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Abstract

Much recent research on modeling memory processes has fo-
cused on identifying useful indices and retrieval strategies to
support particular memory tasks. Another important question
concerning memory processes, however, is how retrieval cri-
teria are learned. This paper examines the issues involved in
modeling the learning of memory search strategies. It discusses
the general requirements for appropriate strategy learning and
presents a model of memory search strategy learning applied
to the problem of retrieving relevant information for adapting
cases in case-based reasoning. It discusses an implementation
of that model, and, based on the lessons learned from that im-
plementation, points towards issues and directions in refining
the model.

Introduction

Much recent Al research on memory focuses on analyzing the
indices that are relevant to particular classes of retrieval prob-
lems (e.g., (Domeshek, 1992; Leake, 1992; Owens, 1991)).
The problem of how memory search strategies can be learned
and refined has received less attention.! Understanding the
process of learning memory search strategies is important
both for practical reasons, to develop Al systems that can
refine memory search criteria as needed, and to extend cog-
nitive models of memory processes. For example, data on
childrens” memory strategies show a progression from inef-
fective to effective memory strategies during early develop-
ment (Wellman, 1988).

This paper examines the issues involved in modeling the
learning of memory search strategies. It focuses on the mem-
ory task of retrieving the information that case-based reason-
ing systems need in order to adapt prior cases to fit new situ-
ations. The paper describes a broadly-applicable framework
that treats memory search as a planful process and learns the
search plans resulting from information search for particular
adaptation problems. It discusses the general requirements
for appropriate strategy learning within that framework, and
presents the lessons learned from ongoing research in apply-
ing the model to memory search learning for adapting cases
in case-based explanation (Leake, 1993). Based on those
lessons, it identifies directions for extending, refining, and
validating the performance of the model.

'But see Fox & Leake, 1994; Oehlmann, Edwards, & Sleeman,
1994; Redmond, 1992; and Sycara & Navinchandra, 1989, for exam-
ples of recent research addressing issues of index learning, refinement
and re-indexing.
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Memory Search for Case Adaptation

Case-based reasoning (CBR) systems solve problems by re-
trieving similar stored cases and adapting their solutions to
fit the new situations. The CBR model of reasoning from
experience has been successfully applied to many tasks (see
(Kolodner, 1993) for a survey), and initial studies are encour-
aging for its validity as a cognitive model (e.g., (Lancaster &
Kolodner, 1988; Ross, 1989; Read & Cesa, 1991)).

A fundamental question in CBR is how to guide the adapta-
tion process that revises a retrieved case to fit a new situation.
We view case adaptation knowledge as having two compo-
nents. The first is knowledge of abstract transformations,
such as the transformation substitute component. The second
is memory search information on how to find the information
needed to apply the abstract transformations—for example,
in the case of the transformation substitute component, infor-
mation on how to determine which features are relevant to
searching for an appropriate substitution and how to conduct
the search. Previous research has shown that because of the
generality of abstract transformations, a wide range of adap-
tation problems can be solved using a small set of abstract
transformations (e.g., (Carbonell, 1983)). However, a diffi-
cult problem is how to determine the features that are relevant
in finding the information needed to apply the abstract rules to
specific problems. For example, the rule substitute component
gives no guidance about what to substitute.

An example of human learning of relevance criteria for
case adaptation is presented in (Gentner, 1988). Gentner's
experiments gave children the task of adapting previously-
encountered stories to fit new characters. In the experiments,
children first acted out stories, using toys to play the roles
of the characters. They were then asked to act out the same
stories using different toys representing new characters. Al-
though both older children (8- 10 years old) and younger chil-
dren (5-7 years old) were influenced by the transparency of
the object mappings between the corresponding characters in
the old and new stories, considerations of systematicity—a
higher-level feature—aided the older children in making the
correct mappings between characters as they adapted the old
stories to the new characters. The process we are investigating
is (1) how new criteria for determining relevant features for
finding adaptation information can be acquired during mem-
ory retrieval, and (2) how those criteria can guide the memory
search process for the needed information.
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Memory search as a planful process

Our approach builds on the model of memory traversal and in-
dex elaboration in CYRUS (Kolodner, 1984), and especially
on prior proposals for introspective failure-driven learning
to repair memory organization problems (Birnbaum, Collins,
Brand, Freed, Krulwich, & Pryor, 1991; Ram & Cox, 1994).
However, this model differs in treating memory search as a
knowledge planning process (Hunter, 1990). In the knowl-
edge planning framework, information search is conducted
by a planning process based on explicit reasoning about needs
for information and how to satisfy them. In that process, a
reasoner formulates explicit knowledge goals (Leake & Ram,
1993; Ram, 1987) that are pursued by explicit reasoning about
the goals it needs to achieve and the available methods for
achieving those goals. To allow flexible memory search, we
are modeling that process within a similar framework (Leake,
1993).

