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ABSTRACT OF THE THESIS

An Ultra-Wideband High Power-Added Efficiency Power Amplifier Design for 3 to 9 GHz

Operation

by

Zixi Liu
Master of Science in Electrical and Computer Engineering
University of California, Los Angeles, 2025

Professor Yuanxun Wang, Chair

The development of materials and communication theories in the past several decades has led
to more possibilities in power amplifier design and applications. In this thesis, a broadband
power amplifier with power-added efficiency (PAE) between 25% to 48% (within the band of
3.3 GHz to 8.5 GHz) with a 12 V direct-current (DC) power supply and 32 dBm output power
is implemented. The power amplifier consists of two single-stage gallium nitride (GaN) high-
electron-mobility transistor (HEMT) amplifiers and two Marchand Baluns (balanced-unbalanced)
for input and output matching. The amplifying stages have 25 € source impedance and 100
load impedance for optimal PAE performance. The Marchand Baluns are based on two /4 short-
circuit stubs connected to the balanced ports and a 1/2 open-circuited stub for the unbalanced port.
One challenge in the Marchand Balun design is accommodating the impedance environment and
ensuring close to 50 Q source and load impedance at the input and output ports of the entire power

amplifier module.
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CHAPTER 1

Introduction

1.1 Background

Communication circuits have advanced rapidly over the past two decades, and commercialized
products have significantly changed our lives, from 2G technology in the early 21% century to 5G
and even 6G technology in the 2020s. Technological advances have also presented challenges to
circuit design rubrics and requirements. With increased information capacity and users, commu-

nication systems nowadays require larger bandwidths and more channels.

The developments in materials have also changed the landscape of radio frequency (RF) circuit
design in the past two decades. Introduced in the 1990s, gallium nitride (GaN) offers more pos-
sibilities for communication circuit designs. The large band gap of GaN enables the transistors
to withstand higher voltages and thus deliver more power. The popularity of GaN devices has
also boomed in the past ten years, ranging from RF circuits (e.g., 5G stations) to charger adapters,

enabling more compact engineering solutions.

Power amplifiers (PAs), critical components in wireless communication transmitters, amplify sig-
nals for long-distance transmission. Consider the four factors in system design: power, size, cost,
and performance. The introduction of GaN transistors can: a) increase the power efficiency of the
circuit while producing a high-power output signal; b) reduce the size of the circuit by simplifying

design; ¢) reduce the cost by reducing the number of electronic components; d) increase the output



signal power level through enhanced voltage handling capabilities.

In addition, gallium nitride power amplifiers can produce gain over a relatively wide band, meaning
a single amplifier can work for multiple bands with acceptable performance. This advantage can
save both the cost and the physical size of a circuit system. These advantages of GaN have made it

one of the most attractive candidates in power amplifier designs.

1.2 Design Purposes and Environment

The objective of this power amplifier design started with an operating frequency of 3 to 9 GHz,
which fell into the centimeter wave region. One advantage of centimeter waves is the reduced
sensitivity to distance and lower power loss during transmission, a common issue for the 28-GHz

5G network we are currently using.

In addition to the frequency operating range, the power amplifier should be differential instead of
single-ended. Introducing a differential stage can significantly reduce the common-mode noise of
the circuit. To be more specific, when analyzing the small-signal model (i.e., linear model) of a
fully differential amplifier, common-mode components are suppressed by the balanced symmetry
of the two differential branches, reducing the common-mode noise at the same time. In contrast, the
differential signals experience significantly higher amplification compared to the common-mode

components.

In this design, the author applied the Hughes Research Lab (HRL) GaN high-electron-mobility
transistors (HEMTs) with a 12 V voltage supply. Another crucial design aspect of power amplifiers
is the power consumption and amplification of signal power: gain, power-added efficiency (PAE),
and 1-dB compression point (P;_gg). The design objective was to reach a 12 dB gain with a PAE

of no less than 40% throughout the band after layout. The output power level was set to 30 dBm



(1 W) on a 50Q load impedance. Power amplifiers generally reach maximum PAE in the gain
compression region; hence, the P 4g point is unimportant, but mitigating gain compression can

improve the PAE performance.

1.3 Topology and Design Process

The topology of this thesis consists of several basic modules: an input Marchand Balun (balanced-
unbalanced), two single-stage amplifiers with input and output matching networks, and an output
Marchand Balun. The input and output of the completed power amplifier (PA) module are matched

to a 50 € source/load impedance pair.

The design approached as the following steps:

1. design of an amplifying stage (e.g., a single-stage amplifier) to validate the design topology

and the potentials in gain and PAE;

2. design of Marchand Baluns (both the input and the output) and combine them with the two

single-ended amplifiers into a differential PA;

3. ensuring the performance of the differential PA, double checking design parameters, and

tuning for optimal performance;

4. layout of the differential PA and final testing;

1.4 Previous Works

This thesis contains two major sections where previous works contributed to the final outcome.
There are two major challenges in this work: the design of a PA over a wide bandwidth and the

design of low-loss Marchand Baluns for differential architecture.



For the power amplifier topology [1], J. Yan and other researchers mentioned that their power
amplifier could deliver 41 to 43 dBm output power with a PAE from 47% to 63% under 30 V power
supply. The researchers introduced a cascode (two transistors in a chain) topology for consistent
gain and efficiency throughout the 0.5 to 2.5 GHz band. The high gain and PAE performance led

to the author’s decision to initiate this design with a cascode amplifying stage.

For the Marchand Baluns, Hammed [2] introduced a design of ultra-wideband (UWB) Marchand
Balun that worked from 3.1 to 10.6 GHz with |S;;| < —10dB. Since the design was close to the
expected operating band of this thesis, the design of Marchand Baluns stemmed from this paper.
However, due to the different impedance settings, the Marchand Baluns required modifications to

function properly for this thesis.



