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Abstract 

Two bar-press experiments with rats tested the rule that reducing expectation of reward 

increases the variation from which reward selects. Experiment 1 used a discrete-trial 

random-interval schedule, with trials signalled by light or sound. One signal always 

ended with reward; the other ended with reward less often. The two signals were 

randomly mixed. Bar-press duration (how long the bar is held down) varied more 

during the signal with the lower probability of reward. Experiment 2 closely resembled 

Experiment 1 but used a random-ratio schedule rather than a random-interval schedule. 

Again, bar-press duration varied more during the signal with the lower probability of 

reward. The results support the rule–the first well-controlled comparisons to do so. 
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Control of Variation by Reward Probability 

 Instrumental learning requires both variation and selection -- variation of action, 

selection by reward of what works (Staddon & Simmelhag, 1971; Hull, Langman, & 

Glenn, 2001) -- but few experiments have studied variation (Chance, 1999; Domjan, 

1998; Lieberman, 1990; Pearce, 1997; Staddon & Cerutti, 2003). Yet it is plausible that 

variation depends on recent events, just as response rate does. If an animal’s actions 

vary too little, it will not find better ways of doing things; if they vary too much, 

rewarded actions will not be repeated.  So at any time there is an optimal amount of 

variation, which changes as the costs and benefits of variation change. Animals that do 

instrumental learning would profit from a mechanism that regulates variation so that 

the actual amount is close to the optimal amount. If such a mechanism exists, we know 

little about it. 

 Experiments about variation have been rare partly because variation has been 

hard to measure. Antonitis (1951), for example, took “6,600 photographs of nose-

thrusting responses” (p. 275) to study variation in nose position. Herrnstein (1961) 

used a special apparatus with ten switches to measure the location of key pecks. 

Although most studies of variation have measured spatial variation (e.g., Balsam, Deich, 

Ohyama, & Stokes, 1998; Eckerman & Lanson, 1969; Ferraro & Branch, 1968; 

Neuringer, 2002), temporal variation may be much easier to measure. A few studies 

(Lacter & Corey, 1982; Margulies, 1961; Millenson, Hurwitz, & Nixon, 1961) have 

measured the variation of bar -press duration (how long the bar is held down). Rats can 

be trained to make bar presses of specified durations (e.g.,  Notterman & Mintz, 1965; 
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Platt, Kuch, & Bitgood, 1973), so the variation measured by bar-press duration includes 

the variation from which reward selects.  

 Our use of bar-press duration to study variation began with a puzzle involving 

rats trained with the peak procedure (Gharib, Derby, & Roberts, 2001). On most trials, 

food was given for the first bar press more than 40 sec after the start of the trial, at 

which point the trial ended. On some trials, however, no food was given for the entire 

trial.  The puzzle was that on trials without food bar-press duration increased sharply in 

the middle of the trial, starting with the second bar press after Second 40. The upper 

panel of Figure 1 shows an example. We originally thought the increase was due to 

frustration (Amsel, 1992) but a test of this idea indicated otherwise (Gharib, Derby, & 

Roberts, 2001). 

 Data analysis suggested a different explanation. Gharib et al. recorded several 

million bar-press durations, which made it easy to see how their distribution changed 

from early to late in the trial (lower panel of Figure 1). The mean increase seen in the 

upper panel of Figure 1 was not due to an upward shift of the whole distribution, as we 

had expected. Instead, it reflected a widening of the distribution–that is, an increase in 

variation. Why would the variation increase? One clue was that the increase began 

exactly when the rats could realize that further bar presses would not produce reward. 

Another was that variation remained high for the rest of the trial, during which no food 

was given. This led Gharib et al. to propose the following rule: reducing expectation of 

reward increases variation of form. 

 This was plausible. When the probability of reward goes down, so does the cost 
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of variation, because less is lost when an action falls outside the boundary of what is 

rewarded. When the cost of variation goes down, the optimal amount of variation goes 

up. So a mechanism that regulated variation should increase variation when expectation 

of reward decreased. 

 The rule correctly predicted other results. It correctly predicted two effects in 

another experiment by Gharib et al.: (a) the direction of the signal/intertrial-interval 

difference in duration (reward density was greater during the signal than during the 

intertrial interval, thus reward expectation was greater; and duration varied less during 

the signal), and (b) the direction of the effect of a reward during the intertrial interval 

on the duration of responses 30-40 sec later (a reward increased expectation of reward; 

and a reward decreased variation). The rule correctly predicted the well-established 

increase of variation during extinction (Balsam, Deich, Ohyama, & Stokes, 1998; 

Neuringer, 2002). In several studies measuring peck location, reductions in reward 

probability short of extinction increased variability (e.g., Eckerman & Lanson, 1969; 

Ferraro & Branch, 1968; Millenson, Hurwitz, & Nixon, 1961; see Ferraro & Branch, 

1968, for other examples). Using fixed-ratio schedules, Cherot, Jones, and Neuringer 

(1996) found that the variation of bar-press sequences decreased as reward came closer 

and reward expectation presumably increased. Several other fixed-ratio experiments 

have observed similar results (e.g., Schwartz, 1982; see Cherot, Jones, & Neuringer, 

1966, for a review). The only inconsistent result, as far as we know, is Herrnstein’s 

(1961) finding that variability of peck location was greater with continuous 

reinforcement (CRF) than with a variable-interval 3-minute schedule (VI-3 min). 
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However, Ferraro and Branch (1968) and Eckerman and Lanson (1969) found the 

opposite result. Moreover, the two conditions that Herrnstein compared differed in 

several ways besides reward expectation. 

 None of the Gharib et al. results nor any other previous result is conclusive 

evidence for (or against) the rule because none were designed to test it. All involve 

confoundings–comparisons between conditions that differed in more than reward 

expectation–so results that support the rule can be explained in other ways. For 

example, the increase in variation during extinction supports the rule because reward 

expectation is less during extinction than training. But there are other differences 

between training and extinction. 

 The two experiments reported here were designed to test the rule. They tried to 

vary reward expectation while keeping other things constant. Because we assumed that 

reward expectation is generated by an associative process similar to Pavlovian 

conditioning, we especially tried to minimize non-associative differences between 

conditions being compared. The present experiments are the first experiments about 

variation to do so. 

 Experiments 1 and 2 were very similar.  Both used a discrete-trials procedure in 

which two signals were associated with different probabilities of reward.  Trials with the 

two signals were randomly mixed. To reduce the influence of non-associative effects of 

reward and nonreward, all rewards happened at the end of a trial (after the bar was 

released), and there was 1 min between trials. Thus expectation differed between 

signals while other properties, such as overall density of reward, time since last reward, 
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and time since last nonreward, were equal. 

