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Abstract

Machine Learning Approaches Toward Diagnosis and Biomechanical Analysis of
Cardiovascular Disease

by

Ali Madani

Doctor of Philosophy in Engineering – Applied Science and Technology

University of California, Berkeley

Professor Mohammad Mofrad, Chair

Machine learning with deep neural networks has demonstrated high performance for
high dimensionality prediction tasks across multiple domains with sufficient sample data.
Cardiovascular disease is a pertinent public health issue that has the potential to be better
understood and addressed via deep learning approaches. In this work, we study machine
learning approaches toward diagnosing various forms of cardiovascular disease and predicting
its biomechanical behavior across multiple scales.

We begin by training deep learning models for an initial classification objective in echocar-
diography, a ubiquitous imaging modality for cardiologists. For view classification, we are
able to demonstrate physician-level performance. We then expand the work from a methods
and clinical application perspective. We address the high cost of annotation in medical imag-
ing by examining data-efficient supervised and semi-supervised algorithms. In addition, we
expand our prediction tasks towards the ultimate goal of automated, accurate cardiovascular
disease diagnosis by predicting left ventricular hypertrophy.

To understand the nature of cardiovascular disease and develop treatments, a close look at
the underlying biomechanics is important. For atherosclerosis, a leading cause of morbidity
and mortality, we bridge finite element methods and machine learning to predict arterial
tissue stress. Likewise for cytoskeletal proteins, which are the structural building blocks
of human biology and influence cardiovascular health, we develop graph neural network
algorithms to predict force response and conformational dynamics in calponin domains.

Moreover, we hope to lay the groundwork to advance the intersection of machine learning,
biomechanics, and cardiovascular disease.
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hand. b Training, validation, and test data were split by study, and test data was
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images, with video classification as a majority rules vote on related image frames.
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wave Doppler (CW), and m-mode (mmode). Note that these images are the actual
resolution of input data to the deep learning algorithm . . . . . . . . . . . . . . 11

2.3 Natural variations in input data. In addition to applying data augmentation
algorithms, we included in each category a range of images representing the nat-
ural variation seen in real-life echocardiography. The parasternal long-axis view
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diastole and systole, differences in gain or chroma map, use of dual-mode acqui-
sition, differences in depth and zoom, technically challenging images, use of 3D
acquisition, a range of pathologies (seen here, concentric left ventricular hyper-
trophy and pericardial effusion), and use of color Doppler, as well as differences
in angulation, sector width, and use of LV contrast. Note that these images are
the actual resolution of input data to the deep learning algorithm . . . . . . . . 12
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Chapter 1

Introduction

Cardiovascular disease (CVD) presents itself as a major global public health concern. It has
historically been the leading cause of death worldwide– equivalent in number to the sum of
the following four causes of death [107]. The physical, financial, and emotional burden of its
varying types, such as stroke, aneurysms, and coronary artery disease, weighs heavy on the
general public and demands innovative research to better understand, predict, and address
the disease.

The field of biomechanics yields a unique lens towards the study of human health and
disease. Biomechanics, itself, refers to the study of the structure, function, and motion
of mechanical aspects of biological systems– ranging from organism-level, tissue-level, to
cell and protein-level phenomena. From a mechanical analysis perspective, cardiovascular
disease and human biology/medicine is incredibly complex. The heart and vascular system
pump oxygenated blood and nutrients across the body. They comprise a network of muscle
and connective tissue, from cardiac chambers, valves, arteries, and veins, that efficiently
work together and are subject to a variety of stresses and strains from both a solid and
fluid mechanics perspective. Although it is a feat of engineering and robust to many a
biological shock, the cardiovascular system can be afflicted with disease and present perilous
life-threatening symptoms. One can use the field of computational modeling to analyze
organ- and tissue-level phenomena to better understand physiological mechanisms and design
treatments– the first step of which is to accurately identify and characterize geometry and
tissue characteristics.

Advances in medical imaging and acquisition through modalities such as magnetic reso-
nance imaging (MRI), computed tomography (CT), and ultrasound (echocardiography) have
enabled us unprecedented access to the inner workings of the human body. Echocardiography
in particular is a low-cost, no-radiation modality that is the proverbial next gen stethoscope
for cardiologists. Physicians are able to make structural and functional assessments of the
patient and prescribe treatments based on the information given. A natural line of computa-
tional research is to automate and improve prediction of geometric and dynamics parameters
along with clinical classifications/diagnoses. Those predictions can then be used to assist
physicians in the ultimate task of patient evaluation and diagnosis. The benefit would be (1)
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to improve diagnosis accuracy as physicians are routinely subject to burn-out and naturally
err and (2) to expand medical access to low-resource areas in terms of trained clinical staff.
Another benefit is using predictive algorithms as tools for precision phenotyping that can be
applied across large patient sample sizes to find pre-disposing risk factors and develop new
standards of patient care altogether.

The structural information characterized by computational algorithms on medical imag-
ing can also be used for further downstream biomechanical analysis methods. The finite
element (FE) Method is a numerical method to approximate the solution of partial dif-
ferential equation (PDE) problems, ubiquitous across nature, into a system of algebraic
equations. The FE method along with other corollary approaches for solid mechanics and
fluid dynamics simulations have been used extensively to understand the stress-strain be-
havior of cardiovascular disease to better prevent and address treatment. [108, 91, 11, 109,
47, 41]

While much can be derived from examining cardiovascular disease from a continuum
mechanics perspective, the cardiovascular system and its tissue is composed of cells– which
are alive, responsive, and adaptable. Cells are comprised of proteins which perform the
majority of work in cellular environments. Proteins can be further broken down into amino
acids and other molecular sub-divisions/scales. In this study, we stop at the scale of the
phenomena that can be modeled using all-atom classical molecular dynamics– a method
which describes the Newtonian equations of motion of atoms in a Cartesian system under a
defined force field. Under these scales, proteins interact and undergo conformational changes
driving the majority of cellular function and structure. Overarching fields have been devel-
oped to study these phenomena such as mechanotransduction, a broad class of mechanisms
by which cells convert mechanical stimulus into electrochemical activity. These can range
from functions such as cell adhesion and differentiation to structures such as the cytoskele-
tal network of proteins. The root of many cardiovascular diseases are caused by issues at
this level as evidenced by numerous studies [44, 13, 44, 53, 101]. Computational methods,
including molecular dynamics for biomechanical analyis, can be useful in this cardiovascular
disease domain to better understand protein interactions and possibly affect drug design for
treatment purposes.

In this study, we specifically are developing machine learning approaches to better predict,
understand, and address cardiovascular disease across multiple scales through the lens of a
biomechanicist.

Historically, the majority of research efforts in the application of machine learning for
healthcare have been through rule-based techniques that replicate the reasoning processes
of clinician experts. Deep learning, however, rose to success due to its data-driven per-
spective and has produced major breakthroughs for notably difficult areas such as image
recognition, speech interpretation, and language translation. Deep learning uses multi-layer
neural networks that model the relationships between inputs and outputs. These layers, with
”neurons”, are loosely inspired by the visual cortex that change the strengths of synaptic
connections between neurons to establish a hierarchy of progressively more complex feature
detectors. Problems in biology and medicine, which we limit our subset to cardiovascular
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disease in this study, are complex and high dimensional. The prediction of an output in
health and disease involves complex interactions between input terms. The process of train-
ing a machine learning model involves learning those interactions (i.e. weights), which could
be an exponentially large search space. The introduction of backpropagation procedure [56]
allowed for an elegant way to efficient undergo optimization of neural network parameters.

1.1 Neural Network Architectures

In this section, we will define, at a high-level, the basic neural network architecture types
utilized throughout the dissertation. We begin by thinking of a supervised learning problem
with X as an input space, Y as an output space, and D as the data distribution over X×Y .
The goal is to learn a function f : X → Y by learning from some sample, observed data
from D that can be further divided into training and testing sets. The data is assumed to
contain N independent and identically distributed (i.i.d.) samples

S = {(xi, yi)}Ni=1 ∼ D (1.1)

with xi as an input and yi as the associated, potentially noisy, output. To find and
evaluate our function, f , we aim to minimize the test error to find the ideal f ∗:

f ∗ = argmin
f∈F

E(x,y)∼D[L(f(x), y)] (1.2)

where L(f(x), y) is a loss function that penalizes and measures the distance between
predicted output ŷ = f(x) and actual output (or target) y. In practice, we would restrict
the allowable functions f to a relatively small class of functions F , of which we will describe
the neural network based variants.

Neural networks are solely biologically inspired and consist of nodes (also called neurons
or units), activations at each node, and directed edges between them. We begin with the
Multi-layer Perceptron (MLP) architecture, a feed-forward network consisting of a series
of hidden layers of nodes that are one-directional from input vector, x, to output vector, y.
Each node in a hidden layer is connected to every neuron in the previous layer. The value
of each node, hj, is the weighted sum of the values of previous layer nodes passed through
an activation function, e(·) as described below:

hj = ej

(∑
j′

wjj′ · hj′
)

(1.3)

Where j denotes the current node, j′ denotes an incoming node from a previous layer, and
associated weighting w. A MLP has multiple layers of hidden nodes connected by weight
matrices, W with dimension k × j where k is the previous layer dimensionality and j is the
subsequent layer dimensionality.
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The activation function introduces a non-linear property to the network so it can capture
the complex relationships between input and output. The choice of activation function
can range from the sigmoid function, σ(z) = 1/(1 + e−z), to the tanh function, φ(z) =
(ez − e−z)/(ez + e−z). An activation function commonly seen with high performance across
deep learning is the rectified linear unit (ReLU):

e(z) = max(0, z) (1.4)

After a series of hidden layers, the final layer, defined as the output layer will have a
specific output function based on the prediction task at hand. For binary classification or
multi-label multi-class classification, typically a point-wise sigmoid is used. For regression,
a linear activation is common. For single-label multi-class classification with K classes, the
softmax function below is useful as a differentiable max function that normalizes the outputs
to one:

ŷj =
ehj∑K
k=1 e

hk
(1.5)

Training is accomplished by optimizing the weights of the neural network to minimize
a chosen objective or loss function, L between the network output, ŷ, and desired target
output y. Common choices of loss function for regression include the L1-loss (mean absolute
error) or the L2-loss (mean squared error) function:

L(ŷ,y) = ‖ŷ − y‖2 (1.6)

For classification, the cross-entropy loss function is a powerful and informative loss function
for optimization purposes:

L(ŷ,y) = − 1

N

( N∑
i

yi · log ŷi

)
(1.7)

As referred to earlier, backpropagation is the most successful algorithm for training neural
networks. It uses the chain rule to calculate the derivative of the loss function, L, with respect
to each parameter in the network. The weights are optimized by some form of gradient
descent. It is inherently a non-convex optimization problem, but through specific techniques
the empirical results suggest sufficiently deep networks are able repeatedly achieve different,
yet sufficiently good local optimum [16]. Neural networks are trained well via stochastic
gradient descent (SGD) with mini-batches. An example SGD update equation for one sample
is described below:

W ←W − η∇wL (1.8)

where η is the learning rate and ∇wL is the gradient of the loss function with respect to the
parameters w. In practice, some form of momentum and weight decay is utilized such as in
Adam optimization [51].
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Recurrent Neural Networks (RNNs) are feed-forward networks tailored for sequential
data by the inclusion of recurrent edges that span adjacent time steps. As the acyclic
condition is necessary for backpropagation, RNNs can be viewed as a neural network with
one layer per time step and shared weights across time steps. At time t, nodes with recurrent
edges receive input from the current data sample, x(t), and also from hidden node values
h(t−1) in the network’s previous state. The output ŷ(t) at each time t is calculated given the
hidden node values h(t) at time t. Input x(t−1) at time t− 1 can influence the output ŷ(t) at
time t and future time steps by recurrent connections. The following equations specify the
interactions between layers:

h(t) = σ
(
W hxx(t) +W hhh(t−1) + b(h)

)
(1.9)

ŷ(t) = softmax
(
W yhh(t) + b(y)

)
(1.10)

where W hx is the matrix of weights between input and hidden layers, W hh is the matrix
of recurrent weights between time steps of hidden layers, and b are bias parameters across
nodes.

Convolutional Neural Networks (CNNs) are heavily used in computer vision as they
are able to capture the locality of features and utilize spatial invariance for effective learning.
The inspiration for the CNN was from the mammalian visual cortex which exhibits similar
feature hierarchical structure toward image recognition. For 2D images (although the prin-
ciple can be applied to other dimensionality problems), the input image is passed through
a series of convolutional layers. Each convolutional layer’s parameters consists of a set of
learnable filters usually of limited spatial range. These filters are convolved (or move in a
sliding window pattern) across the width and height of the input volume:

h
(l)
i = e

(∑
i∈Mj

x
(l−1)
i ∗ klij + blj

)
(1.11)

where l is the neural layer number, k are the filter weights, b is the bias, Mj is the selection
of input maps, and e is the activation function.

Intuitively, the network will learn filters that activate on discriminative visual features
from edges to more complex patterns. The resulting activation maps are then stacked along
the depth dimension of the image and produce an output volume. Typically, there are
pooling steps (such as max-pooling and average-pooling) that are placed successively af-
ter convolutional layers to progressively reduce the spatial representational size and reduce
the amount of parameters/computation. CNNs benefit from weight sharing, and overall
are incredibly efficient and effective at learning a hierarchically ordered set of progressively
complex features along successive layers.

Aside from the MLP, RNN, and CNN, which are the traditional workhorse architectures
to neural networks, we also engage in research with generative adversarial networks and
graph neural networks. Generative Adversarial Networks (GANs) involve two neural
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networks, performing as adversaries, engaged in a zero-sum game framework. Typically, the
generative network learns a mapping from a latent space to a data distribution of interest
and the discriminative network distinguishes samples from the true data distribution and the
samples produced by the generative network. GANs have made incredible strides especially
in generative tasks for visual data. We refer the reader to Chapter 3 for further explanation
of GANs and our objective for discriminative tasks.