CHAPTER 2

Fundamental Concepts and Approaches

2.1 Fundamental Concepts

2.1.1 Gain

Gain describes the circuit’s ability to amplify the signal input and deliver it to the output. The gain
of a circuit is defined as the ratio of the output signal magnitude to the input signal magnitude.
However, there is a difference between the typical voltage gain in analog circuit design and the
power gain used for power amplifier design. While voltage gain measures the amplification of the
signal voltage, power gain quantifies the actual energy transfer to the load. This energy transfer
quantification is essential in power amplifiers where efficiency and impedance matching play crucial

roles in PA design. To express the definition of gain in equation form:

%
Ay = ‘;ut (unitless or expressed in decibels: 201og;,(Ay)) 2.1
in
P
Gp= Pout (unitless or expressed in decibels: 101og;((Gp)) (2.2)
in

In addition, there is a difference between small-signal gain and large-signal gain. Small-signal
gain is based on a linear model where the signal needs to be relatively small compared to the
biasing point. However, the large output signal power in a PA means that the signal is no longer
relatively small. This means the power gain of a PA differs from the small-signal S-parameter
gain Sy;. Researchers utilize harmonic balance simulations to obtain large-signal gain in power

amplifier design. Though not accurate, the small-signal voltage gain (S»;) is a helpful tool in

5



demonstrating the amplifier’s potential during the designing phase. The original goal for this power
amplifier’s large-signal power gain was 12 dB under gain compression (where |S>;| voltage gain is

approximately 15 dB without compression).

2.1.2 S-Parameters

S-parameters are crucial in describing the circuit behavior under a high-frequency environment,

which represents the interaction between the incident and reflected voltage waves.

Vl_ _ St Si2 Vi" (2.3)

Vz_ So1 S» V;

Take a two-port system as an example, which is shown in Figure 2.1 [3]. The relationship between
the four voltage waves can be written as in Equation 2.3. S1; refers to the input return loss, which
indicates the quality of the input matching network, whereas Sy, denotes the output return loss and
assesses the quality of the output matching network. In most narrow-bandwidth designs, designers
generally aim for a lower than -20 dB magnitude for |S;;| and |S»,| after impedance matching.
However, achieving such a high-quality matching in an ultra-wideband environment is impossible.
In this design, the author aimed for |S;;| < —10dB and |S»2| < —10 dB matching throughout the 3
to 9 GHz band.

. port 1
V, port 2

Figure 2.1: Two-Port System S-Parameters Definition

S21 and S, describe the input and output interaction. S5 is the forward voltage gain of the system,
and S1; is the isolation of the system. The two-port system is unilateral if |S|,| is zero. In small-

signal radio frequency design, |S2;| is the small-signal voltage gain. However, in power amplifier



design, |S71] is not the gain of power amplifiers in regular operation. S»; parameter can only hint

at the large-signal gain and how to tune the circuit.

2.1.3 Input and Output Matching

In the design of power amplifiers, the matching rubrics are different from common approaches. To
maximize output power and efficiency, the output ports of the two amplifying stages were matched
based on the load-pull analysis results. In this design, the single-stage amplifying architecture
offered a higher power output with significantly improved efficiency at a load impedance of 100 €;
therefore, a non-50 € load was selected. The output Marchand Balun then converted the 100
loads of the two amplifying stages to a single-ended 50 €2 output. This conversion also applied to
the input ports where the input impedances of the amplifying stages were set to 25 €. The author
mainly utilized L-C networks and inductive degeneration in this design to match the input and

output ports.

2.1.3.1 L-C Matching Network

L-C matching is a common approach in impedance matching. In this design, both the input
and output ports of the amplifying stages contained at least one L-C matching network. Both
inductors and capacitors are frequency-dependent; hence, the changes in reactance and susceptance
also depend on the operating frequency. A series-connected inductor or capacitor changes the
impedance along a constant resistance circle on the Smith Chart. In contrast, a shunt-connected
inductor or capacitor changes the admittance along a constant conductance circle. By introducing
a series-shunt network, the impedances at specific frequencies can be modified to any impedance
points on the Smith Chart. In unilateral systems, the required inductor and capacitor values can

be calculated. However, due to the bilateral nature (|S;2| # 0) of gallium nitride transistors, the



calculation is more for the magnitude level than the exact number.

Inductive reactance: Xy = wL

. 1
Capacitive reactance: X¢ = ———
wC
1 2.4)
Inductive susceptance: By = ——
wL

Capacitive susceptance: B¢ = wC

For example, at 6 GHz (the center operating frequency), if the required change in reactance and
susceptance are assigned as £10Q and +10S respectively, the corresponding inductance and

capacitance values are:

X 10
Series-connected L = L 7 5 0.265nH

w1: 27 % 6 % 1oi
Series-connected C = oIXc] = X6 %109 < 10 ~
Shunt-connected C = %Cl = #Oxl()f ~
Shunt-connected L = oIBy| = X6 X109 %10 r

2.1.3.2 Inductive Degeneration

(2.5)

Another common matching approach is inductive degeneration. This approach was used in the
single-stage design to improve stability and assist input matching. The analysis is shown below

with the schematic [4] in Figure 2.2.

mI
Vp = (1X+ Em X )Lls (2.6)
Cgs1s
Vx =Vgs1 +Vp 2.7
V 1 mL
X +Lys+ St (2.8)
Ix  Cgsis Cesi

For input matching, the designers generally set the real part (%) as 50 Q. However, inductive

degeneration primarily served to enhance the stability of the PA in this thesis. The inductive

8



(a)

Figure 2.2: Inductive Degeneration Demonstration

degeneration also served as an equivalent model for the inductive effect of the bond wire connecting

between the chip and the printed circuit board (PCB).

2.1.3.3 Feedback Loop

In the previous work [1], the researchers also applied an R-C feedback loop for the cascode PA
topology, which enhanced stability and broadband input matching. However, feedback also reduced
the circuit’s gain. In a cascode design, the gain of the power amplifier is high enough to compensate
for such loss, but it is not acceptable for a single-stage design. Therefore, the author decided not to

use feedback for the single-stage amplifiers.

2.1.4 Gain Compression and Power-Added Efficiency

Gain compression in a power amplifier occurs when the output power deviates from linearity at
high input levels, leading to a reduction in gain. The input power level that causes a 1 dB gain drop
is defined as the 1-dB gain compression point (P;_gg). This nonlinear behavior arises as transistors
approach saturation. The maximum power-added efficiency (PAE) occurs in the gain compression
region for most PAs. However, gain compression can also introduce distortion (e.g., harmonic

generation, intermodulation), which should be considered while choosing the input power level for



optimal PAE performance.

