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RESEARCH ARTICLE
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Brianna Heggeseth1*, Kim Harley2, Marcella Warner2, Nicholas Jewell3, Brenda Eskenazi2

1Department of Mathematics and Statistics, Williams College, Williamstown, MA, United States of America,
2Center for Environmental Research and Children’s Health, School of Public Health, University of California,
Berkeley, California, United States of America, 3 Division of Biostatistics, School of Public Health, University
of California, Berkeley, California, United States of America

* Brianna.c.Heggeseth@williams.edu

Abstract
It has been hypothesized that environmental exposures at key development periods such

as in utero play a role in childhood growth and obesity. To investigate whether in utero expo-

sure to endocrine-disrupting chemicals, dichlorodiphenyltrichloroethane (DDT) and its

metabolite, dichlorodiphenyldichloroethane (DDE), is associated with childhood physical

growth, we took a novel statistical approach to analyze data from the CHAMACOS cohort

study. To model heterogeneity in the growth patterns, we used a finite mixture model in

combination with a data transformation to characterize body mass index (BMI) with four

groups and estimated the association between exposure and group membership. In boys,

higher maternal concentrations of DDT and DDE during pregnancy are associated with a

BMI growth pattern that is stable until about age five followed by increased growth through

age nine. In contrast, higher maternal DDT exposure during pregnancy is associated with a

flat, relatively stable growth pattern in girls. This study suggests that in utero exposure to

DDT and DDE may be associated with childhood BMI growth patterns, not just BMI level,

and both the magnitude of exposure and sex may impact the relationship.

Introduction
The number of obese individuals has drastically increased recently worldwide [1]. Obesity is
likely caused by a complex combination of genetic, behavioral, and environmental factors.
While much attention has been placed on curtailing overeating and encouraging physical activ-
ity, there have also been many attempts to understand the biological mechanism behind the
disease. Researchers have attempted to quantify the role of heredity using twin studies [2] and
more recently, it has been suggested that early environmental factors may play a role. In partic-
ular, prenatal exposure to endocrine-disrupting compounds (EDCs) is hypothesized to deregu-
late the metabolic system, disrupt growth regulation, and increase the risk of childhood obesity
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[3, 4]. One EDC is the pesticide dichlorodiphenyltrichloroethane (DDT) and its metabolite,
dichlorodiphenyldichloroethane (DDE).

Animal toxicological studies support the potential role of DDT and DDE on growth of
organisms [5–7]; however, results of studies in humans have been inconsistent [8] with some
studies suggesting no associations with body mass index (BMI) [9–11] and others suggesting a
positive relationship [12–14]. In addition, there is evidence to suggest that the relationship
between DDT and DDE and growth may be non-linear [12] and sex-specific due to differences
in endocrine activity [12, 15–18].

Most research on the relationship between early life exposure and physical development has
focused on BMI measured at a single time point, such as at ages 14 months [13], 14–22 months
[19], 6.5 years [12], 7 years [20, 21] and 9 years [18]. This approach inherently focuses only on
the BMI level and assumes that there is an age at which the impact of chemical exposure on
growth becomes evident ignoring any potential impact on the growth over time. Other studies
examine repeated measures of BMI over time, modeling the relationship between prenatal
chemical exposure and BMI using standard longitudinal approaches such as linear mixed
effects models and marginal models [9, 14, 20]. While the focus is still typically on the relation-
ships with the magnitude of BMI levels, researchers explore relationships with growth by
modeling the linear model coefficients using an interaction term or with secondary regression
[22]. This multi-level structure restricts the relationship between exposure and growth pattern
to be modeled through slope coefficients, which does not easily accommodate complex, non-
linear relationships. Standard practice involves including one interaction term between expo-
sure and age to allow the coefficient of age to depend linearly on exposure levels. For example,
a positive coefficient for an interaction between exposure and age would indicate that increased
exposure is associated with a higher rate of change assuming all other variables to be constant.
This drastically limits the flexibility of the model.

In contrast, a more data-driven approach, using a finite mixture model, uses subgroups to
model the heterogeneity in the growth patterns [23]. Risk factors such as chemical exposure
can be used to model group membership probabilities. This framework does not restrict the
form of the relationship between exposure and developmental groups; it has the flexibility to
model non-linear growth patterns as well as non-linear relationships between the groups and
the exposure level. These methods are becoming more commonly used in practice due to their
flexibility and the availability of software such as Proc Traj [24], Mplus [25], and R packages
such as lcmm [26].