Our model generates explicit goals to acquire needed in-
formation, based on the abstract adaptation rule it is trying
to apply and on constraints arising from the case-based rea-
soner’s task and the specific case to which the rule will be
applied. The goal reflects a determination of types of features
that are relevant for the adaptation problem. Based on the
goals that are generated, the model reasons introspectively
about its memory organization and uses a planning process
to generate a plan for how to search memory for the needed
information. This plan reflects a relevance judgement, the
Jjudgement of which features of the adaptation problem are
relevant to retrieving the needed information. Once a suc-
cessful memory search plan has been generated, the search
information is stored as a new case in memory for future use
guiding search in similar adaptation problems. Thus it takes
a case-based approach to guiding the memory search process
for case-adaptation.

Generating knowledge goals for adaptation

Guiding the memory search process depends on first describ-
ing the goal of that search. The model assumes that input to
the adaptation component will be expressed in a fixed, struc-
tured vocabulary describing the problems that necessitate case
adaptation. For the current task, adaptation of implausible ex-
planations, the vocabulary used categorizes problems such as
non-normative role fillers in a schema (e.g., in the example
we will consider later, the hypothesis that a horse is jogging),
ordering problems (e.g., that a hypothesized cause happened
before the event it ostensibly caused), or the speedup or delay
in an expected sequence of events. For a fuller description
of failure categorizations for explanations, see (Leake, 1991,
1992).

Based on the problem description, the adaptation compo-
nent must select a repair strategy to repair the problem. The
choice of the repair strategy for an explanation depends not
only on the particular problem—e.g., the implausible event—
but also the role it plays in the explanation as a whole, as
evidence for other beliefs. Likewise, the intended use of the
explanation can place additional constraints on the adaptation.
Consequently, the generation of a knowledge goal for adapt-
ing an implausible belief depends on three things: the reason
the belief is implausible, the repair strategy to be applied, and
the context in which it is applied. Each of these properties
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can constrain the retrieval of stored prior adaptation cases if
they are available.

If no stored adaptation cases are retrieved, a new memory
search plan must be generated, i.e., an abstract transformation
must be selected and needed information for that transfor-
mation must be found. What information will be needed
depends on the combination of the transformation strategy
and constraints arising from relationships between the trans-
formed case and the objects used in the transformation. For
example, if the problem to be repaired is that an explanation
involves implausible evidence, multiple transformations are
possible, such as adding additional support for the implausi-
ble evidence, substituting more plausible evidence, or simply
deleting the support. If the chosen transformation is to replace
the implausible evidence with other evidence, being able to
apply that transformation will depend on finding a substitu-
tion that both avoids the current problem—i.e., that is itself
plausible—and that is evidence for the same conclusion.

Koton (1988) has identified general criteria for deciding
which abstract transformations to apply to flawed explana-
tions, and those criteria form a starting point for selection of
abstract transformations. However, in general it is difficult
to anticipate which types of transformations will apply in a
given case, and many conflicting factors may enter into the
decision (see (Kolodner, 1993) for an extensive discussion
of adaptation issues). The difficulty of balancing conflicting
factors provides a strong functional motivation for develop-
ing a model in which experience can help to balance those
conflicting factors to guide case adaptation.

Introspective reasoning for memory search

Once knowledge goals have been generated, introspective rea-
soning must be used to generate a plan for finding that knowl-
edge in memory. That reasoning requires self-knowledge
of the reasoner's memory organization. In order to per-
form knowledge planning, initial system knowledge must in-
clude information about the relationships between concepts
in memory—not just the named links, as in most memory
systems, but the meanings of those links. The task of pro-
viding the system with sufficient information is facilitated by
the fact that only local relationships between concepts need
to be specified; more distant relationships can be derived on
demand using the knowledge planning process. In addition,
because this information is task-independent, once it is estab-
lished it can be applied in multiple contexts and for multiple
tasks.

The knowledge of the meanings of links can be augmented
with domain knowledge, as well as the knowledge of rele-
vance built through experience with adaptation problems, in
order to determine the search strategies to apply to identify
particular types of information. It should be noted, however,
that although that domain knowledge is useful, it is not essen-
tial. In the absence of domain knowledge, the initial search
for information becomes an unguided local search process of
the sort already commonly used to support case adaptation
(Kolodner, 1993, pp. 407-410), but the process can still learn
to improve its search process by favoring search plans that
were successful in similar prior situations.

