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Abstract
Plant roots navigate the soil ecosystem with each cell type uniquely responding to environmental stimuli. Below ground, the plant’s 
response to its surroundings is orchestrated at the cellular level, including morphological and molecular adaptations that shape root 
system architecture as well as tissue and organ functionality. Our understanding of the transcriptional responses at cell type 
resolution has been profoundly enhanced by studies of the model plant Arabidopsis thaliana. However, both a comprehensive view of 
the transcriptional basis of these cellular responses to single and combinatorial environmental cues in diverse plant species remains 
elusive. In this review, we highlight the ability of root cell types to undergo specific anatomical or morphological changes in response 
to abiotic and biotic stresses or cues and how they collectively contribute to the plant’s overall physiology. We further explore 
interconnections between stress and the temporal nature of developmental pathways and discuss examples of how this 
transcriptional reprogramming influences cell type identity and function. Finally, we highlight the power of single-cell and spatial 
transcriptomic approaches to refine our understanding of how environmental factors fine tune root spatiotemporal development. 
These complex root system responses underscore the importance of spatiotemporal transcriptional mapping, with significant 
implications for enhanced agricultural resilience.
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This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which per
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Introduction
Plant roots, often buried deep in the soil, are composed of multiple 
cell types that collectively form an organ that provides nutrients 
and support for plant growth and development. These hidden 
structures perform many essential functions, including providing 
mechanical stability and facilitating the absorption of water and 
nutrients from the soil and transporting them into above-ground 
tissues. Roots also serve as the gateway to interactions with the 
surrounding complex soil environment known as the rhizosphere. 
Here, roots are constantly challenged by a variety of biotic and 
abiotic stimuli. Biotic interactions include beneficial symbiotic as
sociations with mycorrhizal fungi and nitrogen-fixing bacteria 
and potentially detrimental encounters with pathogens, para
sites, and herbivores. Abiotic stressors, in contrast, arise from 
nonliving factors such as drought, salinity, extreme tempera
tures, and soil contaminants. Root architecture and anatomy 
are dynamically modulated by these environmental cues. These 
changes often represent adaptive strategies aimed at enhancing 
the plant’s chances of survival. The molecular basis for this devel
opmental plasticity includes cellular reprogramming of cell popu
lations, which result in the production of an optimal root system 
to face a given environmental perturbation.

The most characterized root at the cellular and transcriptional 
level is that of Arabidopsis thaliana due to its simplicity in develop
mental patterning. The root stem cell niche gives rise to 5 different 
tissues that form the majority of the root and that are largely pat
terned with radial symmetry. The outermost tissue is the epider
mis, composed of hair cells (trichoblasts) and nonhair cells 
(atrichoblasts), followed by 1 (in Arabidopsis) and up to several 
layers of cortex cells; the endodermis; pericycle (including xylem 
pole pericycle and phloem pole pericycle cells); as well as vascular 

tissue, which is comprised of xylem, phloem, and procambium. 
Vascular cells have diverse patterning dependent on the species. 
The stele is comprised of pericycle and vascular tissue. Along 
the root’s longitudinal axis, cell types undergo development in 3 
developmental zones. The meristematic zone consists of rapidly 
proliferating cells. Cells then transition into the elongation zone, 
where they expand in size. Ultimately, cells progress into the dif
ferentiation zone, where they acquire their final developmental 
characteristics required to carry out their respective functions. 
To adapt to challenges in their underground environment, each 
of the root cell layers functions as an environmental sensor, and 
as such, the development of each cell type is interdependent 
with its surroundings. Each cell type relies on a complex gene reg
ulatory network that is finely calibrated by environmental signals. 
These sophisticated networks govern cell type–specific adapta
tions to both abiotic and biotic stresses. Bulk transcriptomic stud
ies have provided insight in understanding root system plasticity 
at the tissue and organ level. While several studies have explored 
cell type resolution transcriptional responses to specific external 
factors, there still remains a significant gap in systematic elucida
tion of mechanisms underlying cell type–specific transcriptional 
reprogramming in response to single and combinatorial stresses. 
Bridging this gap necessitated the development of methodologies 
for higher-spatiotemporal resolution profiling that is amenable 
to different plant species. Recent technological advancements 
that enable transcriptome surveys at single-cell resolution have 
begun to close this gap. Of particular interest are cases where 
they are used to interrogate how environmental stressors impact 
cell identities and states. Elaboration of such single-cell omics da
tasets to include stress responsiveness at cellular resolution in 
crops are particularly important to inform cell and tissue-specific 
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targets to enhance stress resilience with minimal undesirable 
pleiotropic effects.

This review aims to provide an overview of how different plant 
root cell types respond to various abiotic and biotic stimuli. By ex
amining cell type–specific anatomical, morphological, and tran
scriptional changes, we highlight the dynamic nature of these 
responses. We also explore advancements in single-cell and spa
tial transcriptomic approaches that offer new insights into these 
processes, emphasizing their implications for understanding 
plant–environment interactions.

