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RESEARCH

Associations between DNA methylation 
and BMI vary by metabolic health status: 
a potential link to disparate cardiovascular 
outcomes
Whitney L. Do1* , Steve Nguyen2, Jie Yao3, Xiuqing Guo3, Eric A. Whitsel4, Ellen Demerath5, Jerome I. Rotter3, 
Stephen S. Rich6, Leslie Lange7, Jingzhong Ding8, David Van Den Berg9, Yongmei Liu10, Anne E. Justice11, 
Weihua Guan12, Steve Horvath13, Themistocles L. Assimes14, Parveen Bhatti15, Kristina Jordahl16, 
Aladdin Shadyab2, Celina I. Valencia17, Aryeh D. Stein18, Alicia Smith19, Lisa R. Staimez18, Karen Conneely20 and 
K. M. Venkat Narayan18 

Abstract 

Background: Body mass index (BMI), a well-known risk factor for poor cardiovascular outcomes, is associated with 
differential DNA methylation (DNAm). Similarly, metabolic health has also been associated with changes in DNAm. 
It is unclear how overall metabolic health outside of BMI may modify the relationship between BMI and methylation 
profiles, and what consequences this may have on downstream cardiovascular disease. The purpose of this study was 
to identify cytosine-phosphate-guanine (CpG) sites at which the association between BMI and DNAm could be modi-
fied by overall metabolic health.

Results: The discovery study population was derived from three Women’s Health Initiative (WHI) ancillary stud-
ies (n = 3977) and two Atherosclerosis Risk in Communities (ARIC) ancillary studies (n = 3520). Findings were vali-
dated in the Multi-Ethnic Study of Atherosclerosis (MESA) cohort (n = 1200). Generalized linear models regressed 
methylation β values on the interaction between BMI and metabolic health Z score (BMI × MHZ) adjusted for BMI, 
MHZ, cell composition, chip number and location, study characteristics, top three ancestry principal components, 
smoking, age, ethnicity (WHI), and sex (ARIC). Among the 429,566 sites examined, differential associations between 
BMI × MHZ and DNAm were identified at 22 CpG sites (FDR q < 0.05), with one site replicated in MESA (cg18989722, in 
the TRAPPC9 gene). Three of the 22 sites were associated with incident coronary heart disease (CHD) in WHI. For each 
0.01 unit increase in DNAm β value, the risk of incident CHD increased by 9% in one site and decreased by 6–10% in 
two sites over 25 years.

Conclusions: Differential associations between DNAm and BMI by MHZ were identified at 22 sites, one of which was 
validated (cg18989722) and three of which were predictive of incident CHD. These sites are located in several genes 
related to NF-kappa-B signaling, suggesting a potential role for inflammation between DNA methylation and BMI-
associated metabolic health.

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  lwhitney16@gmail.com
1 Nutrition and Health Sciences Program, Laney Graduate School, Emory 
University, 1518 Clifton Rd, Atlanta, GA 30322, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-8977-9951
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13148-021-01194-3&domain=pdf


Page 2 of 12Do et al. Clinical Epigenetics          (2021) 13:230 

Background
Obesity rates continue to rise with obesity occurring in 
more than 41.1% of women in the USA in 2016 [1]. While 
obesity is most typically defined as body mass index 
(BMI) > 30 kg/m2, limitations in the use of BMI have been 
noted, including variation in associations with health 
outcomes by race/ancestry, physical activity, and age [2, 
3], as well as some reports finding no association between 
higher-risk categories (overweight and middle obesity) 
with mortality [4, 5]. These conflicting reports have moti-
vated several studies to examine whether differential phe-
notypes of obesity exist and whether examining BMI in 
isolation of additional metabolic health parameters is a 
sufficient metric of overall health.

A growing body of evidence has found heterogeneity 
in obesity, with some phenotypes exhibiting differential 
risk for cardiovascular outcomes. Metabolically healthy 
obesity (MHO) has been defined as obesity with less 
than two or three metabolic health risk factors. Some 
but not all studies have found MHO to be associated 
with reduced risk of cardiovascular outcomes com-
pared to metabolically unhealthy obesity (MUO) 
[6–11]. In a recent systematic review, MHO had a 
higher risk of cardiovascular events than metabolically 
healthy, normal weight participants (risk ratio [RR] 
1.45, 95% CI 1.20–1.70, reference metabolically healthy, 
normal weight), but had lower risk to metabolically 
unhealthy normal weight (RR 2.07, 95% CI 1.62–2.65, 
reference metabolically healthy, normal weight) and 
MUO individuals (RR 2.31, 95% CI 1.99–2.69, refer-
ence metabolically healthy, normal weight) [12]. These 
findings suggest that metabolic health status may dif-
ferentially influence the relationship between BMI and 
health outcomes. Examining the molecular underpin-
nings of this phenotype may guide our understanding 

of this epidemiological phenomenon by identifying 
the biological mechanisms which may be leading to a 
reduction in risk of health outcomes associated with 
obesity. Additionally, identifying biomarkers of MHO, 
particularly if they can identify individuals more likely 
to remain in MHO, would be advantageous for more 
targeted interventions.

