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OR I G I NA L ART I C L E
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Abstract
Predictive coding (PC) has been suggested as one of the main mechanisms used by brains to interact with complex
environments. PC theories posit top-down prediction signals, which are compared with actual outcomes, yielding in turn
prediction error (PE) signals, which are used, bottom-up, to modify the ensuing predictions. However, disentangling
prediction from PE signals has been challenging. Critically, while many studies found indirect evidence for PC in the form
of PE signals, direct evidence for the prediction signal is mostly lacking. Here, we provide clear evidence, obtained from
intracranial cortical recordings in human surgical patients, that the human lateral prefrontal cortex evinces prediction
signals while anticipating an event. Patients listened to task-irrelevant sequences of repetitive tones including infrequent
predictable or unpredictable pitch deviants. The broadband high-frequency amplitude (HFA) was decreased prior to the
onset of expected relative to unexpected deviants in the frontal cortex only, and its amplitude was sensitive to the
increasing likelihood of deviants following longer trains of standards in the unpredictable condition. Single-trial HFA
predicted deviations and correlated with poststimulus response to deviations. These results provide direct evidence for
frontal cortex prediction signals independent of PE signals.
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“Prediction is very difficult, especially if it’s about the future”
Niels Bohr

Introduction
Making predictions about upcoming events is a crucial brain
function. Predictive coding (PC) theories postulate that the
brain iteratively optimizes an internal model of the environ-
ment based on sensory inputs (Rao and Ballard 1999; Bastos
et al. 2012; Lee and Noppeney 2014; Heilbron and Chait 2018)
and generates prediction error (PE) signals if predictions are
violated (Winkler and Schröger 2015), to improve the future
interaction with the environment. Most PC schemes suggest
separate prediction and PE signals/neurons, but separating the
2 in practice has proved challenging (for a comprehensive
introduction and review, see Heilbron and Chait (2018)). One
important reason is that most evidence for an anticipatory pre-
event prediction comes from the ultimate PE signals, elicited
after the (un)predicted event has occurred. Hence, recording
predictive signals prior to the onset of the stimuli would be
strong evidence for prospective, active predictions.

A critical question is also whether predictions are formed
automatically (by default) even when the stimuli are not
attended. Here, we utilized the high-temporal and -spectral res-
olution of direct cortical recordings from subdural ECoG electro-
des to compare frontal and temporal prediction signals in 5
patients exposed with trains of task-irrelevant and meaning-
less auditory stimuli in 2 conditions, while attending a visual
slide show. The conditions differed in the predictability of devi-
ation from repetitive background stimuli. In “regular”
sequences, every deviant followed exactly 4 standards, whereas
in “irregular” sequences, deviants were randomly embedded in
trains of standard stimuli.

In a previous report, we concentrated on poststimulus activ-
ity variations as a response to fully predictable and unpredict-
able deviants (i.e., on the PE) using the same data set
(Dürschmid et al. 2016). Here, we show that in frontal cortex
modulation of prestimulus broadband high-frequency ampli-
tude (HFA) heralds ensuing deviants and correlates with the
poststimulus PE signal. In contrast, and commensurate with
poststimulus activity, prestimulus activity in temporal cortex is
insensitive to sequence statistics but reflects only the immedi-
ate history.

Methods
Patients

Five epilepsy patients (mean age 33, SD = 9.23) undergoing pre-
surgical monitoring with subdural electrodes participated in
the experiment after providing their written informed consent.
Experimental and clinical recordings were taken in parallel.
Recordings took place at the University of California, San
Francisco (UCSF) and were approved by the local ethics com-
mittees (“Committee for the Protection of Human Subjects at
UC Berkeley”). The analysis of the poststimulus effects from
these patients with the same data set was previously reported
by Dürschmid et al. (2016).

Stimuli

Participants listened to stimuli consisting of 180ms long (10ms
rise and fall time) harmonic sounds with a fundamental frequency
of 500 or 550Hz and the 3 first harmonics with descending

amplitudes (−6, −9, −12dB relative to the fundamental). The sti-
muli were generated using Cool Edit 2000 software (Syntrillium).
The stimuli were presented from loudspeakers positioned at the
foot of the subject’s bed at a comfortable loudness.

