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ABSTRACT OF THE DISSERTATION
Essays in Econometrics
by

Jeonghwan Kim
Doctor of Philosophy in Economics
University of California, Los Angeles, 2021

Professor Andres Santos, Chair

This dissertation studies a few econometric theories potentially useful for applied economists.
In the first two chapters, I study estimation and inference in a semi-parametric model un-
der a monotonicity restriction on the non-parametric component. I develop a new semi-
parametric estimator that can be implemented without choosing any smoothing parameters
and construct a confidence band for the non-parametric component under monotonicity.
The finite dimensional parametric estimator satisfies asymptotic normality. The asymptotic
distribution of L., - distance for the non-parametric component is Gumbel with the rate
of convergence O,((*82)1/3). T apply the estimator to estimate the returns to schooling
under the restriction that age has monotonic effect on wages. The confidence interval of
the returns to schooling and the confidence band of the age effect on the log of wage under
an assumed monotonic relationship are reported. I illustrate the confidence intervals of the
semi-parametric estimator and the confidence band of the semi-nonparametric estimator us-
ing Monte Carlo simulations.

On the last chapter, my coauthors and I propose a pragmatic approach to the errors-in-
variables and nonlinear panel models. These models are often deemed impossible to estimate
in their most general forms. For example, the higher order moments approach to errors-in-
variables model fails when there is conditional heteroscedasticity. Similarly, nonlinear panel

models with fixed effects and small T are known to be problematic to estimate. We propose

1



estimating these models using approximate moments, using a Taylor series approximation
applied to Kadane’s (1971) small sigma approach. Simulation results suggest that the ap-
proximation leads to reasonable sampling properties. Our proposal complements the newly

resurgent literature on sensitivity analysis.
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CHAPTER 1

Semiparametric Estimation and Inference under

Monotonicity

1.1 Introduction

Monotonicity restrictions play an important role in economics. Imposing such restrictions
motivated by economic theory allows us to obtain identification and estimation strategies.
For example, Matzkin (1991, 1992, 2003), Imbens and Angrist (1994), and Chernozhukov
and Hansen (2004) use a monotonicity restriction for identifying parameters of interests. In
estimation related literature, Henderson et al (2012), Freyberger and Horowitz (2015), and

Chetverikov and Wilhelm (2017) impose monotonic restriction on parameters. *

The semi-parametric models have been very popular due to their flexibility. They do a
better job of fitting the data than simple regression models while still allowing for a relatively
easy interpretation of the parameters of interest. In this chapter, I will focus mainly on a

partially linear model.
Y = X0+ go(W) + U, E[UW,Z] =0

where Y is a dependent variable, X is endogenous, W is exogenous, and Z is an instrumental
variable. Assume that all the variables above are 1-dimensional random variables except X
and Z. In many studies, gg is considered a nuisance parameter, which is non-parametrically
pre-estimated to estimate 6y and most literature requires the smoothing parameters such

as bandwidth, basis functions, kernels and so on. For example, in Hall and Huang (2001),

IThere are good review papers for those who are not familiar with the literature. See Matzkin (1994),
Chetverikov et al. (2018), and Guntuboyina and Sen (2018).
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Racine et al. (2009), and Horowitz and Lee (2017), the authors develop many frameworks
of estimation and inference under shape restriction if the practitioners could determine the
bandwidth, kernel or series length. In this paper, I will provide the asymptotic distribu-
tion of the estimator of 6y under estimating g, without choosing any smoothing parameters.
Often, the smoothing parameters have to be predetermined to estimate the non-parametric
component, and they could affect the estimation procedure. If gy is assumed to be mono-
tonically increasing or decreasing, it can be consistently estimated using isotonic regression
which does not require any smoothing parameters and the estimator is uniquely determined.
Of course the monotonic constraints limit the scope of the application. However, in much
economics research, there are many settings in which a monotonic assumption makes sense.
2 A recent study, Liu and Yu (2019), is similar in spirit to this paper by suggesting a tuning
parameter free method applying Groeneboom and Hendrickx (2018) to Heckman’s sample

selection model. They impose a monotonicity restriction on the selection correction function.

In this paper, I will explore the usefulness of the added monotonicity assumption on g
at the partially linear model above. Two main contributions are explored: we can obtain
asymptotic normality of the finite-dimensional estimator without sample splitting, 2, the

estimation procedure is tuning parameter-free.

There is extensive literature on the semi-parametric model in econometrics, so I note
only a few papers here: Robinson (1988), Newey et al. (1999), Newey and Powell (2003), Ai
and Chen (2003), Blundell et al. (2007), Chen and Pouzo (2009, 2012), Imbens and Newey
(2009), Darolles et al. (2011), Wooldridge (2015), Blundell et al. (2017), and Chen and
Christensen (2018). See also Powell (1994), and Bickel et al. (2005) for the literature. In
statistics literature, isotonic regression was starting in the 1950s. I introduce a few papers
related to my paper directly. Zhang (2002) derives the upper bound of the empirical L, -

distance of the isotonic regression under the fixed points design. Huang (2002) and Cheng

2Some examples are the relationship between income and consumption and education and wage.

3See Chernozhukov et al. (2018). The authors suggest sample splitting to guarantee the indepen-
dence between two estimators, which are the finite-dimensional estimator and the estimator of the nuisance
parameters.



(2009) study the semi-parametric isotonic regression under exogeneity. Mammen and Yu
(2007) analyze the additive isotonic regression model that reduces model complexity under

a separability assumption.

The paper consists mainly of three parts. In section 1.2, the new semi-parametric esti-
mator is introduced with 4-step estimation procedure. In section 1.3, I use my methods to
estimate the returns to schooling with the data set by Card (1993). In section 1.4, the MC
simulation study is conducted. All the proofs of theorems and lemmas are attached on the

appendix.

1.2 Model

Before I describe the model, let me briefly introduce the notations. Let X be a random
variable. The Ly-norm is defined as || X||5 := (E[X?])2. To discuss asymptotic properties,
define X = O(ay) as % is bounded in probability, and X = 0,(b,) as % converges to 0 in
probability. For simplicity, X < O,(a,) means that there exists C' > 0 such that % < (C as

n — oo with probability 1.

1.2.1 The Monotonic Non-Parametric Instrumental Variable Problem in a Semi-

Parametric Model
A semi-parametric model with k-dimensional parameters of interest, 6, is as follows.

Z; = ¢o(W)) + Vi, E[Vi|W)] =0 (1.2)

where V; € R, X; = (X}, XF) e R*, W, € R, Z; = (Z},---,Z}) € R" and ¢o(-) =
(65(+), -, dh(+)). Y is a dependent variable, X is a vector of endogenous variables, W is
exogenous, and Z is a vector of instrumental variables. Assume that all the variables above
are 1-dimensional random variables except X and Z. Define dim(X) = k and dim(Z) =1

where [ > k for rank condition. Also, assume that both non-parametric parameters, gy and



¢o, are monotonic.* As a digression, Z is correlated with X via V, and U and V are inde-
pendent each other. In estimation strategies, to estimate é, we need incidental parameter
estimators, 7 for (go, ¢o). However, again we need another consistent estimator for 6y to
estimate 7. So, I propose an intermediate estimator for 6, é, in the estimation algorithm. I

will provide 4 steps procedures as follows.

STEP 1 (1st Stage Estimation)
Estimate ¢ = (qﬁl, . ,gﬁl)’ from the 1st stage regression equation (1.2), which satisfies the
rate of convergence o0,(n"1/6).> As an example, it could be derived by isotonic regression if
¢p is a monotonic function. The isotonic regression estimator is
R 1 b
" (Wij) = maz  min ———— Z Ze

a<j v>j b—a-+1

i=a

where {(W), Z(3}) }i; is the ordered data set with respect to {W;}, for all m =1,--- 1.

STEP 2 (Intermediate Estimator of 6y)
Estimate 0 by using GMM with the moment condition E[(Y — X"00)(Z — ¢o(W))] = 0 given
¢.
0 = (X'VQV'X)"H{(X'VOV'Y)
where Y = (Y, -, Y,), X = (X],-, X.), V= ((Z1 — (W), -, (Za — G(W,))'), and
Q) is a consistent estimator for Q = E[VV'U?]~!

Then one can show that 6 is a consistent estimator for 6 by satisfying || — || < O,(n=/3).

See the proof of theorem 1.2.1 in the appendix A.

STEP 3 (Intermediate Estimator of g)

4In Chernozhukov et al. (2018), as far as ||¢ — doll2 x ||go — |2 = op(n_%), we could get the asymptotic
normality of the parametric estimator. Hence, from the perspective of practitioners, any estimator that
satisfies the condition above can be used to get y/n - consistency on the parametric estimator.

°This rate satisfies Chernozhukov et al. (2018)



Get g by using isotonic regression:

b
B . 1 I
§(Wip) = mazx  min K:ﬂ?;;m“_&w)

where {(W, Y — X(’,»)é)}?zl is the ordered data set with respect to {W;}";

STEP 4
Estimate 6y by using GMM with the moment condition E[(Y —X"0y—go(W))(Z—¢po(W))] =0
given (6, o, J).
0 = (X'VOV'X) H(X'VOQV'Y)

where Y = (Vi — g(W1), -+, Yo — (W), X, V, and Q are defined in STEP 2,

Then 6 holds \/n - consistency, which is asymptotic normal.

From STEP 4, we have 6 and it will achieve asymptotic normality. For a brief sketch of
the proof, define T":= (Y, X', W, Z’)’, and the score function as

(T50,m) = (Y = X'0 — g(W))(Z - ¢(W)) € R’ (1.3)
where n = (¢, g). Note that ¢(T;0,n) = (Y (T;0,n),--- ,Y(T;0,n)). Forallm=1,--- 1,
sample counterpart of the moment condition is,
l (T3 0,1) = 0,(1
n}:w ) = 0p(1)
Under some regularity conditions, we can derive,

wa T;;0,7) = \/—Zw’” (T3; 60,9) + 0p(1) (1.4)

If n is Donsker and 7 is included in some parameter space, then

0™ (T5 00, 1) = o™ (T 00, m0) + \/_</1/) 300, 1m)dP(") /z/) -3 00, m0)d L (- )) + 0,(1)

(1.5)
where v, is the notation for the empirical process such that v,f := %Z’Ll{ f(X;) —
[ f(x x)}. The first term on the right-hand side of the equation (1.5) can be approxi-

mated by Gaussian distribution by a classical central limit theorem. The second term will

bt



disappear by Neyman-orthogonality introduced in Chernozhukov et al. (2018). The detailed

proofs are in the appendix.

Theorem 1.2.1 (Asymptotic Normality of é)

Suppose that the model is given as equation (1.1) and (1.2) with 6y € © where © is bounded,
and ¢, g are monotonic. Assume that (a) {T;}!_, have bounded supports. (b) {T;}?_, are
independent of each other and identically distrubuted. (c) E[U*, E[(V™)] < oo for all
m = 1,---,1. (d) E[Y"™(T;0,n)] is twice Gateauz differentiable with respect to n for all
(0,n) € (©,F,) where © is bounded and F, is Donsker class. Then, there exists S71oa
consistent estimator for Y1 = E[X'V|QE[V'X], and

~

V(0 = 6o) % N(0, %)

Assumption (a), (b), and (c) are regularity conditions and (d) is crucial for applying
Neyman Orthogonality. If we impose monotone restriction on the incidental parameters,
we can still get asymptotic normality of the estimator because the monotone functions are
included in Donsker class, which has the entropy numbers easily controlled by the empirical
process theories. Assume that 7 = (¢, go) are monotonic functions. Zhang (2002) proposes
that Ly risk bound of the isotonic regression estimator is Op(n_%) if the function has non-zero
derivatives on the designed non-random points. Under economic friendly assumptions such
as the conditional mean is equal to zero, the rate of convergence of the L, risk can still be
derived as Op(n_%). See lemma A.2.5 in the appendix A. This rate is sufficient to control the
estimation errors from the non-parametric components. Then the asymptotic normality of 0
holds. When it comes to dimension expansion, practitioners can use multivariate exogenous
variables, W. However, there are some issues if dim(W') > 2. We will discuss this in remark
1.2.3. For further discussion on the multivariate isotonic regression, we need to define multi-

dimensional monotonicity as below.

Definition 1.2.1 Monotonic increasing (decreasing) function in multidimensional

space



Let z,y € R*. A function f : R* — R is monotonic increasing (decreasing) if v <y, then

flx) < fly) (f(x) > f(y)) where x <y is defined as Vi =1,--- |k, z; < y;.

Definition 1.2.1 is called as co-monotonicity. Multi-dimensional co-monotonic function
has higher entropy bracketing numbers than 1-dimensional monotonic function. As a result,
it could cause problems getting the \/n - consistency of 6. Remark 1.2.1 gives us the idea of
overcoming the curse of the dimensionality by assuming the additive separable structure on

the co-monotonic function.

Remark 1.2.1 (Multivariate W Case)
The multi-dimensional monotonic function is not in the class of Donsker since the entropy

bracketing numbers of the class,
Fuwy = {f:[0,1]" = [0,1] suchthat =<y = f(z)< f(y)}

is derived by Gao, Wellner (2007) proposition 3.1 as logNyj(e, Farry || - l2) S € Flog(2)*
where k > 2. In result, theorem 1.2.1 can not be applied if we estimate both (5 and g by
multivariate isotonic regression with dim(W) > 2. To detour this problem, the additive

separable monotonic function space is required. Define
k
dd ,
Fiftey =S € Fuwy : f(2) =D fi(;),¥5 = 1,-++ k. f; € Far(1)}
j=1

F]‘(j{lk) is Donsker, and Mammen and Yu (2007) show that the additive isotonic estimator
has a Op(n_% ) convergence rate under some regularity assumptions. Under the additive

structure, 6 satisfies theorem 1.2.1.

In some empirical studies, the interaction effect between explanatory variables should
be closely considered. Unfortunately, one can only use a multivariate isotonic regression

estimator in estimating either ¢ or § if dim(W) < 5. The idea is described in remark 1.2.2.

Remark 1.2.2 (Multivariate Isotonic Regression without Additive Separability)

If we do not use additive separable structures on function gy or ¢o. In Han et al. (2019)

7



theorem 4, they study Lo - empirical risk bound for the isotonic regression in multivariate
case assuming that the error term has a normal distribution. In their proof, they use the
statistical dimension® to obtain the risk bound. Let the dimension of W be s. Once we can
approximate the statistical dimension by using non-Gaussian error, then we can argue that
b1 —dolla < n=Y5(logn) fors > 2 where ¢; is a multivariate isotonic regression estimator,
and v, is a constant depending only on s. Define s; to be the number of exogenous variables
i go and sy to be the number of exogenous variables in ¢o. Then the asymptotic normality

of 0y is still valid as far as é + é < % followed by Chernozhukov et al. (2018).

1.3 Returns to Education

Card (1993) gives several models for estimating the returns to schooling where the years
of education are correlated with the individual’s productivity by using some instruments,
such as college proximity, parent’s education, 1Q score, and so on. I use the data which is
available on his website. © The sample size is n = 2,962, and the model is constructed as

follows.

Y; = Xibo + go(W3) + U; EU|W;, Zi] =0

where Y is log of wage, X is years of education, W is age, and Z is 'Knowledge of the
world” (KWW) score.® In Card (1993), the author defends why the 'KKW’ score is a proper
instrument theoretically and statistically. Note that ¢q is the conditional expectation of the
"KWW?’ score given a certain age level. It could be considered as a proxy of experience, so it
is reasonable to assume that ¢, is monotonic increasing with respect to W. Similarly, g, also
measures the effect of experience on wage. Hence, we can impose the monotonic restriction

which is actually less restrictive than the linear regression model. The brief description of

6See Amelunzen et al. (2014) for more detail.
"There are missing data for individuals in 1976 and I omit those.

8The KWW score variable was administered to young men who represent the civilian, noninstitutional
population of males 14-24 years of age in 1966 in the U.S. It was a part of the initial interview in the National
Longitudinal Surveys (NLS).



Variables Mean Median Variance Inter-Quartile

Log Wage 6.264  6.287 0.195 [5.984, 6.565]

Yrs of Educ  13.292 13 7.029 (12, 16]
Age 28.115 28 9.824 25, 31]
KWW Score 33.546 34 74.043 (28, 40]

Table 1.1: Summary Statistics

Estimator 95% Confidence Interval

OLS 0.0511, 0.0513)]
2SLS 0.0987, 0.1209)]
NPIV [0.1113, 0.1340]

Table 1.2: The Confidence Interval of 6,

the summary statistics for each variable is in table 1.1.

On the 1st stage regression, we get the isotonic regression estimator of E[Z|W]. Taking
the residual of the 1st stage regression, V=2- é(W), as instrument, we can estimate the
parameters of interest by 4 steps. Comparing to the OLS and 2SLS estimator, the confidence
interval of the returns to schooling is in table 1.2. In OLS regression, Y is regressed on
intercept, X, and W. In the 2SLS estimation, 3 variables, intercept, X, and W, are used as

explanatory variables and intercept, Z, and W are used as instruments.

The 2SLS and NPIV estimates of the return to schooling are higher than the OLS estimate
and are consistent with the result in Card (1993). Comparing confidence intervals, NPIV
estimator performs as good as 2SLS even if it has non-parametric estimator which is notorious

for its huge variance.



1.4 Simulation

1.4.1 DGP

In the simulation studies, the DGP is as below for the semi-parametric estimator 6.
V ~ N(0,1)
U~ N(0,1)
X =0.5U + 0.5V 4+ N(0,1)
W ~ N(3,1)
Y = X0+ go(W)+U

where 0y = 1. The number of replications is M = 1,000 and the sample size is n = 1, 000.

1.4.2 Simulation on 6,

In this section, I compare the monotonic NPIV estimator with the 2SLS and polynomial
series estimator. The moment condition of the 2SLS estimator is
1
E{(Y —ayg—X0g—Wn~)T| =0 where T=|w
7
When estimating the polynomial series estimator, T use (1, W, W?2 W3 W4 W?) as basis
functions to estimate both g in step 3 and qg in step 1 of section 1.2.1. In table 1.3, go
and ¢y are chosen by linear functions, go(W) = W and ¢o(W) = 2W. 'ECR’, ’Avg C.I
Length’, and 'Med C.I Length’ represent 'Empirical Coverage Rate’, "Average Confidence
Interval Length’, and '"Median Confidence Interval Length’ respectively. Confidence level is
0.95. In table 1.4, go and ¢, are chosen by monotonic increasing functions, go(1W) = H:+W

and go(W)=1—eW.