Treating the memory search process this way increases
flexibility in selection, application and refinement of mem-
ory search strategies. For example, components of effective



strategies can be combined as needed, making it possible to
build complex memory search strategies given only local in-
formation about memory organization. In addition, because
standard plan learning methods can be applied to the mem-
ory search plans that are generated, retrieval strategies can be
refined with experience.

Credit assignment and adaptation cost issues

Two credit assignment problems arise from this model. The
first is the problem of knowing whether, if no previous adapta-
tion strategies are sufficient to adapt a prior case, the problem
should be addressed by attempting to find a new and closer
case (e.g., by querying a human user), or instead by learning
new adaptation procedures. Our work has not attempted to
address this question: The model simply attempts to generate
an adaptation strategy for each case for which no stored strat-
egy exists or for which strategies that are indexed as relevant
fail to apply.

The second credit assignment problem concerns memory
search failures. When memory search fails, there is no way
(short of exhaustive search, which the model does not use)
to determine whether the search plan itself was flawed or the
needed information was simply missing from memory. A limit
on the amount of search effort (measured in memory links
followed) provides a criterion for when a particular search
plan should be terminated, and can also provide a cut-off point
for the set of search plans to be attempted to find a given piece
of information. Reaching that limit is not in itself enough
to determine whether the wrong search strategy was chosen,
but if one memory search plan fails and a later plan succeeds
in finding the needed information, the failure of previously-
attempted search plans can be ascribed to inapplicability of
the search plans that were tried initially. In that case, if the
search plan was retrieved from memory it can be re-indexed
to avoid being retrieved for similar knowledge goals in the
future,

Note that even if no search plan succeeds in finding the
needed information within the search limit, when solving a
future adaptation problem it may be possible to find that infor-
mation using new memory search plans that were discovered
and stored in the interim.

The Computer Model

The theory is being tested in the computer system AL (Adap-
tation Learner). That system applies the planning frame-
work described in the previous sections to the task of learning
the search strategies hand coded as part of the adaprarion
strategies (Kass, 1990) in the case-based explanation systems
SWALE (Schank, Riesbeck, & Kass, 1994) and ABE (Kass,
1990). To provide context and illustrate the role of adaptation
strategies in those systems, we sketch SWALE'’s processing
of its namesake example, the story of the racehorse Swale.”
Swale was a 3-year-old superstar racehorse who died un-
expectedly at the peak of his career. When SWALE detects
the anomaly of Swale’s death, one of the explanatory cases
SWALE retrieves is the episode of the death of the runner Jim
Fixx, who, like Swale, died when in peak physical condition.

A more detailed discussion of this example is contained in
(Schank et al., 1994), which addresses additional issues of case
retrieval and evaluation that are irrelevant to the current discussion.
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The retrieved explanation for Fixx’s death is that Fixx was
doing recreational jogging, leading to a high exertion level
that overtaxed a hidden heart defect, leading to a fatal heart
attack. That explanation does not apply directly to Swale:
Swale was not a recreational jogger.

In a system using abstract adaptation rules, the adaptation
rule to apply would be substitute evidence, which can be used
in any domain but gives no guidance as to how to find the
evidence to substitute. In a system using very specific rules
tailored to the domain of horse-racing, an applicable rule for
finding the evidence might be when a racehorse's exertion
must be substantiated, horse racing is a likely cause of the
exertion—a rule that is easy to apply but that has no appli-
cability to other types of actions and actors. Instead of ei-
ther rule, SWALE and ABE use an adaptation strategy called
Replace-action: Use agent theme links, which suggests try-
ing to find substitute actions by examining actions habitually
associated with the actor. This search strategy is implemented
as a procedure that retrieves the filler of the role-theme role
in the schema describing the actor.> One of the role themes
stored in the system’s memory is that racehorses run in races.
Consequently, when the strategy is applied, it finds running in
races as a candidate for the substitution.* Replacing jogging
with horse racing as the cause of exertion that overtaxed a
heart defect leads to a plausible explanation for why Swale
died despite appearing to be in outstanding physical condition.