 The rule that reducing reward expectation increases variation predicted more 

variation during the signal with the lower probability of reward. It predicted even more 

variation during the intertrial interval than during the signal with the lower probability 

of reward, but only if non-associative differences between the two (e.g., unlearned 

effects of light and sound, time since last reward, time since last non-reward) were 

unimportant.  

 Because variation can be measured many ways, these predictions can be tested 

many ways. The standard deviation is the most efficient measure of spread when the 

underlying distribution is Gaussian (normal) but the underlying distribution was far 

from Gaussian (lower panel of Figure 1). Use of the standard deviation to measure the 

spread of such distributions would be quite wasteful. To find a better choice, Gharib et 

al. asked what summary was most sensitive to the early/late difference shown in the 

lower panel of Figure 1. They considered 10 candidates -- two statistics (mean and 

standard deviation), each computed after one of five transformations (none, square 

root, logarithmic, reciprocal square root, reciprocal) – and found that the mean of the 

logarithms produced the largest t value (t(35) = 18) for the early/late difference. It may 

be surprising that computing a mean was the most sensitive way to detect a change in 

spread, but that is what the data showed. The mean of logarithms is the summary we 

used here, so predictions about variation became predictions about means. (See Figure 

11 for an estimate of how much power we would have lost had we used standard 

deviations.)  
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Experiment 1: Random-Interval Schedule 

In this experiment, the end of a trial was “primed” (set to happen after the next 

bar press) with a certain probability each second during a trial. This probability was the 

same for both signals. The procedural difference between signals was what happened at 

the end of a trial. During an initial training phase (100%/100%), trials with both signals 

always ended with reward. After that, trials with one signal (high food) always ended 

with reward, while trials with the other signal (low food) ended with reward on 50% of 

trials (during the 100%/50% phase) or 25% of trials (during the 100%/25% phase).  
Method 

Subjects. The subjects were 15 Fischer 344 rats from Harlan, 16 months old at 

the start of bar-press training. They had served in other behavioral experiments, none of 

which involved bar pressing.  They were housed individually with ad-lib water and given 

Purina Lab Meal 5001-M after each daily session. One rat died during the experiment. 

Its results are not included below. 

 Apparatus. The rats worked in 15 similar lever boxes. Two were 23 cm x 20 cm x 

28 cm; five were 23 cm x 20 cm x 21 cm; and eight were 28 cm x 26 cm x 28 cm 

(Gerbrands Series 7400 operant test chambers). The roof and side walls of the box were 

transparent acrylic; the front and back walls were aluminum. A pellet dispenser 

delivered 45-mg pellets (BioServ mix T101) to a food cup that the rat accessed through 

a hole in the center of the front wall.  Water was available ad-lib from a water bottle 

nozzle accessible on the rear wall.  Seven boxes contained a single lever on the front 

wall that remained extended; it was to the left (facing the front wall) of the food cavity. 
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The other eight boxes contained two retractable levers (Gerbrands G6311 retractable 

rat lever), one on each side of the food cup. During the experiment, the stage-left lever 

remained extended into the box; the other lever was always retracted. To close the lever 

switch required a force of about 15 g. A small lamp (General Electric 1155X) was 

mounted on the roof of the operant chamber stage left of the food cavity in each box; it 

provided the light stimulus through the acrylic roof. The sound stimulus was white 

noise from 5-cm speakers mounted on the floor behind the food cavity. A bar press was 

recorded when the lever switch was closed (lever down) and then opened (lever up). 

Rewards were given contingent upon lever release–that is, after the switch re-opened. 

Each box was enclosed in a insulated fan-ventilated chamber. An IBM-PC 486 computer 

controlled the experimental events and collected the data. Individual durations were 

measured to an accuracy of about 20 msec. 

 Procedure. Subjects were given 10 g of chow per day for one week before 

training began.  During the first 16 days of the rest of the experiment, the daily ration 

was 12 g of food immediately after the daily session. After the first 16 days, the daily 

ration was reduced to 10 g of food. 

 During magazine and bar-press training, the first 50 bar presses were all 

rewarded (with one pellet); each of the next 50 bar presses was rewarded with 

probability 0.5; and later bar presses were rewarded with probability 0.25. Reward was 

always given after the bar had been both pressed down and released. In addition, food 

was given at random intervals an average of once per minute independent of responses 

(variable time 1-min schedule) until the rat had made 50 bar presses.  This continued 
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until all the subjects had made at least 100 bar presses in one 4-hr session, which took 

no more than 20 days. 

 Then the main procedure began. Sessions began with an intertrial interval. All 

intertrial intervals lasted 60 sec. We used the shortest intertrial interval that we believed 

would allow aftereffects of reward or nonreward to disappear. The duration was 

constant rather than variable so that every trial would be followed by a sufficient buffer. 

After the first intertrial interval, one of two signals (house light or white noise) was 

turned on. The signal was randomly chosen, with the two signals equally likely. During 

a trial, the end was “primed” with a probability of 1/120 each sec during the first seven 

days. Because bar press rates were low, the probability was increased to 1/60 each sec 

for the remaining days. Once the end of the trial was primed, the next bar press ended 

the trial and a new intertrial interval began. During the first phase (100%/100%), which 

lasted 22 days, both signals always ended with the delivery of a food pellet. During the 

next phase (100%/50%), which lasted 23 days, one signal always ended with food; the 

other ended with food with a probability of 0.5. The signal that always ended with food 

was light for even-numbered rats, and sound for the rest. The final phase (100%/25%), 

which lasted 38 days, was the same as the 100%/50% phase except that the signal that 

had ended with food with probability 0.5 now ended with food with probability 0.25. 

The daily session lasted 3 hr. 

 Data analysis. To summarize durations, we used the mean of log durations, for 

reasons explained in the introduction. Rates were computed by, first, finding for each 

rat the mean log interresponse time. This way of measuring rate gives much less weight 
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to very long interresponse times than the usual way of measuring rate (number of 

responses divided by total amount of time). We computed rate both ways and got 

similar results; we report the log interresponse time values. This way of measuring rate 

is probably more sensitive than the usual way because log interresponse times have a 

distribution much closer to Gaussian (normal) than do untransformed interresponse 

times. (The usual way of computing rate is equivalent to taking the mean of the 

untransformed interresponse times and then taking the reciprocal of the result.) 