Lastly, Graph Neural Networks describe a fascinating new area of research for non-
Euclidean data that are structured as nodes and edges– which many Euclidean domains
can reformulated as graphs as well. CNNs and RNNs take advantage of shared weights
and spatial and time invariances for efficient learning. For graphical data, progress has
been made to apply similar convolutional operations that leverage node/edge permutation
invariances. We delve deeper into the definition and formulation of various graph neural
network architectures in Chapter 5.

1.2 Dissertation Structure

In this dissertation, we focus on deep learning for diagnosis and biomechanical analysis of
cardiovascular disease. We begin our work with one of the most compelling areas for deep
learning, diagnosis in medical imaging, then move into biomechanics prediction problems in
different scales– as described in the chapters below.

Chapter 2. View Classification in Echocardiography using Deep Learning:
Initial Case Study for Cardiovascular Imaging Echocardiography is the most widely-
used imaging modalities for cardiology. We begin the dissertation with an initial study of
the ability of trained deep neural network models to predict view classification. We perform
a thorough study of the methods and compare with human physician performance.

Chapter 3. Data-Efficient Supervised and Semi-supervised Learning Towards
Automated Diagnosis The next chapter engages in developing and studying data-efficient
supervised learning techniques, with pipeline classification and segmentation networks, as
compared to end-to-end semi-supervised learning techniques, specifically utilizing generative
adversarial networks. The study of these methods extends past echocardiography specifi-
cally, however we focus on two prediction use-cases: view and left ventricular hypertrophy
classification.

Chapter 4. Bridging Finite Element Modeling and Machine Learning for
Atherosclerosis We then move into explicitly biomechanical phenomena by building ma-
chine learning models that can predict peak von Mises stress in idealized arteries as a poten-
tial indicator for plaque rupture due to atherosclerosis. We venture into the bridge between
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numerical methods such as the finite element method with the statistical methods of machine
learning.

Chapter 5. Bridging Molecular Dynamics Modeling and Graph Neural Net-
works for Calponin Domain Conformational Mechanics In spirit of the above bridge
between two modeling paradigms, we then engage in more fundamental biology of cardiovas-
cular disease by predicting protein biomechanical behavior. We utilize molecular dynamics
simulations of calponin homology domain stretching force-response. Calponin homology do-
mains in actinin are cytoskeletal proteins that formulate the basic science behind cardiac
muscle and function. If we can better predict mechanosensitivity, we can better understand
disease and treat it. This project also has the dual purpose of advancing graph neural
networks through a reliable benchmark dataset.
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Chapter 2

View Classification in
Echocardiography using Deep
Learning: Initial Case Study for
Cardiovascular Imaging

2.1 Introduction

Imaging is a critical part of medical diagnosis. Interpreting medical images typically requires
extensive training and practice and is a complex and time-intensive process. Deep learning,
specifically using convolutional neural networks (CNNs), is a cutting-edge machine learning
technique that has proven unreasonably [48] successful at learning patterns in images and has
shown great promise helping experts with image-based diagnosis in radiology, pathology, and
dermatology, for example, in detecting the boundaries of organs in computed tomography
and magnetic-resonance images, flagging suspicious regions on tissue biopsies, and classifying
photographs of benign vs. malignant skin lesions. [24, 34, 61] However, deep learning has not
yet been widely applied to echocardiography, a noninvasive, relatively inexpensive, radiation-
free imaging modality that is an indispensable part of modern cardiology. [23]

A transthoracic echocardiogram (TTE) consists of scores of video clips, still images, and
Doppler recordings measured from over a dozen different acquisition angles, offering comple-
mentary views of the hearts complex anatomy. The majority of the acquired information is
represented as video clips; only pulsed-wave Doppler (PW), continuous-wave Doppler (CW),
and m-mode recordings are represented exclusively as single images. Determining the view
is the essential first step in interpreting an echocardiogram. [112] This step is non-trivial,
not least because several views differ only subtly from each other. In principle, a CNN
can be trained to classify views, requiring only a training set of labeled images from which
to learn; given a new image, a well-trained model should then be able determine the view
almost instantaneously. The versatility of training in deep learning represents a significant
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advantage over earlier machine-learning methods, which have sometimes been applied to
echocardiography. Previous methods often require time-consuming and operator-dependent
manual selection and annotation of features (e.g. manually tracing the outline of the heart)
in each of a large number of training images, and are out-performed by deep learning on
complex, high-dimensional problems, such as image recognition. [49, 52, 74, 77, 92]

To assist echocardiographers and improve use of echocardiography for precision medicine,
we tested whether supervised deep learning with CNNs can be used to automatically classify
views without requiring prior manual feature selection. We report a model that achieves
nearly 98 percent overall test accuracy based on a variety of video and still-image view-
classification tasks.

To achieve translational impact in medicine, novel computational models must not just
achieve high accuracy but must also address clinical relevance. We did this in three main
ways. First, we used randomly selected, real-world echocardiograms to train our model, in-
cluding a variety of patient variables, echocardiographic indications and pathologies, techni-
cal qualities, and multiple vendors to ensure that our deep learning model would be clinically
relevant. Second, deep learning approaches are often considered data hungry; we sought to
achieve high accuracy on view classification with minimal data. Third, deep-learning mod-
els are sometimes considered black boxes because their internal workings are at first glance
obscure. To address this issue, we used several methods to look inside our model to show
that classification depends on human-recognizable clinical features within images.

Taken together, these results suggest that our approach may be useful in helping echocar-
diographers improve their accuracy, efficiency, and workflow and provide a foundation for
high-throughput analysis of echocardiographic data.

2.2 Results

Deep learning achieves expert-level view classification

We designed and trained a convolutional neural network (CNN) (Figure 2.1) to recognize
15 different standard echocardiographic views, 12 from b-mode (video and still image) and
three from pulsed-wave Doppler (PW), continuous-wave Doppler (CW), and m-mode (still
image) recordings (Figure 2.2), using a training and validation set of over 200,000 images (240
studies) and a test set of over 20,000 images (27 studies). To maintain sample independence,
each echocardiogram was from a different patient, and training, validation and test sets did
not overlap by patient or study (Figure 2.1b). These images covered a range of natural
echocardiographic variation with patient variables (Table 2.1) and indications for imaging
(Table 2.2) that represented our overall clinical database, and they included differences in
zoom, depth, focus, sector width, gain, chroma map, systole/diastole, angulation, image
quality, and use of 3D, color Doppler, dual mode, strain, and LV contrast (Figure 2.3).
Clustering analyses showed that the neural network could sort heterogeneous input images
into groups according to view (Figure 2.4).
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Figure 2.1: Convolutional neural net architecture for image classification. a The neural
network algorithm used for classification included six convolutional layers and two fully-
connected layers of 1028 and 512 nodes, respectively. The softmax classifier (pink circles)
consisted of up to 15 nodes, depending on the classification task at hand. b Training,
validation, and test data were split by study, and test data was not used for training or
validating the model. The model was trained to classify images, with video classification
as a majority rules vote on related image frames. Conv convolutional layer, Max Pool max
pooling layer, FC fully connected layer

The model achieved an average overall test accuracy of 97.8 percent on videos (F-score
0.964s.d. 0.035) and 100 percent accuracy on seven of the 12 video views (Figure 2.5a). CW,
PW, and m-mode categories, which always appeared in echocardiograms as still images, had
98, 83, and 99 percent accuracies, respectively (Figure 2.5b). Classification of test images
by the trained model took an average of 21ms per image on a standard laptop.

On single still images drawn from all 15 views, the model achieved an average overall
accuracy of 91.7 percent (F-score 0.904s.d. 0.058) (Figure 2.5b), compared to an average of
79.4 percent (range, 70.284.0; n=4 subjects) for board-certified echocardiograpers classifying
a subset of the same test images (one-sample t-test, p=0.03) (Figure 2.5c). Associated
areas under the curve (AUCs) for still-image model prediction by view category ranged
from 0.985 to 1.00 (mean 0.996; Figure 2.5f). For the 8.3 percent of test images that the
model misclassified, its second-best guessthe view with the second-highest probabilitywas
the correct one in 67.0 percent of cases (5.3 percent of test images; Figure 2.5e). Therefore,
97.3 percent of test still-images were classified correctly when considering the models top
two guesses.

Accuracy was highest for views with more training data (e.g. apical four-chamber) and
views that are most visually distinct from the others (e.g. m-mode). Accuracy was lowest
for views that were clinically similar to other views, such as apical three-chamber (which
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Figure 2.2: Sample input images. Views classified included parasternal long axis (psla),
right ventricular inflow (rv inflow), basal short axis (sax basal), short axis at mid or mitral
level (sax mid), apical four-chamber (a4c), apical five chamber (a5c), apical two chamber
(a2c), apical three chamber/apical long axis (a3c), subcostal four-chamber (sub4c), subcostal
inferior vena cava (ivc), subcostal/abdominal aorta (subao), suprasternal aorta/aortic arch
(supao), pulsed-wave Doppler (PW), continuous-wave Doppler (CW), and m-mode (mmode).
Note that these images are the actual resolution of input data to the deep learning algorithm
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Figure 2.3: Natural variations in input data. In addition to applying data augmentation
algorithms, we included in each category a range of images representing the natural variation
seen in real-life echocardiography. The parasternal long-axis view is shown here for example.
Variations include a range of timepoints spanning diastole and systole, differences in gain
or chroma map, use of dual-mode acquisition, differences in depth and zoom, technically
challenging images, use of 3D acquisition, a range of pathologies (seen here, concentric
left ventricular hypertrophy and pericardial effusion), and use of color Doppler, as well as
differences in angulation, sector width, and use of LV contrast. Note that these images are
the actual resolution of input data to the deep learning algorithm
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Figure 2.4: Deep learning model simultaneously distinguishes among 15 standard echocar-
diographic views. We developed a deep-learning method to classify among standard echocar-
diographic views, represented here by t-SNE clustering analysis of image classification. On
the left, t-SNE clustering of input echocardiogram images. Each image is plotted in 4800-
dimensional space according to the number of pixels, and projected to two-dimensional space
for visualization purposes. Different colored dots represent different view classes (see leg-
end in figure). Prior to neural network analysis, input data does not cluster into clear
groups. On the right, data as processed through the last fully connected layer of the neural
network are again represented in two-dimensional space, showing organization into clusters
according to view category. Abbreviations: a4c apical 4 chamber, psla parasternal long axis,
saxbasal short axis basal, a2c apical 2 chamber, saxmid short axis mid/mitral, a3c apical 3
chamber, sub4c subcostal 4 chamber, a5c apical 5 chamber, ivc subcostal ivc, rvinflow right
ventricular inflow, supao suprasternal aorta/aortic arch, subao subcostal/abdominal aorta,
cw continuous-wave Doppler, pw pulsed-wave Doppler, mmode m-mode recording

can be confused for apical two-chamber) and apical four-chamber (vs. apical five-chamber),
or views in which multiple view-defining structures can be seen in the same image, such as
subcostal IVC vs. subcostal four-chamber. As expected, training on randomly labeled still
images achieved an accuracy (6.9 percent) commensurate with random guessing (6.7 percent,
the probability of guessing the correct one out of 15 views by chance).

Model classification is based on cardiac image regions

To understand whether classification is based on clinically relevant features, such as heart
chambers and valves, or on confounding or statistical features that might be clearer to a
machine than a human, such as fiducial markings, border regions, or fraction of white pixels,
we performed occlusion experiments by measuring prediction performance on test images on
which we masked clinically relevant features with different shapes. Overall test accuracy fell
significantly with masking of the heart but not other parts of the image, consistent with this
region being important to the model (Figure 2.6a). In addition, saliency mapping, which
identifies the input pixels that are most important to the models assignment of a particular
classification, revealed that structures that would be important to defining the view to a
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Figure 2.5: Echocardiogram view classification by deep-learning model. Confusional matri-
ces showing actual view labels on y-axis, and neural network-predicted view labels on the
x-axis by view category for video classification (a) and still-image classification (b) compared
with a representative board-certified echocardiographer (c). Reading across true-label rows,
the numbers in the boxes represent the percentage of labels predicted for each category.
Color intensity corresponds to percentage, see heatmap on far right; the white background
indicates zero percent. Categories are clustered according to areas of the most confusion.
Rows may not add up to 100 percent due to rounding. d Comparison of accuracy by view cat-
egory for deep-learning-assisted video classification, still-image classification, and still-image
classification by a representative echocardiographer. e A comparison of percent of images
correctly predicted by view category, when considering the models highest-probability top
hit (white boxes) vs. its top two hits (blue boxes). f Receiver operating characteristic curves
for view categories were very similar, with AUCs ranging from 0.985 to 1.00 (mean 0.996).
Abbreviations: saxmid short axis mid/mitral, ivc subcostal ivc, subao subcostal/abdominal
aorta, supao suprasternal aorta/aortic arch, saxbasal short axis basal, rvinflow right ventric-
ular inflow, a2c apical 2 chamber, a3c apical 3 chamber, a4c apical 4 chamber, a5c apical 5
chamber, psla parasternal long axis, sub4c subcostal 4 chamber
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human expert were also the ones that contributed most to the models classification (Figure
2.6b).

