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RNA structural switches are key regulators of gene expression in bacteria,
but their characterization in Metazoa remains limited. Here, we present
SwitchSeeker, acomprehensive computational and experimental approach
for systematic identification of functional RNA structural switches. We
applied SwitchSeeker to the human transcriptome and identified 245
putative RNA switches. To validate our approach, we characterized a
previously unknown RNA switchin the 3’untranslated region of the RORC
(RAR-related orphanreceptor C) transcript. In vivo dimethyl sulfate

(DMS) mutational profiling with sequencing (DMS-MaPseq), coupled with
cryogenic electron microscopy, confirmed its existence as two alternative
structural conformations. Furthermore, we used genome-scale CRISPR
screens to identify trans factors that regulate gene expression through this
RNA structural switch. We found that nonsense-mediated messenger RNA
decay acts on this element in a conformation-specific manner. SwitchSeeker
provides an unbiased, experimentally driven method for discovering RNA
structural switches that shape the eukaryotic gene expression landscape.

Gene expression is regulated at the RNA level in all kingdoms of life.
Some of the oldest groups of RNA-based regulatory mechanisms are
ribozymes (catalytically active RNA molecules) and RNA structural
switches (elements that adopt two mutually exclusive conforma-
tions, each leading to different gene-regulatory outcomes)'>. In
bacteria, a subset of RNA switches, termed riboswitches, control
gene expression by binding small molecule ligands that induce
RNA conformational changes*”. The discovery of RNA switches in

eukaryotes, however, has been more challenging. While a number
of thiamine pyrophosphate-sensing riboswitches have been identi-
fied in plants and fungi®, only two human RNA switches are known:
the protein-dependent RNA switch in vascular endothelial growth
factor-A (VEGFA), and m6A modification-based switches”®. There-
fore, the overallimpact of RNA switches on gene expressionin higher
eukaryotes remains unclear, despite their ubiquity in other domains
oflife. Here, we introduce SwitchSeeker, a systematic computational
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and experimental framework for unbiased discovery of RNA structural
switches inany transcriptome.

While several RNA switch detection software packages have been
developed, most identify new switch sequences based on their homol-
ogy to one of the 40 known RNA switch families’. The small minority
oftools enabling de novo prediction of RNA switches lack experimen-
tal verification of RNA structure and function'®". Therefore, there
is an unmet need for scalable methods of detecting eukaryotic RNA
switches and assessing the extent to which they carry out regulatory
functions in gene expression control. The approach we introduce
here relies on integrating multiple computational and experimental
methods: RNA switches are first predicted in silico, then structurally
and functionally characterized in vivo, which in turninforms the next
iteration of in silico predictions. First, we developed a computational
model called SwitchFinder for de novo RNA switch detection, and
showed thatitidentifies RNA switches from novel families with higher
accuracy than existing models. Combining SwitchFinder with a set of
high-throughput experimental techniques, we set up an end-to-end
iterative predict-and-validate platform that we term SwitchSeeker. We
applied SwitchSeeker to the human transcriptome toidentify putative
RNA switches, which we then characterized structurally and function-
ally using massively parallel assays in vivo. By iteratively improving
the SwitchFinder predictions with experimental data, we ultimately
report 245 high-confidence and functional RNA structural switches.

Finally, we selected the top scoring switch, located in the 3’
untranslated region (3'UTR) of the RORC (RAR-related orphan recep-
tor C) transcript, for further analysis. We used dimethyl sulfate (DMS)
mutational profiling with sequencing (DMS-MaPseq) structural prob-
ing and single-particle cryogenic electron microscopy (cryo-EM) to
confirmthat the predicted switch populates alternate molecular con-
formations. We then performed genome-scale CRISPR-interference
(CRISPRi) screens, which showed that one of the two conformations
reduces RORC gene expression through activation of the noncanonical
nonsense-mediated decay (NMD) pathway. Taken together, our frame-
work provides new insights into the role of RNA structural switchesin
shaping the human transcriptome, and outlines a broader approach
for future comprehensive characterization of RNA switches regulating
eukaryotic gene expression across cell types and organisms.

Results

Systematic annotation of human RNA structural switches

We define RNA structural switches as regulatory RNA elements that
affect the expression of the host RNA molecule through conformational
shifts. To discover new eukaryotic RNA switch families, we devised an
approach called SwitchFinder that, unlike most existing methods' ",
does not depend on known sequence motifs. Instead, SwitchFinder uses
the RNA sequence to generate an ensemble of secondary structures and
their corresponding energy landscape using a Boltzmann equilibrium
probability distribution'®. It prioritizes the sequences that show RNA
switch-like features, such as having two local minima in close proxim-
ity witharelatively smallbarrier inbetween (Fig.1aand Extended Data
Fig.1a,b). This approach ensures that RNA switches are identifiedina
generalizable and family-agnostic way, which we validated by demon-
strating its high performance on held-out Rfam families (Fig. 1b and
Extended DataFig. 1c). We compared the performance of SwitchFinder
to SwiSpot, the state-of-the-art method for family-agnostic riboswitch
prediction'®, and observed a performance improvement of 44% on
average across all RNA switch families except cyclic di-GMP-II (Fig. 1c).
By relying on biophysical features of the folding energy landscape,
SwitchFinder captures awider variety of RNA switches compared with
the existing methods.

To confirm that SwitchFinder is not overly tailored to bacterial
riboswitches, we tested it on eukaryotic and synthetic riboswitches,
including those sensing theophylline’ and specific RNA-binding
proteins®. Additionally, we applied SwitchFinder to ribosomal RNAs

to ensure its ability to distinguish RNA switches from nonswitching
but highly structured RNAs. This analysis showed that SwitchFinder
could distinguish true riboswitches from shuffled controls much more
effectively than it could do so with ribosomal RNAs, and that it per-
formed even better on eukaryotic and synthetic riboswitches than it
did onbacterial riboswitches (Fig. 1d). Altogether, these benchmarking
results gave us high confidence that SwitchFinder could nominate new
eukaryotic RNA switches that would expand our understanding of RNA
structural switchingin gene regulation.

Discovery of RNA switches with regulatory functionin the
human transcriptome

Messenger RNA secondary structure in the cell is highly dynamic
and compartment dependent?; therefore, we reasoned that the
SwitchFinder predictions may be greatly improved with experimental
measurements of RNA secondary structure from living cells. To coun-
teract the limitations of in silico RNA folding predictions in complex
eukaryotic transcriptomes®, we enhanced SwitchFinder by allowing
the incorporation of in vivo RNA secondary structure probing data
to refine the model’s energy terms, resulting in an iterative cycle of
computational prediction and experimental validation that we name
SwitchSeeker. First, we applied the SwitchFinder model using naivein
silicofoldingtothe entirety of the 3'UTRs of the human transcriptome,
and chosethe 3,750 top candidate switches (of length <186 nucleotides)
as putative switch elements. Toidentify the RNA switches that are both
functional and structurally bi-stablein the cell, we independently per-
formed two high-throughputin vivo screens: a ‘structure screen’ that
differentiates RNAs that exist as an ensemble of two mutually exclusive
conformations from those that exist only in a single conformation,
and a ‘functional screen’ that measures the effect of candidate RNA
switches on the expression of areporter gene.

For the structure screen, we performed an in vivo DMS-MaPseq
assay on HEK293 cells expressing alibrary of the 3,750 candidate RNA
switches in a reporter gene context to identify bi-stable RNA struc-
tures in the initial pool of 3,750 candidate switches (Extended Data
Fig.2b,c)**¥. The accessibility of asingle nucleotide in the DMS-MaPseq
data is measured as a population average of multiple RNA molecules
that represent different minima in the Gibbs free energy landscape.
If one conformation dominates the landscape, it dominates the
DMS-MaPseq reactivity profile; however, if multiple conformations
coexist, they all contribute to the reactivity profile*>?, SwitchSeeker
exploitsthis distinction in nucleotide accessibility to find RNA switches
that coexist in abalanced state between two conformationsin vivo.

For the functional screen, we implemented a massively parallel
reporter assay (MPRA)* to functionally interrogate RNA switches in
HEK293 cells. We cloned the library of 3,750 candidate RNA switch
sequences or cognate scrambled control sequences into a dual
enhanced green fluorescent protein (eGFP)-mCherry fluorescent
reporter, directly downstream of the eGFP open reading frame (ORF;
Extended Data Fig. 2d). This enabled us to use eGFP fluorescence to
measure the effect of candidate RNA switches ongene expression while
using the unaffected mCherry fluorescence as an endogenous control.
We transduced HEK293 cells with this syntheticlibrary and sequenced
DNA and RNA derived from eight bins of cells sorted by flow cytometry
according to their eGFP : mCherry expression ratio (Extended Data
Fig.2e,see Methods). Of the candidate RNA switches tested, 536 (14%)
caused significant downregulation of eGFP relative to their scrambled
control, and 538 (14%) showed a significant upregulation (Fig. 2b).
While our study focused on characterizing the RNA switches that act
in the context of 3'UTRs, the SwitchSeeker framework can be readily
applied to the study of other types of RNA switches with the use of
appropriate reporter constructs.

In the second iteration of SwitchSeeker, guided by in vivo RNA
structure data, werefined our predictions, eliminating false positives
and focusing on switches with consistent structural configurations
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Fig.1|SwitchFinder identifies candidate RNA switches in the human
genome. a, Example of SwitchFinder locating the RNA switch in the VEGFA mRNA
sequence. b, Receiver operating characteristic (ROC) curves of SwitchFinder
predictions of RNA switches from the common Rfam families. SwitchFinder

was applied to a mix of real sequences and their shuffled counterparts (with
preserved dinucleotide content). ROC curves measure its ability to correctly
select thereal sequences. AUC, area under the ROC curve; riboswitch families,
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ions; SAM, S-adenosyl-I-methionine; THF, tetrahydrofolate; TPP, thiamine
pyrophosphate. ¢, AUCs of RNA switch predictions across the Rfam families for
two models: SwitchFinder and SwiSpot'. Each dot represents one Rfam family.
Thelines show the change in accuracy between the two models. The families

that have higher AUCs for SwitchFinder are shown with blue lines; the ones that
have higher AUCs for SwiSpot are shown inred. P value calculated with the paired
two-sided ¢-test (P=0.00056). d, AUCs of RNA switch predictions across various
groups of natural and synthetic riboswitches, calculated asinb.

in vivo. Comparing outcomes of this iteration with the first iteration,
we found a significant increase in the proportion of regulatory active
switches (P=1x107%, Extended Data Fig. 2f), validating the enhanced
accuracy through in vivo data integration. This process prioritized
1,454 putative RNA switches that occupy two alternative conforma-
tional minima and are regulatory active in vivo.

Havingidentified alarge set of candidate RNA switches that affect
gene expression, we aimed to assess the degree to which the two sta-
ble conformations show divergent regulatory function. For this, we
extended our MPRA to include targeted mutations designed to shift
the equilibrium between the two conformations of each candidate
RNA switch. This was achieved by either disrupting or strengthening
conformation-specific stem loops by introducing either individual
mutations or reciprocal mutation pairs (Fig. 2¢). This additional
screen enabled us to identify bona fide RNA switches with strong
conformation-dependent activity. We found 245 RNA switches that dif-
ferentially regulated reporter gene expressionwhenlocked inaspecific
structural conformation. An example candidate switch (locatedinthe
3'UTR of TCF7 (transcription factor 7)) isshownin Fig. 2d: the TCF7RNA
switchlandscape has two local minima, corresponding to two alterna-
tive conformations supported by in vivo DMS-MaPseq data (Fig. 2d,
bottom). Two mutations in different parts of the switch sequence that

favor conformation1resultedinlower expression of the eGFP reporter
(top). Conversely, two mutations that favor conformation 2 increased
eGFP expression. This observation indicates that the two conforma-
tions of the TCF7 RNA switch elicit divergent regulatory functions.