10



Estimator 2SLS Isotonic  Series

Mean Bias 0.0026  0.0031 -0.0014

Median Bias ~ 0.0033  0.0039 -0.0006
RMSE 0.0635 0.0632  0.0634
ECR 0.948 0.946 0.949

Avg C.ILength 0.2506 0.2485  0.2499
Med C.I Length 0.2485 0.2462  0.2476

Table 1.3: MC Result on 6y (Linear gy and ¢y)

Estimator 2SLS  Isotonic  Series

Mean Bias -0.0036 -0.0034 -0.0044

Median Bias  -0.0026 -0.0017 -0.0026

RMSE 0.0642  0.0658  0.0655
ECR 0.944 0.930 0.933
Avg C.I Length  0.2509  0.2482  0.2506
Med C.I Length  0.2485  0.2466  0.2488

Table 1.4: MC Result on 6y : (Monotonic gg and ¢y)

11



1.5 Conclusion

In this chapter, I show the asymptotic normality of the semi-parametric estimator under
monotonicity assumption on the semi-nonparametric component. The isotonic regression
estimator allows us to avoid predetermining smoothing parameters such as bandwidth and
basis functions. However, there are some limitations: the curse of the dimensionality caused
by the multivariate comonotonic functions without applying additive separability and the
confidence band depending on the choice of the smoothing parameters. When it comes to
estimating returns to education, comparing to the OLS and 2SLS estimates, NPIV estimate
is bigger. In addition, the confidence band of the level effect of the experience on log wage
is available. In simulation studies, if the non-parametric components are monotonic, then
NPIV semi-parametric estimator works as good as the other candidates such as 2SLS and

NPIV by a series estimation.
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CHAPTER 2

A Confidence Band for the Isotonic Regression
Estimator and Application to Semi-parametric Model

under Monotonicity

2.1 Introduction

Continuing from the first chapter, I will focus mainly on a partially linear model.
Y = X0y + go(W) + U, E[UW,Z] =0

where Y is a dependent variable, X is endogenous, W is exogenous, and Z is an instru-
mental variable. Assume that all the variables above are 1-dimensional random variables
except X and Z. In previous studies, gg is considered a nuisance parameter, which is non-
parametrically pre-estimated to estimate 6 and most literature requires the smoothing pa-
rameters such as bandwidth, basis functions, kernels and so on. However, in this chapter,
both 6, and gg are the parameters of interest, and I will provide the asymptotic distribution
of L., - distance of the estimator of gy under monotonicity. Under assuming that we have
\/n — consistent semiparametric estimator, we can build a confidence band for the semi-
nonparametric component. When it comes to building the confidence band of gg, the key is
to derive the asymptotic distribution of L., - distance of the isotonic regression estimator,

which result in Gumbel distribution with the rate O,((*22)Y/3),

In statistics literature, Durot (2007) deals with the L, errors on the isotonic regression
estimator under the fixed point design. Durot et al. (2012) covers the L., - distance of

Grenander’s estimator, which is potentially useful for building the confidence band of the
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isotonic regression.

The chapter consists mainly of 3 parts. In section 2.2, I start the discussion with the
confidence band of the isotonic regression estimator and apply it to the semi-nonparametric
estimator. In section 2.3, I apply my methods to estimate the returns to schooling with
the data set by Card (1993) as in chapter 1. In section 2.4, the MC simulation study is

conducted. All the proofs of theorems and lemmas are attached on the appendix.

2.2 Model

2.2.1 Confidence Band of the Monotone Increasing Function

In many empirical works, the non-parametric component in a semi-parametric model is
considered the nuisance parameter. However, it could also provide interesting economic
implications since it has a direct level effect on the dependent variable. Hence, in this
section, we will focus on inferencing gy by building the confidence band. In Durot et al.
(2012), the authors build the L.-distance of Grenander’s estimator in general setup. Their
work can also be applied to the isotonic regression estimator with some modification. See
Durot and Lophuaa (2018) for more detail. However, some of their assumptions are too
strong to use in economics literature. On top of their framework, I try to weaken a few
assumptions and find the low-level assumptions to build a valid confidence band. Let us

assume W to be a 1-dimensional random variable in this entire section. !

2.2.1.1 Confidence Band of ¢,

Before building the confidence band of g9, we need to know how to build the confidence

band with the isotonic regression estimator under random design. Recall that equation (2)

ITo the best of my knowledge, the confidence band of the additive isotonic regression and the multivariate
isotonic regression are still open questions.
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in chapter 1, the non-parametric regression model, is
Z; = po(Wy) +V; EV)W;] =0
Let us assume as follows.

Assumption 2.2.1 (Confidence Band for Monotone Increasing Function ¢o(-))

Assume equation (2) as our model with dim(Z) = dim(W) = 1. In addition, we assume the
following.

(a) The function ¢o(-) is strictly increasing and differentiable on all over its domain, [—M, M]
with

inf  ¢p(t) > 0, sup ¢y (t) < oo.
e ) s )

(b) W is a continuous random variable which has the bounded support, [—M, M].
(c) @y is Lipschitz continuous. i.e. there exists Cy > 0 such that for all u,t € [—M, M],

|6/ (u) = ¢'(8)] < Colu— 1
(d) There exists a universal constant ¢ such that E[V*] < ¢ < oo.

Durot et al.(2012) assume that there exists a decreasing function f, and estimate it by
Grenander-type estimator. They suppose that (A1) f is strictly decreasing with the bounded
derivative, (A2) there exists a real-valued function L : [0,1] — R, which determines the
asymptotic distribution of the cumulative sum diagram process distance F,, — F' and the
distance between the process and the asymptotic distribution should be small enough, (A3)
the modulus of the continuity of the cumulative sum diagram process should be small enough,
and (A4) the function L in (A2) is twice differentiable, and f and L’ are Lipschitz continuous.?
Durot and Lophuaa (2018) show that the isotonic regression estimator can be represented
by the framework by Durot et al.(2012) if f is assumed to be ¢y o G™' where G is the

cumulative distribution of W. F, is defined differently from Durot et al.(2012) since ¢y

2Durot et al. (2012) assume more general conditions in (A2) and (A4). See Durot et al.(2012) for the
details.
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is strictly increasing. Moreover, because of the randomness of W, the L function is more

complex. However, the proof strategies are very similar to the previous paper.

Assumption 2.2.1 (a) and (b) are the sufficient condition for (A1) in Durot et al. (2012).3
Assumption 2.2.1 (c) is sufficient for (A4) in Durot et al. (2012). The most challenging parts
are to derive (A2) and (A3). Unfortunately, I could not get the exactly same condition of
(A2) since we need to deal with the random W instead of the fixed designed points framework
in Durot et al. (2012). However, I could show that the alternative condition is sufficient to
get the valid confidence band. (A3) can be also derived by applying the alternative condition.
Before the further discussion, we need new notations and definitions which are different from
Durot et al. (2012) since I will use the setup for estimating the monotonic increasing function

instead of Grenander’s estimator. Note that the isotonic estimator of ¢q is

!
. 1
Wiy) = n 2
O(Wiy) = maz  min l—k+1; g
where {(W), Z;)) iz is the ordered data set with respect to {W;}?_,. Durot and Lophuaa
(2018) introduce another representation for the isotonic regression estimator where the func-
tion is decreasing. If we consider the increasing function estimation, one can also derive the

similar representation. Define

1 n
Fu(t) = n Z Zilgwi<ny
i=1

1 n
Galt) = > s
i=1

F,(t) is a pseudo cumulative sum diagram. In Durot and Lophuaa (2018), the indicator
function is 1;x,<4. However, the right end point should be skipped when the parameter is
an increasing function. G, (t) is the standard empirical distribution of W. If {(W;, Z;)}™,
is given, then we can get n numbers of points as ¢ chooses the value as following. t € W =
{Wy, Wy, -+ ,W,}. Let Wiy denote the k-th order statistic of (Wy,---,W,). If we get the

data sample, so the realization of the order statistic is given as wgy = t5, then G, (1) = %

3If we define f = ¢9 o G~ where G(t) is the cumulative distribution function of X, then the derivative
of f is bounded away from zero and bounded above. In this paper, f is strictly increasing.
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and F),(ty) = %Zf:_ll 2;). Draw all the points, such as {(G,(tx), £.(tx) } -1 and build the
greatest convex minorant (GCM) of these points. Lastly, take the right derivative of GCM

on each kink to get the isotonic regression estimator.

For detailed analysis, define (pseudo) quantile G, '(s) = sup {t: G.(t) < s}. Let
A, 1 [0,1] — R be a real-valued function defined by A, = Ff: [; ]\é? . Strictly speaking, I
derive the uniform confidence band for f := ¢y o G~! which correcponds to the confidence
band for the quantile transformed function of the parameter of interest. The asymptotic
distribution of the L., distance of f can be derived by using the inverse process’s asymptotic

distribution.

Unp(a) = aregggllz}'n{An(s) —as} (2.1)

Note that U, (a) is an estimator for f~'(a). Defining L(s) = Var(Z1liw<g-1(s3—¢0(G7'(5))1iw<c-1(s)1),
by Koltchinskii coupling, one can show that there exists a real valued function L : [0,1] — R

which is positive and increasing with respect to s, such that it satisfies:
PnM*||(vn(Ap —A) — B o Lo > 2) <27

where A = FoG ! and B,, denote standard Brownian motion and x > K logn for some K >
0. See lemma 6.6 for the detailed proof in the appendix. Then the asymptotic distribution

of U, can be derived by the following theorem.

Theorem 2.2.1 (Asymptotic Distribution of U,(a))
Suppose that we have equation (2) as the model. Let assumption 2.2.1 be satisfied. For all

a € R, define the normalizing function A(a)

)
A BB @

Let 0 < u < v <1 be fizred, and let (a,), and (B,). be sequences such that o, — 0, 5, — 0

and 0 <u+ a, <v— L3, <1 forn sufficiently large. Define

Se=n"" s A@)|Uu(a) ~ f ()]
a€lf (utan),f(v—Bn)]
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Then

P(S, < uy) = eXP{ —eT / %dt}

for any sequence (uy), such that u, — oo in such a way that n*?u(u,) — 7 > 0, where u
denotes the density of ((0) = argmazx{B,(t) — t*}.
teR

Moreover, for all x € R,

9 \1/3
P<logn{< ) Sn—un}§x>—>exp{—e_x}
logn

Once we get the asymptotic distribution of the inverse process, we can connect it to L.-

distance between f = éo G,' and f = ¢9o G! by lemma 6.21 in the appendix, such

as

A

sup B(u)|f(u) — f(u)]

u€(s,1—t]

(2.2)

= sup  Aa)
a€lf(s),f(1-s)]

Un(a) — g(a)

logn 2/3
o((57))

Now we can build the confidence band for f by the following theorem.

Theorem 2.2.2 (Confidence Band for the Isotonic Regression) Suppose that we have equa-
tion (2.2) as the model. All the assumptions in theorem 2.2.1 hold. Then for fized u and v
such that 0 < u < v <1, for any sequence o, — 0, B, — 0 such that 1 —v + B,,u + o, >

n~'3(logn)~%3, we have that for any x € R,

1/3 ;
" o) - fol } ) L
P(log”{(logn> e P YTy ERL (i AR A R

as n — 0o, where

K 1 |1
pn = 1= 21/3(log n)2/3 * logn [g loglogn + log()\CﬁL)}

n=2f (55)

and A = 1.79425 and k ~ 2.94582.

with
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Note that A and x are some constants calculated by Groeneboom (1989). The proof of
theorem 2.2.2 is in the appendix. From the theorem, we can build the confidence band of

f(s) =¢oo G 1(s) as [CBLg,(s), CBUyg,(s)] where

et =160 (B0) forore) (i )

CBUy,(s) = f(s)+(loi")1/3{2f’(s)L’(s)}1/3(un+ ; )

logn

with exp{—e™"} confidence level. To get a feasible confidence band, we need the consistent

estimators for L' and f’. By some algebra, we get L'(s) as

L'(s) =Var(V)

+24(G1(s)) (Iﬁ) {¢0<G-1<s>> - F [%(W)l{wga-l(s)}] }

Then we can construct the estimators for Var(V) and E|i¢0(W>1{WSG—1(S)}:| by using a

sample analog such as

Var(V) =

E, [QSO(W)I{WSG*(S } n Z (W, 1{W<G (8)}

The remaining parameters we need to estimate are ¢, f’ and p(G~'(s)). In practice, one
can estimate ¢, and f’ by using isotonic regression, but the estimator seems not appropriate
for estimating the slope of the parameter since it is not smoothly increasing. Hence, we
need to use another estimation method, such as a series estimator, which has advantages
in estimating smooth functions. When it comes to estimating p(G~'(s)), I use the kernel

density estimator of W and plug in G,,! instead of G~

2.2.1.2 The Confidence Band of gy

Theorem 2.2.2 gives us the idea of how to build the confidence band of the isotonic regression

estimator where the standard non-parametric regression model is assumed. To build the
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confidence band of the semi-nonparametric estimator, define D; = Y; — X;0, and let the
isotonic regression estimator of D on W be gy. Then by triangular inequality, we have
15— golles < 190 = golloc + 11 = Golloe- Note that [|§ — gollec = Op(n~"/2) by similar procedure
in the proof of theorem 2.2.2 Then ||§ — golloc and ||g — Jol|cc have the same asymptotic
property since they are O,(n"1/3). As a result, we can build 100(1 — a)% confidence band
of € :=goo G ' as [CBLy,(s),CBU,(s)] where

CBLy(s) = £(s) - (1‘)“)1/3{25'<s>L;0<s>}1/3 o

n logn
A logn 1/3 1/3 T
cBU o) =0+ (1) {200} (it o)

where f = g o G, ! with exp{—e~"} confidence level. To get a feasible confidence band, we

need the consistent estimators for L) and £'. By some algebra, we get L (s) as

L;O(s) =Var(U)

#2066 (s {6 = Bt ]}

Then we can construct the estimators for Var(U) and E[gO(W)l{ng-l(s)}} by using a

sample analog such as

1 .
E, |:g0<W)1{W§G_1(s)}:| = IW)lw <15

In simulation studies, I use a polynomial series to estimate g, £’ and a kernel estimator for

G 1(s).

2.3 Returns to Education

Card (1993) gives several models for estimating the returns to schooling where the years
of education are correlated with the individual’s productivity by using some instruments,

such as college proximity, parent’s education, 1Q score, and so on. I use the data which is
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Variables Mean Median Variance Inter-Quartile

Log Wage 6.264  6.287 0.195 [5.984, 6.565]

Yrs of Educ  13.292 13 7.029 (12, 16]
Age 28.115 28 9.824 25, 31]
KWW Score 33.546 34 74.043 (28, 40]

Table 2.1: Summary Statistics

available on his website. 4 The sample size is n = 2,962, and the model is constructed as

follows.

Y; = Xibo + go(W3) + U; ElUWi, Zi] =0

where Y is log of wage, X is years of education, W is age, and Z is 'Knowledge of the
world” (KWW) score.” In Card (1993), the author defends why the 'KKW’ score is a proper
instrument theoretically and statistically. Note that ¢q is the conditional expectation of the
"KWW?’ score given a certain age level. It could be considered as a proxy of experience, so it
is reasonable to assume that ¢g is monotonic increasing with respect to W. Similarly, go also
measures the effect of experience on wage. Hence, we can impose the monotonic restriction
which is actually less restrictive than the linear regression model. The brief description of

the summary statistics for each variable is in table 2.1.

On the 1st stage regression, we get the isotonic regression estimator of E[Z|W]. Figure
2.1 describes the confidence band of the conditional expectation of the 'KWW?’ score given

the age quantile with setting the lower quantile 0.2 and the upper quantile 0.8.

The effect of age on the log of wage can be captured by gy which is derived by the isotonic

regression. In figure 2.2, the isotonic regression estimator jumps around 0.4, 0.5, and 0.6

4There are missing data for individuals in 1976 and I omit those.

5The KWW score variable was administered to young men who represent the civilian, noninstitutional
population of males 14-24 years of age in 1966 in the U.S. It was a part of the initial interview in the National
Longitudinal Surveys (NLS).
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Figure 2.1: The Confidence Band of E[Z|WV]
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Figure 2.2: The Confidence Band of g

Quantile  [0.2, 0.4] (0.4, 0.5] [0.5, 0.6] [0.6, 0.8]

Avg. CB [4.51,4.60] [4.55, 4.64] [4.60,4.71] [4.66, 4.82)

Table 2.2: The Confidence Band of gq

quantile. The average confidence band length of each age quantile is in table 2.2.
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Quantile 0.05,0.95] [0.10,0.90] [0.25, 0.75] [0.4, 0.6]
ECR 0.546 0.681 0.863 0.996
Avg C.B Length  1.3904 1.3429 1.2198  1.0360
Med C.B Length  1.3886 1.3419 12192 1.0349

Table 2.3: MC Result on f = gyo G~!

2.4 Simulation

24.1 DGP

In the simulation studies, the DGP is as below for the semi-parametric estimator 6.
V ~ N(0,1)
U~ N(0,1)
X =0.5U + 0.5V + N(0,1)
W ~ N(0,1)
Y = X6+ go(W)+U
Z=¢s(W)+V

where 0y = 1. The number of replications is M = 1,000 and the sample size is n = 1, 000.

2.4.2 Simulation on gy

I set go(W) = ¢o(W) =1 — e . The isotonic regression estimator confidence band per-
forms not well on the extreme quantile of gy. In table 2.3, the lower quantile, v and the
upper quantile, u for confidence band are chosen by [0.05,0.95], [0.10,0.90], [0.25, 0.75], and
[0.4,0.6]. ECR (Empirical Coverage Rate), Avg C.B Length (Average Confidence Band
Length), and Med C.B Length (Median Confidence Band Length) are reported with the
confidence level 0.95. As the difference of lower and upper quantile decreases, the confidence

band length also decreases since Cf 1, in theorem 2.2.2 decreases.
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Quantile [0.2,0.4] [0.4,0.5] [0.5,0.6] [0.6,0.8]

ECR 0.718 0.991 0.994 1.000
Avg C.B Length  1.1390  0.9249  0.9115 1.0404
Med C.B Length 1.1374  0.9243  0.9118 1.0376

Table 2.4: MC Result on f = gyo G~!