One of the key objectives in this design was to reach a high PAE throughout a wide bandwidth
with a 12 V direct-current (DC) supply. PAE quantifies how effectively a power amplifier converts
the input signal power into useful RF output power, accounting for both amplification gain and DC

power consumption. It is calculated as:

PRrE—out — PRE-;
PAE = —REzout — “RFZIn 009 (2.9)

Ppc

where P,,; is the RF output power, P;, is the RF input power, and Ppc is the DC supply power
consumed. Unlike drain efficiency, which ignores input power in the calculation, PAE highlights
the amount of power the amplifier adds to the signal. This thesis originally aimed to design a PA

with 40% PAE throughout the operating band after layout.

2.1.5 Stability

Stability refers to an amplifier’s ability to avoid oscillations (unwanted signal generation) under all
operating conditions and source/load impedance pairs. There are two main parameters for checking
the stability of a circuit: the stability K factor and the A factor. The stability results depend on
the testing environment, meaning the source and load impedance should be set according to our

design. The circuit is stable if K > 1 and |A| < 1 at the same time, where,

A= S81182 — S12521 (2.10)

_1- 1S111% = [S22]? + |A]?
2|S12821]

K 2.11)

In designing wideband PAs, the designers should check for unconditional stability across all relevant
frequencies with given source/load impedance pair values, avoiding instability at harmonics. A rule
of thumb is to check stability across DC to the third-order harmonics of the operating frequencies.

In this design, the author decided to run stability simulations from 0 Hz to 30 GHz.

10



2.2 Power Amplifier Classes

There are multiple classes of power amplifiers, and the most fundamental four are A, B, AB,
and C. These four amplifier classes are differentiated by their conduction angles—the portion of
the input signal cycle during which the transistors conduct current. There are other PA classes
that contain more complicated harmonic matching modules for higher efficiency. However, the

harmonic matching design does not fit the ultra-wideband requirement of this project.

2.2.1 Class A (conduction angle = 360°)

Class A amplifiers conduct current during the entire operation. The gate voltage biasing point
is above the threshold voltage (Vgs > Vin), enabling the output voltage to swing from 0 V to
+Vpp (single power supply) or —Vpp to +Vpp (dual power supply). In the absence of an RF
input signal, the output remains at the DC quiescent point. This reduces the efficiency of Class A
power amplifiers, but it can preserve the high linearity of the input signal. However, for high-PAE
solutions, a Class A amplifier is not a viable option. The maximum theoretical efficiency of Class
A is 50% with inductive load and usually drops to less than 30% in applications [4]. A schematic

of Class A PA operation is shown in Figure 2.3 [4].

Signal
Matching Current
Network )

Bias
Current

R, t,

Figure 12.11 Class A stage.

Figure 2.3: Class A Power Amplifier Operation
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2.2.2 Class B (conduction angle = 180°)

Load

Current
RL

Figure 12.15 Class B stage.

Figure 2.4: Class B Power Amplifier Operation

Class B amplifiers are biased at the threshold voltage (Vgs = Vi), operating with a 180° conduction
angle where current flows only during half of the input signal cycle. Compared to Class A PAs,
Class B can reach higher efficiency, up to 78.5% [4]. However, to implement this half-cycle feature,
the PAs typically require a cascode configuration called push-pull, which is more complex than
single-stage Class A counterparts. In a Class B PA, each transistor turns on for only half of the
cycle, which reduces the DC power consumption and boosts up the PAE. The problem with Class B
PA is the crossover distortion when the two transistors switch between ON/OFF states. A schematic

of Class B PA operation is demonstrated in Figure 2.4 [4].

2.2.3 Class AB (conduction angle = 180° < conduction angle < 360°)

A modification of Class B is the Class AB power amplifier. This class of PA has an efficiency
between Class A and Class B, and it is widely used in RF applications. Introducing an overlap in
the conduction states of the two transistors can reduce crossover distortion while maintaining high
efficiency. This was the class of PA used in the previous work [1] and was implemented by the

author for the cascode configuration.
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Though with different architectures, the PA based on the single-stage amplifiers was also Class AB.
For the depletion-mode GaN HEMTs in this project, the transistors still conduct a biasing current
while the biasing voltage Vg is negative. In addition, the assembled PA has differential inputs for
the two amplifying stages, which is similar to the topology shown in Figure 2.4. By definition, the
PA in this thesis is a Class AB type, which has a conduction angle between Class A and B. This

can be further proved by the efficiency potential of the circuit in later chapters.

2.2.4 Class C (conduction angle = 0° < conduction angle < 180°)

Voo

RFC

Filtering/ Vy [ \ [ \ ?

X Matching
Vin °—|»—%—< M, R
Yy
(

a) (b)

Figure 12.20 (a) Class C stage and (b) its waveforms.

Figure 2.5: Class C Power Amplifier Operation

Unlike previous classes, this class of PAs has a conduction angle less than 180°. This conduction
feature sacrifices the system’s linearity but promotes high efficiency, where Class C PAs can reach
higher than 80% PAE in simulation. However, due to the current cut-off and non-linearity, Class C
PAs are used more for pulsed signal transmission. A schematic of Class C PA operation is shown

in Figure 2.5 [4].

2.3 Load-Pull Simulation

Load-pull analysis helps designers find the load impedance for the optimal performance of a
circuit, including output power and PAE with acceptable linearity. In power amplifier designs,

the load impedance can significantly affect the power output level, resulting in a difference in PAE
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See the Load Pull DesignGuide for improved
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Figure 2.6: Load-Pull Test Schematic

performance. The author referred to the Advanced Design System (ADS) design guide when setting
up the load-pull simulation. By changing the testing load impedance and referring to the Smith
Chart, RF designers can find the potential of PAE with the given load and the corresponding source
impedance. Figure 2.6 was the load-pull test bench used during the single-stage design. The input
matching network was moved out from the PA module to the test bench for higher accuracy in PAE,

as shown in the figure. The optimal load impedance for the single-stage amplifiers was found to be

100 Q.

2.4 Differential Pair Matching with Marchand Baluns

In this design, the input signal was split first for the two amplifying branches, and then the signal
was combined again for the power output. Therefore, the design required two balun modules: the
input balun converts the single-ended input (unbalanced) into differential signals (balanced) for the
two amplifying stages; the output balun converts differential signals from the amplifying stages’

outputs into a single-ended signal for the PA module 50 Q load.
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Fig. 1. Conventional Marchand balun structure.