Abi-stable RNA switchin the 3’'UTR of RORC

To demonstrate the validity of SwitchSeeker’s predictions, we aimed
to biochemically characterize one of the identified RNA switches. We
selected the switch that had the most pronounced difference in regu-
latory functions betweenits two conformations: a186 nucleotide ele-
mentlocatedinthe 3'UTR of the RORC mRNA. Based on the predicted
secondary structures, we designated the three regionsinvolvedinthe
base pairingas ‘Box 1’ (61-69 nucleotides), ‘Box 2’ (73-81 nucleotides)
and ‘Box 3’ (116-123 nucleotides). Our dataindicate that Box1canform
base pairs either with Box 2 or with Box 3, resulting in two mutually
exclusive conformations thateach exert distinct effects on gene expres-
sion (Fig. 3a). To confirm that the RORC RNA switch exists asanensem-
ble of two stable conformations, we designed mutation-rescue pairs
of sequences that first shift the equilibrium towards one conformation
(mutation), and then shiftit towards the other conformation (rescue)
(Fig. 3b and Supplementary Data Files), and used in vitro RNA SHAPE
(selective 2-hydroxyl acylation analyzed by primer extension)®' to
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b, Examples of regulatory elements identified by the functional screen. Each
row represents a single candidate RNA switch, each column represents asingle
bin defined by the reporter gene expression (eGFP fluorescence, normalized

by mCherry fluorescence). Bin 1 corresponds to the cells with the lowest eGFP
fluorescence, bin 8 corresponds to the highest. The value in each cellis the
relative abundance of the given RNA switch in the given bin, normalized across
the eight bins. The three plots show examples of candidate switches with
repressive, neutral and activating effects on gene expression. The plots below
show cumulative sequence abundances across all of the candidate switches in
each group. ¢, The set-up of the massively parallel mutagenesis analysis. For each
candidate RNA switch, we design four mutated sequence variants. Two of them
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lock the switch into conformation1, and the other two lock it into conformation
2.Asequencelibraryis then generated (Extended Data Fig. 2d), in which each
candidate RNA switch is represented by the four mutated sequence variants,
along with the reference sequence. d, Example of a high-confidence candidate
RNA switchidentified using the massively parallel mutagenesis analysis. Bottom:
Two alternative conformations as predicted by SwitchSeeker. The RNA secondary
structure probing data collected with the Structure Screen is shown in color. The
Gibbs free energy difference between the two predicted conformations is 2.4 kcal
per mol. Top: The effect of the candidate RNA switch locked in one or another
conformation on reporter gene expression. Each row corresponds to asingle
sequence variation that locks the RNA switch into one of the two conformations.
Each column represents a single bin defined by the reporter gene expression.

The value in each cellis the relative abundance of the given RNA switch in the
given bin, normalized across the eight bins.

monitor the resultant RNA structures. We found that mutating Box 3
(117-AC) reduced the reactivity of the Box 2 region (Fig. 3c), support-
ing the idea that Box 1 would switch its contacts from Box 3 to Box 2,
thereby stabilizing conformation 2. Introducing the rescue mutation

(65-GT,117-AC) into Box 1 restored the original reactivity profile of the
element. Complementary experiments using the mutation (77-GA) to
stabilize conformation 1, and the rescue mutation (63-TC,77-GA) to
stabilize conformation 2, had a similar outcome. Even though we did
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SHAPE reactivity in the switching regions. d, Secondary structures of the two
conformations of RORC RNA switch predicted by the RNAstructure algorithm®
guided by the DMS reactivity data. The base pairing of Box 1 with either Box 3
(conformation 1) or Box 2 (conformation 2) is highlighted by ared frame. The
two clusters were identified using the DRACO unsupervised deconvolution
algorithm?. e, Accessibility of the Box 2 (x axis) and Box 3 (y axis) regions of the
RORC element across cell lines, as measured with DMS-MaPseq (normalized
reactivity, see Methods). The cell lines were engineered to express a GFP reporter
containing the RORC switch sequence in the 3'UTR, and the accessibility of the
reporter mRNA was measured with DMS-MaPseq. Linear regression is shown with
an orange line. f, Accessibility of the Box 2 (x axis) and Box 3 (y axis) regions of the
RORC element in the endogenous RORC mRNA, as measured with DMS-MaPseq
(normalized reactivity, see Methods).
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notobserve asubstantial decrease inreactivity of Box 3uponthe 77-GA
mutation, the rescue significantly increased its reactivity (Extended
DataFig.3a,b). These findings supporttherole of the three highlighted
regionsinforminganensemble of states in which Box 2 and Box 3 com-
pete for base pairing to Box 1.

To extend our in vitro observations to living cells, we performed
high-coverage DMS-MaPseq of the RORC switchinvivoin the reporter
context (Extended Data Fig. 3¢). Using a DMS concentration suffi-
cient to cause multiple modifications to the same RNA molecule, we
implemented the DRACO computational approach?®, which identified
two distinct clusters in both biological replicates, representing the
two conformations, at relative proportions of 27% to 73% (Fig. 3d and
Extended Data Fig. 3e). The profiles of these clusters were distinct
(P=0.18and P=0.72 inreplicates 1and 2, respectively) but showed
high correlation within each cluster across replicates (Extended Data
Fig.3d). Toascertain whether sequence mutations similarly influence
the conformational equilibriuminvivo, we conducted DMS-MaPseq on
the tworescue mutant sequences (Extended Data Fig. 3f). This analysis
corroborated our SHAPE findings: the (63-TC,77-GA) mutation stabi-
lized conformation 2, while the (65-GT,117-AC) mutation favored con-
formation 1. The alignment of in vitro SHAPE and in vivo DMS-MaPseq
resultsreinforces the notionthat the RORC switch consistently exhibits
its conformational dynamics across both experimental settings.

To determine whether the RORC element functions as adynamic
RNA switchor simply represents astatic equilibrium of two conforma-
tions, we investigated whether the proportions of its alternative con-
formations change inside cells. To this end, we introduced a reporter
containingthe RORC sequenceinto five celllines representing diverse
geneticbackgrounds: LNCaP (prostate), MCF-7 (breast), HepG2 (liver),
ZR-75-1(breast),293T (kidney) and LS174T (colon). Using DMS-MaPseq,
we assessed the conformational dynamics of the RORC switchinthese
cell lines. Our findings confirm not only that the relative proportions
of the two conformations vary among these cell lines but they also
demonstrate astrong anticorrelationin the accessibility of Boxes 2 and
3 (R=-0.75) (Fig. 3e). This anticorrelation supports the hypothesis of
their competitive base pairing with Box 1, further suggesting dynamic
switching behavior.

To extend our analysis from the reporter to the endogenous con-
text, we performed DMS-MaPseq targeting the endogenous RORC
mRNA across the same five cell lines. This approach yielded similar
observations: a strong anticorrelation in accessibility (R=-0.81,
Fig. 3f) and variability in the relative proportions of the two confor-
mations. Importantly, the conformational ratios across cell lines were
highly correlated between the reporter and endogenous contexts
(R =0.93, Extended Data Fig. 3g), demonstrating the high relevance
of the reporter screening approach to understanding the behavior of
RNA switches in the context of their endogenous mRNA. These data
strongly support the hypothesis that the RORC element functions as
an RNA switch, adopting two alternative conformations, the balance
of whichisinfluenced by the cellular landscape.

Finally, we used single-particle cryo-EMto investigate the tertiary
structures of the two RORC RNA switch conformations that we identi-
fied using SHAPE and DMS-MaPseq. Micrographs of the reference RORC
RNA switch contain amixture of compact and extended particles, with
features suggestive of RNA secondary structure (Fig. 4a and Extended
DataFig. 4a-c), including elongated tertiary features consistent with
A-formhelices, as well as bends and junctions consistent with complex
RNA folding (Extended Data Fig. 4d-f). Strikingly, particles of the
conformation 1 mutant (77-GA) appear more extended, while those
of the conformation 2 mutant (117-AC) are mostly compact (Fig. 4a).
Cryo-EM image processing shows that reference RORC RNA can be
classified into three structural classes (Classes A, B, and C), with the
Class B structure absent in the (77-GA) mutant and Class A absent in
the (117-AC) mutant (Fig. 4b). This analysis suggests that Class A can
be assigned to the more extended conformation 1, and Class B to the

a  wild type 77-GA 117-AC

b

Wild type ﬁ
77-GA

Stabilizes Not

conformation 1 observed

117-AC

" Not
Stabilizes b d
conformation 2 observe

Fig. 4| Cryo-EM of RORC 3’ mRNA is consistent with dynamic exchange in
ashallow energy landscape. a, Cryo-EM of wild-type RORC mRNA, 77-GA
mutant and 117-AC mutant, as representative examples of qualitatively different
compact and extended RNA-like particles. Different morphologies are indicated
by numbered labels. Source micrographs were phase-flipped, Gaussian filtered
and contrastinverted for display (see Extended Data Fig. 5). Scale bars, 50 nm.
b, Three structural classes of the refolded RORC 3’mRNA element as determined
on cryo-EM processing, with RNA-like features (top). Further cryo-EM imaging
and 3D classification of the 77-GA mutant (middle) and 117-AC mutant (bottom)
indicate that Class A is present in wild-type and 77-GA samples but absent

from the117-AC sample, and Class B is conversely present in wild-type and
117-AC samples but absent from the 77-GA mutant. Class Cis common to all
three samples. We thus assign Class A as the conformation 1state, and Class B

as the conformation 2 state. We propose Class 3 to represent a partly folded
intermediate thatis not disrupted in the mutated constructs.

compact conformation 2 (Fig. 4b). We propose that Class C, which is
present in all three datasets, represents a folding intermediate lack-
ing the tertiary interactions made by either Boxes 2 or 3. Although the
extreme flexibility of the RNA limits the resolution of the reconstruc-
tions to approximately 10 A (Extended Data Fig. 5g—i), it is sufficient
for discrimination of these different RNA folds. These results confirm
that the RORC RNA switch indeed adopts distinct tertiary structures
in solution and that the designed mutations heavily bias toward one
conformation or the other.

Alternative conformations of the RORCRNA switch play
divergentrolesingeneregulation

Having validated that the RORC RNA switch can adopt two stable
conformations, we next explored the distinct regulatory activities of
each conformation. We engineered HEK293 cell lines to express eGFP
reporters carrying RORC switch variants in the 3'UTR and assessed
eGFP expression changes using flow cytometry. To specifically lock
the switch in each conformation, we implemented two parallel strat-
egies: for conformation 1, one strategy involved mutating Box 2 to
prevent its pairing with Box 1 (mutant ‘73-CCCTATGA’), and another
introduced mutationsinto both Boxes1and 3 to disrupttheirinterac-
tion with Box 2 (mutant ‘61-TATATAA,116-TTATATA’). Remarkably, both
strategies, despite modifying different parts of the sequence, induced
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Fig. 5| The two alternative conformations of the RORC RNA switch have
opposing effects on target gene expression. a-c, Box plots of the relative
expression of the reporter construct across different RNA conformations and
sequencesin HEK293 cells (a), reciprocal mutations (b) and primary Th17 cells
(c). Relative expression is quantified as the ratio of eGFP to mCherry fluorescence
forindividual cells, as measured by flow cytometry (n =10,000 cells). The

boxes shows the quartiles of the dataset, with the central line indicating the
median value; the whiskers extend from the 10th to the 90th percentile. The
colors denote specific RNA conformations or sequences: conformation 1

inblue, conformation 2inred, reference sequence in gray, and ascrambled
sequencein yellow. The diagrams below the box plots show the balance of

the two conformations in the RNA populations, with existing conformations
marked by a‘+’sign. Statistical significance was determined with a two-sided
independent t-test. a, The mutations left to right: 73-CCCTATGA; 61-TATATAA,116-
TTATATA; reference; 116-CCCTAAG; 62-GCACAGT,73-ACTGTGC. P values left
toright:1.1e-10, 2.6e-22,1.6e-06,0.00025. b, Effect of the shift in equilibrium
between two conformations of the RORC switch on reporter gene expression

for reciprocal mutations. The mutation-rescue experiments were performed
asshownin Fig. 3b. The mutations left to right: reference; 65-GT,117-AC; 117-AC;
66-AC; 66-AC,74-GT; 77-GA; 63-TC,77-GA. P values left to right: 7.1e-117, 3.6e-50,