Root cell type–specific adaptive responses to 
environment
Root cellular morphology and cell wall composition vary between 
different cell types in an individual plant and between species. 
This inherent variability primes each cell type to display a unique 
and tailored response to the environment throughout development. 
Plants adapt to unique and diverse environments; thus, evolution 
has likely shaped a multitude of cellular strategies. As the outer
most root cell layer, epidermal cells play a pivotal role as the pri
mary interface with the soil environment (Fig. 1). Epidermal root 
hairs are specialized single-celled cylindrical projections of the epi
dermis (Cormack 1949; Salazar-Henao et al. 2016) that are strongly 
responsive to environmental factors. To optimize nutrient ion and 
water uptake, root hair specification and elongation are modulated 
in response to available soil resources. Notably, these include min
eral nutrients with low mobility in most soil systems, including in
organic phosphate (Pi) (Bates and Lynch 1996), nitrogen (N), calcium 
(Ca), sulfur (S), sodium (Na) (Libault et al. 2010; Salazar-Henao et al. 
2016), and manganese (Mn) (Yang et al. 2008), as well as fluctuations 
in temperature (Fan et al. 2022). The mode of root hair cellular dif
ferentiation response is matched to the type of stress the root expe
riences, depending on the species. Root hair specification and 
elongation, for example, is stimulated in low-phosphate condi
tions in Arabidopsis, tomato, maize, and citrus (Bates and 

Advances Box

• Root cell type–specific transcriptional responses: 
Emerging research has elucidated the unique ways in 
which individual root cell types of plants react to envi
ronmental stresses. This shift from viewing the root as 
a homogenous response unit to recognizing the cell- 
specific responses offers a deeper understanding of 
plant resilience and adaptation. Most, but not all, re
sponses are divergent across cell types.

• Breakthrough techniques for cell-specific analysis: 
Advanced techniques such as single-cell or nucleus 
RNA sequencing have enabled, at an unprecedented res
olution, the study of how individual cell types within 
plant roots respond to various external factors.

• Understanding cell identity and stress response: The 
identity of a root cell plays a crucial role in dictating its 
transcriptional response to stress. This insight empha
sizes the importance of developmental regulators in 
maintaining cell identity under stress, enabling precise, 
cell-specific responses to environmental challenges.

• sn/scRNA-seq insights: sn/scRNA-seq has emerged as a 
key tool in plant research, offering insights into distinct 
transcriptional states of cells with the same identity, es
pecially in their response to environmental stress, re
vealing complexities previously impossible with bulk 
analyses.

• Spatially resolved transcriptomics: Combining cell- 
specific RNA sequencing with spatial transcriptomics 
has provided a spatial map of specific plant root zones 
and cell types that interact with symbiotic partners, 
underscoring the potential of these technologies to re
veal novel aspects of root cell type responses to external 
factors.

Figure 1. Root cell type–specific anatomical and morphological responses to stresses. Schematic representation of a plant root cross-section 
highlighting modes of adaptations of different root cell layers to select environmental factors.
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Lynch 1996; Zhu et al. 2005; Cao et al. 2013; Demirer et al. 2023) 
while under salt stress, both these developmental processes are 
suppressed in Arabidopsis and rice (Wang et al. 2008; Robin et al. 
2016). Epidermal cells are also responsible for detecting and ini
tiating subsequent signal transduction processes. An example 
of this is root halotropism or “salt-avoidance” (Sun et al. 2008). 
Under salt stress (NaCl), plant roots can override their gravi
tropic responses through anisotropic epidermal cell expansion 
(Yu et al. 2022). This is facilitated by auxin redistribution via 
salt-induced endocytosis of PIN-FORMED (PIN2) auxin carrier 
proteins in the epidermal cell membrane facing the higher salt 
concentrations (Galvan-Ampudia et al. 2013), accompanied 
by microtubule reorientation that guides microfibril deposition 
pattern (Yu et al. 2022). These coordinated epidermal-specific 
changes redirect growth of roots away from the high-salt 
environment.

The exodermal layer is located underneath the epidermis and 
is considered the outermost cortex layer (Kajala et al. 2021) 
(Fig. 1). This cell type has gained less attention in recent decades 
as it is absent in the model plant Arabidopsis but is present in 
most angiosperms (Perumalla et al. 2008). Similar to the endoder
mis, the exodermis is reported to contain both lignified and suber
ized cell walls (Perumalla et al. 2008; Kajala et al. 2021; Manzano 
et al. 2022; Cantó-Pastor et al. 2024). These chemical structures 
in the exodermal cell wall are largely presumed to act as apoplas
tic barriers, regulating radial water and solute transport in the 
root (Hose et al. 2001; Enstone et al. 2002). Exodermal barriers 
are highly responsive to extreme environments through modifica
tions in the amount of these polymers deposited under stress 
(Soukup et al. 2007; Shao et al. 2021; Cantó-Pastor et al. 2024). 
Interestingly, certain plant species lacking an exodermis under 
optimal growth conditions can deposit suberin lamellae in the 
outer cortex cell layer in response to stress as seen in cotton and 
barley under high salt and osmotic stress, respectively 
(Reinhardt and Rost 1995; Kreszies et al. 2020).