Procedure

While reclined in their hospital bed, participants watched an
engaging slide show while sound trains were played in the
background. Sound trains included high-probability standards
(P = 0.8; f0 = 500Hz) mixed with low-probability deviants (P =
0.2; f0 = 550Hz) in blocks of 400 sounds, with a stimulus onset
asynchrony (SOA) of 600ms. In different blocks, the order of
the sounds was either pseudorandom, with a minimum of 3
standard tones before a deviant (irregular condition), or regular,
such that exactly every fifth sound was a deviant (Fig. 1A).
Thus, under the regular condition, standards and deviants
were fully predictable, whereas under the irregular condition,
exact prediction was not possible.

Data Recording

The electrocorticogram (ECoG) was recorded at UCSF using 64
platinum–iridium electrode grids arranged in an 8 × 8 array
with 10mm center-to-center spacing (Ad-Tech Medical
Instrument Corporation; see Fig. 2 for grid location). Grids were
positioned based solely on clinical needs. Exposed electrode
diameter was 2.3mm. The data were recorded continuously
throughout the task at a sampling rate of 2003 Hz.

Preprocessing

We used Matlab 2013b (The Mathworks) for all offline data pro-
cessing. All filtering were done using zero phase-shift IIR filters.
We excluded channels exhibiting ictal activity or excessive
noise from further analysis. In the remaining “good” channels,
we then excluded time intervals containing artifactual signal
distortions such as signal steps of pulses by visual inspection.
Finally, we rereferenced the remaining electrode time series by
subtracting the common average reference
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calculated over the n good channels c from each channel time
series xc. The resulting time series were used to characterize brain
dynamics over the time course of auditory stimulus prediction.
For each trial (−1 to 2 s around stimulus onset—sufficiently long
to prevent any edge effects during filtering) we band-pass filtered
each electrode’s time series in the broadband high frequency
range (80–150Hz; see Supplementary Material). We obtained the
analytic amplitude ( )A tf of this band by Hilbert-transforming the
filtered time series (HFA). We smoothed the HFA time series such
that amplitude value at each time point t is the mean of 10ms
around each time point t. We then baseline-corrected by sub-
tracting from each data point the mean activity of the −700 to
−600ms preceding the stimulus onset (i.e., 100ms prior to trial
N− 1) in each trial and each channel.

Prestimulus time series of HFA were used for the following
analysis steps (explained in detail in the following). We first
parameterized the prediction of upcoming stimuli as the inter-
action of Stimulus type (standard, deviant) and Block type (reg-
ular, irregular) using a time-resolved ANOVA (“I—Estimation of
Prediction”). Next, we assessed the involvement of frontal or
temporal cortices in this prediction effect (“II—Comparison
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Between Temporal and Frontal Cortices”). Finally, we tested for
an increasing predictability of deviants under the irregular con-
dition following longer trains of standards (“III—Increase in
Predictability as a Function of Train Length”).

I—Estimation of Prediction

Given the fixed repetition of 4 standards followed by a deviant
under the regular condition, the occurrence of both standards
and deviants should be predictable. We assumed that in areas
with predictive activity, the activity P prior to (expected) devi-
ants should be different from the brain activity prior to fre-
quent standards:

≠P Pstandard deviant

Conversely, since under the irregular condition the system
does not know a priori which stimulus will be heard the most
frequent class (standard tone) is predicted, and, as a result, the
activity P prior to the standards and deviants is equal:

≈P Pstandard deviant

Statistically, the difference between conditions can be
expressed as an effect of interaction using a 2-way ANOVA
with the factors stimulus type (upcoming standard vs. upcom-
ing deviant) and block type (regular vs. irregular), with the stim-
ulus type effect expected to be larger in the regular than
irregular condition. We ran this 2-way ANOVA for each electrode
(with trials as random variable), at every time point, with HFA as
the dependent variable. This leads to 3 F-value time series
(2 main effects and one interaction: Fstimulus type, Fblock type,
Finteraction) for each channel with the Finteraction capturing the pre-
diction effect. The level of significance was corrected for multi-
ple comparisons as described below.

Only deviants following the third and the fourth standard in a
row (S3 and S4, respectively; see Supplementary Material for a full
list of trials subjected to analysis) under the irregular condition
were included in the analysis. All deviants following S5,…,SN
were excluded (see Fig. 1 and Supplementary Material). This
results in a pool of deviant trials which consist of regular deviants
which always occurred after S4 and irregular deviants following
S3 and S4. Note that due to the design of the quasi-random
sequence under the irregular condition, with the constraint of at
least 3 standards before a deviant, the probability of deviants
occurring after S3 and S4 was nearly identical (0.17 and 0.2 respec-
tively; see discussion of the hazard function in the following).

