UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Conceptual Slippage and Analogy-Making: A Report on the Copycat Project

Permalink
https://escholarship.org/uc/item/0k4169n5

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 10(0)

Authors
Hofstadter, Douglas R.
Mitchell, Melanie

Publication Date
1988

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/0k4169n5
https://escholarship.org
http://www.cdlib.org/

Conceptual Slippage and Analogy-Making:
A Report on the Copycat Project

Douglas R. Hofstadter and Melanie Mitchell
Department of Psychology and Department of Computer Science
University of Michigan

In our research we are investigating the mechanisms underlying human analogy-making. We
are developing a theory of these mechanisms, which centers on the interaction of perception with
the associative, overlapping, and context-sensitive human conceptual system, and on how this
interaction gives rise to "conceptual slippage” (the flexible translation of ideas from one framework
to another), which is required for creative analogy-making. To test this theory, we are building a
computer model called "Copycat", which is able to make analogies in a microdomain. Although the
microdomain appears small and simple, it is surprisingly rich; extremely subtle analogies requiring
great flexibility and creativity can be made in it, and we believe it is an excellent testbed for
computer models of analogy-making. This paper describes the current state of our research, and
shows in detail (using a series of screen printouts from two runs of the program) how Copycat's
perceptual mechanisms interact with its conceptual system and allow it to describe situations and
make analogies. Previous work on the Copycat project has been reported by Hofstadter (1984b,
1985), Hofstadter, Mitchell, & French (1987), Hofstadter & Mitchell (1988), and Mitchell (1988).

Copycat's microworld consists of the 26 letters of the alphabet and associated concepts; in it we
construct analogy problems involving letter-strings. A simple problem is: If abc changes to abd,
what is the analogous change to pqrs? Most people answer pqrt, using the rule "Replace the
rightmost letter by its successor". However, if the target string were ppqqrrss rather than pqrs,
that rule would yield ppqqrrst, which almost all people see as too rigid. The rule thus has to be
"translated" to the new situation. But a different translation is needed for target ssrrqqpp, and still
other translations for targets mrrjjj (in which numerical successorship plays the role of alphabetic
successorship), aababc (extending the notion of successorship if the string is parsed a-ab-abc),
ace (double successorship), and xyz (Z has no successor). A vast number of interesting problems
can be constructed in this domain (see Hofstadter, Mitchell, & French (1987) and Hofstadter &
Mitchell (1988) for collections of such problems, and see Hofstadter (1985) and Mitchell (1988)
for discussions of how these problems relate to "real-world" analogy-making).

We will explain the workings of the current version of the Copycat program by presenting two
series of annotated screen printouts from actual runs on two problems. First, we discuss some of
the ideas behind the model. The first idea is nondeterminism, which permeates the workings of
Copycat. The program accomplishes its goals by executing a very large number of small pieces of
code, called "codelets”, chosen probabilistically from a constantly changing pool. Thus not only
does each run differ from every other run, but also many different answers can be reached for a
given problem. Thus to show just one run for a given problem (as we have done) is somewhat
misleading. We have chosen two fairly typical runs for the two problems, but readers should bear
in mind that other answers are often produced, and many other routes to the shown answers exist.

Copycat's nondeterministic nature is based on the idea that analogy-making, like perception, is
highly and asynchronously parallel. In perception and in Copycat, many processes take place
concurrently. In Copycat, each process consists of many small codelets, and codelets of different
processes are interleaved probabilistically. Each process has a dynamically evaluated importance,
so that favored processes can run faster. This is accomplished by giving each codelet an "urgency"
-- a number that determines its probability of being chosen from the pool of codelets waiting to run.

The second idea is the building-up of a coherent view. Itis up to the program to build up an
understanding of each letter-string on its own, and also of how strings are related. This is very
similar to a perceptual process. At the outset, each codelet picked has a small region of a string as
its focus, and it looks for any local structure of interest there. If so, it suggests that that structure

601

HOFSTADTER AND MITCHELL

be officially recognized by another codelet. As many such codelets run, they gradually "annotate"
individual letters and letter-strings, converting them from raw data into coherently understood
structures. This process is very similar to the operation of the Hearsay II speech-understanding
program (Erman et al., 1980), which took a raw speech waveform and allowed many processes to
build higher-level hypotheses about it, upon which yet higher-level hypotheses could be built, at
the top level of which emerged a totally semantic understanding of the utterance. The aim of
Copycat is similar: to convert a raw letter-string into a totally understood situation.