2.3 Discussion

View classification is the essential first step in interpreting echocardiograms. Previous at-
tempts to use machine learning to assist with view classification required laborious manual
annotation, failed to distinguish among more than a few views at a time, used only textbook-
quality images for training, exhibited low accuracy, or were tied to a specific equipment
vendor, limitations unsuitable for general practice. [49, 52, 74, 77, 92, 27, 79] In contrast, we
report here a single, vendor-agnostic deep-learning model that correctly classifies all types
of echocardiogram recordings (b-mode, m-mode, and Doppler; still images and videos) from
all acquisition points relevant to a full standard transthoracic echocardiogram (paraster-
nal, apical, subcostal, and suprasternal), at accuracies that exceed those of board-certified
echocardiographers given the same task. Furthermore, the echocardiograms used in this
study were drawn randomly from real echocardiograms acquired for clinical purposes, from
patients with a range of ages, sizes, and hemodynamics; for a range of indications; and in-
cluding a range of pathologies, such as low left ventricular ejection fraction, left ventricular
hypertrophy, valve disease, pulmonary hypertension, pericardial effusion. Training data also
included the natural variation in echocardiographic acquisition of each view, including vari-
ations in technical quality. By avoiding limited or idealized training subsets, our model is
broadly applicable to clinical practice, although of course a larger training set would likely
capture still more echocardiographic variability.

Because deep networks like CNNs usually include large numbers of (highly correlated)
parameters (which describe the weights of connections among the nodes in the network), it
is usually difficult to understand a models decision-making by simple inspection. For life-
or-death decisions, such as in medicine or self-driving cars, this issue can breed suspicion
and has legal ramifications that can slow adoption. Occlusion testing and saliency mapping
help address these concerns by getting inside the black box. In our model, these techniques
show that classification depends on the same features that echocardiographers use to reach
their conclusions. For example, the maps shown in Figure 2.6b for a short-axis-mid view and
a suprasternal aorta view, respectively, each trace the basic outlines of their corresponding
input view. In the future, applying these approaches to intermediate layers may prove
interesting to more precisely define the similarities, or differences, in how humans and models
move from features to conclusions. For now, it is reassuring that our model considers the
same features that human experts do in classifying views.

This similarity also explains the occasional misclassifications of single images, which most
often involved views that can look similar to human eyes (Figures 2.2e, f, g, h, j, k and 2.5).
These include adjacent views in echocardiographic acquisition, where a slight difference in
the angle of the sonographers wrist can change the view, resulting in confusion of an apical
three-chamber view for an apical two-chamber view or an apical five-chamber for apical four-
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Figure 2.6: Visualization of decision-making by neural network. a Occlusion experiments.
All test images (a short axis basal sample image is shown here) were modified with grey
masking of different shapes and sizes as shown, and test accuracy predicted for the test set
based on each different modification. Masking that covered cardiac structures resulted in the
poorest predictions. b Saliency maps. The input pixels weighted most heavily in the neural
networks classification decision for two example images (left; suprasternal aorta/aortic arch
and short axis mid/mitral input examples shown) were calculated and plotted. The most
important pixels (right) make an outline of structures clinically relevant to the view shown
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chamber; as well as views in which two view-defining structures may be seen in the same
image, such as the IVC seen in a subcostal four-chamber view. A low-velocity PW signal
can look similar to a faint CW signal. In fact, the only misclassification made by our model
without an obvious explanation of this sort was that of the right ventricular inflow view for
short-axis basal; of note, the right ventricular inflow view was also very challenging for human
echocardiographers to distinguish (with 5157 percent accuracy). We note in the confusion
matrices that misclassification of certain views for one another was non-symmetrical; for
example, PW images were confused with CW, but CW images were almost never mistaken
for PW (Figure 2.5b). In this case, as mentioned above, this asymmetry makes clinical sense;
however, more training and test data can be used to explore this phenomenon further and
refine accuracies for these categories. Because classification of videos is based on multiple
images, and error decays exponentially with the number of images, misclassification of videos
was very rare ( 2 percent; Figure 2.5d). We also noted that the models confidence in
its choice (the probability assigned to a view classification for a particular image) affected
performance; where confidence was higher, accuracy was also higher (Figure 2.7). Therefore,
communicating the models confidence for each classification should further benefit users.

Finally, our approach had two unexpected advantages related to efficiency, practicabil-
ity, and cost-effectiveness. First was the perhaps surprising effectiveness of a simple ma-
jority vote in classification of videos. Video analysis can be a complex undertaking that
involves non-trivial tasks, such as frame-to-frame color variation and object tracking. We
have demonstrated that view classification, at least, can be done much more efficiently and
cost-effectively, reducing coding and training time. Moving beyond view classification, it
will be interesting to see what other clinically actionable information can be extracted from
(collections of) still images. Second, in removing color and in standardizing the sizes and
shapes of videos and still images for training, we discovered that we could downsamplei.e.,
shrinkimages appreciably without losing accuracy. This allowed for a 9699 percent savings
in file size (vs. 300-by-400- to 1024-by-768-pixel images; Figure 2.8), and corresponding
gains in the cost and speed of training and of classifying new samples at deployment. While
human echocardiographers routinely classify views, they appear to require full-resolution,
native video data to do so with high accuracy. With less input data, the model outper-
formed overall human accuracy (and speed: 32s vs. hours to classify the same 1500-image
test sample). We note the potential implications for telemedicine and global health, includ-
ing in resource-poor regions of the United States, of requiring storage and transmission of
smaller files (though decentralized use of the model can also come through transmission of
the model, which is a small file), and of embracing older echo machines that may image with
lower resolution.

Echocardiography is essential to diagnosis and management for virtually every cardiac
disease. In this study, we have demonstrated the application of deep learning to echocardio-
graphy view classification that classified 15 major TTE views with expert-level quality. We
purposely used a training set that reflected a wide range of clinical and physiological varia-
tions, demonstrating applicability to real-world data. We found that our model uses some
of the same features in echocardiograms that human experts use to make their decisions.
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Looking forward, our model can be expanded to classify additional sub-categories of echocar-
diographic view (e.g. to distinguish among different CW, PW, and m-mode acquisitions),
as well as diseases, work that has foundational utility for research, for clinical practice, and
for training the next generation of echocardiographers.

2.4 Methods

Dataset

All datasets were obtained and de-identified, with waived consent in compliance with the In-
stitutional Review Board (IRB) at the University of California, San Francisco (UCSF). Meth-
ods were performed in accordance with relevant regulations and guidelines. Two-hundred
sixty-seven echocardiographic studies from different patients and performed between 2000
and 2017 were selected at random from UCSFs clinical database. These studies included
men and women (49.4 and 50.6 percent, respectively) ages 2096 (median age, 56; mode, 63)
with a range of body types (25.8 percent obese), which can affect technical quality of TTE
(Table 2.1), and included indications and pathologies that are representative of the uses of
echocardiography in current clinical practice (Table 2.2). Studies were carried out using
echocardiograms acquired with equipment from several manufacturers (e.g., GE, Philips,
Siemens).

Data Pre-processing

DICOM-formatted echocardiogram videos and still images were stripped of identifying meta-
data, anonymized by zeroing out all pixels that contained identifying information, labeled by
view by a board-certified echocardiographer with access to native-resolution and video data,
then split into constituent frames and converted into standardized 6080-pixel monochrome
images, resulting in 834,267 images. Fifteen views were selected for multi-category classi-
fication, covering the majority used in the field. Views classified included parasternal long
axis, right ventricular inflow, basal short axis (aortic valve level), short axis at mid (papillary
muscle) or mitral level, apical four-chamber, apical five chamber, apical two chamber, apical
three chamber (apical long axis), subcostal four-chamber, subcostal inferior vena cava (IVC),
subcostal abdominal aorta, suprasternal aortic arch, pulsed-wave Doppler, continuous-wave
Doppler, and m-mode. For the purposes of this study, CW Doppler, PW Doppler, and
m-mode recordings from different acquisition points were considered part of the same view,
e.g. m-mode of the aortic valve, mitral valve, left ventricle, and right ventricular annulus
were all considered part of the m-mode view. For each view, we included images with a
range of natural echocardiographic variation, such as differences in zoom, depth, focus, sec-
tor width, gain, chroma map, systole/diastole, angulation, image quality, and use of 3D,
color Doppler, dual mode, strain, and left-ventricular (LV) contrast, to capture the range of
variation normally seen by echocardiographers.
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Demographics Study sample Clinical Echo Databasea

Mean SD IQR Mean SD IQR pb

Age 56.1 16.6 22.5 58.5 16.8 23 0.5
Height 170 11.6 16.5 169 11 17.8 0.8
Weight 77 20.5 31.5 77 22 26.3 0.9

Systolic BP 127 19 20.3 126 22 28 1
Diastolic BP 70 123 13.3 70 12 17 0.5

MAP 88.9 13.4 18.3 88.6 13.9 13.8 0.7
BSA 1.87 0.27 0.44 1.82 0.56 0.37 0.8
BMI 26.6 6.1 10.2 27.1 6.8 7.4 0.9

Demographics % N Sample Percent N Sample pb

size size
Female 50.6 135 267 49.5 79,460 159,503 0.7
Male 49.4 132 267 50.5 80,043 159,503 0.7
Obese 25.8 69 267 25.1 25,770 102,669 0.8

Pathology % N Sample Percent N Sample pc

size size
LVMI>normal 32.8 67 204 39.2 34,056 86,878 0.06

LVEF<55% 21.7 58 267 20.3 18,432 90,798 0.6
LVEDVI>normal 16.9 45 238 46.8 10,677 90,375 0.3
RVSP>40mmHg 10.9 29 267 14.6 10,774 73,795 0.09
TAPSE<1.6cm 7.84 8 102 10.6 1768 16,679 0.4

Table 2.1: Patient Characteristics Table - Comparison of study sample characteristics to
clinical echo database. Age (years), Height (cm), Weight (kg), BP blood pressure (mmHg),
MAP mean arterial pressure (mmHg), BSA body surface area (m2), BMI body mass index
(kg/m2), LVMI left ventricular mass index (g/m2) adjusted for sex, LVEF left ventricular
ejection fraction, LVEDVI left ventricular end-diastolic volume index (ml/m2) adjusted for
sex, RVSP right ventricular systolic pressure, TAPSE tricuspid annular plane systolic excur-
sion, SD standard deviation, IQR interquartile range. a- p-value. Ns and sample size vary
according to availability of different measurements b- p-value. Two-tailed Students t-test,
unequal variance c- p-value. Chi-squared test for comparison of proportions
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A subset of 223,787 images from 15 views were randomly split using Python into training,
validation, and test datasets in approximately an 80:10:10 ratio. Each dataset contained
images from separate echocardiographic studies, to maintain sample independence. The
number of images in training, validation, and test datasets were 180,294, 21,747, and 21,746
images, respectively (corresponding to 213, 27, and 27 different studies in each set). The
validation dataset was used for model selection and parameter fine-tuning. The test dataset
was used for performance evaluation of the final trained and validated model. For training,
256-shade greyscale pixel values were scaled from [0,255] to [0,1] and the mean over the
training data was subtracted from each dataset, as is standard in image-recognition tasks.
Also as per standard practice, data were augmented at run-time by randomly applying
rotations of up to 10 degrees, width and height shifts of up to a tenth of total length, zooms
of up to 0.08, shears of up to 0.03, and vertical/horizontal flips. Training and validation
datasets in which view labels were randomized were used as a negative control.

Model architecture and training

Our neural network architecture was designed in Python using the Tensorflow, Theano, and
Keras packages, drawing inspiration from the VGG-16 network, which won the Imagenet
challenge in 2014. [1, 15, 96, 86] Our model utilized a series of small 33 convolutional
filters connected with max-pooling layers over 22 windows. Dropout was utilized in training
for both the convolutional and fully connected layers to prevent overfitting. In addition to
dropout for regularization, batch normalization was used before neuron activations, which led
to faster training and increased accuracy. Activation functions were mainly rectified linear
units (ReLU) with the exception of the softmax classifier layer. Training was performed
over 45 epochs using an adaptive learning-rate decay for RMSprop optimization. k-fold
cross-validation (k=9) was used to randomly vary which images were in the training and
validation sets, to make use of all available data for training and to select the optimal
weights at each epoch. Batches of 64 samples at a time were used for gradient calculation.
Convergence plots of training and validation accuracy by epoch confirmed that the model
was not overfitting. The training method was robust, with three separate trainings of the
223,787 images resulting in overall test accuracies above 97 percent. Training was performed
on Amazons EC2 platform with a GPU instance g2.2xlarge and took about 18h. Testing
was performed on a laptop computer (Intel i5-3320M CPU @ 2.60GHzx4 with 16GB RAM);
it took a total of 32s to predict 1500 images, yielding an average of 21ms per image. Code
availability: VGG-16 is publically available on Github.

Model evaluation

Several metrics were used over the test dataset for performance evaluation. Overall accuracy
was calculated as the number of correctly classified images as a fraction of the total number of
images. Average accuracy was calculated as the average over all views of per-view accuracy.
F-score was calculated in standard fashion as twice the harmonic mean of precision (positive
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predictive value) and recall (sensitivity). Receiver operator characteristic (ROC) curves were
plotted in the standard way as true-positive fraction (y-axis) against false-positive fraction
(x-axis) and the associated area under curve (AUC) was calculated. Confusion matrices
were calculated and plotted as heat maps to visualize performance of multi-view classifiers
and their associated errors. Single test images were classified according to the view with the
highest probability. Test videos were classified by simple majority vote on multiple images
from a given video.

The basis for the models classification decisions was explored using t-distributed stochas-
tic neighbor embedding (t-SNE) dimensionality reduction [62] of raw pixels and of the last
fully connected layer output for each sample. Occlusion experiments were performed by
masking test images with bounding boxes of different shapes, then submitting them to the
model for label prediction. Saliency maps were created using guided backpropogation, which
keeps the model weights fixed and computes the gradient of the models output for a given
image.