Second, we averaged across rats using trimmed means (10% trimmed from each side) 

or medians. Use of trimmed means across rats means that the rats with the lowest and 

highest values were excluded from the computation of the mean. We used trimmed 

means or medians because such averages, unlike the mean, ensure that no one rat can 

have a large influence on the average across rats.  (Computation of an average duration 

for each rat did not involve any trimming.) Wilcox and Keselman (2003) discuss the 

value of trimmed means at length; they recommend use of a 20% trimmed mean. All p

values from t tests are one-tailed unless stated otherwise. 

Results 
Figure 2 shows bar-press rate (upper panel) and duration (lower panel) over the 

course of the experiment. Rate changed as expected. During the 100%/50% and 

100%/25% phases, bar-press rates were greater during the high-food signal than during 

the low-food signal and greater during the low-food signal than the intertrial interval. 

Over the last 15 days of the 100%/50% phase, high-food versus low-food, t(13) = 4.32, p

< 0.001; low-food versus intertrial interval, t(13) = 11.12, p < 0.001. Over the last 20 
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days of the 100%/25% phase, high-food versus low-food, t(13) = 10.18, p < 0.001; low-

food versus intertrial interval, t(13) = 7.89, p < 0.001. In what follows, results from the 

100%/50% phase are from the last 15 days; results from the 100%/25% phase are from 

the last 20 days. 

 Bar-press duration changed in the predicted ways (lower panel of Figure 2). 

Mean durations were greater (indicating greater variation) during the low-food signal 

than during the high-food signal and greater during the intertrial interval than during 

the low-food signal. During the 100%/50% phase, high-food versus low-food, t(13) = 

0.96, p = 0.18, not reliable (a later analysis explains why);  low-food versus intertrial 

interval, t(13) = 8.58, p < 0.001. During the 100%/25% phase, high-food versus low-

food, t(13) = 2.96, p = 0.005; low-food versus intertrial interval, t(13) = 4.42, p <

0.001.  

 To confirm that the differences in mean duration reflected differences in 

variation, Figure 3 shows the distributions. The probability density functions (upper 

panel) and the inverse cumulative distribution functions (lower panel) were close to 

linear on a log-log scale. The measure shown in the upper panel, probability density, is 

not the same as probability, which is why some values are more than one. Whenever 

one sees a smooth theoretical distribution function, such as a bell-shaped curve (a 

normal distribution), one is looking at a graph of probability density, not probability. 

Probability density equals probability (or frequency) divided by bin width. In a 

histogram, the heights of the bars represent probability densities (even though the y

axis says probability or frequency); it is the areas of the bars that represent probabilities 
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or frequencies. When the bins have unequal widths, as in the upper panel of Figure 3, 

the fiction that the y axis is probability or frequency can no longer be maintained if one 

wants the histogram to look like the underlying (probability density) distribution. 

Inverse cumulative distributions (the lower panel of Figure 3) are the form in which 

distributions of this type (linear on a log-log scale) are usually shown (e.g., Buchanan, 

2001). Both panels show that the mean differences seen in the lower panel of Figure 2 

reflect changes in distribution width, that is, changes in variability. At long durations, 

the differences were large. Bar presses longer than 8 sec were about 50 times more 

likely during intertrial intervals than during the high-food signal. 

 To our surprise, time between bar presses had a big effect on duration (top 

panel of Figure 4). As interresponse time increased within a signal, duration decreased 

(in contrast to the between-signal differences shown in Figure 2, where longer 

interresponse times – that is, lower rates – were associated with greater durations). To 

assess the reliability of this effect, we fit parallel lines to the two functions (high-food 

and low-food) separately for each rat. The slopes were reliably negative, t(13) = 10.03,  

p < 0.001 (100%/50%) and t(13) = 9.63, p < 0.001 (100%/25%). The low-food line was 

above the high-food line, t(13) = 4.97, p < 0.001 (100%/50%), and t(13) = 5.45, p <

0.001 (100%/25%), meaning that the signal differences persisted when interresponse 

times were equated. In the case of the 100%/50% phase, the signal difference became 

much clearer (t(13) = 4.97 versus t(13) = 0.96) when interresponse times were 

equated. 

 Why was interresponse time important? During a trial, food was primed (made 
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available for the next bar press) with a fixed probability each second.  The longer the 

wait between bar presses, the more likely that the bar press at the end of the wait would 

produce food. The middle panel of Figure 4 shows how the probability of reward 

increased with interresponse time. To see if this could explain the effects of 

interresponse time, the bottom panel of Figure 4 shows  duration versus probability of 

reward for different interresponse times–the y variable of the top panel versus the y

variable of the middle panel.  The results from six conditions–three (high-food signal, 

low-food signal, and intertrial interval) from the 100%/50% phase, and the same three 

from the 100%/25% phase–overlap closely. To judge the reliability of the correlation, we 

made a graph like the bottom panel of Figure 4 for each rat and fit straight lines (one 

per rat). The 14 slopes were negative, t(13) = 11.14, p < 0.001. Duration differences 

between the six conditions are almost entirely explained by differences in the 

probability of reward. 

 To ensure that the mean differences shown in Figure 4 reflected differences in 

variation, we computed 10% and 90% quantiles of the distributions. Figure 5 shows 

these values as a function of probability of reward. The spreads of the distributions are 

given by the vertical distance between the functions. As probability of reward increased, 

the spread decreased. To judge the reliability of the decrease, we fit straight lines to the 

upper and lower functions separately for each rat. The upper line was steeper than the 

lower line, t(13) = 4.64, p < 0.001. With raw (untransformed) durations, this would be 

uninteresting because most distributions spread out as they move farther from a 

minimum-possible value (such as zero). What is notable is that the interaction occurs 
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with log duration.  
Discussion 

The results support the initial idea–that reducing reward expectation increases 

variation. The prediction that a reduction in the probability of reward will increase 

variation was verified in two well-controlled instances: high-food signal versus low-food 

signal during the 100%/50% phase when interresponse times were equated (top panel 

of Figure 4); and high-food signal versus low-food signal during the 100%/25% phase 

both with (top panel of Figure 4) and without (lower panel of Figure 2) correction for 

interresponse time. This is the best evidence so far for the idea. The prediction was also 

verified in two less-well-controlled instances: low-food signal versus intertrial interval 

during the 100%/50% phase (lower panel of Figure 3); and the same comparison during 

the 100%/25% phase (lower panel of Figure 3). An analysis described in the Results 

section of Experiment 2 suggests that the low-food/intertrial comparison is reasonable 

because non-associative differences between them had little effect on duration.  

