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Optimal and Global Time Synchronization in Sensornets
Richard Karp Jeremy Elson Deborah Estrin Scott Shenker

Abstract

Time synchronization is necessary in many distributed systems, but achieving synchronization in sensornets,
which combine stringent precision requirementswith severe resource constraints, is particularly challenging. This
challenge has been met by the recent Reference-Broadcast Synchronization (RBS) proposal, which provides on-
demand pairwise synchronization with low overhead and high precision. In this paper we introduce a model of the
basic RBS synchronization paradigm that treats clock offset and clock skew on different time scales. Within the
context of thismodel we derivethe optimally precise and globally consistent clock synchronization. Thisapproach
can be used with any synchronization paradigm that produces pairwise synchronizationswith independent errors.

1 Introduction

Many traditional distributed systems employ time synchronization to improve the consistency of data and the cor-
rectness of algorithms. Time synchronization plays an even more central role in sensornets, whose deeply distributed
nature necessitates fine-grained coordination among nodes. Precise time synchronization is needed for a variety of
sensornet tasks such as sensor data fusion, TDMA scheduling, localization, coordinated actuation, and power-saving
duty cycling. Some of these tasks require synchronization precision measured in usecs, which is far more stringent
than the precision required in traditional distributed systems. Moreover, the severe power limitations endemic in
sensornets constrain the resources they can devote to synchronization. Thus, sensornet time synchronization must be
both more precise, and more energy-frugal, than traditional time synchronization methods.

The recent Reference-Broadcast Synchronization (RBS) design meets these two exacting objectives [5] by producing
on-demand pairwise synchronization with low overhead and high precision. In this paper we introduce a simplified
model of the RBS synchronization paradigm in which we treat clock skew and clock offset on different time scales
(as opposed to RBS, which treats them simultaneously). We then ask, for offsets and skews separately, how to
produce pairwise synchronizations that are both optimally precise and globally consistent.

To make our objectives and results clear, we first briefly review RBS. The RBS approach is based on several obser-
vations about the nature of radio communication in sensornets:

e Sensornet communications are broadcast locally, rather than sent point-to-point as in traditional distributed
systems. This means that each transmission can reach several receivers.

e Sensornet radio ranges are short compared to the product of the speed of light times the synchronization
precision. Thus, each broadcast is seen essentially simultaneously by the receivers within ranget

¢ Delays between time-stamping and sending a packet are significantly more variable than the delays between
receipt and time-stamping a packet. Thus, estimates of when a packet is sent are far noisier than estimates of
when it is received.

INote that the extreme synchronization requirement of 1 usec translates into about 1000ft, which is roughly the range
of the MICA2 radios. There are some systems, such as seismographic sensornet arrays, where much longer radio ranges are
envisioned, but there the synchronization requirements are correspondingly more relaxed. Moreover, if the locations of the
nodes are known, such propagation delays can be taken into account. Therefore, in what followswewill assumethat propagation
delays are either negligible or explicitly compensated for.



Most traditional methods synchronize a receiver with a sender by transmitting current clock values, and are thus
sensitive to transmission delay variability and asymmetry. To avoid these vulnerahilities, RBS instead synchronizes
receivers with each other. Reference broadcast signals are periodically sent in each region, and sensornet nodes
record the time-of-arrival of these packets. Nodes within range of the same reference broadcast can synchronize
their clocks by comparing their respective recent time-of-arrival histories. Nodes at distant locations (not in range of
the same reference broadcast) can synchronize their clocks by following achain of pairwise synchronizations. RBS
is quite accurate because it is completely insensitive to transmission delays and asymmetries. In fact, errorsin RBS
arise only from two sources.

¢ Differences in time-of-flight to different receivers: as discussed earlier, in many sensornet systems we can
safely assume that such differences are either completely negligible compared to the synchronization precision
or, when location information is available, these differences can be explicitly compensated for?

e Delays in recording packet arrivals. see [5] for a much fuller discussion of this point, but measurements
described therein suggest that the receiving delays can be reasonably modeled as a Gaussian centered around
some mean, with the mean being the same for all nodes (assuming they share the same hardware/software).

Both of these errors are extremely small in typical sensornet systems, with the former dominated by the latter.
Therefore, most of the errorsin synchronization are due to essentially random delays in recording time-of-arrivals.

To penetrate this noise, RBS uses pairwise linear regressions of the time-of-arrival data from a shared broadcast
source. While this seems like a very promising approach, and has been verified on real hardware, there are two
aspects of RBS, and in fact of any similar synchronization algorithm, that we wish to understand better. This paper
is devoted to atheoretical analysis of these two issues, which we now describe in turn.