Epigenetic mechanisms, such as DNA methylation 
(DNAm), are important biological features to exam-
ine in the context of chronic diseases such as obesity 
and metabolic health. Changes to DNAm can induce 
changes in gene expression in causal disease pathways 
potentially mediating or modifying differential health 
outcomes [13]. Obesity has been widely examined and 
shown to associate with prolific methylation changes in 
the blood and adipose tissue [14–16]. Similarly, meta-
bolic syndrome and metabolic health risk factors have 
been found to associate with differential methylation 
[17–21]. Indeed the mouse model which is used to rep-
resent MHO is developed from deletion of the BRD2 
gene, which is a primary epigenetic regulator of histone 
acetylation [22]. However, no studies have integrated 
these phenotypes to examine how BMI-associated 
methylation varies by metabolic health status. Particu-
larly since DNAm has been reported to mediate the 
relationship between obesity and increased cardiovas-
cular outcomes [23], evaluating the epigenome may 
provide insight into pathways contributing to the differ-
ences in outcomes. Thus, the purpose of this study is to 
examine whether BMI associates with methylation dif-
ferentially according to metabolic health status (Fig. 1).

Results
A summary of the methods is included in Fig. 2.

Keywords: DNA methylation, Metabolically healthy, Obesity, Epigenetics

Fig. 1 Conceptual framework research question. Abbreviations: BMI, body mass index
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Demographic characteristics of the cohorts are 
described in Table 1 for the three ancillary studies from 
the Women’s Health Initiative (WHI) including Epige-
netic Mechanisms of Particulate Matter-Mediated Car-
diovascular Disease (EMPC, aka AS315), the Integrative 
Genomics for Risk of Coronary Heart Disease and Related 
Phenotypes in WHI cohort (BAA23), and Bladder Can-
cer and Leukocyte Methylation (AS311) and the two 
ancillary studies from the Atherosclerosis Risk in Com-
munities study (ARIC) including European Americans 
(EA) and African Americans (AA). Overall, 7497 partici-
pants were included in the discovery analysis. To exam-
ine the differential impact of metabolic health status on 
BMI, linear regression models were used regressing the 
methylation β value on the interaction term for BMI 
and metabolic health status, adjusting for each higher-
level variable (BMI and metabolic health) and covariates. 

We conducted two epigenome-wide assocation study 
(EWAS) with metabolic health status defined dichoto-
mously (BMI × MH) and continuously (BMI x metabolic 
health Z-score [MHZ]). We identified no statistically sig-
nificant differential associations between cytosine and 
guanine nucleotide pair (CpG) methylation and BMI by 
dichotomized metabolic health status (BMIxMH). When 
metabolic health status was examined continuously 
(MHZ), 22 CpG sites were associated with BMIxMHZ 
(false discovery rate [FDR] q value < 0.05, Table 2; Fig. 3). 
For ease of interpretation, we described the direction of 
effect in the 22 significant sites in the models examining 
BMI × MH   (Additional file 1: Table S1). In 13 of the 22 
sites, an increase in BMI was associated with an oppo-
site direction of effect in the coefficient in metabolically 
healthy vs unhealthy individuals. In the replication analy-
sis in the Multi-Ethnic Study of Atherosclerosis (MESA), 

Fig. 2 Summary of the analyses. Abbreviations: WHI, Women’s Health Initiative; EMPC, Epigenetic Mechanisms of Particulate Matter-Mediated 
Cardiovascular Disease; BAA23, the Integrative Genomics for Risk of Coronary Heart Disease and Related Phenotypes in WHI cohort; AS311, Bladder 
Cancer and Leukocyte Methylation; ARIC, Atherosclerosis Risk in Communities study; BMI, body mass index; CHD, coronary heart disease; MESA, 
Multi-Ethnic Study of Atherosclerosis; GTP, Grady Trauma Project
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cg18989722 associated with BMIxMHZ (p < 0.05 in a con-
sistent direction, Additional file 1: Table S2). cg18989722 
inversely associated with BMI × MHZ. When examin-
ing BMI × MH in this site, every unit increase in BMI 
was associated with increased DNAm in metabolically 
healthy individuals and decreased methylation in meta-
bolically unhealthy individuals. We examined a gene 

ontology analysis of the 22 significant sites. However, no 
pathways were significantly enriched.