The learning process

The method for adaptation strategy learning starts with a small
library of abstract adaptation rules giving generalized cover-
age of possible adaptations, and operationalizes them by com-
bining them with memory search plans and storing them for
future use. The basic process of generating a new adaptation
strategy involves four steps:

1. Input a case and a description of a problem to be solved by
adaptation.

2. Attempt to retrieve relevant existing adaptation strategies.
If success, done—no new strategy is needed. If failure,
retrieve abstract adaptation rule.

3. Use an introspective knowledge planning process to gen-
erate memory search plans to operationalize the abstract
rule.

4. Generalize and package the search plan with the rule as a
new adaptation strategy.

This process is summarized in figure 1.

A program example

AL is implemented as a new component of the program mi-
croSWALE (Schank et al., 1994), a distillation of the SWALE
system. The following section illustrates the algorithm with
a sketch of how it applies to the problem of adapting the Jim

Role themes (Schank & Abelson, 1977) represent stereotyped
knowledge about the plans and goals associated with actors in certain
societal roles, such as the knowledge that a racehorse runs in races
or that a policeman performs actions such as directing traffic and
investigating crimes.

“It also finds the irrelevant theme action of eating oats, which
leads to the explanation that Swale's death was caused by the exertion
of eating oats. That explanation is rejected as implausible.
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Figure 1: The adaptation strategy learning process.

Fixx explanation to Swale. In the process, the system learns
an adaptation strategy corresponding to Replace action: Use
agent-theme links, starting with only abstract adaptation rules
and knowledge of the system's memory organization.

In attempting to apply the Jim Fixx explanation to Swale's
death, microSWALE detects a problem and provides the adap-
tation component with a description of the problem: Swale
is a non-normative-role-filler for the role of actor in the pro-
gram’s schema for jogging. It attempts to retrieve existing
adaptation strategies indexed as relevant to the problem de-
scription. The adaptation system starts only with abstract
adaptation rules without memory search information. In the
current implementation, adaptation rules are stored as in a hi-
erarchy of MOPs (Schank, 1982) containing (a) a description
of the classes of problems that they address and (b) procedures
that take a problem characterization and explanation as input,
generate knowledge goal descriptions based on those inputs,
and call a memory search module with the knowledge goal to
attempt to retrieve or generate an appropriate memory search
plan to find the needed information for the transformation to
be applied.

For the example of Swale’s jogging, possible candidate ab-
stract adaptations to repair the problem include add support,
to add additional supports for the hypothesized event of the
racehorse jogging, remove evidence, to simply delete the of-
fending belief, and substitute evidence, to find a replacement
support for the act of jogging. For this example, add support
does not apply—no supports exist for a racehorse jogging—
and remove evidence immediately results in an explanation
with insufficient support. This leaves substitute evidence as
the only remaining candidate. The role of jogging in the expla-
nation imposes an additional constraint: That the substituted
component must support the hypothesized exertion.

The system generates a knowledge goal to find evidence to
replace “Swale jogging,” the problem in the Fixx explanation,
and support Swale’s exertion. After generating that goal,
it attempts to generate a memory search plan for satisfying
it. The following output shows highlights from this process.
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(Minor editing has been done for readability.)

Generating knowledge goal to guide
search for substitute evidence:
"Find substitute support for
M-EXERT-EVENT-FOR-M-SWALE-22".

Generating search plans for satisfying
"Find substitute support for
M-EXERT-EVENT-FOR-M-SWALE-22".

The knowledge goal is passed to the memory search plan-
ner, which generates a chain of steps for finding the needed
information. The current process is hierarchical: The plan
is first characterized in terms of abstract operators which
are specified until the plan is described in terms of directly-
executable steps. It generates a plan, applies it successfully,
and packages it as a new memory search rule:

Packaging search plan
NEW-M-MEMORY-SEARCH-RULE-27:

“TH fnd
search
by the
state"

a cause for an actor'’s state,
for an action performed
actor that could cause that

"To find actions performed by an actor,
check the actor’s theme actions"

"To find themes of an actor, retrieve
the value of the ‘theme’ slot for the
MOP for that actor*

"To find the value of a slot of a MOP,
apply the function 'get-slot-value’
to the MOP and slot name*

That plan, combined with the abstract rule substitute ev-
idence, provides a result equivalent to SWALE's adaptation
strategy Replace-action: Use agent theme links. Thus the
results of the process are both a solution to a particular adap-
tation problem and a new adaptation strategy that can be ap-
plied to a wide range of future situations. The adaptation



strategy is stored in memory, indexed by microSWALE's ini-
tial description of the adaptation problem for which it was
generated.