Firgt, the resulting synchronization is purely pairwise. That is, for any pair of nodes ¢, j, RBS can compute coef-
ficients a; ;, b; ; that translate readings on i’s clock into readings on j's clock: ¢ =~ t;a;; + b;;. However, this set
of pairwise trandations is not necessarily globally consistent. Converting times from ¢ to 5, and then j to k£ can be
different than directly converting fromi to &; i.e., the transitive properties g;a;, = a;, and b;ja ;i + bji, = by, need
not hold. This collection of (possibly inconsistent) pairwise synchronizations is not ideal when several sensornet
nodes must have a single shared clock in order to carry out some joint task. Thus, we would like to understand how
one could ensure the global consistency of the synchronizations. Note that requiring the pairwise synchronizations
to be globally consistent is equivalent to saying that there is some universal time standard to which al nodes are
synchronized (e.g., the time of one particular node could serve as this universal time, though we choose to adopt a
more distributed approach).

Second, the pairwise synchronizations are not optimally precise (i.e., they do not have minimal variance from the
truth). The RBS synchronization of two sensornet nodes is based only their time-of-arrival information from asingle
broadcast source. No information from other broadcast sources is used, nor is time-of-arrival information from
other receivers. Thus, much relevant data is being ignored in the synchronization process, resulting in suboptimal
precision.3 We would like to understand how to use al available information to compute the optimally precise
pairwise synchronizations.

2In other words, when locations are known each can receiver estimate, based on the relative location of the source, when the
signal was sent (rather than when it was received) by subtracting out the computed time-of-flight. Synchronization comparisons
would then be based on these computed send-times, not the time-of-arrivals.

3Some of thisisinherent in the RBS approach and someis an artifact of the particular design described in [5]. Using only a
single synchronization source is an artifact; not incorporating time-of-arrival datafrom other receiversisinherent in the general
pai rwise-comparison approach adopted by RBS. When we compare the optimal method against RBS in Section 4, we only
consider the inherent differences (i.e., we consider information from all relevant synchronization sources but only from the
receivers directly involved).



Our two goals of optimal pairwise synchronization and globally consistent synchronization are logically distinct. In
Section 3 we discuss these two goals and show that they have the same technical answer. That is, the most precise
set of pairwise synchronizations are, in fact, globally consistent. We then, in Section 4, compare the precision of the
optimal synchronization to that achieved by RBS. One result of note is that in a 2-dimensional grid-like network
(whose nature we explain more carefully in Section 4), the error (variance) in the optimal synchronization between
nodes adistant L apart grows as log L, as opposed to growing linearly in L for RBS.

While our discussion is focused entirely on RBS, our methods and results could be extended to any pairwise syn-
chronization procedure whose errors were independent. In addition, our focus here is primarily theoretical in that
we have tried to understand the limits of what could be accomplished without regard for feasibility. However, in
Section 5 we briefly discuss how one might turn this theory into practice. This requires confronting the fact that syn-
chronization involves both offset and skew, where offset is the difference in value and skew is the difference in rate
between two clocks* The discussion in Sections 3 and 4 deals only with offsets; we assume that all clocks progress
at the same rate, but start with arbitrary initial settings. In Section 5, we discuss how to use the same computational
framework to deal with clock skew. We also describe how the set of calculations needed for our optimal and global
synchronization could be achieved in apractical manner.

However, before delving into any of the technical details, we first give a cursory overview of related work.

2 Reated Work

This paper deals primarily with RBS, which we have already reviewed. There are, of course, many other relevant
approaches to clock synchronization, and we now mention briefly a few. See [5, 6] and references therein for more
thorough reviews of the literature.

The most straightforward approach isto use the Global Positioning System (GPS) as the source of a universal clock.
While GPS is extremely accurate, with commercial GPS receivers able to achieve better than 200nsec accuracy
relative to UTC, GPS requires sensornet nodes to be equipped with special receivers; while including GPS receivers
may become standard in future sensornet node designs, it is absent in some of the current systems (e.g., the Berkeley
Motes [10]). Moreover, GPS requires a clear sky view, and thus does not work inside buildings, underwater, or
beneath dense foliage.

There is a large literature on how to synchronize clocks in traditional networked systems (e.g., [3, 8, 15, 12));
among these, the Network Time Protocol [12] is the most widely deployed time synchronization agorithm and is
notable for being scalable, self-configuring, robust to failures, and thoroughly tested. NTP and the other traditional
methods, despite their many differences, all achieve synchronization through the exchange of current clock values.
As discussed previoudly, this approach is vulnerable to sending delays and asymmetries in paths and does not take
advantage of the special properties of sensornet broadcasts. Moreover, it assumes the presence of synchronized
global-clocks, such as GPS, at many points in the network, and so the main focus is reducing the variance along the
paths to these time oracles.

There are several proposals for synchronizing clocks within asingle broadcast domain [18, 17, 13]. These all exploit
the specia properties of broadcast media and achieve high precision. However, they cannot synchronize nodes that
do not lie within the same broadcast domain. Since our focus here is on global clock synchronization, we don't
discuss these more local approaches further.