This mixture model involves constructing subgroups according to the growth patterns to
enhance the study of associations between exposures and the change over time. Numerous
studies have recently used this data-driven approach to study early life factors associated with
physical growth [27–31]. However, with a continuous outcome such as BMI, these mixture
model-based methods iteratively define subgroups by minimizing the variability around esti-
mated group trajectory means. Therefore, they primarily group individuals by the level of BMI
rather than on the shape of their developmental BMI pattern over time. Thus, these studies
may have missed correctly estimating and detecting interesting relationships with growth pat-
terns. A solution that we propose is to first transform the outcome by subtracting individual-
specific means prior to using existing mixture model methods in order to temporarily remove
the level in order to focus on growth [32]. We have previously shown through simulation that
this approach performs better than the standard mixture models and other clustering methods
in detecting an appropriate number of developmental pattern groups with small misclassifica-
tion error. With little misclassification in group membership, estimating the relationships
between exposures and growth pattern groups is more accurate. The study of associations with
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exposures on the overall level can complement this proposed analysis of the shapes of growth
patterns.

In this study, we present a novel statistical analysis of the association of a well-known endo-
crine disruptor, the pesticide DDT and its metabolite DDE, with trajectories of childhood BMI
in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS)
study, a longitudinal birth cohort study in an agricultural community in California. Addition-
ally, we illustrate the effectiveness of a transformed mixture modeling approach to study the
relationship of maternal prenatal exposure with child BMI growth patterns from age 2 to 9
years.

Methods

Study participants
The CHAMACOS Study is a longitudinal birth cohort study investigating the health effects of
environmental chemicals on pregnant women and their children living in an agricultural
region of California. Pregnant women were recruited to participate in 1999 and 2000 from six
prenatal clinics serving the farmworker population of the Salinas Valley, California. Eligible
women were less than 20 weeks gestation at enrollment, at least 18 years of age, qualified for
low-income health insurance (Medicaid), spoke English or Spanish, and were planning to
deliver at the county hospital. A total of 527 women were enrolled and followed through the
birth of a live-born, singleton infant. Serum concentrations of DDT and DDE during preg-
nancy were collected for 415 women. Of those mother-child pairs, complete anthropometric
data were collected on 306 children at age 2, 270 at age 3.5, 264 at age 5, 268 at age 7, and 260
at age 9. We included the 250 children with complete anthropometric data from 4 of the 5
study visits between ages 2 and 9. We excluded one child due to a health condition known to
lead to weight loss. This group of 249 children made up the analytic sample for this study.
Written informed consent was obtained from all women for their participation and from
parents or guardians on behalf of the children to participate. Additionally, verbal assent was
recorded from the children starting at age 7. All informed consent and study protocols were
approved by University of California Berkeley’s Committee for the Protection of Human Sub-
jects 1 (University of California Berkeley IRB #1: Registration #: IRB00000455).

Procedure
Details of the study have been previously published [33]. Mothers were interviewed twice dur-
ing pregnancy (at approximately 13 and 26 weeks gestation), at delivery, and when their chil-
dren were 0.5, 1, 2, 3.5, 5, 7, and 9 years of age. Mothers were asked about their
sociodemographic and health characteristics, including education, family income, country of
birth, years of residence in the United States, pre-pregnancy weight, and smoking status. Infor-
mation was also gathered on child dietary and health habits, including duration of breastfeed-
ing, consumption of soda, sugary snacks, and fast food, and exercise and sedentary behavior.

Birth weight was abstracted from medical records. Children were measured at every visit.
Weight, rounded to the nearest 0.1 kg, was measured using a digital scale between ages 2 and 7
years (Tanita Mother-Baby scale, model 1582; Tanita Corp., Arlington Heights, IL) and a foot-
to-foot bioimpedance scale starting at age 9 years (Tanita TBF-300A Body Composition Ana-
lyzer, Tanita Corporation of America, Inc., Arlington Heights, Illinois). Height was measured
to the nearest 0.1 cm using a stadiometer. All measurements were made in triplicate and aver-
aged for analysis.