In table 2.4, we can check that the isotonic regression confidence band works well on the
flatter part than the steep one. Set the lower quantile v and the upper quantile u for
confidence band as [0.2,0.4], [0.4,0.5],[0.5,0.6], and [0.6,0.8]. The empirical coverage rate is

increasing on the upper quantile since f is concave and increasing.
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2.5 Conclusion

In this paper, I show how to build a confidence band of the non-parametric component under
monotonicity. When it comes to estimating returns to schooling model, the confidence band
of the level effect of the experience on log wage is available. In simulation studies, if the
non-parametric components are monotonic, then NPIV semi-parametric estimator works as
good as the other candidates such as 2SLS and NPIV by a series estimation. However, the
performance of the confidence band of the non-parametric component is highly affected by

the choice of the quantile and the steepness of the true parameter.
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CHAPTER 3

A Small Sigma Approach to Certain Problems in

Errors-in-Variables and Panel Data Models

3.1 Introduction

'Nonlinear panel data analysis is subject to fundamental difficulties presented by the inci-
dental parameters problem. Except for a few cases, a reasonable theoretical approach that
treats the individual fixed effect as an infinite dimensional component of the model often
leads to unpalatable conclusions for practice that the parameters of interest are unidentified?.
Such an impossibility was an important motivation behind the large n, large T asymptotic
approximation®, where the goal is to make an approximate inference on the parameters of
interest. Despite the progress in this genre of literature, we should still contend with the
fact that it is based on large T" approximation, which is expected to make the approximation

less appealing for empirical applications where the time series variation is small.

The purpose of this paper is to propose an alternative estimator that may be useful when
T is small. Our approach is based on a synthesis of two seemingly unrelated literatures in
the past. First, we adopt the panel data approach exploiting a certain exchangeability and
a sufficient statistic. This approach began with Mundlak (1978), which was later adopted
by Altonji and Matzkin (2005) in a nonparametric and nonseparable framework, and by

Arkhangelsky and Imbens (2019) for estimation of treatment effects with clustered data.

IThis papar is coauthored by Professor Jerry Hausman and Professor Jinyong Hahn.
2See Chamberlain (2010) or Hahn (2001).

3See Arellano and Hahn (2007) for a discussion.
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This approach, which can be argued to be based on some ‘sufficient statistic’, was employed
to justify the within estimator in linear models, but it has been less successful as a way of
producing widely used methods of estimation for nonlinear models. Second, we adopt the
small sigma approximation proposed by Kadane (1971) and Amemiya (1985). The small
sigma asymptotics was originally proposed to analyze various existing estimators when the
variances of errors are very small, but Amemiya (1990) extended the approach and used
Taylor series expansions to develop a more refined estimator in nonlinear errors-in-variables
models. Amemiya’s (1990) approach continued the earlier approach of Kadane (1971), where
the variance of the error is modeled as a function of the sample size. Although modeling of
variances as functions of sample sizes was an elegant asymptotic framework, we believe that
it complicated the analysis a bit, and ended up hiding the intuitive and simple nature of
the underlying idea, which is to use the Taylor series approximation (up to a finite order) to
develop an approximate moment that is easy to analyze and compute. We therefore adopt

only the spirit of Amemiya’s (1990) analysis, not the entire asymptotic framework.

Although development of a convenient panel data analysis was our original motivation,
we believe that we have made independent contribution to the errors-in-variables (EIV)
literature as well. Typical estimators in the literature take the form of IV estimators, which
may be subject to the well-known finite sample problems and problematic validity of the
instruments. Therefore, it may be interesting to develop estimators that do not require
repeated measurements or IV, and the small sigma approach may provide a computationally
convenient and statistically stable alternative. Based on the small sigma approach, we
develop straightforward procedures, which allow for conditional heteroscedasticity (CH),
an added benefit. Almost all of the higher order moment approaches to EIV depend on
a conditional homoscedasticity assumption, yet in the last 40 years econometricians have
become aware of the importance of CH in economic data. We demonstrate why the higher
order moment approach does not work in the CH situation, and we propose a small sigma

approach to the problem which works well in practice.

Susanne Schennach has considered higher order moment approaches in two recent survey
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papers Schennach (2016,2020). In both of these papers she considers many approaches to the
EIV problem, but in the higher order moment situation she follows the classical approaches of
Geary (1942) and Reiersol (1950) which assume independence of the measurement error from
the true underlying unobserved variable. An independence assumption does not allow for
conditional heteroscedasticity (CH). From the survey papers and other papers considered
in the survey, we are unaware that CH is considered. As we discuss in this paper, the
existence of CH causes the higher order moment estimators to be unidentified in the models
we consider. We propose a pragmatic technique which allows approximate estimation in the

situation of CH using higher order moments.

Our paper is closely related to Salanié and Wolak (2019), who recently calculated a Tay-
lor series approximation of the moment for the commonly used demand system due to Berry,
Levinsohn, and Pakes (1995, BLP hereafter). By the very nature of Taylor series approxi-
mation, our approximate moment are easy to code and implement in general, which is true
in BLP as demonstrated by Salanié¢ and Wolak (2019). While the approximate moment was
calculated by Salanié and Wolak (2019), we make an additional contribution to the literature
by recognizing that the BLP specification adopted in practice are in fact misspecified due
to certain truncation problem. The number of products considered for estimation in BLP
specification is often smaller than the actual number of products in the market, and there-
fore, such truncation bias is built into the BLP specification in application. It is therefore
unclear whether the standard estimators for the BLP specification will dominate the small
sigma approach. We compare the standard estimator and the small sigma estimator under

such truncation through Monte Carlo simulation.

Our focus is development of convenient approximate moments and related point estima-
tors. As for statistical inference such as confidence intervals, we refer to a recently emerging
literature. This recent literature recognized that the moments adopted in empirical practice
may not be exactly satisfied, and proposed to either understand its sensitivity to the vio-
lation of the moment restriction or develop a confidence intervals that accommodate such

violations. See Hahn and Hausman (2005), Andrews, Gentzkow and Shapiro (2017), or Arm-
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strong, and Kolesar (2019). In our view, this literature is still at its infancy, and further

development and refinement are expected, which this paper is well-positioned to leverage.

3.2 Errors-in-Variables in Linear Models

In order to explain the basic intuition of our approach, it would be useful to start with a
relatively simple model and examine how it would apply to basic linear errors-in-variables
(EIV) models. The literature on measurement error is large and impossible to review in a few
sentences, but it is probably safe to say that a typical analysis is predicated on the availability
of some instruments including repeated measurements, at least in the econometric literature.
A somewhat smaller literature does exist, where estimators are developed even when such
additional variables are unavailable and instead uses higher order moments, including Geary
(1942), Lewbel (1997), and Schennach and Hu (2013). These estimators are based on the
assumption of the independence of the measurement error with the observed variables and,
thus, do not allow for CH. We illustrate how the small sigma approach can be used to develop

a convenient estimator.

The small sigma approach is based on an approximate moment condition. Consider a

linear EIV model

y=a+pBr.+e,

T =1, +, (3.1)

where we observe (y,x). The z is a proxy for the true regressor x,, and the measurement
error v is assumed to be independent of (z,,¢), i.e., classical EIV. We simplify notations
by assuming that the (marginal) mean of v is zero, with similar assumption on €. As for
the relationship between ., e, we allow for heteroscedasticity, i.e., we only assume that
E[e|x,] = 0. Using higher order moments has a long history in the EIV literature, but
without conditional heteroscedasticity (CH), including the recent paper by Schennach and

Hu (2013).* However, it has become recognized that CH is important in applied work, so

4Schennach and Hu (2013) provide an excellent review of the literature.
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extending the higher moments approach to allow for CH is an important topic since the

usual methods do not work with CH.

Because F [y| = a + fE [z,] and FE [z] = F [x,], so we may write

§:ﬁf*—|—€’

T =1Ts+0,

where y =y — Ely|], T =z — F[z], T, = z. — F [z,] all have mean zero by construction.

We see that the second moments are such that

E 2 = E 2] + E[v*],
E ] =8°E 2] + E [¢7]

Eay) = pE 7] .

If we are to use this system of equations as a basis of estimation, we recognize that we
have three equations and four unknowns (3, F [2%], E'[v?], E [£?]). Does this difficulty of
identification change if we examine third moments in addition to the second moments? Using
the assumption that (i) v is independent of (x,,¢) and has mean zero; and (ii) F ]| z.] = 0,

it is straightforward to show that

E[F] =E @]+ E[v],
E 7%y = E [%3] B,
E 5] = E[#] 5 + B 1.7,
E[P] = E[@] 8 +3E[7.2] 8+ E[].

Relative to the second moments, we have four more equations, and four more unknowns

including (E [23], E [v®], E [€*], E [7.£?]), so the problem continues.

We now discuss how the small sigma approach can be used. For this purpose, let’s write
with
T = T4+ 0V (3.2)
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and note that the second and third moments are
E[#] = B[] + *E [,
E[y| =8’E 22| + E [¢%],
B3] = 8E [#7].

and

E @) =E|[Z] +0°F [v],
E[7%y) = B [77] B,
E[zy?] = E 2] B° + F [1.£7],
E[J] =E[2}] p° +3E [1.e*] B+ E [€°]

If we let o — 0, and ignore the smallest terms (i.e., O (¢%)), we get
E [52] =F [Eﬂ +FE [(av)z] ,
B[] = PE[R] + E[],

E[zy) = BB [T)] .

and

We now have a system of seven (approximate) equations with seven unknowns, including

B, E[#?), E [(ov)?], E[¢?], E[¢%], E [, and E[7,¢%]. Therefore, one may argue that the

*

parameters are approximately identified.®

SPresumably it is possible to go to the fourth or even higher moments and obtain more sources of (ap-
proximate) identification. Using more moments leading to over-identification has previously been discussed
in the part of the EIV literature which uses higher order moments for identification, but the discussion has
been in the context of independence of the measurement error which rules out CH, e.g. Aigner et. al. (1984).
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In fact, we can use the two (approximate) moments

and identify
E [7%Y]
~F 73]

The sample counterpart of this approximate identification strategy would be an IV estimator

(3.3)

for the equation § = B2+ “error” using 22 as IV. Obviously the estimator is predicated on
the assumption that E [7] # 0, which rules out normal distribution as has been known in

the literature since Reiersol (1950).

We conducted Monte Carlo simulations to examine the performance of the small sigma
estimator relative to Geary’s (1942) estimator.® In the Monte Carlo simulations, we specified
log z, ~ N (2,1). We considered several specifications of conditional distribution £ (&| z,) of
e given z, and the distribution of v, including (i) £ (| z.) ~ N (0, 2/5) and v ~ N (0, o?);
(il) £(elzs) ~ ex* (|7.]/V5) and v ~ o - ex* (1);7 and (iii) £ (] z.) ~ exp* (N (ji, 22/ 5))
and v ~ exp* (N (fi,5%)), where ji, ji and & are chosen such that exp (N (ji, 22/ 5)) has mean
2, exp (N (ji,5%)) has mean 2 and Var (v) = ¢%.® All specifications were chosen such that
FEle|x.] =0, Var (¢) = 1, and Var (v) = 0. We considered % = 1, 0.5, 0.25 and 0.1, and the
sample size equal to 1,000. The number of Monte Carlo simulation is M = 10, 000.

Our simulation results are summarized in Tables C.1 - C.3. As is predicted by the theory,

the small sigma estimator performs better when Var (v) is small. We find it encouraging that

its performance often dominates Geary’s estimator, as is predicted by theory. We note that

6We note that Lewbel (1997) generalizes Geary’s (1943) estimator of the basic model to a more compli-
cated model.

"We use the symbol ex* (1) to denotes the exponential distribution with mean j subtracted by y, i.e.,
the de-meaned exponential distribution. In the tables, we called it exponential distribution for simplicity.

8We use the symbol exp (N (;]7 52)) to denote a log normal distribution, and exp* (N (;]7 &2)) to denote
a de-meaned log normal distribution. To be more specific, v ~ exp* (N ([L,&2)) implies that v can be
written as 7 — E [], where U ~ exp (N (/1, &2)), ie,logy ~ N ([L, &2). In the tables, we called it log normal
distribution for simplicity.
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the moments leading to (3.3) are in fact exactly satisfied if the v is symmetrically distributed
so the performance of the small sigma estimator when v is normally distributed is not
surprising, but we note that the small sigma estimator performs well even when symmetry

is violated.

We note that the approximate identification strategy (3.3) can be viewed as the solution

to the approximate moment equation
E 2 (y—1p)] =~ 0.

Throughout the rest of the paper, we develop estimators for various models based on ap-
proximate moments. We argue that approximate moments often leads to feasible estimators
in models plagued with either theoretical or computational issues. Our focus is on develop-
ment of point estimators. As for inference, we defer to an emerging literature recognizes that

moment conditions are never exactly satisfied and proposes various methods of inference.

The small sigma approach to EIV goes back to Amemiya (1985, 1990). Our contribution
is to recognize that the small sigma approach results in a very simple estimator for models
characterized by CH. In order to understand how the small sigma approach can be applied

in nonlinear models, we examine the model and the IV estimator considered by Amemiya

(1990). We consider the model where
y=[f(z;B) +e (3.4)
T =24+

and an IV/moment of the form

0=Efw(y—f(z:0))].

If (w,y,x.) were observed, we could have estimated [ by solving

0=n"" Zn:wi (yZ —f <x*,,3)> ) (3.5)

1=

(The equality above should be understood appropriately under overidentification, i.e., when
the dimension of w exceeds that of §.) The feasible sample counterpart is not going to

produce a reasonable estimator because 0 # F [w (y — f (x; 8))].
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On the other hand, we have

Elw(y— f(z;8)] — Elw(y — f (2 8)] = —Ew(f(z;8) — f (2 8))]
= —Ew(f (z+v;:0) = f (2.:0))],

so the small sigma approximation r = x, 4+ ov with ¢ — 0 suggests that we work with

Elw(y— f(z;8)] = Elw(y — f (2. 8))]
= —Fw(f (x4 0v;8) — f (24 3))]

2

= —oFE[wf, (z.;0)v] — %E [ frow (23 B) 0] + 0 (0?), (3.6)

where f, and f,, denote the first and second derivatives with respect to z. If we assume that

the measurement error v is independent of everything else and has a zero mean, we have
2

Bluoly— 1 @A)~ Bl (5 £ (2 )] = =SB lwfor (0 )] B [17] +0 ()
— —%E [Wew (743 8)] E [(00)?] + 0 (0?)

= Bl ) E [(00f] 40 (%) (87)

In other words, we can work with an approximate moment

0.2

0% Bluly (w8 + BB (e (500 = B [0 (5= @30+ T )| (39

where 02 = E [(0'2))2}. This is a way of fixing the moment itself. We note that Evdokimov

and Zeleneev’s (2020)° estimator boils down to (3.8) for Amemiya’s (1990) model (3.4).

Our proposal is to use the approximate moment, and estimate 8 and ¢ simultaneously,
assuming that dim (w) is large enough to identify them. Amemiya’s (1990) original proposal
is a little different. He first proposes to obtain a preliminary estimator of 5 by solving (3.5).

He then proposes to estimate o2 by noting that

El(y— f(@:8)| 2] = E[(e = (f (. + 003 8) = [ (2.3 8)))*| ]
~ E[(e— fo(2:8) 00)*| 2]

~ 02+ for (123 8)° 02 m 02 + fop (3 8)° 02 (3.9)

9We thank Denis Chetverikov and Zhipeng Liao for bringing our attention to Evdokimov and Zeleneev’s
(2020) contribution.
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v

AN 2
and proposes to estimate o2 by 62, which is obtained by regressing (y — f (:1:; 6)) on a

2
v

N\ 2
constant and f,, (x; ﬁ) . Finally, he proposes to plug 67 into the sample counterpart of

(3.8) to generate a bias corrected version f3:

n

Orn™ ) w; (yz —f (xi;ff) + %gfmc (:mﬁ)) :

i=1

Amemiya (1990) worked with nonstochastic  and w, so we had to translate his frame-
work into our IID framework, rendering the above analysis superficially different from his
framework. Despite the superficial differences, it is immediate that the following two com-
parisons can be made. First, the small sigma approach applied to the moments estimates
B and o2 simultaneously, whereas Amemiya (1990) proposes to estimate them sequentially.
The simultaneous nature of the moment-based procedure implies that the dimension of w
needs to be larger than that of 8 for implementation of (3.8), whereas Amemiya (1990) can
work with w with the same dimension as . Second, the second approximate equality in
(3.9) makes it clear that his procedure is predicated on the independence of ¢ and z,. In
other words, his framework rules out conditional heteroscedasticity (CH) where F [£?|z,]

may depend on x,, while our small sigma approach allows for CH.

We conducted Monte Carlo simulations to evaluate the performance of the small sigma
estimator (applied to moments) in comparison with Amemiya’s estimator. We considered a
nonlinear model

y=pBa2+e

where § = 1 and x, is measured with error x = x,4v. As for the instrument, we assumed that
w = (1, (x4 + r*)Q),, where r, ~ N (0,1). In DGP below, z, can have normal or log-normal
distribution, € is conditionally normal with respect to z,, and v is a independent normal

distribution random variable with different variances.!® We assumed that (i) z. ~ N (0, 1),

10Tn order to calculate Amemiya’s estimator, we first estimate 3 by

-1

=) (Brmw) )] () () (Son)
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L(elz,) ~ N(0,22), and v ~ N (0,0%); (ii) z. ~ N(0,1), L(e|x.) ~ exp (N (ji,z2))
and v ~ exp* (N (f1,52)), where ji, i and & are chosen such that exp (N (ji, 22)) has mean
2, exp (N (f,52)) has mean 2 and Var(v) = o2 (iil) x. ~ exp* (N (0,1)), L(e|x.) ~
N (0,2%2/5), and v ~ N (0,0%); and (iv) . ~ exp* (N (0,1)), L(g|z,) ~ N (0, 22/5),
v ~ exp* (N (i, %)), where i and & are chosen such that exp (N (ji,52)) has mean 2 and
Var (v) = 0. All specifications were chosen such that E[e|z,] = 0, Var (¢) = 1, Var (v) = o2
with the sample size equal to 1,000. The number of simulation is 10,000. We considered
0% =1, 0.5, 0.25 and 0.1. The Monte Carlo results are summarized in Tables C.4-C.7. As
is predicted by the theory, the small sigma estimator performs better when Var (v) is small.

The small sigma estimator often outperforms Amemiya’s estimator.

3.3 Approximate Inference in Panel Data Models with Fixed Ef-

fects

We note that the small sigma approach (3.8) can be applied to as long as the moment

0=Ew-(y—f(z+v;3))]

is satisfied. It turns out that panel models can be understood to be a special case as long as
certain assumptions are imposed, and we will discuss how to apply the small sigma approach

there.

and estimate &, by using OLS. . .
(i — Ba?) = Gee + 40°27 6w,
and finally calculate his estimator by

-1

(T e [ |

To compare it with the small sigma estimator, we obtain the approximate moment
0~ FE [w (y — Ba? —|—a§,3)]

and we can estimate (3,020) from this moment equation as long as dim (w) = 2. Then define the estimator
of the coefficient of x2 as the small sigma estimator.
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We will consider a nonlinear panel model with fixed effects
Yie = f (zafd + i) + nit t=1,...,T

where

E [mt| Ti1yen- 7$Bz'T704i] = 0.