Figure 2.7: Marchand Balun Structure Demonstration

Marchand Balun is a common approach in balun design. It consists of two coupled transmission
lines (T-Lines): two 4/4 T-Lines, each with one terminal connected to one of the differential ports
and the other to the ground; and one /2 T-Line coupled with the two A1/4 T-Lines, with one end
connected to the single-ended port and one end being open. A schematic is shown in Figure 2.7 [2].
Marchand Baluns have a 3:1 matching capacity, meaning with the 6 GHz center frequency, it can

split power between 3 to 9 GHz efficiently.

To reduce the system complexity, the author first implemented the ideal Marchand Baluns in test-
ing [5]. The design of the ideal Marchand Baluns was based on a two-port environment, meaning
the differential ports were connected. In this case, the Port 2 (differential ports) impedance would
be twice that of the desired unconnected differential port impedance. The author obtained ideal
input and output baluns by using ideal coupled lines in the ADS library. The author configured
the input balun’s differential port impedance to 25 € (meaning Port 2 was 50 Q for S-parameters
simulation) and set the single-ended port to 50 Q. However, during the layout, the author found that
the bandwidth of this design was less than the all-50 €2 design, leading to a narrower bandwidth
after the layout. This part will be further discussed in Chapter 6. As for the ideal input balun, the
differential port impedance equals 25 Q if Z; is set to 25 Q, and Z; = 50 Q leads to 50 Q differential

ports.

The ideal output Marchand Balun was also constructed in the same configuration, only with

differences in Z., Z,, Z;, and Z;. Compared to the input balun (differential port impedance =
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25 Q), the Z, and Z, of the output balun were doubled for 100 Q differential port impedance (Port
2 impedance was 200 Q for S-parameters simulation). This would be a helpful guideline in the
layout section for transmission line (T-Line) widths. There are also other approaches to the balun
module. One of them is inductive transformers. However, due to the lossy nature of transformers,
the peak PAE would drop to less than 25% in simulation. For the conciseness of this thesis, the

setup and results will not be discussed.
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Figure 2.8: Ideal Input Marchand Balun Schematic (Differential Port Impedance = 25 Q)
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Figure 2.10: Ideal Output Marchand Balun Schematic (Differential Port Impedance = 100 )

17



m4

freqg=10.00 GHz
1S(1,1)=0.595 / -112.274

i =20+ (0.358 - j0.610)|

m3

freq=2.000 GHz

1S(1,1)=0.595 / 112.274

i =20+ (0.358 + j0.610)

m5

freq=10.00 GHz
S(2,2)=0.724 / 119.229
1 =20+ (0.213 + j0.566)

m2

GHz
1-119.229
lance = Z0 * (0.213 - j0.566,

50

freq, GHz

freq (1.000 GHz to 11.00 GHz)

Figure 2.11: Ideal Output Marchand Balun S-parameters Simulation Results
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CHAPTER 3

Cascode Approach

Under the influence of the previous work [1], the design was initiated using a cascode design for

the amplifying stages. This approach has several advantages compared to single-stage amplifiers.

3.1 Cascode Topology Advantages

When designing complementary metal-oxide-semiconductor (CMOS) amplifiers, a cascode topol-
ogy is a common approach for achieving a higher gain for the amplifier compared to the single-stage

counterpart. Two-stage amplifiers have two main advantages:

3.1.1 Two-Stage Amplification

The most significant advantage of cascode design is that it has two amplifying stages: a common-
source and a common-gate stage. A simplified voltage gain analysis is given as follows (74, is the

drain-source on-resistance):

Av =8m - (Rinz ” rdsl) *8my (Rinz ” ZL)

1
=gm - |— Il a5, | - &mo (rasy || Z1) (3.1)
gm2
Vds, Yds, * ZL
— gml . ng . .

L4+ 8gm, Tas, Tas, +ZL
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Figure 3.1: Cascode vs. Single-Stage Analysis

While for the single-stage design:

A, = 8my * (rdsl I ZL)

rds; - ZL (32)

m o ———
T'ds, +ZL

Assume rg5, = 145, under identical transistor size and biasing for analytical simplification. By

comparing the two equations, it is obvious that the cascode topology has an additional gain boost of

rdsl

8m; * Tra—————- Though this calculation is derived from small-signal analysis, it still demonstrates
8my Vds;

that the cascode configuration has the ability to deliver higher power to the same load compared to

single-stage amplifiers, provided that gain compression does not occur.

3.1.2 Consistent Load and Feedback Loop

By applying a second stage, the equivalent small-signal output resistance (R,,;) of cascode ampli-
fiers is higher than the R,,; of single-stage amplifiers with the same operating conditions [6]. This
increase in output resistance reduces the sensitivity of cascode amplifiers against load variations.
In addition, the common-gate stage blocks the direct coupling between the input and output ports,
creating better isolation and reducing the Miller effect. These characteristics will assist cascode
amplifiers with forming a consistent gain throughout the wide operating band, which is the perfor-

mance this thesis aims for.

Feedback loop also played a significant role in stabilizing the cascode design. Compared to single-
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stage amplifiers, the additional gain increase of cascode topology can compensate for the gain loss
of feedback while retaining the stabilization benefit. The system obtained stability in the simulation
(from DC to 16.2 GHz) as the author added a resistor-capacitor (R-C) feedback path between the
input and output ports. This ensured that the stability K factor would always be less than 1, while
the A factor would be greater than 1 throughout the frequencies. However, the cascode amplifier

(Figure 3.2) became unstable beyond 16.2 GHz, which presents a potential hazard.

Another advantage of feedback is its effect on input and output matching. From Figure 3.4, we
can see a well-matched input and output impedance throughout the wide bandwidth. The feedback

loop ensured a flat gain curve over the operating band, with a gain variation of less than 1 dB.

3.2 Non-Ideality in PA Design and Considerations

The non-ideality in circuit elements can cause a significant difference between ideal and non-
ideal design outcomes. Therefore, the author began the design process by taking into account the
presence of non-ideal factors. In this design, the capacitors generally had relatively small values,
causing fewer problems than the inductors. Hence, the main concern in non-ideal components fell

on the inductors. For an inductor with 1 nH inductance and quality factor Q = 10 @ 2 GHz:

2nfL
Q_ R )
R= 27TQfL
33
_ 2ax2x10°Hzx 1 x 10 H G-

10

- o 2~[12572)]

The author estimated the resistance of inductors from here. For example, a 5 nH inductor would
have around 6 € resistance. The reason for choosing a relatively low frequency for calculation is
that this estimation will be more conservative regarding the loss due to inductors. Most commercial

inductors exhibit lower resistance than the values calculated (for a given L value) using this model.
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3.3 Approach to Cascode Amplifiers

The two-stage cascode schematic is presented in Figure 3.2 [1]. The dimensions of the transis-
tors were determined based on the transistor datasheets. To start with, the author referred to the
datasheets provided by the HRL. The datasheets demonstrated the gain and PAE potentials when

transistors are properly matched.