DDT Exposure and Growth Patterns
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Laboratory analysis
Concentrations of o,p’-DDT, p,p’-DDT, and p,p’-DDE were measured in maternal serum col-
lected at approximately 26 weeks gestation (n = 230) or delivery (n = 19). Serum samples were
stored at -80 C° until shipment to the Centers for Disease Control and Prevention (CDC) for
analysis using isotope dilution gas chromatography-high resolution mass spectrometry [34].
Quality control samples were included in each run. Concentrations below the limit of detection
(LOD) were assigned the value one-half the LOD [35]. Maternal serum was analyzed for total
cholesterol and triglyceride levels using standard enzymatic methods (Roche Chemicals, India-
napolis, IN). Measured DDT and DDE values were lipid-adjusted and reported as ng/g of
lipid [36].

Statistical analysis
We calculated BMI as weight (kilograms) divided by height (meters) squared from the assess-
ments conducted when the children were approximately 2, 3.5, 5, 7, and 9 years old. We used
BMI values rather than BMI z-scores from sex- and age-specific BMI charts published by the
CDC since the charts are derived from cross-sectional data and may not accurately represent typ-
ical BMI growth patterns [37]. Lipid-adjusted levels of o,p’-DDT, p,p’-DDT, and p,p’-DDE were
log10-transformed and analyzed as continuous variables. Descriptive statistics were calculated;
median and interquartile range (IQR) were used for variables with non-symmetric distributions.

Rather than trying to model BMI development using time-varying explanatory variables, we
used a finite number of groups to account for the heterogeneity in BMI growth and then stud-
ied the relationship between baseline risk factors and these developmental groups. To directly
focus on the growth pattern, or trajectory shape, we transformed the BMI measurements by
subtracting individual-specific means and then we fit a finite multivariate Gaussian mixture
model with the transformed BMI repeated measures as the outcome measurements (y). Condi-
tional on the child’s age (t) and baseline risk factors (z), the probability density function for
this mixture model is a weighted sum of densities representing K subgroups, f(yjt, z) = π1(z)
f1(yjt) + � � � + πK(z)fK(yjt), where π1(z), . . ., πK(z) are group membership probabilities modeled
using a multinomial logistic regression with baseline risk factors as predictors and f1, . . ., fk are
multivariate Gaussian densities with distinct (unknown) means and covariance matrices to
account for longitudinal dependencies. The baseline risk factors of interest, the log10-trans-
formed maternal serum concentrations of o,p’-DDT, p,p’-DDT, and p,p’-DDE, were included
in a multinomial logic function along with other possible confounding demographic variables
to model group probabilities, πk(z). The group mean growth patterns over time were modeled
using a quadratic B-spline [38] with one internal knot at the median.

Initially, the model was estimated without any baseline risk factors. Model parameters and
posterior group probabilities for models with K = 2, 3, 4, and 5 groups were estimated using the
expectation maximization (EM) algorithm [39] assuming independence and then the exponen-
tial correlation structure, both assuming constant variance. The optimal number of groups, K,
and the correlation structure were selected based on the data such that the Bayesian Informa-
tion Criterion (BIC) was minimized. Individual children were classified into the group with the
largest estimated posterior group probability for visual representation.

Once the number of groups, K, and the covariance structure were chosen, baseline risk fac-
tors were included as predictors for the group membership probabilities and the overall model
was re-estimated. For each group j = 1, . . ., K−1, relative risk ratios (RRR),

RRR ¼ PðGroup jjz þ 1Þ=PðGroup jjzÞ
PðGroup Kjz þ 1Þ=PðGroup KjzÞ ð1Þ

DDT Exposure and Growth Patterns
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were calculated for one-unit (ten-fold) increases in maternal o,p’-DDT, p,p’-DDT, and p,p’-
DDE serum concentrations during pregnancy based on estimated parameters and presented
with 95% confidence intervals (CI) based on asymptotic normality.

We stratified by sex and adjusted for possible confounding baseline factors in the multino-
mial regression predicting the group membership probabilities. The factors, including the
number of years in the United States, self-reported maternal pre-pregnancy BMI, child’s birth
weight, and duration of breastfeeding, were previously identified as possible predictors of expo-
sure and BMI [18, 20]. Interactions between these baseline variables and the main risk factor,
DDT or DDE exposure, were considered individually to see if the relationship between the risk
factor depended on the child or maternal characteristics. Sensitivity analyses were completed
with regard to preterm birth (gestational age< 37 months) and low birth weight (birth
weight< 2500 g). All statistical analyses were performed using R [40], version 3.0.2.