The pool of standard trials included only S3 and S4 trials
under both the regular and irregular conditions. We did not

include the first and second standards after a deviant, since
during the prestimulus interval of S1 a deviant is presented and
the prestimulus interval of S2 might still be influenced by the
preceding deviant due to the short ISI. We excluded S5,…,SN
trials under the irregular condition since we hypothesized that
the occurrence of deviants would be increasingly expected due
to the “hazard function.” That is, we hypothesized that while
longer trains of standards under the irregular condition
increase the local probability of the standard, the occurrence of
deviants also becomes more likely: since a deviant has not
occurred for an extended sequence of events, its likelihood
increases. By not including irregular deviant following S5,…,SN
we also made the conditions more comparable for analysis, as
under the regular conditions deviants never appeared after 5 or
more standards. We focused on high-frequency broadband
HFA, which in our previous study showed earlier poststimulus
deviation signals than low-frequency ERPs (Dürschmid et al.,
2016) and differentiated between fully predictable and unpre-
dictable deviation in frontal and temporal cortices (for predic-
tion signal in other bands of the time–frequency spectrum see
Supplementary Material).

II—Comparison Between Temporal and Frontal Cortices

Principal component analysis
As noted in step I, the Finteraction captures the prediction effect.
We tested whether the Finteraction effect is localized to the tem-
poral or the frontal cortex in the following way. The Finteraction
time series were calculated in all channels separately over fron-
tal and temporal regions of interest (ROIs). A principal compo-
nent analysis (PCA) was used to find the course of a common
Finteraction across time, accounting for the highest variance, sep-
arately within the set of frontal and temporal channels.
Channels loading highly on the first principal component are
those that exhibit the strongest variation in terms of interac-
tion amplitude across time.

Data reduction
We chose the channels for which the Pearson correlation r with
the principal component exceeded the 75th percentile of all
positive r-values. We set this level as a trade-off between a
higher statistical power of a smaller number of channels and a
stronger generalization across the cortex with a higher number
of channels. We averaged the Finteraction-values in these chan-
nels and checked whether the averaged Finteraction-values in
each region exceeded the empirically determined threshold
derived from a surrogate distribution. This surrogate distribution

Figure 1. Paradigm. Participants watched a slide show while hearing passively sequences of sounds. High-probability standards mixed with low-probability deviants

were presented either unpredictably or were fully predictable (exactly every fifth sound was a deviant). Standards (S1−n) are numbered based on their position relative

to the previous deviant. Only standards following at least 2 standards were used for analysis (marked by rectangles)
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Figure 2. Time-resolved analysis of variance. (A) Frontal (gray) and temporal (green) regions of interest (ROIs). (B) Baseline-corrected HFA modulation prior to both

stimulus types under both conditions (shaded areas denote the standard error across channels). (C) Mean F (ME—main effects, IE—Interaction effects) time series of

channels loading highly on the frontal (gray frame) and temporal (green frame) Finteraction first principal components. The horizontal dashed blue line indicates the

critical Finteraction value based on permutation. The shaded area in the left panel indicates the temporal interval of significant interaction. (D) Finteraction time series for

frontal and temporal electrodes (indicated by arrows) together with the t-values (black line) of the difference between the 2 ROIs in the degree of Type X Block interac-

tion. Frontal cortex shows stronger interaction before stimulus onset. (E) Correlation between prestimulus and poststimulus HFA across channels over the frontal

and temporal cortices. Left: Pearson’s correlation values for each of the 2 ROIs. The dashed line gives the 99% confidence interval of the surrogate distribution.

Middle: covariation of prestimulus and poststimulus amplitude of electrodes over the frontal ROI. Each dot represents one electrode. The blue line shows the linear

fit to the data. Right: covariation of prestimulus and poststimulus amplitude of electrodes over the temporal ROI. Only in the frontal ROI pre and poststimulus ampli-

tude are significantly correlated.
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of the interaction effect was constructed by randomly reassign-
ing the labels (standard, deviant, regular, irregular) to the single
trials in 1000 permutations for each channel. This leads to 1000
surrogate Finteraction time series. Significance criterion was an
Finteraction-value with P < 0.01 within the surrogate distribution of
all Finteraction values. We next compared Finteraction effects
between frontal and temporal electrodes with an unpaired t-test
at each time point between the 2 groups of electrodes (frontal
vs. temporal). To determine significance, in 1000 runs we ran-
domly reassigned the labels (temporal vs. frontal) and applied
the unpaired t-test.