There were four presets in the HRL library for transistor sizes (multiplication - channel width):
2-25pm, 4 - 37pm, 6 - 50um, and 12 - 50 pm. Only the 12 - 50 pm combination provided the
current and transconductance required for proper amplification in the cascode setting after tests.
For simplicity, the author used the same dimension for both transistors in the cascode topology and

assumed an even (6 V vs. 6 V) drain-source voltage division between the upper and lower transistors.

Another factor of biasing was the gate-source voltage of the transistors and the biasing current
introduced by the Vig. Unlike traditional CMOS technology, the depletion-mode GaN HEMTs
could operate under zero or negative V5. Due to the objective of chasing a high PAE while keeping
the output power level, the power amplifier’s DC power should be reduced to the minimum amount
required for operation. By combining the datasheets and simulation results, the author found that
the biasing current needs to be within the range of 100 to 200 mA for desired amplification and

output power. Due to the confidentiality of the original datasheets, the graphs are not shown here [7].

There are two main factors when we consider the biasing current: a) the gain of the amplifier
and b) the DC power consumption of the PA. Both factors are crucial for high efficiency and high
power output. After testing multiple data points, the author applied 0.05 V as V¢ for the cascode
amplifier transistors. This voltage setting was not the only optimal choice for biasing; the cascode

amplifier could work properly with a biasing point from -0.20 V to +0.10 V.
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Another factor was the input and output impedances used for the design environment. The author
started the design with a 25 Q source/load testing environment as in the previous work [1]. However,
from the load-pull analysis, the amplifying stage required a 50 Q load to reach the acceptable PAE
range. A 25Q output environment would reduce the PAE to less than 30% over the entire band.
Therefore, in the cascode design, the source/load impedance pair was set to a 25 € source and a

50 Q load.

3.4 Matching and Load-Pull Analysis

3.4.1 Matching Network Results

Figure 3.2 presents the schematic incorporating impedance matching networks, with the input port
matched to 25 Q and the output port to 50 €. The values for elements are also recorded in the figure.
Both transistors’ Vs were set to 0.05 V. The results on S-parameters and stability from 1 GHz to 11
GHz are also included. The stability from O to 30 GHz was also simulated and recorded in Figure
3.5. However, the amplifier was not unconditionally stable above 16.2 GHz. The |S;;| was less
than -15 dB, and the |S»,| was less than -10 dB throughout the operating band. The small-signal
gain of the circuit was 18 dB throughout the 3 to 9 GHz bandwidth.

For the four square graphs in Figure 3.4: the top left is the |S;| small-signal gain curve, the top
right is the | S| (red) and the |S;| (blue); the bottom left includes the stability K factor (blue) and
the A factor (red); the bottom right figure is a rescaled stability graph that only has an amplitude of
2 on the Y-axis for clarity. This format works for all S-parameters simulation result figures in this

thesis.
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3.4.2 Load-Pull Results

The load-pull test is based on a given pair of source/load impedance values with designated input
power and frequency. Hence, load-pull results only demonstrate the PAE potentials under specific
settings. The author began with an input signal power (P;,,) of +10 dBm and a signal frequency of 6
GHz. The amplifying stage could provide approximately 18 dB gain at this point. Then, the author
increased the P;, to find the optimal input power range for the highest PAE values. The results
showed that the single-branch cascode amplifier had the peak PAE value when P;, = 20 dBm with
the given setting. After settling down the input power level, the author changed the input signal
frequency from 3 GHz to 9 GHz. The highest PAE occurred near the center frequency; hence, the
6 GHz load-pull result is shown in Figure 3.7. The marker M3 in the bottom right Smith Chart
(Figure 3.7) was approximately the corresponding source impedance at 6 GHz from the Smith
Chart shown in Figure 3.4. The harmonic balance 1-tone simulation result under the same setting is
shown in Figure 3.9, where the PAE was 34.8%. Note that the input matching network was built in
the test bench to calculate the biasing port current for more accurate results, so the input matching

network inside the amplifier module was shorted or opened correspondingly for this test.

With the Zspurce = 25Q, Zjpaqa = 50, and P;;, = 20dBm environment, the PAE of the cascode
amplifying stage varied between 35% to 30% throughout the band. This PAE was lower than the ob-

jective of this thesis. The results did not improve significantly when the biasing points were changed.

Further increase in load impedance did not significantly improve PAE results. After re-matched
the output impedance (Ry = 400Q, C,,; = 40pF, etc.) and re-ran load-pull analysis under 100 €2
load while keeping other test bench settings the same, the maximum PAE only increased by 2%.
For the conciseness of this thesis, only the results, instead of the entire procedures, are mentioned

here (Figure 3.10).
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3.5 Analysis and Conclusion on Cascode Architecture

The cascode design provided several desirable characteristics: consistent gain and matching
throughout the operating band. However, the PAE of this topology was not desirable. Due to
the Vpp = 12V setting, each transistor was configured to a drain-source voltage (Vps) of 6 V as
the voltage headroom, which is not sufficient for large output signal levels. In the harmonic balance
PAE simulation, the cascode topology endured severe gain compression, from 18 dB to 6 dB. The
author also attempted to manipulate the voltage division between the two cascaded transistors, but
the results did not improve significantly. After multiple attempts, the author decided to discard the

cascode approach and move to a single-stage design.
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CHAPTER 4

Single-Stage Amplifier Design

Compared to the cascode configuration, the single-stage approach has a relatively simple architec-

ture, but there are several more challenges to overcome:

a) Unlike the cascode topology, the single-stage design is more sensitive to a feedback loop. This
means a feedback loop for matching and stabilization is not a viable option while preserving a
relatively high gain.

b) The input matching network is more complicated than the cascode amplifiers. In order to
stabilize and match the input, the matching network has to integrate multiple approaches,
which will be discussed in the next section.

c) The consistent gain of the cascode topology is hard to realize in the single-stage design. In the
previous chapter, the author demonstrated the ability to have a less than 1 dB gain variation
throughout the band with cascode topology. However, the single-stage configuration cannot

deliver similar gain performance.