5.9e-260. ¢, Effect of shift in the equilibrium between two conformations of the
RORC switch on reporter gene expression in primary Th17 T cells. Human CD4+ T
cells were infected with lentiviral constructs carrying one of the three sequences
inthereporter gene’s 3'UTR, and subsequently differentiated into Th17 cells.
The mutations left to right: scrambled RORC RNA switch; 77-GA; reference.
Pvalues left toright:1.7e-124,2.6e-24.d,e, Scatterplots of the relationship
between the relative conformation ratio of the RORC element, as measured

with DMS-MaPseq in reporter-expressing cell lines, and stability of the reporter
mRNA (n =3 replicates) (d) and the endogenous RORC mRNA (n =2 replicates)
(e), asmeasured by RT-qPCR following the a-amanitin treatment. The reporter
contains the eGFP ORF, followed by the 3'UTR containing the RORC RNA switch
sequence. Horizontal lines represent the mean of mRNA stability. Correlation

of mean stability and the relative conformational ratio was measured using the
Pearson correlation coefficient. f, Effect of ASOs on endogenous RORC mRNA
expression, as measured by RT-qPCR. The targeting ASOs are complementary to
Box 2 of the RNA switch; the control ASOs have the same nucleotide composition
asthetargeting ones but do not target the RORC RNA switch sequence. P values
were determined using the two-sided independent ¢-test, comparing the RORC-
targeting and control ASOs, independent of the ASO chemistry. n = 2 replicates.
LNA, locked nucleic acids.

Nature Methods | Volume 21| September 2024 | 1634-1645

1640


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-024-02335-1

similar eGFP expression changes for each conformation: both mutants
that stabilized conformation 1increased reporter gene expression
(Fig.5a), while analogous strategies applied to stabilize conformation
2decreased expression. We then investigated whether the modulation
in gene expression was primarily influenced by the RNA’s secondary
structure rather thanits sequence composition. Using cell lines stably
expressing mutants from our earlier rescue-mutation experiments
(Fig. 3b), we evaluated the impact on eGFP expression. Across three
tested mutation-rescue pairs, the mutants favoring conformation 2
consistently showed reduced eGFP expression compared with those
favoring conformation 1 (Fig. 5b). These findings from the recipro-
cal mutation-rescue experiments underscore the pivotal role of RNA
secondary structure in the specific regulatory functions of the RORC
RNA switch.

The RORC gene encodes the nuclear receptor ROR-y that plays
acrucial role in T-helper (Th)17 cell differentiation, a key process in
the immune response, which is also implicated in autoimmune dis-
eases®>**. To explore the functional impact of the RORC RNA switchiin
Th17 cells, we introduced into primary human CD4+ T cells areporter
construct carrying the RORC RNA switch sequence inthe eGFP3'UTR.
We then differentiated these cellsinto Th17 cells (Extended DataFig. 6,
ref.34).Incorporating the native RORC RNA switch markedly reduced
eGFP expression compared witha control witha scrambled sequence
(Fig.5¢). Additionally, altering the switch’s conformation with a 77-GA
mutation (towards conformation 1) weakened this repression, confirm-
ing the activity of the RORC RNA switch in Th17 cells.

Having demonstrated the distinct regulatory effects of the RORC
RNA switch’s two conformations, we next asked whether their relative
proportionsindifferent cell types would resultin differential regulation
ofthe RORC transcript. To assess this, we compared the stability of the
reporter mRNA containing the RORC switch between cell lines follow-
ing inhibition of RNA polymerase Il with a-amanitin. We discovered
a strong correlation between the conformational ratio and reporter
mRNA stability, indicating that higher proportions of conformation 1
resulted in higher stability, whereas higher proportions of conforma-
tion2resulted inlower stability (R =0.85, P= 0.03, Fig. 5d). We extended
this analysis to the endogenous RORC mRNA, where we observed a
similar strong correlation (R = 0.96, P= 0.004, Fig. 5e).

Next, we investigated whether, instead of sequence mutations,
trans-acting agents such as antisense oligonucleotides (ASOs) com-
plementary to parts of the RNA switch sequence could shift the equi-
librium between the two conformations and thereby influence gene
expression®. We designed two ASOs to target the Box 2 region, aiming
toshift the equilibrium towards conformation 1, which we would expect
toincreasethelevels of RORC mRNA expression. We transfected three
celllines, representing different conformational ratios (LNCaP, MCF-7
and LS174T), with these ASOs carrying either 2-0-(2-methoxyethyl)
(2-MOE) oligoribonucleotides or locked nucleic acids. In both cases,
ASOtreatment led to asignificantincrease in RORC mRNA levels com-
pared with nontargeting control ASO (Fig. 5f). Notably, this effect was
more pronounced in cell lines with a higher proportion of conforma-
tion2 (LNCaP, P=0.006; MCF-7, P=0.005) compared with those with
alower proportion (LS174T, P= 0.71). Together, these data further
underscore the link between structural conformation and resultant
gene expression, solidifying the role of the RORC element as aregula-
tory switchinits native gene context.

Genome-scale genetic screens reveal molecular mechanisms
underlying the RORC RNA switch

To investigate how the RORC RNA switch influences gene expression
atthe molecular level, we performed genome-wide CRISPRi screensin
Jurkat T cells expressing one of two eGFP reporter constructs: one with
the native RORC switch and another with the 77-GA mutation that favors
conformation1(Extended Data Fig. 7a). These screens were intended
to identify gene products, the depletion of which altered RORC RNA

switch-mediated control of reporter gene expression, indicating their
functional connection to the RNA switch mechanism*. We focused on
identifying two gene groups: those essential for repressioninduced by
the RORC switch (asindicated by anincrease in reporter gene expres-
sion), and those affecting the conformational dynamics of the switch
(asindicated by a change in the ratio of reporter expression between
the native switch and the 77-GA mutant).

Toidentify factors influencing the RORC RNA switch’s repressive
function, we analyzed the abundance of single-guide RNAs in cells
with high versus low reporter gene expression in both screens. This
analysis highlighted the NMD pathway, with top hits including core
NMD factors suchas SMGS8, UPF1, UPF2 and UPF3B (Fig. 6a). Pathways
associated with general gene expression, including ribosome biogen-
esis and endoplasmic reticulum stress, were also notable (Extended
Data Fig. 7b). To pinpoint factors affecting the divergent activities
of the switch’s two conformations, we compared the distribution of
sgRNAs across the highand low reporter expression bins between cells
expressing the native switch and the 77-GA mutant. This comparison
reinforced the central role of the NMD pathway (Fig. 6b), given that
the knockdown of NMD components lessened the reporter expres-
sion difference between the native and mutant switch. Surprisingly,
while knockdowns of SURF complex (that is, SMGI-UPFI-eRFI-eRF3;
the complex that initiates NMD on stalled ribosomes®) components
produced strongeffects, the exon-junction complex (EJC) components
did not produce significant changes in either screen, suggesting that
the RORC RNA switch operates via a noncanonical EJC-independent
NMD pathway***°, Moreover, our findings suggest that the NMD path-
way acts preferentially on conformation 2 of the RORC RNA switch, as
evidenced by the stronger increase in expression of the 77-GA mutant
compared with the native RORC sequence.

To confirmthese results, we applied CRISPRi to individually knock
down NMD factorsin cells expressing the reference switch, the 77-GA
mutant, or ascrambled sequence. Knockdowns of SURF complex mem-
bers, but not EJC components, significantly affected the switch’s repres-
sive function, confirming our genome-wide screen results (Fig. 6¢,d).
Furthermore, reducing SURF complex expression also diminished
the expression difference between the reference and 77-GA mutant,
primarily by increasing reporter expression in the mutant (Extended
DataFig.7d). Thisevidenceindicates that NMD predominantly acts on
conformation 2 of the RORC RNA switch.

Givenits affinity for structured RNAs*°, we reasoned that UPF1
might bind the two RORC RNA switch conformations with differ-
ent affinities. To test this, we mixed together the reference and the
Box 2 mutant (77-GA) reporter lines atal:1ratio and measured UPF1
binding using CLIP-qPCR (cross-linking and immunoprecipitation
followed by qPCR). The reference RORC UTR sequence (containing a
mixture of conformations 1and 2) had significantly stronger binding
to UPFI than its 77-GA mutant that could form only conformation 1
(Fig. 6e). Similarly, we observed a strong preference for UPF1 to bind
to a mutant 116-CCCTAAG that favors conformation 2 than to the
77-GA mutant, and this effect was even more pronounced than the
difference betweenreference and 77-GA (logarithm of fold change of
1.12 versus 0.41). Together, these results underscore the preference
of UPF1 to bind to conformation 2 of the RORC switch (Extended
DataFig. 7e).

We reasoned that conformation-specific NMD would deplete
mRNA molecules with conformation 1, thereby resulting in a relative
increase in the proportion of conformation 2. To test this, we used
NMDI14, a molecule that disrupts SMG7-UPF1 interactions, to inhibit
NMD*. Assessing the accessibility of Boxes 2 and 3 in endogenous
RORC mRNA using DMS-MaPseq, we found a significant decreasein the
accessibility of Box 2 upon NMD inhibition (P= 0.03, Fig. 6f), indica-
tive of a shift towards conformation 2, possibly due to slower decay
and accumulation of mRNAs in this conformation. Hence, inhibiting
NMD led to ashiftintherelative proportions of the two conformations.
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Fig. 6| Genome-wide CRISPRi screenidentifies SURF complex as acting
downstream of the RORC RNA switch. a, Top: Expression change: high versus low:
comparison of sgRNA representation between the bottom and the top quantiles
of reporter gene expression (across both reference and 77-GA mutant cell lines),
represented as avolcano plot. Genes, annotated as part of the NMD pathway by
gene ontology (GO), are colored in red. The core components of the canonical NMD
pathway are colored in purple and labeled. All other genes are colored ingreen.
Bottom: Gene set enrichment analysis (GSEA) plot for the NMD pathway for the
above comparison. —logP: negative logarithm of Pvalue. b, Differences between
conformations: wild type versus the 77-GA mutant. Comparison of ratios between
top and bottom expression quantiles for the two cell lines. Higher values on the
xaxisindicate that sgRNAs targeting this gene have a stronger effect on reporter
gene expressionin the reference cell line compared with the 77-GA mutant cell line.
Top: ‘ratio of ratios’ comparison® represented as a volcano plot. Genes are colored
asina.Bottom: GSEA plot for the NMD pathway for the above comparison. -logP:
negative logarithm of Pvalue. ¢,d, The effect of knockdown of SURF (c) and EJC

(d) member proteins on the RORC RNA switch reporter gene expression, relative
toascrambled sequence. The individual genes were knocked down using the
CRISPRi systeminboth the reference and the scrambled cell lines, then the change
of reporter gene expression was measured using flow cytometry (n = 2 replicates).
Thebar plots show the ratio of the expression of the scrambled sequence to that