Extensive variation in the number of cortex cell files is present 
within and between plant species. While Arabidopsis is composed 
of a single cortex layer, many crop species, including maize, rice, 
and tomato, have multiple cortex cell files (Rebouillat et al. 2009; 
Burton et al. 2013; Ron et al. 2013). Anatomical differences in the 
number and size of the cortical cells are associated with a variety 
of beneficial physiological adaptations in plants. For example, 
larger cortical cell size in maize genotypes is associated with de
creased root respiration, increased rooting depth, and enhanced 
water uptake under water-limiting conditions (Chimungu et al. 
2014a, 2014b). Beyond anatomical differences, cortical differen
tiation programs display plasticity in response to growth condi
tions. In Arabidopsis, low phosphate levels trigger increased 
radial divisions in the cortex layer, leading to a greater number 
of cortical cell files and thus more cortical cell junctions. This 
presumably causes more epidermal cells to receive the positional 
cue for trichoblast fate, resulting in higher root hair density 
(Cederholm and Benfey 2015). Cortex cells also undergo aerenchy
ma or air space formation. Under anoxic conditions, aerenchyma 
formation is induced as cortex cells undergo programmed cell 
death (lysigenous aerenchyma), creating large air-filled spaces 
in many crop species (Drew et al. 2000; Nishiuchi et al. 2012). 
This increased air space facilitates gas exchange and oxygen dif
fusion to the submerged parts of the root. Maize genotypes with 
increased aerenchyma are also associated with drought tolerance 
(Zhu et al. 2010). In addition to its formation in anoxic conditions, 
in wheat, root cortical aerenchyma is also induced in response to 
soil compaction (Fig. 1) (Colombi and Walter 2017).

Surrounding the stelar tissue is the endodermis (Fig. 1). 
Endodermal differentiation involves cell wall modifications in 
the form of the Casparian strip and suberin lamellae. The 
Casparian strip is a lignin-rich structure deposited in a discrete 
domain along the central axis of endodermal cells, which acts 
as an apoplastic barrier from the cortex into the central vascular 
tissue and vice versa (Alassimone et al. 2010; Naseer et al. 2012). 
Following Casparian strip synthesis and deposition, hydrophobic 
suberin lamellae are deposited on the entire cell surface, creating 
a diffusion barrier for the transcellular pathway (Robbins et al. 
2014; Andersen et al. 2015; Shukla et al. 2021). Similar to the exo
dermis, external factors influence the development of the endo
dermal Casparian strip and suberin lamellae. These include salt 
and drought, which, through the plant hormones abscisic acid 
(ABA) and ethylene, regulate the biosynthesis and degradation 
of endodermal suberin lamellae in response to nutrient stress 
(Barberon et al. 2016). For instance, in response to salt stress, 
the Casparian strip matures earlier in Arabidopsis, cotton, and 
maize endodermal cells (Reinhardt and Rost 1995; Karahara 
et al. 2004; Barberon et al. 2016). Collectively, these cellular differ
entiation features constitute physiologically relevant responses, 
mediated by endodermal cells, that contribute to overall root 
function in different environments.

The pericycle is the outermost radial cell layer surrounding the 
vascular cylinder (Fig. 1). This cell type is unique in that it retains 
pluripotency and hence can continuously form new tissues. In 
Arabidopsis, a few prepatterned pericycle cells known as “founder 
cells” adjacent to the xylem poles are sites of lateral root initiation 
and emergence (although not applicable to all vascular plants), 
commonly known as root branching (De Smet et al. 2006; 
Moreno-Risueno et al. 2010; Santos Teixeira and Ten Tusscher 
2019). Lateral root formation is a key developmental mechanism 
to increase the root system’s surface area, thereby enhancing its 
adaptability to the soil environment. External factors—such as 
soil moisture and nutrient availability, including nitrogen, potas
sium, and phosphate—impact the process of root branching 
(Zhang and Forde 2000; Armengaud et al. 2004; Miura et al. 
2011). Arabidopsis seedlings cease lateral root elongation in 
potassium-deficient media, whereas low nitrogen and phosphate 
promote lateral root formation and elongation to scavenge avail
able soil resources (Zhang and Forde 2000; Armengaud et al. 2004; 
Pérez-Torres et al. 2008; Miura et al. 2011; Pélissier et al. 2021). 
Local repression of lateral root initiation is observed in cereal 
crops (maize and barley), as well as Arabidopsis, when the root 
is exposed to small air macropores in soil environment, inducing 
a transient and local water deficit. This adaptive response at a 
macroscale is known as xerobranching and is mediated by ABA 
signaling and auxin (Orman-Ligeza et al. 2018).

