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ABSTRACT OF THE THESIS

Trajectory Planning Optimization for maximizing the probability of
locating a target inside a bound domain

by

Abhishek Subramanian

Masters of Science in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2017

Professor Thomas Bewley, Chair

This work presents a new trajectory planning formulation that aims to

maximize the probability of finding a target inside a bound domain using a robot

over a specified time interval. A preliminary algorithm is developed to detect

stationary targets, which is further extended to detect moving targets. Values

are assigned at every grid point in the domain based on its distance from the

robot; each value represents the probability of not finding the target if it is at

that location. A cost function is formulated that computes the likelihood of not

finding the target for any given path provided the target is inside the domain. This

cost function is minimized with a set of bound constraints on inputs to obtain an

optimal path to find the target. The algorithm incorporates an adjoint-based

gradient method to link the input parameters to the cost function. The cost

vii



function is nonlinear which makes it hard for most commercial off-the-shelf (COTS)

optimization packages to solve it. For faster convergence the recently developed

low storage reduced Hessian box constraint optimization method (LRH-B) was

used. Results show our algorithm outperforms other optimization algorithms, and

also explain how this framework is beneficial in terms of application.
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Chapter 1

Introduction

1.1 Fixed Target

Robot motion planning plays an integral role in the development of Au-

tonomous Vehicles (AVs). Technological advancement and better computational

power allow researchers to come up with complex algorithms for trajectory plan-

ning to improve the performance of AVs. Coverage path planning is a part of robot

motion planning that primarily develops algorithms to maximize coverage of the

domain of interest. Applications range from lawn mowers [14] and window cleaners

to UAVs involved in search and rescue missions[11]. For the purpose of explaining

this work, we divide all path planning algorithms into two categories. Algorithms

that are developed for scenarios where complete coverage of the domain is required

(lawnmowers, spray painting and window cleaners) are classified into the first cat-

egory. The second category includes algorithms developed specifically to locate a

target whose location is unknown, for example, path planning for Mars rover to

find water sources on Mars. Our work falls into the second category. [6] did a

comprehensive survey on coverage for robotics that details major types of algo-

rithms that were developed before 2001. Most of these algorithms were developed

to guarantee complete coverage of the domain. Relevant applications include the

lawnmower, floor cleaning, spray painting and robotic demining. A more recent

survey was done by Galceran [9]. Galceran reviewed the most successful cover-

age planning algorithms and classified them into different sections based on how

1
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they were developed. The survey discusses different types of cellular decomposi-

tion methods, grid-based method, and graph-based methods. The survey also talks

about coverage algorithms for 3D environments and methods developed to perform

optimal coverage. A survey summary table giving concise information on each of

the algorithms is also provided. Most approaches do not consider the dynamics of

the vehicle or robot involved as a result; the trajectories mostly comprise of line

segments or curves based on the domain description [5]. Some researchers have

used probabilistic approaches to determine the location of the target [7], the search

path is generated using derivative free methods. In [21], a generalized probabilistic

search framework is proposed to estimate the location of the target. A search strat-

egy is developed by testing the sensing capabilities of UAVs at different heights

and assuming complete coverage of multiple cells or partial coverage of multiple

cells. Although a lot of work has been done to decompose a search environment for

robot motion planning and to estimate the location of a target, most algorithms

assume motion of the robot or autonomous vehicles to be from one cell to another.

It is important to take the dynamics of a vehicle into consideration to calculate the

actual path the robot or the autonomous vehicle would take [in lit review folder]

[13] developed an incremental sampling based RIG (Rapid Information Gain) al-

gorithm which was developed using ideas from iRRt, RRT* and RRBT [18]. The

algorithm explores the entire domain and chooses the path for which information

gain will be is maximum. The algorithm is developed to accommodate constraints

on the vehicle and tries to find the best path by maintaining budget constraints.