Given the known relationships between obesity and 
metabolic status and cardiovascular disease, we exam-
ined whether DNAm taken at baseline predicted incident 
myocardial infarction over 25  years in the WHI. After 
excluding individuals from WHI with a history of car-
diovascular disease, 3746 individuals remained (BAA23 

Table 1 Demographic characteristics of each ancillary study in the Women’s Health Initiative (WHI) and the Atherosclerosis Risk in 
Communities (ARIC)

Means [standard deviation (SD)] or proportions have been included

EMPC, epigenetic mechanisms of particulate matter-mediated cardiovascular disease; BAA23, the integrative genomics for risk of coronary heart disease and related 
phenotypes in WHI cohort; AS311, bladder cancer and leukocyte methylation; BMI, Body Mass Index; EA, European American; AA, African American

EMPC (n = 1833) BAA23 (n = 1977) AS311 (n = 167) ARIC EA (n = 1059) ARIC AA (n = 2461)

Clinical trial participant

 Yes 1833 1543 119 – –

 No 0 434 48 – –

Case/control status

 Case – 987 91 – –

 Control – 990 76 – –

Age mean (SD) 63.2 (7.1) 64.6 (7.1) 66.2 (7.2) 59.9 (5.4) 56.6 (5.9)

Sex

 Female 1833 1977 167 611 1574

 Male 0 0 0 448 887

Ethnicity

 White 922 944 99 1059 0

 African American 474 631 49 0 2461

 Hispanic/Latino 260 402 16 0 0

 Asian or Pacific Islander 107 0 2 0 0

 American Indian or Alaskan Native 41 0 1 0 0

 Other 29 0 0 0 0

Smoking status

 Former and current 853 913 99 610 1351

 Never 963 1048 67 449 1110

Metabolic health status

 Metabolically healthy 1254 1163 109 662 1177

 Metabolically unhealthy 579 814 58 397 1284

BMI*Metabolic Health  Z score mean (SD) 2.96 (30.38) 2.92 (31.59) 2.84 (30.4) 2.55 (29.0) 2.82 (31.4)

BMI mean (SD) 29.5 (5.9) 29.8 (6.1) 29.3 (6.9) 26.2 (4.3) 30.1 (6.2)

BMI categories

 Underweight 7 13 0 20 18

 Normal 417 420 41 435 444

 Overweight 641 680 67 429 912

 Obese 768 864 59 175 1087

Waist circumference mean (SD) 89.5 (13.8) 90.7 (13.7) 89.1 (15.1) 94.5 (12.8) 101.4 (15.1)

Triglycerides mean (SD) 153 (88.2) 146.9 (83.4) 143.8 (82.5) 140.4 (83.6) 117.3 (77.7)

HDL-cholesterol mean (SD) 58 (15.1) 52.1 (13.2) 53.2 (13.0) 52.3 (18.2) 53.3 (17.3)

Systolic blood pressure mean (SD) 128 (18) 132.1 (17.8) 132.5 (16.6) 118.7 (18.0) 127.3 (20.6)

Diastolic Blood Pressure mean (SD) 75.3 (9.4) 76.4 (9.3) 76.3 (8.5) 68.5 (9.7) 75.2 (10.7)

Blood glucose mean (SD) 103 (31.1) 108.6 (41.3) 105.2 (37.2) 105.9 (28.6) 129.3 (64.3)
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n = 1823, EMPC n = 1775, AS311 n = 148). In WHI, 
there were 714 events (number of events = 585 [BAA23], 
113 [EMPC], 16 [AS311]) with an average follow up of 
14–15 years (mean follow up = BAA23 14.0 years, EMPC 
15.69  years, AS311 15.85  years). When predicting inci-
dent coronary heart disease (CHD), we initially exam-
ined whether the interaction between BMI × MHZ taken 
at baseline was associated with incident CHD, adjusting 
for BMI, MHZ, case–control status, age, smoking status, 
and ethnicity. BMIxMHZ was significantly associated 
with incident CHD (hazard ratio [HR] 1.02, 95% CI 1.004, 
1.03, p value = 0.005, Fig. 4A). Then we added the DNA 
methylation at cg18989722 as a predictor and found that 
it was not associated with incident CHD (Additional 
file  1: Table  S3). However, when examining the 22 sites 
from the discovery analysis, three sites were associated 
with incident CHD adjusted for the reduced set of covar-
iates (p < 0.05, Fig.  4B–D; Table  3). In models adjusting 
for the full set of covariates, two sites were significantly 
associated with CHD, cg16461485 and cg16543390.

For the replicated site and the three sites associated 
with incident CHD in the reduced set of covariates, we 

examined whether they were associated with differen-
tial gene expression in the blood in two cohorts: Grady 
Trauma Project (GTP) and MESA (Additional file  1: 
Table S4). None of the sites were reported to be associ-
ated with gene expression in cis. cg18989722 (in chro-
mosome 8) was associated with differential expression 
of PTGS1 in chromosome 9 and cg16461485 (in chro-
mosome 3) was associated with differential expression 
of TNFRSF13B in chromosome 17 representing trans 
associations.