The advantage of the single-stage amplifier was its ability to apply a 12 V voltage headroom for the

transistor to deliver output power. This helped the power amplifier to achieve a higher PAE.

4.1 Design of the Single-Stage Input Matching Network

4.1.1 General Considerations

One of the key takeaways from the cascode approach was the biasing point of transistors. The

author first constructed the single-stage amplifiers based on the same biasing parameters as the
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Figure 4.1: Schematic of the Single-Stage Approach with Input and Output Impedance Matched

cascode design. During the test, the author found that the biasing point can be further reduced for
higher PAE while maintaining an acceptable gain. The new biasing point was Vgs = —0.25V for
the single-stage amplifier. This biasing could not improve the PAE of the cascode configuration

but significantly enhanced the single-stage amplifiers’ PAE throughout the operating band.

4.1.2 Modification on the Input Matching Network

As shown in Figure 4.1, the amplifier included not only L-C matching networks but also other
distributed elements for input matching. Without the C; capacitor preceding the L-C network,
the input S1; curves were located in the upper-right quadrant of the Smith Chart. To address the
inductive nature of the amplifier, the C; capacitor was introduced, resulting in improved input
matching for the amplifier. In addition, by introducing a resistor R; on the input signal path, the
input and output return loss further improved by 3 to 5 dB while maintaining the gain. It is more

effective than multistage L-C matching, which could introduce more loss due to inductors.
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4.1.3 Inductive Degeneration Implementation

Another approach was inductive degeneration, acommon approach in RF designs that can contribute
to easier input matching and improved stability. The inductive degeneration was first introduced
to increase the resistance (real part) of the input impedance, and the amplifier could get a good
match with a 0.6 nH degenerative inductor (this also reduced the required resistance from Rj).
However, the 0.6 nH degeneration introduced a significant drop in gain at higher frequencies (from
7 to 9 GHz) of the amplifier. This was due to the frequency-dependent reactance of inductors. The

reactance of an inductor under 3 GHz is one-third of the reactance under 9 GHz.

The author made two adjustments to compensate for the gain loss:

a) Introducing a capacitor to bypass the inductor at high frequencies. The problem with such
an approach was the reduction in efficiency across the lower-frequency band. Therefore, the
capacitor had to be small enough to avoid its effect at lower frequencies.

b) Reducing the inductive degeneration and only utilizing the degeneration effect to stabilize the
amplifier. This approach was not detrimental to both the gain and the PAE of the amplifying

stage.

4.1.4 Adjustment in Load

The final step was to determine the optimal load of the amplifying stage through load-pull analysis.
Based on the load-pull simulation results, the amplifier achieved the peak PAE with a load of
100 Q, outperforming the 50 Q load setting by approximately 10%. In the later Marchand Balun
design process, this increase in load impedance would be compensated through an optimized balun
configuration to achieve 50 Q impedance matching at the output of the entire PA module. Therefore,

the author applied the 100 Q load environment for the single-stage amplifiers.
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4.2 Simulation Results and Analysis

Compared to the cascode counterpart, the small-signal gain and matching were less desirable for
the single-stage configuration (the test bench was the same as Figure 3.3 with the settings for the
single-stage amplifier). |Si;| was less than -10 dB for most of the band, while |S»,| was less than
-5 dB. The output matching was significantly less desirable compared to the cascode amplifier.
Due to the large-signal nature of the power amplifier output, the author concentrated more on the
PAE and output power performance. The load-pull test demonstrated the high PAE potential of the
single-stage design: the amplifying stage reached more than 60% PAE throughout the band with
ideal inductors. The PAE dropped when the Q = 10 @ 2 GHz rubric was applied to the inductors
but still had more than 40% PAE throughout the band with a peak PAE of more than 55%. This
significantly improved PAE result outperformed the cascode topology that only had a 40% peak

PAE even with ideal inductors.

Another advantage of the single-stage amplifiers was unconditional stability up to the third harmonic
frequency (Figure 4.3). Therefore, the single-stage power amplifier was more robust from a stability
point of view. The amplifying stage was under gain compression when it reached the peak PAE, but
the compression was less significant compared to the compression of the cascode amplifier. The
output power of the single-stage amplifier could reach 30 dBm with a stable 8.7 to 9.5 dB gain over
the operating band. In the simulation of the single-stage amplifier, the PAE maintained over 50%
from 3.8 to 9 GHz and only dropped at the marginal frequencies. The design of the single-stage

topology was settled here. The next step moved to implementing the differential architecture.
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CHAPTER 5

Differential PA Performance Before Layout

5.1 Setup

In this section, the author combined the ideal Marchand Baluns (Figure 2.8 and Figure 2.10) with
the single-stage amplifiers from Chapter 4. The schematic is shown in Figure 5.1, where the two
central modules are the two amplifying stages (Figure 4.1), and ideal input and output baluns are
connected to the left and right of the amplifying stages, respectively. The assembled PA module

works under a 50 Q source/load impedance environment.

Then, the author performed the same test for the entire PA module. The first test was to ensure the
stability and return loss of the circuit, which was based on the same test bench as in Figure 3.3 with

a 50 Q source/load pair of ports.

5.2 Results and Analysis

5.2.1 S-Parameters and Stability

Note that for the ideal Marchand Baluns, the |S;;| parameters reached 0 dB at marginal frequencies
(Figure 2.9 and Figure 2.11), causing simulation errors at these frequencies. The spike in stabil-
ity factor K and A = 1 only happened at f;,, = 0, 12, and 24 GHz (Figure 5.3). This would not

happen with the post-layout non-ideal baluns. Hence, the differential PA is stable from O to 30 GHz.
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Figure 5.3: S-parameters, Stability Factor, and A Factor Performance over O to 30 GHz Band of the
Differential PA

5.2.2 Large-Signal Gain and PAE

The gain and PAE for large-signal input power require harmonic balance simulation for more

accurate results.