Moreover, not only must Copycat knit together each separate string, it must also construct a
coherent network of correspondences between the three given strings. These correspondences
express Copycat's view of how certain parts of one structure map onto parts of another, without
there necessarily being any one-to-one mapping involving all the parts. The build-up of local
structure inside a given string tends to precede the build-up of correspondences between strings,
but this is not an ironclad order; the nondeterminism allows these types of processes to take place
concurrently. At the outset, intra-string processes are given higher urgencies, but as coherent
views of individual strings gradually get built up, the urgencies of inter-string processes rise and so
those processes become predominant. Thus activity gradually shifts from a local to a global scale.

The third idea is that of conceptual distance and slippage. In any analogy worth the name, there
are "conceptual slippages": mental correspondences made between things that are not identical. In
Copycat, the plausibility of any such correspondence is determined by referring to a network of
concepts called the "Slipnet", one of whose main functions is to define a "distance" between any
chosen pair of concepts. The smaller the distance between the two concepts, the more plausible is a
mapping in which they are considered counterparts (i.e., in which the one "slips" into the other).
Of course, the smallest possible distance is zero -- when a concept is mapped onto itself. But an
analogy in which all conceptual distances are zero would be a total identity. Thus non-trivial
slippage is an essential ingredient of interesting analogy-making. As its name would imply, the
Slipnet is the measure of all slippages.

The Slipnet is a dynamically changing network, in which conceptual distances change as a
function of processing (thus as a function of context). There is a default setting of the Slipnet, in
which concepts have "neutral" distances, but as certain slippages take place, they modify the
distances between similarly-related concepts. For example, if a slippage between two concepts
considered to be "opposites” is incorporated into an analogy, that shortens the distances between all
pairs of "opposites” in the Slipnet, which tends to increase the likelihood of similar slippages.
Each concept has a time-varying activation level: a function of the importance of the role the
concept has been perceived as playing. When a concept is activated, its use in forming descriptions
1s encouraged. For example, if a group of any sort has been perceived, codelets attempting to
create other groups of that sort will henceforth tend be more successful. Another crucial function
of activation is that of determining the salience of all the objects in the situations at hand. Each
object (letter, group of letters, entire string) has a number of descriptions, each of which consists of
names of certain concepts in the Slipnet. To each description is attached a time-varying number that
reflects how active those concepts are at the moment, and the object's salience is a simple function
of those numbers for all its descriptions. Thus an initially unremarkable object can become
strikingly salient if one or more of its descriptions involve highly activated concepts. The reason
this matters is that codelets are highly biased towards acting upon salient objects. Thus there is an
interesting reciprocal influence of the Slipnet and the perceptual processing of strings: the Slipnet
determines what objects are most "interesting" as foci of processing, and the results of processing
determine the level of activation of Slipnet concepts, which feeds back into the processing. Finally,
activation spreads from a concept to neighboring concepts in the Slipnet, so that even if a concept is
not directly involved in the situations, its conceptual closeness to concepts that are directly involved
may cause it to be brought in. This allows unexpected associations to be brought in, even though
they are not on the surface at all.

602

HOFSTADTER AND MITCHELL

The following is a run of the program on the problem "If abc ---> abd, then pqrs --->?" This
run produced the answer pqrt. This answer is almost always produced by the program, although
on rare occasions it produces the rigid answer pqrd.

1. The program is presented with the three strings.

2. Tentative correspondences between letters in the two
top strings are being considered (dashed arcs). A
successor/predecessor relation has been noticed between
the A and the B in abd (solid arc).

a b < == a b d
L .
Y TN
P q r 3 ——> ?

rmost->rwost
pred->pred
loft->left

3. Correspondences between the two A's and between
the two B's have been built (solid arcs). A competing
correspondence between the B in abe and the A in
abd is tentatively being considered. More
successor/predecessor relations have been noticed. A
tentative correspondence between the C in abc and the
S in pqrs is being considered.

4. The C-S correspondence has been built (jagged line)
and at the bottom are listed the three trivial slippages
underlying it. The slippage "rmost --> rmost” means
that both letters are rightmost in their respective
strings. The slippages "pred --> pred" and "left -->
left" indicate that each letter's left neighbor is its
predecessor. A correspondence between the A and the
P is being considered, which would be compatible
with the C-S correspondence. Meanwhile, alternative
correspondences on the top line are being considered.

603

HOFSTADTER AND MITCHELL

lmost->luost
Fuce-dsuce
right->right

reost-)reost
pred-)pred
left-)left

[Icphcl rmost letter by successor of rmast lcl.ter]

lwost->1lmost
succ-)suce

right-)right

reost-rreoat
pred-)prad
left-rleft

5. The A-P correspondence has been built, and there is
a competing tentative correspondence between A and
S, based on the noton that the A is leftmost and the
S rightmost, two concepts close enough in the Slipnet
to allow a correspondence to be considered, but, it
turns out, not close enough in this context for that
correspondence to compete. Incompatible tentative
correspondences can coexist, but incompatible genuine
correspondences cannot, so various incompatible sets

of correspondences compete on the basis of strength.