In sensitivity analyses, we examined the change in the 
association of BMI × MHZ with the 22 significant CpG 
sites in the WHI and ARIC when adjusted for physi-
cal activity. After including physical activity as a covari-
ate, BMI × MHZ was no longer significantly associated 
with any CpG site. However, this may be in part due to 
a reduction in power as the effect sizes did not change 
significantly in the significant sites (correlation in effect 
sizes from main analysis compared to analysis adjusted 
for physical activity = 0.92). When examining the change 
in the effect size when sequentially leaving out each of 
the metabolic health parameters one at a time from the 

Table 2 Significant sites associated with body mass index * metabolic health Z score interaction (BMIxMHZ) including the effect size 
for the higher-level variables

Direction of effect has been included for the individual ancillary studies from the WHI, Women’s Health Initiative; EMPC, epigenetic mechanisms of particulate matter-
mediated cardiovascular disease; BAA23, the integrative genomics for risk of coronary heart disease and related phenotypes in WHI cohort; AS311, bladder cancer and 
leukocyte methylation; ARIC, the Atherosclerosis Risk in Communities Study; EA, European American; AA, African American, respectively

CpG site Effect size 
(BMI × MHZ)

Standard error Z score P value FDR q value Direction Effect size 
(BMI)

Effect size 
(MHZ)

cg24827562 − 8.71E−05 9.83E−06 − 8.41E+00 3.98E−17 1.70E−11 −+++− 9.27E−06 0.00161952

cg02851049 − 8.85E−05 1.04E−05 − 7.91E+00 2.53E−15 5.39E−10 ++−+− − 8.49E−06 0.00126491

cg22076143 − 1.01E−04 1.27E−05 − 7.62E+00 2.55E−14 3.63E−09 −+++− − 1.47E−06 0.00119747

cg20210586 − 1.03E−04 1.39E−05 − 6.97E+00 3.28E−12 3.49E−07 −−++− 1.38E−05 0.00237264

cg18989722 − 8.36E−05 1.20E−05 − 6.54E+00 6.14E−11 4.86E−06 −+−+− − 5.73E−06 0.00139622

cg15062225 − 1.38E−04 2.05E−05 − 6.52E+00 6.83E−11 4.86E−06 −+−+− 8.86E−05 0.00309348

cg24460625 − 7.26E−05 1.11E−05 − 6.38E+00 1.80E−10 1.10E−05 −+−+− 2.29E−06 0.00186604

cg10057841 − 9.86E−05 1.56E−05 − 5.99E+00 2.04E−09 1.09E−04 −−−+− 3.25E−05 0.0020491

cg06344952 − 9.11E−05 1.46E−05 − 5.79E+00 7.23E−09 3.43E−04 −−−+− 5.91E−05 0.00307032

cg26206680 − 6.13E−05 9.90E−06 − 5.73E+00 9.98E−09 4.26E−04 ++−+− − 7.74E−06 0.00014127

cg27004639 5.20E−05 9.14E−06 5.64E+00 1.66E−08 6.34E−04 +−+−+ 4.21E−05 − 0.0017364

cg19572849 − 4.99E−05 8.96E−06 − 5.63E+00 1.78E−08 6.34E−04 −+++− − 1.67E−05 0.00155317

cg08082299 − 1.01E−04 1.73E−05 − 5.59E+00 2.25E−08 7.37E−04 −+++− − 1.49E−05 0.00209263

cg18298785 − 8.52E−05 1.40E−05 − 5.58E+00 2.42E−08 7.37E−04 −+++− − 2.99E−07 0.00212176

cg16543390 6.71E−05 1.38E−05 5.26E+00 1.46E−07 4.16E−03 −+−++ 3.05E−05 − 0.0022199

cg16461485 − 1.15E−04 2.06E−05 − 5.23E+00 1.71E−07 4.34E−03 −+−+− 8.27E-05 0.00151377

cg21880445 − 7.90E−05 1.44E−05 − 5.23E+00 1.73E−07 4.34E−03 −+++− − 3.03E−05 0.00174726

cg07226317 − 9.17E−05 1.62E−05 − 5.16E+00 2.53E−07 6.00E−03 −+−+− 3.12E−05 0.00135378

cg05441596 − 5.74E−05 1.11E−05 − 4.95E+00 7.39E−07 1.62E−02 ++++− 3.48E−05 0.00106747

cg24720717 6.22E−05 1.22E−05 4.95E+00 7.59E−07 1.62E−02 ++−−+ − 7.25E−06 − 0.002551

cg11553983 − 6.96E−05 1.36E−05 − 4.76E+00 1.94E−06 3.88E−02 +−−+− 3.50E−05 0.00075824