However, explicit formulation for computing information is not provided, our work

proposes a novel formulation to compute information gain over the entire domain

is gained which in turn is used to develop a trajectory to maximize it. (What

drawback does this have? How is our algorithm better?) [12] developed an algo-

rithm to optimally cover an area using a UAV by considering its dynamics. They

consider turn rate of the UAV to be the only control variable. They developed

a cost function that computes the percentage of area that has not been covered

and direct the UAV to minimize this cost function. Two constraints are taken into

account, one is the total energy that the UAV could expend and the second con-
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straint is the final location of the UAV. They ensure that the UAV always arrive

at the fixed final location. Their search algorithm directs the UAV towards the

area that is uncovered, provided there is enough energy for the UAV to go to the

final location. It is a heuristic approach. Optimization of the cost function with

respect to constraints is performed using a derivative-free method, using a solver

in MATLAB. Although it is robust, it does not provide a cost function that can

be differentiated with respect to the control variables. Additionally, this method

cannot be applied to robots/vehicles that move at the ground level as there maybe

obstacles that must be considered. There is a lot of room for improvement of

the optimization algorithm as superior methods available today. Moreover, their

problem formulation might not be able to take advantage of apriori information of

the domain that might be available, which is the case in many applications. First

part of this thesis aims to determine an optimum path in order to maximize the

probability of finding a target using Model Predictive Control (MPC). We define

a cost function which computes the probability of not finding the target for any

given path. The algorithm optimizes over the sequence of control inputs given

to the vehicle, which in turn generates the path. It must be noted that the cost

function is an explicit function of the path whereas the optimization is performed

over the sequence of control inputs. We have formulated the cost function to make

it versatile in its application. The algorithm we propose enables us to compute the

exact gradient which is important for optimization performance (derivative based

optimization performs better than derivative free optimization). It can be easily

modified to suit different scenarios.

1.2 Moving target

[16, 15] developed algorithms for detecting moving targets. [16] presented

results for an algorithms based on A* which can be performed on-line. They

used Markov process to describe the target’s motion. [15] furthered their previous

work by utilizing group testing theory approach and proved that the algorithm

terminates after finding the target. As is the case in most studies done on path
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planning algorithms, the dynamics of the vehicle has not been considered. In

the present work we have modified the algorithm developed to locate stationary

targets to also be able to locate moving targets. This was done using probability

distribution to represent the likelihood of the targets location, the probability

distribution evolves over time based on the description of the target’s motion.

This evolution of the probability distribution is governed by the Fokker-Planck

[20] equation. The algorithm to detect moving target also is optimized over the

control variables. Interested readers are further referred to [4].



Chapter 2

Equations of motion

The vehicle is modeled as a nonholonomic system, which is a point mass

moving on a 2-dimensional plane. Equations describing the dynamics is shown

below, 
q̇x

q̇y

θ̇

 =


u1 cos θ

u1 sin θ

u2

 (2.1)

This model was taken from [17]. The control variables u1 and u2 denote the

velocity of the robot and the turn rate of the robot respectively, it is represented

as a vector, u. Variables qx(t) and qy(t) represent the co-ordinates of the robot’s

position at time t. θ represents the angle made by the robot with respect to the

horizontal. Henceforth, Nsys(q,u) will be used to represent the vehicular system,

where q represents the states and u represents the control variables. 2.1 is marched

forward in time using RK-4 scheme with a time step size h. The robot takes a

total of N = T/h steps. This equations of motion is simple and was chosen as

a test case. It will be straight forward to implement the equations of another

system however complicated it may be. The vehicle or robot’s system of equations

is decoupled from the path planning algorithm. The key point here is to show

that the algorithm can be used for any vehicle with minor adjustments to the

optimization algorithm which are straightforward to implement.

Chapters 3, 4 and 5 are about the algorithm developed to locate a stationary

target in a bound domain. The later chapters detail the algorithm developed to

5
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locate a moving target in a bound domain.

Figure 2.1: Test case robot with its control variables



Chapter 3

Mathematical Model for locating

stationary target

The aim is to determine an optimal sequence of control inputs to the robot

in order to minimize an objective function. This objective function computes the

probability of not locating the target (location unknown) for a given sequence on

control inputs.

