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The use of functional neuroimaging to evaluate brain disorders has become pervasive in

the scientific community. The technique provides researchers with a means to evaluate dy-

namic in-vivo brain function. Over the last thirty years of using neuroimaging techniques

to evaluate brain disorders, there is evidence suggesting some illnesses are characterized by

differences in regional brain function whereas others by differences in regional connectivity.

Disorders with gross anatomical and functional changes such as Alzheimer’s disease and

traumatic brain injury are often visually discernible in brain scans and differences quan-

tifiable using typical mass univariate analysis techniques. Conversely, disorders with subtle

functional changes (e.g. depression) or subtle changes in how the brain communicates (e.g.

schizophrenia) are less amiable to existing analysis techniques. Detecting these subtle dif-

ferences in molecular imaging data, often plagued by noisy measurements from the imaging

system, further impedes our ability to gain valuable insights into brain disorders. In this

dissertation we use a variety of tools from machine learning and probabilistic modeling to

develop new models for decreasing noise in data captured from our imaging systems, im-

prove feature extraction for detecting differences in regional brain function, and evaluate

group-based functional connectivity models and their performance in settings with small

sample sizes. Each of these models are presented separately with experiments designed to

show improvements over existing methodologies and measures of accuracy in both disease

classification and recovering gold-standard functional relationships in the brain.
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Chapter 1

Introduction

The application of machine learning methods to the field of neuroimaging has increased

dramatically over the last two decades. The availability of larger data sets and increases

in computational power, coupled with the growing number of machine learning techniques

that perform well in settings with considerable noise and low sample sizes, relative to the

number of model parameters, have contributed to this increase [4] [3] [2]. Among the myriad

of tools available from the machine learning community, classification algorithms have been

most heavily used, across a variety of disorders, and has become a common approach in

evaluating differences in brain function [1]. More recently, the field has gained interest in

evaluating how the brain communicates, leading to the application of tools from the struc-

ture learning and graph theory communities and the recent creation of the journal Brain

Connectivity (www.liebertpub.com/overview/brain-connectivity/389/). Although the

use of machine learning is a common topic at most neuroimaging conferences and in many

publications, the relative amounts of available methods and literature appear to be imaging

modality dependent. A search of Google Scholar (scholar.google.com) shows an expo-

nential increase in the number of publications indexed with the terms “machine learning”

and “neuroimaging” using data acquired from Magnetic Resonance Imaging (MRI) systems,

yet the number of publications using data from molecular imaging systems such as Positron

Emission Tomography (PET) is far lower and has slowed in recent years (Figure 1.1). Some

1
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of this discrepancy can be explained by the greater proportion of investigators using MRI

modalities as compared to PET, yet this doesn’t completely explain the four-fold increase

in recent publications. Another possible explanation is that molecular imaging technologies

require invasive injection of radioactive isotopes and increased costs and risks relative to

MRI, resulting in less available data and contributing to slower methodology development

in PET relative to MRI. This reality is unfortunate because there are many benefits in using

molecular imaging techniques to understand the biochemical implications of brain disorders.

Approximately 27 PET tracers are in common use today, each specifically designed to mea-

sure a physiological function. Data generated from PET studies are commonly used to aid in

both the understanding of a disorder and the development of pharmaceuticals to treat those

disorders. Therefore, more effort should be devoted to the development of machine learning

methods for molecular imaging modalities as they have the potential to improve both the

clinical research that is being done and patient care.

In this dissertation we focus on developing models for molecular imaging modalities using

techniques from machine learning. We begin by improving the data collected by our imaging

systems. If the data collected by our instruments is poor, what we can learn from the data is

limited. We develop a model to improve tuning of the imaging system, resulting in decreased

noise and better spatial resolution of the collected data using techniques from probabilistic

graphical models. Next, we focus on image-derived features for classification. In this work

we extend a hierarchical feature model, based on theories of how the human vision system

identifies objects, and apply it to finding salient features in molecular imaging data, showing

the model to be highly competitive in discriminating a variety of disorders with no changes to

the underlying feature computation. This model has general applicability to cases where the

exact diagnosis is unknown, resulting in a lack of disorder-specific image features. Lastly,

we evaluate models for group-based functional connectivity in molecular imaging, using

techniques from sparse-inverse covariance estimation. In this study, we provide a comparison

2
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Figure 1.1: Number of publications per year indexed by Google scholar with the search terms
“machine learning” and “neuroimaging” in PET and MRI modalities.

of inverse covariance models across sample sizes and evaluate their accuracies in recovering

a gold standard network of functional connections in the brain. This is the first functional

connectivity study in molecular imaging that shows how well we can discriminate between

true functional connections and false positives by sample size and provides the community

with recommendations on appropriate sample sizes and models for studying group-based

functional connectivity.

1.1 Overview

This dissertation is organized into the following chapters. Each chapter is self contained and

can be read independently from the others. Chapter 2 presents the work on using proba-

bilistic graphical models to improve tuning of the imaging system. Chapter 3 presents the

3



work on hierarchical features and classification. Chapter 4 presents the work on functional

connectivity with sparse inverse covariance estimation. Finally, Chapter 5 discusses future

extensions and applications of this work.
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Chapter 2

Position Pro�le Estimation using

Probabilistic Graphical Models

2.1 Introduction

Positron emission tomography (PET) is a quantitative imaging modality used to evaluate

radio-labeled tracer distributions in vivo. Superior image resolution and tracer quantifica-

tion are strengths of PET over other functional imaging modalities. To ensure the imaging

system is both quantitatively accurate and yielding images with maximal resolution, a man-

ufacturer supplied suite of tools are generally used to tune the PET system. Part of the

tuning process includes position profile estimation which entails locating the detection cen-

ters and boundaries of each crystal based on events collected from a gamma ray source of

known activity and known position, collected over a short time interval (Figure 2.1). The

accuracy of these assignments are crucial in reconstructing a quantitatively accurate esti-

mate of the imaged object. If the assignment of detected events are incorrect, resolution will

suffer and could result in misdiagnoses in clinical evaluations. Furthermore, imaging centers

Under Review at IEEE Transactions on Nuclear Medicine.
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pay a premium for high resolution systems and are therefore motivated to minimize setup

errors that negatively impact resolution.

The High Resolution Research Tomograph (HRRT; Siemens Inc.) is one of the highest

resolution PET scanners currently available and is designed for imaging the human brain

[15]. There are 18 HRRT PET scanners installed worldwide. Typically the manufacturer

supplied position profile estimation software makes errors in approximately 5% of the de-

tectors. In the HRRT, this leaves about 6000 detector peaks that must be manually set

by a service or site engineer. Because manually setting the peaks takes considerable time

(∼ 1 min/block of 64 detectors) and thus financial resources, it is of interest among the

HRRT community to develop an improved position profile setup algorithm. Furthermore,

the system drifts over time and the scanner tuning process must be repeated multiple times

per year to ensure accurate imaging results, compounding the problem [12].

In this work, we have developed a probabilistic approach to modeling the detector cen-

ter locations. The approach consists of noise segmentation followed by a grid partitioning

algorithm which uses a prior over detector center configurations to constrain the search

space. The algorithm is different from previous work and based on a probabilistic graphical

modeling approach, which has been shown in the computer vision and machine learning

communities to be efficient at modeling large systems and provides useful information about

independence relationships and uncertainty. Our algorithm is fully automated, significantly

outperforms the manufacturer supplied software on all our tests, and provides quantita-

tive information about which detector settings may need manual intervention. Further, our

model is general enough to be applied to many detector array configurations.

This paper describes the algorithm and the experimental results. We first present back-

ground on the HRRT detector system which motivates the design of our algorithm. Next,

7



Figure 2.1: Left: HRRT PET detector block showing singles events from a 1mCi Ge-68 rod
source acquired for 1 min. Crystal locations are shown with black dots. Right: Crystal
borders based on crystal locations.

we discuss related work on position profile estimation in the literature. We conclude section

2.2 with a brief introduction to probabilistic graphical models and inference techniques rel-

evant to our model. In section 2.3 we describe each component of our algorithm in detail

and give the reader insight into various design considerations. In section 2.4 we present the

experimental results of our algorithm compared to the manufacturer supplied software on

the HRRT platform and with a typical Gaussian mixture model formulation. We conclude

with a discussion of the results and plans for future work.

2.2 Background and Related Work

In this section, we briefly describe the HRRT detector system and highlight facets of the

design which make the position profile estimation problem difficult. We then summarize

methods found in the literature and discuss their application to the HRRT detector system.

We conclude this section by introducing pairwise Markov random fields (MRFs) and inference

techniques in probabilistic graphical models, useful in understanding our algorithm presented
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in section 2.3.

2.2.1 HRRT Design Characteristics

The HRRT detector system is unique among PET scanner designs and is composed of 8 pan-

els (heads) arranged in an octagon, each with a rectangular array of 119 blocks. Each detector

block is 19x19x15mm and consists of two 7.5mm layers of detector material. The block is cut

into an 8x8 crystal array with resulting dual layer crystals of dimensions 2.375x2.375x15mm.

The HRRT PET scanner has a total of 121,856 detectors. There are no physical boundaries

between detectors in each block besides cuts into the block serving as light guides. The

detector block is glued to a glass plate and coupled to four photomultiplier tubes (PMTs)

in a quadrant sharing design. The x and y event positions within the detector block are

calculated by Anger logic [1] which uses light sharing between the four PMTs. To properly

assign gamma ray detections to individual crystals, the detections for an entire block are

plotted on a 256x256 pixel grid where the value of the pixel is proportional to the number

of detected events at that position (Figure 2.1). The peak finding task involves locating

the detection centers of each crystal based on this pixel data. The crystal locations are

subsequently used to identify the crystal region boundaries in the HRRT, defined as halfway

between adjacent peaks [7]. Thus in the HRRT, finding the detector centers is sufficient to

obtain the crystal region boundaries. The (x, y) position of gamma ray detections are then

assigned to a particular detector based on these boundaries. The manufacturer supplies a

suite of tools to set up the PET system. Part of the setup process includes position profile

estimation, which is done using a black box proprietary algorithm.

Because of the quadrant sharing design, areas of high amplitude noise, or crosstalk, can

be seen on the borders of the block shown in Figure 2.1. Crosstalk is caused by insufficient

light enclosures resulting in some light being transmitted to adjacent blocks and the quad-
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rant sharing design, where events detected in neighboring blocks trigger the readout chain

for all blocks linked by the shared PMT [7]. Crosstalk causes problems for automatic crystal

center detection software because its presence is unpredictable before acquiring the data,

the spatial distribution of the detections are similar to that of crystals within the block, and

the amplitude of detections are normally much higher than the actual crystals within the

block, causing problems for algorithms that search for maximal counts. The manufacturer

supplied position profile setup software often mistakes the crosstalk for real detections and

shifts the entire block’s detector center locations into areas containing this noise. Our algo-

rithm segments out the unwanted crosstalk and edge noise prior to modeling the detector

centers, contributing, in part, to our improved results.

2.2.2 Related Work

Both parametric and non-parametric methods for position profile estimation have been pro-

posed in the literature. In evaluating a two-dimensional array (4x8) of BGO detectors using

a quadrant sharing design for high resolution PET, Dahlbom and Hoffman [4] proposed three

methods for crystal identification that rely on probability distributions of x and y positions

generated from a flood source phantom. Each of the three methods identify crystal bound-

aries based on functions of the x and y pulse height distributions. Dahlbom and Hoffman

report correct detector identification rates of 76 to 87%, far too low for practical use in the

HRRT system. Further, the detector block was directly coupled to the four PMTs; whereas,

in the HRRT system, the four PMTs are shared by neighboring blocks, resulting in significant

crosstalk, making it difficult to obtain sufficient accuracies using pulse height and position

distributions. Rogers et al. [11] evaluated larger arrays (12x12 and 16x16) of BGO block

detectors and also proposed an algorithm for crystal identification. Their algorithm varied
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positions of vertices on a checkerboard to minimize the deviation between the expected and

actual detector efficiencies. It is difficult to generalize this method because the expected de-

tector efficiencies are needed. Furthermore it is unknown how well this method would work

in the HRRT where the (x, y) positions of the detector centers in the image of the block drift

spatially over time. Because we know, a-priori, the number of detectors in the block and

that we expect the counts to be grouped spatially near each detector, clustering methods

seem a natural fit for the problem. Xiaowen et al. [16] proposed a fuzzy c-means algorithm

for 8x8 BGO crystal blocks in the MicroPET, a design similar to the HRRT. Although the

authors do not give quantitative error rates, it is evident that clustering performance is poor

in the corner regions where there is often no clear separation between the clusters. Further-

more, in clustering algorithms there is little control over the spatial locations of the clusters.

One may find most of the clusters in a small region of the block and a few large clusters

elsewhere. Stonger and Johnson [13] proposed a parametric method for crystal identifica-

tion based on Gaussian mixture models and maximum likelihood estimation of mixture and

model parameters. The algorithm was tested on 6x6 BGO crystal blocks, coupled to four

PMTs. To initialize the mixture model, preprocessing consisted of data reduction, low pass

filtering, and rules regarding deviation of counts from mean counts, peak removal heuristics,

and iterative thresholding. The method presented by Stonger and Johnson relied on tuned

heuristics for noise reduction to perform well and there was no discussion of how crosstalk

affects the model. In comparing results from a Gaussian mixture model (GMM) with our

algorithm, we find that both crosstalk and fluctuations in noise significantly affect their per-

formance (see section 2.4).
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2.2.3 Overview of Graphical Modeling

In this section we present an overview of graphical models and describe how they can be

used to capture dependencies between variables. We finish the section by presenting some

inference techniques that can be applied in the graph setting and are directly applicable to

our algorithm. The overview in this section is intended to give the reader background in

the graphical modeling and inference tools used in section 2.3. If the reader is familiar with

these techniques, the section can be skipped.

2.2.3.1 Graphical Models

Probabilistic graphical models are graph-based, visual representations of joint probability

distributions over variables, along with dependency relationships between those variables.

Representing probability distributions as graphs are useful because they provide a simple

and intuitive method of visualizing the distribution, the dependency relationships between

variables can be identified by inspecting the graph, and computations to perform inference

and learning can be expressed in terms of graph manipulations. A graph G = (V,E) is com-

posed of a set of vertices V , corresponding to variables in the joint probability distribution,

and a set of edges E between vertices E ⊆ {(i, j)|i, j ∈ V }, corresponding to dependency

relationships. If the edges are undirected, the graph is called a Markov network or random

field (MRF) and the edges encode direct probabilistic influences between variables without

enforcing a specific direction to the influence.

In undirected graphical models, the parameterization for both discrete and continuous val-

ued random variables is through potential functions, or factors, which are functions that

map an assignment of a variable (or multiple connected variables) to a positive real value

ψ(vi, vj) 7→ R+. The value returned by the potential function associated with a particular
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assignment to the variable(s) generally indicates the variable’s affinity for that assignment.

The most common MRF topology for computer vision and image processing is the pair-

wise MRF. In the pairwise MRF, each node in the network is connected to its four adjacent

neighbors. Pairwise MRFs are well suited for modeling distributions where the potentials are

defined over single variables (unary) or pairs of variables (pairwise). In image processing, the

topology of the graph is a structured grid where nodes in the network generally correspond

to pixels in the image and edges to interactions between adjacent pixels (Figure 2.5). The

full joint distribution factorizes according to the graph and is the normalized product of all

the unary and pairwise potentials. The domain of the variables and functional form of the

potentials are determined by the image processing task. In multi-class image segmentation

problems the variable’s domain is generally a discrete valued region assignment and the po-

tentials represent probabilities of configurations. Once the graph and potentials have been

specified, the task in image segmentation is to infer the most probable assignment to the

variables such that their joint probability is maximal.

2.2.3.2 Inference in Graphical Models

Given a graphical representation of the dependencies between variables in our joint proba-

bility distribution, our task is to answer queries using the distribution as factorized by the

graphical structure. Depending on the particular query and the size and structure of the

graph, we can select from a variety of exact and approximate inference algorithms designed

to work efficiently in this setting. A common feature among many of these inference algo-

rithms is the concept of message passing along edges in the graph. Messages provide a means

of passing probabilistic information from one node of the graph to another and is a function

associated with an edge in the graph. Depending on the query and the inference algorithm,
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messages are calculated in different ways. One common query, directly applicable to our

algorithm, is to find the most probable assignment to each variable (max-marginals) in the

model (see section 2.3.1). To find the max-marginals, we can use the max-product message

passing algorithm.

The max-product algorithm iteratively passes messages to adjacent nodes in the graph.

For example, assume we have a pairwise MRF with unary potentials ψ(vi) over each node vi

and pairwise potentials ψ(vi, vj) defined across each edge and want to calculate the message

from node vi to node vj using the max-product update rules. The message mvi→vj(vj) from

vi to vj is given by:

mvi→vj(vj) = max
vi

ψ(vi, vj)ψ(vi)
∏

x∈N(vi)\vj

mx→vi(vi)

 (2.1)

where the notation N(vi)\vj indicates the neighborhood around graph node vi not including

graph node vj, the node in which the message is being sent. Note, the maximum operator

in equation 2.1 is applied to the domain of the sending variable (vi) making the message a

function of the receiving variable (vj). The message value is thus computed as the product

of all incoming messages from adjacent nodes, not including the one receiving the message,

multiplied by the unary potential of the node sending the message and the pairwise poten-

tial across the edge the message is being sent. The maximum operator is then applied to

all variables in the domain of the message except the one receiving the message. In graphs

that contain cycles, message values will continually change and an exact solution cannot be

calculated. Instead, an approximation to the posterior distribution is calculated by itera-

tively passing messages between variables until the message values change by only a small

amount. The final beliefs at each variable are then calculating by the product of all incoming

messages from connected nodes in the graph and are the exact max-marginal probabilities

in graphs without cycles. In graphs with cycles, the algorithm is not guaranteed to converge
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and the beliefs are the approximate max-marginals. For more detailed information about

max-product belief propagation see Wainwright and Jordan [14] and Koller and Friedman [8].

Another class of algorithms, directly applicable to our algorithm, that have been applied

to graphs with cycles and in settings where exact inference algorithms are intractable due to

network size and/or density of connections are the variational algorithms (see section 2.3.2).

This class of approximate algorithms transforms the problem of finding the full joint distribu-

tion into an optimization problem where the approximation to the target distribution P (V )

takes on a simpler form. Variational algorithms reformulate the inference task into finding

the maximum of an objective function defined over a set of simpler distributions Q(V ). The

task is to find the distribution in the set that best approximates the target distribution.