Concentration [nM] Concentration [nM]

ofthe wild-type sequence of the RORC RNA switch. P values were calculated using
the two-sided Student’s ¢-test. e, Bar plots of the fractions of reads carrying the
wild-type RORC switch sequence or B77-GA mutant variant in the UPF1cross-linking
and immunoprecipitation (CLIP) library. Left: input RNA libraries, extracted from
the wild-type and 77-GA mutant-expressing Jurkat cells, mixed at a :1 ratio. Right:
libraries after anti-UPF1immunoprecipitation (IP). The fractions are normalized
by the variant fractionsin the input libraries. The P value was calculated using the
translation efficiency ratio test*®. FC, fold change. n = 2 replicates. f, The effect of
NMDI14 on the accessibility of the Box 2 and the Box 3 regions of the RORC element,
asmeasured by DMS-MaPseq. Changes in individual nucleotide accessibility are
shown ontheinner plot. Statistical significance was determined using a two-sided
independent t-test. g, The effect of UPF1 knockdown on endogenous RORC mRNA
expression, as measured by RT-qPCR (control, n = 4 replicates; UPF1knockdown,
n=6replicates). siCTRL, non-targeting dicer-substrate small interfering RNA;
siUPF1, UPF1-targeting dicer-substrate smallinterfering RNA. P values were
calculated using the two-sided Student’s t-test. h,i, Effect of the proteasome
inhibitors carfilzomib (h) and bortezomib (i) on the RNA switch-mediated
expression change (n =4 replicates). Data are given as the mean + s.d. Statistical
significance was determined using dose-response modeling followed by ANOVA,
to compare the fitted models to assess differences in the effect of the inhibitors on
the RNA switch-mediated expression.
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Fig.7| The proposed mechanism of RORC RNA switch functioning.

a, Schematic diagram of a shallow energy landscape for the RORC 3'mRNA
element. Shallow global minima characterizing the conformation1(cryo-EM
Class A) and conformation 2 (cryo-EM Class B) structures themselves comprise
multiple local minima in which various secondary structure elements fold

or unfold while preserving overall tertiary structure and biological activity.
These local minima are illustrated by secondary structure models for various
DRACO cluster members. The two global minima are separated by akinetic
barrier that represents a partially folded intermediate (cryo-EM Class 3). The
two dashed lines indicate alterations to the global landscape exhibited by the
mutant sequences, blue for the 77-GA mutant and red for the 117-AC mutant.
These altered landscapes eliminate one of the global minima without disrupting
theintermediate. b, Proposed mechanism of the RORC RNA switch. The RNA
switch exists in an ensemble of two states. One of them is recognized by the SURF
complex; such recognition triggers mRNA degradation (likely to be mediated by
SMGS) and protein degradation (mediated by the proteasome), thus affecting
gene expression.

Protein
degradation

Having demonstrated the conformation-specific effect of NMD
on the RORC switch in the reporter context, we sought to extend our
analysis to the endogenous RORC mRNA. We knocked down UPF1in
various cell lines and assessed the levels of endogenous RORC mRNA
using quantitative polymerase chain reaction with reverse transcrip-
tion. UPF1 knockdown in various celllines led to a substantial increase
in RORC mRNA expression, notably more pronounced in cell lines
with a higher prevalence of conformation 2 (LNCaP, P= 0.005; MCF-7,
P=0.02) compared with those with a lower prevalence (LS174T,
P=0.09) (Fig. 6g). This result emphasizes the role of UPFI in regulat-
ing endogenous RORC mRNA stability in a conformation-dependent
manner.

Considering the NMD pathway’s role in directing proteins trans-
lated fromaberrant mRNA to proteasomal degradation*’, we reasoned
that the RORC RNA switch might similarly target its gene product. To
test this, we treated reporter cells with the proteasome inhibitors carfil-
zomib and bortezomib, each acting through different mechanisms.
Proteasome inhibition resulted in a significantly greater increase in
eGFP expressionin cells expressing the RORC switch compared withthe
control (Fig. 6h,i), indicating that NMD-induced proteasomal degrada-
tion of the switch-containing gene product contributes to the observed
effect on gene expression.

We propose that UPFI preferentially recognizes switch conforma-
tion2 over conformation 1, and that the recruitment of the SURF com-
plex by UPFI consequently leads to decreased gene expression through
proteasome-mediated degradation of translation products and mRNA
decay, preventing repeated rounds of translation (Fig. 7b). Moreover,
sequence mutations that influence the conformational equilibrium not
only alter the RNA’s energy landscape but also modulate SURF recruit-
ment and RNA stability, reflecting the nuanced control of gene repres-
sion by the switch. The mechanisms underlying the switching between
conformations, however, remain an area for further investigation.

Collectively, we show that the RORC RNA switch influences gene
expression through conformation-specific engagement of NMD fac-
tors that lead to control of mMRNA and protein stability. Importantly,
the RORC switchis only one example out of 245 functionally validated
human RNA switches identified in this work, emphasizing the power
of our SwitchSeeker approach to illuminate new areas of eukaryotic
RNAbiology.

Discussion
Historically, RNA switches wereidentified primarily through biochemical
experimentation, measuring direct ligand interactions***, and com-
parative genomics toidentify conserved noncoding regions that act as
cis-regulatory elementsin bacteria**°, These methods, however, present
challenges in eukaryotic contexts due to the dynamic nature of mRNA
structures and the complexity of eukaryotic gene regulation®*. Addi-
tionally, the vast genomic landscape and low sequence conservationin
eukaryotes complicate the direct application of these approaches* .
While numerous tools and algorithms exist for riboswitch prediction
(reviewed inrefs. 50,51), few of those focus on de novo discovery that
is family-agnostic. The exceptions include SwiSpot'®, which focuses
on identifying the putative switching sequence, and the conditional
probability-based method®. None of these algorithms has been shown
to predict functional RNA switches from novel families in eukaryotic
genomes. Addressing these challenges, SwitchSeeker integrates bio-
chemistry, systems biology and functional genomics to create acom-
prehensive platform for RNA switch discovery and characterization
in eukaryotes. By covering the entire discovery process, from de novo
predictions to the annotation of mechanisms, SwitchSeeker overcomes
the limitations of existing methods. Looking forward, its capability to
scaleacross complete transcriptomes sets the stage for athorough char-
acterization of RNA switches across diverse cell types and organisms,
enhancing our understanding of their roles across the tree of life.
Advancements in genomic technologies such as RNA secondary
structure probing (DMS-seq, SHAPE-seq) and single-particle cryo-EM
have beeninstrumentalin our systematic exploration of RNA switches,
enabling us to delve into the diverse conformations of RNA molecules
and their three-dimensional structures despite challenges such as
size and flexibility*®?>**, This has opened up opportunities to study
the functional differences between alternative RNA conformations
and their role in gene expression control. Our DMS-MaPseq and
cryo-EM data suggest that the RORC 3'mRNA element inhabits a shal-
low energy landscape with two rugged minima linked to two major
molecular conformations (Fig. 7a), thereby validating the SwitchSeeker
approach to identifying RNA molecules with bi-stable energy land-
scapes. Genome-wide CRISPRi screensidentified the EJC-independent
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NMD pathway as a key mediator of the gene regulatory mechanism of
the RORC switch. Together, our studies of the RORC switch not only
uncover new regulatory biology but also provide a blueprint on how
the SwitchSeeker pipeline can enable rapid functional and mechanistic
characterization of new RNA switches.

RNA sstructureis known toinfluence gene expressionin health and
disease®, as shown by our recent identification of specific RNA struc-
tures thatinfluence splicing in metastatic cancers**. However, dynamic
RNAstructures such asRNA switches are arelatively unexplored aspect
of gene expression controlin eukaryotes. Our observationsindicate a
prevalence of RNA switches in the human transcriptome, suggesting
that RNA conformation-dependent gene regulation is a widespread
phenomenon. In our study we chose stringent criteria for selecting
RNA switches, requiring them to be bi-stable in vivo, meaning that they
populate two mutually exclusive structural conformations. However,
itis important to note that not all RNA switches may conform to this
binary model; some, such as the HIV-1 TAR RNA, have transient but
functional conformations®, and others might present multistability,
addinglayerstoregulatory control. Modifications to the SwitchSeeker
platform will be necessary to explore these distinct classes of RNA
structural elements.

While SwitchSeeker offers a robust framework for identifying
functional RNA structural switches, there are several caveats and
limitations to consider. First, identifying RNA switches that operate
under specific cellular conditions requires structure probing assays
to be conducted in those exact conditions, which can be challenging
and resource intensive. Additionally, SwitchSeeker does not identify
ligands for RNA switches; this necessitates complementary approaches
to uncover the specific moleculesinteracting with these RNA elements.
Future technological advancements could significantly enhance the
tool’s efficacy. Currently, the absence of high-quality RNA structure
datasets across full transcriptomes limits the comprehensive applica-
tion of SwitchSeeker. The development of such datasets would enable
more efficient and accurate RNA switch identification. Moreover,
integrating additional functional assays, such as those targeting RNA
switches thatinfluence splicing, could broaden the scope and impact
of SwitchSeeker.

The known examples of human RNA switch mechanisms include
mutually exclusive binding of RNA-binding proteins by two differ-
ent RNA conformations® and m6A modification-based switching’. In
this study, we introduce a novel switch mechanism that operates via
the NMD pathway, suggesting a vast potential for diverse metabolic
pathways in RNA switch functionality. SwitchSeeker’s utility lies in its
ability toidentify and elucidate these mechanismsin high throughput,
irrespective of their specific pathways. The modulation of gene expres-
sion through shiftsin RNA conformation, as achieved with ASOs in this
study, opens new possibilities for targeting RNA switches in future
therapeutics. SwitchSeeker is available for use and adaptation, and we
hope that it will pave the way for many new discoveries in RNA-based
regulationin eukaryotes.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
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Methods

SwitchFinder: detailed description of the algorithm
Conflicting base pairs identification. Conflicting base pairs were
detected using a modification of the MIBP algorithm developed by
L. Lin and W. McKerrow®. First, a large number of folds (default
N=1,000) is sampled from the Boltzmann distribution. If structure
probing data (such as DMS-seq or SHAPE-seq) is provided, the Boltz-
manndistribution modeling software (part of the RNAstructure pack-
age*) incorporates the dataas a pseudofree energy change term. Then,
the base pairs are filtered: the base pairs thatare presentin almost all of
thefolds orare absent fromalmostall of the folds are removed from the
further analysis. Then, mutual information for each pair of base pairs
isestimated. To do so, each base pair is represented as a binary vector
of length N, where N is the number of folds considered; in this binary
vector, agivenfoldisrepresented aslif this base pairis present there,
or as 0 if it is not. Mutual information between each two base pairs is
calculated as in ref. 60. This results in an M x M table of mutual infor-
mation values, where Mis the number of base pairs considered. Then,
the sum of each row of the square table is calculated. In the resulting
vector Koflength M, each base pair is represented by a sum of mutual
information values across all of the other base pairs. Then, only the
base pairs for which the sum of mutual information values passes
the threshold of U x MAX(K) are considered, where U is a parameter
(default value 0.5). We call the base pairs that pass this threshold the
‘conflicting base pairs’.

Conflicting stems identifications. Once the conflicting base pairs are
identified, they are assembled into conflicting stems, or series of con-
flicting base pairs that directly follow each other and therefore could
potentially formastem-like RNA structure. More specifically, the base
pairs(a,b)and (c,d) formastemifeither (a==c-1)and(b==d +1),or
(a==c+1)and (b==d-1). Thestemisdefined asapairof intervals ((u,v),
(x,y)), wherev —u==y-x. Then, the conflicting stems are filtered by
length: only the stems that are longer than a certain threshold value
(default value: 3) are considered. Among these stems, the stems that
directly conflict with each other areidentified. Two stems ((uy, v;), (X;, Y1)
and ((u,, v,), (X,,¥,)) conflict with each other if thereis an overlap longer
thanathreshold value between either (u,, v;) and (u,, v,), or (u;, v;) and
(X5, ¥,),0r (X, y;) and (u,, v,), or (x,, y;) and (x,, y,). The default threshold
valueis 3. The pairs of conflicting stems are sorted by the average value
oftheir K values (sums of mutual information). The highest scoring pair
of conflicting stemsis considered the winning prediction, representing
the major switch between two of the local minima presentin the energy
foldinglandscape of the given sequence. If no pairs of conflicting stems
pass the threshold, SwitchFinder reports that no potential switch is
identified for the given sequence.