Two global synchronization proposals of note are [11] and [16]. The microsecond precision achieved in [11] is
similar to our goals here, but the approach assumes a fixed topology and guarantees on latency and determinism
in packet delivery. A very energy-efficient time diffusion algorithm is presented in [16], but the precision analysis
assumes deterministic transmission times. Our interest here is in synchronization algorithms that do not require

4In our previous notation wheret ; ~ t;a;; + b;;, a;; represents the relative clock skew and b;; represents the relative clock
offset.



specific underlying networks to function.

Some synchronization designs, such as [9, 7], integrate the MAC with the time synchronization procedure. While
our discussion does not make assumptions about the underlying hardware and MAC, the results would benefit from
these MAC-specific features to the extent that they reduce the magnitude of the receive-time errors.

Another quite different approach is that taken in [14], which doesn't directly synchronize clocks but instead refers
to events in terms of their age. When exchanging these timestamps, they are updated to reflect the passage of time.
As such, thiswork is complementary to what we discuss here, and represents a very attractive way to keep track of
event times without adjusting local clocks.

The problem of calibration [19] is related to that of synchronization, though it differs in some essential details. The
discussion in [2] isespecialy relevant to our discussion here, asit considers how to use nonlocal information across
multiple calibration paths in a consistent manner.

3 Optimal and Global Synchronization

In this section we consider a smple model where clocks al progress at the same rate (i.e., no skew), but have
arbitrary offsets; we later, in Section 5, extend our results to the case of genera clock skew. After describing the
model and notation, we consider the question of optimal pairwise synchronization and then that of the most likely
globally consistent synchronization. We then show their equivalence and end this section by describing a simple
iterative computation of the solution and its variance.

3.1 Model and Notation

We consider the case where there are n sensornet nodes, and let ; denote the i'th such node. These nodes use
synchronization signals to align their clocks; let s, denote the &’th synchronization signal. Our treatment does not
care from whence these signals come, only which nodes hear them, so we don’t identify the source of these signals.
We let E be the set of pairs (r;, s;) such that node r; receives signal s; in what follows, we will use the terms
“node” and “receiver” interchangeably. In order to explain our theory, we make reference to a perfect universal time
standard or clock; of course, no such clock exists and our results do not depend on such a clock, but it is a useful
pedagogical fiction. In fact, the approximation of such a universal time standard is one of the goals of our approach.

We assume, in this section, that all clocks progress at the same rate and that propagation times are insignificant (or
have been explicitly compensated for). We represent the offset of a node, or receiver, by the variable 7. This offset

is the difference between the local time on ¢'s clock and the universal absolute time standard. Of course, thereisa
degree of freedom in choosing these T;, as they could all be increased by the same constant without changing any
of the pairwise conversions; the addition of such a constant term would reflect changing the setting of the global
clock. We represent by Uy, the time when synchronization signal s, is sent (or, equivalently, received) according to

the absolute time standard. The Uy,’s are not known, but are estimated as part of the synchronization process; thus,

they are outputs, not inputs, of our theory.

Each node records the times-of-arrival of all synchronization messages they receive (i.e, al those that they are in
range of). We let y;;, denote the measured time on r;’s clock when it receives signal s;. The quantity y;. is defined
if and only if (14, s;) € E. The basic assumption we make about measurement errors is that:

Yit = U + T + e, (1)

where ¢;;, is arandom variable with mean zero and variance V.2 We further assume that all these random variables
are independent.

5In reality, of course, the e;;, terms will have nonzero mean, but this mean is shared by all nodes i and all signals &, and so
becomes a constant adjustment to all terms U



This notion of independent errors is crucial. In fact, our treatment could be applied to other (non-RBS) pairwise
synchronization methods as long as the intrinsic errors were independent. We focus exclusively on RBS, because the
nature of the underlying errors are well understood (see [5]) and they appear to be independent; however, we hope
to later extend our model to other approaches for which this independence assumption also holds?

To convert times from node 7 to node j, one merely adds the difference 7; — T;. In our previous notation, b;; =
T; — T;, and our assumption of uniform clock speed sets al ¢; = 1. To find the optimal (e.g., the minimum-
variance) pairwise synchronization between nodes i and j, we must produce the minimum-variance estimate of
the difference 7T; — 7;. Below we produce such an estimator that uses a network flow formulation related to the
concept of the effective resistance of a resistor network. This approach estimates the difference 7/ — T; directly,
rather than estimating each quantity separately. Thus, there is no obvious a priori guarantee that these estimates will
be consistent with each other (that is, there is no a priori guarantee that the optimal estimate of 7/ — T; plus the
optimal estimate of 7, — T; will equal the optimal estimate of 7;, — T;). Moreover, even if they are consistent, it is
not clear a priori that they are the most likely set of offset assignments.