The panel is short, i.e., the T is fixed. For simplicity, we will assume that 7" = 2 and that
Ty is a scalar. The functional form of f is assumed to be known. We assume away any
measurement error problem. If the distribution of the unobserved fixed effect «; conditional

on (z;1, Ts) is completely arbitrary, the parameter S is most often not identified.!!

In order to make a progress, we assume the existence of a sufficient statistic, an ap-
proach pioneered by Mundlak (1978), and later adopted by Altonji and Matzkin (2005) and
Arkhangelsky and Imbens (2019). To be more precise, we assume that the conditional distri-
bution of «; given (x;1, ) only depends on some function of (z;1, zs2), say z; = g (i1, Ti2)-
We then have E ;| xi1, Tio] = ¢ (2), and Var [ay| 21, 2:2] = 02 (2;) for some ¢ (+) and o (+).
Writing u; = a; — p (2;), we see that E [w;| x;1, 7] = 0 and E[u?| zi1, Ti] = 0% (2;). We

propose to consider the small sigma approach assuming that o2 (2;) is small.

A small sigma approach would give rise to an approximate specification

Elyu| zin, wa] = E[f (xuB + ¢ (21) + wi)| 21, 2i2]
~ [ (@al + ¢ (2))
+ [V (@B + ¢ (2) E [w] 2, wi0)
+ %f@) (zuf + ¢ (2)) B [uf] w1, 220

— FlauB+ o (2)) + % FO (208 + 0 () 02 (21), (3.10)

which is still semiparametric and not convenient for immediate implementation.!?

See Chamberlain (2010) or Hahn (2001).

12The above approximation may be based on a model o; = g (z;,u;), for some function g and that wu;
is independent of z;. Such a g can be motivated by the inverse quantile approach as discussed in Matzkin
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In order to make it accessible for implementation, we propose to use a parametric speci-

fication, which can be interpreted to be a sieve approach as well. Specifically, we write
Q; = ZiY + u; (311)

with u; independent of z;. The small sigma approach would then give rise to an approxima-
tion

1
Eyul vin, o) = f (xafB + 2i77) + E.f@) (w3 + 27) 012” (3.12)

which is immediately implementable for nonlinear least squares. More precisely, we can
estimate (3,7, 02) by nonlinear least squares of y;; on (4, 2;). The approximate specification
(3.12) is inspired by a sieve approach to nonparametric specification, but a practitioner may
feel uncomfortable with the implicit independence assumption between u; independent of z;.
If so, a reasonable specification is to base the approximation to (3.10) and work with a more

flexible specification along the line of
1
Byl v, vi0) = f (2B + 27) + §f(2) (zatB + 27) o (2556) (3.13)

where 02 (2;;0) is a parametric specification of the conditional variance E [u?]2;]."* As a
practical matter, the heteroscdasticity assumption may be tested by any standard specifica-

tion test.

If the linear specification (3.11) is not quite correct, and can only be interpreted to be the

result of population regression of a; on (x;1,x;2), we can only guarantee that F [r;u;] = 0,

(2007). The small sigma approach would approximate

o |§M

a; =g (2,0) + g- (23,0) u; + g2 (2,0)

so the ¢ (z;) and o2 (z;) above may be understood to be specifications of ¢ (z;,0) and g, (2;,0), respectively.

13The 2;0 term may be replaced by a sufficiently rich polynomial function in z;, thereby given a nearly
nonparametric specification. Similar comment applies to o2 (z;;7).
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and as such we can only write

Byl xia, o] = f (S + 27y)
+ E [f (-thﬁ + Z7Y uz‘ Zi1, -TZQ}

+F f (%‘tﬁ + ziy) up

Ti1, 37121 )

DN —

and therefore, a result along the line of (3.12) is not quite valid. On the other hand, if one
has reasons to believe that E [u;| 71, 7] &~ 0 and E [u?| x;1, 7] &~ constant, which may
not be such a bad approximation depending on the given application, the approximation
(3.12) may be a good approach for applications. From a mathematical point of view, the
idea F [u;| i1, Ti2] = 0 and E [u?] z;1, T4] ~ constant requires formalization of “approximate

independence”, which we have not been able to articulate.

3.3.1 Monte Carlo Simulations

We examined the performance of the small sigma estimator for several nonlinear panel mod-

els. First, we considered a panel cubic model with T = 2, where
Yir = (Tir + 061)3 + it t=1,2

For simplicity, we will assume that x; is a scalar. We assume that «; = z;v + u;, where

2 = LQW We assumed that x;1, 22,71, ni2 are independent normal with zero mean. By

Taylor expansion approximation, we have

E [Uztl X1, =T12] (:Eztﬁ + sz)/) + 302 (thﬁ + Zzﬂ/) 9

which we used to estimate parameters by nonlinear least squares. We set the true parameters,
B =1, =1 and considered Var(u) = 1, 0.5, 0.25 and 0.1 and the sample size equal to 1,000.

The number of simulation is 10,000. Our results are summarized in Table C.8.

We also considered the panel quartic model with 1" = 2, where
yio = (za + i)+ t=1,2
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with the same parameter combinations as in the panel cubic model. By Taylor expansion
approximation

E[yit| Ti1, xio] = (i + Zz"Y)4 + 60 (i + Zz"Y)Q )

which we used to estimate parameters by nonlinear least squares. Our results are summarized

in Table C.9.

We also considered a panel probit model where
yir = 1 (zuf + oy — €y > 0) t=1,2
and ;; ~ N (0,1). We then have
B [yt wi1, Tig, ] = @ (208 + )
so the Taylor series approximation of interest is
o p®
E yi| i1, 2ig]) = © (2348 + 2iy) + ?‘1) (af3 + zi7)

where

d d 1 t2 t t2
®(2) t = —®(1) t = — _— = — _— .
( ) dt ( ) dt /27 exp 2 \ 21 exp 2
Therefore, the approximation adopted in the nonlinear least squares was

(x4 + Zﬂ)2>

0.2

24/ 21

We set § = 1. v = 0. We take the distribution of wu;, u Nuniform(—\/?)ag, \/303) and

E yi| Tit, via] = O (xS + 2177) —

(i + ziy) exp (— 5

considered o2 = 1,0.5,0.25,0.1. The number of simulation is 10,000. Our results are sum-

marized in Table C.10.

Finally, we considered the logit counterpart, where we considered the performance of the
conditional MLE (CMLE). Our results are summarized in Table C.11. In Tables C.8 - C.10,
the small sigma estimator does not really have a competitor, but in the logit model, the
CMLE is the standard estimator because it is known to be consistent and asymptotically
normal. Our simulation results indicate that the small sigma estimator performs reasonably
well, especially when Var (u) is small, as is predicted by the theory. The number of simulation

is 10,000 as well.
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3.3.2 DMore Flexible Specification

Our recommendation in the previous section to use the sufficient statistic approach is inspired
by nonparametric consideration. Suppose that the z;; and z;5, have multinomial distributions
with identical support, consisting of M elements. Also suppose that the support of the joint
distribution of (z;1,zs) is “full” and contain M? elements. Without the sufficient statistic
specification, we would write F [o;| 21, 2] = ¢ (241, Ti2), and Var (o] x41, Tie] = 0% (i1, Ti2),

and (3.10) would instead be written
1
Eyi| xir, i) = f(xufB + o (251, 22)) + §f(2) (B + ¢ (231, Ti2)) o? (wi1, Ti2) - (3.14)

Assuming as before that x; is a scalar, the number of unknown parameters'* is 2M? + 1,
including 3 and the values of ¢ (+,) and o2 (,-) at M? support points of (x;1, 7;2). The left
hand side of (3.14) provides at most 2M? conditional moments. In other words, the number
of unknown parameters exceed the number of moments, and hence, there may be a problem
of identification. On the other hand, if F [a;|z;1, x:2] and Var [«;| 21, xi2] depend only on z;,
and if the support of z; consists of sufficiently small number of elements, we may be able to

identify the parameters, which is a mathematical motivation for our proposal.

On the other hand, it may be appealing for some practitioners to adopt a flexible para-
metric perspective, while still relaxing the sufficient statistic assumption. For example, we

may follow Chamberlain (1984), and assume
QO = L1701 + X079 + Uy. (315)
If we apply the small sigma approach here, we end up with

1
Eyn|zi, xio] = f(xn (84 1) + zoma) + §f(2) (i1 (B 4 m1) + xigma) 0-37

1
E [yio| Tir, io] = [ (xam + @2 (B + m2)) + §f(2) (xinm1 + xi2 (B + m2)) 012“

1Our proposed estimator is based on approximate moments, so these should really be called pseud-
parameters, if we are to be semantically precise.
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and 8 may be estimated by first estimating (8 + 71, m2, 02) from nonlinear least squares of
yi1 on (Z;1, ), (71, 8+ m,02) from nonlinear least squares of y;5 on (x;1, Z;2), and finally

by using an inter-equation restriction on the parameters.

The specification underlying (3.15) is sometimes called the II matrix approach, and has
been adopted only in linear models and panel probit models. We note that the small sigma

approach can be applied to even further to arbitrary nonlinear models.

3.3.3 Conditional Heteroscedasticity of Measurement Error

Our discussion in the panel model includes a proposal to consider a parametric specifica-
tion 02 (2;;0) of the conditional variance E [u?| z;], which leads to the approximate moment
(3.13). This approach may be reasonable for some empirical applications. We can consider
a similar strategy in the nonlinear EIV models, and consider a parametric specification of
the conditional variance of the measurement error. Suppose that. From (3.6), we see that

2
o
E [w (y —f (37; ﬁ))] —FE [w (y —f (33*§ B))J ~—okF [wfx (:13*; ﬁ) U] - ?E [wf:ca: (l‘*; 5) 02]
under the small sigma approximation r = x, + ov with ¢ — 0. Therefore, if we further
assume that F [ov|w,z,] =0 and E [(av)2| w, ] = 02 (4;6), we would obtain

oy (74 0)

Bl F @) = Bl f (i )] = =3 |wfee (2

Under the further assumption that o2 (x,; ) is continuous in ., we can replace the 2 (x.; )

on the RHS by o2 (x;6), and obtain a feasible alternative to the approximate moment (3.8)

O~ E {u (y— f (@ B) + Mﬁm (i;ﬁ))} :

3.4 Relationship with Salanié and Wolak (2019)

We noted in the beginning of the previous section that the small sigma approach applies to

any model of the form
O0=Efw-(y—f(z+v:8)).
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It is straightforward to recognize that the approach can be applied to a slightly more com-

plicated moment of the form
0=Efw-h(y, B [f (z,0;8)])],

where E, [] denotes the expectation taken with respect to the marginal dsitribution of v,
and h is a sufficiently smooth function. Berry, Levinsohn, and Pakes’ (1995) moment is a
special case. It is based on g (x,v;3,&), which denotes the individual “shares” of demand
for a given level of product characteristic &, and E, [g (z,v;5,€)] = G (&, (), which de-
notes its aggregate counterpart. The v is a random variable that gives rise to the mizred
logit model, and FE, [-] denotes the expectation taken with respect to the distribution of v,
keeping every other variable fixed. Finally, the h denotes the “contraction mapping”, which

produces the value of £ that equates the observed market share y with E, [g (2., v; 5,£)], i.e.,
G (h (y; T ﬁ) 3 Ly ﬁ) =Y.

Under the small sigma approach, we work with ov and corresponding h (y; z., 8,0). The
goal is to let ¢ — 0, and find an approximation
o2
hy;x,B.0) = h(y;0, 8,0) + ohg (i, 8,0) + Zhoo (Y2, 6,0,
where h, and h,, denote the first and second derivatives with respect to o. Salanié and Wolak

(2019) contributes to the literature by calculating these derivatives h, and h,, explicitly.

We note that the small sigma approach cannot be dismissed as a mere approximation in
applications of BLP. It is because the BLP specification adopted in practice can be argued
to be subject to misspecification induced by truncation. The number of products tend to be
fairly large in applications, and the BLP are often be applied to the truncated data focusing
on a relatively small number of products that have reasonably large market shares. Assuming
that the BLP specification is correct for the full set of products, it is straightforward to
recognize that the truncated data set would not satisfy the premise of the BLP, unless the

the Independence of Irrelevant Alternatives (ITA)'® properties are satisfied. Because the

15See Hausman and McFadden (1984) or Hahn, Hausman and J. Lustig (2020) for further discussion.

20



ITA is unlikely to be satisfied in many applications, it would be reasonable to address the

misspecification in BLP.

Given how the truncation induces misspecification, there is no reason to predict that
the standard BLP estimator would outperform the small sigma estimator. It is therefore
of interest to compare the performances of the small sigma estimator against the common
estimators of BLP. We conducted such comparison through Monte Carlo simulations'®, which
is summarized in Tables C.12 —C.17. We find that (i) MPEC outperforms small sigma
estimator under correct specification, as expected; but (ii) their performances are comparable

under the “misspecification” when only a few top products are used for BLP implementation.

3.5 Summary

We adopted a pragmatic perspective, and proposed using approximate moments to estimate
various models. The approximation was based on the small sigma approach. Simulation
results suggest that the approximation leads to reasonable sampling properties. Our proposal

complements the newly resurgent literature on sensitivity analysis.

16Given the complexity of the BLP model, the description of the Monte Carlo is presented in the appendix.
In order to avoid any weak IV problem interacting with the approximation issue, the price is an exogenous
variable in our Monte Carlo.
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APPENDIX A

Proofs of Theorems and Lemmas in Chapter 1 and 2

A.1 Proof of Theorems

Proof of Theorem 1.2.1
For the sake of the simplicity, let me prove the theorem under assuming X and Z be 1-
dimensional random variables. To show the consistency of 8, by applying lemma A.2.5, we

have that ||¢ — ¢|ls < O,(n~'/3). From the step 2 in section 1.2.1, we estimate .

0” _ Z?:l(Zi B iZ)(VVZ))Y; _ 90 + %Z?:1<Zi - 95(‘/‘/2))(9(“/2) + Vz)
> i (Zi = (W) X, LS (Zi = o(W) X,

Then the denominator of the bias converges to E[V X] under assuming [|¢o — @|ln.2]|X ||n.2
is bounded. The numerator can be separated into 2 terms and the first one converges
to E[Vg(W)] = 0 with the error term ||¢ — |ln2llgllnz = Op(n~"/3) under assuming g is
bounded function and for the second one, it converges to E[VU] = 0 with the error term

| — GlIna2l|Ullne = Op(n~'/3) under assuming U has finite 4th moment.

n

LS Vi) + = S (6(1) — BW))g () < BV + 0,0 7)

i=1

n

LS v L e sy = mver+ om0

=1
Hence, 6 = 6 + O,(n~1/3). From the step 3, estimate § by applying isotonic regression of
Y — X6 on W. Then the isotonic estimator G(W(;) is defined as
. . 1 5
g(W(;)) = maxmin -———— Z(Y(’) - X@»)0)

k<j 12 L=k 414

o4



Define Go(W(;)) be the isotonic regression estimator of Y — X6, on W.

l
- ) 1
Go(Wiy) = I?%X fgjﬂ T—kr1 ;(Y@) — X(@b)

I borrow the idea from Huang(2002) page 348 to show that |g(w) — g(w)| = O,(n~1/?) for
all w in the support of W. Note that for the fixed w in the support of W,

g(w) = go(w)
= max 1;)1;13 NOT é ) g Liwiefan (Y — X:0)
— max 1%15)1 m ;:1: Liw,elany (Yi — Xibh)
< 5;15) m Zz:; Liw,efapy (Vi — Xi0)

1 n
— Liw.ctasn (Y — X;0
N(sz c [CL, b]) 2221: {W;€] Jﬂ}( 0)

< W1 — bol < Op(n™)

where N(W; € [a, b]) is the number of W/s included in [a, b]. Under assuming || is bounded.

Then we get for all w in the support of W,

g(w) = g(w) < |g(w) = go(w)| + |go(w) — g(w)
The second term on the right hand side satisfies O,(n~'/3) by lemme A.2.5.

Then 6 is represented by

= [ 23Xz dana)| - > g - b

i=1

where QAS and ¢ are isotonic regression estimators. By lemma A.2.5,

160 = Bll2 S Op(n™"?)

Note that:



Now we are ready to prove the classical y/n consistency on 0. The strategies are as follows.

Step 1: (Glivinko-Cantelli) We need to show that

n

%Z X(Z; — $(Wi)) — E[X(Z — ¢(W))]| = op(1)

sup
nerFy

Proof of the step 1:

From the Theorem 2.4.1 of Van der Vaart and Wellner (1996), it suffices to show that
Nij(€, Foz, |l - [[p1) < 00 where Fyp = {f € Foot f = X(Z — 6(W))}.

Define F, :={feF: f=X}, F.={feF.: f=2}, and Fy :={f € Fy: f=op(W)}.

If || X |y < oo, [|[Z]1 < oo, then

1
NMwﬂﬂﬂh0§E<m

1
N[](Eva7|| : ||P,1) SJ Z < 00

and

1
logN[](Evf(ﬁv H ) HP,l) S ; < o0

The last inequality can be derived by Theorem 2.7.5 in VW(1996) under assuming ||¢[|s <
My < oo where My, is a big constant. In result, the entropy bracketing number of F,, with
Ly norm is the rate of % and it is finite for every ¢ > 0. Hence, it is done by the theorem
2.4.1 of VW (1996).