 The results also provide new insight into the behavior generated by variable-

interval schedules. The extreme form of a variable-interval schedule is a random-interval 

schedule (e.g., this experiment) where reward is primed with a fixed probability each 

time interval (e.g., each second). The usual idea is that random-interval schedules and 

fixed-interval schedules are opposites: With a fixed-interval schedule, the rat or pigeon 

times the signal; with a random-interval schedule, it does not. Libby and Church (1975) 

emphasized this difference in an experiment measuring the time course of fear. When a 

shock was given a fixed time after the last shock, fear increased over time; when a shock 
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was given with a fixed probability each second after the last shock, fear was roughly 

constant with time. Response rates are indeed quite constant over time with a random-

interval schedule (e.g., Gharib et al., 2001) but what has not been realized–at least, 

what this experiment suggests–is that a variable-interval schedule causes subjects to 

measure the time since their last response.  Differential-reinforcement -of-low-rate 

procedures have shown that animals can do this (e.g., Doughty & Richards, 2002). The 

subjects of this experiment did so presumably because the time since the last bar press 

predicted the probability that the next response would be rewarded (middle panel of 

Figure 4). If  the rats were not measuring this time, it would be very hard to explain why 

the corresponding probability of reward (middle panel of  Figure 4) predicted duration 

so well (bottom panel of Figure 4, Figure 5). That rats are keeping track of time since 

the last bar press could not have been determined from rate measurements alone. 

 The confound of reward probability and interresponse time explains why the 

difference between signals did not reliably affect duration during the 100%/50% phase 

until interresponse times were equated. Reducing the probability of reward per trial 

reduced rate, but a lower rate increased the probability of reward per bar press. For 

example, if a 50% reduction in reward density (rewards per minute) reduces rate by 

50%, the probability of reward per bar press remains the same. Because duration 

apparently depends on the probability of reward per bar press (bottom panel of Figure 

4), the lower rate during the low-food signal tended to reduce the duration difference 

between the signals. Tremont (1984) found no clear increase in the variation of the 

force of bar-presses as the density of reward decreased on random interval schedules. 
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Bar-press rate, however, decreased greatly as the density of reward decreased, so the 

probability of reward per bar-press stayed relatively constant. This may also be why 

Eckerman and Lanson (1969) failed to find clear decreases in the variability of key-peck 

location as the interval value of a random-interval schedule decreased. 

 The experiment seems to have mapped an important part of the duration-versus-

expectation function an unexpected bonus. The scatterplots in the bottom panel of 

Figure 4 and Figure 5 suggest that duration is sensitive to changes in expectation only 

when the probability of reward/bar press is less than 0.25 or 0.3. Of course, the 

scatterplots show correlations. Experiment 2 asks whether these relationships reflect 

causation.  

 The shape of the duration distributions (Figure 3) is discussed in the General 

Discussion. 
Experiment 2: Random-Ratio Schedule 

The bottom panel of Figure 4 suggested that the duration of a bar press is 

controlled by the probability that the bar press will be rewarded. This experiment tested 

this conclusion by varying the probability of reward per bar press. Like Experiment 1, it 

used a discrete-trials procedure with two signals that varied in the probability of reward. 

During a trial, each bar press ended the trial with a probability that was the same for 

both signals. The difference between signals was that the low-food signal ended with 

reward less often than the high-food signal. Thus the probability of reward per bar press 

was constant during a signal – unlike Experiment 1, it did not vary with the time since 

the last bar press -- and different between signals. 
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Removal of the confounding between reward probability and interresponse time 

allowed better measurement of the effects of both factors. Because the results from 

several conditions overlapped neatly when equated for reward probability (bottom 

panel of  Figure 4), reward probability surely mattered. But interresponse time may 

have had some effect. Perhaps a bar press requires significant exertion. The longer the 

interresponse time, the more rested the rat; the more rested the rat, the shorter and 

less variable the bar press.  Some studies have found interresponse time to have the 

opposite effect on variation: The longer the interresponse time, the more variable the 

response (Baddeley, 1996; Neuringer, 1991; Roberts & Neuringer, 1998).  
Method 

Subjects and apparatus. The subjects were the 14 rats that finished Experiment 

1. They were fed 12 g of food after the daily session until the 27th day of the 

experiment, when the amount was reduced to 8-10 g per day. Their housing was the 

same as during Experiment 1. Three died during the experiment; their results are not 

included below. The apparatus was the same as the apparatus of Experiment 1. 

 Procedure. The procedure was the same as the procedure of the main part of 

Experiment 1, with one exception: The end of the trial was no longer primed with a 

certain probability each second. Instead, each bar press during a signal ended the trial 

(turned off the signal) and began the intertrial interval with a probability of 0.25. 

During the first phase of the experiment (100%/100%), which lasted 20 days, all signals 

ended with food–that is, the trial-ending bar press was always rewarded. During the 

second phase of the experiment (100%/25%), which lasted 31 days, one of the signals 
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always ended with food; the other signal ended with food with a probability of 0.25. For 

each rat, the signal (light or sound) with the lower probability of food in this 

experiment was the signal with the higher probability of food in Experiment 1.  
Results 

Figure 6 shows the day-by-day results. Behavior was roughly constant during the 

last 25 days of the experiment so those are the days used in all analyses unless stated 

otherwise. The high-food signal produced higher rates than the low-food signal, t(10) = 

6.07, p < 0.001, and the low-food signal produced higher rates than the intertrial 

interval, t(10) = 9.27, p < 0.001. The duration differences were also very clear. Mean 

log duration was greater during the low-food signal than during the high-food signal, 

t(10) = 6.22, p < 0.001, and greater during the intertrial interval than during the low-

food signal, t(10) = 4.59, p < 0.001. The duration distributions, shown in Figure 7, 

confirm that the mean differences reflect differences in variation. 

 In contrast to Experiment 1, interresponse time had no detectable effect on 

duration (upper panel of Figure 8). A signal-by-interresponse-time-by-rat analysis of 

variance (ANOVA) found no effect of interresponse time, F(7,70) = 1.25, p = 0.29,  no 

signal-by-interresponse-time interaction, F (7, 70) = 1.63, p = 0.14, and a strong effect 

of signal, F(1,10) = 34.86, p < 0.001. The lower panel of Figure 8 shows probability of 

reward as a function of signal and interresponse time. As planned, reward probability 

did not depend on interresponse time. There was no effect of interresponse time, F(7, 

70) = 0.75, p = 0.63, and no signal-by-interresponse-time interaction, F(7, 70) = 0.38, 

p = 0.91. 
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Because the results suggest that both rate and duration are controlled by an 

associative process, it is worth asking if the same associative process controls both. An 

indication that the answer is no comes from Figure 6. At the start of the experiment, 

when the two signals were treated the same, their rates became equal more quickly 

(upper panel) than their durations became equal (lower panel). During the second 

block of days (Days 6-10), there was no reliable difference in rate between the two 

signals, t(10) = 0.29, p = 0.8, but there remained (from Experiment 1) a difference in 

duration, t(10) = 1.92, p = 0.04. 