Results

Population
Of the mother-child pairs with serum concentrations, the children who had at least four BMI
measurements between ages 2 and 7 (n = 249) did not differ in sex distribution, BMI at baseline
age 2, maternal DDT or DDE exposure, gestational age, the number of years in the USA, and
duration of breastfeeding from those who did not (n = 165). The mothers missing maternal
DDT or DDE concentrations and therefore excluded from this analysis had been living in the
US significantly longer, breastfed a shorter period of time, and had children with slightly lower
birth weights on average than those in the sample.

Table 1 describes the analytical sample in terms of baseline maternal and child characteris-
tics. Most of the mothers were born in Mexico (91%), had not finished a high school education
(80%), were married or living as married (85%), and had lived in the US at least two years prior
to enrolling in the study (76%, median: 5.1 years, IQR: 10-1.75 years). Before pregnancy, the
mean BMI was 27.7 kg/m2 (SD: 5.6 kg/m2) and 65% of the mothers were overweight or obese,
and after delivery, almost all of the mothers breastfed for at least 2 weeks (93%), continuing for
a median of 7 months (IQR: 13-3 months).

The children weighed an average of 3,500 g at birth and 55% were female. Table 2 describes
the BMI of the 249 children in the analytical sample over time. At age 2, about 30% of the chil-
dren were overweight or obese, meaning that they were at, or above, the 85th percentile on the
age and sex-specific CDC growth charts [41] for BMI with mean BMI of 17.4 kg/m2 (SD: 2.0
kg/m2) at age 2. This percentage increased as the children aged to 50%, 53%, 54% and 57% at
age 3.5, 5, 7, and 9 years old, respectively, with mean BMI of 20.8 kg/m2 (SD: 4.8 kg/m2) at
age 9.

Exposure
Almost all of the mothers had serum concentrations of DDT and DDE during pregnancy
above the limit of detection for o,p’-DDT (97%), p,p’-DDT (100%), and p,p’-DDE (100%). The
geometric mean (geometric SD) serum levels were 1.7 (4.3) ng/g of lipid o,p’-DDT, 21.2 (5.3)
ng/g of lipid p,p’-DDT, and 1,428 (3.4) ng/g of lipid p,p’-DDE. As reported previously [42], the
observed levels were significantly higher among mothers who were born in Mexico, had lived
in the United States less than 2 years, were less educated (� 6th grade), and who breastfed for a
longer duration. There were no significant differences by maternal pre-pregnancy BMI, marital
status, infant birth weight, nor sex.
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Table 1. Baseline Child and Maternal Characteristics of Study Population (n = 249), Center for the
Health Assessment of Mothers and Children of Salina Study, 2000–2010.

Characteristic No. (%)

Child sex Male 113 (45.4)

Female 136 (54.6)

Country of maternal birth USA 23 (9.2)

Mexico/Other 226 (90.8)

Years of maternal residence in USA Median, IQR 5.1, 10-1.75

� 5 129 (51.8)

> 5 120 (48.2)

Maternal education � 6th grade 109 (43.8)

7th–12th grade 89 (35.7)

> High school 51 (20.5)

Maternal marital status Not married 38 (15.3)

Married/living as married 211 (84.7)

Maternal pre-pregnancy BMI (kg/m2) Mean, SD 27.7, 5.6

� 18.5 2 (1.0)

18.5–24.9 85 (34.1)

25.0–29.9 98 (39.3)

� 30.0 64 (25.7)

Child birth weight (g) Mean, SD 3.4, 0.5

< 2500g 8 (3.2)

2500–4200g 220 (88.4)

> 4200g 21 (8.4)

Breastfeeding duration (months) Median, IQR 7, 13-3

0–1.9 38 (15.3)

2–5.9 66 (26.5)

6–11.9 63 (25.3)

� 12 82 (32.9)

IQR, interquartile range

doi:10.1371/journal.pone.0131443.t001

Table 2. Distribution of dhildhood BMI at 2, 3.5, 5, 7, and 9 years of age at follow-up, Center for the Health Assessment of Mothers and Children of
Salina Study, 2000–2010.