In contrast, to produce a globally consistent synchronization, we must estimate all the 7' independently and seek a
maximum-likelihood joint choice of al the offsets 7;. When we assume the measurement errors e;, are Gaussian we
are able to reduce this maximum-likelihood problem to alinear system of |east-squares equations. Surprisingly, the
solution to this system of equations aso solves the flow problem used to produce minimum-variance estimators.

3.2 Minimum-Variance Pairwise Synchronization

Given two nodes r and r, an unbiased estimator of 73 — 15 can be obtained from any appropriate path between r
and 2. In general such apathisof thealternating form ;. , sg,, 7i,, Sky, - -+, Skys Ty, Wherer,, = ryandr;,,, = ro
and each adjacent pair isin E. The corresponding estimator iSw, x, —Yiy ki +Vio ke — " — Yir1 ke - WHiCh, inview of
theequation y;, = Uy +T;+eix, isequal toT1 —Th+e;, k) — €y ky +Cig ko — " —€iyyy ke THISESIMALOr is unbiased
because each e;;, has zero mean.” By the independence of the e;;, its variance 1SVii ky +Vig ey HVig ko + -+ Vi k-

By considering appropriate weighted combinations of alternating paths we can obtain an estimator of much lower
variance than any single path can provide, thus providing a more accurate synchronization of the two nodes. Such
aweighted combination of pathsisaflow from r; and r,, satisfying the flow conservation requirement that the net
flow into any node except r; and r5 is zero. In this subsection we characterize the minimum-variance estimator of
Ty — Ty interms of flows.

Consider an undirected flow network with edge set E. We will use the following convention regarding summations:
>, Will denote a summation over al pairs (i, k) such that {r;, s} € E; when k is understood from context, .
will denote a summation over al i such that {r;, s;,} € E; and when ¢ is understood from context, >, will denote a
summation over all k such that {r;, sy} € E.

Wefirst state, without proof, abasic but straightforward fact about unbiased estimators:

Theorem 1. The unbiased estimators of 71 — 75 are precisely the linear expressions) ., fixyix such that { fir } is
aflow of value 1 fromr to ro. Here f;;. is positive if the flow on edge {r;, s; } isdirected fromr; to s, and negative
if the flow is directed from s to r;. The variance of the unbiased estimator {f;z} is >_ f7 Vix. A similar statement
holds for the unbiased estimators of 7; — T;, for any 7 and ;.

The problem of finding a minimum-variance unbiased estimator of 7; — T is related to the problem of determining
the effective resistance between two nodes of aresistor network. In order to sketch this connection we review some
basic facts about resistive electric networks.

8For instance, the traditional methods of pairwise synchronization, in which current clock values are exchanged, the errors
in clock offset estimations are not independent between trials, as they are sensitive to asymmetriesin the path.

In fact, the conclusion follows if we only assume that they all have the same mean, which iswhy we are able to ignore the
constant shared mean of the receive delays.



Let G be a connected undirected graph with vertex set V' and edge set A, such that there is a resistance R(u,v)
associated with each edge {u,v}. An applied current vector is a vector e with a component e(u) for each vertex,
such that 3, .y e(u) = 0; e(u) represents the (steady-state) current (positive, negative or zero) injected into the
network at vertex u. Associated with every applied current vector e is an assignment to each ordered pair [u, v] of
adjacent vertices of a current ¢(u, v) and to each vertex « a potentia p(u) satisfying Kirchhoff’s law (net current
into a vertex = 0) and Ohm’'s law p(v) — p(u) = ¢(u, v)R(u,v). The current is unique and the potential is unique
up to an additive constant. When we want to identify the particular applied current vector e we write ¢(u,v) and
pe(v). A key property isthe superposition principle:

Ceqi+4eo (U7 U) = Cey (u7 U) + Cey (uv U)

and
Pei+es (’U) — Pertez (u) = (p61 (U) — Pey (u)) + (p€2 (U) — Pea (u))

The effective resistance between « and v is the potential difference p(v) — p(u) when the applied current vector is
asfollows: e(u) = 1, e(v) = —1 and al other components of e are zero; i.e., when one unit of current is injected
at v and extracted at v. More generaly, the effective resistance is the ratio of the potential difference to the current
flow (which is merely the amount of current flowing out of the source).

The effective resistance between » and v can be characterized in terms of a minimum-cost flow problem with
quadratic costs. It is the minimum, over al currents c(u, v) satisfying Kirchhoff’s law (with external current 1 at «
and —1kat v) of Z(W)GE c(u,v)?R(u,v). This quadratic objective function represents the power dissipation in the
network.

Now consider the undirected bipartite graph of signals { s} and receivers {r;} as aresistor network, with the vari-
ance V;;, astheresistance of the edge { sy, r; }. Combining Theorem 1 with the minimum- cost-flow characterization
of effective resistance we obtain the following theorem.

Theorem 2. The minimum variance of an unbiased estimator of 7; — 75 is the effective resistance between r, and
19, and the corresponding estimator is) _,, firyir, Where f;;, is the current along the edge from r; to s;, when one
unit of current isinjected at r; and extracted at 5.