cg00868074 3.15E−04 6.90E−05 4.75E+00 2.00E−06 3.88E−02 +++++ − 0.0003756 − 0.0140558
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MHZ score, omission of high-density lipoprotein cho-
lesterol (HDL) most potently attenuated the effect esti-
mate (effect estimate correlation = 0.89, Additional 
file 1: Table S5). In the 22 sites, effect sizes and Z scores 
changed minimally when adjusted for lipid, hyperten-
sion, and glycemic medications (all correlations in effect 
size = 0.97 and all correlations in Z scores = 0.95). We 
examined the influence of individual ancillary studies on 
the results by examining the change in significance and 
effect size when ancillary studies (BAA23, EMPC, AS311, 
ARIC AA, and ARIC EA) were individually excluded 
from the analysis. Significance changed moderately with 
exclusion of each study with 30, 20, 25, 20 and 27 sig-
nificant sites when BAA23, EMPC, AS311, ARIC AA, 
and ARIC EA were excluded, respectively. Differences 
in effect size were minor (correlation with main analy-
sis = 0.99) in all studies except with exclusion of ARIC 
AA (correlation with main analysis = 0.86, Additional 
file  1: Figures  S1–S5). We additionally examined the 
residuals of the four sites described above in the EWAS 
models to assess violations of a non-normal distribution 
(Additional file 1: Figures S6–S13). These plots appear to 
be consistent with a normal distribution, with the excep-
tion of ARIC EA. When ARIC EA is excluded from the 
analysis, all 22 remain significant and Z scores tend to be 
higher as compared to the full analysis.

Discussion
In this study, we found 22 CpG sites were associated with 
BMIxMHZ in the WHI and ARIC cohorts, with one site 
replicating in a consistent direction in MESA. Among the 
22 sites, two CpG sites inversely and one CpG site posi-
tively associated with a change in incidence of CHD over 
25 years in the WHI cohort.

One site replicated in MESA in a consistent direction, 
cg18989722 located in the body of the TRAPPC9 gene. 
TRAPPC9 has been shown to play a role in NF-kappa-B 
signaling by activating NF-kappa-B through increased 
phosphorylation of the IKK complex [24]. TRAPPC9 
encodes NIBP, which binds to IKK/NIK to enhance NF-
kappa-B activation. TRAPPC9 has recently been iden-
tified as an imprinted gene primarily expressing the 
maternal allele (70% of transcripts in the brain expressed 
maternal allele). TRAPPC9 knock-out mice exhibit a rare 
intellectual disability accompanied by an increase in fat 
mass and body weight [25], suggesting that expression of 
this gene may protect against obesity. Several CpG sites 
in TRAPPC9 have been identified in EWAS of childhood 
adiposity [26, 27]. As gene body methylation has often 
been cited as an indicator of an active gene [28], our find-
ings are in alignment with previous reports of protection 
against obesity since individuals with lower BMIxMHZ 
had higher methylation in this site.

This site was also associated with increased gene 
expression of the PTGS1 gene. PTGS1 (also known as 
COX1) catalyzes the conversion of arachinodate to pros-
taglandin protein and is inhibited by anti-inflammatory 
drugs. In our sensitivity analysis, when adjusted for lipid 
medication use including peripheral vasodilators such as 
aspirin, the effect size moderately changed (− 8.36 ×  10–5 
in unadjusted models and − 5.25 ×  10–5 in adjusted 
models). However, the Z score was smaller (− 6.54 in 
unadjusted models and − 2.55 in adjusted models). This 
suggests some attenuation in the relationship between 
BMI × MHZ and DNAm in this site is potentially modi-
fied by medication use.

Methylation in three sites was associated with inci-
dent CHD over 25 years in the WHI cohort: cg16461485 
located in the body of SELT, cg02851049 located in 
the body of POLR3K, and cg20210586 in the body of 
TRIM39. None of these sites have been identified in pre-
vious EWAS. We also found that cg16461485 associated 
with reduced gene expression of TNFRSF13B, which 
encodes the tumor necrosis factor (TNF) receptor super-
family member 13B, also known as the transmembrane 
activator and CAML interactor (TACI). This protein 
activates NFAT, AP1, and NF-kappa-B [29]. TACI knock-
out mice were protected against high-fat-diet-induced 
inflammation and dysglycemia, which may be mediated 
by a shift in adipose tissue macrophages from M1 to M2, 
which tend to promote a phenotype of insulin sensitivity 
[30]. These findings further support the role that meth-
ylation in cg16461485 exhibiting a protective effect.