Lessons Learned

Although the described system is in preliminary form, it has
brought to light some notable points. The first concerns the
types of learning mechanisms that apply to the task. The sys-
tem was initially envisioned as performing explanation-based
generalization (EBG) (Mitchell, Keller, & Kedar-Cabelli,
1986) on the search plans that it generated. That approach
seemed reasonable because the model can be viewed as oper-
ationalizing a set of abstract transformation rules with search
procedures, and EBG is a standard operationalization method
(Keller, 1988). However, EBG is not appropriate to the mem-
ory search task because a deductive explanation of why a
memory search plan succeeds would be required to guide
generalization. The memory search process reasons using
heuristics; whether they succeed in a given instance depends
not only on the rules themselves but on the idiosyncratic con-
tents of memory. Thus unlike the explanation-based gen-
eralization process, the learning problem for memory search
strategies involves specifying unreliable general rules, in light
of experience, to learn specific information that is more reli-
able.

This concern suggests applying case-based reasoning to
the memory search task itself: Case-based reasoning is a
method for learning in imperfectly-understood domains. Con-
sequently, developing a case-based model of the learning pro-
cess, to automatically build up a library of useful strategies
from specific experiences applying memory search heuristics,
is an important current direction of this research. Like the
work on derivational analogy described in (Veloso & Car-
bonell, 1993), the process will store and re-play successful
memory search plans. Because strategies will be applied to
similar future situations, the case-based memory search ap-
proach can build up knowledge reflecting the idiosyncratic
contents of a particular memory.

A related issue is how to organize memory search plans in
memory. In the initial system design, memory search infor-
mation was packed with the transformations it operationalized
to form adaptation strategies along the lines of those devel-
oped in (Kass, 1990). It has become clear that fully exploiting
prior learning depends on being able to apply memory search
knowledge in new contexts, necessitating storing and index-
ing memory search plans independently from the adaptations
for which they are used, even though the combinations are
useful for memory search problems similar to previous tasks.
Flexible application of memory search plans in novel situa-
tions requires developing a general vocabulary to characterize
the information needed for different types of case adapta-
tion problems, in order to use that characterization to select
memory search plans indexed by the information that they
provide. Additional questions raised by the current model
and being investigated include the level at which to represent
the information in memory search rules initially provided to
the system, and how to detect, learn from, and recover from
particular classes of memory search failures.
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The utility of adaptation learning

The previous issues concern simply building a model of case
adaptation learning, but another important concern is the ef-
fectiveness of such a model. In principle an enormous number
of alternative memory searches could be tried for a particular
case adaptation, making the process potentially very costly,
but the limit on adaptation effort imposes some control on the
cost of adaptation search. Nevertheless, the model may still
require considerable effort to learn new adaptation strategies,
and even after they have been learned, it is not guaranteed that
they will improve overall performance, because of the utility
problem: 1t has been shown that the learning of control knowl-
edge may actually degrade the performance of the system us-
ing that knowledge (Minton, 1990), due to increased overhead
costs overwhelming the savings from individual rules. The
intention of this model is to address that problem by index-
ing learned memory search cases for efficient access, but the
effectiveness of that approach must be validated.

Another aspect of the utility of adaptation learning, how-
ever, is the quality of the result of adaptation. In many of the
domains used by case-based reasoning, system knowledge is
incomplete, making adaptation rules unreliable. Applying
similar adaptations to similar problems may help to improve
the quality of the solutions generated by the adaptation sys-
tem, just as case-based reasoning can improve the quality
of solutions in imperfectly-understood domains (Kolodner,
1993). An analysis of the effectiveness of this model must
also examine its effect on the quality of adaptations.

Conclusions

This paper proposes treating memory search as a planful pro-
cess guided by explicit reasoning about needs for information
and the organization of memory. The memory search plans
resulting from that process are then learned for future use.
Current results suggest using case-based reasoning as the ba-
sic for this memory search process, and point to key issues to
be addressed in future research on treating memory search as
a planful process.

Although our memory search framework has been illus-
trated in the context of case adaptation for case-based expla-
nation construction, its approach to planful memory search has
wider applicability. For example, abstract adaptation rules of
the type that this framework requires as a starting point also
apply to other tasks such as case adaptation for case-based
planning. Much more generally, the planful memory search
process has wide applicability to memory search problems
outside of the context of case adaptation. The development of
an introspective model of planful memory search is important
for enabling memory systems to refine their performance by
generating, re-using and refining memory search strategies in
response to their needs. It is also a first step towards a cogni-
tive model of the developmental process for relevance criteria
and memory search strategies.
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