Age at follow up (years)

BMI (kg/m2) 2 (n = 240) No. (%) 3.5 (n = 243) No. (%) 5 (n = 246) No. (%) 7 (n = 245) No. (%) 9 (n = 233) No. (%)

Mean (SD) 17.4 (2.0) 17.7 (2.7) 17.9 (3.2) 19.1 (4.0) 20.8 (4.8)

Normal1 167 (70) 122 (50) 116 (47) 113 (46) 101 (43)

Overweight2 31 (13) 46 (19) 49 (20) 45 (18) 37 (16)

Obese3 42 (17) 75 (31) 81 (33) 87 (36) 95 (41)

1 < 85th percentile
2 85th–94.9th percentile
3 � 95th percentile

BMI, body mass index; SD, standard deviation

doi:10.1371/journal.pone.0131443.t002
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Growth patterns
Four groups (K = 4) were chosen with independent correlation structure for both boys and
girls using the BIC to select a mixture model for the transformed data. The parameter estimates
were used to calculate the mean growth patterns and the posterior group probabilities were
used to categorize the children into the groups according to the highest posterior probability
for presentation (Fig 1). For both sexes, the four groups can be described by their mean growth
pattern: group 1) linearly increasing, group 2) stable and increasing at age 4 to 5, group 3) sta-
ble and increasing at age 6 to 7, and group 4) flat and stable from age 2 until age 9.

The groups detected by the transformed mixture model and displayed in Fig 1 were well
separated with little overlap in group classifications. Only about 7 to 12% of the posterior
group probabilities were between 0.1 and 0.9 for each group; values close to 0 and 1 indicate
more certainty in the membership while values close to 0.5 indicate a child’s pattern is in
between two groups. This indicates that we can be confident that these four groups well
approximate the heterogeneity in growth patterns in this data set. Based on these memberships,
Table 3 shows the number of children placed in each group and describes the BMI levels across
time for individuals within each growth pattern group. Group 4, which was the largest group,
includes children whose patterns most resembles the 50th percentile BMI curve for American

Fig 1. Group BMI growth patterns. BMI longitudinal trajectories of children in study population, categorized by sex and data-driven groups based on
posterior probabilities from an estimated finite mixture model without adjusting for baseline risk factors. Group mean BMI trajectories are overlaid for each
sex-specific group.

doi:10.1371/journal.pone.0131443.g001
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children [41] and has the highest percentage of children classified as normal weight at age 9.
Conversely, the children in group 1 had quite a bit of variation in their BMIs at age 2 but were
all obese by age 9, reflecting this smaller group’s pattern of steep linear increase in BMI over
the study period.

Association between DDT and DDE and developmental patterns
We then expanded the model to include maternal serum concentration of DDT or DDE as a
baseline risk factor to predict group membership, π(z), via the multinomial logistic function.
The full mixture model was refit and relative risk ratios (RRR) were estimated with and without
adjusting for other possible confounding baseline factors (Table 4). By investigating interaction
terms in our data, we found that baseline characteristics such as duration of breastfeeding,
birth weight, maternal pre-pregnancy BMI, and number of years in the USA had no significant
impact on the relationships between DDT or DDE exposure and developmental pattern group;
therefore, we present the results from a model without any interaction terms.

Table 3. Sex-specific distributions (boys, girls) of childhood BMI at 2, 3.5, 5, 7, and 9 years of age at follow-up for growth pattern groups detected
by transformedmixture model, Center for the Health Assessment of Mothers and Children of Salina Study, 2000–2010.

Age at follow up (years)

BMI (kg/m2) 2 years No. (%) 3.5 years No. (%) 5 years No. (%) 7 years No. (%) 9 years No. (%)

Group 1 (n = 18, 16)

Mean (SD) 19 (2)1, 18 (2)2 22 (4), 21 (4) 23 (4), 23 (4) 26 (4), 25 (3) 28 (4), 28 (4)

Normal3 5 (27), 7 (44) 1 (5), 1 (6) 0 (0), 0 (0) 0 (0), 0 (0) 0 (0), 0 (0)

Overweight4 4 (22), 3 (19) 2 (11), 2 (13) 1 (6), 2 (13) 0 (0), 0 (0) 0 (0), 0 (0)