5.2.2.1 PAE and Gain vs. Input Power

In this section, the author used the design guide included in the ADS to analyze the effects of input
power levels on the gain and the PAE of the differential PA design. The power sweep simulation was
performed under 5 GHz, which is the center of the peak small-signal gain region. The 5 GHz input
frequency was selected to evaluate the PA’s performance in the region where the most severe gain
compression occurs. Note that in the high PAE performance region, the power amplifier endured
gain compression and distorted output signal (Figure 5.5). The distorted output signal still held
an acceptable waveform, meaning the gain compression and the phase difference between the two

signal paths were acceptable under the peak PAE performance setting.
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5.2.2.2 PAE and Gain vs. Frequency with a Given Input Power

In the previous chapter, the power sweep of one amplifying stage showed that the highest PAE was
achieved at P;, = 20 dBm. Since the input Marchand Balun split the power into two branches, there
was a 3 dB reduction in the input power of each branch. Hence, for the differential pair, the input
power should be 23 dBm for peak PAE performance. Different from the previous power sweep
simulation, the input power was fixed in this test, and the only variable changing was the input

signal frequency.

The simulation showed that with the ideal Marchand Baluns, the PA could provide 10 dB gain with
a 3-dB bandwidth over the 3 to 9 GHz operating band. The maximum PAE reached 57% @ 6.8
GHz. The PAE was more than 40% over the 3.8 to 7.9 GHz band, with the marginal band PAE
still around 30%. This is an acceptable performance considering the 3:1 bandwidth of Marchand

Baluns.
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CHAPTER 6

Layout and Post-Layout Simulations

6.1 Marchand Balun Layout Setup

6.1.1 Layout Substrate

The layout substrate is demonstrated in Figure 6.1. The setup was the same as Hammed’s ultra-
wideband Marchand Balun [2]. However, both the input and the output Marchand Baluns in this
design deviated from a uniform 50 Q impedance environment; hence, the author had to design

Marchand Baluns with non-50 Q differential port impedance values.

6.1.2 Input Marchand Balun

The input Marchand Balun design was close to the result from Hammed’s work [2]. The modi-
fication was mainly for the 25 €2 impedance for both differential ports. For clarity, both the 2-D
view and the 3-D view are provided (Figure 6.2 & Figure 6.3). The grey layer in the figures is the
Overlay?2 (the lower conductor layer) in Figure 6.1; the red layer is the Overlay in Figure 6.1, and it

is the upper conductor layer in the 2-D and 3-D layout graphs.

As for the ports, the red pad on the right (Figure 6.2) is the single-ended port (Port 1). The two grey
pads on the left are Port 2 (upper) and Port 3 (lower) in the 2-D drawing. The yellow lines with
the pads were for the ADS T-Line test environment setting. The two differential ports (Port 2 &

Port 3) are on the same Overlay?2 layer in the layout. The exact dimensions are provided in Table 6.1.
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Figure 6.1: Layout Substrate of Marchand Baluns

The results for the | S|, insertion loss, and phase difference are presented in Figure 6.4 to Figure 6.6.
The post-layout input Marchand Balun had more insertion loss in the lower frequencies compared
to the higher frequencies. However, as the author tried to increase the 4/4 and 1/2 T-Line lengths,
the loss at higher frequencies increased much faster than the loss reduction at lower frequencies.
Hence, the author decided to keep this configuration. Since Marchand Baluns split the single-ended
input power into two branches, a 3-dB loss on each path is expected; the actual loss on each signal
path is ||S21| + 3dB| and ||S31] + 3 dB|, respectively. The input Marchand Balun could provide
an input return loss bandwidth of better than 10 dB (|S1;| < —10dB) from 3.6 GHz to 8.3 GHz.
The phase difference between the two branches was close to 180° (Figure 6.6), which proved the

functionality of the input Marchand Balun.
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Figure 6.2: 2-D View of the Post-Layout Input Balun

Figure 6.3: 3-D View of the Post-Layout Input Balun
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Table 6.1: Input Marchand Balun Microstrip T-Line Dimensions

Microstrip Description Width (um) Height (um)

Port (2 & 3) 600 370

(The leftmost two gray pads)

Port 1
1000 600

(The rightmost red pad)

Port 2 1/4 T-Line
3780 800

(Upper gray long T-Line)

Port 3 1/4 T-Line
3780 600

(Lower gray long T-Line)

Port 1 T-Line section that coupled with
Port 2 1/4 T-Line 3780 350

(Upper red long T-Line)

Port 1 T-Line section that coupled with
Port 3 1/4 T-Line 3780 500

(Lower red long T-Line)

Connection between the two A/4 T-Lines for
forming the single-ended A/2 T-Line 200 1000

(Red T-Line between the upper and lower groups)

Port 2 & 3 erounding panel
8 p 600 600

(Two gray squares on the right side)

Port 2 & 3 grounding vias
300 300

(Two cyan squares)
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Figure 6.6: Phase Difference Between the Two Paths of the Post-Layout Input Balun
6.1.3 Output Marchand Balun

The setup of the output Marchand Balun was the same as the input balun, with some modifications
in parameters for achieving the 100 Q differential outputs. Similarly, the |S;;| (from the single-
ended port, which is the output port of the entire PA module), insertion loss, and phase difference
were measured (Figure 6.9 to Figure 6.11). The output Marchand Balun provided a |S1;| < —10dB
bandwidth from 3.6 GHz to 7.6 GHz. The phase difference between the two branches was close to
180°, which proved the functionality of the output Marchand Balun. If we compare both the input
and the output baluns to the all-50 Q design [2], the bandwidth of both the input and the output

baluns were less than the all-50 Q Marchand Balun.
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Figure 6.7: 2-D View of the Post-Layout Output Balun

Figure 6.8: 3-D View of the Post-Layout Output Balun
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Table 6.2: Output Marchand Balun Microstrip T-Line Dimensions

Microstrip Description Width (um) Height (um)

Port (2 & 3) 600 370

(The leftmost two gray pads)

Port 1
1000 600

(The rightmost red pad)

Port 2 1/4 T-Line
3780 200

(Upper grey long T-Line)

Port 3 1/4 T-Line
3780 300

(Lower grey long T-Line)

Port 1 T-Line section that coupled with
Port 2 1/4 T-Line 3780 300

(Upper red long T-Line)

Port 1 T-Line section that coupled with
Port 3 1/4 T-Line 3780 400

(Lower red long T-Line)

Connection between the two A/4 T-Lines for
forming the single-ended A/2 T-Line 100 1200

(Red T-Line between the upper and lower groups)

Port 2 & 3 erounding panel
8 p 600 600

(Two gray squares on the right side)

Port 2 & 3 grounding vias
300 300

(Two cyan squares)
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Figure 6.11: Phase Difference Between the Two Paths of the Post-Layout Output Balun