The following theorem establishes the mutual consistency of the minimum-variance estimators of the differences
between offsets. Let A(i, j) be the minimum-variance estimator of 7; — T;.

Theorem 3. For any threeindicesi, mand j, we have A(i,m) + A(m, j) = A(1, j).

Proof: We give the proof for the case where i, m and j are distinct, the other cases being trivial. For any two indices
pand g let e(p, q) bethe applied current current vector with a1 in position p, a — 1 in position ¢ and O elsewhere, and
let c(e(p, q)) bethe corresponding vector of edge currents. Then A(i,m) = y - c(e(i,m)), A(m,j) = y-c(e(m,j))
and A(4,j) = y-c(e(i, 7)), wherey isthe vector of measured values y;;.. Since e(i, j) = e(i,m)+e(m, j) it follows
from the superposition principle that c¢(e(z, 7)) = c(e(i,m)) 4+ c¢(e(m, j)). Thus

A(i, g) = y - c(e(i, 7)) = y - ele(i,m)) + cle(m, j)) = A(i,m) + A(m, j)

QED

It follows from Theorem 2 that we can compute A(3, j) for al ¢ and j by computing A(i, m) for al ¢ and a fixed
m and using the identity A(i,j) = A(i,m) — A(j,m). This shows that the set of minimum-variance pairwise
synchronizations are globally consistent. The question remains whether they are the maximally likely set of offset
assignments.



3.3 Maximum-Likelihood Offset Assignments

We now seek the maximally likely set of offset assignments 7;. This approach is guaranteed to produce a globally
consistent set of pairwise synchronizations, but it is not clear a priori that they are minimum-variance pairwise
synchronizations. In this formulation we assume that the ;. are independent Gaussian random variables such that
yir has mean Uy, + T; and variance V;;. Then the joint probability density P of the i, given values T; for the offsets
of the receivers and Uj, for the absolute transmission times of the signalsis given by:

2
_ Wi —Up—T5)
2,1,

1
P= 1;[ Noare
We shall derive a system of linear equations for the 'I; and U, that maximize this joint probability density.

Let Cy;, denote the reciprocal of V;;,. We refer to Cj;, as the conductance between s, and ;. Let Dy, denote ) *, Cjy.

Differentiating the logarithm of the joint probability density with respect to each of the {j, and T; we find that
the choice of {Uy} and {7;} that maximizes the joint probability density is a solution to the following system of
equations:

For each k,

Y Cu(Uk+Ti) = Cingin )

For each 7,

Z Cit(Up +T;) = Z CikYik (©)
% %

Eliminating the variables U, we arrive at the following equations interrelating the offsets 7;"
For each r;,

k j & P

where the double summations are over &l pairs (k, j) suchthat (1;, s) € E, j # i and (r;, ;) € E.

3.4 Equivalence of the Two Formulations

The following theorem shows that, even though the minimum-variance pairwise synchronization and the maximum-
likelihood offset assignment appear to be based on different principles, they determine the same values of 7/ — T3,
for all i and j.

Theorem 4. For any fixed index m we obtain a solution to the system of equations 4 by setting 7'(<) = A(i,m) for
each i.

Proof: We need to show that, for each i
Z Dk ZCsz]k ]a Z Dk: ZCszjk Yjk — yzk)
Since A(j,i) = A(j,m) — A(i, m) it suffices to prove that

Z ZCZijkA J,1) Z ZCsz]k Yik — Yik)



where the double summations are over all pairs (k, j) such thet (r;, s;) € E, j # ¢ and (1, s) € E.

Let y be the vector with generic element ;.. By the superposition principle the left-hand side is the inner product of
y with the current vector when) . %}f > ; CirCjy units of current are extracted at ¢ and for each j # i}, C]’B—(IZJ’“

units of flow areinserted at j. One can check that Kirchhoff’s Law and Ohm’s Law are satisfied when the potentials

and currents are as follows: at all 7;, where j # 4, p(r;) = 0; p(r;) = 1, for each s, incident with 7;, p(si) = CDZ':;
for each s;, not incident with r;, p(sj) = 0; for each edge [r;, s;] such that r; isincident with s, ¢(r;, s;) = C]’j)—f]k

for each edge [sk, 7], c(sk, i) = %ff i Cji, where s, is adjacent to r; and the sum is over all j unequal to i
such that r; isincident with s;.. Except as stated all currents are zero. One can now check that for every component
Ypq the current in edge [, s,4] is equal to the coefficient of y,, in the right-hand side, thus proving that the two sides

of the equation are equal. QED

3.5 Solving the Equations

The solution to the system of equations 2 and 3 can be found through a simple two-step iterative process. In the first
step, the y;, and T; are used to estimate the Uy

For each k,
_ 2iCulyir = To)
> i Cik

In the second step, the y;;, and U}, are used to estimate the T;:

Uk

For each 7,
T >k Cir(ix — U)
> Cik

Each iteration reduces ) . >, Cir(vir — U — T;)°. It follows that the iterative process converges to a solution of

the system. Convergence can be accelerated by over-relaxation techniques which are standard in numerical analysis
[1].