Group (within-subject) analysis
In the first analysis, we have chosen channels loading highly
on the first principal component which are those that exhibit
the strongest variation in terms of interaction amplitude across
time, regardless of which subject they were taken from. As sta-
tistical significance in the analysis across electrodes might be
driven by single subjects, we verify that the results presented
are valid at a group level. To that end, we repeated the above
stages at the single-subject level, using a 2-step procedure
(common in fMRI studies). At the first level, we ran the above
ANOVA in each subject separately, across trials. Then, as done
in the previous section, we ran a PCA on the Finteration time
series for each subject within region, maintained the channels
with the highest loading on the first PC, and averaged their
Finteraction time series. This led to 2 time series for each subject,
one for the temporal channels and one for the frontal. Then,
we ran a second level analysis to determine, at each time point
and for each region, whether the Finteraction exceeded the signifi-
cance level, at the group level (i.e., with subjects as random
variable). Significance was determined relative to a
permutation-derived surrogate distribution of the interaction
effect. The distribution was constructed by randomly reassign-
ing the labels (standard, deviant, regular, irregular) to the single
trials in 1000 permutations for each channel. This leads to 1000
surrogate Finteraction time series. Significance criterion was an
Finteraction-value with P < 0.01 within the surrogate distribution
of all Finteraction values.

III—Increase in Predictability as a Function of Train
Length

Throughout the experiment, we pseudorandomly varied the
train length of standards under the irregular condition. This
resulted in standard trains of 3–8 standards before deviants.
We directly tested whether predictability varies as a function of
train length under the irregular condition, congruent with a
hazard function (the probability of a deviant increases from 0
after 1 and 2 standards, to 0.17 (1/6) after 3 consecutive stan-
dards, and gradually increases to 1 after 8 consecutive stan-
dards have occurred in a row). We hypothesized that if HFA
modulation correlates with predictability of the next stimulus,
then longer standard trains would result in stronger modula-
tion of HFA before the occurrence of deviants. Specifically, we
correlated the HFA preceding deviants with the length of the
standard train before deviant under the irregular condition.
While in the previous analysis, we only used deviants following
S3 and S4, here all deviants entered the analysis. To assess sig-
nificance, Pearson’s correlation coefficient of each channel was
compared against a surrogate distribution. This surrogate dis-
tribution was constructed by randomly reassigning the actual
train lengths of single-trial predeviant HFA values in 1000 runs.

For each channel, the confidence intervals (CI; 99.5%) of a nor-
mal distribution were determined.

Results
Comparison Between Temporal and Frontal Cortices

We studied 287 channels across all subjects, of which 120 were
centered over frontal and temporal cortices. HFA was subject to
a Stimulus Type (predeviant, prestandard) × Block Type (regu-
lar, irregular) ANOVA at every time point from −700 to +200ms
and we evaluated the interaction term (Finteraction) as a signa-
ture of predictive activity, separately for all frontal (Nfrontal = 54)
and all temporal channels (Ntemporal = 66; Fig. 2A). Within each
region, we kept the channels loading highly on the first tempo-
ral principle component of the Finteraction, time series and com-
pared their mean with the empirical surrogate distribution
(Step I of data analysis in methods; Fig. 2C). Frontal HFA (Nelec = 7)
activity showed significant Finteraction values (maximal Finteraction =
7.76 P < 0.00001, at −51.4ms) with neither a significant effect of
stimulus type (maximal Fstimulus type = 2.44) nor of block type (max-
imal Fblocktype = 3.36) (left panel in Fig. 2C). Temporal activity (Nelec

= 10) did not show significant F-values for any of the 3 effects
(maximal Fstimulus type = 3.37; maximal Fblock type = 2.02; maximal
Finteraction = 3.47) (right panel in Fig. 2C). The high Finteraction-values
in frontal cortex correspond in time with a decrease in HFA from
−100ms before and until the onset of deviants, compared with the
onset of standards, in the regular blocks (where deviants and stan-
dards were predictable) but not in the irregular blocks (Fig. 2B, see
Supplementary Material for parallel results at a single-trial level).
Finteraction effects were significantly larger in frontal than temporal
sites (t15 = 6.49, permutation based P < 0.00001 at −11ms; Fig. 2D).
These results were confirmed at the group level (Supplementary
Fig. 2): Finteraction-values in the frontal lobe exceeded the empirical
significance threshold (Fcrit = 4.2) between −0.099 and 0.02 s (Fmax =
6.8) prior to the onset of the deviants. Finteraction averaged across
this interval were significantly different between frontal and tem-
poral cortices (P < 0.05; signed-rank test (for paired samples)).