Given the molecular functions of these genes, differen-
tial inflammatory mechanisms (potentially mediated by 
the NF-kappa-B pathway) may account for the observed 
differences in health outcomes by BMIxMHZ. Obesity 
and several of the metabolic health parameters associate 
with excess inflammation [31]. However, some studies 
have posited that MHO may be due to an uncoupling of 
obesity and insulin resistance due to differential inflam-
matory mechanisms as MHO has been associated with 
lower inflammatory markers including C-reactive pro-
tein (CRP), TNF-α, interleukin-6 (IL-6), and plasminogen 
activator inhibitor-1 [32, 33]. As the CpG sites identified 
in this study were adjusted for cell composition which 
uses surrogate measures from six cell types [34], we may 
be identifying unique immune cell subsets associated 
with these disease exposures not captured by this method 
which may drive differences in outcomes. Additionally, 
several studies have also observed a unique relationship 
between inflammatory markers and adiposity in indi-
viduals of African descent, where these markers do not 
appear to be as sensitive to adiposity compared to indi-
viduals of European descent [35, 36]. This may explain 
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the significant differences observed when we exclude the 
ARIC AA cohort in sensitivity analyses.

When we adjusted for physical activity, no sites were 
significantly associated with BMI × MHZ. We included 
this analysis as several studies have touted that MHO 
may be the product of increased fitness in this population 
[36, 37]. This may be due to true confounding by physical 
activity. However, there may also be collinearity, as physi-
cal activity is highly associated with BMI (p = 2.5e−17) 
and metabolic health (p = 2.94e−12), which would lead 
to a reduction in significance in the identified variables. 
Future studies could further explore these associations in 
physical activity interventions in these populations.

There are several important limitations in this study. 
Given the cross-sectional design, we cannot determine 
any causal association and may be at risk of reverse cau-
sality, if methylation is contributing to changes in BMI 
or metabolic risk factors. Moreover, metabolic risk fac-
tors may also be a product of duration of obesity, since 
several studies have found MHO to be a transitory state 
[6, 7, 37]. However, understanding the methylomic dif-
ferences in these populations would still be advantageous 
to identify biological mechanisms that may be driving 
the differences in outcomes. Another limitation includes 
the potential for confounding by cell composition. While 
we found unique relationships between three CpG sites 
and CHD, none of these sites replicated in an external 

population suggesting that other confounding factors 
may be causing this association. Nevertheless, the limited 
replication may be due in part to limited power as the 
replication analysis had the power to detect effect sizes as 
low as 0.01 and the effect sizes from our discovery EWAS 
were much lower (Additional file 1: Table S6). Addition-
ally, the results may have diverged between ARIC and 
WHI populations since the WHI includes only women. 
While we adjusted for sex in ARIC, we may be identify-
ing signals in WHI that are differential in women versus 
men. A strength of this study is examining the unique 
interaction between BMI and metabolic health in three 
population-based cohort studies and examining their 
impact on gene expression and CHD outcomes.

Overall, we found four CpG sites which may have a 
unique relationship with BMI in metabolically healthy 
vs unhealthy individuals. Our study findings may align 
with several studies suggesting that differential inflam-
matory mechanisms may account for differences in meta-
bolic risk factors associated with increasing BMI. Future 
research studies could benefit from examining longi-
tudinal changes in methylation associated with change 
in metabolic health status to determine the direction of 
effect and single cell epigenomic signatures of obesity 
and metabolic health to examine how individual cell pro-
files influence this relationship.

Fig. 3 Manhattan plot of the association between the interaction of BMI and metabolic health Z score and DNA methylation. Significant sites 
identified as those above the red line (FDR < .05; p < 2 ×  10–6)
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Methods

Study population
Two cohorts were used in the discovery phase: the WHI 
and the ARIC. Data from three WHI ancillary stud-
ies were included: EMPC, aka AS315, the BAA23, and 
AS311. EMPC assessed epigenetic mechanisms under-
lying associations between ambient particulate matter 
air pollution and cardiovascular disease within the WHI 
Clinical Trials (CT, n = 2200). BAA23 was a case–control 

study assessing predictors of coronary heart disease 
(CHD) within the WHI CT (n = 1664) and observational 
study (OS, n = 442), where cases were identified using 
eight biomarkers of CHD. AS311 is a matched case–con-
trol study of bladder cancer among women within the 
WHI CT (n = 405) and OS (n = 455) [38].

ARIC included data from two ancillary studies of AA 
and EA. ARIC is an ongoing prospective cohort study 
investigating the etiology of CHD in four US communi-
ties: Forsyth County, NC; Jackson, MS; Minneapolis, 
MN; Washington County; MD. Participants were aged 
45–64 and followed up in each community over 30 years 
with 7 study visits [39, 40]. DNAm was measured in 
2879 AA and 1100 EA participants from ARIC in visit 2 
(1990–1992) or visit 3 (1993–1995).