The solution of the system maximizes the joint probability density of the measurements {y; } under the assumption

that the quantities y;, — Uy — T; are independent Gaussian random variables with means 0 and respective variances
Vix- The solution provides a minimum-variance estimator of each quantity 7; — 7, the difference of offsets between

receiversr; and r;.

While this theory produces optimal (in two senses of optimality, maximume-likelihood and minimum-variance) esti-
mators, it does not directly reveal the quality of the estimated values. In the next section we derive expressions for
the variances of the estimators.

3.6 Computing the Variance

We now compute the variance of our estimator of the offset 75 — T between receivers 1 and 2 (or, similarly, between
any two receivers). The approach is based on Theorem 2, which expresses this variance as the effective resistance
between two nodes of aresistive network. We later, in Section 4, use these error estimates to compare the precision
of the optimal method to that of RBSin afew simple scenarios. Note that because the optimal method and RBS are
both unbiased, the variance is the relevant measure of precision.

Consider aresistor network with a node r; for receiver i, anode s, for each signal k£ and a resistance V;;, between
r; and si. Assume that the potential difference between r and r5 isheld at 1. Then the effective resistance R isthe
reciprocal of the amount of current flowing from r, to o when current is conserved at al other nodes. Let F denote
the potential at receiver r; and @y, the potential at signal node s.



Since Cjy, is the conductance of the edge (73, si) it follows from Ohm’s Law that the current along the edge from 7;
to si, is Ci(Qr — P;). Kirchhoff’s Law of conservation of current thus states that:

For all ¢ except 1 and 2,

> Ca(Qr—P) =0
k
For all k,
> Cir(Qu—P) =0

This system of equations, together with the equations F = 0 and P, = 1 can be solved by an iterative process that
aternates between updating the @), and updating the P, in amanner analogous to the iterative solution of Equations
2 and 3. Once we have the quantities F; and @)y, the variance, or the effective resistance R, is given by the ratio of
the potential difference and the current flow:

- 1
- Zk flk:

Where the sum in the denominator isover al k such that (1, s;) € E.

R

()

4 Precision Results

We now compute the variance of this optimal estimator in afew simple scenarios. We first consider cases where we
can calculate the variance analytically and then consider the more realistic scenarios where we are forced to calculate
the variance numerically. In what follows, we set 1, = 1 for al ¢, k; thus, the absolute values of the variances are
not of interest since they scale linearly in the V.. To give a point of reference, we compare the resulting variances
to those achieved by RBS.

4.1 Analytical Calculations

Let r; and ro be receivers. We compare the variances of the estimators of 7 — T3 in some special cases Each

particular problem instance is specified by listing, for each signal, the set of receivers that receive it. Alternatively,
the instance can be described by a bipartite graph, with the receivers constituting one part of the vertex set, and the
signals constituting the other part.

Recall that, with no clock skew, the RBS estimation of 1; — 15 comes from the shortest path of the form

Ti15Sk1sTigy Skoy " " * 75kturit+1

where r;, = ry and r;,,, = ro and each adjacent pair isin £2 The resulting variance is merely the length of the
path (since we've set all Vj,, = 1).

In general, we expect that the estimator of 7; — 15 provided by the optimal method will have much lower variance
than the estimator provided by RBS when there are many alternate (and mostly digjoint) paths of near-minimum hop
count between r; and 5. The following examples are consistent with this expectation.

81n practice, RBS picks the path with the lowest observed variance, but for our comparison we pick the shortest path in
terms of absolute conversion hops.



Examplel: Every signal isreceived by every receiver. In this case, RBS and the optimal method provide the same
estimate of 77 — 15, and itsvariance is2/.S, where S is the number of signals.

Example2: There are n receivers and (’2‘) signals; for every pair i, j of receivers there isasignal that is received
only by receiversi and j. In this case optimal method yields a variance of 2/n whereas RBS produces a variance of
2.

Example 3: The bipartite graph is the d-dimensional unit hypercube. The effective resistance between any pair of
nodes (and hence the variance provided by the optimal method), isless than or equal to 1 when d < 2 and less than
or equal to 38—d for all d, whereas RBS provides a variance equal to the distance between . and 5.

Example 4: The bipartite graph is an infinite d-dimensional grid with unit distance between neighboring nodes.
Let L be the Manhattan distance between r; and . It is known [4] that the effective resistance between r, and r5 is

O(log L) when d = 2 and is bounded above by a constant when d > 3. Thus the variance of the estimate provided
by optima method is O(log L) when d = 2 and bounded by a constant when d > 3. RBS provides a variance of L
in both cases. However, the grid considered here is unnatural, because it does not accurately reflect real radio ranges;
instead, it is assumed that synchronization sources are perfectly interspersed with receivers on a grid, and only the
nearest 2d receivers can hear a given source.