Comparison to human experts

Echocardiogram test-image classification by board-certified echocardiographers was approved
by the UCSF Human Research Protection Program and Institutional Review Board. Each
board-certified echocardiographer gave informed consent and was given a randomly selected
subset of 1500 60-by-80 pixel images, 100 of each view, drawn from the same low-resolution
test set given to the model, and performance compared using the relevant metrics above.
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Study sample indication Percent N
Heart failure/cardiomyopathy 24 64

Arrhythmia 11.6 31
Chemotherapy 10.9 29
Valve disease 10.5 28

Preoperative exam 7.9 21
Dyspnea 6.4 17

Coronary artery disease 6 16
Stroke 6 16

Syncope 5.2 14
Rule out endocarditis 4.9 13

Pulmonary HTN 4.5 12
Hypertension 3.7 10

Pericardial effusion 3.4 9
Murmur 3 8

Palpitations 3 8
Aortic aneurysm 2.6 7

Congenital heart disease 2.6 7
Lung disease 1.9 5

Edema 1.5 4
Hypotension 1.5 4

Cardiac arrest 0.4 1
Heart transplant 0.4 1

Number of normal studiesa Percent N
Normal studies 10.9 29

Table 2.2: Indications for study sample echocardiograms. a- Defined by echo reports docu-
menting normal four-chamber size and systolic/diastolic function, no chamber hypertrophy
or wall motion abnormalities, normal valves with trace or less regurgitation, normal great
vessels and estimated right atrial pressure, no pericardial effusion, RVSP<=40, and no other
abnormalities, such as atherosclerosis, calcification, pleural effusion, ascites, prostheses, or
catheters
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Figure 2.7: Confidence for first and second guesses on image classification. Box plot summa-
rizing probabilities assigned to correct and incorrect images in the test set using the single
highest probability to classify the test image. Confidence for correct answers was higher
than for incorrect answers. Median, interquartile range for correct (0.999, 0.970-1.00) and
incorrect (0.682, 0.525-0.867) answers.
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Figure 2.8: Example native-resolution and downsampled images. (a) Native echocardio-
graphic images ranged from 300x400 to 768x1024 pixels in resolution, and many contained
color, either as color Doppler or as different chroma maps to aid in visualization. (b) The
same sample image as in (a), downsampled to the 60-by-80-pixel resolution used as input to
the deep learning model.
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Chapter 3

Data-Efficient Supervised and
Semi-supervised Learning Towards
Automated Diagnosis

3.1 Introduction

With the improved quality and accessibility of both medical imaging equipment and effec-
tive healthcare policy, medical imaging has become an increasingly critical step in modern
healthcare diagnostics and procedures. Interpretation of medical imagery requires specialized
training and is a time-intensive process. Machine learning and computer vision techniques
provide an avenue to augment insights, improve accuracy, and optimize workload time for
interpretation. Traditional machine learning techniques in medical imaging involve matching
of features hand-engineered by domain experts, a laborious process with limited scope and
effectiveness [98, 22]. Recent advances in deep learning [54, 97, 55], a data-driven approach,
and the increasing accessibility of powerful graphical processing units (GPUs) [17, 3] have
made the automation of image-based diagnosis insights possible. Researchers have succeeded
in applying deep learning techniques in radiology, cardiology, and dermatology [61, 67, 64],
including detecting pneumonia from chest X-rays [82] and classifying images of benign versus
malignant skin lesions [24].

While deep learning holds great promise in automating the task of medical diagnosis,
there remains a set of unique challenges to be resolved before it can be deployed in practice
at scale [61]. Specifically, deep learning algorithms require massive amounts of labeled data
to achieve human-level classification performance. Due to privacy laws, differing standards
across the healthcare industry and the lack of medical system integration, medical data is
less available compared to other fields of computer vision. In addition, medical datasets
suffer from class imbalances as certain conditions occur much less frequently than others.
Labeling of medical images is complex and requires the time of medical professionals, making
it significantly more expensive compared to other computer vision tasks. In addition, there
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is a limit to the effectiveness of current algorithms in processing high-resolution medical
images. As a result, there is a need to identify an optimal balance between resolution size
and computational burden. Lastly, medical images often contain other metadata that may
be irrelevant for the classification task, leading to less than optimal performance from deep
learning models that are unable to filter out this extra information [49].

In this paper, we address the above challenges by developing data-efficient training
methodologies in the domain of transthoracic echocardiograms (TTEs) classification, the
most ubiquitous, versatile, and cost-effective cardiac imaging modality available [76]. Cur-
rently, studies have shown surprising rates of echocardiographic assessment inaccuracy can be
up to 30% of echo reports [45] and echocardiographic quality inadequacy in 24% of imaging
studies. Automating interpretation of echocardiograms with trained deep learning classifiers
can significantly lower cost, improve quality, and augment cardiologists in making faster
and more accurate diagnoses. TTE consists of video clips, still images, and doppler mea-
surements recorded from over a dozen different viewing orientations [116]. Determining the
view is the essential initial step in interpreting an echocardiogram and establishing quality of
recorded medical imaging. This step is challenging due to subtle inter-view differences and
the variability within a single view [49]. In addition, from different view orientations further
symptoms can be visually identified, such as the enlargement of chambers and thickening
of ventricular walls before final prognosis. Left ventricular hypertrophy (LVH), a condition
commonly associated with heart disease and hypertension, can be identified by the thickness
and relative size of the left ventricle from echocardiograms [75].

Previously [66], we explored supervised learning techniques for effective classification of
echocardiogram view orientations, reporting a single image classification accuracy of 91.7%
over 15 view classes. View classification is an important initial step in terms of a proof-of-
concept to gain confidence that deep learning networks are performing accurately by learning
relevant visual features, on-its-own as an assistant to sonographers for quality assurance,
and as a precursor toward prediction of clinical diagnoses; as if an algorithm can learn what
anatomical structure it is looking at, it can conceivably then learn patterns in what is defined
as normal vs abnormal. We expand the previous work [66] by examining both supervised and
semi-supervised techniques for classification of view orientations, segmentation of relevant
structures in echocardiogram images, and classification of left ventricular hypertrophy with
the goal of automating cardiovascular disease prediction as captured in figure 3.1. Our
expansion of work provides an expansion of the depth and breadth of both algorithms and
applications in deep learning for echocardiography and medical imaging as a whole. We
train convolutional neural networks (CNNs) on input resolutions of varying sizes and found
an optimal balance between classifier performance and computational burden at 120x160
pixels. Performance of CNNs trained with default weight initialization were compared with
transfer learning from Resnet50 [37] and VGG16 [96], models that were pre-trained on the
ImageNet [20, 86] dataset.

We report an accuracy of 94.4% on the same test set, using an ensemble of CNNs with a
single U-Net [84] for field of view segmentation. We applied the same techniques on a limited
training dataset for single image LVH classification, obtaining a test accuracy of 91.2%. We
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show that generative adversarial networks (GANs) [33], adapted for semi-supervised learning,
can achieve better results than conventional CNNs in settings where labeled data is limited,
achieving a test accuracy of 92.3% for LVH classification. Together, we present a working
CNN system capable of accurately classifying left ventricular hypertrophy from a single
echocardiogram image and a GAN system for automating disease predictions in data-limited
settings.

3.2 Results

An optimum balance exists between resolution size and
computational burden

We examined the effect of resolution size on accuracy performance and computational time.
Ideally, there is an optimal point where the resolution is efficiently small without losing
excessive structural information. For a subset of the echocardiographic data, we observed
that with our VGG16-like architecture, validation accuracy plateaus at sub-88% accuracy for
resolution above 60x80. As shown in figure 3.2 and table 3.1, computation time scales with
increasing input resolution. For convolution layers, we observed that filter sizes of 3x3, same
padding, stride of 1 pixel, and pooling size of 2x2 works well generally across all resolutions,
while maximum pooling works better than average pooling layers for resolutions above 60x80
pixels.

Resolution Training Accuracy Validation Accuracy Training Time / Epoch
240x320 94.49% 87.92% (+/- 0.06) 781s
120x160 98.43% 87.82 (+/- 0.02) 226s
60x80 99.10% 87.04% (+/- 0.05) 104s
30x40 93.57% 82.30% (+/- 0.01) 79s
15x20 84.69% 73.36% (+/- 0.02) 55s

Table 3.1: Table of evaluation results for resolution study. Validation accuracy plateaus at
sub-88% accuracy while training and testing time continue to scale with increasing input
resolution.

With only a few samples, custom deep learning segmenters can be
trained to identify focus areas

Learning segmentation maps allows for focusing only the relevant pixels for subsequent clas-
sification. Our trained segmentation models are able to achieve satisfactory results with min-
imal labeling. The segmentation results for both Field of View and LVH segmentation are
shown in figure 3.3. For View Segmentation, our model reported a pixel-wise cross-entropy
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Figure 3.1: Deep learning for echocardiography study diagram. (a) Two classification tasks
were examined for echocardiography: view classification and left ventricular hypertrophy
(LVH) classification. (b) Two different approaches for deep learning models were taken: a
supervised pipeline model that performs segmentation (U-Net) before classification (CNN)
and a semi-supervised generative adversarial network (GAN) for end-to-end learning. (c)
The data, for both view and LVH classification, was split accordingly by study and no test
data was utilized in training or validating the model.
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Figure 3.2: An optimal resolution size exists considering performance vs computational time
tradeoffs. Plot of validation accuracy and training time per epoch with input resolution. The
optimal balance between computational burden and validation accuracy exists at 120x160
resolution.

loss of 0.3984 on the test set of 32 images. From visually inspecting the segmentation on our
test set, segmentation of single mode images matches very closely to the labeled map, while
segmentation of volumetric and dual mode is less consistent.

For Left Ventricle Segmentation, our model reported a pixel-wise cross-entropy loss of
0.1926 on the test set of 50 images. From visually inspecting the segmentation on our test
set, segmentation of left ventricle is less tight compared to the labeled segmentation maps.
Segmentation of images in dual mode is less consistent. While images in dual mode were
labeled with a single mask around the left view, the model predicted segmentation maps
around the left ventricle in both views.

Field of view segmentation before classification achieves the
highest reported accuracy for echocardiographic view classification

For echocardiographic 15-view classification, our CNN model without segmentation achieved
an overall test accuracy of 92.05%. With the field of view segmentation prior to view clas-
sification pipeline as shown in figure 3.4, the same network architecture achieved an overall
test accuracy of 93.64%. We found that average pooling layer outperforms maximum pool-
ing layers for input images with Field of View segmentation. The best-performing model in
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Figure 3.3: Figure of image data, labeled map, predicted map and predicted map applied to
original image for Field of View (left) and LVH Segmentation (right). Trained segmentation
models are able to accurately discern contours in echocardiogram images and output a map
over relevant areas.
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our experiment is an ensemble of 3 CNNs with Segmentation that achieved an overall test
accuracy of 94.40%. The resulting performance of each model is tabulated in table 3.2. The
normalized confusion matrix and accuracy by individual class for the ensemble is reported in
figure 3.5. Both Resnet50 and VGG16 models achieved lower overall test accuracy of 91.36%
and 83.67% respectively, despite having a more complex and deeper architecture.

As segmentation is performed in the preprocessing step, test and training time corre-
sponds with the size of the network architecture, transfer learning with Resnet50 took more
than 8 times the amount of time per epoch compared to the CNN models.

Model Train Accuracy Test Accuracy Training Time / Epoch
CNN 95.39% 92.05% (+/- 0.72) 919s

CNN with Segmentation 95.18% 93.64% (+/- 0.61) 903s
Resnet50* 92.61% 91.36% (+/- 1.43) 7482s

VGG16* 98.15% 83.67% (+/- 2.68)
4559s
(second stage)

Ensemble - 94.40% (+/- 0.52) -

Table 3.2: Table of evaluation results for each model for view classification. Highest per-
forming model by overall test accuracy is an ensemble of three CNN models with field of
view segmentation, while transfer learning from Resnet50 and VGG16 models yielded lower
test accuracies compared to a single CNN model.

Left ventricle segmentation and transfer learning enables efficient
classification of LVH using convolutional neural networks

For left ventricle hypertrophy classification, a pipeline model of segmenters and classifiers
was developed as shown in figure 3.6. As shown in table 3.3, after the first stage training our
convolutional neural network model with image segmentation pipeline achieved an overall
test accuracy of 81.318% and F1 Score of 0.5952 on our test set of 182 images. We evaluated
the model after the second stage training, and an overall test accuracy of 91.208% and an
F1 Score of 0.8139 were measured. The normalized confusion matrix is reported in figure
3.7. CNN with segmentation outperformed our CNN network on both test accuracy and F1
score. In addition, we attempted training the CNN network with default initialization but
the network failed to learn well and accuracy was very low.

Semi-supervised generative adversarial networks enable even
higher classification accuracy for scenarios with large sets of
unlabeled data.

The advantage of semi-supervised GANs is the utilization of all available data, whether
labeled or unlabeled. For the view classification task, we studied the effect of training on
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Figure 3.4: Field of View (FoV) segmentation and View Classification pipeline. U-Net
predicts a segmentation map over the main FoV, which is applied to the input image prior
to view classification. FoV segmentation before view classification improved performance of
the CNN model from an overall test accuracy of 92.05% to 93.64%.
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Figure 3.5: Normalized Confusion Matrix (left) and Accuracy by Class (right) on test set
for ensemble network. 11 out of 15 classes achieved test accuracy above 90%. Classes with
highest rate of confusion such as A5C with A4C are consistent with structural similarity
overlap between the two classes.
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Figure 3.6: View classification and left ventricular hypertrophy classification pipeline. View
segmentation U-Net predicts a segmentation map over the main FoV, which is applied to
the input image prior to view classification. Based on the predicted view class, input image
is routed to the respective disease classification pipeline. a4c images are routed to a4c
segmentation U-Net, which predicts a segmentation map over the left ventricle. This map is
applied to the input image prior to LVH disease classification.
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Figure 3.7: Normalized confusion matrix on LVH test set for CNN with segmentation stage
2. CNN model with segmentation was able to classify test images with 91.21% (+/- 0.41)
accuracy (specificity 95.70%, sensitivity 76.70%).

varying amounts of labeled data by artificially apportioning part of the data as labeled and
the remaining as unlabeled. The accuracy on the same test set for the various training
scenarios is presented in figure 3.8 and table 3.4. As observed, the relationship between
increasing number of labels and model accuracy is highly exponential. With less than 4% of
the data, the model is able to achieve greater than 80% accuracy.