Deep within the root is the vascular tissue, a transport system 
composed of 2 functionally distinct cell types and tissues: xylem 
and phloem, and their stem cells collectively termed the pro
cambium (Fig. 1). Xylem cells are composed of 2 types: proto- 
and metaxylem. Protoxylem are developed earlier in root develop
ment and are characterized by spiral, helical, or annular secon
dary cell wall thickenings. Metaxylem develop later with 
characteristic pitted and heavily lignified secondary cell walls, 
which are dead at maturity and resemble hollow tubes (Kubo 
et al. 2005; Růžička et al. 2015). Water and minerals are trans
ported through xylem cells from the root to the shoot. 
Conversely, phloem distributes photosynthate from “source” to 
“sink” tissues (Lucas et al. 2013). Xylem differentiation is plastic 
and responds to environmental cues such as water limitation 
and salinity. In Arabidopsis, under water deficit stress, metaxylem 
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differentiates closer to the root tip, while extra protoxylem cell 
files differentiate in the root tip. These developmental responses 
are mediated by ABA-induced regulation of miR165, which ulti
mately regulates class III homeodomain leucine zipper tran
scription factors transcript abundance, resulting in protoxylem 
specification instead of metaxylem (Ramachandran et al. 2018, 
2021; Bloch et al. 2019). In several dicot species salinity inhibits 
local protoxylem differentiation via a DELLA-mediated repres
sion of gibberellic acid signaling. This reduction promotes ex
pression of the xylem master regulator VASCULAR 
NAC_DOMAIN 6 (VND6), leading to the discontinuous formation 
of protoxylem cell files. Notably, this developmental response 
is correlated with salt tolerance (Augstein and Carlsbecker 
2022). The plasticity of vascular system differentiation in re
sponse to external stimuli is also evident during secondary 
growth in woody species. For instance, Populus produces xylem 
vessel elements with narrow lumens under drought to mitigate 
cavitation and hydraulic failure (Rodriguez-Zaccaro and 
Groover 2019; Rodriguez-Zaccaro et al. 2021).

Similar to the role of xylem cells in transporting water and min
erals, sieve elements within phloem tissue are crucial for distrib
uting photosynthates and nutrients to the developing tissues, as 
well as delivery of intracellular and long-distance signals, which 
is required for systemic adaptation to stress conditions (Ham 
and Lucas 2014). Shoot-derived mobile RNAs mediate plant re
sponses to abiotic stresses through phloem transport (Liu et al. 
2023). Phloem cells can also change their structure in response 
to stress. During heat stress, phloem unloading is modulated by 
accumulation of callose around plasmodesmata at the junctions 
between sieve elements and phloem pole pericycle. This accumu
lation restricts the flow through plasmodesmata, reducing 
phloem unloading activity and subsequent inhibition of root 
growth (Liu et al. 2022b). Thus, from the outermost epidermal 
cells to the inner vascular tissue, each root cell type undergoes dy
namic, diverse, and specialized responses to environmental cues 
to optimize their function to mitigate environmental challenges 
(Fig. 1).

Root cell type–specific transcriptional dynamics in 
response to the environment
Every cell type in a plant root has the same genetic makeup, yet 
they develop unique phenotypes in response to various environ
mental stimuli. Traditionally, these cell type–specific phenotypes 
have been studied by examining cell structure and form. It is im
portant to note, however, that lack of a morphological or observ
able phenotype does not necessarily indicate a corresponding 
absence of a molecular or transcriptional response (Brady et al. 
2011). Examination of such subtle transcriptional changes within 
individual cell types were first revealed by the use of innovative 
techniques (fluorescent activated cell sorting, laser capture mi
crodissection, translating ribosome affinity purification, isolation 
of nuclei tagged in individual cell types) coupled with microarray 
or RNA sequencing analysis, facilitating transcriptome-scale cell 
type–specific investigations (Fig. 2) (Birnbaum et al. 2003; Day 
et al. 2005; Zanetti et al. 2005; Dinneny et al. 2008; Gifford et al. 
2008; Deal and Henikoff 2011). These methodologies provided a 
fundamental framework to understand how plant root cell types 
respond to diverse factors and transcriptionally integrate these 
responses (Dinneny et al. 2008; Gifford et al. 2008; Long et al. 
2010; Iyer-Pascuzzi et al. 2011).

Before this era, whole root transcriptional studies operated 
under the assumption that the root was a single unit of 

transcriptional response (Fig. 2). However, transcriptome profiling 
of Arabidopsis root cell types grown with a high salt (NaCl) concen
tration revealed very few genes whose expression significantly 
changed in all cell layers (Dinneny et al. 2008). Correspondingly, 
the majority of differentially expressed genes were cell type and de
velopmental zone specific, with the cortex layer being the most 
transcriptionally responsive, as determined by the number of de
tected differentially expressed genes (Fig. 3A). Using epidermal- 
patterning mutants, Dinneny et al. (2008) highlighted the role of 
cell fate regulators within an individual cell type in response to 
salt stress. Indeed, there were sets of genes whose differential ex
pression under stress was dependent on correct epidermal specifi
cation and patterning (Dinneny et al. 2008). These cortex- and 
epidermis-specific observations interestingly align with cell layers 
involved in root halotropism response, where an ABA-activated 
protein kinase SnRK2.6 drives cortical MT reorientation at the 
root transition zone to slightly increase volume in the cortex and 
epidermis of Arabidopsis (Yu et al. 2022). Likewise, iron deficiency 
elicits cell type or tissue-specific transcriptional responses, with 
the stele as the most responsive (Dinneny et al. 2008; Long et al. 
2010). This observation aligns with nitrogen deficiency responses 
(Gifford et al. 2008) and is attributed to the stele’s critical role as 
the transport hub of plant roots (Fig. 3A). The significant enrich
ment of differentially expressed transcription factors within the 
pericycle during iron deficiency was used to generate a hypothesis 
that pericycle-specific transcription factors coordinate the iron de
ficiency response. The transcription factor POPEYE, whose expres
sion is induced under iron deficit, was functionally validated as a 
regulator of iron homeostasis between the root’s outer layers and 
the stele (Long et al. 2010).