6.2 Layout of the Amplifying Stages with Matching Networks

6.2.1 R-L-C Lumped-Element Input/Output Matching Network

The matching condition might endure significant changes after tape-out for PA designs. For this
reason, both the input and output matching networks were based on lumped elements for easier
post-tape-out tuning. As for the lumped elements, the author referred to the outcomes after post-
layout tuning and chose elements based on those values. The element configurations are included
in Table 6.3 and Figure 6.12. The voltage biasing points were not changed in the layout. Note that
a small microstrip pad connecting the source of the transistors and the ground panel replaced the
degenerative inductor and capacitor in Figure 4.1. The HRL transistor layout replaced the transistor

module in the schematics.
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Table 6.3: Lumped Element Configurations for the Input and Output Matching Networks of the

Amplifying Stages
Element Value for Layout, Se- Length Width Height
rial Number of the Element, (jim) (am) (am)

and Value in the Pre-Layout

Schematic

Capacitor Cy = 15 pF
(GIM1555C1H150GB01D) [8] 1000 500 550
Ci,pre = 25pF

Resistor R; = 30Q
(SFRO1MZPJ300) [9] 1000 500 350
Ripre =15Q

Capacitor C;;, = 20 pF
(GRM1555C1H200GA01) [10] 1000 500 550
Cin,pre =5 PF

Inductor L; = 1.4nH
(PE-0201CC2NOSTT) [11] 600 450 450
Ll,pre =0.7nH

Inductor L, = 7.6 nH
(BWCS000604047N6J00) [12] 600 400 400
L2,pre =5nH

Capacitor C,,; = 15 pF
(GIM1555C1H150GB01D) [8] 1000 500 550
Cout,pre =15 PF
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6.2.2 Transmission Line Setup

For simplicity of design, the matching network was constructed based on the same substrate as the
Marchand Baluns. For the amplifying stages, the inputs were matched to 25 €2, and the outputs were
matched to 100 €. The author started by applying 25 €Q T-Lines for the input matching network
and 100 Q T-Lines for the output matching network. This configuration showed a negligible differ-

ence compared to an all-50 Q T-Line configuration for both the input and output matching networks.

As for estimation of transmission line widths and characteristic impedance (Z), the equivalent

dielectric constant of the two-layer substrate is calculated:

grthy + &2hy
-0 e 6.1
Eeff hi + o (6.1)
10.2 X 0.254 mm + 9.8 X 0.381 mm
0.254 mm + 0.381 mm
_ (2.5908 +3.7338) mm

0.635 mm
~ 9.95

The equation of T-Line characteristic impedance is given as

12 -1
Zo= 2207 (W 303 40,6671 [+ 1.444 (6.2)

where the microstrip thickness is set to 0.035 mm.

By solving the equation for Zy = 25 Q, 50 Q, and 100 Q respectively, we can get W = 1.52 mm for
Zop=25Q, W =0.42mm for Zy = 50Q, and W = 0.12 mm for Z; = 100 Q. However, in the actual
simulation, the microstrip width did not impact the input and output matching network significantly.
Hence, the matching networks were implemented with T-Lines of the same Zj, with the tuned T-

Line dimensions recorded in Table 6.4, Figure 6.13, and Figure 6.14. Spaces for lumped elements
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Figure 6.12: Layout of the Amplifying Stages (one Branch is Shown)

were reserved in the layout according to the dimensions specified in Table 6.3. The T-Line widths
(Iengths of the signal paths) in Table 6.4 were set to those values to avoid distributed parameter

effects (ensuring short electrical lengths).

Table 6.4: Microstrip Dimensions of the Amplifying Stage Matching Networks

Microstrip Description

Figure 6.13 & 6.14 Width (um) Height (um)
Group 1 1000 180
Group 2 1500 180
Group 3 1800 180
Grounding Pad for Transistors 400 400
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Figure 6.13: Layout of the Input Matching Network of the Amplifying Stages

Figure 6.14: Layout of the Output Matching Network of the Amplifying Stages
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Figure 6.15: Schematic of the Post-Layout Marchand Balun and Assembled PA

6.3 Post-Layout Simulations of the PA

By replacing the ideal Marchand Baluns with the post-layout ones, the PA module became the
schematic shown in Figure 6.15, where the two boxes in the center are the symbols of the two
post-layout amplifying stages (refer to Figure 6.12). The same test in Chapter 5 was performed on

the post-layout PA.

6.3.1 S-Parameters and Stability

The stability of the post-layout PA followed a similar pattern to that of the pre-layout one. The
power amplifier was stable from 0 to 30 GHz. The input matching had |S;;| < —10dB for most
frequencies above 4 GHz, which was less desirable compared to the pre-layout case. Overall, the

S-parameters graphs demonstrated the same pattern as the pre-layout counterparts.
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6.3.2 Harmonic Balance Analysis

Compared with the results in Figure 5.5 and Figure 5.9, the peak PAE in Figure 6.18 dropped about
2% due to the loss in layout. The main difference was the high-PAE operating bandwidth: the
post-layout Marchand Baluns could not support the same bandwidth as the ideal models, causing
a narrower band that could operate with high PAE. Despite this drawback, the PAE surpassed 40%
from 3.8 GHz to 7.7 GHz and remained above 30% from 3.6 GHz to 8.1 GHz. The gain of the PA
dropped by 2 dB (from 10 dB to 8 dB) compared to the pre-layout gain. In the input power sweep
simulation with f;,, = 5 GHz, the output and input signals were distorted more than the tests with

ideal baluns (Figure 6.19).
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CHAPTER 7

Conclusion and Further Development

In this thesis, the author took a complete path of designing an ultra-wideband power amplifier
with the help of gallium nitride HEMTs. The design outcome was less desirable than the original
objective. If there is an opportunity for further study, the power amplifier can be improved in the

following three aspects:

a) better input and output Marchand Baluns, enabling wider bandwidth with better insertion loss
and input return loss performance.

b) improve the design of the input matching network; however, this will not impact large-signal
performance as significantly as the previous proposal.

c¢) choosing a higher voltage supply environment for higher efficiency and high power output range

that works better with GalN transistors.

Again, I would like to express my deepest gratitude to Prof. Yuanxun Wang for his unwavering
guidance, insightful feedback, and patient mentorship throughout this research journey. I would
also like to appreciate the assistance from my colleagues at the Digital Microwave Lab (DMLab) at
the University of California, Los Angeles. Their expertise and encouragement were instrumental

in shaping both this work and my growth as a researcher.
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