These artificialities aside, the infinite 2-dimensional grid is, to some extent, the prototype of situations where many
sensor nodes are scattered more or less uniformly over a region of the Earth’s surface. Thus one expects that, in
such cases, the estimator provided by the optimal method for the difference in clock offsets between two nodes will
have a variance proportional to the logarithm of their distance, whereas the estimator provided by RBS will have a
variance proportional to their distance. Below we numerically investigate the 2-dimensional case with more realistic
configurations.

4.2 Numerical Calculations

We now consider a slightly more realistic grid, one where we need to use numerical calculations to determine
the results. We consider a large rectangular grid (42 by 42 nodes), and each node is in range of the nearest eight
neighbors. All nodes send a single synchronization message.

We measure the distance between any two nodes in terms of the number of pairwise comparisons needed to compute
their offsets in RBS. We call this the RBS path length; for points with the same = or y coordinate, the RBS path
length is half of the number of grid hops between the nodes.

We first consider, in Figure 1, how the optimal and RBS variances grow with increasing path length. The left-hand
graph compares the variance of RBS and the optimal method, and the right-hand graph shows the optimal method
by itself so its log-like growth is more apparent. These results confirm the analytical results for how variance grows
with path length on a grid-like sensornet configuration. Note that even with short path lengths, the optimal method
has significantly lower variance than RBS through its use of global information.

There are situations where one need only synchronize a pair of nodes, rather than the whole sensor network. The
optima method uses information from al nodes, which would incur significant energy expenditures. We now ask
how many nodes need be involved in order to achieve high precision. Figure 2 illustrates what happens when we
consider increasing rings of nodes around paths of RBS path length 2, 10, and 20. We start by involving only those
nodes within one hop of the path, and then consider those within two hops of the path, and so on. As s clear from
the graphs, there is avery rapidly diminishing return in precision once the depth of the surrounding nodes is on the
order of the path length. This suggests that one could greatly reduce the energy required to produce precise pairwise
synchronizations by limiting the depth of the surrounding grid.
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Figure 1: The variance in the pairwise synchronization resulting from the optima method and RBS as the RBS path
length between the two nodes isincreased from oneto ten. The grid is42 by 42 and all 1/, = 1. Theleft-hand graph
shows both the optima method and RBS, while the right-hand graph shows only the optimal method.

5 From Theory to Protocol

We have described abstractly how one could optimally compute the appropriate clock offsets 7' from the measure-
ment data y;i. In this section we briefly discuss how one might transform this theory into a practical protocol. This
discussion is by no means complete or definitive, and is completely untested; instead, we offer it only as providing
some glimmer that the ideas of presented here could be successfully applied to real systemswith their skewed clocks
and energy constraints.

The two issues we address are:;

e Generalizing the theory to compensate for clock skew

e Turning the abstract calculation into a series of practica message exchanges

5.1 Clock Skew

The theoretical treatment assumed that al clocks progressed at the same rate. We now relax this assumption and
describe how one can estimate the relative rates of clocks. In particular, we wish to estimate parameters « that

describe the rate of the local clocks relative to the standard clock: if atime ¢ has elapsed on the universal standard
clock then each local clock shows that time ¢;6 has elapsed (so large o; reflect fast clocks). As with the offsets T;,

there is a degree of freedom in choosing these «;; each could be multiplied by the same constant (which would only
change the speed of the absolute clock).

Given the pair («;, T;) for some node i, we can trandlate local times ¢; into standard times7: 7 = é— —T;. Moreover,

if one had the constants «;, then one can estimate the 7;'s asin the previous section by first dividiﬁg al local clocks
by «;. Thus, we must now describe how to obtain estimates of these skew values ¢;, and do so without knowledge
of the offsets T; (since the computation of the 7; requires knowledge of the «;).

To estimate clock rates, we use the same set of synchronization signals, but now select pairs of them originating from
the same source spaced at sizable intervals (i.e., large compared to the variances V, of theindividual measurements).

11
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Figure 2: The variance in the pairwise synchronization resulting from the optima method as the depth of the grid
surrounding the path is increased. The path lengths are 2, 10, and 20, and all ¥/, = 1.

We label the k’'th signal pair by p.. We let W), and w;;, represent the time elapsed between their transmission as
measured by, respectively, the standard clock and ¢’s local clock. In the notation of Section 3, 11, is the difference
between the pair of signals of the U values; w; is the corresponding difference in the y values. We assume that
the measurement errors, as expressed by the e, are negligible compared to the magnitude of the W;. If al clocks
progressed at perfectly constant rates, then w, = Wiy for each ¢, k and we could estimate the variables o; based
on asingle measurement for each i.