Obese5 9 (50), 6 (37) 14 (82), 12 (80) 17 (94), 14 (87) 18 (100), 15 (100) 13 (100), 16 (100)

Group 2 (n = 20, 26)

Mean (SD) 18 (2), 18 (3) 18 (2), 19 (3) 19 (2), 20 (3) 22 (2), 23 (3) 24 (2), 25 (3)

Normal 13 (65), 11 (46) 7 (37), 9 (34) 74 (21), 3 (12) 0 (0), 1 (4) 0 (0), 0 (0)

Overweight 1 (5), 5 (21) 2 (11), 3 (12) 4 (21), 7 (27) 4 (17), 3 (12) 1 (5), 1 (4)

Obese 6 (30), 8 (33) 10 (53), 14 (54) 11 (58), 16 (61) 19 (83), 22 (84) 19 (95), 24 (96)

Group 3 (n = 35, 37)

Mean (SD) 17 (2), 17 (2) 18 (3), 18 (2) 17 (2), 18 (2) 18 (3), 19 (2) 20 (2), 21 (2)

Normal 27 (77), 21 (60) 17 (50), 15 (42) 17 (49), 13 (35) 16 (47), 11 (30) 7 (20), 8 (22)

Overweight 4 (11), 9 (26) 9 (26), 10 (28) 8 (23), 15 (41) 11 (32), 17 (46) 17 (49), 16 (44)

Obese 4 (11), 5 (14) 8 (24), 11 (30) 10 (28), 9 (24) 7 (21), 9 (24) 11 (31), 12 (33)

Group 4 (n = 40, 57)

Mean (SD) 17 (1), 16 (1) 16 (1), 16 (1) 16 (1), 16 (1) 16 (1), 16 (1) 16 (1), 16 (1)

Normal 35 (92), 48 (89) 29 (74), 43 (75) 33 (83), 46 (84) 36 (90), 49 (88) 34 (97), 52 (98)

Overweight 1 (3), 4 (7) 8 (21), 10 (18) 5 (13), 7 (13) 4 (10), 6 (11) 1 (3), 1 (2)

Obese 2 (5), 2 (4) 2 (5), 4 (7) 2 (5), 2 (4) 0 (0), 1 (2) 0 (0), 0 (0)

1 Boys listed first
2 Girls listed second
3 < 85th percentile
4 85th–94.9th percentile
5 � 95th percentile

BMI, body mass index; SD, standard deviation

doi:10.1371/journal.pone.0131443.t003
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For boys, a ten-fold increase in maternal DDT and DDE concentrations was associated with
a higher probability being in groups 1–3 (increasing mean growth pattern) relative to group 4
(stable mean) (Fig 1). Particularly, the estimated relative risk ratios for a ten-fold increase in
serum concentration (ng/g of lipid) were greatest for group 2 (o,p’-DDT adj-RRR = 5.1 [95%
CI: 0.5, 55.2]; p,p’-DDT adj-RRR = 2.9 [95% CI: 0.7, 12.4]; p,p’-DDE adj-RRR = 2.7 [95% CI:
0.8, 9.7]) and for group 3 (o,p’-DDT adj-RRR = 3.1 [95% CI: 0.3, 34.7]; p,p’-DDT adj-
RRR = 2.1 [95% CI: 0.5, 8.8]; p,p’-DDE adj-RRR = 1.9 [95% CI: 0.6, 5.8]) with reference to
group 4. The boys with higher levels of maternal serum concentration of DDT and DDE had a
higher probability of having a stable BMI pattern in early childhood that starts to increase
around 4–5 and 6–7 years of age. However, none of the adjusted associations were statistically
significant (Table 4).

Similar to age-specific results reported previously at age 9 years [18], the impact of chemical
exposure on developmental pattern seemed to be sex-dependent. For the girls, a ten-fold
increase in prenatal DDT and DDE concentrations was generally associated with a lower prob-
ability of being in the increasing BMI growth patterns relative to the stable group 4, and some
of the associations were statistically significant after adjustment (Table 4). Group 1, the linearly
increasing pattern group, had the smallest estimated risk ratio relative to group 4, meaning that
higher maternal DDT and DDE concentrations were associated with a lower probability of
being in group 1 relative to the stable group 4. Group 3 also had a slightly lower risk relative to
the stable group 4, and group 2 was similar to the reference group in terms of DDT and DDE
concentrations.