For the LVH classification task, we have the scenario of a small labeled data set ( 2000
samples) but access to a large unlabeled data set ( 76000). We assume the distribution of
LVH in the unlabeled data is as probably more severely unbalanced than the labeled data, yet
it does not affect our training methodology. In figure 3.9, we trained three separate models
on the LVH dataset and compared the accuracies and F1 scores. We also plot the confusion
matrix for an ensemble model comprising the three models that were trained on the LVH

Model Test Accuracy F1 Score
CNN (Stage 1) 84.07% (+/- 1.23) 0.6027
CNN (Stage 2) 87.91% (+/- 0.57) 0.7381

CNN with Segmentation (Stage 1) 81.32% (+/- 0.98) 0.5952
CNN with Segmentation (Stage 2) 91.21% (+/- 0.41) 0.8139

Table 3.3: Test accuracies and F1 Scores for LVH classification models. In stage 1, weights
for convolution layers were fixed and model was trained over 20 epochs. In stage 2, weights
of fully-connected layers were fixed and convolution layers were fine-tuned.
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dataset. The accuracy rates and F1 scores for this task are higher for semi-supervised GANs
than for the pipeline model technique described above.

Figure 3.10 shows the progression of results from the generator which was used in the
GAN training process to perform semi-supervised learning. We observe the quality of gener-
ated samples improves after a few epochs and that medically-relevant structures are discern-
able by the time of convergence as opposed to random noise. This affirms that the model is
capturing and understanding the relevant features that comprise our data distribution.

3.3 Discussion

Deep learning has revolutionized the development of automated algorithms across multiple
computer vision tasks [55]. For each domain, there are specific considerations that become
more relevant in the development of deep learning models. In particular, medical imagin-
gacross modalitieswill often come in a DICOM format and have either high resolution images
or varying resolution images per acquisition. Pre-processing the data to standardize the reso-
lution is a prerequisite step before building deep learning models with non-trivial implications
downstream. Keeping all pixel information can be superfluous and lead to excessive number
of weights to learn and computation time. Downsampling is usually performed on input
images while attempting to avoid loss of visual features that can be used to distinguish be-
tween multiple classes. Our results show that for a computer vision domain and task, we can
quantify a study of ideal resolution size. For our study, there exists a critical resolution at
around 60x80 pixels which provides the minimal amount of visual information necessary for
accurate view classification. Naturally, the ideal amount of downsampling will vary based
on the size and complexity of visual structures for a particular task. However in general,
the computation time increases rapidly with increasing input resolution as the network ar-
chitecture increases in depth and convolution per layer quadruples. We also found that
the model architecture with highest validation accuracy varies across each resolution. For
240x320 resolution, a filter size of 7 for first two convolution layers outperforms a filter size

Labels per class Test Accuracy
1 16%
5 28%
15 43%
30 51%
90 65%
270 78%
810 82%

21732 88%

Table 3.4: View classification performance of the semi-supervised generative adversarial
network for varying amounts of labels as input.
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Figure 3.8: View classification performance of the semi-supervised generative adversarial
network for varying amounts of labels as input. The model is able to learn from very
small amounts of labeled data (approximately 4% of labels kept with the remaining data
as unlabeled) to achieve greater than 80% accuracy for view classification. There exists
an exponentially asymptotic behavior over number of labeled samples where accuracy gain
becomes less prominent.

of 3 as a 3x3 patch of the input image is contains insufficient visual information for effective
classification. In the varying resolution study, our training set had less than a quarter of the
available training data to allow for rapid experimentation. While we attempted to identify
the best architecture for each resolution, there remains scope for further optimization.

Our segmentation model effectively removes visual features that are less relevant for
View and LVH classification. Utilizing segmentation before classification provides an elegant
method to localize the attention of predictive models to pixels with relevant visual features.
This is enabled and made practically feasible by the fact that only a small sample of labeled
segmentation masks are required for training. These masking subtasks can be abstracted
away to lower-cost labeling labor as well. Lastly, we observed that even in cases where there
is a large difference between the labeled and the predict map, there is very limited amount
of information loss after the predicted map is applied as shown in figure 3.11. The U-Net
tends not to mask over areas where it is less confident of.
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Figure 3.9: Performance of semi-supervised GAN for LVH classification in apical 4 chamber
echocardiogram images. a) For three separate models trained, the accuracy (top row) and
F1-score (bottom row) is plotted vs number of epochs. The model training reliably reaches
convergence and continues to fluctuate within a reasonable limit. b) Normalized confusion
matrix for an ensemble of the three models. This achieves an F1-score of 0.83 and accuracy
of 92.3% (+/- 0.57).

There is an improvement (+1.59%) in overall test accuracy with the segmentation pipeline
compared to the initial CNN model, which confirms our initial hypothesis that the removal
of auxiliary information using the U-Net segmentation model helps to simplify the view
classification problem. While end-to-end learning is growing in popularity with the increasing
size of datasets and network depth, having a sequential pipeline of different neural network
models each performing a heuristic-based classification task that simplifies the classification
problem for the next network can be more effective depending on the problem domain. We
view this as the primary reason behind the improvement of view classification accuracy from
our previous study [66].

Transfer learning from pre-trained VGG16 and Resnet50 models was computationally
expensive and failed to match the accuracy of the simpler CNN model with default weight
initialization. While transfer learning has been used successfully in the domain of disease
classification [94], this strengthens our view that transfer learning from models pre-trained
on the ImageNet dataset may not be as effective or computationally feasible for datasets
that with significant structural differences. Lastly, as with previously published results [21],
we were able to exact accuracy improvements on our test dataset by applying an ensemble
technique to average predictions of multiple models.

In our left ventricular hypertrophy study, we observed that using transfer learning tech-
niques from the view classification model enables the neural network to learn more effectively
compared to default weight initialization. Applying left ventricle segmentation to the apical
4 chamber images produced an even larger improvement in overall test accuracy compared
to our view classification study, corresponding to the larger area of image removed during
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Figure 3.10: Generated images sampled from the generator network of the semi-supervised
GAN during training for LVH classification. For one model, batches of size four are shown
containing generated images (top to bottom) after epoch 1, 2, 3, 4, 13. The last row displays
generated images from an ensemble of three GAN models. Qualitatively, the model clearly
learns and understands the underlying physiological structures in input distribution.
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Figure 3.11: Figure of labeled map, predicted map, labeled and predicted map applied to
original image for LVH Segmentation. Even in cases where there is a large difference between
the labeled and the predict map, the amount of information loss after applying the predicted
map is very limited.

the segmentation step.
While the final model achieved 91.2% (+/- 0.41) accuracy with 95.7% specificity and

76.7% sensitivity, it is within reasonable limits given that there were 4 times the amount of
training data for the former. The success of our LVH classification model demonstrates that
deep learning models adapted for echocardiogram datasets can generalize well from view
classification to disease classification even with a small training set.

In addition to a pipeline deep learning model with solely supervised classifiers, semi-
supervised GAN models were explored as a generalizable approach that leverages learning
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from both labeled and unlabeled data. For computer vision tasks in medical imaging, we
often have scenarios where there is a larger unlabeled dataset and only a portion of the data
can be accurately and cost-effectively ground-truthed.

The semi-supervised GAN model was trained and tested on the view classification prob-
lem first as we could designate varying proportions of data for labeled vs unlabeled to observe
the effect on classification performance. The results show that semi-supervised GANs require
an order of magnitude less labeled data ( 4% of total data) to achieve adequate performance.
We also saw that the GAN still performs well in asymmetrically distributed categories for
our view classification. These results provided motivation to train for the LVH classification
task where only a small portion of data existed with LVH labels ( 2200 samples). For the
LVH classification task, the semi-supervised GAN is able to learn from both the labeled and
unlabeled data, even with highly unbalanced classes, to achieve an accuracy of 92.3% (+/-
0.57), with specificity of 97.0% and sensitivity of 79.1%.

The semi-supervised GAN loss function is formulated to account for contributions from
unlabeled, labeled, and generated samples. On a high level, the GAN through the sigmoid
real/fake loss for unlabeled samples becomes better at training filters which can identify
salient features of an image while the labeled samples are utilized mostly for implicitly train-
ing the layers which performs the final classification. GANs also implicitly are performing
data augmentation as the generator converges – producing more realistic images which allow
the GAN to explore probability spaces of the data not covered in the original training data.
Future areas of exploration include more robust loss functions, conditioning the generated
noise, and normalization techniques [72, 73].

One of the most important aspects of our study is the usage of GANs for biomedical
image classification tasks. Although the particular hyper-parameters and implementation
details may vary outside this dataset and prediction task, the overall model considerations
in addition to the data and experimental pipeline is applicable across medical domains and
tasks. We shed light on the development and improvements of semi-supervised GANs, rele-
vant performance metrics, and functional intuitions as to promote its application both within
and beyond echocardiography and cardiology. To do so, we experiment with two different
prediction tasks in addition to a comparative analysis with reference to traditional deep
learning architectures such as a CNN.

As with all studies, there are natural limitations to our work. It is important to be
stated that although we focus on improving image classification tasks in echocardiography,
image classification is only one aspect of clinical diagnosis as clinicians utilize other forms of
cognition to both understand and treat a patients illness. We view this line of work as not a
replacement of the clinician but as an assistant for relevant tasks that a clinician performs.
Also, it is also worth noting that our sample sizes are limited due to practical reasonswhich
is a common medical imaging issue that beckons for data-efficient, generalizable techniques
presented in this study. We look forward to future work and validation that is conducted on
even larger sample sizes that include both more patients and also variations in acquisition
(i.e. different institutions, field of views, and more).

Also important to note regarding the use of GANs for biomedical imaging, researchers
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and practitioners should exercise caution when using GANs for image synthesis in the med-
ical domain. Clinical decisions on images synthesized by GANs should require a better
understand of GANs underlying mechanics. For example in [18], the authors show how dis-
tribution matching losses can produced translated images that will lead to misdiagnosis of
medical conditions.

To conclude, the focus of our study is on data-efficient deep learning models for classifica-
tion tasks in medical imaging. Initially, we investigate the trade-off between resolution size
and computational burden. We then explore two main techniques: (1) supervised pipeline
models to first extract relevant structures then pass through a CNN classifier (2) semi-
supervised GAN models for end-to-end training. With customized segmentation models and
the extra effort to label additional segmentation maps, the first method is able to achieve the
highest reported accuracy for view classification in cardiac ultrasound imaging and relatively
high performance for LVH classification. Often in practice, labeled data in medical imaging
is scarce, locked by privacy or regulatory concerns, or expensive to annotate. Utilizing both
labeled and unlabeled data and with a generalizable end-to-end training strategy, the sec-
ond method is able to achieve high performance for LVH classification. We provide avenues
and trade-offs for practitioners and researchers with the aforementioned techniques for their
computer vision tasks in medical imaging.

3.4 Methods

Echocardiographic Data

All datasets were obtained and de-identified, with waived consent in compliance with the
Institutional Review Board (IRB) at the University of California, San Francisco (UCSF).
Methods were performed in accordance with relevant regulations and guidelines. Echocar-
diographic studies were extracted then videos and still images were stripped of identifying
metadata and flattened to individual frames. Data comprised of studies between 2000 and
2017 at random from UCSFs clinical database. These studies included men and women
(49.4 and 50.6 percent, respectively) ages 2096 (median age, 56; mode, 63) with a range
of body types (25.8 percent obese) and were acquired with equipment from several manu-
facturers (eg. GE, Philips, Siemens). For view classification, the number of studies taken
were N=267 and fifteen common views were utilized including: parasternal long axis, right
ventricular inflow, basal short axis (aortic valve level), short axis at mid (papillary muscle)
or mitral level, apical two chamber, apical three chamber (apical long axis), apical four-
chamber, apical five chamber, subcostal four-chamber, subcostal inferior vena cava (IVC),
subcostal abdominal aorta, suprasternal aortic arch, pulsed-wave Doppler, continuous-wave
Doppler, and m-mode. For LVH classification, the number of studies taken were N=455
and the diastolic frames in the apical 4 chamber view were selected and comprised of the
following clinical labels: normal, moderate-to-severe asymmetric LVH, severe asymmetric
LVH, moderate concentric LVH, moderate-to-severe concentric LVH, severe LVH. Further
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information regarding source data can be found in the previous literature [66].

Varying Resolution Study

We divided our subset of 103102 images into a training set containing 75937 images, a
validation set containing 11696 images and a test set containing 15469 images, in an approx-
imate (74:11:15) split. There is no patient overlap between the training, validation and test
set. Downsizing of images originally in 600x800 pixels to the image resolutions of 240x320,
120x160 60x80, 30x40 and 15x20 pixels were completed using Scipys imresize function with
the nearest interpolation mode. Figure 3.12a displays sample images from each resolution
for three classes.

Figure 3.12: Sample data from echocardiographic studies. a) Sample echocardiogram images
at varying resolutions (rows) for three example views (columns). Selection of the optimal
resolution is influenced by the tradeoff between classifier performance and computational
time. b) Sample apical four chamber echocardiography images with and without Left Ven-
tricular Hypertrophy (LVH). LVH is characterized by the thickening of the left ventricle– a
perilous condition increasing the risk of myocardial infarction, stroke, and death.
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Our neural network architectures were designed in Python using the Keras library with
TensorFlow backend [1], primarily based on the VGG16 Network [96], which won the Ima-
geNet Challenge in 2014 [20, 86]. Our architecture consists of multiple convolution layers,
followed by fully connected layers. We applied Batch Normalization [42] and rectified linear
activations [32] after each layer. Softmax activation was applied to the final fully connected
layer for classification over the 15 output classes. Dropout [97] and L2 Regularization were
added in the fully-connected layers to prevent overfitting.