 Another way to measure the speed of associative change is to measure the effects 

of repeated nonreward. When one or more bar presses in a row are not rewarded, what 

happens? To find out, we calculated the number of consecutive unrewarded bar presses 

during the low-food signal at the beginning of every trial. This number “labels” the trial, 

whether low-food or high-food, and all bar presses during that trial are classified using 

that label. When the most recent low-food trial has ended with reward, this number is 

zero. It does not change during a trial and is unaffected by high-food trials. Suppose 

that this number is zero at the start of a session. The first trial (low-food) ends without 

reward after five bar presses. Now the number is five. The second trial (high-food) ends 

with reward after three bar presses. The number remains five. The third trial (low-food) 

ends without reward after ten bar presses. Now the number is 15. The fourth trial (low-

food) ends with reward. Now the number is zero again. In general, the number 

measures how much “extinction” the low-food signal has recently experienced. We 

calculated this number using carryover from one session to the next, so that it did not 
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change systematically during a session (i.e., so that it had the same average value 

throughout a session).  

 Figure 9 shows the outcome of this analysis. Nonreward during the low-food 

signal reduced rate (upper panel) during both signals, but had a much bigger effect 

during the low-food signal. To judge reliability, we fit straight lines to the data for each 

rat. The slope of the low-food line was negative, t(10) = 7.50, p < 0.001. The slope of 

the high-food line was also negative, t(10) = 3.78,  p = 0.002, but the low-food slope 

was more negative than the high-food slope, t(10) = 6.67, p < 0.001. The number of 

prior unrewarded bar presses during the low-food signal affected duration (lower 

panel) only during the low-food signal. The slope of the low-food line was positive, 

t(10) = 2.88,  p < 0.01. The slope of the high-food line was not reliably different from 

zero, t(10) = 0.21, two-tailed p = 0.8. The low-food slope was more than the high-food 

slope, t(10) = 2.96,  p < 0.01. 

 Like Figure 6, Figure 9 suggests that events that reduce associative strength 

(specifically, the association of the low-food signal with reward) change rate faster than  

duration. In each panel, compare the slope of the low-food function to the vertical 

distance between the high-food and low-food functions: The rate function is much 

steeper than the duration function. To confirm this statistically, for each measure (rate 

and duration), we divided the low-food slope by the overall difference between the two 

signals (high food and low food). The larger this fraction, the faster the measure 

responds to changes in probability of reward. We did the computation separately for 

each rat. The rate fraction was larger than the duration fraction for 9 of the 11 rats, sign 
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test, p = 0.03. 

 Low-food trials and intertrial intervals differed in more than expectation of 

reward. The difference most likely to matter is time since reward. Intertrial intervals 

sometimes began with food, while low-food trials never did. To assess the effect of this 

difference, we combined data from all days when some intertrial intervals began with 

food and some did not–namely, the 100%/50% and 100%/25% phases of Experiment 1 

and the 100%/25% phase of Experiment 2. The intervals were divided into three groups: 

those that followed a high-food trial (which always ended with food); those that 

followed a low-food trial that ended with food; and those that followed a low-food trial 

that did not end with food. Figure 10 shows rate (upper panel) and duration (lower 

panel) for each group. The upper panel shows that food depressed rate for about a 

minute. The lower panel suggests that food increased duration for a shorter time. 

Combining results from the two types of food trials, and using data only from Seconds 

11-30 during the intertrial interval, duration was reliably more after food than after no 

food, t(10) = 2.62, two-tailed p = 0.03. Was this effect large enough to contaminate the 

low-food/intertrial comparison? When all intertrial bar presses are considered, not just 

the small fraction between Seconds 11-30, duration was slightly less after food than no 

food but the difference was not reliable, t(10) = 0.49, p = 0.6. The duration difference 

between intertrial intervals that followed food and those that followed no food was tiny, 

2% " 5%, too small to explain the low-food/intertrial difference, which was 31% " 7% 

(10% trimmed mean " standard error). 

 To improve future analyses of similar data, we asked what summary and data 
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transformation were most sensitive to the effect of probability of reward. Figure 11 

shows t(10) values for the duration difference between the two signals as a function of 

summary (mean and standard deviation) and power transformation (the transformation 

used before the durations of each rat are summarized–e.g., averaged). The mean was far 

more sensitive than the standard deviation. With the mean, the most sensitive power 

was about -0.5 (reciprocal square root). According to a bootstrap analysis with 1000 

resamples, the 95% confidence interval for the best power is -0.86 to 0.50. 

Discussion 

Reducing reward probability increased duration (Figures 6 and 8) even when–

unlike Experiment 1–reward probability was not confounded with interresponse time 

(lower panel of Figure 8). This is more and even better evidence that reward 

expectation controls duration. Further evidence of the same thing is the effect of 

nonreward on duration (lower panel of Figure 9). Nonreward of bar presses during the 

low-food signal increased the duration of bar presses during that signal. Figure 7 shows 

that the changes in mean reflected changes in variability. That the effect was associative 

is shown by its selectivity: Nonreward during the low-food signal did not reliably 

change duration during the high-food signal. Its effect on rate was less selective: 

Nonreward during the low-food signal slightly reduced rate during the high-food signal 

(upper panel of Figure 9). This may have been due to extinction of a context-food 

association. Pearce and Hall (1979) found that a context-food association increased the 

bar-pressing rate of rats. 

 With the confound between reward probability and interresponse time removed, 
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the effect of interresponse time on duration could be measured. These measurements 

found no effect (upper panel of Figure 8) in a situation where the effect of signal was 

very clear. This implies that the effect of signal on duration was not due to the rate 

difference (i.e., the interresponse time difference) between signals. 

 If rate and duration are both controlled by expectation of reward (the association 

of reward and signal), this raises the question whether the mechanism that computes 

the rate-controlling expectation is the same as the mechanism that computes the 

duration-controlling expectation. Two findings tentatively suggest that the mechanisms 

are different. One is that when the two signals were treated the same, at the start of the 

experiment, their rates became equal much sooner (upper panel of Figure 6) than their 

durations (lower panel of Figure 6). The other is that rate responded to nonreward 

(upper panel of Figure 9) more quickly than duration (lower panel of Figure 9). 