3.1 Objective function

Consider a square domain given by Ω ∈ R2. Assume that the domain is

discretized into M − by −M grid points along vertical and horizontal direction

(variables x and y are used to denote the location of grid points). The grid size

can be chosen by the user, a smaller grid size yields better results but at a higher

computational cost. The cost function, J(q(u)) is computed using the robot’s

path, i.e. a set of qx(t) and qy(t) values (coordinates of the robot’s path) obtained

from 2.1, for a sequence of inputs. It computes the probability of not locating the

object for a set of observations made by the robot. Observations are taken at each

time step, and the total number of observations is denoted by N = T/h. The cost

function monotonically decreases with increase in number of observations made

by the robot. φk(x, y) represents the probability of not finding the target at time

step k if it is present at (x, y). The optimization algorithm (explained in a later

7
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section) aims to reduce φ over all the grid points. For k = 1 to k = N − 1, φ at

each grid point gets updated as follows,

φk+1(x, y) = φk(x, y)× (1− P e−β(x−qx(k+1))2+(y−qy(k+1))2) (3.1)

φ0 is the initial probability distribution over the entire domain. It must be specified

by the user, and can represent information that might be available beforehand. φ ∈
[0,1]. A numerical value of 1 for φ0(x1, y1) indicates that at time step t = 0, if the

target is present at (x1, y1), the probability of robot not locating it is 1. In other

words, the robot does not have any information about the target’s presence at the

location (x1, y1) yet and thus will not be able to find it even if it is present there.

If the user has no prior information about the target’s location then,

φ0(x, y) = 1 ∀x, y ∈ Ω (3.2)

P and β are constants specified by the user based on sensor capabilities of the

robot. Note that although x and y assume discrete values qx and qy are not

restricted to take discrete values, they can take values over a continuous range.

qx(1) and qy(1) is also be specified by the user, this denotes the starting point for

the robot’s search in the 2-dimensional plane. With φ0 initialized, φN is computed

using 3.1 based on robot’s trajectory. Finally, the cost function is computed as

follows,

J(q(u)) = (
∑

Mmin<x<Mmax
Mmin<y<Mmax

φN(x, y)pnorm)1/pnorm (3.3)

Note that the φ field does not represent a probability density function. The

value of φ at each location simply denotes the probability of not locating the target

at that location if it is present there. The cost function ensures that φ values are

monotonically decreasing, or in other words, information gained in never lost.



Chapter 4

Optimization for stationary target

problem

The optimization algorithm minimizes the cost function with respect to

u ⊆ Rn,

min
u

J(q(u)) subject to ulower ≤ u ≤ uupper (4.1)

where J(X(u)) : Rn → R.

Since the dynamic system of the robot, Nsys(q,u) is differentiable, as would

be the case in most vehicles, we can use gradient based approaches to minimize

the cost function. It is well known that gradient based approaches perform far

better than gradient free methods. The ability to compute the gradient allows us

to use quasi-Newton methods to optimize the objective function. Quasi-Newton

methods implement an iterative approach. At each iteration it creates a quadratic

model Q(u) for the objective function and finds a search direction to minimize the

objective function.

Q(q(uk)) = J(q(uk)) +∇J(q(u))T (u− uk) +
1

2
(u− uk)

T ∇2J(q(u))(u− uk)

(4.2)

The method we have adopted, L-RH-B (Low cost Reduced Hessian for Box con-

straints) is a combination of quasi-Newton method and projected search method.

9
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4.1 Adjoint based gradient method for station-

ary target

Since the objective function is not explicitly related to the control variables,

we use the adjoint method for computing the gradient. This is done by constraining

the objective function, with the constraint Nsys(q,u) = 0. We can develop the

algorithm by defining a Lagragian, L [2].

L(q,u, λ) = J(q(u)) + λTNsys(q,u) (4.3)

Note that Nsys(q,u) is 0 always, based on construction. Hence J(q(u)) =

L(q,u, λ). The nonlinear system of equations Nsys(q,u) is given by 2.1 and is

marched using RK4.

The required gradient can be formulated as follows

dL

du
=
∂J

∂q

dq

du
+ λT

[
∂Nsys

∂q

dq

du
+
dNsys

du

]
(4.4)

dL

du
=
dq

du

[
∂J

∂q
+ λT

dNsys

dq

]
+ λT

dNsys

du
(4.5)

In order to get circumvent the computation of dq
du

we choose the adjoint

equation to be
dNsys

dq
λT = −∂J

∂q

ATλ = −∂J
∂q

T (4.6)

4.6 is called the adjoint equation. Where B = ∂Nsys

∂u

∣∣∣∣
u=u(t)

.