The mapping between abc and abd is complete,

but an alternative correspondence is being considered.

[Iepllcc rwost letter by soccessor of rwost letter |

lmost->lmost
succ=>suce
right->right

reost-)rwost
pred-ipred
left->left

| Replace rwost letter by successor of rmost letter |

|
7. The rule has been "translated” for use on the target
string, and appears at the bottom. The slippages
underlying the correspondences are used as translation
rules; in this problem there is nothing to translate,
since "rightmost", "successor”, and "letter" play the
same role in pqrs as in abe. As will be seen,
however, this is not so when the target is ssrrqqpp.

Even though the rule has been translated,
alternatives to the mappings are still being considered.
If any of these alternatives were to succeed, then the
current rule would be discarded and a new one would
have 1o be constructed.

6. The tentative A-P correspondence was weak, and
died. A rule describing the change from abc to abd
has been written at the top. Copycat currently is
limited to situations where just one object is changed,
so rules are made by filling in a template of form
"Replace by ". The rule-building
codelet finds the changed object, and probabilistically
chooses a description of it, preferring salient and
abstract ones. E.g., "rightmost letter” is more abstract
than "instance of C", though the latter is occasionally
chosen. Likewise, a description of the corresponding
object in the second string is probabilistically chosen.

Imost-)>lmost

right->right

| Replace rmost letter by successor of rmoat letter |

mwost-drwost
pred-Jpred
left-2left

Fucc-rIuceo

| Replace rmost letter by successor of rmost letter

604

8. The program has used the translated rule to create an
answer: pqrt.

Notice that no correspondence was ever made
between the B in abe and anything in pqrs. This
reflects the fact that in an analogy between two
situations, not every aspect of each situation has to be
mapped. In the case of these miniature situations,
there is no good counterpart for B in pqrs.

HOFSTADTER AND MITCHELL

Next, the program is run on the problem "If abc ---> abd, then ssrrqqpp --->?" This run
produced the answer ssrrqqoo, but note that the answer ttrrqqpp is also produced quite often,

and on rare occasions rigid answers such as ssrrqqpq and ssrrqqpd are produced.

2. Successor/predecessor relations (light solid arcs) and
sameness relations (dark solid arcs) between letters are
beginning to be noticed, and some tentative
correspondences have been set up between abc and
abd. In addition, a tentative correspondence has been
made between the A in abc and the leftmost S in

SSITrqqpp.

1. The program is presented with the three strings.

3. A group is formed out of the two R's bonded by a 4. The group of Q's has been perceived, and is

sameness relation. The group is represented by a characterized by the parameter-letter Q. This allows a

parameter-letter R (the boldface R appearing above the successor/predecessor relation to be noticed between

group). A parameter-letter acts much like a letter, but the parameter-letters R and Q.

exists at a more abstract level. Some correspondences between abce and abd have
been built, and others are being considered.

605

HOFSTADTER AND MITCHELL

b c — a b d
‘1/‘\/""\/’“‘\
8 R Q P

lmost->1wost

5. All the groups in ssrrqqpp have been noticed, and
all the successor/predecessor relations at the
parameter-letter level have been noticed. (The
already-perceived successor/predecessor and sameness
relations at the letter level are still present, but are
suppressed from the graphics.) Also, a mapping
between abe and abd has been completed. In addition,
a correspondence has been built between the A in abe
and the leftmost letter S in ssrrqqpp (jagged line).
Its only (trivial) slippage is "leftmost --> leftmost".
However, a rival correspondence is being considered
between the A and the parameter-letter S.

b £ -—> a b d
'\/\/’—-\

A dEdE - ¢

1sost->1nost
letter-yp-letter
succ->pred
right->right

6. In a fight, the latter destroyed the former, because it
is supported by more slippages (4 vs. 1), meaning
more similarities are being taken into account, and
because they involve more abstract concepts (like
"parameter-letter"), meaning deeper similarities are
being taken into account. Its slippages tell us:
"leftmost” plays the same role in both strings; "letter”
in abe corresponds to "parameter-letter” in ssrrqqpp;
"successor” to "predecessor”, and "right" to "right",
since abc increases alphabetically to the right, while
ssrrqqpp decreases (at the parameter-letter level).
Meanwhile, "diagonal" competition has appeared.

b -—> a b d
\/’“\/h\

F A EE D

Imost-)lwoxt rost-)reost
latter-p-lotter letter-dp-letter
succ->pred pred-)suce
right->right left-)left

7. The diagonal competition is gone. In contrast to
the previous problem, diagonal correspondences
(representing the view that the strings have the same
alphabetic order, but opposite spatial directions) are as
strong as the vertical correspondences (representing the
view that the strings are read in the same spatial
direction, but with alphabetic direction reversed). Both
these views are reasonable, though only one can exist
at a ime. The diagonal mapping lost only because of
an unlucky throw of the dice. The compatible
correspondence (from C to parameter-letter P) has been
built, completing the vertical mapping.