The simplest choice for Q is to assume that each variable in the graph is independent and

represent the distribution as a product of independent marginals. The resulting algorithm

is called the mean field algorithm. Assuming we have a pairwise MRF with nodes vi,j,

where (i, j) indexes a particular node in a two-dimensional matrix, and pairwise potentials

ψ(vi,j, vk,l) defined across each edge, the mean field approximation for Q (vi,j) is given by:

Q(vi,j) =
1

Zi,j
exp



EQ(i−1,j) [ln (ψ({i− 1, j}, {i, j}))] +

EQ(i,j−1) [ln (ψ({i, j − 1}, {i, j}))] +

EQ(i+1,j) [ln (ψ({i+ 1, j}, {i, j}))] +

EQ(i,j+1) [ln (ψ({i, j + 1}, {i, j}))] +


(2.2)

where Zi,j normalizes the distribution. Evaluating the energy functional in mean field is

therefore computed as a sum of expectations, each over small sets of connected variables. In

the case of pairwise MRFs, the expectations are calculated over single variables and pairs of

adjacent variables as specified by the edges in the graph. The mean field algorithm iteratively

updates independent marginals (beliefs) until the marginals change by some small amount.
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The algorithm is guaranteed to converge and furthermore, the distribution Q̃(V ) returned by

mean field is guaranteed to be a fixed point of the energy functional. For more information

about the mean field algorithm, see Parisi and Shankar [10], Opper and Saad [9], and Koller

and Friedman [8].

2.3 Algorithm

Using the graphical modeling approaches outlined in section 2.2.3, we now present our de-

tector center finding algorithm. The algorithm consists of a Markov random field (MRF)

based segmentation model to filter out crosstalk and noise, followed by a grid partitioning

graphical model which uses candidate points and a prior over detector locations to find a

configuration of detector centers. In this section we decompose the model into parts and

explain each in turn.

2.3.1 Segmentation Model

One dominant characteristic of the detector block image shown in Figure 2.1, is the high

amplitude crosstalk from neighboring blocks. To identify which pixels in the image are

crosstalk and which are detections of interest, we developed a multiclass pairwise MRF

segmentation model. Each variable in the model vi,j corresponds to a pixel at grid location

(i, j) in the image and edges correspond to interactions between adjacent pixels in the lattice

structured graph representing the image. Each variable vi,j has a domain {1, . . . , 9} where

the value vi,j = α represents a region assignment for pixel (i, j) as 4 borders (α ∈ {1, 3, 5, 7}),

4 ridges (α ∈ {2, 4, 6, 8}), or the interior class (α = 9) as shown in Figure 2.2. The interior

segment defines the spatial location of the detections we are ultimately interested in using to

model the detector centers, ridges correspond to the crosstalk, and borders to low amplitude
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noise (lower than the interior signals) along the edges of the image, unlikely to be real crystal

detections. The MRF is composed of node and edge potentials. The node potentials are

constructed as the product of a Gaussian distributed amplitude probability and a spatial

location probability and is given by:

ψ(vi,j) = N (I(i, j) | µα, σ)P (vi,j = α | (i, j)) (2.3)

µα∈{1,3,5,7} =
1

N

∑
i,j

I(i, j) (2.4)

µα∈{2,4,6,8} =
1

N

∑
i,j

I(i, j) + 2σ (2.5)

µα∈{9} =
1

N

∑
i,j

I(i, j) + 0.25σ (2.6)

The first term in equation 2.3 represents the amplitude probability which accounts for un-

certainty in the detection densities (I(i, j)) at image pixel location (i, j) for each class α.

The class dependent means µα of the amplitude distribution are set to the mean detection

density in the image plus a scalar multiple of the standard deviation (equations 2.4, 2.5, 2.6).

Reasonable settings for these means were determined empirically from previous system tun-

ings by hand segmenting regions of the images and comparing the class means using similar

imaging times and source strength. Sensible values for these would need to be determined

for different source strengths and different imaging platforms. The second term in equation

2.3 represents the location probability and encourages pixels near the edge of the image to

be in ridge or border segments. The location probability extents for each segment were also

determined empirically from the data acquired during previous system tunings by visually

estimating reasonable boundaries for each segment.

The pairwise edge potentials in the MRF penalize invalid transitions from incompatible
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Figure 2.2: Left: Graphic depicting the amplitude differences observed between border noise,
crosstalk (ridge), and detections of interest (interior) from crystals within the block. Right:
Region assignment key for multiclass segmentation MRF.

segments (equation 2.7). We specify a set of constraints penalizing invalid transitions be-

tween borders, ridges, and the interior segments. In summary, invalid transitions are those

from ridge to ridge or border to border that do not pass through the interior segment or are

not adjacent. For example, if a variable vi,j is assigned the value 1 (border 1) then the edge

potential penalizes the assignment of 4 (ridge2), 5 (border 3), 6 (ridge 3), and 8 (ridge 4)

to adjacent variable vi,j+1 in the graph because those assignments would skip the interior

segment or are not adjacent.

ψ(vi,j, vi,j+1) =



1 if vi,j = 1 ∧ vi,j+1 6= {4, 5, 6, 8}

1 if vi,j = 2 ∧ vi,j+1 6= {3, 5, 6, 7}

1 if vi,j = 3 ∧ vi,j+1 6= {2, 6, 7, 8}

1 if vi,j = 4 ∧ vi,j+1 6= {1, 5, 7, 8}

...

ε otherwise.

(2.7)
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Learn Mask

Segment

Grid Partition

Figure 2.3: Detector center finding workflow (clockwise from upper left). Original detector
image with crosstalk along three boarders is used by the segmentation algorithm to learn a
mask. The mask is applied to the original image masking out all segments but the interior
(white central portion). The segmented detector image is used by the Grid Partitioning
model to learn the location of the 64 detectors in the block.

To find the marginal probabilities for each pixel and class, we apply the max-product message

passing algorithm (see section 2.2.3.2). The max-product algorithm computes the max-

marginals for each variable in the graph. An image mask is generated by assigning each

pixel to the class with maximum marginal probability. The mask is then used to threshold

out pixels not assigned to the interior class as shown in Figure 2.3.
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2.3.2 Grid Partitioning Model

Once the unwanted noise has been removed from the images using the segmentation model,

the next step of our algorithm is to find the detector centers. Our model consists of a

partitioning algorithm that uses candidate pixels in the image and a prior over valid config-

urations of candidate pixels to find the most probable configuration of detector centers. We

first introduce the construction of the prior followed by the partitioning algorithm.

2.3.2.1 Con�guration Prior

In reviewing configurations of detector centers in the HRRT (Figure 2.4), we observed sim-

ilarities between configurations across blocks. The configurations are similar in shape yet

warped with respect to each other. Further, adjacent detector centers tend to covary spa-

tially from one block to another. To incorporate this information into our model, we define

a prior distribution over detector configurations. The prior distribution is modeled as a

Gaussian distribution with mean η ∈ (R2)m and covariance matrix Λ2m×2m where m = 64,

corresponding to the number of detectors in each block. Each pair of elements in η is inter-

preted as the horizontal and vertical pixel location of the detector center for each detector.

The length of the mean vector is therefore 128 elements. The covariance matrix is 128x128

elements where each 2x2 block entry Λii ∈ R2x2 for 1 ≤ i ≤ m is interpreted as the two-

dimensional covariance matrix (vertical and horizontal uncertainty) for detector i’s position.

The probability of a particular configuration of detector centers d = [d1, . . . , dm] where each

di ∈ R2 under the prior distribution is then given by:

P (d) = N (d|η,Λ) = 1

(2π)m|Λ|
1
2

exp{ −1
2
(d− η)TΛ−1(d− η) } (2.8)
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The parameters η and Λ of the prior distribution are determined empirically using training

data from past system configurations. The mean parameter η is calculated by averaging

the detector center locations across all 936 blocks in the HRRT system. For the covariance

matrix Λ, we want to capture the dependencies between adjacent detector centers and relax

longer range covariances between detectors not adjacent in the block, consistent with our

observations from Figure 2.4. We can visualize this network using a lattice structured grid

MRF where the nodes correspond to detector centers and edges correspond to the depen-

dencies (Figure 2.5). The lack of an edge in Figure 2.5 corresponds to a lack of dependency

between the nodes. This is equivalent to 0 entries in the inverse covariance matrix Λ−1 of

the Gaussian distribution. We therefore want to learn an inverse covariance matrix that is

consistent with the empirically derived inverse covariances of detectors from the past system

configurations while also having 0 entries for detectors not connected in our graphical rep-

resentation.

We use an iterative proportional fitting (IPF) algorithm to learn this inverse covariance

matrix [2]. The algorithm initializes Φ to the inverse empirical covariances from the training

data (Σtrain)−1 for all connected nodes in the graph and 0 otherwise. Note, the entries in

the inverse of the empirical covariance matrix typically contain non-zero entries between

non-adjacent detectors due to the dependencies in the empirical data and/or noise. To learn

entries for nodes connected in the graph that are consistent with the empirically computed

covariances while keeping entries for non-adjacent detectors 0, we iteratively calculate block

entries for all connected nodes as shown in equation 2.9, where block entry Φi,j is the 4x4

block of inverse covariances between detectors i and j. The notation Φ(i,j),∗
(
similarly Φ(j,i),∗

)
in equation 2.9 refers to the inverse covariances of nodes i and j with all other nodes in the

graph. The notation Φ∗,∗ refers to all inverse covariances except those between detectors i
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Figure 2.4: Singles events from a 1mCi Ge-68 rod source acquired for 1 min across a
sub-set of blocks within one head in the HRRT system. One observes both similarities in
configurations of crystals and the presence and/or absence of crosstalk on the block boarders.

and j. The algorithm iterates until the inverse covariances for all connected nodes change

by only some small amount ε, at which point the algorithm has converged. The covariance

matrix Λ for our prior distribution over configurations is then set to Λ = (Φ)−1.

Φi,j = (Σtrain
i,j )−1 + Φ(i,j),∗(Φ∗,∗)

−1Φ(j,i),∗ (2.9)

2.3.2.2 Grid Partitioning Model

Using the segmented detector image and the prior over configurations, our goal is to find an

optimal joint distribution over detector centers such that we can use those centers to parti-

tion the detector image into a grid as shown in Figure 2.1. We approach the problem in the
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Figure 2.5: An undirected graph in which nodes correspond to detector variables and edges
correspond to dependency relationships. We can read the dependencies between detector
centers directly from the graph. For example, detector 1 is dependent on detectors {2, 9, 10},
detector 10 is dependent on detectors {2, 9, 11, 18}, etc.

spirit of affinity propagation [5]. In affinity propagation candidate data points are clustered

by message passing, determining which of the candidate points is the best exemplar of the

other points (cluster center) and which are clustered with the exemplar based on measures

of responsibility and affinity respectively. Our model builds on these ideas by formulating

the problem as a graphical model containing discrete candidate point variables, discrete de-

tector variables, and continuous Gaussian random variables representing the detector centers.

The structure of the graphical model is shown in Figure 2.6. The discrete candidate point

variables ci where i ∈ {0, . . . , n} indexes one of n candidate points (i.e. pixel locations) and

c0 is a null candidate point variable. Each candidate point has a spatial location in the image

indicated using the notation (xi, yi). The null candidate point variable has a static spatial

location of (0, 0). The domain of the candidate point variables is {0, . . . ,m}, corresponding

to the m = 64 detector variables plus the null (ci = 0). Each of the candidate point vari-
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ables are connected to each discrete detector variable rj where j ∈ {0, . . . ,m}, corresponding

to a detector in the block plus the null detector. The domain of the detector variables is

similarly {0, . . . , n}, corresponding to the n candidate points plus the null candidate point.

Each detector variable rj for j ∈ {1, . . . ,m} is connected to exactly one continuous Gaussian

random variable dj whose domain is the mean and variance of the Gaussian distribution

over the detector center location for detector j. We introduce local unary factors ψci(ci) for

candidate point variables and ψrj(rj) for detector variables that penalize for not selecting a

detector (i.e. ci = 0) or candidate point (i.e. rj = 0) respectively (equations 2.10 and 2.11).

ψci(ci) =


λc if ci = 0

1 otherwise

(2.10)

ψrj(rj) =


λr if rj = 0

1 otherwise

(2.11)

To find candidate points in the image, we use the Harris corner point detector to generate a

series of interest points [6]. The Harris corner point detector is invariant to rotation, scale,

illumination variation and image noise. It works by measuring local changes of the signal

in the image within patches that are shifted by small amounts in both the horizontal and

vertical directions. The eigenvalues of a local two-dimensional neighborhood around each

pixel are calculated and if the two eigenvalues are large (high variation in horizontal and

vertical directions) then the pixel is on a “corner”. Empirically we have found that detector

centers roughly coincide with the Harris generated corner points; although, it finds corner

points throughout the image in places other than the detector centers. We therefore obtain

many more interest points than detectors in the block.

The pairwise factors between each candidate point and detector variable penalize for dis-

agreement between variable assignments (equation 2.12). If a candidate point variable ci’s
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Figure 2.6: Grid partition graphical model. Variables ci index each of the candidate points,
variables rj index detectors, and Gaussian random variables dj represent detector center
locations in the 256x256 pixel grid.

most probable assignment is j then detector variable rj’s most probable assignment should

be i. This factor encourages consistency in assignment probabilities between the variables

and discourages the selection of multiple interest points and/or detectors.

ψrj ,ci(rj, ci) =


λrc if (rj = i ∧ ci 6= j) ∨ (ci = j ∧ rj 6= i)

1 otherwise

(2.12)

ψrj ,dj(rj, dj) =


N (dj | EB(rj) [(xi, yi)] ,Ω) if rj 6= 0

N (dj | (0, 0) ,Ω0) if rj = 0

(2.13)

The pairwise factor between the detector variable rj and the corresponding Gaussian dis-
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tributed detector center variable dj (equation 2.13) indicates how likely the detector center

location assigned to variable dj is with respect to the candidate point locations (xi, yi),

weighted by the current belief probabilities at variable rj for each of the candidate locations.

These factors provide a way for probabilistic information to be shared between the discrete

and continuous variable nodes. The variances Ω and Ω0 in equation 2.13 are fixed and rep-

resent the uncertainty in the interest point locations and in the null detector center location

respectively. The uncertainty in the interest point locations was measured empirically by

generating interest points for ten images from previous system tunings and hand setting

the detector peaks, then calculating the variance in Euclidean distances between the closest

interest point and the hand set detector peak for each detector across all examples. The

calculated standard deviation was approximately 10 pixels in the horizontal image direction

and 14 pixels in the vertical image direction. The uncertainty in the null detector center (i.e.

rj = 0) was set to 256 pixels.

The last factor in the graphical model is the joint factor between all detector center variables

dj shown in equation 2.14. The mean η and variance Λ are the prior mean and variance

over detector center configurations (see section 2.3.2.1). The joint factor evaluates to the

probability of the current configuration of detector centers under the prior distribution.

ψd1,...,dm (d1, . . . , dm) = N ([d1, . . . , dm] |η,Λ) (2.14)

Our goal is to find the detector center locations dj for each detector. From this we can

also compute the crystal region boundaries as described in section 2.2.1. By formulating

our problem as a graphical model, we have implicitly defined a factorization of the full joint

distribution over variables. To find the detector centers, we use the mean field algorithm (see

section 2.2.3). Alternatively, MCMC sampling could be used to learn the detector centers
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but would be slow to converge to the target distribution because there are many low prob-

ability regions in our model. The mean field algorithm offers a good approximate inference

alternative that has lower computational costs compared to MCMC. To calculate the mean

field beliefs at each variable, we formulate the updates as the expectation of all pairwise

factors under the distribution formed by the product of the marginal beliefs of connected

variables summed with the local unary factors.

The belief update for variable ci is shown in equation 2.15. The first term in equation

2.15 is the expectation of the pairwise factors between each discrete detector variable rj and

the variable ci weighted by the current beliefs of each variable rj, where we have substituted

B(R) =
∏m

j=0 B(rj). The second term is the local unary factor for the candidate point

variable ci. The resulting beliefs are a function of the domain of ci and represent how well

suited candidate variable ci (i.e. pixel location) is for representing each detector center.

B(ci) = exp

[
EB(R) [lnψ(rj, ci)] + lnψ(ci)

]
(2.15)

= exp

[
m∑
j=0

n∑
k=0

[lnψ(rj = k, ci)B(rj = k)] + lnψ(ci)

]

The belief update for variable rj is shown in 2.16. Similar to equation 2.15, the first term in

equation 2.16 is the expectation of the pairwise factors between each candidate point variable

ci and the discrete detector variable rj, weighted by the current beliefs of each variable ci,

where we have substituted B(C) =
∏n

i=0B(ci). The second term in equation 2.16 is the

probability of the current location of the detector center represented by variable dj under

a Gaussian distribution with mean centered on each candidate point and fixed variance Ω

when rj 6= 0 (equation 2.17). If variable rj = 0 then no candidate point has been selected

and the probability of the variable dj is evaluated against the null detector center located at

pixel (0,0) with variance Ω0. The third term in equation 2.16 is the unary factor penalizing
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for not selecting a candidate point.

B(rj) = exp

[
EB(C) [lnψ(rj, ci)] + EB(dj) [lnψ(rj, dj)] + lnψ(rj)

]
(2.16)

where

EB(C) [lnψ(rj, ci)] =
n∑
i=0

m∑
k=0

[lnψ(rj, ci = k)B(ci = k)]

and

EB(dj) [lnψ(rj, dj)] =


lnN (B(dj) | [xi yi] ,Ω) if ((rj = i) ∧ (1 ≤ i ≤ n))

lnN (B(dj) | [0 0] ,Ω0) if rj = 0

(2.17)

The belief update for variable dj is shown in equation 2.18. The first term in equation 2.18 is

the expectation of the log configuration prior under the distribution formed by the product

of marginal beliefs for all Gaussian detector variables B(di), except the variable in which the

belief is being calculated dj, where we have substituted B(d∀i\j) =
∏
∀i\j B(di) with notation

∀i\j to indicate all detector variables except j. Because the expectation of a Gaussian

distribution is the mean, we partition the configuration prior on the variable dj in which the

belief is being updated, separate terms involving the update variable and replace the rest

with the means of the remaining variables. This forms a new Gaussian distribution show in

equation 2.19 where ηj is the mean from the configuration prior for jth detector, Λ−1
j,∗ is the

block inverse covariances of detector j with all other detectors from the configuration prior,

µ∗ are the means all variables di except variable dj, and, similarly, η∗ are the configuration

prior means for all other detectors except j. The second term in equation 2.18 evaluates to

another Gaussian distribution where the mean is the sum of all candidate points weighted

by the current beliefs at variable rj (equation 2.20). The variance is similarly the sum of

the uncertainties in each candidate point, weighted by the current beliefs at variable rj.
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Together equations 2.19 and 2.20 form a new Gaussian distribution represented by variable

dj and combines the information from the current beliefs of all other detectors under the

configuration prior distribution with the sum of candidate points weighted by the current

beliefs of variable rj.

B (dj) ∝ exp
[
EB(d∀i\j)

[
lnψd∀i\j

(
d∀i\j

)]
+ EB(rj) [lnψ(rj, dj)]

]
(2.18)

where

EB(d∀i\j)

[
lnψd∀i\j

(
d∀i\j

)]
= N

(
· |
(
ηj − Λj,jΛ

−1
j,∗ (µ∗ − η∗)

)
,Λj,j

)
(2.19)

EB(rj) [lnψ(rj, dj)] ∝ N (· | θ,Γ) (2.20)

and

θ =

n∑
k=1

B(rj = k)Ω−1[xk yk] +B(rj = 0)Ω−1
0 [0 0]

n∑
k=1

B(rj = k)Ω−1 +B(rj = 0)Ω−1
0

(2.21)

Γ−1 =
n∑
k=1

B(rj = k)Ω−1 +B(rj = 0)Ω−1
0 (2.22)

The mean field beliefs for each variable are calculated in an iterative fashion until the beliefs

change by only a small amount. Once the algorithm has converged to tolerance, the detector

centers correspond to the beliefs at each Gaussian detector center variable dj. The detec-

tor center locations are used for comparison with our gold standard system configuration

discussed in section 2.4.