With the knowledge of q from input control sequence from t=0 to t=T we

can find λ by marching equation 4.6 backward in time. λ(T ) is assigned as 0. The

values of λ allows us to compute the gradient as follows,

dJ

du
= λTB (4.7)
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4.2 L-RH-B Hessian Update

As mentioned earlier, 4.1 was solved using L-RH-B algorithms, it was de-

veloped by Ferry and Gill [8] (readers are requested to read this for a thorough

understanding of the optimization algorithm) to optimize functions subject to box

constraints. It was designed for problems that require many iterations to iden-

tify the bounds that are satisfied at a solution. The technique was implemented

by combining the advantages of projected search methods and limited memory

quasi-Newton methods. The algorithm employs an advanced line-search tech-

nique, known as a quasi-Wolfe line search, that combines the Wolfe condition

and the Armijo condition. The quasi-Wolfe condition allows the user to specify

the accuracy of the line search. The Hessian updates are done using the reduced

Hessian method, which was developed by Gill and Leonard [10] to utilize subspace

information while minimizing storage requirements. The technique also helps in

improving the condition number of the approximate Hessian. The use of a quasi-

Wolfe Line search and reduced Hessian method for box constraints has been shown

to outperform competing methods on problems with box constraints in terms of

function evaluations, the results of which are shown in a later section.

4.3 Constraints

We imposed box constraints on both inputs u1 and u2, i.e., the velocity and

turn rate of the vehicle can only vary between a maximum and minimum value.

The results shown in this work were obtained for a lower bound greater than 0

for u1 (velocity of the vehicle), this was chosen in order to mimic the motion of

an aircraft. Input u2 (turn rate) was constrained with a maximum value of θ and

minimum value of −θ. The vehicle was constrained such that its turn rate cannot

exceed a certain angle per unit of time. To test the constraints, MATLAB’s solver

fmincon was used as a means of verification.



Chapter 5

Results for stationary target

location

All the results shown are obtained using dimensionless values. The domain

extends from 1-to-4 in both the vertical and horizontal direction. Grid sizes vary

from 0.25 to 1. Also, in all the results presented here, the robot starts from

the position (1,1). Smaller grid size would result in more optimal trajectories

with higher computation costs. P and β (from equation 3.1) were set to 1 and

0.5 respectively. These values are indicative of the observation capability of the

robot. Note that star indicates the way points of the vehicle. The dashed lines

indicate a trajectory plan, the actual trajectory may vary due to inaccuracies in

numerical solutions. Figure 5.5 alone shows the motion of the robot and actual

information gain. Note that the algorithm stops once the norm of gradient falls

below a predefined tolerance value. Figure 5.1 compares the performance of our

algorithm and MATLAB’s solver fmincon [19] in terms of number of function

evaluations. It is seen that we outperform fmincon by a factor of 10. Figure

5.2 is a solution obtained for the unconstrained problem. This trajectory could

be an example for what one would come up with using simply intuition. This

result reinforces the algorithm’s capability in providing optimal trajectories using

mathematical formulation. It should be noted that different trajectories can be

obtained from this algorithm for the same set of parameters as the problem is

non-convex.

12
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Figure 5.1: Performance comparison of LRH-B and MATLAB’s solver for two
cases. Number of function with LRH-B is much lower.

Figure 5.2: Path for unconstrained problem

Figure 5.3 represents the probability of not locating the object over the

entire domain for this trajectory plan. For example, if the target is located at

(4,2.5) then the probability of not locating the target is 0.1481 if this trajectory
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Figure 5.3: Probability distribution after robot completes trajectory. Numbers
indicate the sequence of steps taken.

is executed. The algorithm aims to make the surface flat at 0 which would result

in probability values of not locating the target to be 0 everywhere, however, this

may not be possible due to the constraints in place. Since we assign the initial

values over the entire domain, we can utilize this ability to take advantage of any

information that might be available before hand.

For example in 5.4 we have shown the trajectory obtained in a scenario

where we have complete information over the area extending from 2.75-to-4 in

both vertical and horizontal directions. The resulting trajectory focuses only on

areas where information is not available. At the end of the trajectory we see

that probability values over areas where information is known is 0 (as was in

the beginning), and it has been optimally reduced in areas where the robot must

search.

Another example of trajectory plan in a 2-D format is shown in a scenario

where information is available before hand.