In addition to maternal DDT concentrations, BMI growth pattern groups differed in terms
of maternal BMI, maternal duration of residence in the U.S., breast-feeding duration, and birth
weight. Children of obese mothers were most likely to be in group 1, followed by group 2, and
then group 3. Lower birth weights were associated with the flat growth pattern (group 4).
Shorter maternal duration of residence in the U.S. was associated with group 3 in boys and
group 3 and 4 in girls. For girls in particular, a shorter duration of breast-feeding was associated
with the linearly increasing pattern of group 1.

Table 4. Estimated relative risk ratios (95%CI) comparing each group to the referent Group 4 for ten-fold increase in maternal serum concentra-
tions (ng/g of lipid) of o,p’-DDT, p,p’-DDT and p,p’-DDE with and without adjusting for baseline risk factors.

Boys Girls

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3

o,p’-DDT

Unadjusted 2.4 (0.7, 8.5) 7.9 (1.7, 36.8)* 5.3 (1.2, 23.6)* 0.5 (0.1, 1.7) 0.9 (0.3, 2.7) 0.8 (0.4, 1.3)

Adjusted1 1.5 (0.2, 10.3) 5.1 (0.5, 55.2) 3.1 (0.3, 34.7) 0.1 (0.0, 0.7)* 0.9 (0.3, 2.9) 0.5 (0.2, 1.0)*

p,p’-DDT

Unadjusted 1.7 (0.6, 5.3) 3.9 (1.2, 12.4)* 3.1 (1.0, 10.0)* 0.5 (0.2, 1.3) 0.9 (0.4, 2.1) 0.8 (0.5, 1.4)

Adjusted 1.2 (0.3, 4.5) 2.9 (0.7, 12.4) 2.1 (0.5, 8.8) 0.2 (0.1, 1.0)* 1.0 (0.4, 2.9) 0.6 (0.3, 1.2)

p,p’-DDE

Unadjusted 1.2 (0.4, 3.8) 3.6 (1.1, 12.2)* 2.6 (0.8, 8.4) 0.3 (0.1, 1.4) 0.8 (0.2, 2.6) 0.8 (0.4, 1.8)

Adjusted 1.0 (0.3, 3.0) 2.7 (0.8, 9.7) 1.9 (0.6, 5.8) 0.2 (0.0, 2.6) 0.9 (0.2, 4.1) 0.7 (0.3, 1.8)

1 Adjusted for maternal pre-pregnancy BMI, number of years in the USA, duration of breastfeeding and birth weight.

* P-value < 0.05 based on two-sided test

BMI, body mass index; CI, confidence interval; DDE, dichlorodiphenyldichloroethylene; DDT, dichlorodiphenyltrichloroethane.

doi:10.1371/journal.pone.0131443.t004
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In a sensitivity analysis excluding children who were born with a low-birth weight, the
results were very similar. However, when excluding children who were born preterm, the evi-
dence from our observations was strengthened. The magnitude of the estimates was greater but
the significance levels were similar.

Discussion
A data-driven analysis of growth patterns of this birth cohort of Mexican-American mother
and child pairs provides evidence that in utero exposure to DDT and DDE may impact physi-
cal development and thus obesity risk later in life, especially in boys. The heterogeneity in
developmental patterns in the study population was approximated by four general mean pat-
terns for each sex: 1) linearly increasing, 2) stable and increasing at age 4 to 5, 3) stable and
increasing at age 6 to 7, and 4) flat and stable from age 2 until age 9. The trajectories start with
a similar growth pattern at an early age but quickly diverge, with differences becoming greater
with increased age.

Although the trajectories are data-driven rather than clinically chosen, they bear some simi-
larities to the clinical BMI percentiles for young children [41]. For both boys and girls, group 4,
which was slightly curved but largely flat overall, had a developmental pattern similar to those
tracking the 50th percentile in the clinical charts. Groups 3 and 2 had growth rates that exceed
that in the later years. The children in group 1 are likely to already be overweight or obese at
age 2, with their BMIs continuing to increase rapidly and linearly throughout childhood.