Identifying the two conflicting structures. Given the prediction of the
two conflicting stems, the folds that represent the two local minima of
the energy foldinglandscape are predicted. Importantly, SwitchFinder
focuses on optimizing the prediction accuracy, as opposed to the
commonly used approach of energy minimization®. The MaxExpect
program from the RNAstructure package™ is used; the base pairings
of each of the conflicting stems are provided as folding constraints (in
Connectivity Table format). Furthermore, the two predicted structures
arereferred toas conformationsland 2.

Activation barrier estimation. The RNApathfinder software® is used
to estimate the activation energy needed for a transition between the
conformations1and 2.

Classifier for prediction of RNA switches. The curated representative
alignments for each of the 50 known riboswitch families were down-
loaded from the Rfam database’. Each sequence is complemented by
itsshuffled counterpart (while preserving dinucleotide frequencies®).

For all of the sequences, the two conflicting conformations, their fold-
ing energies and their activation energies are predicted as above. To
estimate the performance of SwitchFinder for agiven riboswitch family,
allof the sequences from this family are placed into the test set, while all
ofthesequences fromthe other families are placed into the training set.
Then, alinear regression modelis trained on the training set, in which
theresponse variable is binary and indicates whether the sequence is
areal riboswitch or is a shuffled counterpart, and the predictor vari-
ables are the average folding energy of the two conformations and the
activation energy of the transition between them. The trained linear
regression model is then run on the test set, and its performance is
estimated using the receiver operating characteristic curve.

Prediction of RNA switches in human transcriptome. The coordi-
nates of 3'UTRs of the human transcriptome were downloaded from
UCSC Table Browser®, table tb_wgEncodeGencodeBasicV28lift37.
The sequences of 3'UTRs were cut into overlapping fragments of
186 nucleotides in length (with overlaps of 93 nucleotides). For all of
the sequences, the two conflicting conformations, their folding ener-
gies and their activation energies were predicted as above. A linear
regression model was trained as described above on all 50 known
riboswitch families. The model was applied to the 3'UTR fragments
fromthe human genome, and the fragments were sorted according to
the model prediction scores. The top 3,750 predictions were selected
for further investigation.

Incorporation of in vivo probing data. In vivo probing data, such as
DMS-MaPseq, is used to apply pseudoenergy restraints when sam-
pling folds from the Boltzmann distribution (thatis, using the -SHAPE
parameter in RNAstructure package commands’®). To test the hypoth-
esis of whether the in vivo probing data support the presence of two
conflicting conformationsinagivensequence, the following workflow
was used. First, the two conflicting folds were predicted with Switch-
Finder using in silico folding only. Then, SwitchFinder was run on the
same sequence with the inclusion of in vivo probing data. If the same
two conflicting folds were predicted among the top conflicting folds,
the probing data were considered supportive of the presence of the
two predicted conformations.

Mutation generation. To shift the RNA conformation ensemble
towards one or another state, mutations of two types were introduced.

(1) ‘Strengthen a stem’ mutations: given two conflicting stems
((uy, vp), (x5, yp) and ((u,, v,), (X5, ¥,)), one of the stems (for exam-
ple, the first one) was changed in a way that would preserve its
base pairing but deny the possibility of forming the second
stem. To do so, the nucleotides in the interval (u,, v;) were
replaced with all possible sequences of equal length, and the
nucleotides (x,, ;) were replaced with the reverse complement
sequence. Then, the newly generated sequences were filtered
by two predetermined criteria: (i) the second stem cannot
form more than a fraction of its original base pairs (default
value 0.6), and (ii) the modified first stem cannot form long
paired stems with any region of the existing sequence (default
threshold length 4). The sequences that passed both criteria
were ranked by the introduced change in the sequence nucleo-
tide composition; the mutations that changed the nucleotide
composition the least were chosen for further analysis. Each
mutated sequence was additionally analyzed by SwitchFinder
to ensure that the Boltzmann distribution is heavily shifted
towards the desired conformation.

(2) ‘Weaken a stem’ mutations: given two conflicting stems ((uy, v;),
(xy, yp) and ((u,, v,), (X5, ¥,)), one of the stems (for example, the
second one) was changed in such a way that this stem would
not be able to form base pairing, while the base pairing of the
other stem (in this example, the first stem) would be preserved.
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To do so, the nucleotides in either of the intervals (u,, v,) or

(x,, ¥,) were replaced with all possible sequences of equal length.
The newly generated sequences were filtered by three prede-
termined criteria: (i) the first stem stays unchanged, (ii) the
second stem cannot form more than a fraction of its original
base pairs (default value 0.6), and (iii) the modified part of the
sequence cannot form long paired stems with any region of the
existing sequence (default threshold length 4). The sequences
that passed all of the criteria were ranked by the introduced
change in the sequence nucleotide composition: the mutations
that changed the nucleotide composition the least were chosen
for further analysis. Each mutated sequence was additionally
analyzed using SwitchFinder to ensure that the Boltzmann dis-
tribution is heavily shifted towards the desired conformation.

Cell culture

All cells were cultured in a 37 °C 5% CO, humidified incubator. The
HEK293 cells (purchased from ATCC, cat. no. CRL-3216) were culturedin
DMEM high-glucose medium supplemented with10% FBS, L-glutamine
(4 mM), sodium pyruvate (1 mM), penicillin (100 units ml™), strep-
tomycin (100 pg ml™) and amphotericin B (1 ug ml™) (Gibco). The
Jurkat cell line (purchased from ATCC, cat. no. TIB-152) was cultured
in RPMI-1640 medium supplemented with 10% FBS, glucose (2g17),
L-glutamine (2 mM), 25 mM HEPES, penicillin (100 units ml™), strep-
tomycin (100 pg ml™) and amphotericin B (1 pug mI™) (Gibco). All cell
lines were routinely screened for mycoplasma with aPCR-based assay.

Cryo-electron microscopy

Sample preparation and data collection. A total of 3.5 pl target mRNA
at an approximate concentration of 1.5 mg ml™ was applied to gold,
300 mesh transmission electron microscopy grids withaholey carbon
substrate of 1.2 um and 1.3 um spacing (Quantifoil). The grids were
blotted with no. 4 filter papers (Whatman) and plunge frozenin liquid
ethane using a Mark IV Vitrobot (Thermo Fisher), with blot times of
4-65,blotforce of -2, at atemperature of 8 °Cand 100% humidity. All
grids were glow discharged in an easiGlo (Pelco) with rarefied air for
30sat15mA,nomorethanlh priorto preparation. Duplicate wild-type
and mutant RNA specimens were imaged under different conditions
on several microscopes as per Data File S8; all were equipped with K3
directelectron detector (DED) cameras (Gatan), and all datacollection
was performed using SerialEM®. Detailed data collection parameters
arelisted in DataFile S8.

Image processing. Dose-weighted and motion-corrected sums were
generated from raw DED movies during data collection using Univer-
sity of California, San Francisco (UCSF) MotionCor2°. Images from
super-resolution datasets were downsampled to the physical pixel size
before further processing. Estimation of the contrast transfer function
(CTF) was performed in CTFFIND4, followed by neural net-based
particle picking in EMAN2®, Two-dimensional (2D) classification, ab
initiothree-dimensional (3D) classification, and gold-standard refine-
ment were done in cryoSPARC®. CTFs were then re-estimated in cry-
0SPARC and particles repicked using low-resolution (20 A) templates
generated from chosen 3D classes. Extended datasets were pooled
when appropriate, and particle processing was repeated through
gold-standard refinement as before. All structure figures were created
using UCSF ChimeraX (ref. 70). Further details are givenin DataFile S7
and Extended DataFig. 5.

Reporter vector design and library cloning

First, mCherry-P2A-Puro fusion was cloned into the BTV arbovirus
backbone (Addgene, cat. no. 84771). Then, the vector was digested
with MIul-HF and Paclrestriction enzymes (NEB), with the addition of
Shrimp Alkaline Phosphatase (NEB). The digested vector was purified
with the Zymo DNA Clean and Concentrator-5kit.

DNA oligonucleotide libraries (one for functional screen and
one for massively parallel mutagenesis analysis) consisting of 7,500
sequences in total were synthesized by Agilent. The second strand
was synthesized using Klenow Fragment (3> 5’ exo-) (NEB). The
double-stranded DNA library was digested with MIul-HF and Pacl
restriction enzymes (NEB) and run on a 6% TBE (Tris base, boric acid,
EDTA) polyacrylamide gel. The band of the corresponding size was
cutout and the gel was dissolved inthe DNA extraction buffer (10 mM
Tris, pH 8,300 mM NaCl,1 mM EDTA). The DNA was precipitated with
isopropanol. The digested DNA library and the digested vector were
ligated with T4 DNA ligase (NEB). The ligation reaction was precipitated
with isopropanol and transformed into MegaX DH10B T1R electro-
competent cells (Thermo Fisher). The library was purified with Zymo-
PURE Il Plasmid Maxiprep Kit (Zymo). The representation of individual
sequencesinthelibrary was verified by sequencing the resulting library
onan MiSeq instrument (Illumina).

Massively parallel reporter assay

The DNA library was co-transfected with pCMV-dR8.91and pMD2.G
plasmids using TransIT-Lenti (Mirus) into HEK293 cells, following the
manufacturer’s protocol. Virus was collected 48 h after transfection
and passed through a 0.45 um filter. HEK293 cells were then trans-
duced overnight with the filtered virus in the presence of 8 ug ml™
polybrene (Millipore); the amount of virus used was optimized to
ensure an infection rate of -20%, as determined by flow cytometry
The infected cells were selected with 2 pg ml™ puromycin (Gibco).
Cells were collected at 90-95% confluency for sorting and analysis
on aBD FACSaria Il sorter. The distribution of mCherry : GFP ratios
was calculated. For sorting a library into subpopulations, we gated
the population into eight bins each containing 12.5% of the total
number of cells. A total of 1.2 million cells were collected for each
bin to ensure sufficient representation of sequence in the popula-
tion in two replicates each. For each subpopulation, we extracted
genomic DNA and total RNA with the Quick-DNA/RNA Miniprep kit.
gDNA was amplified by PCR with Phusion polymerase (NEB) using the
primers CAAGCAGAAGACGGCATACGAGAT-i7- GTGACTGGAGTTCA-
GACGTGTGCTCTTCCGATCACTGCTAGCTAGATGACTAAACGCG
and AATGATACGGCGACCACCGAGATCTACAC-i5- ACACTCTTTC-
CCTACACGACGCTCTTCCGATCTGTGGTCTGGATCCACCGGTCC.
Different i7 indexes were used for eight different bins, and differ-
enti5 indexes were used for the two replicates. RNA was reverse
transcribed with Maxima H Minus Reverse Transcriptase (Thermo
Fisher) using primer CTCTTTCCCTACACGACGCTCTTCCGATCT-
NNNNNNNNNNNTGGTCTGGATCCACCGGTCCGG. The com-
plementary DNA was amplified with Q5 polymerase (NEB) using
primers CAAGCAGAAGACGGCATACGAGAT-i7-GTGACTGGAGTTCA-
GACGTGTGCTCTTCCGATCCTGCTAGCTAGATGACTAAACGC and
CAAGCAGAAGACGGCATACGAGAT-i5-GTGACTGGAGTTCAGACGT-
GTGCTCTTCCGATCTTACCCGTCATTGGCTGTCCA. Different i7
indexes were used for eight different bins, and different i5 indexes
were used for the two replicates. The amplified DNA libraries were
size purified with the Select-a-Size DNA Clean and Concentrator
MagBead Kit (Zymo). Deep sequencing was performed using the
HiSeq4000 platform (Illumina) at the UCSF Center for Advanced
Technologies.