Figure 5.5 illustrates how information is gained when the robot goes over the

path obtained from the algorithm. In this set of pictures, we show what happens

as the robot moves. Intensity of whiteness indicates how much information is
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Figure 5.4: Trajectory generated when some initial information is known

Figure 5.5: Red circle indicates the robot. With each step the robot takes, the
cost function reduces i.e. more information is obtained.
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Figure 5.6: a) Trajectory for 20 steps. b) Result for 40 steps using the input
obtained from 20 steps.

available. A complete white region indicates that the robot has full information

whereas black color indicates that no information is available. It is seen that the

trajectory developed drives the robot in a manner that increases information gain

over the entire domain.

Figure 5.6 shows results obtained for a domain ranging from 1-to-4 in both

vertical and horizontal directions. The grid size is chosen to be 0.5 and we get a

total of 49 grid points. The numerical value of cost function is initially 49 (following

equations 3.1, 3.2 and 3.3). The algorithm was employed for two scenarios. In the

first scenario, the robot is allowed to take 20 steps and in the second scenario, the

robot is allowed to take 40 steps. In the first scenario, we initialize control inputs

using random values. The cost function obtained converges to 4.122 (reduced from

49). It is obvious that the computation required to optimize a trajectory for 20

steps is much lower than the 40 step scenario.

We can use the information we have obtained to fast track the 40 step

version. We interpolate the results obtained in the first scenario and use it as

the initial input for the second scenario. As expected, the resulting trajectory

is similar to the one obtained in the first scenario. The numerical value of cost

function converged to 0.5686 in the second scenario.

This exercise shows that we can obtain a good guess for initial inputs in

cases where heavy computation is required by solving the trajectory optimization
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Table 5.1: My caption

Number of function
evaluations

Steady state value
of objective fnc

Test cases 1 2 3 1 2 3
fmincon 3000 3000 3000 11.7 5.253 4.02
lrhb 304 457 109 11.72 5.09 3.99

problem for smaller number of steps.

Early detection

1 1.5 2 2.5 3 3.5 4

1

1.5

2

2.5

3

3.5

4
result from lrhb higher weight for first 30 of 60 steps

Figure 5.7: Trajectory plan when target location at an earlier time is preferred

A modification to (3.1) will enable to user to develop trajectories to locate

the target at an earlier time, i.e. early detection is prioritized. This results in a

trajectory plan that will direct the robot to observe as large a portion of the domain

as possible in short amount of time and make finer observations for remaining time.

It can be achieved by appropriately weighting the effects of robot’s obser-

vation on the cost function. Choose a time denoted by tearly (less than the total

time) before which detection is preferred, then for t > tearly

φk+1(x, y) = φk(x, y)× (1− Ce−α(x−qx(k+1))2+(y−qy(k+1))2)p (5.1)
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p is a variable that is used to diminish the importance of observations made after

time tearly. It should have a value less than 1. Note that the gradient should be

modified accordingly to implement this formulation. It is also possible to use mul-

tiple such variables for different time periods in order to support early detection.

The trajectory plan in figure 5.7 was obtained for a robot which was allowed

to use 60 time steps. tearly was set to 30 and p was set to 0.25. It can be seen that

in the first half of the trajectory the robot will try to look at a larger portion of

the domain compared to the second half enabling early detection. It is also seen

that the steps after the 30th time step are smaller as the observations made in each

of these has lesser impact on reducing the cost function.

Algorithm 1 The algorithm was developed to be suitable for solving problems
with hard box constraints on the control variables. The structure of the algorithm
makes it easily applicable in different scenarios. The criterion for convergence can
be decided by the user. We set a tunable threshold for the gradient, to determine
when the algorithm must terminate.

1. Initialize φ0 over the entire domain based on any prior knowledge available
and guess the initial sequence of control inputs, u

2. Generate the robot’s trajectory, qx and qy by marching 2.1 using the most
recent control inputs

3. Compute φ1 to φN as shown in 3.1, where N is the number of steps the robot
takes, and compute the cost function J(X(u)) as specified in 3.3

4. Obtain the gradient of the cost function using adjoint based methods as
shown in 4.1

5. Apply L-RH-B algorithm to find the optimized sequence of control inputs

6. Repeat steps 2 to 5 until convergence is achieved



Chapter 6

Mathematical Model to locate

moving target

The following formulation is a direct extension of 3.1. It addresses the issue

of moving target location in a bound domain. This formulation cannot be done

off-line and is much more computationally intensive compared to its stationary

target location counterpart.