 Turning to methodological issues, the effect of reward probability on duration (t

(10) = 6.2)–the difference between signals–was at least as clear as its effect on rate (t

(10) = 6.1). In Experiment 1 (Figure 2), by contrast, a four-fold difference in reward 

probability changed duration (t (13) = 3) less clearly than rate (t (13) = 10). The two 

experiments were almost the same in other ways, so the comparison suggests that a 

random-ratio procedure is better than a random-interval procedure for studying how 

reward probability controls duration.  

 Sensitivity comparisons (Figure 11) led to conclusions consistent with those of 

Gharib et al. (2001). Whether the best transformation is the reciprocal square root, as 

Figure 11 suggests, or the logarithm, as Gharib et al. concluded, is not clear but both 
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are much better than no transformation at all.  Figure 11 also shows that we might have 

used the standard deviation instead of the mean -- with some transformations, the 

standard deviation reliably detects the difference of interest -- but that we would have 

lost a lot of sensitivity by doing so. 
General Discussion 

Summary of Results 

The main results were: 

 1. Reducing reward probability increased mean bar-press duration. This was true 

between signals (lower panels of Figures 2 and 6),  within signals (bottom panel of 

Figure 4), and between the low-food signal and the intertrial interval (lower panels of 

Figures 2 and 6).  

 2. The increases in mean duration reflected increases in the spread of the 

distribution (Figures 3, 5, and 7).  

 3. Duration differences between signals were not due to differences in 

interresponse time (upper panels of Figures 4 and 8). When uncorrelated with reward 

probability, interresponse time had little or no effect on duration (upper panel of 

Figure 8). 

 4. The correlation between probability of reward and interresponse time in 

Experiment 1 (middle panel of Figure 4) provided a fine-grained look at duration as a 

function of reward probability (bottom panel of Figure 4, Figure 5). The function 

suggests that duration is sensitive to reward probability only when reward probability 

per bar press is less than about 0.3. 
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5. Unrewarded bar presses during the low-food signal increased duration during 

the low-food signal but not during the high-food signal (Figure 9).  

 6. The distribution of bar-press duration resembled a Pareto distribution (Figures 

3 and 7). 
Control of Variation 

The rule tested here–reducing expectation of reward increases variation of 

response form–was suggested by results from a complex procedure designed for other 

purposes (Gharib et al., 2001). The present work supported the rule with a much 

simpler and better-controlled comparison–between high- and low-food signals (Figures 

2 and 6). In Experiment 1, a confounding reduced the difference between them. When 

the confounding was removed (Experiment 2), the difference in duration was very clear 

(t(10) = 6). The rule was also supported by the effects of unrewarded responses during 

the low-food signal (Figure 9). Because the aftereffects of food/nonfood had, overall, 

little effect (Figure 10), the rule was also supported by the low-food-signal/intertrial-

interval comparisons (Figures 2 and 6). 

 These results support the rule because it correctly predicted them. Can the 

correctly-predicted outcomes can be explained in other ways? When reward expectation 

decreases, rate decreases, so an alternative explanation of the duration increases is that 

they were due to the decrease in rate. Perhaps a long interresponse time (i.e., lower 

rate) causes the rat to “cool off,” producing longer and more variable bar presses. But 

this explanation predicts the opposite of what Figures 4 and 5 show, which is that 

within signals mean duration decreased with longer interresponse times (i.e., lower 
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rate). More evidence against the rate explanation is the failure to find an effect of 

interresponse time (Figure 8) in the context of a strong signal effect and the evidence 

that rate and duration are controlled by different associative processes (Figures 6 and 

9). It is also contradicted by Gharib et al. (2001)’s observation of several instances 

where rate changed while duration remained constant. 

 Neuringer and his colleagues have shown that rewarding variation can cause it to 

increase (Neuringer, 2002). This could not explain the reward-probability effects 

observed here because the “variation” of a single bar press (how much it differed from 

recent bar presses, which is the sort of measure of variation that Neuringer has used) 

did not affect its probability of reward. 

 How general is the rule? Support for it comes from rat nose pokes (Antonitis, 

1951), sequences of responses made by rats (Balsam et al., 1998; Cherot, Jones, & 

Neuringer, 1996), and the location of pigeon key pecks (Eckerman & Lanson, 1969; 

Ferraro & Branch, 1968; Millenson, Hurwitz, & Nixon, 1961).  

 As discussed earlier, the value to an animal of such a rule is clear. Too much 

deviation from what has worked can cause an action to fail -- a cost of variation. On the 

other hand, trying new ways of doing things may turn up better ways of doing things -- a 

benefit of variation. When the likelihood of reward goes down, the expected cost goes 

down (there is less to lose), while the expected benefit, if anything, goes up, so the 

optimal amount of variation increases. When the optimal amount increases, the actual 

amount of variation should increase. Nothing about this reasoning limits it to animal 

behavior, of course. Evidence of its correctness comes from the existence of similar 
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relationships in two other domains: genetics and business. 

 1. Genetics. When a fruit fly is exposed to warm temperature or several other 

environmental stressors, the functioning of what are called heat shock proteins 

changes. In the case of one such protein, Hsp90, these changes produce an increase in 

phenotypic variation (Queitsch, Sangster, & Lindquist, 2002; Rutherford & 

Lindquist,1998). Hsp90 has similar effects in mustard plants (Sangster, Lindquist, & 

Queitsch, in press). Under normal conditions, this protein prevents mutations from 

producing phenotypic changes and they build up; but when its functioning is disturbed, 

these mutations are expressed and can form the basis for selection. “The buffered 

variation is therefore released precisely under those challenging conditions when 

selection is most stringent [i.e., successful reproduction is less likely than usual] and 

novelty might be most beneficial” (Sangster, Lindquist, & Queitsch, in press). Under 

normal conditions, in other words, Hsp90 reduces phenotypic variation; under unusual 

conditions, it increases it, in such a way that the new variants can be selected.  