Correlation Between Prestimulus and Poststimulus
Responses

Previously, we found that postdeviant HFA was reduced under
the regular condition compared with the irregular condition in
frontal electrodes (Dürschmid et al. 2016). Since we now found
that predictable deviants under the regular condition are her-
alded by a prestimulus HFA decrease, we tested if the 2 phe-
nomena are correlated. First, both in the frontal (Nelectrodes = 54)
and the temporal ROIs (Nelectrodes = 66) we correlated HFA pre-
ceding stimulus onset (average across −100 to 0ms) with the
amplitude following stimulus onset (average across 0–300ms)
across channels. The 2 resulting Pearson’s correlation values
were tested against a surrogate distribution. This surrogate dis-
tribution was constructed by randomly assigning the prestimu-
lus values of each channel with poststimulus values from
another channel in 1000 iterations. Based on the distribution of
r-values in this permutation analysis, the critical r-value denot-
ing statistical significance was r = 0.5. Prestimulus amplitude
correlated with poststimulus amplitude in frontal cortex (r =
0.83; P = 0.000002) but not in the temporal cortex (r = 0.28; see
Fig. 2E). Next, we tested whether the prestimulus/poststimulus
relation is also true at a single-trial level. Hence, we correlated
within each electrode the average amplitude in the prestimulus
and poststimulus interval across trials. Each individual
Pearson’s r was compared against a surrogate distribution and
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excluded if smaller than the critical value (rcrit = 0.1). This sur-
rogate distribution was constructed by randomly reassigning
the prestimulus value of one trial to poststimulus value of
another trial by randomly permuting the prestimulus values in
1000 iterations. On average, electrodes in the frontal cortex
showed higher r-values than temporal ones (frontal: 0.39; tem-
poral: 0.28; t102 = 3.9, P = 0.0002).

Increase in Predictability as a Function of Train Length

The train length of standards under the irregular condition var-
ied pseudorandomly, allowing us to test whether prestimulus
predictive activity varies gradually as a function of train length.
We surmised that 2 effects could be operative. Temporally local
effects suggest that the probability of a standard tone increases
the more standard tones which are played in a row. In contrast,
using a more global strategy, the so-called “hazard function”
suggests that, given that deviations will happen eventually,
expectation of a deviant increases the longer it is since the last
deviation. To test whether and where such effects prevail, we
correlated predeviant HFA with train length of standards before
deviants. Figure 3 shows that the direction of correlation
between HFA and standard train length was different between
temporal electrodes, showing mostly positive correlations, and
frontal electrodes, showing mostly negative correlations.
Individually, only the negative correlations in frontal channels
reached the permutation critical r-values of rcrit = ±0.19 (white
dots in Fig. 3). Considering that the analysis of the regular ver-
sus irregular condition indicated that a decrease in HFA indi-
cates proactive prediction of a deviant, these results suggest
that frontal electrodes “apply” predictions even under the irreg-
ular condition based on the more global hazard function
strategy.

Discussion
PC theories suggest that the brain continuously uses available
information to predict forthcoming events and reduce sensory
uncertainty (Arnal and Giraud 2012). However, the evidence
supporting this notion comes mainly from postevent PE find-
ings (Summerfield et al. 2008; Fogelson et al. 2009; Alink et al.
2010; den Ouden et al. 2010; Todorovic et al. 2011; Winkler and
Czigler 2012; Sanmiguel et al. 2013; Bendixen et al. 2014, 2015;
Dürschmid et al. 2016), providing only indirect evidence for pre-
diction, since prediction-based neural activity should precede a
predicted event. Here, we provide direct evidence for the

prediction of rare deviant events manifested by prestimulus
HFA modulation, suggesting an automatic anticipation of the
upcoming deviant.