6.1 Objective Function

Same variables are used but the reader must realize it a different problem. φ

is now a field that exists over the entire domain. We adopt the Kalman Filter type

of formulation to express the formulation where (3.1) represents the measurement

update and the φ field is propagated using Fokker-Planck. The main difference

from the formulation described for fixed target is that we now work with a proba-

bility density function. The initial probability distribution, Φ(x, y, t0) = Φ0(x, y),

is given, and we initialize k = 0. The values are normalized before optimization.

For an N − by −N domain,

φ =
Φ

N2
and

∫
Ω

φN = 1 (6.1)
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Ω denotes the physical domain. The evolution of φ in the domain of interest Ω

between times tk and t−k+1 (that is, between measurements) is given by

∂φ

∂t
= α

(∂2φ

∂x2
+
∂2φ

∂y2

)
in Ω with homogeneous Neumann B.C.s. (6.2)

The update step at time tk for k = 1, 2, . . . , N , when a measurement is taken from

the sensor vehicle at the location (qx(tk), qy(tk)), is given by:

φ(x, y, tk) =
(
1− Pe−β((x−qx(tk))2+(y−qy(tk))2)

)
φ(x, y, t−k ). (6.3)

The propagation steps (6.2) and update steps (6.3) alternate. We will often use

the notation φ(t), with the (x, y) dependence suppressed for brevity. Following

(6.3) we calculate the cost function as follows:

J =

∫
Ω

φ(tN)pnorm (6.4)

All results presented in this work has pnorm set to 2 for both stationary

target and moving target. Our method does not restrict the robot’s motion from

one cell to another although the cost function is loosely based on cellular decom-

position.

It should be noted that the objective function is decoupled from the vehicle’s

dynamics making it versatile in its application. It also gives the user the advantage

of specifying apriori information about the domain. This property can be used to

develop a path that makes the robot focus only on parts of the domain where

information is not available.



Chapter 7

Optimization for moving target

problem

7.1 Adjoint based gradient method for moving

target

Adjoint based gradient for moving target has been developed using a dif-

ferent approach for better understanding. Readers are requested to refer [1] and

appendix in [3] for further reading. The following explanation is extended from

the computation of φ shown in section 6.1. The cost function is now defined as

J(u) =

∫
Ω

φ(tN) dΩ where φ = φ(q) and q = q(u). (7.1)

We aim to determine DJ/Du, which represents the sensitivity of the cost function

J to a perturbation u′k to the N vehicle inputs uk such that

J(u + u′) = J(u) + J ′ where J ′ =
N−1∑
k=0

( DJ
Duk

)H
u′k. (7.2)
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Now define the state vector x, the perturbation vector x′, and the adjoint vector

r such that

x =

(
φ

q

)
, x′ =

(
φ′

q′

)
, r =

(
rφ

rq

)
. (7.3)

We identify the linear operator L for the state perturbation x′ as

Lx′ =

(
0

Bu′

)
, L = [Lφ Lq] ⇔

Lφ φ′ = 0

Lq q
′ = Bu′

(7.4)

Lφ =
∂

∂t
− α

( ∂2

∂x2
+

∂2

∂y2

)
, Lq =

d

dt
− A. (7.5)

We will ultimately march both rφ and rq backwards in time from tN to t0, with

discrete updates on rφ at each measurement time tk for k = 1, . . . , N .

Define the duality pairing 〈r,x′〉k over the interval (tk, t
−
k+1) such that

〈r,x′〉k = 〈rφ, φ′〉k,A + 〈rq,q′〉k,B =

∫
Ω

∫ t−k+1

tk

rφ φ
′ dt dΩ +

∫ t−k+1

tk

rHq q′ dt.