Step 2: (Donsker) We need to show that

One can show that

% >_(Ui+ 9o(W:) = §(Wi)(Zs = 6(W)) = - DUV + — > Ui(o(W) = 6(172)

n % > (W) = 50V
. % (90 (W) — G(W2)) (do(W3) — (W)

o6



Note that the first term on the right-hand side converges to Gaussian distribution by the
central limit theorem. All the other terms on the right hand side are 0,(1) by Cauchy Schwarz
inequality. Then one can show that the empirical Ly norm can be bounded by the L, norm,
and use lemma A.2.5 and E[U*], E[V*] bounded. Combining step 1 and 2, then we have
V(0 — 0o) = E[XV]7'N(0, E[U?V?]) + 40,(1). Recall that § = (X'VOV'X)"1(X'VOV'Y).
One can also show that the each component of the matrix %X’\?’ converges to that of the
matrix E[V X’]. By similar logic of the 1-dimensional case, we have

Vil — o) = (X'%W) R (st) (= égo(w FUNZ ) )

n n n

= (E[V’X]E[UZVV’]‘lE[X’V]) B (E[V’X]E[UZVV’]‘l) N(0, E[U?VV]) + 0,(1)
Proof of Theorem 2.2.1

By lemma A.2.8,

P(aef“p Unla) — £ (a)] > x(k’i”)w)

F(0),f(1)]
n-1/3

< 1/3 on—°
~ (ﬁ(logn)w* " )

Then there exist C' > 0 such that for all x > C, the upper bound goes to zero as n — oo.

sup|Un (@) — ~(a)] = Op<(log n) 1/3)

a€R n

Hence, we have

Now we can apply lemma A.2.9,

S, =n'/3 sup \Up(a) — f~(a)]
aef(u""an)vf(v—ﬁn)
A(CL) —1/3 —2/3
= sup — V(@) + Oy(n 3 (log n)~*/*)
a€lf (utan).fo—pn L (fHa)) b

By applying lemma A.2.11,

Afa) o
Sn = sup _— Vn a)l + O n /3 IOgn 2/3
aclf(utan).fo-8.)) L' (9(a)) [Va(a)] + Op(n™"(log n) ™)
A .
= sup (a) |Va(a)| + o,((log n)‘2/3)

a€lf (utan),fw—5n) L (9(@))
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By lemma A.2.12, we have
A(b(a))

su A\t (e, b(a o.((logn)~2/3
5= b Pl PV enlloB )

and
S.> suwp @) g e + op((logn) %)

aelf(uwtan), fo—n) L (9(0(0)))
for any b(a) € R that satisfies |a — b(a)| < n~/3(logn)?. Hence, we can use lemma A.2.13

Sn (1) o2 —2/3
< <
Sp < T3 00 <max{Sy’, S’} + 0,((logn)~*~)

Then the final result can be derived by applying Durot et al (2012) p.1592 ~ 1595, the proof
of the theorem 3.2.

Proof of Theorem 2.2.2

The proof is similar to the proof of theorem 2.2 in Durot et al (2012). Let s, = u + a,, and
t, =1—wv+ 3, Bylemma A.2.21, we have

sup  B(u)|f(u) — f(u)]

u€(utan,v—P>n)

= sup A(a)
a€lf(utan),f(v=Fn)]

Define a,, = n~*/3(logn)'/%. By using the monotonicity of f,

2/3
o (%))

sup | f(u)— f(u)] < |f(utan)— flutan)|+|f (utan) — futan) |+ f (uton) — fan)]

UE (utom,v—LFn]
See Durot et al (2012) supplement lemma 6.1 for detail. Then by lemma A.2.15 and lemma
A.2.20, we have

A~

flutag) = flutan) = Op(nay) %) = 0,(n""*(log n)'/?)
flu+ay) = fluta,) = 0y(n ")
In addition, we have

[f(wt an) = flan)] < [[fllclan = anl = O™ (logn)'/*)

o8



Since B(s) is uniformly bounded, then we have

A o\ /3
sup B(S)|f(8)—f(8)|=0p((1og >) )
s€(utan,utan] n

sup B(s)|f(s) — £(s)] = Op(<logn>)l/3>

s€(v—an,v—Ln] n

Hence, by lemma A.2.21 again, the asymptotic distribution of sup  B(s)|f(s) — f(s)]
s€(u+tam,v—Fn]
and that of sup A(a)|U,(a) — f~*(a)| are the same.
a€[f(utan),f(v—an)]

A.2 Lemmas

A.2.1 Lemmas Related to Theorem 1.2.1

To prove Ly bound of the isotonic regression estimator under conditional mean zero assump-
tion (Lemma A.2.5), we need other lemmas from lemma A.2.1 to A.2.4. Suppose that the
model is given as equation (1.2). From here to the end of the proof of Lemma A.2.5, de-
fine W := (Wy,--- ,W,) and (Z;), W(;))i—, is an ordered data set with respect to W.

Way <o < Wy and Vi = 1,--- . n, Z;) = ¢o(W()) + Vis). Define the partial average of
the function f with an ordered data set as fi; := —— = S W, (:))- Similarly, the partial

average of each random variable Z and V' with the ordered data set is Zkl TR k =1 ZZ 10

Lemma A.2.1 Given the model as equation (1.2), assume that ¢q is monotonic increasing

function. Then,

2
E[(0; — ¢0;)*IW] S (Bojjam — d0;)* + E [max (Vk,j+m>

<
1<k< +

| v

where ¢; := ¢(W;)) and doj = do(W(j)).
By Brunk (1955), the isotonic regression has a closed form.

%—ffs?%%fz_mz%

= min max(aﬁ()kl + Via)
125 k<j
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Define the notation X, := max(X,0) and m is a natural number such that 1 <m <n — j.

Then,

(@ ®0j)+ (mlnmaX(¢OJg+m+sz) boj)+

1>j k<j

< (Poj jrm — boj)+ + (minmax V),
1>; k<j

< (92_503',1'+m — ¢oj)+ + (ri%x Vk,j+m)+

The 1st inequality holds due to the monotonicity of ¢q. Then,

E[(¢; = 60)% W] < 2y j0m — b0;)5 + QE[I?%X(VkJer)i

Define X_ := max(—X,0). Then similarly,

El(; — 60" W] < 281 — b0y)” +2E[mm<v i)’

v
Under the assumption 1 and symmetry, the right hand side of the 2 inequalities above should

have the same asymptotic convergence rate. Hence,

E[(¢; — ¢0;)* W] < E[(¢; — ¢0;)2 W] + E[(¢; — d0;)2|W]
< (Bojjam — doj)” + E[ max <‘_/k7j+m)

<k<
1<k<I +

v

Lemma A.2.1 describes the upper bound of L, risk bound on j-th ordered explanatory
variable. It consists of 2 main parts which are the drift explained by partial average pro-
cess and the noise terms. This upper bound will be used to derive the upper bound of

E[(¢(W) — ¢o(W))?] by using the law of iterated expectation.

Lemma A.2.2 Assume that W has a bounded support [W(O)jw(nﬂ)] where Wy is some
constant such that Wy < W1y almost surely, and W, 11y is some constant such that W,y <
Wty almost surely. Define conditional probability of W given W, Z as pwiw,z(w|W,Z)

and assume that it is bounded and away from 0 for all w € Wy, Wininy]. Then,

E[(¢(W)—o(W))*|W.Z] < Z —07)* Wiy = W)+ > (boj1 — 60)* (Wign) — W)
=0
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Moreover, if we assume that ¢o; be bounded Lipchitz function. i.e. Vx,y, ||¢o(x) — ¢o(v)| <
L||z — y|| where L is universial constant and sup|qb0(w)| < 00, then,

E[(¢(W) = ¢o(W))*|W, Z] <Z — ¢0;) Wiy = W) + (Wi — Wip)?

J=0

Let w;(W) € [0,1] be the weight on gEj and qu+1 such that satisfies

S(W) = w;(W)e; + (1 — w;(W)) oy

where W € [W;), W(;41)] conditioning on W and Z. Then,

EI(G() — 60(W)IW, Z] = Z /W " (B(w) — dol(w))Ppwiw 2(w] W, Z)dw
7)
n Wi
sy [ )(d)(’w)—%(w))de
j=0 "W

S [ )6~ o) + (L= 0y (W) (@rs = dng) P

=0 7 W)
" Wity W(]+1) )
S E (¢ — doj)*dw + E Pojr1 — oj) dw
=0 7 W) W)

= (65 — ¢0;)* Wiy — W) + Z(%jﬂ — 60;)*(Wj41) — W)
=0 =

Lemma A.2.2 shows that L, risk bound conditioning on the data set is depending on two
main factors which are Ls risk bound on j-th ordered explanatory variable and the variation

of ordered statistics. The former part can be simplified by lemma A.2.1. Now we are ready

to get the upper bound of L, risk bound.

Lemma A.2.3 Assume that W has a bounded probability distribution function. (i.e. fy(w) <
M Nw € [Wgy, Wnyn) ). Then,

EW(jp1) — W] = O<l>



Define Fyy(w) as the CDF of .

e n! i1 n=j ) dw
EW) = /W(O) w {(] ~in = j)!] [Fw (w)’ 7 [1 — Fy (w)]" ™ fw (w)d

- B Gy -

Hence,
EWiy — Wiyl = /01 Fiy' (u) {ﬂ(n _n;. — 1),] w (1 —u)" " du
S ARC] [res el
= | | G e

B n J+1 g 1
T \n—j/)\n+1 n—j n+1

Lemma A.2.4 (Conditional version of Doob’s Inequality)
Assume that Var(V)|W) < 5% < 0o a.s. for alli=1,---,n. Then,

2
E| max | Vijtm
1<k<y +

1
w]son(5) el

v

almost surely.

Define 7 := maxlgkgj(‘_/derm)Jr and stopping time 7 := sup{l < k < j: (Vk7j+m)+ >tV
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with respect to filtration (g jim = a(‘_/syﬁm >8> k) Then,

? o0
QJo

| (Feoen)
:/ 2tP(n > t|W)dt
0

g%/l%%MWW
0

=2 [ Tjun@)e [ LopsdtdPywie)
0

= QE[(VT7j+m)+77|W]

< 2B[(Vyjum) 2 IWE (B[ W])E  as.

It can be done by using Fubini-Tonelli theorem at the 2nd and 4th line, Markov inequality
at the 3rd line and Caushy Schwarz inequality at the last line. Hence,

2

w] <AB[(Vyjom)2 [W]

< AE[(Vr )| W]

—4(]+m) {%VQJrQZVVt

s<t

v

=2

< 1 sup E[V,V,|W

Sm iilf [ViVi|W]
=2

+ sup K|V,V,|W

< 1 EVI

Lemma A.2.5 (L, Risk Bound of the Isotonic Regression)

Suppose that the model is given as equation (2). Assume that (a) {W;}_, has bounded
support. (b) {V;}_, are independent each other. (c) |¢y| is bounded below by zero and above
by a large constant Cy. (d) Probability distribution function of {W;}l, is away from 0
and bounded above on all the support of W. (e) ¢o is bounded Lipschitz continuous strictly
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increasing (or decreasing) function. Then, the isotonic regression estz’matorgﬁ satisfies,
A _1
[ = doll2 = Op(n~3)
By combining with lemmas A.2.1, A.2.2, A.2.3 and A.2.4,

E[(G(7) ~ 0(W)) S E[Dq%- = 0y P Wi = W) + Y (ozsr — s 2 Wig) = Wo)

¢0g j+m — QSOJ) ( (G+1) — W(j))‘|

l<k<]

b
+E[ { max (Vijym)7 W} Wiy — Wm)]
;

+FE Z Gojr1 — ¢Oy> (W (+1) — W(j)ﬂ

wjo. (3]

0.(5)o(3)] + [ el

<o) o) -0+0(2)
Note that
E[E {v;vs H — E[VV,] = EIEV,W.. V)] = E[EVIWV] = 0

By using independence. The lemma satisfies the sufficient condition in Chernozhukov et al

(2018). Under assumptions given in the lemmas A.2.1, A.2.2) A.2.3, and A.2.4,

B(607) - ) £ (%) +0(3) +0( )

2
Moreover, choose m = n3. Then,
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A.2.2 Lemmas Related to Theorem 2.2.1 and 2.2.2

From now on, T introduce lemmas for establishing the confidence band of the monotone
functions. Most lemmas have the similar proof strategies in Durot et al (2012) and Durot et
al (2012) supplement. The main difference between their paper and this paper is that (a) we
need to deal with the random explanatory variables W instead of fixed design points, and
(b) the parameter is increasing, so the cumulative sum diagram should be re-defined to get

the valid isotonic regression estimator.

Lemma A.2.6 (Koltchinskii Coupling Lemma (Chernozhukov, Newey, Santos (2020))
Assume the followings.

(a) The joint probability density function of (W, V') is bounded away from 0 and above,
0< PW =w,V =v) <o for all w € [-M, M],v € [-M, M| for some constant M.)

(b) There is a continuously differentiable bijection T : [0,1]* — Q and the Jacobian JT and
its determinant |JT| satisfy vei[{)17f1}2|JT(v)| >0 and sup [|[JT(v)||, < oo where || - ||, is the

vel0,1]2
operator norm endowed with Fuclidean norm.

(¢c) Let F ={h € F : h(W,v) = (¢o(W) + V) Lyw<sy + ¢o(t)lyw<n } where t = G(s) and
oo(+) is defined in equation (2). Define the integral modulus of the continuity,
1/2
o) = sup ([ (10 5104 52 = B0 0P ey AP 0) )
Then F satisfy (c-1) supw(h,b) < p(b) for some ¢ : Ry — Ry satisfying o(Cb) < C*"p(b)
for all C' >0 and somhffi > 0 and (c-2) 21;/;__)”/1”00 < K for some K > 0.

Then there exist K > 0 such that for x > K logn,
Pn3*|Ay — A —=n"Y2B,o Lo > z) S 27 (A.1)

where B, is Brownian motion and L(s) = Var(Z1liw<g-1s — (G (5)) Liw<g-1(s)})- More-

over,

VA, = 8) = Byo Ll = 0,52
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To verify the lemma, the first step is to simplify the empirical process, v/n(A, — A).
Vn(An(s) = A(s))
= Vn(F, oG, (s) = FoG,'(s)) +vVn(F oG, (s) = FoG (s))
=Vn(F, oG (s) = FoG(s)) + \/ﬁ(

dF
dG=1(s) ¢

1 n
_n Z{Zi]-{Wi<G‘1(s)} - E[Zl{W<G—1(s)}]}

VP Z (G ()Y wica—1(sy — Ellw=e-1(pp]} + 0p(1)

To get the first part after second equality, I apply Andrews (1994) p.2265 (3.34). To show
this, we need to show 3 conditions as mentioned in (3.36) in Andrews (1994). Let t = G;'(5s)
and ty = G~!(sg). Define v,,(-) = \/n(F,(-)—F(-)). Then v,(-) satisfies Donsker class because
there exist envelope function for Z such that || Z]]3 < ||¢o]|2, +Var(V) < oo, and the uniform
entropy condition holds since the bracketing number of 7y := {f; € F1 : fi(t) = Z1{w<n } is
approximately Npj(e, Fi, | - [|2) S € 2. It implies that the condition (i) holds. The condition
(ii) and (iii) hold since ¢ is a consistent estimator of ¢ and should exist between 0 and 1
always. The latter part of the third line holds by the delta method. The last equality can
be derived by [dF/dG™(s)](-) = ¢o(-)p(-) which comes from,

:/Osf(s)ds:/_c;l(S) ¢o(z)p(z)dz

where p(z) is the probability distribution function of W. Also, the empirical quantile esti-

mator’s asymptotic distribution,

V(G () = G7(s))
zﬁﬂio&ﬂn) G (s))

:ﬁ( s) 5) = 5)+0p(1)




where t = G~!(s) at the last line. Then, Var(y/n(A,(s) — A(s)) can be approximated by,
Var(v/n(An(s) = A(s)))
1 < 1
~Var <% Zzzl: (I)z'l (S) + % z_: @Q(S)) = L(S)

where the influence functions ®;; and ®;, are
Qi1(s) ={Zilywi<c1sp — ElZLwec-1(s13)}

Din(s) = —u(G™ () Lpmca-1(y — Ellpw<a-1on)}
By Chernozhukov, Newey, Santos (CNS) (2020) Chapter S.6 Coupling via Koltchinskii, we

first calculate the integral modulus of the continuity of A(W, V),

|h(w + s1,v 4 $2) — h(w,v)|
<|h(w + s1,v + s3) — h(w + s1,v)| + |h(w + s1,v) — h(w,v)|
=[(do(w + s1)Lwisi <ty + (0 + 52)Lwrs <ty + G0 (0) Ljwrsi<iy)
— (Go(w + 1)L fwrsi <ty + V1 jwis <ty + P0(E) L jwrs,<iy)]
+ |(do(w + 51) Ljwps <ty + Vjwrsi<ty + P0(t) Liwtsi<ty) — (Do (W) Lpwery + V1acsy + do(t)Lwary)]
S sz (19 ]loost + ([[olloo + 190]l0) (Lpwsi<ty — Liwzey)
S 2+ 81+ (Lwtsi<ty — Lwsyy)

The last inequality is by the boundedness of ¢y and ¢{. Then,

E[{h(W + 51,V + s55) — h(W,V)}?]
N 33 + 5% + E[|1{W+s1<t} - 1{W§t}”

<s3+st+( sup p(w))s
we[—M,M]

<ss+si+s1 S
The last inequality holds if s, s, are small enough. Hence, by the assumption (c¢) above,
we can take p(b) = v/b. To apply theorem S.6.1 in CNS (2020), we need to derive S? =
Z”ogz’ﬂ 2'5%(2/4) where d is the dimension of the random variables. As above, there are 2

random variables (W, V'), so d = 2. Plug this in the definition of S,,, we easily get,
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[logan] ' '
Sn= D 29N

i=1

logan
<1 —I—/ 2%/ 2y
1
S Vn
Hence, S, < n'/“. Define both J,, = J; (6., F, | - [|2) = f(f” V1 +log Njj(u, F. || - [|2)du and

N, = N1(0,, F, || - ||2). Note that h is empirical process indexed by t. Separate h(t) into
hi(t) and hs(t) such that

hi(t) = Zlpw<y
ha(t) = p(t) Lw<y
Then, Npj(u, F, || - |l2) S Npj(u, Fuo || - l]2) + Npj(u, Fao || - []2) where Fy i={fa € Fo: fo(l) =
¢0(t)1ix<ty}. As E[Z?] < oo, The bracketing number of F; has the same rate of the indicator
function, Npj(u, Fi, |- [|2) S u™2. Due to the fact that y(-) is smooth and bounded monotone

function, the bracketing number of /5 has the maximum rate between the parametric model

and the indicator function space, Njj(u, Fa, || - [|2) S u™' 4+ w2 Hence,
N[](uv'/—_.’ ” : ”2) 5 u_2

where u is small enough. Plug it in to derive J,,,

I _/ \/1+logNHu]:|| 2)du

/ w/l—irlog du

where ¢, > 0 is large enough. If v is large enough to cover the diameter of F, then Njj(u, F, |-

|l2) = 1. So there should be 2 cases that (i) J, is large or (ii) 0, is small. For the case (i),

I </ Hl—irlog du
2 577,
:/ ~/1+log 6—22 du—i—/ 1/1+log<c—22)du
0 u c2 U
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In case (ii),

bn o
In < / 1+ log (—2)du
0 U
i [ 1 0s (2 )a
= jm t + log 2 U

1/t 1
<1 -
< lg% " \/logsSst
log(1/1)
< lim Ve *dx

170 Jiog(1/64)
< 0ny/log(1/0,)
To show the rate of the supremum norm between empirical process and Brownian motion as

O, (%), apply CNS (2020) equation (S.308).