Regular, and thus predictable, deviations were preceded by
HFA decrease exclusively in the lateral frontal cortex, observed
at both the group and single-trial levels. This complements our
previous results, showing that lateral frontal (but not temporal)
sites show reduced postevent PE signals to predictable com-
pared with unpredictable stimuli (Dürschmid et al. 2016).
Moreover, the predictive prestimulus power reduction corre-
lated with the postdeviant HFA reduction, across both channels
and trials, indicating a link between prestimulus HFA decrease
and reduced response to predictable deviants (i.e., better pre-
diction leading to less PE). Finally, we found evidence that the
frontal but not the temporal cortex followed the statistics of
the irregular sequence as well (the “hazard rate”). In sum, these
results provide evidence for automatic generation of proactive,
anticipatory processes in frontal cortex, which may provide the
basis for reduced orienting response to predictable events in an
unattended stream. More generally, the results corroborate a
hierarchy of prediction in the human brain (Dürschmid et al.
2016). This hierarchy is in line with the notion that early stages
of information processing is represented based on bottom-up
signals, whereas in higher levels of cortical processing devia-
tions from expectation are registered while predictable compo-
nents are “filtered out” (Heilbron and Chait 2018).

The Frontal Cortex Follows Complex Statistics of the
Input

The comparison between predictable versus irregular deviants
pointed to HFA reduction as a signature for predicting a devia-
tion. This observation allowed us to investigate whether antici-
patory predictions are generated during irregular, random
sequences as well. We found that in frontal cortex, prestimulus
HFA decreased as the train of uninterrupted standards became
longer. Considering our first conclusion that HFA reduction
reflects increasing likelihood of a deviant, this pattern matches
well the so-called “hazard function,” in which an imminent
event becomes more likely to occur the longer it has not
occurred. This suggests that the frontal cortex predictive capac-
ity is not limited to highly structured sequences, but rather,
that it generates complex predictions based on sequence prob-
abilities, even in a task-irrelevant irregular stream of events.
This progressive increase in deviant prediction resembles the
progressive increase in the contingent negative variation (CNV)
as a function of distance from the last deviant reported by
Chennu et al. (2013), although the CNV effect in Chennu et al.
(2013) was only seen when subjects attended the stimuli (espe-
cially deviants), whereas in our case stimuli were task irrele-
vant. The temporal cortex in our study showed a trend toward
an opposite effect with an increased prestimulus HFA activity
the longer the standard train was. This is consistent with the
notion that temporal cortex is based on recent history, such
that with longer standard trains, “more of the same” (i.e.,
another standard) is expected.

Previous Attempts to Corroborate Proactive Prediction

Several studies approached the question of proactive prediction
by investigating stimulus omissions (see Heilbron and Chait
(2018) for an up-to-date review and discussion). Most omission-
locked responses can be considered as violations of a general
prediction for the occurrence of a stimulus at a given time

Figure 3. Prefrontal electrodes reflect the hazard function in irregular

sequences. Each circle depicts channel positions with the color coding

Pearson’s correlation coefficient between train length and predeviant HFA.

Channels with a white dot show a statistically significant correlation. HFA sig-

nificantly decreased after longer trains of standards in frontal cortex, while

HFA tended to increase with longer trains of standards in temporal cortex.
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(a temporal prediction). Sanmiguel et al. (2013) had subjects
generate environmental sounds by pressing a button. EEG
responses to occasional sound omissions were found only
when the same sound was repeatedly elicited by the button
presses and was thus predictable due the subjects’ intention
which does not speak for nonintentional automatic prediction.
In a passive task with visual distraction, Bendixen et al. (2015)
presented sequential tone pairs in rapid succession. The intra-
pair frequencies were identical, whereas the frequencies
altered between pairs. Omission-locked responses were found
when the identity of the omitted stimulus could be predicted
(because it was the second sound in the pair), but not when
only its timing could be predicted (because it was the first in
the pair). However, subjects may have perceived each pair as
an auditory object, and the omission of the second sound in
the pair, which elicited the critical omission response, might be
a post hoc response to a duration change rather than an antici-
patory response.

Rather than looking at poststimulus or postomission
responses, our results address the prestimulus time, a time
window at which activity modulation has to be ascribed to pre-
diction per se since no error could have been computed.
Similarly, Kok et al. (2017) decoded from MEG recordings the
orientation of visual grating stimuli, which could be predicted
by a preceding auditory stimulus (valid visual stimulus) or not
(invalid visual stimulus). Subtracting the signal of valid from
invalidly cued gratings revealed differences before stimulus
presentation, suggesting the pre-activation of an anticipated
sensory template. Grisoni et al. (2017) found EEG evidence for
prestimulus anticipatory motor preparation to specific action-
verbs predicted by meaningful sentences, but the automatic
nature of this prediction is not clear as subjects likely listened
to the meaningful sentences. While these studies provide con-
verging evidence for proactive prediction, using MEG or EEG
data, the source and type of signal of this predictive activity
remain unclear. Taking the advantage of the high signal-to-
noise ratio, and the improved spatial resolution of the ECOG
data, our findings show that predictable deviants are preceded
by frontal cortex HFA decrease not seen in sensory cortex.