606

[Replace rmost letter by successor of rmost letter i

— =

= = -
= =

- =

FAEAE IR 7 -

lwost->lwost rwost-Ireost
letter-p-letter letter->p-letter
rucc-pred pred->succ
right->right left->laft

8. A rule expressing the change in the first line has
been constructed (the very same one as was constructed
in the first problem). But note that if it were applied
directly to ssrrqqpp, it would yield the rigid and
unappealing answer ssrrqqpq; therefore, it will have
to be translated.

Another attempt is being made to construct a
diagonal mapping (here between the A and the
parameter-letter P). If it were successful, then the two
existing correspondences would be destroyed.

HOFSTADTER AND MITCHELL

[meplace rmost letter by successor of rmost letter |

[Itphcs rwost letter by successor of rmost letter |

T O~

b -2 a b d
.

o5
\/"—\/;:‘{*

s R Q P
(;II_TI_—H"I--> [sl c)faalfe el-—>e s =z aqoo f
Iaost->lnost reost->racst leost->lwost reost-drwoxt l
letter-yp-letter letter-dp-letter ettor-p-letter letter-)p-letter
succ-)prad pred->suce fucc-pred pred-)succ
right->right loft->left right->right left-3loft

I Replace rmost parameter-letter by predecessor

Replace rwost parameter-letter by predecessor
of rmost parameter-letter

of rmost parameter-letter

9. The rule has been translated according to the
translation recipes embodied in the slippages
underlying the correspondences.

10. The answer ssrrqqoo has been created according
to the translated rule. If the diagonal correspondences
had won, the rule would have been "Replace the
leftmost parameter-letter by the successor of the
leftmost parameter-letter”, yielding answer ttrrqqpp.

These runs demonstrate Copycat's current capabilities; solving the subtler analogy problems
mentioned above will require some additions to the architecture. Our plans for future work are
discussed in Hofstadter, Mitchell, & French (1987) and in Mitchell (1988). We are also testing the
generality of our approach by using similar architectures in different domains (Hofstadter, Mitchell,
& French, 1987; Meredith, 1986). Comparisons between Copycat and other models of
analogy-making (especially work by Gentner, 1983 and Falkenhainer et al., 1986, and by Holyoak
and Thagard, 1987) are given in Hofstadter, Mitchell, & French (1987) and in Mitchell (1988).

Acknowledgements
We thank Robert French for many important contributions to this project. This research has been supported by a
grant from the University of Michigan, a grant from Mitchell Kapor, Ellen Poss, and the Lotus Development
Corporation, a grant from Apple Computer, Inc., and grant DCR 8410409 from the National Science Foundation.

References

[1] Erman, L.D., F. Hayes-Roth, V. R. Lesser, & D. Raj Reddy (1980). The Hearsay-II speech-understanding
system: Imeg-ranng knowledge to resolve uncertainty. Computing Surveys, 12(2), 213-253.

[2] Falkenhainer, Brian, Kenneth D. Forbus, & Dedre Gentner (1986). The structure-mapping engine. In
Proceedings of the American Association for Artificial Intelligence. Los Altos, CA: Morgan Kaufmann.

[3] Gentner, Dedre (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7(2).

[4] Hofstadter, Douglas R. (1984b). The Copycat project: An experiment in nondeterminism and creative analogies
(AI Memo #755). Cambridge, MA: MIT Al Laboratory.

(5] Hofstadter, Douglas R. (1985). Analogies and roles in human and machine thinking. In Metamagical Themas
(pp. 547-603). New York: Basic Books.

[6] Hofstadter, Douglas R., Melanie Mitchell, & Robert French (1987). Fluid concepts and creative analogies: A
theory and its computer implementation. Technical Report 10, Cognitive Science and Machine Intelligence
Laboratory, University of Michigan, Ann Arbor, Michigan.

[71 Hofstadter, Douglas & Melanie Mitchell (1988). Concepts, analogies, and creativity. To appear in Proceedings

of the Canadian Society for Computational Studies of Intelligence. Edmonton: Univ. of Alberta.

[8] Holyoak, Keith J. & Paul Thagard (1987). Analogical mapping by constraint satisfaction. Manuscript
submitted for publication.

[9] Meredith, Marsha J. (1986). Seek-Whence: A model of pattern perception. Unpublished doctoral dissertation,

Indiana University, Computer Science Department, Bloomington, Indiana.
[10] Mitchell, Melanie (1988). A computer model of analogical thought. Unpublished thesis proposal, University
of Michigan, Computer Science Department, Ann Arbor, Michigan.

607

	cogsci_1988_601-607