29



2.3.3 Gaussian Mixture Model

To compare our grid partitioning model with a more typical mixture model approach similar

to that proposed by Stonger and Johnson but using our configuration prior over detector cen-

ters, we introduce a Gaussian mixture model shown in equation 2.23. The two-dimensional

location ([xi yi]) of each of N detections in the detector block image (see Figure 2.1) are used

to fit the mixture model. The latent random variable z indexes the mixture component, one

of m ∈ {1, . . . , 64} detector centers. The prior mean and variance of a valid set of detector

configurations (d = [d1, . . . , dm] ) are η and Λ as discussed in section 2.3.2.1. Each mixture

component is a Gaussian distribution in R2 parameterized by the mean, dm, and the covari-

ance matrix, Σm, whereas the configuration prior is over all M detector centers. We use the

expectation maximization (EM) algorithm to iterate between calculating the expectation of

the latent random variable z using the current parameter estimates and a maximization step

where the parameters are updated [3].

P (d, z|[X Y ]) ∝
N∏
i=1

[
M∑
m=1

N ([xi yi] | dm,Σm, z = m)P (z = m)

]
N (d|η,Λ) (2.23)

Because our prior is Gaussian and thus conjugate, we can maximize the mean and covariance

parameters in closed form. Once the algorithm has converged to tolerance, the detector cen-

ter locations are used for comparison with our gold standard system configuration discussed

in section 4.3.

2.4 Experimental Results and Discussion

To evaluate the performance of our model, we used data from the HRRT system installed at

the University of California, Irvine (UCI). The system was initially installed in December of
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2004 and is used weekly for research and clinical PET scans. To quantitatively evaluate our

model solutions, we calculate the mean squared error (MSE) rate of our model and the man-

ufacturer supplied peak finding algorithm against a gold standard system configuration. The

gold standard configuration was created by manually setting the detector center locations

of 44,928 detectors in 702 detector block images. The images were acquired by scanning

a ∼1mCi Ge-68 rod source for 1 minute, consistent with the manufacturer’s recommenda-

tion for turning, prior to running the manufacturer supplied setup programs which include

their peak finding algorithm. For all experiments, MSE was calculated by averaging the

error rates across all 702 blocks. For each block, the error rate was calculated by selecting,

without replacement, the closest detector center in the model solution to the gold standard

in terms of Euclidean distance, starting with detector 1 and ending with detector 64 and

averaging the results.

To calculate the configuration prior, a complete system tuning from 2009 was used. Although

the HRRT system is known to drift over time, we expect the parameters of the configuration

prior to be relatively stable with respect to a particular HRRT machine because they are cal-

culated over all blocks within the imaging system and no deterministic system drift has yet

been identified in the HRRT literature. In our experiments, we compared our model initial-

ized with the same previous system configuration as the manufacturer supplied software. To

further evaluate our segmentation and grid partitioning model (Seg+GridPart), we compare

it with the Gaussian mixture model presented in section 2.3.3. We compare with the mixture

model in three ways. First, the mixture model is run using the un-segmented data and the

default system configuration as the starting point (GMM). Second, the mixture model is

run after applying the segmentation model and using the same default system configuration

(Seg+GMM). Finally, the mixture model is run after applying the segmentation model and

initializing with the results from the grid partitioning model (Seg+GridPart+GMM). For

each solution we calculate the MSE against the gold standard configuration.
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Using our segmentation+grid partitioning (Seg+GridPart) model we obtained a statisti-

cally significant improvement in the error rates over the manufacturer supplied software.

The graph in Figure (2.7) shows the log mean squared error rate in estimating the peak

locations over the 702 detector blocks as compared to the gold standard configuration. Our

Seg+GridPart model yielded a 39% improvement (t = 4.25, p < 0.008) in MSE rate over the

manufacturer supplied software. Both the Seg+GMM and Seg+GridPart+GMM models

yielded an 18% improvement (t = 2.25, p < 0.08) over the Siemens model. When adding

the GMM model, both initializing with the default system configuration or the GridPart

solution results in virtually identical MSE rates due to the GMM algorithm’s necessity to

maximize the likelihood of all the data under the mixture model. The GMM model alone

on un-segmented data performed much worse than the others, caused by the presence of

significant crosstalk in the un-segmented images and the likelihood properties of the GMM

model in the EM framework mentioned above.

To evaluate our model in the presence of low count rates, we acquired images using a 0.57µCi

Ge-68 rod source for 1 minute. We performed the same experiment as described previously,

computing the MSE error rate of our model with the manually set gold standard system

configuration. The manufacturer supplied setup programs were not stable using the low

activity source and could not be used to tune the system. Our Seg+GridPart model, even

in the low count environment, yielded a 21% improvement, on average, in MSE compared

to manufacturer’s model acquired with a 1mCi source; whereas, the Seg+GridPart+GMM

model yielded a 6% improvement. These results suggest our model still performs well with

low count rates.

In our experiments, our model significantly outperforms the manufacturer supplied peak-

finding software. In evaluating errors made by our model compared to those made by the
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Figure 2.7: Log mean squared error rates of our Grid Partitioning with noise segmen-
tation model (Seg+GridPart) versus the Siemen’s peak finding model shows a 39% de-
crease (t = 4.25, p < 0.008) in MSE. Our full model is compared to the Gaussian mixture
model (GMM) without noise segmentation, the Gaussian mixture model with segmentations
(Seg+GMM), and the Gaussian mixture model with segmentations and initialized with the
results form the GridPart model (Seg+GridPart+GMM) versus the gold standard configu-
ration across 702 detector blocks (44,928 detectors). All models were initialized using the
default 2004 system configuration to be consistent with the Siemens tuning software unless
otherwise indicated.

manufacturer’s, we find that our model is typically making errors in the detectors at the

corners of the blocks. In the corner regions there is much more variability in block to block

detector configurations. Another source of error in our model solutions stem from the Har-

ris corner point detector. Our GridPart model relies on having reasonable candidate points

available. If the Harris corner point algorithm does not generate candidate points near detec-

tor centers, the accuracy of the model results will suffer. The interaction between the quality

of the segmentations and the corner points generated further affects our algorithm’s perfor-

mance; although, we have found the segmentation model to be reliable even in low count

environments. The manufacturer’s software generally makes errors in both the corners of
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Figure 2.8: Block with unclear detector boundaries and low sensitivity. Our Seg+GridPart
model (right) gets closer to the correct configuration than the manufacturer’s peak finding
software (left).

the blocks and shifting errors where the entire block configurations are shifted into areas of

crosstalk. These shifting errors, common in the manufacturer’s solution, while also present

in the un-segmented GMM model results, take more time to manually fix than adjusting a

few misplaced detector centers because each detector center must be either moved from its

current location or reset from scratch. To completely re-set all the detector centers in one

HRRT detector block using the manufacturer’s supplied software it takes, on average, one

minute compared to a few seconds to adjust the location of a detector center. Typically after

a full system setup, an engineer must manually review the configurations for all blocks to

evaluate accuracy. This process takes considerable time. Using our model, we can evaluate

the likelihood of each block configuration under the prior distribution over configurations

and rank order blocks that have low likelihood, giving engineers guidance on what blocks

in the system may need manual intervention. Another benefit from our model is in blocks

with low counts across the block and/or in blocks where detector boundaries are unclear

(Figure 2.8). In these situations, our model draws more heavily on information from the

prior distribution over configurations to yield more sensible results which are closer to the

true configuration. Comparing the image on the right of Figure 2.8 with the one on the left,
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the black dots are closer to their respective detector centers. In the image on the left, there

are many detector centers that end up in the crosstalk regions both to the left and at the

top of the panel. The overall relative relationship between the detector centers in the left

image are not consistent with the shape of the block whereas the ones on the right are more

consistent. Lastly, the MSE between the gold standard configuration for this block is lower

in our model results than the manufacturers result on the left.

2.5 Conclusion

In this work we have developed a probabilistic approach to position profile estimation in PET

detector systems and applied it to the detector arrays in the HRRT. Our model consists of

a system specific prior over detector configurations, a noise segmentation algorithm, and

a grid partitioning algorithm. The model is general enough to be used on many detector

configurations. The model was used to successfully estimate a position profile on the HRRT

PET system. Our model outperforms the manufacturer’s supplied position profile software

with a 39% drop in mean squared error, on average, in our tests. Further, it performs better

on panels with low sensitivity and/or non-standard detector configurations and requires

no manual intervention to run once the prior distributions have been computed for the

specific PET system. In settings with low count rates, our model still outperforms the

manufacturer’s software using a much stronger source. Future work will consist of both

deploying the solution on other HRRT systems and developing quality control extensions,

allowing engineers to track changes in the position profile estimates over time. In addition,

we are interested in applying the model to other PET scanner block configurations and

detector materials to further evaluate its performance.
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Chapter 3

Feed-forward Hierarchical Model of the

Ventral Visual Stream Applied to

Functional Brain Image Classi�cation

3.1 Introduction

Significant progress has been made in the diagnostic decision-making processes and in pre-

dicting the onset and the course of brain disorders ([18]; [23]; [29]; [31]). The traditional

endpoint diagnosis, clinical measurements and cognitive tests used in clinical trials have

proved to be informative but have their own limitations in accurately quantifying the pro-

gression of brain disorders in an unbiased and objective manner ([4]; [21]). Advances in brain

imaging technologies have enabled researchers to investigate and test novel biomarkers that

could serve either as diagnostic tools to aid clinical decision-making or as surrogates, reflect-

ing disease progression and underlying disease pathology (Biomarkers Definitions Working

Group, 2001). Accordingly, there is a growing body of evidence in the literature showing

Published in Human Brain Mapping 35.1 (2014): 38-52.
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that structural and functional brain imaging can be valuable tools for predicting and classi-

fying gradually progressive neurological and psychiatric disorders such as Alzheimers disease

(AD) ([10]; [19]; [25]; [28]; [33]). Although both PET and MRI imaging modalities have

been found to be discriminative in various neurological disorders, there is disagreement in

the community about which are most sensitive for particular disorders. Specifically, differ-

ences in sensitivity and specificity of structural Magnetic Resonance Imaging (MRI) and

2-deoxy-D-glucose (FDG) Positron Emission Tomography (PET) features in the prediction

of early AD has been debated in the literature with no clear consensus ([7]; [25]). Neverthe-

less, AD research studies evaluating the diagnostic and predictive value of regional specific

glucose metabolic rate and volume changes suggest the greater reliability of FDG PET over

MRI in discriminating AD from subjects with intact and mild cognitive impairment ([7];

[20]; [25]). However, De Santi and Mosconi indicate image post-processing influences the

outcome of discriminative analyses and subsequently, their predictive value.

Although advances in imaging have enabled researchers to visually inspect both functional

and structural brain scans of disease, it is often difficult for the human observer to identify

the subtle differences in the brain images that are often necessary for reliable disease classifi-

cation. Furthermore, visual identification of brain diseases by a human observer is time con-

suming and error prone. Automated image analysis algorithms that can reliably discriminate

the diseased from the healthy brain are preferred because they save time, are generally less

prone to errors, are not influenced by rater bias or inter-rater differences in neuroanatomical

expertise, and can identify subtle statistical correlations in the data. For preventative and

longitudinal studies in large populations, automated image analysis is critically important

to evaluate the data. To achieve automated and reliable image analysis and classification,

we can use computer vision techniques that are designed to extract information from images.

Object recognition in images and video is an active area of research in the computer vi-
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sion community. Finding objects is fundamentally related to pattern recognition where the

presence of unique patterns of colors, edges, and/or textures are consistent with a particular

class of object. Probabilistic models are particularly well suited for recognition problems

because they provide a structured approach to modeling uncertainty and can be less sensi-

tive to noise in the data. Object recognition systems often consist of a feature extraction

component and a classifier. The feature extractor is used to identify properties of the objects

that are most important in discriminating one object from another. The features along with

a labeled training set are then used to train a classifier to map the features into a class label

for each object the detection system is built to recognize. Although the overall process is

simple, there are many subtleties in real world applications of detection systems such as ob-

ject illumination, scale, occlusion, and orientation that affect accuracy. Most often we have

a small set of images representing the objects to be recognized and do not have exhaustive

examples at all possible scales, orientations, illuminations, etc. The challenge is therefore to

find a feature space that avoids irrelevant variations in the objects and instead captures the

most discriminating characteristics ([12]). One source of inspiration for engineering such in-

variant features is the primate visual system, which performs object detection robustly across

a huge range of viewpoints, illuminations and occlusions. One very successful method, the

Scale Invariant Feature Transform (SIFT) proposed by Lowe [24] uses features with partial

invariance to local variations in scale and illumination, similar to the receptive fields of the

neurons in the inferior temporal cortex, an area important for object recognition in primates.

Serre et al. [32] introduced a filtering method whose hierarchical architecture was designed

specifically to emulate visual processing in the cat and primate striate cortex. They applied

this method to detecting objects in photographs and reported high success rates from a few

training examples. Mutch and Lowe [27] reported similar performance results using a similar

filtering scheme that scaled the input images instead of the filters as was done in the Serre

work.
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Similar to object recognition in photographs, for automated image-based diagnosis, it is nec-

essary to ignore some classes of variation across healthy individuals while identifying other

specific variations which are indicative of disease state. Differences in ligand uptake in the

brain measured by functional brain imaging modalities such as FDG PET and Tc99m HM-

PAO Single Photon Emission Tomography (SPECT) result in spatially smooth patterns of

differing intensities which can be used to differentiate a disease group from healthy subjects.

Similarly, precise morphology/anatomy may vary among individuals requiring some degree

of local scale and orientation invariance. Based on this insight, we extend the neurologically-

inspired filtering model described by Serre et al. [32] to signal detection in functional brain

imaging. To evaluate how well the Serre feature model works in capturing disease patterns

in the human brain, the model is extended to 3D volumetric space and signal detection

differentiation in functional brain imaging. The hierarchical filtering pipeline is analyzed to

identify which steps are most important for classification accuracy and the filter outputs are

used to train both neural network (NN) and logistic regression (LR) classifiers. Two distinct

and previously published datasets are tested using this feature extraction and classification

method: (1) Alzheimers Disease Neuroimaging Initiative (ADNI) AD FDG PET scans sam-

pled at baseline, 12 month, and 24 month time-points versus the study specific age-matched

healthy comparison (HC) subjects ([26]); (2) a Tc99m HMPAO SPECT National Football

League (NFL) dataset versus study specific age-matched HC subjects ([1]). The AD classi-

fication results are further compared against a blinded expert human rater (co-author J.H.

Fallon), providing a baseline measure of how well a human counterpart can recognize disease

in the same dataset.
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3.2 Methods

3.2.1 Filtering and Feature extraction

The image filtering pipeline consists of a series of alternating steps of simple filtering (S

layers) and complex filtering (C layers) layers briefly summarized here and discussed in

detail in subsequent sections. The first simple layer (S1) outputs respond to oriented edges

at different spatial scales and orientations (section 3.2.1.1). Spatial scales in this context

refer to the underlying spatial distribution of the signal in the images. Filters with larger

spatial scales will respond to larger (spatially) image signals. S1 layer filters are separated

into bands where each band is composed of two similar spatial scales as shown in table

3.1, rows 1 and 2. The first complex layer (C1) combines the outputs from the S1 layer

at different scales but within orientations, providing scale invariance (section 3.2.1.2). The

complex layers pool the simple layer outputs using a max operator, where the strongest

simple layer output drives the complex layer output. The second simple layer (S2) matches

the detections from the C1 layer against healthy subjects in a template matching framework

where higher scores indicate a closer match (sections 3.2.1.2.1 and 3.2.1.3). The second

complex layer (C2) combines the outputs from template matching scores across orientations

gaining invariance to orientation (section 3.2.1.4).

3.2.1.1 S1 Layer

The S1 layer is computed by applying sixteen orientated 3D Gabor filters at orientations

Θ ∈ {0, π/4,
π/2,

3π/4}, φ ∈ {0, π/4,
π/2,

3π/4}, and wavelength λ to each brain scan in the

dataset. A Gabor filter is a linear filter whose impulse response is a harmonic function
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multiplied by a Gaussian function:

G(x, y, z) = (3.1)

1

(2π)
3
2σ3

exp
(
−1

2

(
x2+y2+z2

σ2

))
cos
(

2π
λ

(x cos (Θ) sin (φ) + y sin (Θ) sin (φ) + z cos (φ))
)

The cosine term in equation 3.1 controls the harmonic component through the λ wavelength

parameter. The variables x, y, and z are the spatial variables defining the spatial extent

of the filter. The standard deviation σ describes the size of the Gaussian envelope. The

orientation of the filter is represented by variables Θ and φ where φ orients the filter in the

x-y plane and Θ is the orientation from the positive z axis. For a detailed description of 3D

Gabor filters, refer to Bau et al. ([2]; [3]). Frequency and orientation representations of the

filter are similar to those of the human visual system. The original Serre method performed

Gabor filtering in 2D, consistent with the image matrix of photographs. In this work, the

Gabor filtering was performed in 3D and applied using filter sizes, sigmas, and lambdas

over a series of eight bands. The parameters of each band are listed in Table 3.1, rows 2-4.

The filter sizes and parameters were kept essentially the same as the Serre work, but the

spatial extents of the bands were decreased in order to make the features more sensitive to

small activation differences in functional brain imaging. The relative proportions between

sizes across the bands remained the same. The voxel sizes of the functional brain imaging

data used in this study were 2mm3 per voxel (see section Materials/Methods for a detailed

description of the test data). The smallest filter size in the Serre work (7 pixels) if directly

applied as 7 voxels would be unlikely to respond to small differential signals that could be

discriminative in the context of functional imaging and disease. To avoid missing small

signals, the lowest filter band was set to 3 voxels. An example of the AD PET scan slices

filtered with the 3D Gabor functions are shown in Figure 3.1. Oriented signals are indeed

differentially selected by the filters, consistent with our hypothesized responses of the filters

when applied to functional brain imaging data.
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Table 3.1: S1 Layer Gabor filter sizes and parameters by band (rows 1-3). Row 4 shows the
C1 layer grid size for maximums over Gabor filter scales. Row 5 shows the template patch
sizes common to all bands.