Three key biological insights have emerged from studying the 
transcriptional behavior of specific root cell types in response to 
external nutrient stressors. First, there is little evidence for con
servation of a universal transcriptional stress response across dis
tinct cell types undergoing the same stress. Although a very 
minimal shared transcriptional stress response is present, it can
not be generalized across all cell types. Second, the identity of a 
cell can dictate the specific gene sets that are activated or re
pressed in response to a particular stress as demonstrated by dis
tinct functional gene categories enriched in each cell type under 
various stress conditions (Dinneny et al. 2008; Iyer-Pascuzzi 
et al. 2011). This point is interrelated with the first, as the cell 
type–specific transcriptional responses are developmentally de
termined and result in the lack of a universal stress response 
across different cell types. Further, “response nonredundancy,” 
where expression of individual transcripts within a functional 
group is highly cell type specific, enables specialization of cell- 
type activity while maintaining shared functional responses 
(Walker et al. 2017). Lastly, a group of developmental regulators 
appears to maintain stable expression patterns, unaffected by 
the environment, thereby sustaining cell identity and triggering 
cell-specific responses to stimuli. Furthermore, there is a portion 
of the transcriptome that remains nonplastic and conserved in 
multiple cell types, regardless of environmental stimuli, such as 
housekeeping genes, which are essential for maintaining basic 
cellular functions (Reynoso et al. 2022).

The impact of scRNA-Seq on understanding plant 
transcriptional responses to stress
In recent years, single-cell RNA sequencing (scRNA-seq) has 
emerged as a powerful technique in plant research, enabling the 
capture of transcriptome dynamics of individual cells within a 
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tissue across multiple species, including Arabidopsis, maize, rice, 
tomato, tobacco, poplar, sorghum, and setaria (Efroni et al. 2016; 
Shulse et al. 2019; Song et al. 2020; Dorrity et al. 2021; Kim et al. 
2021; Ortiz-Ramírez et al. 2021; Seyfferth et al. 2021; Xu et al. 
2021; Kang et al. 2022; Shahan et al. 2022; Xie et al. 2022; 
Guillotin et al. 2023; Lee et al. 2023; Cantó-Pastor et al. 2024). 
This technique provides unparalleled insight into the 

transcriptional heterogeneity, or distinct transcriptional states, 
among cells of the same identity, surpassing the capabilities of 
earlier methods that isolated entire cell types (Fig. 2). This hetero
geneity is particularly relevant when considering cell-specific re
sponses to environmental stress. Traditional methods could not 
capture these subtle yet significant differences in how individual 
cells with the same identity may respond differently to a given 

A

B

C

D

Figure 2. Overview of transcriptomic approaches used for analysis of root stress response. A) Root system facing multiple biotic and abiotic stressors in 
the soil environment. B) Increasing resolution of transcriptomic methods. The progression moves from the entire root tissue, through intermediate 
resolutions examining specific cell populations, to the highest resolution of sc/snRNA-Seq, capturing individual cells. C) Workflow illustrating the 
processing for different techniques. Bulk root tissue analysis processes total RNA yielding an average stress response across all cell types. FACS: Allows 
for the isolation of specific cell types based on fluorescence markers. Advantage: High specificity in sorting. Disadvantage: Requires fluorescent markers 
and cell dissociation, which can alter gene expression. TRAP-Seq pools multiple cells of a single type. Advantage: Focuses on actively translated genes. 
Disadvantage: Requires marker lines expressing tagged ribosomes. sc/snRNA-Seq involves partitioning individual cells/nuclei using a microfluidic 
device to capture a detailed stress response profile from each cell. scRNA-Seq advantage: Provides a comprehensive transcriptome profile of individual 
cells, capturing both nuclear and cytoplasmic. Disadvantage: Requires cell dissociation, which can induce stress responses. It can also be challenging to 
isolate specific plant cell types due to the rigid cell walls or their size. snRNA-Seq advantage: Bypasses the need for cell dissociation, preserving the 
transcriptional state without the stress of cell wall digestion. This method is particularly useful for fixed or frozen samples and for plant cells with rigid 
secondary cell walls. D) Comparisons of the resolution of gene expression data obtained from the various transcriptome techniques. Figure created 
with Biorender.com.
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stimulus. scRNA-seq can overcome this limitation by identifying 
rare or transient subpopulations of cells with unique molecular 
signatures that are important to understand a plant’s response 
mechanisms. For example, a group of cells within a tissue may ex
hibit different transcriptional responses or states to a particular 

stress compared with identical neighboring cells, a complexity 
that only scRNA-seq can resolve. Furthermore, the integration 
of pseudotime algorithms with scRNA-seq data allows recon
struction of developmental trajectories to capture possible 
stress-induced cellular heterogeneity in a temporal manner 