The adapter sequences were removed using cutadapt”. For RNA
libraries, the unique molecular identifier (UMI) was then removed
from the reads and appended to read names using UMI tools”. The
reads were matched to the fragments using the bwa mem command.
The reads were counted using featureCounts”. The read counts were
normalized using median of ratios normalization™. The one-way
chi-squared test was used to estimate how different its distribution
across the sorting bins is from the null hypothesis (that is uniform
distribution). mRNA stability was estimated by comparing the RNA
and DNA read counts with MPRAnalyze”.
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Massively parallel mutagenesis analysis
Library design and measurement. For each candidate switch, two
alternative conformations were identified using SwitchFinder. Each
conformation is defined by a stem structure: ((ul, v1), (x1, y1)) and
((u2, v2), (x2,y2)), representing two conflicting stems. The Switch-
Finder mutation generation algorithm was used to design four muta-
tionsinthe candidate switch sequence: A, ‘strengthen a stem’ mutation
favoring conformation 1: the regions (ul, vl) and (x1, y1) are altered
while preserving complementarity; B, ‘weaken astem’ mutation favor-
ing conformation 1: either the region (u2, v2) or (x2, y2) is modified,
preservingthe regions (ul, vl), (x1,y1); C, ‘strengthen a stem’ mutation
favoring conformation 2: the regions (u2, v2), (x2, y2) are changed
while maintaining complementarity; and D, ‘weaken astem’ mutation
favoring conformation 2: either theregion (ul, vl) or (x1, yl) is altered,
ensuring that the regions (u2, v2), (x2,y2) remainintact.
Subsequently, the mutated sequences for selecting candidate
RNA switches, along with the reference sequence, were pooled into a
single DNA oligonucleotide library. The impact of each sequence on
reporter gene expression was evaluated in cells, as outlined in the Mas-
sively Parallel Reporter Assay section. Consequently, each candidate
RNAswitchinthelibraryisrepresented by its reference sequence, two
mutated sequences favoring conformation1(A andB), and two mutated
sequences favoring conformation 2 (Cand D).

Candidate RNA switch ranking. For each candidate RNA switch, its
effectonreporter gene expression was assessed in cells, following the
protocol described in the Massively Parallel Reporter Assay section.
This resulted in 16 measurements, corresponding to normalized read
counts in sorting bins 1 (lowest expression) to bin 8 (highest expres-
sion), across two replicates; these arrays of counts are referred to as
‘bin_counts’. Measurements were obtained for mutants A, B, C, D, and
thereference sequence. Correlations between the effects of mutations
designed to favor the same or opposite conformations were com-
puted as follows: correlation_same_1 = Pearsonr(bin_counts(mutantA),

bin_counts(mutant B)); correlation_same_2 = Pearsonr(bin_

counts(mutant C), bin_counts(mutant D)); correlation_oppo-
site_1=Pearsonr(bin_counts(mutant A), bin_counts(mutant C));
and correlation_opposite_2 = Pearsonr(bin_counts(mutant A),
bin_counts(mutant D)). The score of each candidate switch was
then calculated as: score = mean(correlation_same_1, correlation_
same_2) — mean(correlation_opposite_1, correlation_opposite_2).
Candidate switches were ranked based on thisscore. Those withascore
exceeding the mean +1s.d. were considered significant.

DMS-MaPseq

DMS-MaPseqwas performed as described inref. 54. Inbrief, cells were
incubated in culture with 1.5% DMS (Sigma) at room temperature for
7 min, the media was removed, and DMS was quenched with 30% BME
(B-mercaptoethanol). Total RNA from DMS-treated cells and untreated
cellswas thenisolated using Trizol (Invitrogen). RNA was reverse tran-
scribed using TGIRT-lll reverse transcriptase (InGex) and target-specific
primers. PCR was then performed to amplify the desired sequences
and to add Illumina-compatible adapters. The libraries were then
sequenced on aHiSeq4000 instrument (Illumina).

Pear (v0.9.6) was used to merge the paired reads into asingle com-
bined read. The UMIwas then removed from the reads and appended
toread names using UMItools (v1.0). Thereads were then reverse com-
plemented (fastx toolkit) and mapped to the amplicon sequences using
bwamem (v0.7). Theresulting bam files were then sorted and dedupli-
cated (umi_tools, withmethod flag set to unique). The alignments were
then parsed for mutations using the CTK (CLIP Tool Kit) software. The
mutation frequency at every positionwasthenreported. The signal nor-
malization was performed using boxplot normalization’. The top 10%
of positions with the highest mutation rates were considered outliers”.
The clustering of DMS-MaPseq signal was performed with DRACO?,

SHAPE chemical probing of RNAs
Chemical probing and mutate-and-map experiments were carried out
asdescribed previously’. In brief, 1.2 pmol RNA was denatured at 95 °C
in 50 mM Na-HEPES, pH 8.0, for 3 min, and folded by cooling to room
temperature over 20 min, and then adding MgCl, to a10 mM concentra-
tion. RNA was aliquoted in 15 pl volumesinto a 96-well plate and mixed
with nuclease-free H,O (control), or chemically modified inthe presence
of 5mM 1-methyl-7-nitroisatoic anhydride (IM7)”, for 10 min at room
temperature. Chemical modification was stopped by adding 9.75 pl
quenchand purification mix (1.53 MNacCl, 1.5 pl washed oligo-dT beads,
Ambion), 6.4 nMFAM-labeled, reverse-transcriptase primer (/56-FAM/
AAAAAAAAAAAAAAAAAAAAGTTGTTCTTGTTGTTTCTTT),and2.55M
Na-MES. RNA in each well was purified by bead immobilization on a
magnetic rack and two washes with 100 1 70% ethanol. RNA was then
resuspendedin 2.5 pl nuclease-free water prior toreverse transcription.
RNA was reverse transcribed from annealed fluorescent primer
inareaction containing 1x First Strand Buffer (Thermo Fisher), 5 mM
dithiothreitol, 0.8 mM dNTP mix and 20 U SuperScript Il Reverse
Transcriptase (Thermo Fisher) at 48 °C for 30 min. RNA was hydrolyzed
inthe presence of 200 mM NaOH at 95 °C for 3 min, then placed onice
for3 minand quenched with1volume 5 M NaCl,1volume2 MHCI, and
1volume 3 M sodium acetate. cDNA was purified on magnetic beads,
then eluted by incubation for 20 min in 11 pl Formamide-ROX350 mix
(1,000 pl Hi-Di Formamide (Thermo Fisher) and 8 pl ROX350 ladder
(Thermo Fisher)). Samples were then transferred to a 96-well plate in
‘concentrated’ form (4 plsample + 11 pl ROX mix) and ‘dilute’ form (1 pl
sample +14 plROX mix) for saturation correctionindownstream analy-
sis. Sample plates were sent to Elim Biopharmaceuticals for analysis by
capillary electrophoresis.

Antisense oligonucleotide infection

ASOs were purchased from Integrated DNA Technologies; the Mor-
pholino ASOs were purchased from Gene Tools LLC (see sequencesin
DataFile S9). A total of 95,000 HEK cells were seeded into the wells of
a24-well cell culture-treated plate in a total volume of 500 pl. At 24 h
later, either 1 nmol Morpholino ASO together with 3 pl EndoPorter
reagent (Gene Tools LLC), or 6 pmol other ASO were added to each well.
LNCaP, MCF-7 and LS174T cells were infected with ASOs using Lonza
SE Cell Line 4D-Nucleofector X Kit S (cat. no. V4XC-1032) according
to the manufacturer’s protocol. At 48 h later, the mCherry and eGFP
fluorescence was measured on a BD FACSCelesta Cell Analyzer, or
RNA was isolated for RT-qPCR measurement with the Zymo Quick-
RNA Microprep isolation kit with in-column DNase treatment per the
manufacturer’s protocol.

CRISPRiscreen

Reporter screens were conducted using established flow cytometry
screen protocols®® (Horlbeck et al., 2016; Sidrauski et al., 2015). Jurkat
cellswith previously verified CRISPRi activity were used (Horlbecketal.,
2018). The CRISPRi-v2 (5 sgRNA/TSS, Addgene cat. no. 83969) sgRNA
library was transduced into Jurkat cells at amultiplicity of infection of
<0.3 (the percentage of blue fluorescent protein (BFP)-positive cells
was ~30%). For the flow-based CRISPRi screen with the Jurkat cells, the
sgRNA library virus was transfected at an average of 500-fold coverage
after transduction (day 0). Puromycin (1 pg ml™) selection for positively
transduced cells was performed at 48 h (day 2) and 72 h (day 3) after
transduction (day 3). On day 11, cells were collected in PBS and sorted
with the BD FACSAria Fusion cell sorter. Cells were gated into the 25%
of cellswith the highest GFP : mCherry fluorescence intensity ratio, and
the 25% of cells with the lowest ratio. The screens were performed with
two conditions: cells with areference RORC element-GFP reporter and
amutated 77-23 RORC element-GFP reporter. Screens were addition-
ally performed in duplicate. After sorting, genomic DNAwas collected
(Macherey-Nagel Midi Prep kit) and amplified using NEB Next Ultrall Q5
master mix and primers containing TruSeq Indexes for next-generation
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sequencing.Samplelibraries were prepared and sequenced onaHiSeq
4000. Guides were then quantified with the published ScreenProcess-
ing (https://github.com/mhorlbeck/ScreenProcessing) method and
phenotypes generated with anin-house processing pipeline,iAnalyzer
(https://github.com/goodarzilab/iAnalyzer). In brief, iAnalyzer relies
on fitting a generalized linear model to each gene. Coefficients from
this generalized linear model were z-score normalized to the negative
control guides and finally the largest coefficients were analyzed as
potential hits. For the comparison of gene phenotypes between the
two cell lines, the DESeq2 ratio of ratios test was used*”.

CRISPRi-mediated and small interfering RNA-mediated gene
knockdown

Jurkat cells expressing the dCas9-KRAB fusion protein were con-
structed by lentiviral delivery of pMHO006 (Addgene, cat.no.135448)
and FACS isolation of BFP-positive cells.

Guide RNA sequences for CRISPRi-mediated gene knockdown
were clonedinto pCRISPRia-v2 (Addgene, cat. no. 84832) via BstXI-Blpl
sites. After transduction with sgRNA lentivirus, Jurkat cells were
selected with 2 pg ml™ puromycin (Gibco). The fluorescence of eGFP
and of mCherry was measured on a BD FACSCelesta Cell Analyzer.

For UPF1siRNA-mediated knockdown, the TriFECTa DsiRNA Kit
from Integrated DNA Technologies (cat. no. hs.Ri.UPF1.13) was used.
LNCaP, MCF-7 and LS174T cells were infected with siRNAs using the
Lonza SE Cell Line 4D-Nucleofector X Kit S (cat. no. V4XC-1032) accord-
ing to the manufacturer’s protocol. At 48 h later, RNA was collected
using the Zymo QuickRNA Microprep isolation kit with in-column
DNase treatment as per the manufacturer’s protocol.

Reporter cellline generation

Mutated or reference sequences of RORC 3'UTR were cloned into the
dual GFP-mCherry reporter using the Mlul-HF and Pacl restriction
enzymes (NEB) as described above. The reporters were lentivirally
delivered to HEK293 and Jurkat cells and analyzed with flow cytometry
asdescribed above.

Drug treatment
Jurkat cells were seeded at adensity of 0.25 x 107 cells per ml. Either the
proteasome inhibitors (Carfilzonib or Bortezomib, Cayman Chemical)
ornegative control (dimethyl sulfoxide, DMSO) were added at the given
concentration. After 24 hofincubation, the fluorescence of eGFP and
of mCherry was measured on a BD FACSCelesta Cell Analyzer.

MCF-7 cells were treated either with 50 uM NMDI14 (TargetMol),
or with DMSO, for 24 h. Afterwards, cells were treated with DMS as
describe above and the RNA was collected as described above.

mRNA stability measurements

Jurkat cells were treated with 10 pg ml™ a-amanitin (Sigma-Aldrich, cat.
no.A2263) for 8-9 hprior to total RNA extractions. Total RNA was iso-
lated using the Zymo QuickRNA Microprepisolation kit with in-column
DNase treatment as per the manufacturer’s protocol. nRNA levels were
measured with RT-PCR, using 18S ribosomal RNA (transcribed by RNA
Poll) as the control.