We further experimented with various architectures for each resolution and the archi-
tectures with the highest validation accuracy. For convolution layers, filter sizes of 3x3,
same padding, stride of 1 pixel, and pooling size of 2x2 were used for each resolution except
240x320, for which a filter size of 7x7 were used for the first two convolution layers. Max-
imum Pooling were used for resolutions 60x80 pixels and above, and Average Pooling for
resolutions below 60x80 pixels.

Data augmentation was applied during training with up to 10 degrees rotation and 10%
height and weight shifts. Adam optimizer with default parameters was used to minimize the
categorical cross-entropy loss. Learning rate was set to 0.02, with decay per epoch of 0.85.
Early stopping was applied once validation loss stops decreasing for two consecutive epochs.
Training was performed on Nvidia GTX1080Ti GPUs, with batch sizes of varying sizes used
for the different resolutions to maximize GPU memory usage. We evaluated our final models
by computing the overall validation accuracy, average time to train and validate per epoch.

Relevant Structure Segmentation

From our varying resolution study, we selected 120x160 as the optimal resolution for our
subsequent experiments. It provided an ideal balance between accuracy and computational
time as discussed in Results.

We employed relevant structure segmentation as preprocessing for removal of irrelevant
details in the images to simplify the classification task. We trained a convolutional neu-
ral network on two different datasets for segmentation of the main field of view (FoV) in
echocardiogram images prior to view classification, and segmentation of the left ventricle in
apical 4 chamber (a4c) images prior to left ventricular hypertrophy classification.

Our field of view segmentation dataset contains 433 images- inclusive of image frames
from various 2D views, doppler, and m-mode echocardiograms. Images were converted to
grayscale and downsampled to 120x160 pixels using Scipys imresize function with the nearest
interpolation mode. The data were divided by class into a training set consisting of 411
images and a test set consisting of 32 images for evaluation of the models performance.

Masks were drawn on the outline of the field of view containing the medical image with
an in-house labeling tool that the user selects vertex points to form a polygon shape. For
doppler and m-mode echocardiograms, masks were drawn around the general shape of the
waveforms and field of view. The labeling tool is an interactive polygon editor built with
matplotlib that sets pixels inside the mask to 1 and pixels outside to 0.
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Our left ventricle segmentation dataset contains 720 images sampled randomly from the
apical 4 chamber (a4c) view dataset. Some apical 4 chamber views might be cropped and
the left ventricle may not be visible. Therefore, for Relevant Structure Segmentation for
LVH only, we did not include images that failed to show the left ventricle. Important to
emphasize, no filtering was performed for the final LVH test set images or calculation of
performance metrics on the final goal of LVH classification. Images were downsampled to
120x160 pixels using Scipys imresize function with the nearest interpolation mode. Images
were divided into a training set consisting of 670 images and a test set consisting of 50
images. Using the aforementioned labeling tool, masks were drawn to create an approximate
polygon around the left ventricle epicardium. Masks were drawn around the left ventricle
using the labeling tool. For images in dual mode, a single mask was drawn around the left
ventricle in the left-most view.

Our image segmentation model is based on the U-Net architecture [84] and is shown in
the figure 3.13. Modifications were made to the original architecture for adaptation to the
120x160 pixels resolution of our dataset. These include changes to filter sizes, removal of
convolution layers with 1024 filters and the addition of Dropout before the first up-sampling
convolution layer.

The model was trained over 50 epochs with a learning rate of 0.0001 and per epoch decay
of 0.93 using the Adam optimizer. We evaluated the model by computing the pixel-wise loss
on the test set. We also visually inspected the U-Nets segmentation on the test set to further
verify the segmentation performance.

Echocardiographic View Classification

Our dataset consists of 347726 echocardiogram images, of which 325980 images were in the
training set. The original test set used in the previous study [66] containing 21746 images
were retained for this experiment.

Images were downsampled to 120x160 pixels using Scipys imresize function with the
nearest interpolation mode for the convolutional neural network (CNN) experiments. Images
used for Resnet50 and VGG16 were resized and copied over all three channels to fit the pre-
trained models input dimensions of 224x224x3.

In this experiment, we trained the following models to compare the effectiveness of rel-
evant structure segmentation for preprocessing, transfer learning and ensembling: CNN
model trained using the original images, CNN model trained using images with FoV Mask-
ing, Transfer Learning from Resnet50 and VGG16 models using images with FoV Masking
and an Ensemble of 3 CNN models trained using images with FoV Masking. We retained the
same architecture for 120x160 resolution as used in the varying resolution study, with the
exception of replacing Max Pooling layers with Average Pooling layers for the CNN trained
with FoV Masking.

Resnet50 and VGG16 models from the Keras Library which were pre-trained on the
ImageNet dataset were used. The fully-connected layers from the Resnet50 model were
removed and replaced with a batch normalization layer followed by a fully connected layer



CHAPTER 3. DATA-EFFICIENT SUPERVISED AND SEMI-SUPERVISED
LEARNING TOWARDS AUTOMATED DIAGNOSIS 46

Figure 3.13: Modified U-Net architecture used for segmenting relevant visual structures. The
architecture consists of a contracting path and a symmetric expanding path– combining high
resolution features from the contracting path and upsampled output for precise localization.
Pixel-wise softmax is applied on the final output to produce a segmentation map.

with softmax activation. For VGG16, we replaced the fully-connected layers with the same
fully-connected layers layers with batch normalization and L2 regularization, followed by
a fully connected layer with softmax activation. Our ensemble consists of 3 CNN models
trained individually using images with FoV Masking, with the predictions output averaged.

Adam optimization with default parameters and early stopping were used for the follow-
ing experiments. During training of the CNN models, learning rate was set to 0.02 with
decay per epoch of 0.85. Training data was augmented with up to 10 degrees rotation and
10% height and weight shifts.

For the pre-trained models, training data was augmented with up to 5 degrees rotation,
10% height and 15% weight shifts. Fine-tuning for Resnet50 was performed end-to-end with
a learning rate of 0.01 and decay per epoch of 0.96.

For VGG16, training was divided into two stages. In the first stage, weights from the
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convolution layers were frozen and the fully connected layers with Xavier initialization were
trained till convergence with a learning rate of 0.02 and decay per epoch of 0.9. In the second
stage, weights from the convolution layers were fine-tuned along with the fully connected
layers at a lower learning rate of 0.001 and decay of 0.9 per epoch.

We evaluated the various models by computing the overall test accuracy across 15 classes,
training and test time per epoch, test accuracy by class, confusion matrix, and F1 score,
which is the harmonic mean of precision and recall. Confidence intervals were computed by
the bootstrapping technique with replacement for 95% intervals.

Left Ventricular Hypertrophy Classification

The dataset consists of 2269 images from the apical 4 chamber (a4c) view. The first two
frames of an echocardiographic study were selected to ensure only diastolic phase. To formu-
late this as a binary classification problem as in figure 3.12b, we chose images with different
labels for Left Ventricular Hypertrophy (LVH) to form a single class with 462 images. 1807
images of normal a4c views formed the other class. The ratio of images without LVH to
images with LVH is approximately 4:1.

Image were divided into a training set consisting of 1890 images, validation set of 172
images and a test set of 207 images. Images from the same patient were placed in the same
split. For preprocessing, images were downsampled to 120x160 pixels and masked with the
predicted output from the left ventricle segmentation model in our previous experiment.

We retained the same architecture for 120x160 resolution as used in the varying resolution
study, with the exception of replacing Max Pooling layers with Average Pooling layers. L2
regularization of 0.03 and Dropout of 0.4 was applied to the fully connected layers.

We applied a two-stage transfer learning method for the training of this model. Weights
for convolution layers were initialized with weights from the CNN model trained using images
with FoV Masking. Fully connected layers were initialized with Xavier uniform initialization.

In the first stage, weights of convolution layers were fixed and the model was trained
over 20 epochs to minimize binary cross-entropy loss, with a learning rate of 0.025 and decay
per epoch of 0.85. In the second stage, weights of fully-connected layers were fixed and
convolution layers were fine-tuned with a learning rate of 0.001 and decay per epoch of 0.9.
Early stopping was applied once validation loss stops decreasing for two consecutive epochs.

We evaluated the model by computing the test accuracy and F1 score, which is the
harmonic mean of the precision and recall. Confidence intervals were computed by the
bootstrapping technique with replacement for 95% intervals.

Semi-supervised Generative Adversarial Networks

As shown in 3.14, the GAN makes use of two neural networks: a generator which attempts
to generate realistic images and a discriminator which discriminates between real (optionally
including specified classes) and fake [33].The same semi-supervised GAN architecture is used
for both the view classification task and the left ventricular hypertrophy classification task.



CHAPTER 3. DATA-EFFICIENT SUPERVISED AND SEMI-SUPERVISED
LEARNING TOWARDS AUTOMATED DIAGNOSIS 48

Figure 3.14: Semi-supervised GAN for echocardiogram view and LVH classification. Gen-
erator (top) consists of a Gaussian noise layer which gets passed through conv-transpose
layers to output images of size 110x110. Discriminator (bottom) downsamples original im-
ages with regular strides of two every three layers, resulting in a softmax output for labeled
(or supervised) loss and a sigmoid output for unsupervised loss.

The discriminator model is structured in blocks of three convolutions comprising two
convolutional layers of stride 1 and one convolutional layer of downstride 2. All except the
last convolution layer make use of 3x3 convolutional filters, batch normalization layer after
each convolution layer and dropout layer after every downstride convolution layer. Leaky
RELUs are used as activation functions for all the layers and the last classification layers
which use Softmax and Sigmoid.

The generator model consists of seven deconvolutional layers each of stride two and it
works by progressively upsampling from the gaussian noise layer where the model begins.
Each of these layers use either a 3x3 or 4x4 convolutional filter and a batch normalization
layer. All intermediate activations consist of ReLUs while the very last layer makes use of
Tanh activation to output the final image.

Training GANs for semi-supervised learning involves performing three passes through
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the discriminator and one pass through the generator at each iteration. To compute the
discriminator loss a labeled image is passed through the discriminator to assess a cross-
entropy loss. Then an unlabeled image and a fake image are passed through the discriminator
for both of which we compute binary cross entropy losses. All three of these losses are
summed together and are used to perform a single step of backpropagation through the
discriminator. The losses were inspired by previous literature [88] and detailed below:

L = Lsupervised + Lunsupervised + Lgenerated (3.1)

Lsupervised = −Ex,y∼pdata(x,y)[log(pmodel(y|x, y < K))] (3.2)

Lunsupervised = −Ex∼pdata(x)[log(1− pmodel(y = K + 1|x))] (3.3)

Lgenerated = −Ex∼G[log(pmodel(y = K + 1|x))] (3.4)

To compute the generator loss, we generate a fake image from the generator which we
pass through the discriminator and compute the loss by using a mean square error loss
between the second last layer of the discriminator for our fake image and for an unlabeled
image.

The data used for view classification was the same as the models outlined above, including
the size of the splits. The only differences were that the image was downsized to 110x110
pixels and that the split between unlabeled data and labeled data was changed for different
models so as to determine the relationship between labels and accuracy. One epoch was
defined as the number of unlabeled images since this was always going to be the larger value.
This however meant that in each epoch the discriminator ends up going through multiple
epochs of the labeled images.

For LVH classification problem we used the same labeled data consisting of 2269 images
which were divided into a training set consisting of 1915 images, validation set of 172 images
and a test set of 182 images. Images from the same patient were placed in the same split. The
only difference was that we also used 76404 unlabeled images (from the apical 4 chamber data
in the view classification dataset) on top of the labeled ones to bolster the semi-supervised
GAN. For preprocessing, these images were downsampled to 110x110 pixels.

Training was performed using the Adam optimizer set at default values for both of these
tasks. A learning rate of 0.0003 with no decay mechanism. Training a GAN using 2 GTX
1080Ti GPUs training was on the order of five hours.

To evaluate the performance of semi-supervised GAN for view classification we only
made use of the accuracy rate of the discriminator model at different epochs. To evaluate
the performance of the LVH model we use accuracy rate of three models trained on all of
the data as described above. We also use the F1 scores of these models and plot them on
a separate curve. For the highest performing model, we used confusion matrices to better
illustrate how the model performs on different categories.
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Chapter 4

Bridging Finite Element Modeling
and Machine Learning for
Atherosclerosis

4.1 Introduction

Advances in computational methods and infrastructure have enabled researchers to develop
powerful models across multiple domains including, but not limited, to biology and medicine.
Broadly speaking, computational models are developed within two main paradigms: mech-
anistic and statistical modeling. Mechanistic models assume some a priori knowledge on
the behavior of physical processes. We broadly define molecular dynamics, computational
fluid dynamics, and finite element method techniques under mechanistic modeling as the
governing equations are explicitly given and the solution is approximated [63, 4]. Statistical
modeling, particularly machine learning, needs not any hard-coded behavioral assumptions
and treats the system as a black-box. Machine learning algorithms, in this context, aim to
learn the mapping between input and output. One of the most powerful classes of models are
deep neural networks which are well-suited for highly non-linear data and have demonstrated
high performance in natural language processing and computer vision [55, 84, 96, 100, 50].
The intersection of these two modeling paradigms is of emerging interest [8, 36, 81, 69].

In this study as shown in figure 4.1a, we explore the intersection between mechanistic
and statistical modeling of a solid mechanics problem utilizing finite element simulations
and machine learning models. Our case study is the stress analysis of arterial walls under
atherosclerosis (figure 4.1b), one of the leading causes of disease worldwide. Prediction
of plaque rupture through examining arterial stress distributions could potentially lead to
life-saving treatment and prevention outcomes.