Figure 3.1: Examples of Gabor filtered slices. For each example, the filter size, σ, and λ
remained constant at 53 , 2.1, and 2.6 respectively while the orientation parameters Θ and
φ were varied. A) Θ = 0, φ = 0; B) Θ = π/4, φ = π/4; C) Θ = π/2, φ = π/4; D) Θ = 3π/4,
φ = π/4. The maximum filter responses are shown in red. As the orientation of the filters
change (A-D), signals of similar orientations are selected by the filter.
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3.2.1.2 C1 Layer

The C1 layer combines incident S1 units of the same Θ and φ orientations, creating tol-

erance to size and shift within Gabor filter orientation. Complex cells in the hierarchical

visual cortex model have larger receptor elds than the S1 layer ([32]). To operationalize this

relationship, the S1 layer volumes are filtered with a max operator over Gabor filter scales

(Table I, row 1(filter)), but within each orientation band (columns of Table 3.1). Max filter-

ing is a non-linear image processing technique where the value at each voxel in the filtered

image is the maximum of the input image voxels in a local neighborhood defined by the filter

size. The filter size over which the maximums are calculated depends on the Gabor lter size

(shown in Table 3.1, row 4 (max grid)). Gabor filters with larger spatial scales will respond

more strongly to larger (spatially) signals in the images at the same Θ and φ orientations,

therefore, the corresponding max filter sizes should be tuned accordingly. These operations

are performed for each Gabor orientation and for each band resulting in 16*8 volumes, rep-

resenting maximums over scales but within orientations. Due to the large numbers of voxels

in the volumes and thus the large numbers of max operations over increasing neighborhoods,

we used the algorithm developed by Van Herk [36] to efficiently compute the maximums over

neighborhoods for each voxel in the S1 layer volumes. The method requires only a small

number of operations per voxel to compute the maximums and lowers the computational

time of this stage of the processing pipeline.

3.2.1.2.1 C1 Layer Training Patches Template matching is a common approach to

object recognition in computer vision systems. It is a technique which matches image re-

gions to stored representative templates using a specific scoring function ([6]). In this work,

representative templates were collected on a random subset of hold-out healthy subjects to

be used in the subsequent S2 layer template-matching step. Ten randomly selected hold-out

training images were chosen for template extraction. Templates were extracted randomly

across these training images and from random locations within the images but constrained

45



to fall within the boundaries of user specified regions of interest (see section 3.3.2). The

regions from which templates are randomly sampled are completely user defined and could

be chosen based on some a-priori hypothesis or from the literature. Selecting templates from

specific regions of interest in the brain is similar to learning that a car is characterized by

particular features in spatial locations, e.g. rides on four tires, has doors on the sides, a hood

on the front, etc.

Operationally, the user selects regions of interest and the number of features prior to pipeline

execution. We uniformly divide the number of random locations across the number of re-

gions of interest. To generate the random voxel locations within a region of interest, we use

an atlas labelmap, which assigns a numerical code to each atlas region. Each atlas region is

therefore defined by all the contiguous voxels in the labelmap volume that have equal nu-

merical codes. From this information, we can find the cube containing this region. We then

use rejection sampling: drawing a random point uniformly within the cube, we accept it if

it falls within the bounded region; otherwise we reject and try again. This process continues

until the required number of locations has been found for each region. In our experiments,

50 or 100 templates were chosen to describe the low level representation of the brain images.

We chose the two sets such that we had a reasonable number of templates per region of

interest selected and so we could evaluate the dependence of the classification results on the

number of feature scores used. The original Serre work suggests a modest dependence of

performance on the number of feature scores used. For each selected template location, 53,

93, 133, and 173 voxel patches were extracted from each of the 16 Gabor filtering orientations

and bands from the C1 layer of the ten randomly selected hold-out healthy subject training

images. These patches are simply contiguous sets of voxels of differing spatial extents (53,

93, 133, and 173) centered on the template location and effectively give the vision system a

memory of image feature examples from the functional brain images of healthy subjects.
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3.2.1.3 S2 Layer

The S2 layer corresponds to the template-matching phase of the pipeline. For each C1 image

in the test dataset and for each template patch collected from the hold-out healthy subject

data, we compare the Gaussian radial basis function score shown in equation (3.2) for each

band independently. The S2 units response depends on the Euclidean distance between the

test dataset patch (X) and the stored prototype patch (P) sampled at the same location,

scale, and orientation. If the functional activity profile in the test data is identical to the

stored template patch, the score equals 1 whereas if the differences from the stored template

patch are large, the score approaches 0. The parameter γ normalizes for different patch

sizes (n ∈ {5, 9, 13, 17}) when computing the score in equation (3.2). The parameter γ is

fixed to (n/5)3 where n is the patch size and the denominator is the smallest patch size. The

parameter σ in equation (3.2) is the uncertainty or variance in the stored prototype patch

(P). This parameter was set to 1 in all experiments. Alternatively, it could be set to the

empirical variance of the training prototype patches discussed in section 3.2.1.2.1.

F (XΘ,φ, PΘ,φ) = exp

(
−||XΘ,φ − PΘ,φ||2

2σ2γ

)
(3.2)

3.2.1.4 C2 Layer

The final layer in the pipeline computes the maximum response of the S2 layer scores from all

bands and orientations for each prototype template. The final feature sets therefore consist

of 50 or 100 shift and scale invariant scores (i.e., for 50 and 100 prototype patches) that are

subsequently used for classification. Conceptually, for each test image, for each prototype
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template patch sampled from a brain region, we are using the score that indicates the best

match between the test image and a healthy subject regardless of signal size and orientation.

We expect that subjects with neurological disorders will match less well with the healthy

subjects and thus have a lower score. The final size of the feature vector therefore depends

only on the number of patches extracted during training and not on the number of voxels

in the full three-dimensional brain image. This allows the user to balance the number of

template patches sampled during patch selection (i.e. number of features) and the number

of subjects available in the dataset. Flexibility in choosing the number of features provides

insulation from classifier over-fitting, which can occur if the number of features greatly ex-

ceeds the number of examples.

3.3 Evaluation

We used two datasets to evaluate the approach. Both are functional imaging datasets but

distinctly different modalities. We selected these datasets to evaluate the generality of this

approach and its application to distinctly different neurological abnormalities.

3.3.1 The Alzheimer's Disease Neuroimaging Initiative (ADNI)

ADNI was launched in 2003 by the National Institute on Aging (NIA), the National Institute

of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration

(FDA), private pharmaceutical companies, and non-profit organizations as a $60 million, 5-

year publicprivate partnership. The primary goal of ADNI is to test whether serial magnetic

resonance imaging (MRI), positron emission tomography (PET), other biological markers,

such as cerebrospinal fluid (CSF) markers, APOE status and full-genome genotyping via
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blood sample, and clinical and neuropsychological assessments can be combined to measure

the progression of mild cognitive impairment (MCI) and AD. Determination of sensitive and

specific markers of very early AD progression is intended to: (1) aid in the development

of new treatments, (2) increase the ability to monitor their effectiveness, and (3) reduce

the time and cost of clinical trials. The principal investigator of the initiative is Michael

W. Weiner, M.D., of the Veterans Affairs Medical Center and University of California, San

Francisco. ADNI is the result of efforts of many co-investigators from a broad range of

academic institutions and private corporations, and participants have been recruited from

over 50 sites across the U.S. and Canada. ADNI participants range in age from 55 to 90

years and include approximately 200 cognitively normal elderly followed for three years,

400 elderly with MCI followed for three years, and 200 elderly with early AD followed for

two years. Participants are evaluated at baseline, 6, 12, 18 (for MCI only), 24, and 36

months (AD participants do not have a 36 month evaluation). Baseline and longitudinal

follow-up structural MRI scans are collected on the full sample and 11C-labeled Pittsburgh

Compound-B (11C-PIB) and FDG PET scans are collected on a subset every 6 to 12 months

(for study details see http://www.adni-info.org). A subset of these data were published in

Mueller et al. [26] and Langbaum et al. [22] was used in this analysis.

3.3.2 AD Dataset

The dataset used in this study consisted of 154 baseline FDG PET scans acquired as part of

the ADNI study and published in Mueller et al. [26] and Langbaum et al. [22] . There were

82 HC subjects (Mini-Mental State Exam (MMSE) 28.6 ± 1.1; Age 75.1 ± 9.6 yrs) and 72

AD subjects (MMSE 23.2± 3.5; Age 75.1± 11.2 yrs) from the baseline ADNI sample used

for this study. The 12m and 24m ADNI samples contained a subset of the baseline dataset

due to subject dropout. The 12m sample included 72 HC subjects (MMSE 29.2± 1.2; Age

77.5± 8.4 yrs) and 61 AD subjects (MMSE 20.9± 4.9; Age 75.4± 11.8 yrs). The 24m sam-
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pled included 68 HC subjects (MMSE 28.6± 3.7; Age 76.0pm10.2 yrs) and 33 AD subjects

(MMSE 18.4± 6.1; Age 74.6± 15.2 yrs). The acquisition protocol consisted of collecting six

five-minute frames 30-60 minutes post 18FDG-injection. During the uptake period subjects

were asked to rest comfortably in a dimly lit room with their eyes open. The collected

frames were registered to the first frame (acquired at 30-35 min post-injection) and averaged

to yield a single 30 minute average PET image in “native” space. The image matrix, eld of

view, and resolution of the datasets from participating sites were then matched by the ADNI

group. The images were spatially normalized to the MNI atlas using SPM8 software (2007)

resulting in image matrices of 79 x 95 x 68 voxels in x, y, and z dimensions respectively with

isotropic 23mm voxel sizes. The Automated Anatomical Labeling (AAL) atlas was used to

constrain the region of interest selection based on the anatomical parcellations available in

the atlas [35]. The AAL atlas used to define the region of interest boundaries is consistent

with the space defined by the MNI atlas.

Coordinates for template patch sampling and S2 layer matching scores were constrained

to fall within regions identified in the literature to be affected by AD (see sections 3.2.1.2.1

and 3.2.1.3). Delacourte et al. [8] identified stages of AD neurofibrillary degeneration in

patients of various ages and different cognitive statuses. Further, Langbaum et al. [22]

identified regions of reduced metabolic rates in AD. Regions included the cingulate cortex,

parietal and temporal lobes, among others. For this study, we chose AAL atlas regions

(bilateral): anterior and posterior cingulum, temporal lobes (middle), hippocampus, amyg-

dala, thalamus, frontal and orbital cortices (superior and middle), temporal pole (superior,

middle, inferior), and parietal lobe (inferior) as being consistent with published findings on

potentially discriminative regions.
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3.3.3 NFL Dataset

The NFL dataset used in this study consisted of 162 technetium-99m hexamethylpropyle-

neamine oxide (Tc99m HMPAO) SPECT scans acquired for a study evaluating the impact

of playing American football by Amen et al. [1]. There were 83 HC (Age 41.7 ± 17.8 yrs)

and 79 NFL (Age: 57.5 ± 11.5 yrs) subjects. Subjects were injected with an age/weight

appropriate dose of Tc99m HMPAO and performed the Conners Continuous Performance

test II for 30 minutes during uptake. All subjects completed the task and were subsequently

scanned on a high-resolution Picker Prism 3000 triple-headed gamma camera with fan beam

collimators. The original reconstructed image matrices were 128x128x29 voxels with sizes

of 2.16mm x 2.16mm x 6.48mm. The images were spatially normalized to the MNI atlas

using SPM8 software [13] resulting in image matrices of 79 x 95 x 68 voxels in x, y, and

z dimensions respectively with isotropic 23mm voxel sizes. Images were smoothed using

an 8mm FWHM isotropic Gaussian kernel. The pre-processing steps were identical to the

previously published work by Amen et al. [1]. In the previously published work, a subset of

the HC dataset was used and matched on gender and race. For this work, all subjects were

used regardless of race and gender.

Coordinates for template patch sampling and S2 layer matching scores (see sections 3.2.1.2.1

and 3.2.1.3) were constrained to fall within regions identified in Amen et al. [1] as the top

discriminating regions for the NFL group. To our knowledge, the Amen study was the first

brain imaging study evaluating NFL players and as such, the regions were picked based only

on that publication. For this study, we used AAL atlas regions (bilateral): anterior and

posterior cingulum, frontal pole, hippocampus, amygdala, and temporal pole (middle and

inferior).
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3.3.4 Ethics

The NFL study was approved by each of the participating sites Institutional Review Boards

(IRBs) and complied with the Code of Ethics of the World Medical Association (Declaration

of Helsinki). Written informed consent was obtained from all participants after they had re-

ceived a complete description of the studies. The ADNI data was previously collected across

50 research sites. Study subjects gave written informed consent at the time of enrollment

for imaging and genetic sample collection and completed questionnaires approved by each

participating sites Institutional Review Board (IRB).

3.3.5 Feature Sets

In order to identify which components of the feed-forward hierarchical model implemented

in this study were most important in correct classification, three separate feature sets were

computed. The FTM (Gabor filter + template match) feature set is the result of the full

hierarchical pipeline as described in section 4.2. In order to understand the effect of the

Gabor filtering, the TM (template matching) dataset was created using the same procedures

outlined in section 4.2 without Gabor filtering. More precisely, the dataset consists of select-

ing template patches from the un-filtered images (neither S1 nor C1 layers) and performing

the computations in the S2 and C2 layers. To evaluate the effect of template matching, the

AP (average patch) feature set consists of simply averaging the voxels in the neighborhood

around the prototype patch locations selected in section 3.2.1.2.1, across the various filter

sizes (Table 3.1, row 2) and taking the maximum response.

To compare the feature sets of the hierarchical model with more typical data reduction

techniques, the maximum group difference (MaxT) and data reduction (DR) sets were com-
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puted. The MaxT feature set is computed by performing a typical voxel-wise independent,

2 sample t-test in the SPM8 software. The resulting SPM(t) maps were then thresholded at

p < 0.01 (AD baseline), p < 0.001 (AD 12m), p < 0.001 (AD 24m), and p < 1e − 6 (NFL)

and corrected for multiple comparisons using the family-wise error rate (FWE) correction.

Probability thresholds were chosen to limit the number of voxels in the resulting t-score

maps such that similar numbers of voxels were obtained for each data set ( 3K points). The

absolute values of the resulting t-scores were ranked and the data from the top 50 and 100

locations were then sampled from each subject and used for classification (MaxT). The DR

feature set used all the locations found in the group difference maps, discussed above, after

probability thresholding ( 3K points), sampling the original data at those locations ( 3K

points) for each subject. The resulting NxK matrix (N subjects, K sampling locations) was

mean-centered for each column K and run through principal components analysis (PCA).

Each subjects data was then projected onto the eigenvectors of the top 50 and 100 largest

eigenvalues from the PCA decomposition giving a low dimensional representation with 50

or 100 feature scores that were subsequently used for classification. The top 50 and 100

largest eigenvectors were chosen so that the projected dataset contained 50 and 100 scores

per subject, consistent with the number of feature scores calculated from the full feed-forward

hierarchical model.

3.3.6 Classi�cation

Classication was done using both a multilayered perceptron neural network (NN) and a lo-

gistic regression (LR) classifier to understand the dependence of the results on the classifier

chosen [15]. Each classifier was trained separately on the same datasets to compare the per-

formance of the simpler logistic regression classifier, able to find linear decision boundaries,
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with the neural network classifier, able to model more complex nonlinear functions. The

neural network was constructed with one hidden layer (hidden layer nodes = (#features

+ #classes)/2) and trained with a learning rate of 0.3 and a momentum of 0.2. Adding

additional hidden layers may result in a marginal improvement in classification accuracy

but at the expense of learning complexity. For each classifier, ten-fold cross validation was

used. The dataset was divided in each fold into training and testing subsets. The classifier

was trained using the training subset and tested on the testing subset. This process was

repeated ten times. Areas under the receiver operating characteristic (ROC-AUC) curves

were computed from the probability of class membership of the testing data from each of the

trained classifiers. The full filtering pipeline ROC-AUC curves were statistically compared

to each of the alternative methods for each dataset and classifier using the DeLong et al.

[9] method of comparing areas under correlated ROC curves as implemented in the pROC

package [30]. To compute 95% confidence intervals and statistics, the data was resampled

2000 times, stratified by group membership.

To compare the classifier results on the baseline AD dataset with the visual ratings of neu-

roanatomist and co-author J.H. Fallon, true positive (TP) and false positive (FP) rates were

calculated. To calculate the TP and FP rates, the probability of class membership from the

trained classifiers for each testing subset data point, in each fold, was computed. The data

point was assigned to the class with the largest probability. The TP rate was the proportion

of examples in the testing subsets that were classified as class AD, among all testing exam-

ples that were originally labeled as class AD. The TP rate is the average across all folds. The

FP rate was the proportion of examples in the testing subsets that were classified as class

AD, but were originally labeled as the alternative class, among all testing examples which

are not of class AD. The FP rate is the average across all folds. The TP and FP results for

Dr. Fallon were computed from his designation of either AD or healthy control for each of

the baseline data compared to the original class labels.
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3.4 Results

To summarize the performance of each classifier, the ROC-AUC results for the Alzheimers

disease (AD) baseline, 12m, and 24m datasets are shown in Figures 3.2, 3.3, and 3.4 re-

spectively for 50 and 100 feature datasets and both logistic regression and neural network

classifiers. The confidence intervals for each ROC-AUC and statistical comparisons of the

full filtering pipline (FTM) with each of the other methods for all classifiers and datasets

are shown in Tables 3.2, 3.3, and 3.4. The FTM method outperformed the other meth-

ods in terms of ROC-AUC in 80% of the tests, and was statistically better in 35%. No

other method was statistically better than FTM; although, the PCA data reduction strat-

egy (DR) in the 50-feature, baseline AD, logistic regression classifier was close (p < 0.064).

Overall, the neural network classifier generally outperformed the logistic regression classifier

in ROC-AUC. Further, the FTM method was statistically better than all other methods

in 46% of the neural network classification experiments compared to 25% using the logistic

regression classifier, suggesting a benefit of using the more sophisticated classifier with the

FTM method. There was a small, non-significant, increase on average in ROC-AUC over

all the classifiers in the results using the larger 100 feature datasets. Overall performance

of the FTM trained classifiers were consistent with other published classification results (see

Discussion) using the ADNI dataset, with maximum ROC-AUC at baseline of 0.962± 0.025

(neural network ,100 feature), at 12m of 0.837± 0.073 (neural network, 100 feature), and at

24m of 0.878± 0.070 (neural network, 100 feature).

Neuroanatomist and co-author J.H. Fallon was given the baseline AD dataset images in

transaxial, coronal, and sagittal orientations, without the diagnosis and given no practice

set of normal or ADs to examine prior to the analysis, and asked to classify the scans as either

AD or HC. These results are only available for the baseline AD data due to the significant

effort in manually rating so many scans. Dr. Fallon achieved a true/false positive rate for
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Table 3.2: Results from the AD ROC-AUC analysis of the ADNI baseline data. The ta-
ble lists ROC-AUC measurements, 95% confidence intervals, Z-scores, and probabilities for
comparisons of the FTM method with the other methods within each dataset and classifier
combination. Negative z-scores indicate methods that are lower in ROC-AUC than the FTM
method. Significant differences are highlighted in bold (MaxT = maximum t-score, DR =
PCA data reduction, AP = average patch, TM = template matching, FTM = gabor filtering
+ template matching).