V(A — A) — By o L — Op(logfz_ll\fn) N \/log(nN\;%log(n)Sn s (1 N 52%))

Plug in N,, = 6,2, S, = n'/4, and J, = §,+/log(1/5,). Then set §, = n~ Y22 Finally,

we can get

NG

Define a function (11,712, 5,) = m + /Mi/M2(C1S, + 1). To show the inequality (8), let

IVA(An — A) = By o Ll < op(log")

Ss, C [0,1] denote a finite d,-net of [0, 1] with respect to || - ||2. Now, we can apply inequality
(S.311) in CNS (2020). There exists B, o L such that for all n; > 0,79 > 0,

P(vnllvn(Ay = A) = By, o Llis,, = 1(n1,72, Sh))

5 Nne—(bm + n6—02772

log(z4N, log(x* o _op—1/2
Choose 7, = %2") and 1, = %2"). Note that S, ~ n'/4 and N, ~ 6.2 ~ n'=27""",

Then there exist C3 and C, such that satisfies

P(vn|lVn(An = A) = By o Llsy, = m + v/iiy/12(C18, + 1))

= P(n"/*|M,, — B, o L||s, > Csn '/* log(z*n' 2" + €, \/log(x‘*nl—?“‘l”h/log(:c“n))

4
S
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where M, = \/n(A, — A). Assume that there exists a large K > 0, such that > K logn.

Then we can show that

—1/4 10g(;1;4'rzl_2"_1/2) + Oy \/log(w4'rzl—2”_1/2) V0og(xin)

x> Klogn > Csn

In result, for all x > K'logn,

P(nl/4HJ\4n — B, o LHSM > )
< P(n"Y[M, = By o L|ls;, > Con™log(a*n'=2"""*) 4+ Cyyflog w1 =>n")\/log(an))

<at
Then the tail probability can be rewritten by
P(n**|M, — By o L|s > )
< P(n'*|M,, — B, o L||s, >x/3)+ Pn"*|M,oT, — M,||s > z/3)
+ P(n**||B, oT,, — B,l|ls > /3)
< a4+ P(nY4|M, o T, — My,||s > x/3) + P(n**|B, o', — By||g > ©/3)
where © > Klogn. To control the third term on the last inequality, I apply Markov’s

inequlity , the proposition A.2.4 in VW(1996), and CNS(2020) equation (S.313),
P(n**| B, oT,, — B,lls > /3)
= P(n||B, oD, — B,||§ > 2*/81) Sz *nE[||B, oI, — B,||§]
S a7 (E[|By o Ty — Balls))*
<z,
Note that J, is a function of ¢, and decide 9, later to minimize the upper bound. To

deal with the second term, apply Markov’s inequality, theorem 2.14.5 in VW(1996), and
CNS(2020) equation (S.314).

P(n'/*|My o Ty = Mylls > 2/3) S B[ My o Ty = MyI3

<z ({E[HMn ol — M,||s]}* + %) =zt (1 +n{E[|M,oT, — Mn||g]}4)

4
<z 14+nJi 1+ In
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Combine all the bounds at the same time.

4
P(n'*|M, — B, o L|| > z) < g:—4<1 +nJ? (1 + 512;%) )
Note that J,, =~ 0,,1/log(1/d,)). We need
nJt =~ ndtlog®(1/5,) < O(1)

and also

S VB0 )
onv/n onv/n "

Hence, choose 6, = n~ Y42 for some small a > 0.

Lemma A.2.7 Under assumption 2.2.1, for alla € R and x > K(?llolg/l’é)lﬂ,

~1/3

Pm!f[Uy(a) = f M) > 0) S —5—+e "

In particular, for all a € R, we have that

Un(a) — f_l(a) = Op(n_l/g)

This lemma is a small modification of the lemma 6.4 in Durot et al (2012) supplement. Fix
a € R and take ,, = zn~'/3. By the definition of the inverse process U, (a), |U,(a)—f~(a)| >

yn 18 true only if there exists u such that [u— f~(a)| > y, and A, (u)—au < A(g(a))—a(g(a)).

Hence,
P(|Up(a) = f~H(a)] > yn)
< (i (0 - o) < A07@) - o))
(s (A - M) = alf o) ) 2 0)
[u—f~1(a)|>yn
= P( sup {Pin, + Py + P3p + Pp} > O)
[u—f~1(a)|>yn
where

P, = —{A,(u) = A(w) —n"Y2B, o L(u)}
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Pop = M(f7 (@) = Ag(a)) = 72 By o L(f 7} (a))
Py, = A(f7H(a)) = Alu) — a(f~(a) = u)
Py, =n"Y3(B, o L(f(a)) — B, o L(u))

Note that for some ¢ > 0 by application of Taylor’s expansion A(f~(a))—A(w) ~ F(f~1(a))(f~(a)—
w) + L8 (71 (a) — u)? where 3 is located between f~!(a) and u. Due to the monotonicity

of A(s), (1) if f~'(a) > u, then A(f~'(a)) — A(u) > f(f~H(a))(fH(a) —u) — c(fH(a) — u)*.

(i) Otherwise, Au) — A(f~4(a)) < F(F(a))(u— f(a)) +c(f*(a) — ). Either of cases,

we get

Py, < —c(fH(a) —u)?

Then, we have that

P< sup  {Pin + Pon + Prn — c(f(a) — u)?} > 0)

[u—f=1(a)|>yn

S P( sup |An(s)—A(s)—n"V2B,oL(s)| > clyi) +P< sup  {Py—co(fH(a)—u)*} > 0)

s€[0,1] lu—f~1(a)|>yn
for some cy, ¢y such that ¢; +c, = ¢. Note that y2 = 22n72/3. So, there exist some K > 0 such

1/2
that satisfies K logn < n3/4y? = n'/2x2. To apply lemma A.2.6, we need z > K(%) .
Then we can bound Py, P,,.
P<n3/4 sup |A,(s) — A(s) — n~ 2B, o L(s)| > cln3/4y3) <niy 8 = n~Y3y—8
s€[0,1]

The remainder is Py,.

P( sup  { Py — co(f " (a) —u)*} > 0>

lu—f=1(a)[>yn

=P< sup {n‘1/2(BnoL(f‘1(a>)—BnoL(U)—Cz(f‘1<a)—u>2}20)

lu—f="(a)[>yn
By Durot et al (2012) supplement lemma 6.4 page 8,9, and Revuz, Yor (1999) (Continuous
martingales and Brownian motion [3rd ed.]) page 55 Proposition (1.8), it is bounded by

23

] _ . o,
c3e” Mn = cge where c3 is a positive constant.
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To argue U,(a) — f~'(a) = O,(n~'/3), it suffices to show that for any e > 0, there exists

M < oo such that satisfies

lim P<n1/3|Un(a) — fYa)| > M) <e

n—oo

1/2
Choose M such that satisfies M > K (%) for some K > 0. Then we can apply the

previous inequality for large n. Hence,

n— oo

-1/3
. 1/3 s . n M3\ _ M3
hmP(n |Un(a) — f (a)|>M> ,§nh_>n010( G +e ) =e
Then we can always choose M large enough to bound the probability less than e.

Lemma A.2.8 Under assumption 2.2.1, for any a,b € R with b —a > n~Y3, and for
1/2
Yn > K4 (%) for some K; > 0. Then we have
P( sup n'2|U,(c) — f1(c)| > yn> < (b—a) (nl/?’yn8 + 63“73)
c€la,b]
This lemma is a modification of Durot et al (2012) supplement lemma 6.5. Since we
have f~1(a) = 1 for all @ > f(1), f~'(a) = 0 for all a < f(0), and U,(a) is increasing by

definition, we have

U (£(0)) — f‘l(f(O))‘

sup |Un(a) = F1(a)] =
a<f(0)
and
s U= )] = [V 0) - f—1<f<1>>\

Hence, without loss of generality, we can assume [a, b] € [f(0), f(1)]. Decompose the interval

[a,b] into K intervals [cy, cx11] where

k(b —a)
KX

cr =a+ fork=0,1,--- | K

where K = [n'/3(b — a) + 1]. Then we have

Un(c) = f (o) Un(c) = f ()

sup
c€la,b]

= max sup
O0<k<K—lecley cpi1]
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Note that f~! is Lipschitz continuous and has bounded derivative. Then we have

- _ (b—a)
<|lf 1/||000S1;€ﬂ§a;{<_1|0k+1 —al < |If UHOOT

fHew) = (o)

max sup
OSkSK—lce [ksCrit]

By triangular inequality, we have

(b—a)

Y e

max sup |U,(c) — f*(c) Un(c) — f (ck)

< max sup
OSkSK_lce[Ck,CkJrﬂ

- OSkSK_lce[Ck,CkJrﬂ

Now, by monotonicity of U, (a) and triangular inequality, we have

[sup } Un(c) — fHer)| = max{ Un(er) — FHew)|, |Un(ensn) — f_l(ck))‘}
< Ogaé}% Un(ck> — f_1(0k> + 05%158}}((_1 f—l(ck+1> B f_l(ck)

Then combine all the inequalities above to get

sup n'2|U,(c) — f~Hc)| < max n'?|U, () — fHew)| + m
celab) ! ~ 0<k<k e g K

< 1/3 e N

S max n%\Un(e) — [ (en)| + ¢

1/2
where ¢ is a large positive constant. Now, for y,, > K; (%) , we can apply the previous

lemma.
P< sup n'/?|U,(c) — f~4(c)| > yn>
c€la,b]
< 1/3 _ ¢1 —C
< P(OISI}%}%(TL \Un(ck) = 7 (ck)| > Yn C)
K
<3 P(welt o) 7o) > )
k=0
n=1/3 _
< (K—I—l)( I +e yn>
~1/3
<nt3(b—a) (n T+ 6_y”>

Lemma A.2.9 Define S,

Sp=n"" s A@)|Uu(a) ~ f ()]
a€[f(utan),f(v—>8n)]
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where
TP )]
Ale) = [4L'<f—1<a>>1

Let 0 <u < v <1 fixed, and let o, B, be sequences such that o, 3, — 0 and 0 < u + «,, <
v — B, < 1 for n sufficiently large. Under assumption 2.2.1,

S, = sup Ala)

— V(@) + Oy(n~3(log n)~*/*)
aelf(utom). f—pa) L (f 7 (a)) P

where

Vala) = n'*{L(U,(a)) — L(f " (a))}

This lemma is the simplification of Durot et al (2012) supplement lemma 6.6 under some
modification. For simplicity, define s, = v + ap, t, = v — B, and J, = {a : f(s,) < a <
f(t,)}. Note that L is twice differentiable, L',L” are bounded. For all R, there exists 0,
between g(a) and U, (a) such that

From the previous lemma, we will derive

sup U, (a) — f~2(a)] = O, ( (log n) 1/3>

a€R n

It suffices to show that for all € > 0, there exists M < oo such that satisfies

n O\ /3
lim P (sup ( )
n—oo a€R log n

1/2
Apply previous lemma under assuming M (logn)'/3 > K (:ﬁ%) for some K > 0. Note

Un(a) = f~H(a)

>M)<€

that we can bound the support of a as [f(0), f(1)]. Then we have

n O\ 13
lim P (sup ( ) > M )
n—o0 a€R lOg n

~1/3

< Vi 1/ £ n —M3logn
Nnh—>ngon HfHoo(Mg(logn)g/?’+€ )

Un(a) = f(a)
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1/3
Then we can choose M > K, (%) for some K; > 0 to make the probability be less than

€. By using the fact, we can derive the first order approximation of L(-) function centered

on f~Y(a).
iléﬂlyL(Un(@)) — L(fY(a)) = L'(f (@) (Un(a) = [ (a))| = Op(n~*/*(logn)*?)

Note that inf L'(s) > 0 and A(-) is bounded. Then

s€[0,1]

S,=n"?  sup  Ala) |L(Un(a)) = L(f7H(a))|

+ 0 (n_1/3(log n)_2/3)
a€lf (sn) £ (tn)] L'(f~(a)) g

Lemma A.2.10 Let V,(a) defined as in the previous lemma. Then under assumption 2.2.1,

Vo(a) has a different representation

Vi(a) = —argmax{—W;-14)(s) — Dy(a,s) — Rn(a,s)}

s€ln(a)

where
Ly(a) = [n'(L(0) = L(f (), n'*(L(1) = L(f*(a)))]
Wi-1a)(s) = n{ Bu(L(f (a)) + sn™ ") = Bu(L(f'(a)))}

Dy(a,s) = n**{(Ao L' —aL™)(L(fH(a)) + sn™ %) = (A(fH(a)) — af*(a))}

Ru(a,s) =n?{(Apo LY = Ao L™ —n V2B ) (L(fY(a)) + sn~V/?)
— (Ao L ' —AoL ' —n 2B ) (L(f Y(a)))
V,, is defined as
Va(a) = n'*{L(Un(a)) — L(f~*(a))}

By using the definition of U, (a)

Un(a) = argmin{A,(s) — as}

s€[0,1]

L(-) is monotonic increasing, so we can rewrite L(U,(a)) as

L(Un(a)) = {An(L7Y(s)) —aLl™(s)}

s€[L(0),L(1)]
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Then,
Vola) = argmin{An(L_l(L(f_l(a)) + sn_l/?’)) _ aL_l(L(f_l(a)) + sn_1/3)}
sely(a)
The location of the minimum of the process is invariant under addition of constants or

multiplication by n?/3. Hence, for all a € R,

Va(a) = argminn®*{A, (L7 (L(g(a)) + sn™ %)) = aL ™ (L(f 7" (a)) + sn~ %)}

s€ln(a)

= argmin{Ws-1(,) + Dyp(a,s) + R,(a, s)}
s€ln(a)

Lemma A.2.11 Let assumption 2.2.1 hold. Define V,(a),

Vo(a) = — argmax {=W;i-14)(s) = Dy(a, s) — Ry(a,s)}
s€ln(a):|s|<logn
Let0 < u <wv <1 fizxed, and let v, B, be sequences such that o, 5, — 0 and 0 < u+a, < v—

B, < 1 for n sufficiently large. Then for any b(a) € R that satisfies |a—b(a)| < n~'/3(logn)?,

Ala
sp 2y )
a€lf (utan),fw—pa) L (f7Ha))
— s A5 @)+ oy ((logn) )

a€lf (utan), w60 L (f (@)

This is lemma 6.7 in Durot et al (2012) supplement with taking a® = a.

Lemma A.2.12 Let assumption 2.2.1 hold. Let €, = 1/logn and define

P
v(ab) = _Sa‘i?ﬂ?ﬁiign{ W) = (Q(L’((f‘l(b)) e 26”) }
(

V=(a,b) = — argmax { — Wi-1(9(s) — ( + 2€n> 52}
s€ln(a):]s|<logn fHe) 2(L/(f1(b)))?

Then
su M T(a,bla o, ((logn)~2/3
55 b T D enllos )0

and
5.2 s ) g )] 4 op((logm) )

aclf(utam). o5 L' (7 (b(a)))
for any b(a) € R that satisfies |a — b(a)| < n~/3(logn)?.
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This lemma is similar to Durot et al (2012) lemma 6.8. From the previous lemma,

A(a)
Sup T A1
aelf (utan), fo—pa)) L (f 1 (a))
_ sup A(a)
aelf (utan),fw—pa) L (f 71 (@)

[Va(a)]
[Va(@)] + 0, ((log ) ~*?)

Note that % is non zero constant. Hence, it suffices to show that with probability one,

L'(71
Va(@)] < Va(@)] + 7

where 7, = 0,((logn)~%?). The first step is to show that D, (a,s) can be approximated by

%32 Let H, = Ao L' —aL™'. Then, we can derive H' and H/.

L) ’
B8 = B ~ T )
FLNs)  FLI ()LL) | al(L7) ()

A I B) I (71 6) R )

By applying Taylor expansion centered with L(f~!(a)), for all a € [f(0), f(1)] and s € I,,(a),

f'(f(a))
2[L(f~(a))]?

for some 6, such that |0, — L(f~'(a))] < n~'3|s|. Note that Wy 1(,(s) is Brownian

Dafas) = P S 0us) — DU (@)

motion which is symmetric with respect to zero. So Wy-1(4)(s) and —Wj-1(4)(s) has the

same distribution. For all b € R that satisfies |a — b] < n=?(logn)?,

\Vala)| = | = argmax {=W;y14)(s) — Dy(a,s) — Ry(a, 9)}‘

s€lp(a):]s|<logn
= | argmar {W;y14)(s) — Dy(a,s) — Ry(a, 9)}‘

s€ln(a):]s|<logn
f'(g(b)) 2
= | argmar < Wi1,(s)— (/— — 2¢, | s* + hy(a,b, s)
seln(a):s|§10gn{ S 2[L (g(b>>]2

where



By lemma 4.1 in Durot et al (2012), it suffices to show that with probability one, for all
|t] < [s| < logn,
hin(a,b,s) < hin(a,b,t)
hon(a, s) < hap(a,t)
for all (a,b) € &, where

&, = {(a, b):a € [f(u+ay), flv—_25u)],la—b <n3(log n)2} By some algebra,

hin(a, b, s) — hy,(a, b, t)
= Dn(avt) - Dn(av S) + En(tz - 82)

= L H(00) — HILU @) — ) + ealt? — 52)

2
Under the assumptions on (f, f'), H is Lipschitz continuous. Hence,
P(hin(a,b,s) — hin(a,b,t) < 0)
= PGl ~ HILU @I = ) 40 = ) <)
= P(Op(n_1/3 logn) < €n> —1

Similarly,

hon(a, s) — hap(a,t)

= R,(a,t) — Ry(a,s) + e,(t* — 5%
=0, (%) + en(t? — %)

The last equality comes from lemma A.2.6. Then,

( n /
_ P(Op(loin> < eals — ] +t|))
(

) < €570, (log n)) -1
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By Durot et al (2012) lemma 4.1, [f(u + ay), f(v — 3,)] € R. There exsts v, = —— such

logn

that h(a,b,s) < h(a,b,t) for all s,¢ such that |s| > |¢| + 7,. Then,
fHD)

ot = _argmar {Wiesae) = (gmpyp ~ 200 )+ mlesto |
w0 (o))
<| armar {000~ (gt ~2) ¢ 4o

= Vi (a,b)| + op((logn) *?)
Similarly, to show |V, (a)| + 7. > |V, (a, s)| with probability 1, take

f' () 24 g
AL (FE)ET
hon(a,s) = —Ry(a, s) + €,5°

hin(a,b,s) = —Dy(a,s) +

Then we can easily show that h(a,b,s) > h(a,b,t) for all s,t such that |s| + v, < |t| with

probability 1. Then apply Durot et al (2012) lemma 4.1 again.