This duality pairing may be used to define the adjoint operator L∗ via the k’th

adjoint identity

〈r,Lx′〉k = 〈L∗r,x′〉k + bk, (7.6)

where

〈r,Lx′〉k = 〈rφ,Lφφ′〉k,A + 〈rq,Lqq
′〉k,B, (7.7a)

〈L∗r,x′〉k = 〈L∗φrφ, φ′〉k,A + 〈L∗qrq,q′〉k,B. (7.7b)

We derive the adjoint operator L∗ and the bilinear concomitant bk by performing

integration by parts in the adjoint identity (7.6), leading to:

L∗ = [L∗φ L∗q], L∗φ = − ∂

∂t
− α

( ∂2

∂x2
+

∂2

∂y2

)
, L∗q = − d

dt
− AH , (7.8)

bk =

∫
Ω

rφφ
′ dΩ

∣∣∣t−k+1

tk
− α

∫ t−k+1

tk

∫
Γ

(∂φ′
∂n

rφ − φ′
∂rφ
∂n

)
dt dΓ + rHq q

′
∣∣∣t−k+1

tk
.
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We now define a convenient adjoint field r over the interval (tk, t
−
k+1) as:

L∗ r = 0 ⇔
L∗φ rφ = 0

L∗q rq = 0
(7.9)

with homogeneous Neumann boundary conditions on rφ (i.e., ∂rφ/∂n = 0 on Γ),

and initial conditions on rφ and rq at each terminal time t−k+1 obtained via a

backward march as elucidated further below. Applying the perturbation equation

(7.4) and the adjoint equation (7.9), and their boundary and initial conditions, to

the adjoint identity (7.6) and simplifying gives

[ ∫ t−k+1

tk

BHrq dt
]H

u′k =

∫
Ω

rφφ
′ dΩ

∣∣∣t−k+1

tk
+ rHq q

′
∣∣∣t−k+1

tk
; (7.10)

that is, identifying gk =
∫ t−k+1

tk
BHrq dt, we have

gHk u
′
k+

∫
Ω

rφ(tk)φ
′(tk) dΩ + rHq (tk)q

′(tk) =∫
Ω

rφ(t−k+1)φ′(t−k+1) dΩ + rHq (t−k+1)q′(t−k+1)

(7.11)

This relation, for k = N − 1, . . . , 0, will be valuable in rewriting J ′ in the desired

form shown in (7.2). Noting (7.1) and (7.2), we may now write

J ′ =

∫
Ω

φ′(tN) dΩ where φ′ = φ′(q′) and q′ = q′(u′). (7.12)

Recalling (6.3),

φ(tk) = (1− Pe−β((x−qx(tk))2+(y−qy(tk))2))φ(t−k ),
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taking its perturbation, evaluating for k = N , and inserting into (7.12) gives

J ′ =

∫
Ω

(AN +BN) dΩ (7.13)

AN = [(1− Pe−β((x−qx(t−N ))2+(y−qy(t−N ))2))]φ′(t−N),

BN = 2P [(x− qx)q′x + (y − qy)q′y][−βe−β((x−qx)2+(y−qy)2)]φ(t−N)

We now define

rφ(t−N) = (1− Pe−β((x−qx(t−N ))2+(y−qy(t−N ))2))

and (φ(t−N) was missing in the following equation)

rq(t
−
N) = −Pβe−β((x−qx(t−N ))2+(y−qy(t−N ))2)φ(t−N)


2[x− qx(t−N)]

2[y − qy(t−N)]

0


With these definitions, we may rewrite J ′ in (7.13) as

J ′ =

∫
Ω

rφ(t−N)φ′(t−N) dΩ + rq(t
−
N)Hq′(t−N)

Leveraging (7.11) for k = N − 1, this expresion may then be rewritten

J ′ = gHN−1u
′
N−1 +

∫
Ω

rφ(tN−1)φ′(tN−1) dΩ + rHq (tN−1)q′(tN−1). (7.14)

where gN−1 =
∫ t−N
tN−1

BHrq dt. Leveraging the adjoint field r, we have thus in the

above two-part derivation [see (7.13) and (7.14)] marched the expression for J ′

backward from tN to tN−1, and the first term of the desired gradient in (7.2) has

been revealed. This process is then repeated N−1 more times in a similar fashion,

and all N terms of the desired gradient are determined.
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7.2 Hessian update and constraints

Hessian updates and constraints elucidated in 4.2 and 4.3 apply to the

moving target detection as well.



Chapter 8

Results for moving target

detection

All techniques used in stationary target location can be implemented here,

such as modification of cost function to enable early detection and implementing

the algorithm at a lower dimension to obtain a good guess for initialization at a

higher dimension. Results in section 5 have shown that the optimization algorithm

is superior to other. The solution for stationary target detection closely resembles

surveying, whereas the moving target detection problem is much more complicated.