Dataset (# 
feat) 

Classifier Method ROC-
AUC 

95% Conf Z-score 
(XAUC-FTMAUC) 

P(FTMAUC = XAUC) 

AD – Bas 
(50) 

LR 

  FTM 0.791 0.857-0.725   
  TM 0.644 0.721-0.567 -3.259 0.001 
  AP 0.729 0.801-0.657 -1.556 0.120 
  DR 0.861 0.919-0.803 1.854 0.064 
  MaxT 0.692 0.768-0.616 -2.187 0.029 
AD-Bas 
(50) 

NN 

  FTM 0.928 0.970-0.886   
  TM 0.783 0.858-0.709 -4.321 1.55E-04 
  AP 0.902 0.951-0.854 -1.132 0.258 
  DR 0.905 0.952-0.858 -0.833 0.405 
  MaxT 0.777 0.855-0.698 -3.661 2.51E-04 
AD – Bas 
(100) 

LR 

  FTM 0.763 0.832-0.694   
  TM 0.689 0.766-0.612 -1.761 0.078 
  AP 0.713 0.832-0.694 -1.320 0.187 
  DR 0.698 0.775-0.620 -1.604 0.109 
  MaxT 0.687 0.761-0.614 -1.574 0.115 
AD-Bas 
(100) 

NN 

  FTM 0.962 0.987-0.938   
  TM 0.644 0.722-0.567 -8.623 2.20E-16 
  AP 0.885 0.940-0.831 -3.336 8.50E-04 
  DR 0.678 0.763-0.594 -6.697 2.13E-11 
  MaxT 0.773 0.849-0.696 -5.053 4.35E-07 
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Table 3.3: Results from the AD ROC-AUC analysis of the ADNI 12m data. The table lists
ROC-AUC measurements, 95% confidence intervals, Z-scores, and probabilities for compar-
isons of the FTM method with the other methods within each dataset and classifier com-
bination. Negative z-scores indicate methods that are lower in ROC-AUC than the FTM
method. Significant differences are highlighted in bold (MaxT = maximum t-score, DR =
PCA data reduction, AP = average patch, TM = template matching, FTM = gabor filtering
+ template matching).

Dataset (# 
feat) 

Classifier Method ROC-
AUC 

95% Conf Z-score 
(XAUC-FTMAUC) 

P(FTMAUC = XAUC) 

AD-12m 
(50) 

LR 

  FTM 0.778 0.851-0.705   
  TM 0.664 0.747-0.582 -2.173 0.030 
  AP 0.756 0.831-0.682 -0.499 0.618 
  DR 0.726 0.805-0.648 -1.060 0.289 
  MaxT 0.609 0.701-0.518 -2.830 0.005 
AD-12m 
(50) 

NN 

  FTM 0.825 0.898-0.753   
  TM 0.781 0.862-0.701 -0.952 0.341 
  AP 0.838 0.908-0.769 0.319 0.750 
  DR 0.771 0.854-0.689 -1.292 0.196 
  MaxT 0.681 0.776-0.585 -2.371 0.019 
AD-12m 
(100) 

LR 

  FTM 0.759 0.835-0.683   
  TM 0.648 0.734-0.561 -2.166 0.030 
  AP 0.699 0.781-0.618 -1.210 0.226 
  DR 0.676 0.763-0.588 -1.546 0.122 
  MaxT 0.671 0.754-0.588 -1.532 0.127 
AD-12m 
(100) 

NN 

  FTM 0.837 0.910-0.764   
  TM 0.783 0.861-0.706 -1.411 0.158 
  AP 0.855 0.919-0.791 0.590 0.555 
  DR 0.714 0.802-0.627 -2.234 0.022 
  MaxT 0.687 0.780-0.594 -2.482 0.014 
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Table 3.4: Results from the AD ROC-AUC analysis of the ADNI 24m data. The table lists
ROC-AUC measurements, 95% confidence intervals, Z-scores, and probabilities for compar-
isons of the FTM method with the other methods within each dataset and classifier com-
bination. Negative z-scores indicate methods that are lower in ROC-AUC than the FTM
method. Significant differences are highlighted in bold (MaxT = maximum t-score, DR =
PCA data reduction, AP = average patch, TM = template matching, FTM = gabor filtering
+ template matching).

Dataset (# 
feat) 

Classifier Method ROC-
AUC 

95% Conf Z-score 
(XAUC-FTMAUC) 

P(FTMAUC = XAUC) 

AD-24m 
(50) 

LR 

  FTM 0.749 0.843-0.655   
  TM 0.658 0.763-0.553 -1.437 0.151 
  AP 0.794 0.886-0.702 0.794 0.427 
  DR 0.828 0.915-0.740 1.371 0.171 
  MaxT 0.787 0.902-0.673 0.502 0.616 
AD-24m 
(50) 

NN 

  FTM 0.841 0.924-0.758   
  TM 0.883 0.955-0.810 0.991 0.322 
  AP 0.865 0.942-0.788 0.736 0.462 
  DR 0.816 0.915-0.717 -0.459 0.646 
  MaxT 0.766 0.861-0.670 -1.335 0.182 
AD-24m 
(100) 

LR 

  FTM 0.822 0.906-0.737   
  TM 0.823 0.906-0.740 0.026 0.979 
  AP 0.822 0.892-0.716 -0.319 0.75 
  DR 0.561 0.426-0.696 -4.620 3.84E-06 
  MaxT 0.813 0.915-0.710 -0.143 0.886 
AD-24m 
(100) 

NN 

  FTM 0.878 0.948-0.806   
  TM 0.864 0.944-0.783 -0.383 0.702 
  AP 0.880 0.957-0.804 0.102 0.919 
  DR 0.677 0.788-0.566 -8.214 2.20E-16 
  MaxT 0.758 0.860-0.656 -2.273 0.023 
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Table 3.5: Results from the NFL ROC-AUC analysis. The table lists ROC-AUC measure-
ments, 95% confidence intervals, Z-scores, and probabilities for comparisons of the FTM
method with the other methods within each dataset and classifier combination. Negative
z-scores indicate methods that are lower in ROC-AUC than the FTM method. Significant
differences are highlighted in bold (MaxT = maximum t-score, DR = PCA data reduc-
tion, AP = average patch, TM = template matching, FTM = gabor filtering + template
matching).

Dataset (# 
feat) 

Classifier Method ROC-
AUC 

95% Conf Z-score 
(XAUC-FTMAUC) 

P(FTMAUC = XAUC) 

NFL (50) LR 
  FTM 0.909 0.954-0.864   
  TM 0.702 0.777-0.628 -4.662 5.09E-06 
  AP 0.876 0.931-0.821 -0.907 0.365 
  DR 0.942 0.979-0.906 1.137 0.255 
  MaxT 0.956 0.988-0.924 2.059 0.040 
NFL (50) NN 
  FTM 0.908 0.957-0.860   
  TM 0.856 0.917-0.795 -1.306 0.193 
  AP 0.933 0.974-0.893 0.776 0.438 
  DR 0.974 0.995-0.954 2.405 0.016 
  MaxT 0.986 1.000-0.969 2.944 0.003 
NFL (100) LR 
  FTM 0.939 0.976-0.902   
  TM 0.877 0.931-0.822 -1.856 0.065 
  AP 0.883 0.936-0.830 -1.705 0.089 
  DR 0.900 0.947-0.853 -1.315 0.188 
  MaxT 0.977 1.000-0.954 1.753 0.080 
NFL (100) NN 
  FTM 0.920 0.964-0.876   
  TM 0.954 0.989-0.918 1.167 0.245 
  AP 0.942 0.977-0.907 0.765 0.445 
  DR 0.892 0.941-0.842 -0.866 0.386 
  MaxT 0.988 1.000-0.973 2.900 0.004 
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Table 3.6: Results from the visual ratings of neuroanatomist J.H. Fallon from the ADNI
baseline data. The table lists true positive (TP) and false positive (FP) values for the
Alzheimers disease (AD) and healthy control (HC) classes compared to the FTM, DR, and
MaxT methods. The FTM method outperforms both the human rater and the other methods
(MaxT = maximum t-score, DR = PCA data reduction, FTM = gabor filtering + template
matching).

Method AD-TP AD-FP HC-TP HC-FP 
J.H. Fallon 0.718 0.380 0.671 0.244 
FTM  0.875 0.122 0.878 0.125 
DR 0.622 0.389 0.611 0.378 
MaxT 0.829 0.375 0.625 0.171 
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Figure 3.2: Area under the ROC curve for AD classification of the ADNI baseline data set
for logistic regression (LR) and neural network (NN) classifiers for both 50 and 100 feature
datasets (MaxT = maximum t-score, DR = PCA data reduction, AP = average patch, TM
= template matching, FTM = gabor filtering + template matching). The FTM method
outperforms the others in 94% of the cases and is statistically better in 50% of the cases.

AD of 0.718/0.380 and for the HC group of 0.671/0.244 as shown in Table 3.6. The FTM

classifier performed better in both true/false positives for both AD and HC groups while also

outperforming the maximum group difference (MaxT) and data reduction (DR) methods,

further suggesting the potential utility of this approach.

The AUC results for the NFL group are shown in Figure 3.5 for 50 and 100 feature datasets

and both logistic regression and neural network classifiers. The confidence intervals for each

ROC-AUC and statistical comparisons of the FTM with each of the other methods for all

classifiers and datasets are shown in Table 3.5. Interestingly, unlike the AD dataset, the

FTM method did not dominate the others, outperforming the other methods in 44% of the

tests and was statistically better in only one. Alternatively, the MaxT method consistently
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Figure 3.3: Area under the ROC curve for AD classification of the ADNI 12m data set
for logistic regression (LR) and neural network (NN) classifiers for both 50 and 100 feature
datasets (MaxT = maximum t-score, DR = PCA data reduction, AP = average patch, TM
= template matching, FTM = gabor filtering + template matching). The FTM method
outperforms the others in 88% of the cases and is statistically better in 38% of the cases.

outperformed the others in terms of ROC-AUC and was statistically better than the FTM

method in three out of four comparisons. We speculate this result is related to specific brain

functional changes accompanying repeated head injuries evident in the NFL dataset (see

section 4.4). Overall performance of the FTM classifier was still quite good with maximum

ROC-AUC of 0.939 ± 0.037/0.145 (logistic regression, 100 features). Unlike the AD exper-

iments, the neural network classifier did not outperform the logistic regression classifier for

the FTM dataset but did for the best performing MaxT dataset.
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Figure 3.4: Area under the ROC curve for AD classification of the ADNI 24m data set
for logistic regression (LR) and neural network (NN) classifiers for both 50 and 100 feature
datasets (MaxT = maximum t-score, DR = PCA data reduction, AP = average patch, TM
= template matching, FTM = gabor filtering + template matching). The FTM method
outperforms the others in 56% of the cases and is statistically better in 19% of the cases.

3.5 Discussion

The overall classification results suggest the biophysically inspired feed-forward hierarchi-

cal model used in these experiments is sensitive to differences in functional brain imaging

data. Both AD and NFL classification experiments showed impressive ROC-AUC rates us-

ing a method not specifically tuned for these imaging modalities. The full filtering pipeline

(FTM) results are consistent with published classification rates for the ADNI AD data set

using brain imaging; although, most reported results use a mix of structural and functional

imaging features. For example, Hinrichs et al. [16] used the ADNI dataset in a spatially aug-

mented boosting framework and reported an ROC-AUC of 0.8716 when using just FDG PET.
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Figure 3.5: Area under the ROC curve for NFL classification for logistic regression (LR) and
neural network (NN) classifiers for both 50 and 100 feature datasets (MaxT = maximum
t-score, DR = PCA data reduction, AP = average patch, TM = template matching, FTM =
gabor filtering + template matching). The MaxT method outperformed the other methods,
statistically better than the FTM method in all comparisons except in the LR-50 feature
dataset. The FTM ROC-AUC was still very good, always greater than 0.900 and as high as
0.939 in the NN-100 feature dataset.

A benefit of using logistic regression classifiers is the clear interpretation of which features

are most informative for classification. For baseline AD classification, the four most infor-

mative patches (highest weights) were sampled from AAL atlas regions right hippocampus

and superior temporal lobes left and right while the posterior cingulate, a region commonly

associated with disease progression, ranked fourth. For 12m AD classification the most in-

formative patches were sampled from frontal superior right, frontal superior orbital left, and

the temporal pole superior right. For 24m AD classifications the most informative patches
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were sampled from the frontal superior right, temporal pole mid left, and hippocampus left.

It is interesting that the frontal lobe was not included as a top discriminating location in

the baseline data set but was in both the 12m and 24m data, consistent with well-known

structural changes in AD disease progression. We also evaluated the performance of the

FTM features using ROIs that specifically did not include those selected in section 3.3.2.

The results were on average 10-15% lower in ROC-AUC for baseline AD than those reported

in the results section, suggesting this method is sensitive to region of interest selection.

Therefore we suspect the filtering pipeline could be used to test competing hypotheses about

specific regions of interest implicated in disease. The top three most informative patches

from the features evaluated using ROIs that specifically did not include those selected in

section 3.3.2, were sampled from AAL atlas regions frontal inferior orbital left, insula right,

and occipital middle right. Other informative patches for AD included the supramarginal

right, lingual right and frontal inferior operculum left. Interestingly, the frontal inferior or-

bital, operculum, and the supramarginal gyrus are all associated with AD in the literature

suggesting the classification results are still picking up on areas related to the disease [11] [14].

Overall, the average patch (AP) feature set outperformed the template matching (TM)

feature set, suggesting no compelling benefit of template matching without Gabor filtering

in this application. The utility of oriented Gabor filtering and template matching in deriving

the feature set was most evident in AD classification. This trend was not observed for the

NFL classification experiments. Why would oriented filtering improve classification rates in

AD and not the NFL data set? It is well known in the literature that structural changes

in AD follow an anatomical trajectory starting in entorhinal cortex and hippocampus, then

moving to temporal and parietal lobes, and nally affecting the frontal lobes in late stage

AD [5] [17] [34]. These structural changes should be reflected in corresponding functional

changes. In addition, the accumulation of amyloid plaques between nerve cells in the brain

is known to be a hallmark of AD. Both the structural changes and plaques may be altering
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the functional brain imaging derived signal in orientation, scale, and localized spatial extent

due, in part, to brain plasticity and compensation.

Alternatively, the full filtering pipeline might not perform as well in data sets with widespread,

global functional changes observed in the NFL data. Indeed the manuscript by Amen et al.

reports significant decreases in regional cerebral blood flow were seen across the whole brain.

The comparison feature sets MaxT and DR should perform well in that setting because they

rely on group differences and maximal variation. It is possible that the FTM method per-

forms better in settings with more localized functional differences. The NFL dataset differed

from the AD dataset in both imaging modality (SPECT vs. PET) and uptake conditions

(continuous performance test vs. rest), which could contribute to the differences in classifier

performance. We suspect modality is not a factor as the feature scores used in classification

are modality neutral. Lower resolution imaging systems may contribute to lower true posi-

tive rates if the regions of interest are small in size, despite the models attempt to mitigate

this effect using filter sizes of differing spatial scales. Regardless of how well the filtering

method does, if the discriminating feature of a disease is too small to be accurately measured

by the imaging device, performance of the classification system will undoubtedly suffer. The

benefit of this method is that it uses information across spatial scales, orientations, and

locations in the volumes to calculate the matching scores used for subsequent classification

and should therefore be less reliant on any one discriminating feature. The uptake task will

contribute to the functional signals and should be taken into account when selecting the

regions of interest to calculate feature scores (section 3.2.1.2.1). Choosing regions that are

absolutely not affected by the disease will decrease the discriminative power of the method.

Alternatively, if the number of subjects in the dataset is high and there is no fear of classifier

overfitting, choosing many regions, some known to be related to the disease and/or task

and others whose relationship is unknown could provide interesting insight into whether the

unknown regions are contributing to classification accuracy. Further, because the features
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of the dataset are computed separately from the classifier, one could choose to sample some

features from all brain regions and either perform regularization in the classifier or choose a

classification model that is less sensitive to overfitting (e.g. support vector machines). Each

of these decisions should be made relative to the particular dataset and illness being studied.

3.6 Conclusions

In general our volumetric variant of the hierarchical feed-forward model originally proposed

by Serre et al. [32] for detecting objects in photographs performed quite well on the functional

brain imaging data sets used in this study. In fact, it outperformed both the comparison

methods and the human counterpart at detecting AD in the FDG PET ADNI data set.

The method is very general and does not rely on particular imaging modalities. It could

be used on many spatial maps commonly computed in diagnostic and research imaging

studies. Furthermore, there is evidence that it could be used to test hypotheses about regions

implicated in disease. In conclusion, models designed in the computer vision community for

object recognition and tracking in images of natural scenes may indeed have applications in

detecting and tracking disease progression in human functional brain imaging with minimal

modifications.
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Chapter 4

An Evaluation of Sparse Inverse

Covariance Models for Group Functional

Connectivity in Molecular Imaging

4.1 Introduction

Neuroimaging modalities are routinely used to evaluate regional differences in brain func-

tion and connectivity. Neuroimaging provides researchers with a method to evaluate in-vivo

brain function, where various statistics relating activity between spatially distributed re-

gions are used as indicators of functional connectedness [10]. Many studies have shown

changes in functional connectivity, as assessed with neuroimaging, across genders [4, 15]

and in psychiatric illnesses such as schizophrenia [19, 22] and Alzheimer’s Disease [14, 36]

among others. The majority of studies and methods of evaluating functional connectivity

have focused on dynamic imaging modalities such as functional magnetic resonance imaging

(fMRI) and 15O-H20 Positron Emission Tomography (PET). Fewer studies have evaluated

functional connectivity in static molecular imaging modalities such as 18F-FDG PET and

Tc-99m HMPAO Single Photon Emission Computed Tomography (SPECT) across groups

of subjects. Huang et al. [14] compares functional connectivity across cohorts using static
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PET; however, their results give little information on how well the models recover the true

connectivity profiles of the populations tested. Careful validation of connectivity models is

necessary, prior to their use and interpretation in real data [29].

A relatively simple method of interrogating functional connectivity in neuroimaging is through

inter-regional and/or voxel-wise correlations [6, 26]. This method typically consists of cross-

correlating the mean functional activity for each region of interest (ROI) and applying a

threshold to remove values close to zero. Unfortunately, it has been shown that the sample

correlation matrix is often a poor estimator of the population correlation matrix and can

result in incorrect conclusions based on estimation error [35] [29]. Further, correlations be-

tween two ROIs does not imply a direct functional connection and thus impedes our ability

to interpret our results with respect to known brain circuits. A more interpretable statis-

tic, that has been shown to estimate the true network [29], is the partial correlation: the

statistical relationship between pairs of brain regions after removing the influence of all the

others. If the brain regions are jointly Gaussian, then we can find regions with strong partial

correlation by examining the non-zero entries in the scaled inverse covariance matrix of the

Gaussian distribution, fit to the observed data. Unfortunately, in typical neuroimaging stud-

ies, we do not have enough data to accurately compute the inverse of the covariance matrix

among brain regions; therefore, some form of regularization is needed. To estimate the in-

verse covariance matrix and thus the partial correlations consistent with our observed data,

we can use regularized maximum likelihood methods [3, 31]. Although we have methods

available, we lack data on how well these classes of models can recover the true connectiv-

ity in group-based molecular imaging and how sample sizes can effect accuracy of the results.