 2. Business. Christensen (1997) noticed that industry-leading companies 

regularly failed to sustain their lead when new technologies came along. The leaders in 

making 14-inch drives did not become the leaders in making 8-inch drives. The leaders 

in making 8-inch drives did not become the leaders in making 5.25-inch drives. And so 

on. Similar examples involved retailing, computers, mechanical excavators, and steel 

mills. Christensen’s research suggested that the reason for this pattern was that 

industry-leading companies were “held captive by their customers” (p. 18)–that is, by 

their success and by “expected rewards” (p. 32). They did not vary enough what they 
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did. Less successful companies took bigger leaps into the unknown. Surowiecki (2003, 

p. 46) pointed out a within-company example of the same thing: “Once Boeing became 

the dominant player in the aviation market, in the seventies, it lost its appetite for 

sporty bets [involving the manufacture of new airplanes]: why risk them, when profits 

were rolling in?” 
Why Variation Increases During Extinction 

Many studies have found that variation increases during extinction (Balsam et al, 

1998; Neuringer, 2002). The present work repeated this result in a new way: Variation 

increased during what might be called mini-extinctions: Periods when bar presses 

during the low-food signal were not rewarded (lower panel of Figure 9).  

 Extinction differs from training in several ways. Which increased variation? (a) 

Lower response rate. Failure to detect an effect of interresponse time on duration 

(Figure 11) argues that response rate makes no difference. (b) More frustration due to 

omission of expected rewards. Were this important, nonreward at the end of a trial 

should have increased variation. Figure 10 shows that it did not. (c) Lower density of 

reward. Because food pellets were given at the end of signals and nowhere else, time 

since the last food pellet was less during intertrial intervals than during signals. Yet 

variation was greater during intertrial intervals than during signals, opposite to what 

this possibility predicts. (d) Lower expectation of reward. The present work supports 

this choice, of course, because it supports the idea that reducing expectation of reward 

increases variation. Gharib et al. (2001) reached the same conclusion. 
Distribution of Bar-Press Durations 
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The bar-press duration distributions (Figures 3 and 7) resembled Pareto 

distributions, which have a density function and an inverse cumulative distribution 

function that are linear on a log-log scale. Pareto distributions are often called “power-

law” behavior (e.g., Buchanan, 2001, p. 45) but they are unrelated to Steven’s 

psychophysical power law. Gharib et al. (2001) observed similar duration distributions 

(e.g., lower panel of Figure 1) but their measurements excluded durations of 3 sec or 

more. 

 Pareto was an economist. The first Pareto distribution was a distribution of 

wealth–many persons had small wealth, a few had large wealth. The linguist George 

Zipf discovered that word frequencies (many words used a few times, a few words used 

many times), city sizes, and several other things had Pareto distributions (Adamic & 

Huberman, 2002; Zipf, 1949). Other examples of Pareto distributions include the 

energy released in earthquakes, the area of forest fires, the size of experimentally-

produced avalanches of rice grains, and the number of links to and from a web page 

(Adamic & Huberman, 2002; Bak, 1996; Buchanan, 2001). Figures 3 and 7 and the 

examples of Gharib et al. (2001) are the first psychological examples, the first examples 

from experiments with living things, and the first examples where the slope is under 

experimental control. 

 A standard conclusion from Pareto distributions (e.g., Buchanan, 2001) is that 

the events on right-hand side of the distribution (say, large earthquakes) were 

generated by the same process as events on the left-hand side (small earthquakes). 

Applied here, this means that the longest bar presses were generated by the same 
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process that generated short bar presses, in spite of the great difference between them. 

 All previous examples of Pareto distributions, as far as we can tell, involve, or can 

be plausibly assumed to involve, mechanisms with three properties. First, they consist 

of many similar interacting elements. Second, the interactions include recruitment–if 

one element is in a certain state, the elements with which it interacts become more 

likely to be in that state. Third, the  recruitment is lossless–that is, the recruited element 

is just as potent, just as likely to recruit other elements, as the element that recruited it. 

If you think of the change in state as a signal that spreads through the population, then 

lossless recruitment is the same as lossless transmission, that is, the signal becomes 

neither weaker nor stronger as it spreads. Mathematical models have shown that a 

system with this description will produce a Pareto distribution (Reed & Hughes, 2002).  

 With forest fires, the interacting elements are trees. A burning tree tends to cause 

other trees to burn. All burn at the same temperature with roughly the same chance of 

causing nearby trees to burn; in other words, the thousandth tree to catch fire is no 

more or less “contagious” than the first. With word frequency (many words used a few 

times, a few words used many time), the interacting elements are persons--writers and 

readers. Use of a word causes others to be more likely to use that word. Each use, no 

matter how far from the first use, has roughly the same effect on other people’s words. 

With city populations, the interacting elements are also persons. Residents attract 

others to where they live. Newcomers are as attractive as the long-term residents.  

 With bar-press duration, there is an obvious candidate for each of the three 

features. (a) Many interacting elements: Neurons. (b) Recruitment: When one neuron 
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fires, it makes other neurons more likely to fire. (c) Lossless recruitment: Neuronal 

recruitment is lossless because action potentials are all or nothing. This line of 

argument suggests that bar presses are generated by neuronal activity and last as long as 

the neuronal activity lasts, perhaps as long as the number of neurons firing is above a 

threshold. This makes sense because force is required to hold the bar down. This 

argument further suggests that reward expectation produces changes in distribution 

shape by varying the probability that one neuron will recruit another, that is, the 

likelihood that if one neuron fires it will cause to fire the neurons to which it sends 

action potentials. When reward expectation goes down, this argument suggests, certain 

neurons become more easily excited–a somewhat counter-intuitive conclusion.  

Methodology 

Neuringer, Balsam, and their colleagues revived the study of variation (Balsam et 

al, 1998; Neuringer, 2002). One indication they were right – the subject does deserve 

more attention – is the strength of the effects observed here. In Experiment 2, the effect 

of reward probability on duration (t(10) = 6.2 for the signal difference) was as strong as 

its infinitely-better-studied effect on rate (t(10) = 6.1). 

 One aspect of the data analysis – the use of means to measure variation –  may 

puzzle some readers. This choice derived from asking which of several possibilities 

worked best (Gharib et al., 2001) – that is, most clearly showed a difference that we 

knew existed.  A lot was gained from this choice (Figure 11). Perhaps Figure 11 will 

inspire some readers to ask what measure and transformation work best with their own 

data.  
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In contrast to the data analysis, the data collection brought the study of variation 

closer to familiar methods.  To test the idea that variation is under associative control, 

we used an experimental design similar to the within-subject designs popularized by 

Rescorla (e.g., Nairne & Rescorla, 1981). While most previous work on variation has 

used unusual responses (e.g., Neuringer, 2002) or unusual equipment (e.g., Antonitis, 

1951; Herrnstein, 1961), this work used the rat’s bar press measured with ordinary 

equipment.
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Figure Captions 

 Figure 1. Results from Gharib et al. (2001). Upper panel: Bar-press duration as a 

function of time into a peak-procedure trial. On food trials, food was given for the first 

bar press more than 40 sec after the start of the signal, at which point the trial ended. 