A B

C D

Figure 3. The multifaceted responses of root cell types to stress. A) Cross-section diagrams of the Arabidopsis root illustrating the most 
transcriptionally responsive cell types to specific stressors. The stele is the most transcriptionally responsive cell layer under iron (Long et al. 2010) and 
nitrogen deficiency (Gifford et al. 2008), while the cortex is the most responsive under salinity (Dinneny et al. 2008). In contrast, heat stress can trigger a 
universal heat shock protein (HSP)–mediated transcriptional response across all cell layers (Jean-Baptiste et al. 2019). B) Schematic of a uniform 
manifold approximation and projection (UMAP) showing stress-induced distinct cellular states within cells of the same identity (Zhu et al. 2023). C) Bar 
graph depicting the shift in cell population dynamics in response to external stimuli, with an increase in hair cell population with sucrose 
supplementation (Shulse et al. 2019) and a decrease in mesophyll cell population under sodium stress (Wang et al. 2021). D) Integrating snRNA-Seq in 
root tissue colonized by arbuscular mycorrhizal fungi (AMF+) with spatial transcriptomics enabled mapping of the colonization responses to their 
original spatial context within colonized root tissue to identify localized and colonization stage-specific transcriptional responses (Serrano et al. 2024). 
Figure created with Biorender.com.
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(Fig. 3B). An excellent example of single-cell transcriptomic profil
ing’s ability to discern cellular transcriptional heterogeneity is il
lustrated through the interactions between Arabidopsis and the 
pathogen Pseudomonas syringae. The continuum of disease pro
gression within the leaf was shown to gradually transition from 
an immune state to a susceptible state during the continuum of 
infection. Further, some cells were immediately transcriptionally 
responsive to pathogen invasion, while others responded at a later 
stage (Zhu et al. 2023).

In contrast to the many cell type–resolution maps of root devel
opment, fewer scRNA-seq studies have concentrated on cell- 
specific transcriptional responses to abiotic stresses (Jean-Baptiste 
et al. 2019; Wendrich et al. 2020; Wang et al. 2021). Jean-Baptiste 
et al. (2019) subjected whole seedlings to heat stress and analyzed 
the outcome using single-cell RNA sequencing. Contrary to the prior 
observations of little to no whole root transcriptional responses 
(Dinneny et al. 2008; Iyer-Pascuzzi et al. 2011), this study discovered 
that canonical heat-shock genes were predominantly differentially 
expressed across all cell types (Fig. 3A). They also observed cell- 
specific responses; hair cells showed an enriched response of genes 
associated with ribosomes and RNA methylation. In contrast, stele 
cells showed varied expression in genes associated with cell wall or
ganization and biogenesis, while endodermis cells demonstrated 
distinct expression patterns in genes linked to chemical and 
stress response stimuli, as well as in nitrate and anion transport. 
The pan-root transcriptional responsiveness of heat shock genes 
demonstrates that although most stress-induced responses are 
cell type specific, this is not always the rule.

Wang et al. (2021) expanded the scope of single cell research to a 
crop species by examining the transcriptional response of rice seed
lings to a broader spectrum of abiotic stress conditions: low nitro
gen, high salinity, and iron deficiency. In response to each 
individual stress, again a significant proportion of differentially ex
pressed genes was within a specific cell type (Wang et al. 2021). 
Despite this predominant mode of responsiveness, some common 
responses were also observed—not only in roots but also in leaves. 
Besides these cell type–specific transcriptional responses, a propor
tional change in the size of cell populations was also observed. 
Specifically, a decrease in the mesophyll cell population size was 
observed under high salinity (Fig. 3C). In contrast, the mesophyll 
cell population size remained largely unchanged under iron 
deficiency and low nitrogen (Wang et al. 2021). This suggests a 
stress-induced adaptation in specification or maintenance of mes
ophyll cell identity or of cell proliferation. Further probing of the 
molecular basis underlying this proportional shift indicated that 
high-salinity treatment altered mesophyll cell expression profiles 
at different developmental stages, disrupting their normal matura
tion and reducing the cell population (Wang et al. 2021). A similar 
phenomenon was observed by Shulse and colleagues (2019) regard
ing sucrose supplementation of Arabidopsis roots. Here, a strong 
enrichment of the hair cell population was observed in response 
to sucrose while there was an enrichment of the meristematic 
cell population without sucrose (Shulse et al. 2019) (Fig. 3C).