Lemma A.2.13 Let assumption 2.2.1 hold. Define S, as above with 0 < u < v < 1,

and o, B, as above. Let €, = @ and let ((c) be a random wvariable such that for all

ce R, ¢(c) = argmaz{B,(t + c) — t*} Let ((i(+))ien be a sequence of independent processes,
teR

all distributed like ((-). Define Sg, Sg), Sf) as

Sp 2L max su (c
B ISiSKnce[o,Em}lg( )l

@ d ©)
Sa =, g%cﬁélﬁn”@ (el

(a) (") (¢")) are the copies of (G:)ien,
(b) 0 < 9, < Clogn for some C' > 0,

(c) K, = f=PBn)—flutom) [ _ 1,
(
(

ln+Ln

d) 1, = —inffe”[ﬂ"z,(s)n_l/?’ logn, L, = 2n""3(logn)?,

A =[flu+an) + (i — 1)l + Ln), f(u+ ay) +il, + (0 — 1)L,),
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B, =[f(u+ay)+il, + (i — 1)Ly, f(u+ o) +i(l, + L),
R, = [f(u + O‘n) + Kn(ln + Ln)v f(v - ﬁn)]»

(f) b; is the midpoint of the interval B; for all ¢, and

—1/3
(8) Ain = (14 o(1))(log 77)2{ L (g(bi))zf (g(bi))} .
Then
Sp < _ S < max{SY, S¥} + 0,((logn)%/?)
- 14+ O(Fn) — B »*~A p
This can be proved by applying lemma 6.9 in Durot et al (2012) supplement.
Lemma A.2.14 Let assumption 2.2.1 hold. Define the ordered jump point off as (1 <

<o < 1N, — 1) with setting 7o = 0 and Ty, = 1. Then

logn 13
max |7; — ;1] :Op<( ) >
1<i<N, n

This lemma is similar to Durot et al (2012) lemma 5.1. Note that f and U, are non-

decreasing and right-continuous step functions. Also, the maximal height of the jumps of

U, is the maximal length of the flat parts of f . Hence,

12}2}}\{{T|7‘i — T = ilel]g ll}gll Un(b) — Uy(a)

By triangular inequality, continuity of f~!, and lemma 6.8,

max |1; — 7_1| = su
1§i§N7| ! i1l aeg{

< 2sup U, (a) — F~1(a)] = ()p<<logn>1/3>

a€R

lim U, (b) — f7'(a)

Lemma A.2.15 Let assumption 2.2.1 hold. Then there exist C > 0 such that

~

E[|fa(s) = f(s)]) < O™
for all s € [n='/3,1 —n=3], and
E[|fa(s) = f(5)]] < Cln(min{s, 1 - s})]""/?
forall s € (0,n '3]U[l —n~1/31).
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This lemma is a modification of the theorem 1 in Durot (2007). In the first step, we need

to show lemma 2 in Durot (2007) which is

g

where x > 0 satisfies a certain restriction. As in the proof of lemma 6.7, we have

Un(a) = g(a)

P(|U(a) = f(a)| > )

:P( sup  {Pin+ Poy + Py + P} ZU)
lu—

f~Ha)|>=

where

Py, = —{\,(u) — Au) —n" 2B, o L(u)}
Py = Ao (f7H(a)) = A(fH(a)) = n 2B, 0 L(f ' (a))
Py, = A(f 7' (a)) — Alu) —a(f(a) — u)
Py, =n (B, o L(f !(a)) = By o L(u))
Then we can rewrite it as below.
P(|Un(a) = f(a)| > z)

< P( sup |An(s) — A(s) —n"Y2B, o L(s)| > clx2>

s€[0,1]

”(u_ swp (P — o a) — )} > o)

f=Ha)>yn
for some cy,co > 0. The first probability term can be controlled by using the coupling
inequality in lemma A.2.6. Hence suppose that there exist K > 0 such that satisfies z2n3/* >
Klogn. Then we have
P< sup |An(s) — A(s) — n V2B, o L(s)| > cle)
s€[0,1]
= P(nl/4||Mn — Bpo Ll > clx2n3/4)

<1<L

~ 28n3 T nad
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To control the latter term,

P sw P al @ - u?) 20)

—f - a)>e

— P<|u fsup n_1/2{Bn o L(f~(a)) — B, o L(u)} —co(fHa) —u)? > 0)

“Ha)[>z

< P( sup {Bn oL(f~'(a)) — B, o L(u)} > 02w2'7L1/2>
|u

—f(a)[>=

=53 P( swp  Byo (L(fH(a) — L(w) 2 c3<x2’“-1>2n”2)
=0 ~1(a)|€lz2t-1 22¥)
<P ( wp BT (@) —w > c4<m2k-1>2n1/2)
k>0 lu—f~1(a)|<z2F
< P( sup {B,(f*(a) —u)}* > 05(w424k)n)
> lu—f—1 |<12k
) {{B (z2F)} } .
< 22" 1
~ xin24k in24% ~ ngd
k>0 >0

On the 4th line, we use the property that B, (u — s) L B, (u) — B,(s). The next inequality
holds since L(-) is differentiable and bounded for all s € (0,1). The last inequality can be

derived by Doob’s sub-martingale inequality. In result, for all zn3* > K logn, we have
1 < 1
P(|Un(a) = f7(a) > 2) S —

On the second step, we need to derive an alternative condition for lemma 3 in Durot (2007)

such that for all a & [£(0), f(1)], and under some restriction on x > 0,

1
nx(f(f~H(a) —a))?

To show this inequality, we borrow the similar idea on the proof of lemma 6.7 again.

P(|Un(a) = fHa)| > 2) S

P(|Un(a) = f~H(a)] > @)

:P( sup {Pln+P2n+P3n+P4n}20)
|u

—f~Ha)|>z
Note that f~(a) =0if a < f(0) and f~'(a) = 1if a > f(1). Since f'(s) is not well defined

on s ¢ (0,1), we cannot use the second order approximation of Ps,. Instead, for all a ¢
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[£(0), £(1)], we can still use the inequality such as A(f~!(a))—A(u) < f(f 1 (a))(f (a)—u)).

Then with the similar derivation as above, we have

P( sup {P1n+P2n+P3n+P4n}ZO>
lu—f

—a)|>z

< P(“”‘*HMn — B, o L|lo > co{f(f " (a)) — }/)

' P(u_ wp {Bulf o)~ )} > e {f( Ha)) - }n)

= (a)|>=

< 1
S U @) — et

Lemma A.2.16 Let assumption 2.2.1 hold. Let the jump points be 71 < 7o < +-- < T,

such that satisfies v; = fn(ﬂ) foralli=1,--- N, — 1. Let iy(s) and i5(t) be
il(S) = mln{Z € {Oa ]-7 T 7NT} SUCh that Ti Z S}

io(t) = max{i € {0,1,--- ,N;} such that 7, <1— s}

Then
Ti =5+ Op(n_1/3),forz' =i1(s) — 1,41(s),41(s) + 1
and
Ti=1—t+0,(n %), fori =iy(t) — 1,ia(t),is(t) + 1

It can be proved by Durot et al (2012) supplement lemma 6.11 under the condition,
f(s) = f(s) + Op(n~1/%).

Lemma A.2.17 Suppose that 0 < s < 1 —t < 1 where n'/?s — oo, n'/3t — oo, and

n'/3(1 — s —t) — 0co. Then
P(s < Tir(s) < Tigr) < 1 — t) —>1

It can be proved by Durot et al (2012) supplement lemma 6.12 under f(s) = f(s) +

O,(n~1/3) and previous lemma.
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Lemma A.2.18 Let assumption 2.2.1 hold. If all the assumptions on the lemma A.2.16
and A.2.17 hold, then
P(v; < f(1) for alli <iy(t)) — 1

P(y; > f(0) for alli > i1(s)) — 1
This lemma is similar to Durot et al (2012) supplement lemma 6.13.

P(v; < f(1) for all i < iy(t))
< P(f(ria) < f(1) = P(f(Tiat) = [ (7a(1)) < F(1) = f (7 (1))
S PO, < f(1) = fFL=1) + f(L = 1) = f(Tiai0))
< P(Op(n') < [|f'lloct) — 1

Similarly, we can show P(v; > f(0) for all i > i;(s)) — 1.

Lemma A.2.19 Let assumption 2.2.1 and assumptions in lemma A.2.16 and A.2.17 hold.
Then we can show that
sup  B(u)|f(u) — f(u)] = maX{ sup  B(u)|f(u) = f(u)], Op(n_l/?’)}
u€(s,1—t] ue(Til(s)vTiz(t)]

where B(u) = [4f'(u) L' (u)]~'/3.

This is similar to Durot et al (2012) supplement lemma 6.14. Note that f is constant
on the interval (s, 7;,(s)) and (7;,@), 1 —t) by definition. Note that B(u) is bounded for all
u € [0,1]. Then by lemma A.2.16 and A.2.17,

~

sup  B(u)|f(u) — f(u)]

uETiQ(t),l—t}
< Bl fX =) = FL = )] + | Blloo| f(L = £) = f(Tiy0))]
SUBllo{If@ =) = FA =)+ [F(L = t) = f(Tia)|}
SUBlleo{If@ =1) = FA =) + [ f'llooll = t = T} = Op(n™ /%)

Similarly, we can show that

A

sup - B(u)f (u) — f(u)] £ Op(n~"?)

ue (SvTil (s)]
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Lemma A.2.20 Let assumption 2.2.1 hold. Let o, > Kin~'/3(logn)~2/% and B, > Kon=?(logn)~?/*

for some K1, Ky > 0 that do not depend on n. Then

sup  |f(s) — f(s)] = OP((logn)l/3>

SE(Oé'ml_ﬁn] n

This lemma is Durot et al (2012) theorem 2.1. For the simplicity, let 7;, = 7;,(s,) and
Tiy = Tiy(tn) Where a, = s, and 8, = t,,. Then we have

A~

sup [ f(u) — f(u)

UE(Spn,1—1tn]

< max sup |f(u)—f(U)|+ sup |f(u)—f(U)|

1=11, ’i2ue[7'i—1>7i) UE(Tiy,1—tn]

Note that f is right-continuous function and constant on the interval [1;_1,7;)] for all i =
1,---, N, — 1. By the triangular inequality,

sup  [f(u) — f(w)| = sup |f(ri_1) — f(w)|

ue[ﬂ'_l,ﬂ') uE[Ti_l,Ti)

(Tic1) = fmi) | + 1 ool 7 = Tica

IN
=,

Similarly, we have

sup [ f(u) — f(u)]

UE[Tig,1—tn]
<|f(X=tn) = A =to)] + | f ool Ti — Tig—1]

Note that 1 —t, € [n7Y/3 1 — n=1/3] if n is large enough. Then apply lemma A.2.14 and
A.2.15.

A

sup [ f(u) = f(u)|

UE (Sn,1—tn]

< e ) - sl + 0, ((222))

1=11, 0

Now we define E,, = {s, < 7, < 7, < 1—1,}. Then by lemma A.2.16 and A.2.17,
P(E,) —1and v; = fo f~}(y) for all i =4y, -+ ,iy. In result,
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sup |f(u) = f(w)] < max |(r) = f(m)] + Op((logn>l/3)

UE(Sn,1—tn] 1=, n

= max [y~ (U0 + Op<<10gn)1/3)

1=11,"", n

, N logn\ "/
< max 17l 00 = Gl + 0, (£7) )

co()7) —o(())

a, and 3, can be more relaxed by Durot et al (2012) p.1599. Detailed proofs are skipped.

Un(a) = f~(a)

< [[flloosup
a€eR

Lemma A.2.21 Let assumption 2.2.1 and all the assumptions on the lemma A.2.16 hold.
Then

~

sup  B(u)|f(u) — f(u)]

u€(s,1—t]

= sup  A(a)
a€lf(s),f(1=s)]

Un(a) = f~'(a)

(%))

1(f=1(q))2/3 / —
where A(a) = % and B(u) = [4f'(u) L' (u)]~/3.

This lemma is similar to Durot et al (2012) lemma 5.2. In Durot et al (2012) on

p.1600~1604, change the argument from decreasing function to increasing function.
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APPENDIX B

Implementation of Salanié and Wolak (2019)

Most of the setup will be the similar to Dube, Fox, Su (2012) and Salanié and Wolak (2019).
Let T, J, K, and n denote the total number of markets, the number of products, the number
of observed product characteristics (other than price), and the number of consumers in each
market, respectively. We set T'= 50, J =5, K = 3, and n = 1000. The conditional indirect

utility of consumer ¢ in market ¢ from purchasing product j is defined as
ugie = B + X;tﬂf — Bivje + e + €ije

where the utility of the “outside” good, u;0; = €;0;. The random coefficients, [3;.’s, are drawn
independently from the normal distribution with mean §; and variance o2 where E[B;] = B
and Var(B;,) = o2. 57 indicates (B2, Bis, Bia)’ and BY = Bi5. We set the true parameters 3 =
(B1, Ba, Bs, Bay Bs)' = (—1,1.5,1.5,0.5, —1)', and (02,02,02,02,02) = (0.5,0.5,0.5,0.5,0.2).
The x’s are observed product characteristics generated from the multivariate normal distri-

bution as follows:

T 252/25 —1 1 —-0.8 0.3
T3j 252/25 —1 03 03 1

The ¢;; is the j product specific characteristic in market ¢, and normally distributed with
mean 0O for all j and ¢. In order to avoid the weak IV problem complicating the analysis, we

assume the price to be exogenous. Hence, the price is generated by

D = leje + L1(2y; + 295 + 235)] Vj=1,---,5 Vt=1,---,50

88



where ej; is standard normal distribution random variable for all j and ¢ independently.
To make the notation simpler, define X; = (Xi,,---, X)), & = (&, €n), e =
(piey -+, o), and @ = (B3, 02,02, 02, 02)". The individual’s unobserved characteristics, ;s
are assumed to have Type-I extreme value distribution, so we can compute the probability
that consumer ¢ purchases good j in market ¢ by using logit model.

exp(Bin + X8 — Bipje + &jt)
L+ D exp(Bin + X007 — Bk + Ee)

Then we can generate the observed market share of good j in market ¢ is calculated as the

Sijt (Xtvptagtl ﬁz) =

average of s;;: (X¢, pr, &| B;) over i = 1,...,n. Given the exogeneity assumption, the natural
IV is (1, 1, xaj, x35, p;), which is adopted in our implementation of the MPEC. he number
of Monte Carlo simulation is M = 1,000. For each simulation, we choose the initial value as

the true parameter which is infeasible in practice.

To derive Salanié and Wolak’s estimator, we follow section 7.2 in Salanié and Wolak
(2019). Salanié and Wolak’s (2019) approximate model is the linear model with the de-
pendent variable y;; = log (S;:/ Sot) and explanatory variable 1, xq, o, x3, p along with the
artificial regressors described in their Theorem 2. We estimated the linear model is estimated
by 2SLS with IV 1, x1, x5, 3, p as well as their second degree polynomials including all the
interactions. As in Salanié and Wolak (2019, Section 7.2), if any coefficient for the last
four variables is negative, we set that coefficient to 0 and rerun the regression without that
variable. We iterate this process until all the coefficients are positive, or all four variables

are excluded from the regression.

As for the misspecified model, all other things are the similar to DGP 1 case except that
we choose the top five products out of J = 25, and work with them. Compute the observed
market shares for each market and average market shares for each good j. We pick top 5
products whose average market shares are bigger than other goods. Then we estimate the
MPEC estimator and the Salanié and Wolak estimator with these 5 products only. All the

other Monte Carlo setting is the same as the full specification model case.
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APPENDIX C

Tables Related to Chapter 3
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Small Sigma Estimator

Var(v) 1 0.5 0.25 0.1
Median Bias 0.0059007  0.00076029  -0.00039608 -0.00353805
Mean Bias 0.02053342  0.00339363  -0.00135234 -0.00299598
RMSE 0.56017176  0.5433295  0.52646188  0.5163012
MAE 0.41672348  0.3943496  0.37919647  0.37666595
Interquartile Range 0.64512991  0.59407214  0.56953993  0.56707552
Geary’s Estimator
Var(v) 1 0.5 0.25 0.1
Median Bias 3.38695638  3.50646605  3.59341872  3.56975641
Mean Bias 2.62125886  1.94946088 -3.64213812  5.97050425
RMSE 634.6141964 1200.487573 658.4733105 168.9616274
MAE 32.47634986  35.83359323 27.91168193 19.16115362
Interquartile Range 3.84986346  0.59407214 3.6049031 3.46211157

Table C.1: Erros in Variables. z* is Lognormal mean 2 variance 1, € is Conditionally Normal,

v 1s Normal
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Small Sigma Estimator

Var(v) 1 0.5 0.25 0.1
Median Bias -0.56593994  -0.32586635 -0.15533879 -0.05701099
Mean Bias -0.55534234 -0.30880789 -0.13823101 -0.03739943
RMSE 0.56832234  0.33987435  0.20169069  0.16036092
MAE 0.55575617  0.31623643  0.17250103  0.12582738
Interquartile Range 0.14863846  0.17173319  0.17789519  0.18670953

Geary’s Estimator

Var(v) 1 0.5 0.25 0.1
Median Bias 0.51325992  0.47657559  0.45248973  0.45854324
Mean Bias 0.96081907  0.57474091  0.54343496  0.53674692
RMSE 14.22912204 1.05156461  0.7511413  0.73044273
MAE 1.56116272  0.63568127  0.5721476  0.56093292
Interquartile Range 0.91526922  0.6805154  0.59647641  0.58267553

Table C.2: Erros in Variables. z* is Lognormal mean 2 variance 1, € is Conditionally expo-

nential, v is Exponential

92




Small Sigma Estimator
Var(v) 1 0.5 0.25 0.1
Median Bias -0.51077675  -0.2173441 -0.08218083 -0.03775122
Mean Bias -0.50168868 -0.20167067 -0.06169185 -0.01378808
RMSE 0.51710169 0.240458  0.14555036  0.13459034
MAE 0.50338678  0.21671581  0.11602989  0.09744076
Interquartile Range 0.14992975  0.14661187  0.14310532  0.14298898
Geary’s Estimator
Var(v) 1 0.5 0.25 0.1
Median Bias 0.30337322  0.27056077  0.2594931  0.25547228
Mean Bias 0.3387876  0.45793172  0.43525852  0.42273372
RMSE 29.80462094 0.90963741  0.79557016  0.775105
MAE 1.18010251  0.51131818  0.47637143  0.45934885
Interquartile Range 0.7932881  0.58790664  0.56083893  0.53654966