On non-food trials, no food was given and the trial lasted much longer. For each of 18 

rats, the harmonic mean of the durations was computed. Then the arithmetic mean was 

computed across rats. Lower panel: Change in distribution of bar-press duration during 

a peak-procedure trial. Early in the trial = the 30 sec up to and including the first bar 

press more than 40 sec after the start of the signal. after the start of the signal. Late in 

the trial = 45 to 75 sec after the first bar press more than 40 sec after the start of the 

signal. Each point is a median over 36 rats. Each bin is 0.1 sec wide. Bar-press durations 

of  3 sec or more were not recorded. 

 Figure 2. Experiment 1: Bar-press rate (upper panel) and duration (lower panel) 

as a function of day and signal. Method of computation: 1. The days of each phase were 

divided into blocks close to 5 days long. 2. For each rat-signal-block combination, the 

mean of the logarithm of all rates (upper panel) or durations (lower panel) was 

computed. 3. For each signal-block combination, a 10% trimmed mean over rats was 

computed. 

 Figure 3. Experiment 1: Distribution of bar-press durations as a function of 

signal. Data from the last 20 days of the 100%/25% phase of Experiment 1. Upper panel: 

Probability distributions. Method of computation: 1. The minimum and maximum 
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duration over all rats and signals were used to determine an interval. 2. The interval was 

divided into ten (high-food function) or eight (low-food and intertrial functions) 

segments of equal width on a log scale. For each function, the number of segments was 

the maximum that would not produce any zero probabilities in the final result. A 

probability of zero is hard to show on a log scale. 3. These bin definitions were used to 

determine frequencies for each rat. 4. Frequencies were converted to probabilities by 

dividing by sample size. 5. Probabilities were converted to probability densities by 

dividing by bin width on the untransformed scale (seconds, not log seconds). 6. For 

each bin, a median was computed over rats. Lower panel: Inverse cumulative 

distribution functions. Method of computation: 1. The function was computed for each 

rat separately. 2. For each abscissa value, a median was computed over rats.  

 Figure 4. Experiment 1: Effect of interresponse time. Top panel: Duration as a 

function of interresponse time. Middle panel: Probability of reward as a function of 

interresponse time. Bottom panel: Duration as a function of probability of reward. 

Duration and interresponse times are on a log scale, probability of reward on a square-

root scale. The 100%/50% data are from the last 15 days of that phase; the 100%/25% 

data are from the last 20 days of that phase. Method of computation: 1. For each rat-

signal combination (14 rats, 4 signals), all interresponse times were gathered, ranked, 

and divided into 8 equal-sized bins by rank, a total of 448 bins. (To show as clearly as 

possible the correlation between interresponse time and probability of reward, the first 

bar press during a signal was given an interresponse time equal to the time since the 

signal began.) One group contained all interresponse times between the minimum and 
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the 12.5% quantile; the next, all interresponse times between the 12.5% quantile and 

the 25% quantile, and so forth. 2. For each group, the mean of the log interresponse 

times was computed (448 means, 32 per rat). 3. The 10% trimmed mean over rats was 

computed to summarize each bin (32 trimmed means). 4. For each rat-signal-bin 

combination, the mean log duration was computed, then averaged over rats to get 32 

values. 5. For each rat-signal-bin combination, the probability of reward was computed, 

then averaged over rats to get 32 values. 6. Responses during intertrial intervals were 

not divided by interresponse time because there were too few of them. The average 

duration for interresponse time was computed by taking the mean within rats and a 

trimmed mean over rats. 

 Figure 5. Experiment 1: 10% and 90% quantiles of duration distributions as a 

function of probability of reward. These values were computed in the same way as the 

values in the bottom panel of Figure 4, except that each set of durations was 

summarized by the 10% and 90% quantiles rather than by the mean. 

 Figure 6. Experiment 2: Bar-press rate (upper panel) and duration (lower panel) 

as a function of day and signal. Same method of computation as Figure 2. 

 Figure 7. Experiment 2: Distribution of bar-press durations as a function of 

signal. Upper panel: Probability density functions. Lower panel: Inverse cumulative 

distribution functions. Same method of computation as Figure 3. 

 Figure 8. Experiment 2: Separation of the effects of signal and interresponse 

time. Top panel: Duration as a function of signal and interresponse time. Bottom panel: 

Probability of reward as a function of signal and interresponse time. Duration and 
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interresponse time are on a log scale, probability of reward on a square-root scale. 

Method of computation: The bins into which intertrial intervals were classified were 

chosen to be close to equal width on a log scale, with the exception of the leftmost and 

rightmost bins, which held all interresponse times less than and greater than a cutoff. 

The upper cutoff was chosen to be small enough so that all rats had some responses in 

the rightmost bin. The eight bins were: interresponse times of 1 sec or less, 2 sec , 3 

sec, 4-5 sec, 6-8 sec, 9-15 sec, 16-24 sec, and more than 24 sec. Each point is a 10% 

trimmed mean. Interresponse time was the time since the previous bar press. 

 Figure 9. Experiment 2: Effect of consecutive unrewarded bar-presses during the 

low-food signal on bar-press rate (upper panel) and duration (lower panel). Every trial 

was classified according to the number of consecutive unrewarded bar-presses during 

the low-food signal that had preceded it. Values on the abscissa are plotted according to 

log(1 + x), where x is the number of unrewarded bar presses. For example, the value 

for 0 is plotted above log 1, the value for 10 above log 11, and so on. Values within a 

bin are assigned the geometric mean of the edges of the bin. For example, the right-

most bin contains data from trials preceded by 31 to 140 unrewarded bar presses 

during the low-food signal. The geometric mean of 31 and 140 is 66, which is plotted 

above log 67. 

 Figure 10. Experiments 1 and 2: Behavior during intertrial intervals: Bar-press 

rate (upper panel) and duration (lower panel). Each point is a 10% trimmed mean. 

Based on all days of the 100%/50% and 100%/25% phases of Experiment 1 and the 

100%/25% phase of Experiment 2. After high-food (food): after high-food trials that 



Control of Variation by Reward Probability
29 March 2004 version

44

ended with food. After low-food (food): after low-food trials that ended with food. After 

low-food (no food): after low-food trials that ended without food. 

 Figure 11. Experiment 2: Sensitivity as a function of power transformation and 

measure. Each t value comes from a comparison of durations during the high- and low-

food signals over the last 20 days of Experiment 2. 
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Figure 4
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Figure 5
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Figure 7
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Figure 10
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