In the context of a plant’s response to phosphate deprivation, 
Wendrich et al. identified the critical role of the TARGET 
OF MONOPTEROS 5/LONESOME HIGHWAY (TMO5/LHW) tran
scription factor complex (Wendrich et al. 2020). Through high- 
resolution single-cell gene expression analysis of Arabidopsis 
roots, this study demonstrated how the TMO5/LHW complex in
creases root hair density in phosphate deficiency. This is achieved 
by altering epidermal cell fate and length, thereby enhancing 
phosphate foraging efficiency. This highlights a precise cellular 
adaptation to nutrient stress, with the cytokinin pathway 

connecting vascular cell perception of phosphate levels to tricho
blast differentiation (Wendrich et al. 2020).

One of the advantages of scRNA-seq is the elucidation of 
changes in transcriptional response in a single cell type’s develop
mental trajectory. In principle, such a response is possible as ob
served by Dinneny et al. (2008), where in response to salt stress 
in Arabidopsis, the elongation zone was the most transcriptional
ly responsive as defined by the number of significantly differen
tially expressed genes (Dinneny et al. 2008). The changes in 
meristematic cell population size identified by Shulse et al. 
(2019) in the absence of sucrose further supports the observation 
of changes in developmental time. Spatial context is equally im
portant in plant–biotic interaction, where spatially confined dam
age to specific subset of cells within the root are shown to be 
sufficient to induce and propagate responsiveness in neighboring 
nonresponsive cells (Zhou et al. 2020). However, a significant lim
itation of scRNA-seq is its inability to maintain the spatial context 
of cells. Once cells are dissociated from their native environment 
for analysis, crucial spatial information is lost, making it challeng
ing to comprehend how cells interact within their microenviron
ment and collectively respond to external stimuli.

While the impact of scRNA-seq in plant research is significant, 
limitations in its widespread adoption across plant species remain. 
The rigid cell wall in plants varies in composition across cell types, 
species, and environments and is dynamically modulated in re
sponse to environmental stimuli. As in cell type–profiling methods 
that require fluorescent activated cell sorting, scRNA-seq ap
proaches require cell wall dissociation to release individual cells, 
known as protoplasting. This process can introduce an extraction 
bias toward cells that are more amenable to enzymatic digestion 
or those located on the tissue’s outer layers and are more accessi
ble to enzymes, potentially skewing the representation of certain 
cell types or developmental stages. Moreover, the enzymatic diges
tion process itself can result in stress-induced transcriptional re
sponses and data artifacts that can in part be resolved by 
identifying protoplasting-induced genes and removing these 
from future analyses (Birnbaum et al. 2003; Cantó-Pastor et al. 
2024). If these protoplasting-induced genes are also important 
for a cell type response, however, then they would not be identi
fied. Plant cell size diversity also brings another layer of complex
ity to single-cell analysis, as microfluidic platforms require some 
uniformity in cell sizes (Whitesides 2006). The stringent require
ment for a high quality and quantity of protoplasts extracted, 
along with the high costs of specialized reagents and instru
ments, further limits this technique’s applicability across plant 
species and laboratories.

Single-nucleus RNA-seq (snRNA-seq) is an alternative for 
single-cell transcriptomics in plants through isolated nuclei, of
fering added advantages for studying fixed or frozen samples 
without the need for protoplasting (Farmer et al. 2021; Marand 
et al. 2021; Neumann et al. 2022). These are particularly of use 
in studies focused on plant responses to external stimuli, where 
the risk of triggering protoplasting-induced stress responses 
similar to those being investigated are eliminated. This approach 
further broadens the range of plant species, cell types, and cell 
wall–based transcriptional reprogramming that can be analyzed. 
However, there are trade-offs; nuclear transcripts often represent 
a fraction of transcriptome in a cell, thus limiting the capture 
of cytoplasmic transcripts or those with less nuclear abundance. 
In line with this, the average number of genes detected in single- 
nuclei profiling studies can be significantly lower compared with 
those identified in single cells (Guillotin et al. 2023). Additionally, 
single-nuclei datasets tend to produce fewer distinct cell clusters 
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and often struggle to differentiate between closely related or 
subcellular identities (Guillotin et al. 2023).

Benchmarking of single-cell relative to single-nuclei ap
proaches is reviewed and extensively described in Grones et al. 
2024 (Grones et al. 2024). Numerous platforms for both single-cell 
and single-nucleus profiling are also available, and combinatorial 
barcoding approaches effectively overcome the scalability and 
cost limitations inherent to microfluidic methodologies (reviewed 
in Grones et al. 2024). In combinatorial barcoding, each cell’s 
mRNA are uniquely tagged through multiple rounds of barcoding, 
allowing for high-throughput analysis and sample multiplexing 
without complex equipment. This approach allows for the simul
taneous analysis of large numbers of samples and nuclei, making 
large-scale projects possible and cost-effective. Additionally, the 
ability to use fixed samples makes the protocol highly flexible 
and enhances scalability. Although this approach remains to be 
widely adopted in plant research, it has been successfully applied 
in profiling chromatin accessibility at single-cell resolution in 
Arabidopsis (Tu et al. 2022).