Implications for Models of the Poststimulus Mismatch
Response

How is prestimulus modulation of the HFA signals related to
accounts of the mismatch response elicited by the deviant?
Two mechanisms differing with respect to the degree of mem-
ory involvement have been proposed by Fishman and
Steinschneider (2012). Poststimulus effects like the mismatch
negativity may involve different states of neural adaptation
(stimulus-specific adaptation (Ulanovsky et al. 2003; Farley
et al. 2010)) due to repeated presentation. This creates a model
of the recent history, and under an assumption of stationarity,
provides a reasonable prediction of future events (May and
Tiitinen 2010). Other models (Näätänen et al. 2005) suggest that
beyond adaptation, stimulus repetition increases the absolute
excitability of neurons tuned to values not included in the
repeated stimulus. By both accounts, new stimuli elicit a stron-
ger response if not congruent with the current model, which
generates a PE signal. However, our observation of predictive
predeviant modulation of activity cannot be explained by either
mechanism. First, we compared the response with deviants fol-
lowing a similar number of standards in the random and pre-
dictable conditions, and overall deviants and standards had the
same probability under both conditions. Thus, either adaptation

or lateral excitation should have been similar across conditions.
Second, since the effect occurred before the deviant, it cannot be
due to activation of nonadapted/excited neurons sensitive to the
pitch of the deviant or by a process of comparison. Instead, the
results provide evidence of high-level prediction, modifying the
poststimulus comparison between the actual input and the
ongoing prediction.

Implications for Models of PC

Dynamic causal modeling (DCM) of EEG or MEG studies sug-
gested a hierarchical feedforward-feedback cascade in which
the inferior frontal cortex sits at the top, providing top-down
predictions to (and receiving PE signals from) the superior tem-
poral gyrus, which in turn provides top-down predictions to
(and receives PE signals from) the early auditory cortex (Garrido
et al. 2009). Recently, Phillips et al. (2015) and Phillips et al.
(2016) validated the models, originally tested on EEG/MEG data,
with ECoG data from 2 patients. However, Phillips et al.’s mod-
els suggested that the prediction signal affecting the IFG is lim-
ited to temporal deviations (duration deviations and gaps in
their study), but not pitch, intensity, or location deviations,
whereas our findings showed clear effects of predictability in
the ventral frontal cortex when the deviation was in pitch.

Our prestimulus predictive effects were not limited to tem-
poral predictions. In fact, suppression of HFA indexed both the
identity (standard or deviant) of the next stimulus in addition
to its timing. Moreover, this was observed even though all sti-
muli were task-irrelevant, meaningless, did not require a
response, and had no reward value. Previous findings of antici-
patory response typically involved active preparation for an
upcoming imperative stimulus, reflected in the CNV recorded
on the scalp (Trillenberg et al. 2000; Janssen and Shadlen 2005),
listening to meaningful verbal material (Grisoni et al. 2017) or
reward-prediction signals of different types (Fiorillo et al. 2003).
The current finding provides evidence for ongoing, task-
independent, anticipatory predictive signals, operative even
before the stimulus occurred.