While the mean BMI growth patterns were similar for boys and girls, the associations of
these patterns with in utero DDT and DDE exposure were sex-specific. In particular, higher
maternal o,p’-DDT and p,p’-DDT serum concentrations during pregnancy were significantly
associated with a stable and then increasing growth pattern for boys (groups 2 and 3) and the
stable pattern for girls (group 4), before adjustment. However, the magnitude of association
was diluted in boys and strengthened in girls after adjusting for baseline covariates. Interest-
ingly, prenatal DDT and DDE were not strongly associated with the linearly increasing pattern
(group 1), suggesting that children in that developmental group were already on a steadily
increasing BMI trajectory early in life that was largely unaffected by prenatal exposure. Rather,
other genetic or behavioral factors, measured by maternal pre-pregnancy BMI and breast-feed-
ing duration could be the driving force behind the steep, linear developmental pattern.

The existence of a sex-dependent relationship is consistent with a previous analysis based
on BMI z-scores; the effect modification was not apparent at age 7 [20] but significant at age 9
[18]. This difference has been noted in 6.5–7 year olds in other studies [12, 21] that have
explored effect modification of DDT by sex. However, our risk ratios are similar between the
three variants of DDT and DDE within sex. This is in contrast to a previous study that sug-
gested that the impact of sex differs for DDT and DDE [12].

The estimated risk ratios also suggest that there is a complex relationship between in utero
DDT and DDE exposure and growth of BMI over time. High exposure was not associated with
the greatest growth rate (group 1) but rather with stable and then moderate rates of change
starting around ages 4–7, in boys. This nonlinear relationship is reminiscent of the non mono-
tonic increase in overweight risk with highest BMI levels observed at the middle exposure levels
reported by Valvi et al [12]. While we cannot directly compare results, the association we
observed between exposure and the growth pattern could potentially help explain the fact that
the highest exposure levels were not associated with the highest overweight risk.

A major strength of this study is fully utilizing the longitudinal nature of the BMI data and
modeling the heterogeneity in developmental patterns in a data-driven manner using a finite
mixture model with a data transformation. Using groups to model the variability in growth
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over time provides the flexibility to have non-linear relationships with baseline risk factors
such as in utero exposures to o,p’-DDT, o,p’-DDT and o,p’-DDE. Previous analyses of these
data and other longitudinal developmental studies have focused on the associations with the
BMI level while accounting for the repeated measures while this study focused on identifying
distinct developmental patterns over time and their relationships with exposure and other risk
factors as growth patterns drive long-term levels and obesity risks [18, 20].

Other strengths of this study include the study population from the CHAMACOS study as
it is relatively homogenous in terms of diet, breastfeeding, country of origin, and socioeco-
nomic status, which can mitigate some possible sources of confounding. Otherwise, we
adjusted for many measured confounders. However, there could be other baseline factors that
could confound the relationship between DDT or DDE exposure and BMI development so we
are careful to only interpret our results in terms of associations and not causal relationships. It
should be noted that DDT and DDE concentrations measured in maternal serum likely reflect
exposure many years earlier in Mexico, where DDT was used until the year 2000. Thus, the
children in this study were only exposed to DDT and DDE from their mothers when they were
in utero and in infancy via breastfeeding but not during childhood. However, the children con-
tinue to have measurable, albeit decreasing DDT and DDE concentrations in their blood.
Thus, it is possible that changes in BMI trajectories are due to childhood DDT or DDE expo-
sure rather than in utero exposure.

To the best of our knowledge, this is the first study to explicitly focus on the relationship
between in utero exposures and growth patterns, rather than the BMI level. While we believe
that BMI levels have clinical significance, the growth is a characteristic that should be explored
on its own to complement studies on BMI level.

In summary, this novel analysis suggests that in utero DDT and DDE exposures may be
associated with BMI increases between ages 4 and 7 among boys with previously stable BMI
trajectories. Interestingly, high exposures to DDT and DDE were less associated with being in a
trajectory of linearly increasing BMI beginning at age 2 or earlier, suggesting that the pattern of
rapid, linear BMI gain is determined by genetic or family lifestyle factors rather than DDT or
DDE exposure. We found that these endocrine disruptors exposures were associated with early
childhood physical development in a non-linear manner and that sex may impact the relation-
ship. We encourage investigators to examine growth patterns of BMI over time, in addition to
BMI at specific time points to get a fuller sense of the biological mechanisms. Further longitu-
dinal research in other populations is needed to confirm the patterns observed here.
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