder and Lotz (2009) engineered an artificial grammar to 
distinguish stimulus properties thought to predict 
judgements of grammaticality. They used the grammar to 
construct a list of 12 training items and 48 test items. The 
test items were of four different types. Type 1 and Type 2 
items were ungrammatical; Type 3 and Type 4 items were 
grammatical. Type 1 test items violated both positional and 
sequential rules of the grammar; Type 2 items violated only 
sequential rules (i.e., the strings included at least one illegal 
bigram but all letters were in legal serial positions). Type 3 
and Type 4 items obeyed positional and sequential rules of 
the grammar; but, Type 4 items had the additional property 
of being very similar to a specific training exemplar. 
Accordingly, if participants endorse Type 2 over Type 1 
items, they must appreciate the positional dependencies of 
letters in the training set. If participants endorse Type 3 over 
Type 2 items, they must appreciate the difference between 
studied and unstudied chunks (i.e., bigrams and trigrams). If 
they endorse Type 4 over Type 3 items, they must 
appreciate whole-item similarity between training and test 
strings. 
 

 
Figure 3. Empirical: Percentage of items 
endorsed as grammatical in Kinder and 
Lotz’s (2009) Experiment 2. 

 
Kinder and Lotz’s (2009) results are reproduced in Figure 

3. First, participants endorsed Type 2 over Type 1 items 
indicating they were sensitive to the positions of individual 
letters in the training strings. Second, participants’ endorsed 
Type 3 over Type 2 items, indicating they were sensitive to 
test strings’ inclusion/exclusion of studied and unstudied 
bigrams. Finally, participants endorsed Type 4 over Type 3 

items, indicating they were sensitive to whole-item 
similarity between training and test strings.  

The pattern of results demonstrates that judgement of 
grammaticality is influenced concurrently by the positions 
of single letters in a string, by knowledge of small chunks 
(i.e., knowledge of bigrams and trigrams), and by 
knowledge of larger chunks (i.e., whole training strings). To 
claim a model as a competent account of decision in the 
judgement of grammaticality task, the model must 
accommodate concurrent sensitivity to the three sources of 
information. 

Simulation of Kinder and Lotz (2009; Exp 2) 
Kinder and Lotz’s (2009) data provide a principled 
challenge to test the idea that holographic stimulus 
representation allows multiple orders of serial-structure to 
exert a concurrent influence on judgements of 
grammaticality. Hence, we tested our model using Kinder 
and Lotz’s (2009) materials.2  The simulation was otherwise 
the same as before.  

The results of the simulation are presented in Figure 4; the 
means were computed across 50 independent replications of 
the procedure. We treat mean echo intensity as a proxy for 
mean judgement of grammaticality.  

 

 
Figure 4. Simulation: Mean echo intensity for 
the four item types in Kinder and Lotz’s (2009) 
Experiment 2. 

 
As shown, the model reproduced the pattern of results 

from Kinder and Lotz’s (2009) experiment. Firstly, mean 
echo intensity for Type 2 items was greater than for Type 1 
items indicating that the model was sensitive to positional 
dependencies of individual letters in the training strings. 
Secondly, echo intensity for Type 3 items was greater than 
for Type 2 items indicating that the model was sensitive to 
bigram and trigram structure in the stimuli. Finally, echo 
intensity for Type 4 items was greater than for the Type 3 

                                                           
2 A complete listing of Kinder and Lotz’s (2009) materials is 
presented in their Appendix B. The simulations were identical for 
the two sets; a testament to their care at stimulus design. 
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items indicating that the model was sensitive to larger 
chunks of letters, possibly whole strings.  

Importing a scheme for holographic stimulus 
representation into a Minerva 2-based account of retrieval 
allows the model to capture additional details of 
performance in the artificial grammar task. Minerva 2 now 
captures trends that previously required a very different kind 
of computational account (e.g., the SRN, see Elman, 1990). 

General Discussion 
Judgements of grammaticality reflect a concurrent 
consideration of discriminative cues (e.g., Johnstone & 
Shanks, 1999). To accommodate that fact, we developed a 
new kind of stimulus representation based on recursive 
circular convolution. The new representation folds 
information about several cues into a distributed data 
structure. More importantly, the holographic representation 
scheme supports parallel comparison of features in a string, 
unconstrained by serial position alignment. Using the 
holographic representations in a model of human memory 
captures judgement of grammaticality. 