Spatial transcriptomics is a complementary technology to sn/ 
scRNA-seq by preserving the spatial context of transcriptional pro
files within tissues. This technology can pinpoint specific zones 
within a cell type where stress responses are initiated and how 
these signals propagate, potentially offering a 3-dimensional per
spective on stress response. Despite its promise, spatial transcrip
tomics is still in infancy in plant biology research, and it has been 
utilized in only a handful of studies focusing mostly on plant devel
opment or biotic interactions (Moreno-Villena et al. 2022; Liu et al. 
2022a, 2022b; Xia et al. 2022; Nobori et al. 2023; Serrano et al. 2024).

A recent pioneering work combining these complementary 
approaches—snRNA-seq and spatial RNA-seq—elucidated the 
complex nature of interaction between the Medicago truncatula 
root and a symbiotic partner, the arbuscular mycorrhizal fungus 
(AMF) Rhizophagus irregularis, in a spatially resolved fashion 
(Fig. 3D) (Serrano et al. 2024). Spatial transcriptomics allowed for si
multaneous gene expression analysis of both the plant and AMF in 
the colonized root zones, identifying clusters in the spatial dataset 
with high expression levels of known colonization stage-specific 
genes overlapping with AMF-responsive zones (Serrano et al. 
2024). Fungal expression was also correlated with the presence of 
arbuscules—branched structures formed by the differentiation of 
fungal hyphae within the root cortical cells, which are central to 
the nutrient and water exchange in the symbiotic relationship be
tween AMF and plants. The spatial dynamics of the symbiosis were 
mapped across individual root cross-sections by tracking the distri
bution of marker genes indicative of early to late-stage coloniza
tion. SnRNA-seq further identified a distinct “colonized cortex cell 
cluster,” which, when integrated with the spatial dataset, discov
ered hundreds of novel AMF-responsive M. truncatula genes that 
could serve as a great resource for further research (Serrano et al. 
2024). As of yet, there are no published studies to our knowledge 
that have adopted a similar complementary approach with respect 
to plant-abiotic factor interactions.

Conclusion and perspectives
The plant root system performs a multitude of critical functions, 
from nutrient uptake to interactions with the surrounding soil 
environment. Roots adapt dynamically to various challenges, 
including biotic and abiotic stresses, such as microorganisms, 
drought, and salinity, by altering their system and cellular architec
ture as survival strategies. Each cell type within the root can exhibit 
unique responses, dependent on the stimulus as well as the 

species, indicative of an evolutionarily derived adaptability 
(Fig. 1). The molecular mechanisms underlying these adaptive 
changes have been increasingly elucidated through cell type– 
specific transcriptional methodologies. Our understanding of stress 
response in plant roots is now recognized as the sum of cell type– 
specific responses (Dinneny et al. 2008; Gifford et al. 2008; Long 
et al. 2010; Iyer-Pascuzzi et al. 2011; Jean-Baptiste et al. 2019; 
Wendrich et al. 2020; Wang et al. 2021; Zhu et al. 2023; Serrano 
et al. 2024). The significance of cell identity in mediating stress re
sponses is increasingly acknowledged, emphasizing the need for 
further exploration of how known cell identity regulators function 
within stress-responsive pathways. Observations of changes in the 
size of specific cell populations under stresses like heat or salinity 
in Arabidopsis roots and rice leaves point to dynamic shifts that oc
cur in cell type differentiation, though the mechanisms and phys
iological implications of these changes are not yet fully understood 
(Dinneny et al. 2008; Iyer-Pascuzzi et al. 2011; Jean-Baptiste et al. 
2019; Wendrich et al. 2020; Wang et al. 2021).

Integration of advanced omic tools in studying root– 
environment interactions is critical to further advancing this 
understanding. Spatially resolved, cell-specific transcriptional 
maps can elucidate complex local intercellular communications 
when facing environmental stress. Expanding this approach 
beyond the model plant Arabidopsis to include other species will 
enable utilization of the extensive genetic (both mutant and 
population-scale) resources of diverse plant species (both stress 
tolerant and susceptible), which is crucial to elucidate their toler
ance mechanisms and to inform breeding strategies for stress re
silience. Furthermore, it is essential to address the complexity of 
real-world conditions where plants often simultaneously face 
multiple stresses, such as drought combined with high tempera
tures or salinity stress. Understanding how transcriptional pro
files of individual cell types are reshaped when navigating these 
multi-stress environments is crucial for developing crops that 
can withstand such conditions, ensuring agricultural sustainabil
ity in our changing climate.
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Outstanding Questions Box

• How do cell identity regulators facilitate stress re
sponses within a specific cell population of a given cell 
type?

• What mechanisms underlie the dynamic shifts in cell 
type differentiation observed in plant roots under vari
ous stresses?

• What are the physiological implications of morphologi
cal and molecular changes within individual cells?

• What cell-specific mechanisms enable stress-tolerant 
species to survive adverse conditions?

• How do simultaneous multiple stresses impact the cell- 
specific transcriptional responses in crops?
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