The replication cohort derived from the MESA study. 
MESA is a longitudinal, population cohort study designed 
to examine risk factors for and the progression of CHD. 
Participants aged 45–84  years without clinically appar-
ent CHD were recruited between July 2000 and August 
2002 from six regions in the USA: Winston-Salem, NC; 
Northern New York, NY; Baltimore, MD; St. Paul, MN; 
Chicago, IL; and Los Angeles, CA. DNAm was derived 
from peripheral blood mononuclear cell samples at Exam 
1 or Exam 5 in a random sample of 1200 non-Hispanic 

Fig. 4 Probability of incident CHD by tertile of the interaction between body mass index (BMI) and metabolic health Z score (BMI × MHZ) (A) and 
CpG site methylation of cg16461485 (B), cg20210586 (C), and cg02851049 (D) over 25 years in the Women’s Health Initiative (WHI)

Table 3 Significant CpG sites associated with incident coronary 
heart disease (CHD) in the Women’s Health Initiative (WHI) over 
25 years

Cox proportional hazard model examining the association between incident 
CHD and β value of the 22 CpG sites in discovery analysis. Models adjusted for 
age, race/ethnicity, smoking status, case–control status (BAA23 and AS311), DNA 
methylation array, row, and cell composition in reduced  modela and reduced 
model covariates and physical activity and diet in the full  modelb

CpG site Hazard ratio 95% CI P value

cg02851049a 0.90 (0.81, 0.99) 0.030

cg20210586a 1.09 (1.00, 1.19) 0.046

cg16461485a 0.94 (0.89, 0.99) 0.031

cg16461485b 0.93 (0.88, 0.99) 0.023

cg16543390b 1.06 (1.01, 1.11) 0.028
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white, AA, Hispanic, and Chinese American participants 
[41, 42].

Measurements
In WHI, weight, height, waist circumference, and blood 
pressure (BP) were measured at the physical exam. In 
ARIC, these measurements were taken at Visit 2 or 3. 
BMI was calculated as weight (kg)/height (m)2. Waist 
circumference was measured to the nearest 0.5 cm. Sys-
tolic/diastolic BP was measured twice and three times in 
WHI and ARIC, respectively, with the average of the two 
(WHI) or last two (ARIC) measurements used. Biochem-
ical measurements were analyzed in blood samples col-
lected after a 12-h fast. These include triglycerides (TG), 
HDL, and fasting glucose.

Metabolic health exposures
Metabolic health was examined in two ways, dichoto-
mously and continuously. Metabolic risk was dichot-
omously defined by the presence of three or more 
components of metabolic syndrome using the Adult 
Treatment Panel III (ATP III) criteria (Table  4). Thus, 
MUO and MHO referred to the presence of three or 
more and less than three components, respectively. 
Metabolic health was also examined continuously as a Z 
score of the clinical measures used in the ATP III crite-
ria. For each metabolic parameter, for example TG, the 
Z score for TG was created by (TG − mean TG)/stand-
ard deviation (TG) of the population. Then all the clini-
cal parameter Z scores were pooled to define a MHZ. For 
HDL, the inverse of HDL was used as a higher MHZ is 
indicative of poorer health. We examined the HDL vari-
able for normality (Additional file 1: Figure S14–S15). We 
examined BMI continuously. Individuals were excluded if 
metabolic health parameters and DNAm were not meas-
ured within the same year.

Covariates
Age, race/ethnicity (White, AA, Hispanic/Latino, Asian, 
American Indian, other in WHI and EA and AA in 
ARIC), and smoking status (current/former or never) 
were self-reported. Physical activity was measured by the 

Baecke questionnaire in ARIC [43] and a self-adminis-
tered questionnaire in WHI [44] and expressed as total 
energy expended from light, moderate, or vigorous inten-
sity recreational physical activity which includes walking, 
mild, moderate, and strenuous physical activity in kcal/
week/kg (MET-hours/week).

DNA methylation
In the all cohorts, DNA was extracted from peripheral 
blood leucocytes collected at visit-specific fasting blood 
draws [45]. In the WHI and ARIC cohorts, DNAm was 
measured using the Illumina HM450K Infinium Methyla-
tion BeadChip. In the MESA cohort, DNAm was meas-
ured via the Illumina MethylationEPIC BeadChip array. 
DNAm was estimated as the proportion of methylated 
beads relative to combined unmethylated and methylated 
beads for a specific CpG site defined as the β value (rang-
ing from 0 [unmethylated] to 1 [methylated]). All meth-
ylation data were normalized using beta-mixture quantile 
normalization [46]. Technical covariates included chip 
and row to adjust for batch effects and cell composi-
tion, which was estimated using the reference-based 
Houseman method [34]. Additional quality control pro-
cedures for each of the studies has been included in the 
Additional file 1: Methods. After quality control, 428,278 
probes remained in all cohorts and were examined.