In previous work, Jamieson and Mewhort (2009a, 2010) 
demonstrated that judgment of grammaticality can be 
understood using Minerva 2—an exemplar model of 
memory. In that work, exemplars were represented by 
concatenating individual letter vectors. Judgement of 
grammaticality reflected a test probe’s global similarity to 
the studied exemplars. The representation scheme worked 
because it preserved the spatial structure of the stimulus 
(i.e., letters from left-to-right). However, the account 
neglected to include information about left-right sequential 
properties of the exemplars—information that subjects 
notice during study. Because the model did not 
acknowledge sequential structure in stimuli, it incorrectly 
computed similarity between two exemplars based on 
bigram overlap; a factor measured by associative chunk 
strength. 

The holographic stimulus representations developed here 
finesse the problem associated with the earlier scheme by 
folding information about serial-structure into the 
representation of a string. By using the holographic 
representations, the model now captures judgements that 
reflect serial structure (e.g., participants’ appreciation of 
chunk overlap). Despite changes to the representation 
scheme in the model, we have not changed the model’s 
account of retrieval and so we retain our previous 
conclusion:  Judgement of grammaticality can be captured 
without an implicit rule-induction process that abstracts and 
applies grammatical information.  

Kinder (2000; Kinder & Lotz, 2009) and others (e.g., 
Cleeremans, Servan-Schreiber, & McClelland, 1989) have 
argued for a Simple Recurrent Network (SRN) account of 
artificial grammar learning. The SRN accomplishes 
judgement of grammaticality by learning the sequential 
structure in a set of training sequences and then applying 
that knowledge to predict sequential regularities in test 
items. When the SRN can predict the sequential structure of 

a test string, it judges the test string as grammatical (see 
Reber, 2002, for an analysis of the approach; see Vokey & 
Higham, 2004, for model comparison of the SRN and a 
related instance-based model). Cleeremans et al. (1989) 
showed the SRN develops a veridical representation of the 
grammar used to generate the training strings. By contrast, 
our account treats judgement of grammaticality as an 
episodic memory task. At study, the model encodes 
information about individual exemplars, including serial 
structure. At test, the model judges a test strings’ 
grammaticality by its global similarity to the exemplars in 
memory. The two classes of model (Minerva 2 and the 
SRN) offer very different explanations of the cognitive 
processes that underlie judgement of grammaticality. So, 
which approach is to be preferred? We think the answer 
should be based on the nature of the experimental problem. 

 In the training phase of a standard artificial grammar 
experiment, participants are asked to memorize exemplars. 
At test, they are given the problem of inferring the 
grammaticality of test probes. Of course, people can learn 
sequential structure in stimuli instructions. But they do not 
have to learn it:  the task does not cue them to do so. In our 
view, although learning sequential structure in a set of 
exemplars provides a possible mechanism, for the 
judgement of grammaticality task, it implies compulsory 
learning of sequential regularities even though that action is 
neither implied by nor cued by the task. Unlike the SRN, 
Minerva 2 assumes people notice sequential characteristics 
of each exemplar, but they do not learn the regularities in 
the set of exemplars. Moreover, because our account treats 
judgement of grammaticality as a retrospective judgement, 
it is not necessary to justify or to describe prospective 
abstraction of structure in the training set. 

In developing our holographic representation scheme, we 
have been careful to avoid altering our model’s assumptions 
about retrieval. In both our original and our present 
accounts, we assumed a perceptual system loads memory 
with what the subjects notice about each of the studied 
exemplars. Judgment of grammaticality reflects the global 
similarity of a test probe to training items. The difference in 
our new account is that the new model assumes that subjects 
notice more about the order of the symbols than the old 
model assumed; a claim echoed in post-experimental 
interviews with our subjects. At a broader level, our solution 
honours an insight from Simon’s (1969) parable of the ant. 
Simon noted that an ant’s path on a beach may be complex 
and difficult to describe. But, the complexity of the path 
may be driven by complexity in the beach rather than 
complexity in the ant. Simon used the parable to goad 
theorists into considering explanations for a behaviour based 
on the complexity of the environment before assuming that 
the behaviour reflects complex psychological mechanisms. 
Here, we have followed Simon’s advice. Peoples’ behaviour 
in the artificial grammar task appears complex and difficult 
to describe. However, the complexity is in the materials, not 
in the subjects. Judgement of grammaticality reflects the 
storage and retrieval of studied exemplars. 
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