By creating thousands of finite element (FE) simulations of the highly non-linear behavior
of a hyperelastic arterial cross-section, we attempt to answer how well can machine learning
models learn the underlying mapping that is determined via an FE procedure? In addition,
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Figure 4.1: Prediction of atherosclerotic vessel stress with machine learning (ML) models
trained on finite element method (FEM) simulation data. a) Mechanistic and statistical
methods can be used for various continuum mechanics problems. b) Atherosclerosis can
cause the buildup of plaque in blood vessels as shown. c) An example idealized geometry of
a 2D cross-section of an atherosclerotic vessel. Red- vessel wall, green- fibrous plaque, yellow-
lipid pool, blue- calcium deposit, white- lumen. Geometries are randomly generated to create
a database of FEM simulations. d) An example stress distribution generated by utilizing
FEM. The input and output information are utilized to train ML models for prediction tasks
such as maximum von Mises stress.

we hope to gain intuitions behind if machine learning can learn the stress-strain relationship
and constitutive behavior via the functional representation presented by FE or some higher-
level correlation.

Lastly, this research work could have implications across both the computational and
clinical fields. FE simulations require trained specialists and are computationally intensive.
Trained machine learning models, particularly for multi-task learning [85], could enable gen-
eralizable mechanics simulations. In addition, the replacement of certain FE parts with
machine learning models could enable faster computation times especially for multi-scale
problems that require nested FE simulations [110]. For the clinical side, deep learning has
shown promise in visual recognition tasks in healthcare [65, 66, 67]. Recent work in shape
modeling and FE estimation with machine learning has shown promise for aortic aneurysms
and collagenous tissues [58, 59, 57]. For atherosclerotic vessels, automated acquisition with
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intravascular techniques of tissue geometry, composition, and arterial pressure that is pro-
vided as input to a trained deep learning model could enable accurate prediction of real-time
stress distribution. Clinicians can use this information during patient examination, evalua-
tion, and treatment for potential areas of high rupture risk.

4.2 Methods

Parametric Vessel Model

Our training database consists of finite element simulations of various arterial geometries and
boundary conditions. The first step was to develop a 2D parametric model to rapidly create
various artery geometries. As depicted in figure 4.1c, our main simplifying assumption is that
the cross-section consists of a series of ellipses. The number of lipid and calcium deposits,
fluid pressure, and ellipse specifications were randomly varied according to table 4.1.

Model µ [MPa] K [MPa] C1m [Pa] C2m [-]
Arterial wall 0.334 16.67 26447.5 8.365

Plaque 0.334 16.67 5105.3 13.0
Lipid 0.334 16.67 50.0 5.0

Calcium 0.334 16.67 18804.5 20.0

Feature Sym a [mm] b [mm] u [mm] v [mm] θ [Rad]
Outer wall Aout N (4, 0.5) N (3.7, 0.3) 0 0 0
Inner wall Ain N (1.07, 0.02)aAout

aAin

aAout
bAout 0 0 0

Lumen L N (1.9, 0.2) N (2.3, 0.2) N (−1, 0.2) 0 0
Lipid F N (0.5, 0.4) N (0.5, 0.2) U(uF1 , u

F
2 ) U(−vF1 , vF1 i) U(0, π)

Calcium C N (0.5, 0.4) N (0.5, 0.2) U(uC1 , u
C
2 ) U(−vC1 , vC1 i) U(0, π)

Table 4.1: Features for random generation of idealized artery geometry and pressure condi-
tions. N and U denote a normal and uniform distribution respectively. The number of lipids
and calcium are also varied as discrete numbers ranging from zero to two deposits. Each
ellipse is described by a major axis a, minor axis b, center (u,v), and angle of rotation .

The parameters were sampled from normal distributions, N (m,σ) for a mean m and
variance σ2 for a random variable X, and uniform distributions, U(i, j) for X ∈ [i, j]. The
range of the distributions are based on patient-informed physiological parameters present in
literature [11, 39]. Lastly, we define the following two terms for Table 1 where a and b refer
to major and minor axes respectively:

uF,C1 := uL + aL + max(aF,C , bF,C) (4.1)
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uF,C2 := aAin
−max(aF,C , bF,C) (4.2)

vF,C1 := bAin

√
1− uF,C1

aAin

2

−max(aF,C , bF,C) (4.3)

In the generation of arterial geometries, it is plausible that a particular configuration
could be physically infeasible. If such a configuration is detected, we simply discard the
geometry and sample randomly again. There are three sources of infeasible geometries:

1. An ellipse is outside of the inner wall, Ain,

2. An ellipse is inside the lumen, L,

3. Two or more ellipses intersect/collide.

The first two are trivial to detect. For the last scenario, we make use of support vector
machine (SVM) to check if two ellipses are disjoint. We know that the ellipses do not collide
if and only if the SVM loss is zero as there exists a perfectly separating linear hyperplane
between the two classes defined by a pair of ellipses.

Finite Element Method Simulation Database

The tissue is modeled within a classical continuum mechanics framework wherein we seek
to solve the governing equations of motion for a body (manifold with boundaries) subject
to boundary conditions (tractions and displacements). We define a one parameter (time t)
family of finite deformation maps φt : R3 7→ R3 of a hyperelastic body from a reference
configuration (B0) to a current configuration (Bt). Namely, Bt = φt(B0). [25, 39]

We define the deformation gradient F = ∇φ. Note that F is a 2-point tensor mapping
vectors from the reference manifold to the deformed manifold. We define the left and right
Cauchy-Green deformation tensors by C = F TF and b = FF T , respectively. We further
define the associated strain tensors: the Green-Lagrange strain tensor E = 1

2
(C − I) for

the reference configuration and the Almansi strain tensor e = 1
2
(I − b−1) for the current

configuration. I is the identity tensor for vectors in R3.
The equilibrium deformation map at time t is the one that minimizes the potential energy

(Π) of the elastic system subject to conservative traction loading t̄t:

φeqt = arg inf
φt

Π(φt; t̄t). (4.4)

Under the assumption of hyperelasticity, the 1st Piola-Kirchhoff stress of the system, P , is
obtained from the Helmholtz free energy, ψ̂, of the material:

P =
∂ψ̂

∂F
. (4.5)
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Although the solution to (4.4) is in general not unique, polyconvexity (as in [5]) of the energy
function guarantees the existence of a solution. We solve the problem with a standard Finite
Element (FE) numerical procedure. Our challenge is to specify ψ̂ such that the FE model is
consistent with the observed experimental response.

We can further define two additional stress tensors: the 2nd Piola-Kirchhoff stress tensor
S and the Cauchy stress tensor T . The relationship between the stress tensors is

T = J−1FP = J−1FSF T = T T , (4.6)

where J = det(F ) is the Jacobian (of the deformation gradient). A quantity of interest in
the subsequent analysis is the von Mises (VM) stress:

ν2 =
3

2
V · V , (4.7)

where

V = T − tr(T )

3
I, (4.8)

is the deviatoric stress, and tr(T ) =
∑

i Tii is the trace.
We use an FE approach to solve (4.4). Let ∂Bu and ∂Bt denote the partitions of the

boundary (∂B0) of the body, B0, where deformation and tractions are imposed, respectively,
with ∂Bu ∩ ∂Bt = ∅, ∂Bu ∪ ∂Bt = ∂B0. Equation (4.4) is solved by satisfying the weak form
statement:

Find
φ ∈ S := {φ | φ = φ̄ on ∂Bu},

such that ∫
B0
P · ∇(δφ) dV =

∫
B0
B · δφ dV +

∫
∂Bt
t̄ · δφ dA, (4.9)

∀δφ ∈ V := {δφ | δφ = 0 on Bu},
where ρ0 is the material density in B0 and we assume there is no body force B. The FE
solution begins with a tessellation of the domain (figure 4.1) into a finite set of discrete nodes
and elements. Letting the superscript g denote discretized parameters, and NA(x) denote
interpolating shape functions in each element, we construct a Galerkin discretization as:

Bh0 = A(Be0), ug =
nn∑
A=1

NAuA, δug =
nn∑
A=1

NAδuA, (4.10)

where e indexes the nel elements in the domain, u denotes displacements, δu denotes vari-
ational displacements, uA denotes nodal displacements indexed by A over nn nodes per
element, and A is the assembly operator [115] over every node element. Substituting (4.10)
into (4.9) leads to the nonlinear (static) equilibrium equations:
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R(ut) = ft −A(

∫
Be0
∇NT

e Pe dVe) = 0, (4.11)

whereR is the residual for a state of displacements ut at time t, which must be in equilibrium
with the applied nodal forces ft at time t, and ∇N is the matrix formed from derivatives
of the shape functions NA(X) with respect to X. The reader is referred to Zienkiewicz and
Taylor [115] for a comprehensive treatment of the FE procedure.

We use an iterative Newton-Rhapson approach to solve (4.11). Given an initial state u0
t ,

the update equations are

uk+1
t ← ukt −K−1T (ukt )ft, (4.12)

where

KT =
∂R

∂u
= A(ke,mat + ke,geom), (4.13)

is the linearized tangent stiffness. The element material stiffness is

ke,mat =

∫
Be
∇̄NT

e c∇̄Ne dV, (4.14)

where, ∇̄ is the gradient operator with respect to the spatial manifold, and c is the spatial
material tangent, defined as

cijkl =
1

J
FiAFjBFkCFlDCABCD, (4.15)

the push-forward of the material tangent C = 2∂S/∂C. The element geometric stiffness is

kABe,geom =

(∫
Be
NA
,i TijN

B
,j dV

)
, (4.16)

where summation convention is implied, with lower-case subscripts indicating the spatial
coordinates, subscript commas indicating partial differentiation, upper-case subscripts in-
dicating the reference coordinates, and upper-case superscripts indicating nodal numbers.
Note that the integrals for the stiffnesses are taken over the deformed element. The itera-
tions are carried out until a stopping criterion, such as the satisfaction of (4.11) within some
tolerance. For the Newton-Rhapson strategy to converge, the initial guess must be in the
neighborhood of the solution. This requirement poses an issue for the highly nonlinear AV
tissue, particularly in the low stiffness regime.

To address this problem, we apply the load incrementally and adaptively. We start with
a small load factor αt (ft = αtf0) and adjust the factor heuristically based on the number
of iterations (ni) it takes for (4.12) to converge (αt ∝ n−1i ). In this manner, we are able to
circumvent the use of unreasonably small load factors (i.e., excessive computational time)
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during the entire load path. If a load factor is too large and the Newton-Rhapson algorithm
diverges, we appropriately scale the load factor down.

For each individual layer we choose a Helmholtz free energy ψ(I1, J4, J) := ψ̂(F ) of the
form

ψ = C1m

{
exp

[
C2m(I1 − 3)

]
− 1
}

+

nf∑
i=1

C1f

2C2f

{
exp

[
C2f (J

i
4 − 1)3+

]
− 1

}
+c1(I1 − 3) + c2(J

2 − 1) + c3 ln(J).

(4.17)

The first term on the right hand side is a Fung-like [25] isotropic term, where I1 = tr(FTF)
is the first invariant, and C1m, C2m are material parameters. The second term is a directional
term in the spirit of Holzapfel [39, 40] to account for the nf collagen fiber directions, where
J i4 = tr(CMi) is the first mixed invarient for the fiber direction indexed by i, with Mi =
mi ⊗mi, ||mi||2 = 1, as the rank-1 structure tensor. C1f , C2f are material parameters and
(x)+ := max(x, 0) guarantees that the fibers do not take compressive load. The last three
terms represent a Neo-hookean ground substance [35] with parameters c1, c2, c3.

To establish the polyconvexity of (4.17), we turn to Appendices B and C of Schröder
and Neff [89], namely, Lemmas B.9, C.2, and C.4. A necessary and sufficient condition for
polyconvexity is then

C1m, C2m, C1f , C2f , c1, c2,−c3 > 0. (4.18)

Note that for the case C1m, C2m, C1f , C2f = 0, e.g., the spongiosa, the material is Neo-
hookean, which is indeed polyconvex.

We impose that our material model, in the infinitesimal strain limit, recovers an isotropic
linear elastic model.1 Define the linearization operator as:

Linf(y)[u] := f(y) +Df(y)[u], (4.19)

where Df [u] denotes the Fréchet differential in direction u. We then linearize about 0 and
impose that

LinT (0)[u] = σ`in, (4.20)

where T is the Cauchy stress tensor and σ`in is the infinitesimal stress tensor. Equation
(4.20) leads to the following conditions:

c1 = µ/2− C1mC2m, c2 = K/4− µ/6− C1mC
2
2m, c3 = 2C1mC

2
2m −K/2− 2µ/3, (4.21)

where µ and K are the infinitesimal-strain shear and bulk moduli, respectively. The stress
and tangent are given by

1By construction, the fibers have negligible contribution in the infinitesimal regime.
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T = 2c1
b

J
+ 2C1mC2mAm

b

J
+

nf∑
i

3C1f (J
i
4 − 1)2+Afbm/J + (2c2J + c3/J)I, (4.22)

where, Af := exp
[
C2m(I1−3)

]
, Am := exp

[
C2f (J

i
4−1)3+

]
, and bm = FMF T . The material

tangent (in the spatial configuration) is:

c =
1

J

[
4c2J

2I ⊗ I − 2(2c2J
2 + c3)I

+ 4C1mC
2
2mAmb⊗ b

+ 6C1fAf
(
2(J4 − 1)+ +

nf∑
i

3C2f (J
i
4 − 1)4+

)
bm ⊗ bm

]
,

(4.23)

where I is the order-2 3×3 identity tensor and (I)ijkl = 1
2
(δikδjl+δilδjk), (δij is the Kronecker

delta).
The last term in (4.17) represent the embedded fibers in a the material which we neglect

in this analysis. Table 4.2 presents the material parameters used [11, 25]:

Model µ [MPa] K [MPa] C1m [Pa] C2m [-]
Arterial wall 0.334 16.67 26447.5 8.365

Plaque 0.334 16.67 5105.3 13.0
Lipid 0.334 16.67 50.0 5.0

Calcium 0.334 16.67 18804.5 20.0

Table 4.2: Summary of calibrated model parameters in (4.17) obtained from [11, 25].