However, clock rates drift and wander over time in random and unpredictable ways. The skew variable ¢ represent
the long-time averages of the skew, and instantaneous estimates of the skew are affected by drifts in the clock rate.
More specifically, we assume that clock rates vary in such away that wy;, = a;ed*W;, where 6;;, isarandom variable
with mean zero and variance X;;,.

Note that, when taking the logs, the equation becomes:
log w;, = log Wi + log av; + s

Note that when changing variables, thisis exactly the form of Equation 1 with the following substitutions:

® Yy — logwy

12



o U, — log Wy
o T; — log o
® eir — Oik

o Vip — Xip

Thus, we can apply all of the previous theory to the estimate of clock skew. The difference is that the basic measure-
ments now are the locally measured intervals between two synchronization signals (and thus are unaffected by the
offsets), and the magnitude of these intervals is much larger than the measurement errors (i.e., Wi, > V;;) so the
only significant errors arise from clock frequency drift. The same set of equations, and the same iterative procedure,
will produce the optimal and globally consistent estimates of skews through the set of parameters ¢.

We can treat skew and offsets on different time scales. That is, we can adjust the parameters ¢; roughly every 7 time

units, whereas we adjust the parameters 7; roughly every 7, time units, with 7, > 7,; the absolute values of these

quantities will depend on the nature of the clocks and the setting. When computing the offsets we treat the skew as
constant (and known), so we can apply the theory we presented earlier. On longer time scales, we adjust the skew
using the same iterative procedure (with different variables).

The result is that we can treat general clocks with both offsets and skews. Experiments with real clocks will be
needed before we can fine tune the time constants and verify that this two-time-scale approach isvalid.

5.2 Outline of a Synchronization Protocol

The calculations in Section 3 seem, at first glance, far too complex for implementation in actual sensornets. This
may well be true, but here we sketch out how one might achieve the desired results in an actual sensornet protocol.
None of the various parameters are specified; we only sketch out the structure of what a protocol might look like.

The synchronization process can use any message as a synchronizing signal. We will assume that all messages have
unique identifiers, so different nodes can know that they are referring to the receipt of the same message. Also, in
what follows pairs of nodes are considered to be in range of another node if and only if they can exchange messages;
pairs where one node can hear another, but not vice versa, are not considered to be in range. We first describe the
approach for estimating clock offsets, and then later describe how to use this for estimating clock skew.

Each node broadcasts a synchronization status message every 7, (with some randomness), which contains data for
the last 7, seconds; 7, represents a time window after which datais discarded. Each status message contains.

e Their current estimate of 7;.
e Their current estimates of Uy, for al previous status messages sent within the last 7, seconds.

e Their time-of-arrival data ;. for all status messages received in the last 7, seconds.

Upon receipt of a status message, node ¢ uses the data to update their estimate of I and Uy, as described in the
iterative equations 2 and 3. Thus, each round of synchronization messages invokes another round in the iterative
computation.

At longer intervals, 75, nodes send skew status messages that additionally contain the data on ¢, Wy, and w;. This
data can be used to update the skew variables in the same way as for the offset variables.

The main open question is what rate of message passing is needed to achieve reasonable degrees of convergence
and whether this entails too much energy consumption. The answer will depend greatly on the nature of clock drifts
and measurement errors in real systems. If the rates of change are slow, then once the system is reasonably well
synchronized only a slow rate of iterations will be required to stay converged. If the rates of change are high, then a
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much faster rate of iterations will be required to stay within the desired precision bounds. Because we don’t know
what the relevant rates of change will be, we don’t offer any conjectures about the feasibility of this approach.
Instead, we hope to investigate the issue empiricaly by deploying this approach in an experimental setting.

While perhaps too energy-expensive, our approach does have the advantage of compactly representing the synchro-
nization data. Approaches that produce pairwise synchronizations must retain at node ¢ the conversion coefficients
(aij,b;;) for all nodes j to which ¢ might need to synchronize. In cases where many nodes need to coordinate, this
might be unwieldy.

6 Discussion

Clock synchronization is important for sensornets because they often require close coordination between nodes
in tasks as varied as data fusion, TDMA scheduling, and coordinated actuation. RBS is a promising approach to
sensornet clock synchronization, and this paper investigated how one might extend this approach to yield optimally
precise and globally consistent clock synchronization. Our main finding is that there is a simple iterative clock
adjustment algorithm that achieves both of these aims.

It is an open question whether this result will lead to a practical synchronization method. The key issue is whether
the rate of iterations needed to meet the desired precision bounds istoo energy intensive. However, as we described
in Section 4, if oneisonly interested in synchronizing apair of nodes, then one can greatly reduce the scope of nodes
involved in the synchronization process.

Even if our results do not lead to a feasible synchronization algorithm, they can provide a yardstick against which
to compare methods of computing offsets and skews from reference-broadcast time-of-arrival data. Designers now
know the optimal results that can be achieved, and can make their own energy-precision tradeoffs with that in mind.
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