Table C.3: Erros in Variables. z* is Lognormal mean 2 variance 1, € is Conditionally Log-

normal, v is Lognormal
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OLS y on 22

Var(v) 1 0.5 0.25 0.1
Median Bias -0.66774573  -0.48254914 -0.30719512 -0.14486135
Mean Bias -0.66602503  -0.4813456 -0.30640648 -0.14497245
RMSE 0.66705349  0.48413019  0.31285023  0.16142035
MAE 0.66602503  0.4813456  0.30640648  0.14606273
Interquartile Range 0.04911076  0.07011052  0.08445887  0.09708419
IV Estimator
Var(v) 1 0.5 0.25 0.1
Median Bias -0.44674715 -0.27532724 -0.15235236 -0.06399066
Mean Bias -0.44534586  -0.27391852 -0.15184726 -0.06384898
RMSE 0.44712235 0.27853358  0.16292023  0.09010106
MAE 0.44534586  0.27391852  0.15221225  0.07427426
Interquartile Range 0.05335457  0.06826231  0.08054825  0.08666268
Amemiya Corrected Estimator
Var(v) 1 0.5 0.25 0.1
Median Bias 0.0797564  0.38038877  0.60020237  0.76977432
Mean Bias 0.10225365 0.41417161  0.6471922  0.82038181
RMSE 0.18834066  0.46565072  0.69856512  0.87049724
MAE 0.13578402  0.41420406  0.6471922  0.82038181
Interquartile Range 0.05335457  0.06826231  0.08054825  0.08666268
Small Sigma Estimator
Var(v) 1 0.5 0.25 0.1
Median Bias 0.00590192  0.00266413  0.00138948  0.00269225
Mean Bias 0.03431635 0.01488819  0.00711491  0.00358145
RMSE 0.25789363  0.20279282  0.18335521  0.17018096
MAE 0.19747258  0.15946337  0.14494053  0.13409058
Interquartile Range 0.32520042  0.26757543  0.24271422  0.21998333

Table C.4: Nonlinear EIV. z* is Normal, € is Conditionally Normal, v is Normal
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OLS y on 22

Var(v) 1 0.5 0.25 0.1
Median Bias -0.7479597  -0.51671439 -0.30719512 -0.14486135
Mean Bias -0.75088258 -0.51788976 -0.30640648 -0.14497245
RMSE 0.75264114  0.52022934  0.31285023  0.16142035
MAE 0.75088258  0.51788976  0.30640648  0.14606273
Interquartile Range 0.06769558  0.06425112  0.08445887  0.09708419
IV Estimator
Var(v) 1 0.5 0.25 0.1
Median Bias -0.46252604 -0.29254301 -0.15235236 -0.06399066
Mean Bias -0.46220701 -0.29171937 -0.15184726 -0.06384898
RMSE 0.4633994  0.29431769  0.16292023  0.09010106
MAE 0.46220701  0.29171937  0.15221225 0.07427426
Interquartile Range 0.04468101  0.05287052  0.08054825  0.08666268
Amemiya Corrected Estimator
Var(v) 1 0.5 0.25 0.1
Median Bias 0.45512922  0.17273369  0.00796434  0.11893447
Mean Bias 0.71202971  0.24338289  0.02083869  0.14667907
RMSE 1.15305214  0.40524683  0.08423576  0.21657233
MAE 0.71565705  0.25029957  0.05239403  0.14795398
Interquartile Range 0.64206953  0.23798145  0.07605631  0.11470033
Small Sigma Estimator
Var(v) 1 0.5 0.25 0.1
Median Bias 0.02580142  0.00446472  0.00138948 -0.00570922
Mean Bias 0.05457943  0.01888276  0.00711491  0.00203709
RMSE 0.26569576  0.16542408  0.18335521  0.0978058
MAE 0.19252873  0.12696627  0.14494053  0.07518445
Interquartile Range 0.29883803  0.20609076  0.24271422  0.12201324

Table C.5: Nonlinear EIV. z* is Normal, € is Conditionally Lognormal, v is Lognormal
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OLS y on 22

Var(v) 1 0.5 0.25 0.1
Median Bias -0.50126498 -0.30591465 -0.17012242 -0.07224074
Mean Bias -0.48704139 -0.29517029 -0.16204472 -0.06799991
RMSE 0.4960967  0.30817462  0.17993787  0.09761337
MAE 0.4871255  0.29586717  0.16584607  0.08226621
Interquartile Range 0.11230046  0.10872575  0.09645099  0.08716481
IV Estimator
Var(v) 1 0.5 0.25 0.1
Median Bias -0.29425488 -0.15240263 -0.07496064 -0.02965799
Mean Bias -0.28132842  -0.14279608 -0.06862583 -0.0266858
RMSE 0.29827652  0.16676118  0.10220636  0.07307715
MAE 0.28331316  0.15050095  0.0862621 0.0576126
Interquartile Range 0.12251059  0.10624908  0.09464238  0.0838979
Amemiya Corrected Estimator
Var(v) 1 0.5 0.25 0.1
Median Bias -0.01963609  0.01556076  0.02881465  0.03461751
Mean Bias 0.00452011  0.03279451  0.03953529  0.04089205
RMSE 0.17019799  0.13422275 0.10782767  0.09137732
MAE 0.12593831  0.09848054  0.08020462  0.06844704
Interquartile Range 0.19791128  0.15746291  0.12283809  0.09818892
Small Sigma Estimator
Var(v) 1 0.5 0.25 0.1
Median Bias 0.00627275  0.00149063  0.0018266  0.00007712
Mean Bias 0.0200356  0.00931974  0.005892  0.00142527
RMSE 0.1617006  0.12325474  0.1007321  0.08515778
MAE 0.12472022  0.09613137  0.07848716  0.06645545
Interquartile Range 0.20401244  0.15804816  0.12945255  0.10849898

Table C.6: Nonlinear EIV. z* is LogNormal, € is Conditionally Normal, v is Normal
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OLS y on 22

Var(v) 1 0.5 0.25 0.1
Median Bias -0.59741813 -0.32887623 -0.16956284 -0.06993126
Mean Bias -0.58931121 -0.32551008 -0.16815382 -0.06907677
RMSE 0.59938662  0.33774672  0.18025816  0.0812769
MAE 0.58931121  0.32563379  0.16862681  0.07178086
Interquartile Range 0.13536983  0.11664459  0.08585688  0.05563245
IV Estimator
Var(v) 1 0.5 0.25 0.1
Median Bias -0.325791  -0.17131089 -0.08654402 -0.03501108
Mean Bias -0.31688135 -0.16765803 -0.08408385 -0.03341395
RMSE 0.33104973  0.18415136  0.10143134  0.05185354
MAE 0.317191  0.16915982  0.0884671  0.04293441
Interquartile Range 0.12402853 0.10171224  0.07510554  0.05135329
Amemiya Corrected Estimator
Var(v) 1 0.5 0.25 0.1
Median Bias 0.44166482  0.10102046  0.02560862  0.00934375
Mean Bias 0.6264693  0.13706725  0.0355928  0.01459266
RMSE 0.99985043  0.25442999  0.09452867  0.05599176
MAE 0.63511139  0.16062314  0.06501722  0.03909061
Interquartile Range 0.53705289  0.18796216  0.09450349  0.06000326
Small Sigma Estimator
Var(v) 1 0.5 0.25 0.1
Median Bias 0.02257894  0.01225509  0.00364651 -0.00145249
Mean Bias 0.02686493  0.01267295 0.00558811  0.00074829
RMSE 0.16952677  0.11063062  0.07862495  0.05327558
MAE 0.13079945 0.08678314  0.06130857  0.04144279
Interquartile Range 0.20816054  0.14445049  0.10021287  0.0685468

Table C.7: Nonlinear EIV. x* is Lognormal, € is Conditionally LogNormal, v is Lognormal




x 1s Normal

Var(v) 1 0.5 0.25 0.1
Median Bias -0.00598048 -0.00325592 -0.00142989 -0.00056369
Mean Bias -0.0011145 -0.00100048 -0.00048711 -0.00003059
RMSE 0.09330586  0.06930314  0.05021091  0.0322496
MAE 0.07344119  0.05462343  0.03982862  0.02553086
Interquartile Range 0.12110774  0.09087639  0.06701781  0.04272559
x is Lognormal
Var(v) 1 0.5 0.25 0.1
Median Bias 0.00392041  0.00216836  0.00098878  0.00053627
Mean Bias 0.04764268  0.0288944  0.01391341  0.0051318
RMSE 0.19121108  0.1367126  0.08752681  0.04754973
MAE 0.11629754  0.08151423  0.05314492  0.03131034
Interquartile Range 0.14182684  0.10054595  0.06919837  0.04374255

Table C.8: Panel Cubic.
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z 1s Normal

Var(v) 1 0.5 0.25 0.1
Median Bias -0.03802318 -0.0122674  -0.00632409 -0.00182573
Mean Bias -0.02235625 -0.00509132  -0.0020255 -0.00065373
RMSE 0.17058624  0.12167038  0.08819034  0.05727959
MAE 0.13370623  0.09524048  0.06933336  0.04487821
Interquartile Range 0.20968719  0.15489932  0.11502123  0.07317141
x is Lognormal
Var(v) 1 0.5 0.25 0.1
Median Bias 0.00286273  0.00091688  0.00054648  0.00094852
Mean Bias 0.12625453  0.08859159  0.05779883  0.02998001
RMSE 0.38082646  0.30058958  0.22424949  0.14524774
MAE 0.24158203  0.18230822  0.13122422  0.08154466
Interquartile Range 0.32552011  0.22521886  0.15593321  0.09779762
Table C.9: Panel Quartic.
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x 1s Normal

Var(v) 1 0.5 0.25 0.1
Median Bias -0.18984658 -0.12064102 -0.0311165 0.02066977
Mean Bias -0.17300443 -0.06300058  0.02795941  0.07959617
RMSE 0.25523411  0.20548907  0.19472567  0.2172741
MAE 0.21064286  0.17781417  0.15649797  0.15947687
Interquartile Range 0.28904859  0.29102961  0.28185638  0.27989457
x is Lognormal
Var(v) 1 0.5 0.25 0.1
Median Bias -0.20029394 -0.10971856  -0.02597325 0.02136421
Mean Bias -0.13853082 -0.01496322 0.07628208  0.12980679
RMSE 0.28087786  0.2641336  0.28003166 0.31070715
MAE 0.24011425  0.22275249  0.21236031 0.21872283
Interquartile Range 0.35211116  0.37324621  0.38003962  0.39127706

Table C.10: Panel Probit.

100




CMLE

Var(v) 1 0.5 0.25 0.1
Median Bias 0.00205078  0.00097656  0.00439453  0.00039063
Mean Bias 0.00708029  0.0069249  0.00792036  0.0060149
RMSE 0.1050914 0.1030499  0.09938424  0.09885032
MAE 0.08317732 0.081374 0.07893228  0.07833572
Interquartile Range 0.13857422  0.13603516  0.13193359  0.13085938
Small Sigma (NLS)
Var(v) 1 0.5 0.25 0.1
Median Bias -0.39885633 -0.17940823 -0.07612222 -0.04940441
Mean Bias -0.4376699  -0.15068319 -0.00298548 0.02350013
RMSE 0.50020954  0.32101035 0.26181267  0.25082368
MAE 0.44354135  0.26746249  0.21537681  0.20054547
Interquartile Range 0.38306654  0.31581093  0.36869457  0.35162067
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Table C.11: Panel Logit. = is normal.




MPEC

Estimator Intercept Bt B Bt Bp
Median Bias 0.00320982  0.00410643  0.00247197  0.00213128 -0.00061482
Mean Bias 0.00327289 -0.00118299 -0.00117452 0.00127605 -0.00087011
RMSE 0.14336127  0.09266291  0.09309032  0.10218564  0.03942856
MAE 0.11513557  0.07463456  0.07483739  0.08134004  0.0311196
Interquartile Range  0.1980887  0.12878413  0.12274048  0.13911703  0.05244731
Salanie Wolak
Estimator Intercept Bt b1 Bt By
Median Bias -0.21836539  -0.1281617 -0.12630201 -0.1683262  0.21368087
Mean Bias -0.23191272  -0.12836203 -0.12660798 -0.16775433  0.20947628
RMSE 0.32712378  0.16400237  0.1643049  0.2049105  0.22464712
MAE 0.25495421  0.13827713  0.13947236  0.17815839  0.21108042
Interquartile Range 0.25767255  0.14241261  0.13681291  0.14911396  0.10724794

Table C.12: BLP. Var(§) = 1. Correct Specification (5 Products)
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MPEC

Estimator Intercept Bt L1 B Bp
Median Bias -1.2015194  -0.13770422 -0.14096711 -0.19971165 0.16033575
Mean Bias -1.20012674 -0.14508589 -0.14431966 -0.20060055 0.16181497
RMSE 1.22015924  0.17614525  0.17495241  0.23159645 0.18514548
MAE 1.20012674  0.14989246  0.15055837  0.20420278  0.16474448
Interquartile Range  0.30264835  0.13859443  0.13810483  0.15528841 0.11987642

Salanie Wolak

Estimator Intercept Bt b1 Bt Bp
Median Bias -0.44482452  -0.21671778 -0.21203814 -0.24366902 0.15598143
Mean Bias -0.41651366 -0.20362023 -0.20116452 -0.23244942 (.15325438
RMSE 0.52005419  0.24395978  0.24288293  0.29208016 0.17649116
MAE 0.4613044  0.21787159  0.21377749  0.25344871 0.15766659
Interquartile Range  0.27495204  0.1607882  0.1844804  0.22560219  0.1187552

Table C.13: BLP. Var(€) = 1. Misspecification (5 out of 25 Products). Average Total Share

= 0.56252245
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MPEC

Estimator Intercept Bt B Bt Bp
Median Bias -0.20506335 -0.13574494 -0.13280326 -0.17548911 0.21744681
Mean Bias -0.22207401  -0.13443309 -0.13334403 -0.17361629 0.21372628
RMSE 0.28941384  0.15433174  0.15435799  0.19504274  0.22261266
MAE 0.23058396  0.13662437  0.1372282  0.17612091 0.21393411
Interquartile Range 0.19939628  0.1072708  0.09816325  0.11216283 0.08611314
Salanie Wolak
Estimator Intercept Bt b1 Bt Bp
Median Bias -0.20506335 -0.13574494 -0.13280326 -0.17548911 0.21744681
Mean Bias -0.22207401  -0.13443309 -0.13334403 -0.17361629 0.21372628
RMSE 0.28941384  0.15433174  0.15435799  0.19504274  0.22261266
MAE 0.23058396  0.13662437  0.1372282  0.17612091 0.21393411
Interquartile Range 0.19939628  0.1072708  0.09816325  0.11216283 0.08611314

Table C.14: BLP. Var(¢) = 0.5. Correct Specification (5 Products)
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MPEC

Estimator Intercept B L1 B Bp
Median Bias -1.23094782  -0.14669893 -0.14965234 -0.20158297 0.16797169
Mean Bias -1.23077349 -0.15106099 -0.15081505 -0.20507029 0.16743647
RMSE 1.24274868  0.16930013  0.16870399  0.22411429 0.18241124
MAE 1.23077349  0.15209501  0.1523521  0.20581631 0.16815145

Interquartile Range  0.23799566  0.10837596  0.10326225  0.12065542 0.09706861

Salanie Wolak

Estimator Intercept Bt b1 Bt Bp
Median Bias -0.42262488  -0.2286124  -0.22754145 -0.24767152 0.16565774
Mean Bias -0.40002089 -0.21624104 -0.21402544 -0.23290066 0.16172903
RMSE 0.48724347  0.24674092  0.24560652  0.28058986  0.18098031
MAE 0.43819176  0.22521259  0.22107006  0.24673006 0.16482162

Interquartile Range  0.24193754  0.14331607  0.16029932  0.20552968  0.1105574

Table C.15: BLP. Var(§) = 0.5. Misspecification (5 out of 25 Products). Average Total
Share = 0.55897623

105




MPEC

Estimator Intercept Bar Ba1 B Bp
Median Bias 0.0010128  0.00129972  0.0007823  0.00067123 -0.00017931
Mean Bias 0.00101821 -0.00037422 -0.00037142  0.0004009  -0.00027269
RMSE 0.04525624  0.02929754  0.02943317  0.0323096  0.01245354
MAE 0.03634602  0.02359739  0.02366179  0.02571804  0.00982886
Interquartile Range 0.06252715  0.04072018  0.03877752  0.04397514  0.0165419
Salanie Wolak
Estimator Intercept B L1 B Bp
Median Bias -0.18918418 -0.14056245 -0.14363304 -0.18067884 0.21981331
Mean Bias -0.20160012  -0.14053435 -0.14034675 -0.18013461 0.21772261
RMSE 0.23471013  0.14779609  0.14782882  0.18829451  0.22148601
MAE 0.20190523  0.14053846  0.14046197  0.18021244  0.21772261
Interquartile Range 0.12622517  0.06541273  0.06067378  0.0717111  0.05474974

Table C.16: BLP. Var(¢) = 0.1. Correct Specification (5 Products)

106




MPEC
Estimator Intercept Br1 Bz Bt Bp
Median Bias -1.25329744  -0.15554562 -0.15820311 -0.20841095 0.17332504
Mean Bias -1.25608526 -0.15584194 -0.15616071 -0.20925829 0.17138933
RMSE 1.26166717  0.16385952  0.16405966  0.21868453  0.17949418
MAE 1.25608526  0.15584194  0.15622153  0.20925829 0.17141752
Interquartile Range  0.15844844  0.070389  0.06735977  0.08348667 0.06864748
Salanie Wolak
Estimator Intercept B L1 B Bp
Median Bias -0.40733109 -0.24075116 -0.23855063 -0.24854034  0.177201
Mean Bias -0.39695824  -0.22646207 -0.22504928 -0.23349533 0.16885883
RMSE 0.44863975  0.24919278  0.2485182  0.27001805 0.18434562
MAE 0.41856364  0.23046657  0.2289629  0.24078397  0.17038986
Interquartile Range  0.190428  0.13431571  0.14206482  0.1819861  0.1096493

Table C.17: BLP. Var(§) = 0.1. Misspecification (5 out of 25 Products). Average Total
Share = 0.55611005
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