T-cellisolation, transduction and Th17 cell differentiation

Thi7 cells were derived as described previously**. Plates were coated
with 2 pug ml™ anti-human CD3 (UCSF monoclonal antibody core, clone:
OKT-3) and 4 pg ml™ anti-human CD28 (UCSF monoclonal antibody
core, clone: 9.3) in PBS with calcium and magnesium for at least 2 h at
37 °C or overnight at 4 °C with the plate wrapped in parafilm. Human
CD4+ T cells were isolated from human peripheral blood using the
EasySep human CD4+T cellisolation kit (17952; STEMCELL) and stimu-
lated in ImmunoCult-XF T-cell expansion medium (10981; STEMCELL)
supplemented with10 mM HEPES, 2 mM L-glutamine, 100 pM 2-MOE,
1mM sodium pyruvate and 10 ng ml™ transforming growth factor-p.

At 24 h after T-cell isolation and initial stimulation on a 96-well plate,
7 pl lentivirus was added to each sample. After 24 h, the media was
removed from each sample without disturbing the cells and replaced
with 200 pl fresh media. After 48 h, cells were stimulated with 1.2 pM
ionomycin, 25 nM propidium monoazide and 6 pg ml™ brefeldin-A,
resuspended by pipetting, incubated for 4 hat37 °C, and collected for
analysis. Half of each sample was stained for CD4, FoxP3, interleukin
(IL)-13,IL-17A, interferon (IFN)-y and analyzed on a BD LSRFortessa
cellanalyzer (see below). The other half of the sample was not stained
and was analyzed for the expression of eGFP and mCherry on a BD
LSRFortessa cell analyzer.

Cultured human T cells were collected, washed and stained with
antibodies against cell surface proteins and transcription factors. Cells
were fixed and permeabilized with the eBioscience Foxp3/Transcrip-
tion Factor Staining Buffer Set or the Transcription Factor Buffer Set
(BD Biosciences). Extracellular nonspecific binding was blocked with
theanti-CD16/CD32 antibody (clone 2.4G2; UCSF Monoclonal Antibody
Core). Intracellular nonspecific binding was blocked with anti-CD16/
CD32 antibodies) and 2% normal rat serum. Dead cells were stained
with Fixable Viability Dye eFluor 780 (eBioscience) or Zombie Violet
Fixable Viability Kit (BioLegend). Cells were stained with the following
fluorochrome-conjugated anti-human antibodies: anti-CD4 (Invitro-
gen, cat.no.17-0049-42), anti-FOXP3 (eBioscience, cat. no. 25-4777-61),
anti-IL-13 (eBioscience, cat. no. 11-7136-41), anti-IL-17A (eBioscience,
cat. no.12-7179-42) and anti-IFNy (BioLegend, cat. no. 502520). All of
the antibodies were used at 1:200 dilution. Samples were analyzed on
aBD LSRFortessa cell analyzer. Datawere analyzed using FlowJo10.7.1
and BD FACSDiva v9 software.

Analysis of capillary electrophoresis data with HITRACE

Capillary electrophoresis runs from chemical probing and
mutate-and-map experiments were analyzed with the HITRACE MAT-
LAB package®'. Lanes were aligned, bands fitted to Gaussian peaks,
background subtracted using the no-modification lane, corrected for
signal attenuation, and normalized to the internal hairpin control. The
end result of these steps is a numerical array of ‘reactivity’ values for
eachRNAnucleotide that canbe used as weightsin structure prediction.

UPF1targeted CLIP-seq

Jurkat cells expressing RORC reporters (reference, 77-GA mutant vari-
antor116-CCCTAAG mutant variant) were collected and crosslinked by
ultraviolet radiation (400 mJ cm™). Cells were then lysed with low salt
washbuffer (1x PBS, 0.1% SDS, 0.5% sodium deoxycholate, 0.5% IGEPAL).
To probe preferential UPF1binding towards different reporters, lysates
from 77-GA mutant cells were mixed with lysates from either wild-type
or 116-CCCTAAG mutant cells at a 1:1 ratio prior to immunoprecipita-
tion.Samples were then treated with ahigh dose (1:3,000 RNase A and
1:100 RNase I) and a low dose (1:15,000 RNase A and 1:500 RNase I)
of RNase A and RNase I separately and combined after treatment. To
immunoprecipitate UPFI-RNA complex, a UPF1 antibody (Thermo,
cat. no. A301-902A) was incubated with Protein A/G beads (Pierce)
first and then incubated with the mixed cell lysates for 2 h at 4 °C.
Immunoprecipitated RNA fragments were then dephosphorylated (T4
PNK, NEB), polyadenylated and end-labeled with 3-azido-3"-dUTP and
IRDye 800CW DBCO Infrared Dye (LI-COR) on beads. SDS-PAGE was
then performed to separate protein-RNA complexes, and RNA frag-
ments were collected from nitrocellulose membrane by proteinase K
digestion.cDNA was then synthesized using Takara smarter smallRNA
sequencingkit reagents witha custom UMI-oligoDT primer (CAAGCA-
GAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGT-
GTGCTCTTCCGATCTTTTTTTTTTTTTTT). The RORC reporter locus
was then amplified with a custom primer (ACACTCTTTCCCTACAC-
GACGCTCTTCCGATCT TGGGGTGATCCAAATACCACC) and sequencing
libraries were then prepared with SeqAmp DNA Polymerase (Takara).
Libraries were then sequenced on anillumina Hiseq 4000 sequencer.

Nature Methods


http://www.nature.com/naturemethods
https://github.com/mhorlbeck/ScreenProcessing
https://github.com/goodarzilab/iAnalyzer

Article

https://doi.org/10.1038/s41592-024-02335-1

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Sequencing data have been deposited in the Gene Expression Omnibus
(GEOaccession GSE266070). Cryo-EM density maps have been deposited
in EMDB, accession numbers EMD- 42275 (WT Class A), EMD- 42276 (WT
Class B), EMD- 42277 (WT Class C), EMD- 42400 (77-GA Class C), EMD-
42401(77-GAClass A), EMD-42403 (117-AC Class C) and EMD-42404 (117-AC
Class B). Rfam database 14.10 (https://rfam.org/) was used in the study.

Code availability
SwitchFinder source code is available at https://github.com/
goodarzilab/SwitchFinder.
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Extended DataFig.1|SwitchFinderidentifies saddles in RNA folding energy
landscape. a Example of SwitchFinder locating the thiamine pyrophosphate
RNA switches within the mRNA sequence. Top: arc representation of the RNA
base pairs that change between the two conformations of the £.coli TPP RNA
switch, asin (Barsacchi et al.'®). The two conformations are shown inred and
blue, respectively. Bottom: the two conformations of the RNA switch as predicted
by SwitchFinder. Middle: SwitchFinder score reflecting the likelihood of agiven
nucleotide to be involved in two mutually exclusive base pairings. b Scheme of
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SwitchFinder model. SwitchFinder analyzes RNA folding energy landscape of a
given RNA sequence and assigns higher score to the landscapes that demonstrate
riboswitch-like features. ¢ The set-up for evaluating the ability of a model to find
RNA switches from novel families. At the classifier training step, riboswitches
from one of the Rfam families get separated into the ‘test set’, while the model
getstrained on the riboswitches from other Rfam families. The test set then is
used to evaluate the model performance.
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Extended Data Fig. 2| Overview of high-throughput screening approaches
forimproved RNA switch predictions. a Overview of DMS-MaPseq workflow.
Mammalian cells are treated with DMS. DMS-modified nucleotides cause
mutations when cDNA is synthesized from RNA templates. The cDNA libraries are
sequenced, the DMS-caused mutations are counted, providing the Watson-Crick
face accessibility estimates for each A- or C- nucleotide. b Cumulative mutation
frequency in DMS-treated candidate RNA switches, separated by nucleotide.

¢ Cumulative mutation frequency in nontreated candidate RNA switches,
separated by nucleotide. d Overview of the library generation workflow for
Massively Parallel Reporter Assay (MPRA). Sequences of candidate RNA switches
are synthesized as DNA oligonucleotides and cloned into a reporter vector into

3 UTRregion of aeGFP cDNA. The plasmid library is packaged into lentiviral
particles, and used for infecting mammalian cells. The infection is performed

atlow MOl (infection rate) to ensure that most cells get only a single plasmid
copy. e Overview of the MPRA workflow. A population of mammalian cells is
separated into bins based on GFP/mCherry fluorescence ratio. In the schematic,
cells are colored according to the sequence they carry in the 3'UTR of the GFP
reporter. f Cumulative density plot of dysregulation values, comparing the
candidate RNA switches predicted in first and second (DMS-MaPseq informed)
iterations of SwitchFinder. Dysregulation values are estimated using chi-square
test for every individual candidate RNA switch across 8 expression bins. Median
difference (AM) and Pvalue (calculated using Mann-Whitney U-test) are shown.
g Correlations of read counts of gDNA libraries between the biological replicates
of massively parallel mutagenesis analysis. h Correlations of read counts of RNA
libraries between the biological replicates of massively parallel mutagenesis
analysis.
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Extended Data Fig. 3| See next page for caption.
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Extended DataFig. 3 |In vitro SHAPE reactivity of the RORC RNA switch
sequence in vitro. a SHAPE reactivity profiles for the reference sequence and
for the mutation-rescue pair of sequences (blue - ‘77-GA’, red - ‘63-TC,77-GA).
Shownis the average for 3 replicates with the respective error bars (SD).

The SHAPE reactivity changes in the nonmutated regions are highlighted in
bold arrows. b Barplots of cumulative SHAPE reactivity within the switching
regions for the reference sequence (in gray) and for the mutation-rescue

pair of sequences (blue - ‘77-GA’, red - ‘63-TC,77-GA). N replicates = 3. ¢ Scatter
plot showing the reproducibility of the DMS signal between two replicates.
Each dot represents a single nucleotide. Normalized DMS signal is shown on
bothaxes. Correlation and Pvalue is determined with Pearson correlation
coefficient (P =1.59-42). d Scatter plots showing the reproducibility of the
DRACO clusters betweenreplicates (N =2). Eachreplicate’s reads were clustered
with DRACO, the DMS reactivity was calculated for each cluster; the clusters
were subsequently matched between replicates. Shown are DMS reactivities

for agiven cluster inagivenreplicate; each dot represents asingle nucleotide.
Correlationand Pvalue is determined with Pearson correlation coefficient.
Pvalues left toright: 2.60e-23,3.62e-07,0.18,0.73. e DMS reactivities of the

two clusters identified by the DRACO unsupervised deconvolution algorithm
(Morandi et al. *®). The algorithm was run on two replicates independently, and
identified the same clusters in both of them. The ratios of the clusters reported
by DRACO are 22% to 78% in replicate 1and 32% to 68% in replicate 2. The ratio
shownis an average between the two replicates. The switching regions are
shownin color. fThe effect of sequence mutationsin the ‘Box 2’ and ‘Box 3’
regions of RORC element on their reactivity, as measured by DMS-MaPseq in a
reporter cell line. P values were determined using the two-sided independent
T-test. g Correlation of relative proportions of the two conformations between
the reporter context and the endogenous RORC mRNA. Linear regression is
shown with aline. The relative conformations’ proportion is defined as the ratio
of reactivities of Box 2:Box 3.
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Extended Data Fig. 4 | Qualitative modeling of cryo-EM data. (a-c) Source PDB including dsRNA B-helix and RNA hairpin. Features representing the major
cryo-EMimages for the example particles shown in Fig. 4a, with phase-flipping groove and a hairpin are visible in regions of the maps. (g, h) Pairs of high-scoring
to correct contrast and CTF delocalization. The WT image (A) evinces a greater models created by DRRAFTER for WT 3D classes B and C with density overlaid.
diversity of particles, while 77-GA (B) appears to contain primarily elongated The pre-positioned, idealized RNA structures used as initial models are indicated
particles and those of 117-AC (C) seem more compact. The data collection by abracket. Although the individual models are of low-confidence, they
statistic is available in Data file S7. (d-f) Cryo-EM 3D classes A, B, and C of the demonstrate that the class densities likely represent all or the majority of the

WTRORC RNA overlaid with stereotypical RNA tertiary structures from the RNA molecule.
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Extended Data Fig. 5| See next page for caption.
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Extended DataFig. 5| Cryo-EM image processing and validation.