In this study we compare three models for learning functional connectivity: one where

the connectivity profiles are learned independently for each cohort and two that share in-

formation between cohorts. In settings with low sample sizes, we hypothesize that models
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which share connectivity information across cohorts will perform better in recovering cor-

rect connections. We develop a simple clustering model for defining functional regions of

interest, used for functional connectivity, that combines anatomy from a stereotaxic atlas

and functional activity from static molecular imaging scans. Our contribution is a quantita-

tive assessment of how well the functional connectivity models can accurately recover a gold

standard connectivity pattern across a range of typical data set sizes in neuroimaging studies

based on a very large sample of SPECT scans. To our knowledge, this is the first study eval-

uating the accuracy of recovered connectivity profiles by sample size in group-based static

molecular imaging. The rest of the manuscript is organized as follows. We first present the

clustering model used to define the nodes of our network for use in functional connectivity.

Next, we describe three models for learning sparse inverse covariance matrices which have

been applied to similar problems. We conclude the methods section with a description of the

gold standard connectivity data we use to quantitatively evaluate model performance. In the

results section we present a detailed comparison of the sparse inverse covariance models with

respect to a gold standard connectivity profile, as a function of sample size. We conclude

with a discussion of the results and plans for future work.

4.2 Methods

In this section we describe three sparse inverse covariance models for learning group-based

functional connectivity patterns between pairs of regions, one of which learns the patterns

independently for each cohort and two models which share connectivity information across

cohorts. We anticipate the models that share connectivity information across cohorts will

improve our prediction accuracy in settings with small sample sizes. Prior to performing

an analysis of functional connectivity, we must define the nodes of our network. In settings
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where structural scans are unavailable, a popular choice is to use a standard atlas to define

regions of interest (ROIs) such as the AAL atlas from Tzourio-Mazoyer et al. [34] and the

functional signals in each anatomical boundary are averaged. Using mean functional signals

from anatomically defined ROIs are prone to decreased sensitivity by averaging signals from

a small number of activated voxels with noise [24]. In section 4.2.1 we take a pragmatic

approach, given the data we have available for evaluating the inverse covariance models,

and use finite mixture modeling to find functional clusters constrained by anatomically-

defined boundaries for use as nodes in the network. We conclude the methods section with

a description of the gold standard dataset we use to quantitatively evaluate the performance

of each connectivity model.

4.2.1 Functional Clusters

Here we describe the finite mixture model for finding functional clusters within anatomically-

defined regions of interest that will subsequently be used as nodes in our network for func-

tional connectivity modeling. The model has been designed with respect to static SPECT

and PET modalities, consisting of independent subjects across multiple cohorts, with no

available anatomical information. Our motivation is to find a set of regions that are consis-

tent with the observed functional data across all cohorts, while also allowing the nodes to be

interpreted with respect to an anatomical reference. From neuroanatomy, we know the brain

is fundamentally composed of spatially varying clusters of cells which segregate during devel-

opment into specialized units. These specialized units consist of compact clusters of neurons,

forming nuclei, which contribute to the overall function of the region. Neuroanatomic stud-

ies of brain cytoarchitectonics provides evidence for intra-regional specializations of neuronal

clusters for many brain structures [12, 17, 27]. Using a simple average functional signal from

an anatomically defined brain region over simplifies this complexity and risks missing infor-

mation related to inter-regional variations in function.
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To learn the location and number of functional nuclei in areas constrained by an anatomical

atlas, we observe that if an anatomical region has many nuclei, we would expect to find

multi-modal signals within the functional imaging data. Further, because functional imag-

ing data is always smoothed with a Gaussian smoothing kernel during image formation, we

would expect any signal from the nuclei, as measured by functional imaging, to be smoothly

varying in space with a functional peak spatially close to the center-of-mass of the nuclei and

an area roughly consistent with the extent of the cells composing the nuclei. Given these ob-

servations, we propose to model the functional clusters using finite Gaussian mixture models

[21]. Based on data from neuroanatomic studies, there may be multiple nuclei within many

anatomically-defined regions (e.g. Toncray and Krieg [33] discuss twenty-six nuclei of the

human thalamus) but we do not know how many of these nuclei result in functional signals

detectable in the acquired data. We can use this information to limit the number of clusters

we search for and use model selection methods to identify how many clusters are needed to

reasonably explain our observed functional signals.

We begin by thinking about the imaging data as being composed of a set of voxels, each

being identified by its three-dimensional coordinate xi = (p1, p2, p3) within the image. For

a given voxel coordinate, xi, the acquired functional imaging data, is quantified to counts

per unit time and provides a non-negative, real-valued proxy I(xi) ∈ R≥0 corresponding to

the number of detected events by the imaging system at that voxel coordinate. We make

the simplifying assumption that each detected event is independent from all other detections

and identically distributed. This assumption implies that the functional imaging signal I(xi)

at each voxel (i.e., the number of detected events) can be modeled as I(xi) independent ob-

servations at voxel xi. For each region r defined in an anatomical atlas, the set of N r voxel

coordinates contained within the boundaries of the atlas region r = {x1, . . . , xN(r)} specify

the voxels assigned to the anatomical region. Each voxel is a member of only one anatomical
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region. The log-likelihood of all the detected events within a region is then modeled by a

K-component Gaussian mixture model:

ln p(Xr|Θ(r)) =
N(r)∑
i=1

I(xi) ln

{
K∑
k=1

w
(r)
k N

(
xi|µ(r)

k ,Σ
(r)
k

)}
(4.1)
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k } are the model parameters, Xr is the set

of all voxel coordinates contained in region r, and I(xi) is the number of detected events at

the voxel coordinate xi for all N (r) coordinates. Parameters µ
(r)
k and Σ

(r)
k represent the mean

spatial location and covariance matrix of the kth cluster in region r. The mixing weights

w
(r)
k represent the probability that xi was generated by component k and are subject to the

constraints
∑K

k=1 w
(r)
k = 1 and 0 ≤ w

(r)
k ≤ 1 to be valid probabilities. The unknown pa-

rameters Θ(r) can be learned using the iterative expectation maximization (EM) algorithm

and maximized in closed form [8, 20]. Although the algorithm is guaranteed to converge,

it is not guaranteed to converge to a global maximum of the likelihood function and is ini-

tialization dependent. To initialize the mixture model we use the kmeans++ algorithm of

Arthur and Vassilvitskii [2], an extension to the K-means algorithm. K-means is a clustering

technique which finds a partitioning of the data into K clusters that minimizes the sum of

the squared distances between each data point and its closest cluster center and is routinely

used to initialize Gaussian mixture models. The kmeans++ algorithm is a simple extension

that uses a random seeding technique which has been shown to improve speed and accuracy

with respect to the recovering the true cluster centers. To initialize our Gaussian mixture

models using this technique, we choose an initial cluster center from the data with the high-

est number of detected events. We then choose the next cluster center at random from the

remaining data points with probability proportional to the distance of each data point to

the closest previously selected cluster center, weighted by the number of detected events.

This step gives higher probability to data points farther away from the previously selected

cluster centers, balanced with the frequency of detections at those points. The procedure
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continues until all initial K cluster centers have been selected. We then run the k-means

algorithm to convergence and use the assignments of the voxels to the K clusters to initialize

our Gaussian mixture model means and covariances.

The final step in the clustering model is to select an appropriate setting for the number

of clusters K for each region. We cannot simply choose the model that explains the data

best because more complex models (i.e., larger K) will always explain the data better than

a simplier model with fewer clusters. Among the various approaches to model selection,

penalized likelihood methods have been shown to be competitive, simple to implement in

practice, and to work well when applied to mixture models [30]. Here we choose the Bayesian

information criterion (BIC) developed by Schwarz et al. [28] for model selection, which has

been shown to be a consistent estimator for independent and identically distributed obser-

vations in linear exponential family models such as the Gaussian mixture model [11]. By

choosing the model with the minimum BIC score, one is attempting to select the candidate

model with the highest Bayesian posterior probability. The BIC score penalizes the model

likelihood and tends to favor simple models over more complex ones. The BIC score for our

mixture model within a brain region is given by:

BIC
(
Θ(r)

)
= −2 ln p

(
X|Θ(r)

)
+ ρ(r) ln

N(r)∑
i=1

I(xi)

 (4.2)

where ρ(r) is the number of parameters in the model for region r and is used to penalize the

likelihood relative to model complexity. In our model we are learning K three-dimensional

Gaussian distributions for each region. For each Gaussian distribution of dimension D = 3,

we need D/2(D+1) parameters to specify the symmetric covariance matrix and D parameters

to specify the mean. There are K mixing weights for the K-component Gaussian mixture

model, resulting in K ∗ D/2(D + 3) + K parameters. After learning the mixture models for

each setting of K, we compute the BIC score, penalizing the likelihood scores by the number

79



of parameters estimated. We select the best model as the one with the lowest BIC score,

which implies the model with the highest relative data likelihood after penalizing for model

complexity. Once the best models have been selected for each brain region, we compute

values for each cluster by averaging over the number of detections at each voxel, weighted

by their cluster membership probabilities. We use these cluster averages, computed for each

subject, in the sparse inverse covariance models.

4.2.2 Sparse Inverse Covariance Estimation

In section 4.2.1 we described a clustering algorithm that parcellates the brain into func-

tionally defined and anatomically constrained sub-regions. Ultimately we are interested in

learning about how the brain is functionally connected at the group level across different

experimental conditions and/or cohorts, in regions that both correspond to anatomy and

have support from our functional data, because both aspects help us interpret the results.

In learning about the functional connectivity in our data, we are presented with a few chal-

lenges. First, the brain is composed of approximately 100 billion neurons, with each neuron

being connected with up to 10,000 other neurons, potentially forming 1 trillion synaptic con-

nections. Even at the scale of neuroimaging, we are likely to find some association between

any pair of brain regions. We need a principled approach that focuses our attention on the

most relevant associations in a way that can be related to known brain circuits. Next, we

are constrained by small sample sizes. Often, particularly in rare diseases, it is difficult to

find large groups of subjects, prohibiting us from learning about functional connectivity.

Fortunately, there are models available that can help us learn about functional connectivity

in light of these problems, yet there is little data on how accurately the models perform

when applied to molecular brain imaging data.

Sparse inverse covariance estimation models provide a structured approach of estimating
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pairwise connections between variables in settings with small numbers of samples. Entries in

the inverse covariance matrix (also called the precision matrix) of a Gaussian model, corre-

spond to the pairwise statistical relationships between variables conditioned on all the other

variables in the model. Values of zero in the inverse covariance matrix (i.e., zero partial

correlation) imply conditional independence of the associated variables [18]. Alternatively,

strong partial correlations are indicative of direct interactions, helping us to interpret re-

sults with respect to known brain circuits. In contrast, simple correlations provide pairwise

associations but do not account for all the other brain regions and their potential effect on

the correlation. Learning inverse covariance matrices in settings with small data set sizes

and a large number of variables is difficult and some form of regularization is needed to

both improve prediction accuracy and aid in interpretation, focusing on a smaller subset

that exhibit the strongest effects [31]. In section 4.2.2.1 we describe Graphical Lasso (GL), a

popular technique for learning sparse inverse covariance matrices. GL uses regularization to

improve prediction accuracy and interpretability in settings with small sample sizes relative

to the number of variables [31]; however, in many experiments the groups being compared

are similar, and we would expect some of the functional connectivity relationships are shared

across cohorts. We would like to use this observation to help improve our prediction accu-

racy. In section 4.2.2.2 we describe the Fused Graphical Lasso (FGL) and Group Graphical

Lasso (GGL) models proposed by Danaher et al. [7] based on work from Tibshirani et al. [32]

for jointly estimating sparse precision matrices across cohorts. Our contribution is a quanti-

tative analysis of how well these models perform in recovering a gold standard connectivity

profile as a function of sample size in static molecular imaging.

4.2.2.1 Graphical Lasso

The least absolute shrinkage and selection operator (lasso) proposed by Tibshirani [31] is a

method for penalized regression that shrinks some parameter estimates and sets others to
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zero. Shrinking parameter estimates controls over fitting and results in models that have

better predictive accuracy. Setting some parameters to zero provides variable selection,

focusing on the more relevant features of the data, resulting in more interpretable modeling

results. Banerjee et al. [3] applied the lasso penalty to learning sparse undirected graphical

models in a multivariate Gaussian setting and developed a block-wise interior point algorithm

which they noted is equivalent to iteratively solving lasso problems. Friedman et al. [9]

pursued this observation and developed the Graphical Lasso (GL) algorithm. The learning

problem is to maximize the penalized log-likelihood over all positive definite matrices Φ given

by:

Σ̂−1 = arg max
Φ�0

log det Φ− tr.(SΦ)− λ‖Φ‖1 (4.3)

where Σ̂−1 is the estimate of the sparse precision matrix, S is the empirical covariance matrix

of the data computed using the results from the clustering model in section 4.2.1, where en-

try Si,j is the covariance between clusters i and j across all subjects in the group, and ‖Φ‖1

is the L1 norm, the sum of the absolute values of the elements of the current estimate of Φ.

The non-negative coefficient λ controls the relative importance of the sparsity-inducing L1

regularization term. For each cohort, we compute the covariance matrix between all pairs

of clusters and directly apply the GL algorithm to learn a precision matrix for each cohort

independently. The GL algorithm cycles through the variables, fitting a modified lasso re-

gression to each variable in turn. The algorithm is fast, enabling problems with thousands of

parameters to be solved efficiently. Hsieh et al. [13] extended the graphical lasso algorithm,

exploiting underlying structure in the data and optimizing computational bottlenecks, mak-

ing it feasible to solve problems with billions of parameters on a single machine. In estimating

functional connectivity across the entire brain, we can easily have thousands of parameters

and small sample sizes, making this algorithm attractive.
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4.2.2.2 Joint Graphical Lasso

In many neuroimaging experiments we are searching for subtle changes in functional rela-

tionships between a subset of brain areas, i.e., we are not expecting the relationships between

all brain regions to be different across cohorts. In situations where we expect parameters to

be shared across groups and have a small data set size relative to the number of parameters

being estimated, it has been shown by Danaher et al. [7], using simulated data with a known

amount of parameter sharing, that jointly estimated sparse precision matrices are closer to

the true distributions than estimating them separately with the GL algorithm. The learning

problem is similar to equation (4.3) except we replace the L1 norm penalty with a generic

penalty function P ({Φ}) defined across the set of precision matrices {Φ}:

[(
Σ̂(1)

)−1

, . . . ,
(

Σ̂(G)
)−1
]

= arg max
Φ�0

(
G∑
g=1

ng
[
log det Φ(g) − tr(S(g)Φ(g))

]
− P ({Φ})

)
(4.4)

where

[(
Σ̂(1)

)−1

, . . . ,
(

Σ̂(G)
)−1
]

are the estimates of the sparse precision matrices for all

groups, ng is the number of observations in group g, and the first term inside the sum is the

contribution from each group to the log-likelihood. Danaher et al. [7] propose two convex

penalty functions, the Fused Graphical Lasso (FGL) and Group Graphical Lasso (GGL)

penalties. FGL encourages groups to share both network structure and tparameter values;

the FGL penalty is given by:

P ({Φ}) = λ1

G∑
g=1

∑
i 6=j

∣∣∣Φ(g)
i,j

∣∣∣+ λ2

∑
g<g′

∑
i,j

∣∣∣Φ(g)
i,j − Φ

(g′)
i,j

∣∣∣ (4.5)

where λ1 and λ2 are non-negative coefficients controlling the amount of sparsity and simi-

larity in the precision matrices across groups respectively. The first term in equation (4.5) is

similar to the L1 penalty in graphical lasso, except that the sum is over the off-diagonal ele-

ments. Increasing this penalty results in sparser networks. The second term is the absolute
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difference in corresponding parameter estimates across the G precision matrices that we are

estimating, one for each cohort. Increasing the λ2 penalty will result in similar connectivity

networks and strengths between pairs of variables across the groups. Making λ2 extremely

large will result in identical networks across the groups.

In contrast, the GGL penalty encourages a shared pattern of sparsity, without requiring

similarity between the parameter estimates across the groups. The GGL objective is:

P ({Φ}) = λ1

G∑
g=1

∑
i 6=j

∣∣∣Φ(g)
i,j

∣∣∣+ λ2

∑
i 6=j

(
G∑
g=1

Φ
(g)2

i,j

) 1
2

(4.6)

where λ1 and λ2 are non-negative coefficients controlling the amount of sparsity and shared

sparsity respectively. The first term in equation (4.5) is the same L1 penalty as FGL; as

before, making this penalty large results in sparser networks. The second term encourages

a similar pattern of sparsity in the precision matrices across the groups. Interestingly, both

penalty terms will contribute to sparsity. Danaher et al. [7] show GGL results in a weaker

form of network similarity than FGL, where patterns of sparsity (e.g., functional connected-

ness) are similar across the groups, but the strength of connections in the network are not

penalized for being different.

To estimate the networks using joint graphical lasso penalties, we use the alternating di-

rections method of multipliers (ADMM) [5]. The algorithm is guaranteed to converge to the

global optimum. For details on applying ADMM to this problem see Danaher et al. [7]. To

apply the joint graphical lasso algorithms to our problem, we follow the same procedure as

for graphical lasso except the precision matrices are learned jointly across cohorts. Compared

to graphical lasso, the joint lasso penalties have two coefficients to set, λ1 and λ2. In section

4.3 we will evaluate different ways of setting the penalties and whether the joint models

improve accuracy in recovering the gold standard connectivity patterns and strengths across
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a range of data set sizes.

4.2.2.3 Model Summary

The clustering and sparse inverse covariance algorithms described above are summarized

graphically in Figure 4.1. The entire set of imaging data is collapsed across cohorts prior to

clustering. For each region, kmeans++ is run for each setting of K and used to initialize

a Gaussian mixture model. The resulting clusters are evaluated using the BIC scores and

the solution with the minimum BIC score for each region is selected and used as regions of

interest. The region of interest averages are then calculated for each subject and each cluster

across all regions. For each cohort, we then compute the empirical covariance matrix among

all pairs of clusters and learn precision matrices using the graphical lasso, fused, and group

graphical lasso algorithms. This process results in inverse covariance matrices with varying

amounts of non-zero entries which are depicted in a graph structure by adding edge between

pairs of variables. Figure 4.2 shows an example of the entire model run with eight anatomical

regions (i.e., yellow region outlines) and voxels colored by their cluster membership within

each anatomical region. The edges in the graph indicate non-zero entries in the inverse

covariance matrix between pairs of clusters and are scaled by the magnitude of the partial

correlations where blue edges indicate negative partial correlations and red areas positive

partial correlations. Pairs of clusters that are not connected in the figure have zero entries in

the inverse covariance matrix, reflecting their conditional independence. In the experiments

discussed in section 4.3, these procedures where run in three-dimensions using the whole

brain.