We tested the algorithm for similar parameters as used in section 5. The extra

parameter we have used here is β (diffusion term in Fokker-Planck equation) which

was set to 0.1. The drift term in Fokker-Planck was set to 0. It was seen that to get

satisfactory results we required about 10 times the number of function evaluations

that the stationary target algorithm took. In this section we have shown two

pictures to explain the results we have obtained in a simplified manner.

Figure 8.1 depicts how homogenous Neumann boundary conditions are im-

posed. Other boundary conditions can be adopted depending on the implemen-

tation. For instance, if information at a particular boundary point is available at

all time, the user can implement Dirichlet boundary condition at that location.

However, the formulation developed here is only suitable for moving target in a

fixed domain.

Figure 8.2 depicts how information is gained when the robot actually tra-
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Figure 8.1: Probability distribution to show boundary conditions

verses the path that was planned. It is seen that the robot is required to re-visit

certain areas as the information that was initially gained has been lost. It can be

seen that the lower left corner which is initially white in (a) becomes darker in (b),

signifying the loss of previously gained information. A similar phenomenon hap-

pens from (c) to (d) as well. It is easy to perceive that the algorithm would never

reach a minima as the Fokker-Planck equation ensures loss of information due to

lack of constant observations. The implementation is done in receding horizon type

approach.
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(a) (b)

(c) (d)

Figure 8.2: Red circle indicates the robot. With each step the robot takes, the
cost function reduces i.e. more information is obtained.
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Algorithm 2 The algorithm is an extension of 1. The structure of the algorithm
makes it easily applicable in different scenarios. The criterion for convergence can
be decided by the user. We set a tunable threshold for the gradient, to determine
when the algorithm must terminate.

1. Initialize φ0 over the entire domain based on any prior knowledge available
and guess the initial sequence of control inputs, u

2. Normalize φ0 over the domain to represent a probability distribution

3. Generate the robot’s trajectory, qx and qy by marching 2.1 using the most
recent control inputs

4. Compute φ1 to φN as shown in 3.1, where N is the number of steps the robot
takes, and compute the cost function J as specified in 7.1

5. Obtain the gradient of the cost function using adjoint based methods as
shown in 7.1

6. Apply L-RH-B algorithm to find the optimized sequence of control inputs

7. Apply a portion of the control inputs and compute φ

8. Assign φ0 to φ

9. Repeat steps 2 to 8 until target is located



Chapter 9

Conclusions and Future Work

A path planning algorithm for target detection has been developed which

takes the vehicle’s dynamics into account. The sequence of control inputs given to

the vehicle is optimized to increase chance of detection within a stipulated time.

The framework has been developed such that the algorithm can easily be modified

to suit a range of vehicle’s dynamics. The cost function developed provides the

user the capability of utilizing information available beforehand to focus on par-

ticular areas inside the domain. We have shown that our optimization algorithm

outperforms other commercially available ones by a factor of 10 in terms of func-

tion evaluations. The algorithm to detect fixed targets can be performed offline if

receding horizon approach is not implemented. The algorithm has been extended

to plan paths to detect moving targets. Probability distribution is used to repre-

sent the chance of locating the target in the domain, in between observation the

distribution evolves based on Fokker-Planck equations. The diffusion term is the

parameter that determines the motion of the target. This formulation is imple-

mented in the receding horizon approach and cannot be applied offline. These

algorithms have been optimized for box constraints and have not been solved for

state constraints (in case obstacles are present). The next step is to solve for state

constraints to perform path planning in cases where obstacles are present. The al-

gorithm also needs to include estimation algorithm to plan for sensor inaccuracies.

The ultimate plan is to implement algorithms in autonomous vehicles to perform

field tests. Another barrier we will face in implementation is failure to attain global
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minima. A lot of work has been done in the area of global optimization. These

schemes work for variables in the range of 10-15 for extremely complex problems,

however we can implement global optimization schemes by adapting the approach

discussed in the explanation of figure 5.6, i.e. solve for a solution at a lower di-

mension and use the results to initialize inputs at a higher dimension. There is

vast scope to extend this work.

Chapter 1, 2, 3, 4, 5, 6, 7, 8 and 9 is a reformatted reprint of the material

that is in preparation for submission in American Control Conference 2018, Ab-

hishek Subramanian; S. R. Alimo; Philip Gill; T. R. Bewley. The thesis author

was the primary investigator and author of this material.
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