Previous studies argued that predictions and PE signals are
compartmentalized across cortical layers and segregated by
spectral content. They suggested that predictions are generated
and fed-back by deep (infragranular) layers of the cortex at rela-
tively lower frequencies of alpha/beta, whereas PE are fed for-
ward from superficial (supragranular) layers at high (gamma)
frequencies (Bastos et al. 2012, 2015). The fact that our proac-
tive prediction signal was found in the HFA modulation may
seem at odds with this model. However, for several reasons we
remain agnostic about how the HFA modulation relates to the
more detailed, laminar models of PC. First, the HFA signal
should not be mistaken for any narrowband power modulation.
Multiple studies using intracranial signals, as well as computa-
tional modeling, suggested that the high-frequency broadband
signal is a good correlate of population neural firing rate
(Mukamel et al. 2005; Liu and Newsome 2006; Manning et al.
2009; Miller, Sorensen et al. 2009; Ray and Maunsell 2011), mak-
ing HFA modulation the preferred proxy for asynchronous
(nonperiodic) areal activation in ECOG studies (Miller, Sorensen
et al. 2009; Privman et al. 2013; Miller et al. 2014; Coon and
Schalk 2016; Kupers et al. 2018). That is, although we parame-
terize this signal using frequency decomposition, no oscillation
(i.e., narrowband periodic activity) is implied. In fact, as argued
by Miller and colleagues, the measured HFA may reflect a fre-
quency nonspecific power increase across the spectrum, while
changes in the lower frequencies are masked by stronger
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oscillatory activity in the lower ranges (Miller et al. 2007; Miller,
Zanos et al. 2009). Second, our knowledge about the relation-
ship between activity at specific laminae and how they are
reflected in the mesoscopic measurement of the surface elec-
trode is highly limited. Third, whereas the columnar model of
PC suggested by Bastos et al. (2012, 2015) specifies some of the
components (feedback predictions, feedforward PEs) in fre-
quency content terms, it does not provide that detail about the
dynamics of the interlaminar connections (e.g., projection of
“expectation neurons” in supragranular layers to deep layers
forming the predictions). In fact, the columnar organization vis
a vis components of the PC model is still debated (Spratling
2010; Heilbron and Chait 2018). Fourth, it is not clear whether
the prestimulus HFA modulation reflects the same prediction
signal specified in PC models, or the outcome of this predictive
signal (e.g., inhibition of firing rate in anticipation of a deviant).
Specifically, current PC models do not account for long-term
prospective predictions across hundreds of milliseconds as we
see here. Thus, we believe that any speculations from our data
to these models would be premature.

Maintaining Parallel and Inconsistent Predictions

Under the PC framework, prediction signals should be trans-
mitted to lower nodes of the network, and PE signals should be
carried forward to higher nodes in the network, to allow modifi-
cation of the current model and influence the next prediction.
However, our findings challenge this simple information flow,
which must address multiple levels of possibly conflicting pre-
dictions (Pieszek et al. 2013). For instance, just prior to a deviant
in the regular condition, and also after a long train of standards
under the irregular condition, processes based on local effects
predict another standard, whereas predictions based on the
global statistics predict a deviant. In this situation, it seems
efficient to prevent PE signals elicited at the temporal (auditory)
cortex from propagating up the hierarchy and modifying a
veridical model of the environment. Similarly, it seems that the
prediction of an upcoming deviant based on global statistics,
present at the frontal cortex, does not propagate down the net-
work to mitigate the PE signal invoked by the expected deviant
in the temporal cortex (Schröger et al. 2015). Our results there-
fore suggest that the flow of information up and down the hier-
archy of the network is not as simple as gleaned from typical
DCM diagrams (Garrido et al. 2009; Phillips et al. 2015, 2016). We
speculate on the functional advantage of maintaining segre-
gated predictions. Specifically, maintaining predictions that
account for global regularities allows the prefrontal cortex to
efficiently direct attention only to unexpected events (Sussman
et al. 2003), whereas for the auditory cortex, detecting all local
changes is advantageous for parsing the auditory input into
meaningful chunks (e.g., in speech perception)

Relationship Between the Predictive Prestimulus
Activity and Attention

Previous selective attention studies have shown prestimulus
activation (increased firing rate or BOLD response) prior to task
relevant stimuli (Colby et al. 1996; Beck and Kastner 2009) and
deactivation prior to task-irrelevant stimuli (Langner et al.
2011; Rodgers and DeWeese 2014). Our study did not use a clas-
sic selective attention task but could be considered as involving
a competition between the primary task of viewing a slide
show, and the potential distraction caused by the auditory
stream, especially by deviant events. Thus, the HFA decrease

observed prior to an expected deviant could reflect the same fil-
tering mechanism previously observed during selective atten-
tion. Under this premise, the current results suggest that this
inhibitory anticipation can be generated selectively, and in pre-
dictive manner, in an unattended stream.

In sum, pre and poststimulus HFA responses reveal a
unique role for prefrontal cortex in utilizing global regularity to
control responses to deviant stimuli. Frontal HFA selectively
signals upcoming regular deviants with a decreased amplitude
prior to deviant onset. Subsequently, only unpredictable devi-
ants elicit a strong HFA response, putatively related to trigger-
ing an orienting response to an environmental perturbation. At
the same time, the sensory cortex continues to veridically
respond to any change in the stream. Our results highlight a
selective role of frontal structures in actively computing predic-
tions to better navigate the environment.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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