Statistical analysis
We used R (https:// www.r- proje ct. org/) for all analy-
ses. We calculated means and standard deviations or 
counts and proportions for study population character-
istics. In the EWAS, all models were stratified by cohort 
(EMPC, BAA23, AS311 in WHI) or race (AA and EA 
in ARIC) and pooled using inverse-variance weighted 
fixed effect meta-analysis. BMI was examined continu-
ously. To examine the differential impact of metabolic 
health status on BMI, linear regression models were 
used regressing the methylation β value on the interac-
tion term for BMI and metabolic health status, adjusting 
for each higher-level variable (BMI and metabolic health) 
and covariates. We conducted two EWAS with meta-
bolic health status defined dichotomously (BMIxMH) 

Table 4 Adult treatment panel (ATP) III clinical identification of metabolic syndrome

Clinical measure Defining level

Waist circumference  ≥ 102 cm in men or ≥ 88 cm in women

Triglycerides  ≥ 150 mg/dL or drug treatment for elevated triglycerides

High density lipoprotein (HDL)  < 40 mg/dL in men or < 50 mg/dL in women or drug treatment for 
reduced HDL

Blood pressure  ≥ 130/85 mmHG or drug treatment for hypertension

Glucose  ≥ 110 mg/dL or drug treatment for elevated glucose

https://www.r-project.org/
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and continuously (BMIxMHZ). Covariates in all models 
included cell composition, the top three principal com-
ponents of genetic relatedness, race/ethnicity (WHI), sex 
(ARIC), smoking status, row, and age. WHI study-spe-
cific covariates included trial study and randomization 
arm (EMPC, BAA23, AS311) and case–control status 
(BAA23, AS311). To adjust for batch effects, the DNAm 
array was included as a random effect for each BeadChip 
in our model. Significant CpG sites were identified by the 
interaction p value at a FDR q value < 0.05. We examined 
the correlation between BMI and MHZ to test for collin-
earity (Additional file 1: Figure S16). These variables were 
not highly correlated.

Results identified in the discovery cohorts were repli-
cated in the MESA cohort using linear regression mod-
els as previously described. Significant CpG sites were 
examined using the same linear regression model as 
above examining BMI × MHZ. Models were adjusted for 
DNAm array number and row location, cell composition, 
principal components of genetic relatedness, race/ethnic-
ity, age, sex, alcohol consumption, and smoking. Signifi-
cant replication was defined at p < 0.05 and a consistent 
direction of effect.

Outcomes analyses
In significant sites identified through EWAS, DNAm at 
CpG sites was examined as a predictor of incident CHD 
in the WHI. CHD was defined by incident myocardial 
infarction or CHD death. Acute, hospitalized myocardial 
infarction was identified in medical records on the basis 
of cardiac pain, electrocardiogram, and biomarker data, 
and then physician-adjudicated. Further details regard-
ing the review, classification, and adjudication of CHD in 
WHI have been described [47].

Multivariate Cox proportional hazard ratios were used 
to examine whether significant sites identified through 
EWAS (exposure) were associated with incident CHD 
in WHI. Individuals with a history of (or incident) myo-
cardial infarction or coronary revascularization (angio-
plasty; stent; bypass) before measurement of DNAm 
were excluded. Covariates included age, race/ethnicity, 
smoking status, case–control status (BAA23 and AS311), 
DNAm array, row, and cell composition in the reduced 
model. In the full model, we adjusted for the covariates 
in the reduced model as well as physical activity and diet 
quality. Diet quality was measured using the Alternative 
Healthy Eating Index-2010 score [48] derived from food 
frequency questionnaires in the WHI. Significant sites 
were defined by p < 0.05.

Gene expression
To elucidate the potential functional implications of 
the identified CpG sites, we examined gene expression 

information using previously published significant gene 
expression quantitative trait methylation loci (eQTMs) 
summary statistics in blood from MESA and the GTP 
[49]. We examined the summary statistics for the four 
CpG sites identified in validation and in secondary CHD 
analyses. This population from MESA had minimal over-
lap with the MESA population examined in replication 
analyses.

Sensitivity analyses
As metabolic health status is constructed from several 
metabolic parameters, differences in methylation may 
be driven by individual metabolic parameters. To assess 
the degree that individual metabolic parameters influ-
ence methylation at significant sites, we reanalyzed asso-
ciations between BMI × MHZ status and methylation 
excluding individual metabolic parameter in the MHZ 
score and compared the effects to the original estimates 
obtained through EWAS. For the significant sites, we also 
examined changes in effect size when adjusting for lipid, 
hypertension and glycemic medication use. We addition-
ally repeated the primary EWAS analysis adjusting for 
physical activity. We additionally examined the four sites 
identified in replication and secondary analyses for nor-
mality and heteroskedasticity by examining the QQ plots 
and residual plots from the discovery analysis.
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