4.2.3 Gold Standard Data

Ultimately we are interested in learning about differences in how the brain is sharing informa-

tion across groups of subjects, evaluated with static molecular imaging techniques, because
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Figure 4.1: Summary of the methods for learning functional clusters and precision matrices
using graphical lasso, fused graphical lasso, and group graphical lasso algorithms in group-
based static molecular imaging data. Note, in this example there are only two cohorts but
the process is the same for additional groups.

it may provide important information on overall brain function. In practical settings, the

amount of available data is small relative to the number of parameters needed to estimate

whole-brain connectivity, which could result in both spurious connections and/or poor es-

timates of true connections due to dependencies in the parameters [35]. In section 4.2.2

we described three models for functional connectivity that use regularization to, hopefully,

improve predictive accuracy and reduce variance in our parameter estimates, at the expense

of some bias, while also making the results more interpretable, focusing our attention on the

strongest functional connections [31]. In order to evaluate the performance of the inverse

covariance models in finding true functional connections in molecular imaging data, it is

necessary to have a large data set with many samples relative to the number of parameters
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Figure 4.2: Example of clustering and inverse covariance modeling in a two-dimensional
SPECT scan slice. Yellow outlines correspond to anatomical regions from an atlas, voxels
are colored by their cluster membership within each anatomical region, and lines connecting
clusters correspond to the non-zero parameters in the inverse covariance matrix between
pairs of clusters and are scaled by the magnitude of the partial correlations where blue edges
indicate negative partial correlations and red areas positive partial correlations.

we are estimating.

The Amen Clinics Inc. (http://www.amenclinics.com/) has been collecting technetium-

99m hexamethylpropyleneamine oxide (Tc99m HMPAO) SPECT scans for many years on

a variety of disorders such as attention deficit hyperactivity disorder, depression, anxiety,

and behavioral problems, among others. The Amen Clinics Inc. provided us with a SPECT

data set to use as a gold standard, consisting of 11,906 males (avg. age 29.2 ± 17.6) and

7,550 females (avg. age 35.6 ± 18.4) [1]. This is the largest SPECT data set that we know
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of. On average, 55% of the subjects have mood disorders, 7% bipolar, 25% depression, 47%

ADHD, 45% anxiety, 10% substance abuse, and 32% brain trauma. Although the data set

consists of a variety of disorders and comorbitidies, for this purpose we need two or more

large cohorts that have both shared and unshared functional connections, to evaluate how

well the three inverse covariance models recover these patterns as a function of sample size.

Subjects in the Amen data set were injected with an age/weight appropriate dose of Tc99m

HMPAO and were at rest during uptake. All subjects were scanned on a high-resolution

Picker Prism 3000 triple-headed gamma camera with fan beam collimators. The original

reconstructed image matrices were 128x128x29 voxels with sizes of 2.16mm x 2.16mm x

6.48mm and values representing counts. The images were spatially normalized to the MNI

atlas using SPM8 software [23], resulting in image matrices of 79 x 95 x 68 voxels in x, y,

and z dimensions respectively with isotropic 2mm voxel sizes. The Automated Anatomical

Labeling (AAL) atlas was used to define the brain regions based on the anatomical parcel-

lations available in the atlas because no structural imaging data was available [34].

After normalization, the clustering model (section 4.2.1) for K ∈ {1, . . . , 25} was run across

the entire data set, for each region in the AAL atlas, except the cerebellum. The cerebellum

was not included due to missing data in the lower slices of some scans. The clustering model,

after selecting the best model for each region using the BIC scores, resulted in 180 clusters

across the brain as shown in Figure 4.3. The cluster averages for each image, stratified by

cohorts, were computed and mean centered. The empirical correlation matrices for both

cohorts are shown in Figure 4.4. Although the sample is large relative to the number of

variables, there is still measurement noise in the data. To remove some of this noise, we run

the graphical lasso algorithm with light regularization (λ = 0.1), resulting in precision ma-

trices with 2119 pairwise connected regions in males, 2130 pairwise connections in females,

and 1750 shared connections (≈ 82%) across both cohorts. These precision matrices will

88



Figure 4.3: Results from the clustering model run on the gold standard SPECT data set
(n=19,456) collapsed across groups. Ellipsoids show the±1 standard deviation region around
each cluster mean.

be used as a gold standard in Section 4.3 to quantitatively evaluate the performance of the

inverse covariance estimation models in recovering the patterns as a function of the amount

of available training data.

4.3 Results

In this section we provide a quantitative evaluation of the sparse inverse covariance models

in terms of correct connections and connection strengths, across different sample sizes com-

pared to the gold standard precision matrices described in section 4.2.3. The intent of our

experiments are to evaluate the performance of the inverse covariance models at sample sizes

typically used in functional imaging studies. Each of the models described in section 4.2.2

require a setting for the amount of regularization, which affects the sparsity of the results

and the overall network structure; therefore, we evaluate two methods of setting the regu-
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(a) Males (b) Females

Figure 4.4: Empirical correlation matrices computed from the average values for each cluster
for (a) males (n=11,906) and (b) females (n=7,550). Correlations range from -0.5 to 1.0

larization weights. In section 4.3.0.1 we use the gold standard precision matrices directly

to determine optimal settings for the λ2 regularization coefficients in the FGL and GGL

models and compare receiver operating characteristic (ROC) curves of true-positive (TP)

and false-positive (FP) connections across all models by varying λ in GL and λ1 in FGL and

GGL. In practice, one does not typically have access to a gold standard. In section 4.3.0.2

we use cross-validation to determine the regularization weights and compare the results with

those determined using the gold standard.

4.3.0.1 Using Gold Standard for Parameter Settings

In this experiment we evaluate the sparse inverse covariance models by sample size, using

the gold standard precision matrices to determine settings for the regularization parameters.

To compare GL, FGL, and GGL models, we follow a procedure similar to Danaher et al.

[7]. We fix the regularization coefficients of the group penalties (i.e., λ2) and varying the

λ1 penalty in the FGL and GGL models and the λ penalty in the GL model, creating ROC

curves of model accuracy in predicting correct functional connections. Further, we compare
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the strength of connections relative to the gold standard precision matrices. To determine

fixed settings for the group penalties, we use the following procedure. We first draw two

random samples (n=500) from the gold standard data set, stratified by group. We then com-

pute the cluster averages using the clusters found for the gold standard data set described

in section 4.2.3. Using these data, we perform a grid search over the λ1 and λ2 parameter

space, for FGL and GGL models separately, comparing the learned precision matrices (Φ̂) to

those of the gold standard (Φ∗) in terms of their L1 difference
(∑G

g=1

∣∣∣Φ̂g − Φ∗g

∣∣∣). We select

the settings that result in the minimum L1 difference from the gold standard. For the FGL

model, the minimum was found with settings λ1 = 0.01 and λ2 = 0.1. For the GGL model,

the minimum was found with settings λ1 = 0.001 and λ2 = 0.01. We will use these fixed set-

tings for λ2 in our comparison of the group regularized models (i.e., FGL and GGL) with GL.

Next, we draw 10 subsets of images, with replacement, stratified by groups, with equal

sizes

N ∈ {10, 25, 50, 100, 250, 500, 750, 1000, 1500, 2000, 2500} from the gold standard data set,

after removing the subjects used in the parameter searching routine described above. Using

the clusters found for the gold standard data set described in section 4.2.3, we compute the

cluster averages and mean center the data. Next, we learn precision matrices using the GL

model across a wide range of λ regularization penalties. Similarly, using the fixed λ2 settings,

we learn precision matrices using the FGL and GGL models across the same range of λ1

regularization settings as GL.

The results showing the average number (across both groups and 10 subsets) of true-positive

edges (TP) correctly identified (i.e., non-zero entries in the test precision matrices match

those from the gold standard), compared to the average number of false-positive edges (FP)

incorrectly identified (i.e., non-zero entries in the test precision matrices unmatched with

the gold standard) by sample sizes are shown in Figures 4.5-4.7. The colored regions around
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each marker indicate the unit standard deviation region about the means. The large markers

identify points on the curves with the lowest sum of squared errors (SSE) between the test

precision matrices and the gold standard for each model, indicating the point on the curves

where connection strengths in the test precision matrices best match the gold standard. In-

terestingly, these occur in regions with a high proportion of true-positive edges relative to

false positive edges. Visually, the FGL and GGL model curves generally dominate the GL

curves for most sample sizes. The biggest difference between the joint models and graphical

lasso are in the moderate sample sizes N ∈ {25, 50, 100}, where we see the largest benefit

from parameter sharing across the groups. Both joint models, in general, perform equally

well in terms of the presence or absence of edges. The average areas under the TP/FP edge

curves (AUC) across the subsets, by sample sizes, are shown in Table 4.1 (columns 2-4).

The T-test and Bonferroni corrected p-values, comparing all combinations of the models by

sample sizes, are shown in columns 5-7. The AUCs are statistically lower in the GL model

(i.e., negative t-scores) than both the FGL and GGL models at data set sizes less than 1000,

with the moderate sample sizes showing the largest decreases. At data set sizes above 2000,

the GL model outperforms the joint models, which is related to having enough data to ac-

curately estimate the precision matrices without the added benefit of parameter sharing in

the joint models, and the fact that we used the GL algorithm to remove noise when creating

the gold standard precision matrices.

To evaluate how well the entries in the precision matrices corresponding to strength of func-

tional connections match those of the gold standard data set, we calculate the SSE between

the test precision matrices and the gold standard by model and sample size. The average

minimum SSEs (across both groups and 10 subsets) are shown in Table 4.2 (columns 2-4).

The T-test and Bonferroni corrected p-values comparing all combinations of the models by

sample sizes are shown in Table 4.2 (columns 5-7). The results are similar to the TP/FP

edge results, where the joint models perform better than the GL model at moderate sample
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sizes, with the largest difference at N = 100. Between the FGL and GGL joint models, the

FGL model performs better, yielding lower SSEs compared to the gold standard. Unlike the

TP/FP edge results, the FGL model achieves a lower SSE than the GL model, even for the

larger data sets (i.e N ∈ 1500, 2000, 2500), whereas GGL does not. To evaluate the effect

of the clustering model on these results, we repeated our experiments by averaging all the

voxels within each region of interest instead of using the clustering model. The results from

the three sparse inverse covariance models are shown in Appendix Tables A.1 and A.2 and

are consistent with those presented in this section.

Table 4.1: TP/FP Edge Area Under Curve (AUC) T-test Comparison by Model and Sample
Size using Gold Standard for Parameter Settings

GL FGL GGL GL-FGL GL-GGL FGL-GGL

N AUC ± std AUC ± std AUC ± std T(P Bonferroni) T(P Bonferroni) T(P Bonferroni)

2500 0.820±0.003 0.790±0.008 0.810±0.008 10.74(1.15E-07) 3.93(3.79E-02) -5.51(1.22E-03)
2000 0.812±0.004 0.797±0.015 0.806±0.013 2.88(3.87E-01) 1.31(2.08E-01) -1.33(1.00e00)
1500 0.799±0.004 0.792±0.018 0.806±0.013 1.19(1.00e00) -1.44(1.00e00) -1.87(1.00e00)
1000 0.784±0.004 0.799±0.005 0.811±0.003 -8.14(7.52E-06) -18.18(1.93E-11) -6.70(1.09E-04)
750 0.769±0.004 0.789±0.007 0.797±0.005 -8.26(6.07E-06) -14.16(1.31E-09) -2.79(4.68E-01)
500 0.683±0.006 0.776±0.006 0.779±0.004 -36.99(7.65E-17) -45.47(1.93E-18) -1.27(1.00e00)
250 0.660±0.003 0.746±0.007 0.745±0.007 -35.21(1.83E-16) -35.30(1.75E-16) 0.13(1.00e00)
100 0.631±0.006 0.696±0.006 0.695±0.006 -24.07(1.50E-13) -23.26(2.73E-13) 0.21(1.00e00)
50 0.604±0.004 0.652±0.005 0.653±0.005 -22.95(3.44E-13) -24.43(1.16E-13) -0.45(1.00e00)
25 0.572±0.004 0.621±0.013 0.626±0.012 -11.28(5.28E-08) -13.19(4.26E-09) -0.85(1.00e00)
10 0.537±0.007 0.601±0.013 0.604±0.013 -13.24(3.98E-09) -14.30(1.12E-09) -0.58(1.00e00)

Table 4.2: Sum of Squared Errors (SSE) with Gold Standard by Model and Sample Size

GL FGL GGL GL-FGL GL-GGL FGL-GGL

N SSE ± std SSE ± std SSE ± std T(P Bonferroni) T(P Bonferroni) T(P Bonferroni)

2500 1.35±0.27 1.34±0.18 1.74±0.16 0.11(1.00E+00) -3.93(3.90E-02) -5.26(3.90E-03)
2000 1.66±0.23 1.57±0.20 2.08±0.30 0.96(1.00E+00) -3.56(8.58E-02) -4.54(1.17E-02)
1500 2.16±0.25 1.90±0.21 2.33±0.22 2.52(8.35E-01) -1.66(1.00E+00) -4.55(7.80E-03)
1000 3.29±0.25 2.70±0.41 3.09±0.30 3.85(4.68E-02) 1.59(1.00E+00) -2.44(9.95E-01)
750 4.32±0.37 3.47±0.43 3.92±0.53 4.77(7.80E-03) 1.94(1.00E+00) -2.11(1.00E+00)
500 6.03±0.68 4.78±0.67 5.15±0.44 4.14(2.34E-02) 3.42(1.17E-01) -1.49( 1.00E+00)
250 11.41±1.34 8.92±1.14 8.68±0.76 4.46(1.17E-02) 5.61(3.90E-03) 0.56(1.00E+00)
100 67.51±18.79 22.58±1.69 21.20±1.40 7.53(3.90E-03) 7.77(3.90E-03) 1.98(1.00E+00)
50 64.34±7.46 60.42±6.83 57.70±4.71 1.23(1.00E+00) 2.38(1.00E+00) 1.04(1.00E+00)
25 62.98±5.59 58.46±5.74 62.70±5.84 1.78(1.00E+00) 0.11(1.00E+00) -1.64(1.00E+00)
10 100.52±10.29 83.90±4.48 84.13±4.49 4.68(7.80E-03) 4.62(7.80E-03) -0.11(1.00E+00)
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(a) n=10 (b) n=25

(c) n=50 (d) n=100

Figure 4.5: True-positive (TP) vs. false-positive (FP) edges between the test precision
matrices and the gold standard for sample sizes n ∈ {10, 25, 50, 100} using GL, FGL, and
GGL inverse covariance models. Small markers indicate the means across the 10 test subsets
and both cohorts. Colored regions show the unit standard deviation about the means. Large
markers identify points with lowest average SSE compared to gold standard.

4.3.0.2 Using Cross-Validation for Parameter Settings

In section 4.3.0.1 we used the precision matrices from the gold standard data set directly in

determining fixed group regularization penalties (i.e., λ2) for the joint models. In practice,

one does not typically have access to a gold standard. In this experiment we consider how well

these models perform in a practical setting, determining the regularization coefficient settings

using a typical 10-fold cross validation design. For this experiment we require 10 subsets of
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(a) n=250 (b) n=500

(c) n=750 (d) n=1000

Figure 4.6: True-positive (TP) vs. false-positive (FP) edges between the test precision
matrices and the gold standard for sample sizes n ∈ {250, 500, 750, 1000} using GL, FGL,
and GGL inverse covariance models. Small markers indicate the means across the 10 test
subsets and both cohorts. Colored regions show the unit standard deviation about the means.
Large markers identify points with lowest average SSE compared to gold standard.

data, stratified by group, for clustering, regularization coefficient selection, and testing with

the gold standard. We first separate the gold standard data set into three independent sets,

stratified by group (N (g1) = 3, 802, N (g2) = 2, 516 in each set). From each set and group, we

draw 10 subsets of images, with replacement, of equal sizes N ∈ {10, 25, 50, 100, 250, 500}.

This procedure results in 10 subsets of data for clustering, orthogonal to the 10 subsets for

regularization coefficient selection, orthogonal to the 10 subsets for precision matrix evalua-
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(a) n=1500 (b) n=2000

(c) n=2500

Figure 4.7: True-positive (TP) vs. false-positive (FP) edges between the test precision
matrices and the gold standard for sample sizes n ∈ {1500, 2000, 2500} using GL, FGL, and
GGL inverse covariance models. Small markers indicate the means across the 10 test subsets
and both cohorts. Colored regions show the unit standard deviation about the means. Large
markers identify points with lowest average SSE compared to gold standard.

tion. Next, we run the clustering model described in section 4.2.1 on each of the clustering

subsets independently, collapsing across cohort as done previously. Using the clusters learned

from each clustering subset, we compute the average values for each cluster and each subject

in the corresponding regularization coefficient selection subset and compute the correspond-

ing covariance matrices between each of the clusters. We now have 20 covariance matrices,

one for each of the 10 regularization coefficient selection subsets, for each cohort, using the
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clusters learned from orthogonal data. These covariance matrices will be used to determine

settings for the regularization coefficients. To set the regularization coefficients, we perform

grid searches over the regularization parameter spaces (i.e., λ1, λ2 for FGL and GGL, and

λ for GL) for each inverse covariance model, selecting the regularization coefficient settings

that minimizes the BIC score from each regularization coefficient selection subset, where the

number of parameters are the number of non-zero edges in the precision matrices. After

performing this procedure, we have settings for the regularization coefficients for each of the

three inverse covariance models, for each of the 10 subsets of data. Finally, we use the clus-

ters and the regularization coefficients to compute the precision matrices for each of the 10

precision matrix evaluation subsets and both cohorts, for each of the three inverse covariance

models.