(a-c) Representative micrographs and 2D class averages for RORC RNA switchWT
sequence (A), 77-GA (B) and 117-AC (C). The data collection statistic is available

in Data file S7. (d) Schematic cryo-EM image processing pipelines for WT RORC
RNA. During template picking, templates and micrographs were low-pass filtered
t020 A. (e, f) Schematic cryo-EM image processing pipelines for 77-GA (E), and
117-AC (F) mutants. During template picking, templates and micrographs were

low-pass filtered to 20 A. () Gold-standard half-map refinement volume, FSC
curves, and orientation distribution plot for 3D classes from WT RNA sample.
(h) Gold-standard half-map refinement volume, FSC curves, and orientation
distribution plot for 3D classes from 77-GA sample. (i) Gold-standard half-map
refinement volume, FSC curves, and orientation distribution plot for 3D classes
from117-AC sample.
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Extended DataFig. 6 | Differentiation of Th17 cells from primary human
CD4+ cells. Representative fluorescence-activated cell sorting plots of human
primary Th17 cells, infected with RORC RNA switch 3'UTR reporter. On the day
5of differentiation, each sample was split in half; one half was analyzed for
mCherry and GFP expression (shown in Fig. 5¢), the other half was stained for
the expression of CD4, FoxP3, IL-13, IL-17A, IFN-gamma. The cells expressing
agiven marker are highlighted with aframe and a fraction of the parental

cellular populationis given. Each sample was analyzed in 4 replicates; a single
representative replicate is displayed. CD4 is amarker for T-helper cells, including
Th17. FoxP3 s typically associated with regulatory T cells, contrasting the pro-
inflammatory role of Th17 cells. IL-13 and IL-17A are cytokines indicative of Th2
and Thi17 cell activity, respectively, with IL-17A being a key marker for Th17 cell
identity. IFN-gamma s a signature cytokine of Th1 cells.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | CRISPRi screen highlights the pathways acting
downstream of the RORC RNA switch. a Overview of the flow cytometry-
based CRISPRi screen workflow. b Gene set enrichment analysis of the data
depicted in Fig. 6a (left) and Fig. 6b (right). The genes were distributed into
equally populated bins based on their comparative abundance between high
expression and low expression quartiles (left), or based on their comparative
phenotypein the CRISPRi screens performed in WT or 77-GA mutant
backgrounds (right). Then the enrichment of a given gene set was calculated
ineach bin using iPAGE, a mutual information-based algorithm (Goodarzi et al.
2009). c Experiment design table. d The effect of knockdown of SURF and EJC
complex member proteins on the expression change upon the conformation
equilibrium shift. The individual genes were knocked down using the CRISPRi
systemin both WT and 77-GA mutant cell lines, then the change of reporter gene
expression was measured by flow cytometry (N replicates =2). The bar plots
demonstrate the expression ratios of WT to 77-GA mutation cell lines. e The
bar plots demonstrate the fractions of reads carrying the Box 2 (77-GA) mutant
sequence or Box 3 (116-CCCTAAG) mutant sequence in UPF1 cross-linking and
immunoprecipitation (CLIP) library. Box 2 mutant favors conformation1, Box 3
mutant favors conformation 2. Left: input RNA libraries, extracted from the

Box 3 and Box 2 mutant-expressing Jurkat cells, mixed at 1:1ratio. Right: libraries
after anti-UPFIimmunoprecipitation. Pvalue was calculated using Translation
Efficiency Ratio test asin (Navickas et al. **). N replicates = 2. f Density plots
showing the correlation of sgRNA counts between the replicates of the CRISPRi
screens performed in the WT (left) and 77-GA mutant (right) backgrounds.

g Density plots showing the correlation of gene counts between the replicates
of the CRISPRi screens performed in the WT (left) and 77-GA mutant (right)
backgrounds. The counts of all the sgRNAs targeting a given gene are pooled and
reported as asingle number (N = 5sgRNAs per gene). h Scatter plots showing the
correlation of sgRNA phenotypes between the replicates of the CRISPRi screens
performed in the WT (left) and 77-GA mutant (right) backgrounds. Logarithmic
fold changes between the sgRNA abundance ‘high’ and ‘low’ expression bins are
shown on both axes. Nontargeting sgRNAs are shown in orange; all the other
sgRNAs are showninblue. The correlation values are reported separately for
nontargeting and targeting sgRNAs. i Density plots showing the correlation of
gene phenotypes between the replicates of the CRISPRi screens performed in
the WT (left) and 77-GA mutant (right) backgrounds. Logarithmic fold changes
between the abundance of sgRNAs targeting a given gene in ‘high’ and ‘low’
expression bins are shown on both axes.
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numbers EMD-42275 (WT Class A), EMD-42276 (WT Class B), EMD-42277 (WT Class C), EMD-42400 (77-GA Class C), EMD-42401 (77-GA Class A), EMD-42403 (117-
AC Class C), and EMD-42404 (117-AC Class B). RFAM database 14.10 (https://rfam.org/) was used in the study.
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Population characteristics Peripheral blood mononuclear cells (PBMCs) from anonymous healthy human donors were purchased fresh from StemCell
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Ethics oversight PBMCs from anonymous donors were purchased from StemCell Technologies, which collected PBMCs from healthy donors
under protocols approved by the StemCell Technologies IRB.
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Sample size For all the high-throughput screens, namely the (i) functional screen, the (i) structure screen, the (iii) massively parallel mutagenesis screen,
and the (iv) CRISPRi screen, the cellular population was maintained at all times with at least 500X coverage of the library size. For CryoEM
experiments, the number of particles collected is reported in the Supplementary Tables. For all flow cytometry experiments, data were
collected from >10.000 cells to ensure the sufficient coverage.

Data exclusions | No data was excluded from our analyses

Replication The high-throughput screens, namely the (i) functional screen, the (ii) structure screen, the (iii) massively parallel mutagenesis screen, and the
(iv) CRISPRi screen were performed in 2 replicates.
DMS-MaP-seq experiments were performed in 2 replicates.
SHAPE probing experiments were performed in 3 replicates.
CLIP-seq experiments were performed in 2 replicates.
Th17 differentiation experiments were performed in 4 replicates.
CRISPRi knockdown experiments were performed in 2 replicates.
Proteasome inhibition experiments were performed in 3 replicates.
gPCR measurements were performed in 2-3 replicates, depending on the experiment.
The replicates showed consistent results for all the experiments.

Randomization  The RNA samples were randomly allocated for NMDI14 or DMS treatment, and/or for Bortezomib or Carfilzomib treatment.

Blinding Where possible, the RT-gPCR step was performed by a different researcher.
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Antibodies

Antibodies used The antibody information is described in the Material and Methods section of the manuscript.
primary
anti-CD4 (Invitrogen 17-0049-42)
anti-FOXP3 (eBioscience 25-4777-61)
anti-IL-13 (eBioscience 11-7136-41)
anti-IL-17A (eBioscience 12-7179-42)
anti-IFNy (BioLegend 502520)
anti-CD16/CD32 antibody (clone 2.4G2; UCSF Monoclonal Antibody Core AM004)
anti-human CD3 (UCSF monoclonal antibody core, clone: OKT-3, AHO03)
anti-human CD28 (UCSF monoclonal antibody core, clone: 9.3, AH002)
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Validation The antibody information is described in the Material and Methods section of the manuscript.
primary
anti-CD4 (Invitrogen 17-0049-42)
Applications Tested: This RPA-T4 antibody has been pre-titrated and tested by flow cytometric analysis of normal human peripheral
blood cells. his can be used at 5 pL (0.5 pg) per test. A test is defined as the amount (ug) of antibody that will stain a cell sample in a
final volume of 100 pL. Cell number should be determined empirically but can range from 10”5 to 10”8 cells/test.

anti-FOXP3 (eBioscience 25-4777-61)

Applications Tested: This 236A/E7 antibody has been pre-titrated and tested by intracellular staining and flow cytometric analysis of
normal human peripheral blood cells using the Foxp3/Transcription Factor Staining Buffer Set (cat. 00-5523) and protocol. Please
refer to Best Protocols: Protocol B: One step protocol for (nuclear) intracellular proteins. This can be used at 5 pL (0.125 pg) per test.
A test is defined as the amount (ug) of antibody that will stain a cell sample in a final volume of 100 uL. Cell number should be
determined empirically but can range from 10”5 to 108 cells/test.

anti-IL-13 (eBioscience 11-7136-41)

Applications Tested: This 85BRD antibody has been pre-titrated and tested by intracellular staining followed by flow cytometric
analysis of stimulated normal human peripheral blood cells using the Intracellular Fixation & Permeabilization Buffer Set (cat.
88-8824) and protocol. Please refer to Best Protocols: Protocol A: Two step protocol for (cytoplasmic) intracellular proteins located
under the Resources Tab online. This can be used at 5 plL (0.25 ug) per test. A test is defined as the amount (ug) of antibody that will
stain a cell sample in a final volume of 100 pL. Cell number should be determined empirically but can range from 1075 to 1078 cells/
test.

anti-IL-17A (eBioscience 12-7179-42)

Applications Tested: This eBio64DEC17 antibody has been pre-titrated and tested by intracellular staining and flow cytometric
analysis of stimulated normal human peripheral blood cells. This can be used at 5 pL (0.25 ug) per test. A test is defined as the
amount (pug) of antibody that will stain a cell sample in a final volume of 100 pL. Cell number should be determined empirically but
can range from 1075 to 10”8 cells/test.

anti-IFNy (BioLegend 502520) was tested at https://www.biolegend.com/en-us/products/purified-anti-human-ifn-gamma-
antibody-1537?GrouplD=BLG2229

All the antibodies purchased from UCSF Monoclonal Antibody Core were validated by UCSF Monoclonal Antibody Core .

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) HEK293 and Jurkat cells were purchased from ATCC
Authentication None of the cell lines were authenticated with STR.
Mycoplasma contamination Cell lines were tested regularly for mycoplasma contamination. No mycoplasma contamination was detected.

Commonly misidentified lines  no commonly misidentified samples were used in this study
(See ICLAC register)




Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group’ is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument
Software
Cell population abundance

Gating strategy

For intracellular stains, T cells were fixed and permeabilized with the eBioscience™ Foxp3 / Transcription Factor Staining
Buffer Set or the Transcription Factor Buffer Set (BD Biosciences). Extracellular nonspecific binding was blocked with the anti-
CD16/CD32 antibody. Intracellular nonspecific binding was blocked with anti-CD16/CD32 Abs and 2% normal rat serum.
Finally, up to 0.5 million T cells from culture were washed with PBS + 1% FBS.

For HEK293 cells, cells were washed with PBS once, incubated with Trypsin for 10 minutes, then detached from the plate,
resuspended in PBS + 1% FBS and strained through industrial mesh with a pore size of 90 uM (ELKO filtering).

For Jurkat cells, cells were resuspended in PBS + 1% FBS.

For all experiments, known negatives served as gating controls.

BD FACSCelesta, BD FACSaria Il, BD LSRFortessa
FlowJo 10.7.1 and BD FACSDiva v9
All sorts were end-point sorts and not for subsequent culture.

For all flow cytometry data, viable cells were gated by FSC-A/SSC-A (as well as live/dead cell markers for some experiments),
and singlets by FSC-A/FSC-H. Positive populations were determined by unstained (in case of T cells) or non-transduced (in
case of Jurkat or HEK293) samples. Gating strategy is shown in the supplementary data.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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