The results from this experiment are shown in Figure 4.8 and Table 4.3. Figure 4.8 shows

the average number of TP and FP connections, by model, across the 10-folds compared

to the gold standard data set. The lower segment of the stacked bars (i.e., lighter color)

show the number of FP connections whereas the upper segment (i.e., darker color) show the

number of TP connections. For N ∈ {100, 250, 500} the FGL and GGL models find more

TP connections and less FP connections than GL. For N ∈ {10, 25, 50} GL finds more TP

connections but also has more FP connections, except in N = 50 where both FGL and GGL

models have more FP connections than GL. The SSE between the average precision matrices

across the 10 test subsets and the gold standard are shown in Table 4.3. The results are

similar to those of the TP/FP edges for N ∈ {100, 250, 500}, where FGL and GGL models

achieve statistically lower SSEs than the GL model. In contrast, at the lower N ’s, there

is little significant difference between the models except in N = 50 where the GL model

statistically outperforms the GGL model in correct connection strengths. Interestingly, the

average SSE measurements for the GL model in the larger groups (i.e., N ∈ 100, 250, 500)

are much higher than in the experiment described in section 4.3.0.1; whereas, in the FGL
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Figure 4.8: TP/FP edges by sample size and model for cross-validation experiment. Lower,
light colored segments show counts of FP edges whereas, upper, dark colored segments show
counts of TP edges.

and GGL models the results are fairly consistent. In looking at the regularization parameter

settings across the splits of the data for this experiment, we find the GL model is selecting

higher regularization parameters (range 0.2−0.7 depending on split and number of samples)

as compared to the settings yielding the minimum average SSE when using the gold standard

to set them directly (range 0.1− 0.3). Conversely, in the FGL and GGL models, we find the

λ1 regularization parameter settings to be close to those found yielding the minimum average

SSE when using the gold standard; whereas, the λ2, group regularization setting is generally

a bit higher. Because the group models use all the data, across both cohorts, in setting the

regularization parameters as compared to the GL model, the settings are more stable across

splits and result in better estimates of the connection strengths as demonstrated in Table

4.3.
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Table 4.3: Sum of Squared Errors (SSE) with Gold Standard by Model and Sample Size
Using Cross-Validation

GL FGL GGL GL-FGL GL-GGL FGL-GGL

N SSE ± std SSE ± std SSE ± std T(P Bonferroni) T(P Bonferroni) T(P Bonferroni)

500 156.66±70.11 4.88±1.04 8.54±3.32 6.85(3.77E-05) 6.67(5.26E-05) -3.33(6.76E-02)
250 190.47±41.17 7.16±0.96 11.46±1.56 14.08 (6.69E-10) 13.74(9.98E-10) -7.42(1.26E-05)
100 266.49 ±75.68 14.28±1.64 31.82±16.17 10.54(7.15E-08) 9.59(3.05E-07) -3.41(5.59E-02)
50 207.17±46.93 231.15±128.5 332.05±91.61 -0.55(1.00E+00) -3.84(2.18E-02) -2.02(1.00E+00)
25 283.22±68.10 366.5±55.47 372.8±49.69 -3.00(1.39E-01) -3.36(6.27E-02) -0.27(1.00E+00)
10 530.03±167.41 342.01±41.8 350.91±45.33 3.45(5.19E-02) 3.27(7.73E-02) -0.46(1.00E+00)

4.4 Discussion

In section 4.3 we described two experiments to evaluate the inverse covariance models de-

scribed in section 4.2. In section 4.3.0.1 we used the gold standard precision matrices to set

the group regularization parameters in the joint models that yielded the smallest difference

from the gold standard. The results suggest that the joint models perform better in detect-

ing true-positive functional connections and more accurately learn the connection strengths

across all of the sample sizes. At N ∈ {1500, 2000, 2500} the joint models find ∼ 2−3% more

true positive edges than the GL algorithm, at N ∈ {250, 500, 750, 1000} the joint models

find ∼ 3 − 7% more true positive edges than GL, and at N ≤ 100 the joint models find

∼ 31− 46% more true positive edges than the GL algorithm. The largest gain for the joint

models (i.e., FGL and GGL) over the independent model (i.e., GL) in our comparisons were

at N = 100. In section 4.3.0.2 we used a cross-validation design and orthogonal splits of the

gold standard data to evaluate the performance of these models in a more practical setting,

where a gold standard is not available. The results of this experiment similarly show the

joint models performing better than the GL model for data set sizes of 100 or more, with

the largest difference at N = 100. At N ∈ {500, 250, 100} the joint models find ∼ 26− 59%

more true positive edges than the GL algorithm. At N = 50 the FGL and GL algorithms

detect only ∼ 23% and ∼ 28% of the true positive edges respectively; whereas, the GGL

algorithm is much lower at ∼ 11% of the true positive edges. Even worse, at N ≤ 25
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the true positive rates for all models are ∼ 3 − 4% which is far too low for practical use.

Further, we observe that the GL model SSE measures are much higher across the range of

data set sizes when using cross validation to set the regularization weight than when using

the gold standard directly (section 4.3.0.1), caused by over regularization of the GL model

in the cross-validation experiment. The results at sample sizes less than 50 are generally

quite poor and none of the models perform well using cross-validation and BIC scores to

select settings for the regularization parameters. Visually, we see the GL model with more

true-positive edges at N ∈ {10, 25} than the joint models; although, all models appear to

be over regularizing. From the results of experiment 1, using the gold standard to set the

regularization parameters, we know the joint models can perform well at the smallest sample

sizes, recovering ∼ 21− 22% of the true positive edges at N = 10 versus ∼ 11% for the GL

model, yet it is evident that care should be taken when setting the regularization parame-

ters in the cross-validated design with such small samples. It may be prudent to compute

the inverse covariance models across a range of regularization parameters and interpret the

results based on edge selection frequencies or by controlling for false discovery rates as in

Liu et al. [16] or to use a larger hold-out sample to set the regularization parameters prior

to applying them to very small datasets.

Our results generally agree with Danaher et al. [7] who showed an improvement in the

accuracy of the joint models over graphical lasso in groups with shared patterns of edges

in simulated data. In our experiments, using molecular imaging data, both joint models

perform about equally well. There does not seem to be an obvious advantage in choosing

between FGL and GGL models in our experiments. In practice, one should take into consid-

eration the expected similarity of the groups being compared, and the amount of available

data, to determine whether the added complexity of selecting two regularization coefficients

in the FGL and GGL models is warranted.
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4.5 Conclusions

In this chapter we have compared models for group-based functional connectivity using static

molecular imaging data and given a quantitative evaluation of the models in recovering a gold

standard connectivity profile, as a function of sample size. In the largest samples, all models

performed well; although, the joint models generally perform better. In smaller samples,

the joint models are more stable and achieve better results when using a large dataset to

determine settings for the regularization coefficients. Caution should be used when applying

these models to very small data sets. Our experiments suggest the true positive rates will be

low and the the connection strengths will be inaccurate when using cross-validation to set the

regularization parameters. Given these caveats, our results show there is value in using sparse

inverse covariance estimation for measuring functional connectivity in group-based molecular

imaging. It would be interesting to extend these experiments to within-subject experimental

designs. In recent work, Qiu et al. [25] has developed a joint penalty that appears to

perform better than GGL in settings where there are dependencies between networks. Using

experiments similar to those presented in this manuscript, an evaluation by sample size in

within-subject designs would provide complimentary information on using sparse inverse

covariance estimation for functional connectivity modeling in molecular imaging.
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Stéphane Lehéricy, Julien Doyon, and Habib Benali. Partial correlation for functional

brain interactivity investigation in functional mri. Neuroimage, 32(1):228–237, 2006.

[19] PK McGuire and CD Frith. Disordered functional connectivity in schizophrenia. Psy-

chological medicine, 26(04):663–667, 1996.

[20] Geoffrey McLachlan and Thriyambakam Krishnan. The EM algorithm and extensions,

volume 382. John Wiley & Sons, 2007.

[21] Geoffrey J McLachlan and Kaye E Basford. Mixture models. inference and applications

to clustering. Statistics: Textbooks and Monographs, New York: Dekker, 1988, 1, 1988.

[22] Sifis Micheloyannis, Ellie Pachou, Cornelis Jan Stam, Michael Breakspear, Panagiotis

Bitsios, Michael Vourkas, Sophia Erimaki, and Michael Zervakis. Small-world networks

and disturbed functional connectivity in schizophrenia. Schizophrenia research, 87(1):

60–66, 2006.

[23] William D Penny, Karl J Friston, John T Ashburner, Stefan J Kiebel, and Thomas E

Nichols. Statistical Parametric Mapping: The Analysis of Functional Brain Images:

The Analysis of Functional Brain Images. Academic Press, 2011.

[24] Russell A Poldrack. Region of interest analysis for fmri. Social cognitive and affective

neuroscience, 2(1):67–70, 2007.

[25] Huitong Qiu, Fang Han, Han Liu, and Brian Caffo. Joint estimation of multiple graph-

ical models from high dimensional time series. arXiv preprint arXiv:1311.0219, 2013.

104



[26] Baxter P Rogers, Victoria L Morgan, Allen T Newton, and John C Gore. Assessing

functional connectivity in the human brain by fmri. Magnetic resonance imaging, 25

(10):1347–1357, 2007.

[27] CB Saper and TC Chelimsky. A cytoarchitectonic and histochemical study of nucleus

basalis and associated cell groups in the normal human brain. Neuroscience, 13(4):

1023–1037, 1984.

[28] Gideon Schwarz et al. Estimating the dimension of a model. The annals of statistics, 6

(2):461–464, 1978.

[29] Stephen M Smith, Karla L Miller, Gholamreza Salimi-Khorshidi, Matthew Webster,

Christian F Beckmann, Thomas E Nichols, Joseph D Ramsey, and Mark W Woolrich.

Network modelling methods for fmri. Neuroimage, 54(2):875–891, 2011.

[30] Padhraic Smyth. Model selection for probabilistic clustering using cross-validated like-

lihood. Statistics and Computing, 10(1):63–72, 2000.

[31] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[32] Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith Knight. Spar-

sity and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series

B (Statistical Methodology), 67(1):91–108, 2005.

[33] Jean Esther Toncray and Wendell JS Krieg. The nuclei of the human thalamus: a

comparative approach. Journal of Comparative Neurology, 85(3):421–459, 1946.

[34] Nathalie Tzourio-Mazoyer, Brigitte Landeau, Dimitri Papathanassiou, Fabrice Criv-

ello, Olivier Etard, Nicolas Delcroix, Bernard Mazoyer, and Marc Joliot. Automated

anatomical labeling of activations in spm using a macroscopic anatomical parcellation

of the mni mri single-subject brain. Neuroimage, 15(1):273–289, 2002.

105
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Chapter 5

Conclusion

In this dissertation, we presented three innovative research projects which make contribu-

tions to improved tuning of imaging systems, generalized features for image classification,

and a model for functional connectivity in molecular imaging. Each project has made a

unique contribution to the field of molecular neuroimaging using methods from machine

learning and probabilistic graphical modeling. Each of the projects stands on its own, yet

when considered together, improves the overall workflow from data collection to analysis

in molecular imaging. Each of these projects were conceived to solve existing problems or

improve methods in research directions of interest to investigators at the University of Cali-

fornia, Irvine’s Neuroscience Imaging Center. Here we briefly describe the future directions

for each of these projects, beyond those highlighted in each of the chapters, with a focus on

making them accessible to the broader research and clinical communities.

5.1 Future Directions

In chapter 2 we developed a model to improve tuning of PET imaging systems. In order

for other sites to use this improved model, the code must be incorporated into the existing

manufacturers tuning workflow. Based on discussions with the HRRT PET community and

Siemens representatives, we have developed a plan to incorporate our model as a post pro-
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cessing step in the typical camera tuning workflow, prior to the typical steps performed by

local site engineers. By incorporating our model into the workflow, engineers will benefit

from improved detector setups and spend less time and resources manually fixing errors made

by the current tuning workflow. Next, we will work on applying the model to newer PET

platforms with different detecter panel designs. Our model should be readily applicable to

a variety of panel designs.

In chapter 3 we introduced a novel technique for defining features and extended it for molec-

ular imaging, where the features were applied to different disorders and molecular imaging

platforms (i.e. SPECT, PET) with surprisingly accurate results, competitive with disease-

specific and modality-specific features tuned for the specific classification problem at hand.

In future work we will incorporate the feature pipeline into the clinical practice at the Amen

Clinics Inc. and evaluate it’s performance in separating large cohorts of subjects with a

variety of co-morbitities into distinct classes. Dr. Amen has requested I help to develop

a classification system that could be used by Amen clinic physician’s to better incorporate

brain imaging data into their subject-specific personalized treatment plans. Currently the

Amen clinic physician visually inspect the brain scans and development treatment plans

based on their educated “reading” of brain imaging data, along with other clinical and

behavioral data. A classification system will give additional information and quantitative

metrics to help in determining co-morbitities (based on probabilities for the various classes)

and/or modifying proposed treatment plans based on how close a new brain imaging dataset

is to prior subjects scanned at the clinic that may have responded better to one treatment

or the other.

Lastly, in chapter 4 we present a model for group-based functional connectivity in molecular

imaging and provide a quantitative analysis of how well different sample sizes performed in

recovering a ground truth profile. Evaluating functional connectivity in molecular imaging
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is a missing component to current group-based image analysis. In order to help investiga-

tors use this technique in their data, a clean, production ready code base is needed and

should be made available in typical neuroimaging repositories such as the Neuroimaging

Informatics Tools and Resources Clearinghouse (NITRC). Because the sparse inverse co-

variance methods used in this research are currently implemented and available in the R

statistical package (http://www.r-project.org/), porting our code from Matlab to R is

the obvious choice to facilitate more widespread use of the method. Next, we will incorpo-

rate the Neuroimaging Data Model (NIDM;http://nidm.nidash.org/) into the code base

to keep tract of model parameters, choices made by the user, and overall provenance in

a structured and semantically meaningful framework [1]. NIDM is rapidly becoming inte-

grated into popular neuroimaging analysis software and has the capabilities and support to

change the way neuroimaging metadata is shared. I have been leading the working group

responsible for the creation of the NIDM standard which is based on prior research I did

in the Function Biomedical Informatics Research Network (FBIRN) . Incorporating NIDM

into the code bases of the research presented in this dissertation and continuing the adop-

tion of NIDM as an international standard for sharing metadata in neuroimaging is another

future research direction. Lastly, functional connectivity as assessed through sparse inverse

covariance estimation has been used in studying resting-state functional magnetic resonance

imaging data yet no quantitative data exists on how well these models perform as a function

of sample sizes. Currently researchers are reporting the results with little guidance on how

well these models recover the true underlying functional connectivity. Extending our current

methodology on group-based static molecular imaging to time-dependent functional mag-

netic resonance imaging will contribute additional knowledge on how sparse models perform

in these settings and how much to trust the results as a function of sample sizes.

In conclusion, I look forward to a career integrating machine learning methods into main-

stream neuroimaging and biomedical informatics, an increasingly popular field becoming a
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regular topic at conferences. With the continued improvement in models from the machine

learning community and cross-disciplinary researchers who do research in both domains, we

expect the techniques will make a dramatic impact on our understanding of the brain and,

with any luck, aid clinicians in improving patient care.

110



Bibliography

[1] David B Keator, K Helmer, Jason Steffener, Jessica A Turner, Theo GM Van Erp, Syam

Gadde, N Ashish, GA Burns, and B Nolan Nichols. Towards structured sharing of raw

and derived neuroimaging data across existing resources. Neuroimage, 82:647–661, 2013.

111



Appendices

112



Appendix A

Inverse covariance model results without

clustering

The results showing the average area under the TP/FP edge curves (AUC) across the sub-

sets, by sample sizes, using the gold standard for parameter settings as described in section

4.3.0.1 but without the clustering model are shown in Table A.1. The functional data was

averaged in each region of interest instead of using the results from the Gaussian mixture

model described in section 4.2.1. The AUCs are statistically lower in the GL model (i.e.

negative t-scores) than both the FGL and GGL models at data set sizes from 50-2000, with

the moderate sample sizes showing the largest decreases. These results are consistent with

those when using the clustering model, yet the differences between inverse covariance models

are lower in magnitude and the AUCs are slightly higher, likely due to the smaller number

of variables relative to sample size.

The results showing the average minimum SSEs across the subsets, by sample sizes, us-

ing the gold standard for parameter settings as described in section 4.3.0.1 but without the

clustering model are shown in Table A.2. Again, the results are consistent with those pre-

sented using the clustering model, but the SSEs are less accurate over the range of sample

sizes likely related to averaging functional signals with noise in the larger regions of interest.
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Table A.1: TP/FP Edge Area Under Curve (AUC) T-test comparison by model and sample
size using gold standard for parameter settings and simple averaging of functional signal in
AAL regions of interest

GL FGL GGL GL-FGL GL-GGL FGL-GGL

N AUC ± std AUC ± std AUC ± std T(P Bonferroni) T(P Bonferroni) T(P Bonferroni)

2500 0.840±0.016 0.851±0.016 0.856±0.011 -1.538(1.00E+00) -2.603(7.01E-01) 0.814(1.00E+00)
2000 0.823±0.009 0.842±0.011 0.842±0.010 -4.157(2.31E-02) -4.388(1.38E-02) -0.043(1.00E+00)
1500 0.806±0.011 0.828±0.010 0.824±0.007 -4.517(1.04E-02) -4.421(1.29E-02) -0.773(1.00E+00)
1000 0.772±0.009 0.801±0.011 0.796±0.009 -6.398(1.96E-04) -5.937(5.00E-04) -1.184(1.00E+00)
750 0.751±0.009 0.782±0.009 0.775±0.007 -7.511(2.32E-05) -6.623(1.26E-04) -1.933(1.00E+00)
500 0.720±0.011 0.753±0.012 0.742±0.009 -6.426(1.86E-04) -5.053(3.23E-03) -2.192(1.00E+00)
250 0.656±0.011 0.682±0.014 0.675±0.013 -4.600(8.67E-03) -3.505(9.85E-02) -1.195(1.00E+00)
100 0.617±0.011 0.638±0.011 0.631±0.009 -4.352(1.50E-02) -3.177(2.04E-01) -1.531(1.00E+00)
50 0.576±0.014 0.604±0.013 0.597±0.011 -4.502(1.07E-02) -3.708(6.27E-02) -1.189(1.00E+00)
25 0.560±0.014 0.576±0.011 0.574±0.008 -2.869(3.98E-01) -2.622(6.75E-01) -0.591(1.00E+00)
10 0.547±0.013 0.559±0.015 0.552±0.010 -1.878(1.00E+00) -0.945(1.00E+00) -1.199(1.00E+00)

Table A.2: Minimum average sum of squared errors (SSE) by model and sample size using
gold standard for parameter settings and simple averaging of functional signal in AAL regions
of interest

GL FGL GGL GL-FGL GL-GGL FGL-GGL

N SSE ± std SSE ± std SSE ± std T(P Bonferroni) T(P Bonferroni) T(P Bonferroni)

2500 5.94±5.08 7.13±6.11 9.59±8.30 -0.472(1.00E+00) -1.184(1.00E+00) -0.753(1.00E+00)
2000 7.69±8.88 9.07±7.79 14.36±12.14 0.397(1.00E+00) -0.800(1.00E+00) -1.159(1.00E+00)
1000 17.39±14.67 11.03±9.49 22.79±19.20 1.150(1.00E+00) -0.707(1.00E+00) -1.736(1.00E+00)
750 21.90±18.63 13.19±11.34 25.88±22.59 1.263(1.00E+00) -0.430(1.00E+00) -1.588(1.00E+00)
500 33.68±28.56 19.42±17.05 23.84±20.19 1.356(1.00E+00) 0.890(1.00E+00) -0.529(1.00E+00)
250 44.23±37.35 42.54±37.06 41.11±34.53 0.102(1.00E+00) 0.194(1.00E+00) 0.089(1.00E+00)
100 78.07±67.43 60.83±51.49 69.76±60.06 0.643(1.00E+00) 0.291(1.00E+00) -0.357(1.00E+00)
50 116.36±98.85 94.76±79.63 101.89±85.90 0.538(1.00E+00) 0.350(1.00E+00) -0.192(1.00E+00)
25 188.52±159.39 165.43±140.50 180.41±153.59 0.344(1.00E+00) 0.116(1.00E+00) -0.228(1.00E+00)
10 241.64±204.92 224.41±189.45 231.57±195.92 0.195(1.00E+00) 0.112(1.00E+00) -0.083(1.00E+00)
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