Figure 4.1c shows a typical FE mesh. We use a 3-node constant strain element [115]
discretized by the tessellation discussed above. A static pressure load is applied to the
boundary elements in the lumen to simulate the effect of blood pressure. Nodes on the
outside boundaries are restrained from displacement. All boundary nodes were detected
with a boundary algorithm from DistMesh [80]. Solution of the problem was carried out
with FEAP software [102]. Figure 4.1d shows a typical converged stress distribution.

Statistical Modeling

Data Preprocessing

From the database of FEM simulations, the input space included parameters describing
geometry and arterial pressure and the output space included the pointwise stress distribu-
tion. We were interested in using arterial images and von Mises (VM) stress distributions
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in predicting max VM stress and location. Thus, we converted the parameters into 256x256
arterial images. For the stress distribution heatmaps, we used cubic interpolation from the
finite element method data points, and clipped the VM values at 2000 (all values greater
than 2000 were set equal to 2000). For each simulation, we then calculated the maximum
VM stress (clipped at 5000), and the corresponding location, which was converted from
cartesian coordinates to polar coordinates centered on the lumen.

Using an 80-20 split, the training and held-out test set had 9,737 and 2,435 simulations
respectively. We further split the training data by randomly sampling 20% of the training
data for the validation set. The validation subset was created to evaluate performance
during model architecture and hyperparameter selection. The final test set evaluation was
on predictions from selected models trained on the full training set. In addition, the training
set was rotationally augmented by a random multiple of 45 degrees six separate times,
producing a total of 58,422 not necessarily unique training data points.

The last pre-processing step was to normalize all the inputs and outputs from zero to
one to ensure quicker convergence. The minimum and maximum were computed based off
of the training set and those values were used to normalize both the training and testing set.

Loss Functions and Performance Metrics

The loss functions and metrics used in this experiment were the

1. mean absolute percentage error on maximum VM stress,

2. mean absolute error of polar distance (i.e. radius from lumen center),

3. a modified mean absolute error function for the angle of the point of maximum VM
stress with respect to the center of the lumen.

For top-predicted point comparison between predicted max VM stress and actual max
VM stress, the performance metric is equivalent to the loss function. As there could be
multiple, disparate point-locations with VM stress values similar to the peak VM stress
value, we also created soft metrics for post-processing. These incorporated stress points were
utilized by measuring the mean absolute error of the top four VM stress polar coordinates
that are within 5% of the maximum VM stress. We formally define the metrics below.

Let σiv be the max VM stress, σ̂iv the predicted max VM stress, (lix, liy) the center of
the lumen, (xi, yi) the position of maximum VM stress, and (x̂i, ŷi) the predicted position of
maximum VM stress. The polar angle loss, θloss, polar distance loss, rloss, and stress value
loss, σloss are defined below:

θloss =
1

n

n∑
i=1

min {
∣∣∣∣arctan2

(
ŷi − liy
x̂i − lix

)
− arctan2

(
yi − liy
xi − lix

)∣∣∣∣,
2π −

∣∣∣∣arctan2

(
yi − liy
xi − lix

)
− arctan2

(
ŷi − liy
x̂i − lix

)∣∣∣∣
(4.24)
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rloss =
1

n

n∑
i=1

∣∣∣∣√(ŷi − ly)2 + (x̂i − lx)2 −
√

(yi − liy)2 + (xi − lix)2
∣∣∣∣ (4.25)

σloss =
1

n

n∑
i=1

|σ̂v − σv|
σv

(4.26)

For the “soft” metrics, let (xji , y
j
i ) be the position of j-th largest VM value where j ∈

[1, 2, 3, 4]. We define the following:

θji = min {
∣∣∣∣arctan2

(
ŷi − liy
x̂i − lix

)
− arctan2

(
yji − liy
xji − lix

)∣∣∣∣,
2π −

∣∣∣∣arctan2

(
yji − liy
xjij − lix

)
− arctan2

(
ŷi − liy
x̂i − lix

)∣∣∣∣ (4.27)

rji =

∣∣∣∣√(ŷi − ly)2 + (x̂i − lx)2 −
√

(yji − liy)2 + (xji − lix)2
∣∣∣∣ (4.28)

The soft metrics for polar angle, θsoft, and polar distance, rsoft, are defined as follows:

θsoft =
1

n

n∑
i=1

min
j
θji (4.29)

rsoft =
1

n

n∑
i=1

min
j
rji (4.30)

Lastly, we also calculated a relative Euclidean distance error metric as to show the average
Euclidean distance error relative to the size of the artery. This metric is an average of the
distance from the peak stress location to the predicted peak stress location normalized by
major axis length of the arterial wall. The soft metric corollary was computed as well.

Model Approaches

We used Tensorflow and Keras to create the model architecture [1, 15]. Each model used
rectified linear units (ReLU) for activation functions, and dropout layers were placed directly
after any fully connected layers or convolutional layers (in image-based models) to prevent
overfitting. Dropout layers were at uniform intervals between 0.1 and 0.5 in all of the models
[97]. The adam optimizer was used to speed up convergence of our models [51]. We used
mean absolute error as the loss for polar distance, mean squared error for max VM stress,
and a custom angle loss function for polar angle as defined in the above subsection. The
custom loss function was created to take into account the periodicity of circle angles and
behaves similarly to mean absolute error. Lastly, a separate neural network was created to
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predict the max VM stress with an identical architecture to the neural network for the polar
distance and angle.

The following descriptions are the final models we created after the model selection
phase which consisted on evaluation on a validation set before testing on the test set. The
approaches are graphically summarized in figure 4.2.

Approach 1 uses the parameterized ellipses in the form of 34 numbers and predicts polar
distance and angle of the location of max VM stress. The model architecture involved three
sets of a fully connected layer followed by a dropout layer. After the first fully connected
and dropout layer, the model bifurcates into two branches: one for polar distance and one
for polar angle. Training ran for 35 epochs.

Approach 2s model used the arterial image and pressure to predict the original param-
eters, polar distance and polar angle. The architecture involved 3x3 convolutional layers,
2x2 max pooling layers and a dropout layer, followed by three branches of three sets of a
fully connected and a dropout layer. Then, we performed transfer learning on the model by
first training it to predict the original parameters, and then eventually learning the polar
distance and angle. Training ran for 15 epochs.

Approach 3 predicts the polar distance and angle based off of the arterial image. The
architecture involves two sets of 3x3 convolutional layers, 2x2 max pooling layers and a
dropout layer, followed by two branches of three sets of fully connected layers and a dropout
layer. Training ran for 15 epochs.

Approach 4s model attempts to predict polar distance and angle from the original pa-
rameters, using the heatmap as an intermediary. The architecture involves three sets of fully
connected and dropout layers, then bifurcated into three branches, two of which have three
more sets of a fully connected and dropout layer. The last branch uses upsampling and
convolutional layers to recreate the heatmap. Transfer learning was used to first learn the
heatmap and then the polar distance and angle. Training ran for 30 epochs.

Using arterial images, Approach 5s model predicts polar distance and angle. The ar-
chitecture involves 3x3 convolutional layers, 2x2 max pooling layers, and a dropout layer,
followed by two sets of fully connected and dropout layers. The model then bifurcates into
three branches, two of which have three more sets of fully connected and dropout layers
followed by either the polar distance or angle output layer. The last branch uses upsampling
and convolutional layers to recreate the heatmap. Finally, transfer learning was used to learn
the heatmap first and the polar distance and angle second. Training ran for 30 epochs.

Comparative Study of Predictive Models

One goal was to evaluate different prediction model techniques of varying complexity to
determine whether deep learning was the most appropriate model for this problem. The three
baselines we were interested in were random guess, mean guess, and support vector machine
regression (SVR). Random guess uniformly guesses between the minimum and maximum
value, while mean guess only guesses the average value of the training set. Lastly, we
experimented with various kernels for SVR, and came to the conclusion that radial basis
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Figure 4.2: Model architecture of five approaches taken for training a supervised deep learn-
ing model. Approach number ranges from 1 to 5 from top to bottom. Red coloring denotes
input data fed to network. Blue coloring denotes output data used for loss calculation.
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function (rbf) kernel was the most effective. The final metrics were calculated on the testing
set.

Feature Importance Study

The purpose of this study was to evaluate the correlated relationships between various input
features (like lipids and calcium) and the labels (maximum VM stress and location).

Our first adjusted feature was (1) pressure, which we replaced with uniform noise with
min and max values determined by the min and max values of our training data. We then
adjusted our (2) lipid pool representation, which we replaced with zeros, and then applied
the same function for (3) calcium deposits. We then randomly (4) switched our lipid pool
and calcium deposit representations, and lastly (5) replaced both lipid pools and calcium
deposits with zeros. The deep learning model was trained with each of the adjusted training
sets and then evaluated using the same metrics on the unchanged testing set.

Amount of Data Study

Deep learning is a data-intensive process whereby inference performance scales with amount
of training data. To determine whether more data is needed to optimize performance, we
adjusted the training set by using various amounts of data (increments of 20%), trained the
same model with the adjusted training set, and evaluated the model using the same metrics
described above.

4.3 Results

Generation of finite element simulation results as training data

A parametric model was developed to efficiently generate multiple idealized geometries of
atherosclerotic plaques as shown in figure 4.1c. Topologically feasible configurations were
assessed by using a support vector machine to check for collisions. These geometries along
with material model properties and boundary conditions were then modeled with the finite
element method as described in the Methods. We were able to successfully generate 12000
simulations of aforementioned conditions. Figure 4.1d shows an example distribution. A set
of matrices were then formed for the machine learning model. The inputs were either an
array of parameters or image-based matrices. The outputs were label matrices of various
mechanics metrics of interest such as maximum von mises stress. Intermediary outputs
such as the 2D von mises stress distribution were also created. These were then split to an
appropriate training/validation and held-out test sets for machine learning model selection
and evaluation. Full details are described in the Methods.



CHAPTER 4. BRIDGING FINITE ELEMENT MODELING AND MACHINE
LEARNING FOR ATHEROSCLEROSIS 63

Deep learning can capture a statistical model for prediction tasks
in solid mechanics

Our best model (Approach 3), which estimates location and VM stress from the arterial
image, predicts maximum VM stress to within 10% of the maximum VM stress and 0.86
radians within the true location. The loss graph from figure 4.3a shows that the training
and validation error converge near each other, implying overfitting is negligible. Figure
4.3b shows the distribution of predictions for maximum VM stress is similar to the actual
values. Figure 4.3c-d demonstrates the maximum VM stress predictions have a very similar
distribution, and the predicted VM location looks similar albeit more conservative than the
test-set locations.

Data representation is important and affects learning ability

As described in Table 3, Approach 3, which estimates the maximum VM stress and location
from the arterial image, and Approach 5, which estimates the labels from the arterial image
using the VM heatmap as an intermediary, were the best performing models for predicting
maximum VM stress location. Approach 5 predicted the polar distance better than Approach
3 with an average peak polar distance error of 0.157 mm and soft error of 0.156 mm while
Approach 3 scored 0.160 mm and 0.159 mm on the peak and soft metrics respectively. On
the other hand, Approach 3 predicted polar angle better with the peak angle metric of
0.857 radians and a soft metric of 0.598 radians compared to the 0.876 and 0.609 radians of
Approach 5.

The approaches that used the arterial images as an input (2, 3, and 5) performed better at
predicting max VM location than those that used the parametric geometry model parameters
(Table 1) as an input. Approaches 2, 3 and 5 perform between 0.85 radians and 0.89 radians
for the peak angle metric and 0.15 to 0.19 mm for the peak distance metric, while Approaches
1 and 4 perform between 0.91 and 0.93 radians and 0.21 and 0.23 mm respectively. Only
Approach 1, which estimated the maximum VM location and stress from the 34 parameters,
performed better than Approach 3 for VM Magnitude. Approach 1 had a mean absolute
percent error of 9.86%, with Approach 3 trailing behind at 10.42%.

Feature importance studies can shed light on potential
determinants

As tabulated in Table 4, when Approach 1 was trained with a dataset with random pressure
values instead of the true pressure values, the VM Magnitude metric jumped from 9.86%
to 23.98%, while the polar distance and angle metric stayed the same. This confirms our
intuition that input arterial pressure is the greatest contributing factor to max von mises
stress among input parameters.

Randomly switching lipid and calcium information had a negligible influence on the VM
Magnitude metric, but increased the mean absolute error for the peak and soft metrics
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Figure 4.3: Deep learning can accurately predict physiologically-relevant indicators (maxi-
mum von mises stress and location) for a given vessel geometry and pressure. a) Training
and validation loss over 35 epochs displaying convergence and behavior of model training.
b) Normalized maximum von mises stress values for the held-out test set and predictions by
the ML model. c) 2D heat map of coordinate location of maximum von mises stress over all
the held-out test set samples. d) 2D heat map of predicted locations of maximum von mises
stress on the held-out test set.

by 0.014 radians and 0.05 radians respectively. Furthermore, removing calcium from the
parameters had a larger influence on the accuracy of the VM location than removing lipids.
Removing lipids increased the peak mean absolute error from 0.915 to 0.993 radians and the
soft error from 0.663 to 0.804 radians, while removing calcium from the parameters increased
the peak mean absolute error to 0.965 radians and the soft error to 0.778 radians.
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However, lipids have a larger influence on VM magnitude than calcium. Removing lipids
increased the mean absolute percentage from 9.86% to 16.2% while calcium raised it to only
12.5%. Removing both lipids and calcium had a larger influence on all three statistics than
removing only lipids or only calcium as expected.

Deep Learning outperforms other prediction models and its
performance scales with amount of data

As shown in figure 4.4a, the deep learning model outperforms other predictive baseline
strategies such as mean guess and support vector machine regression. The decrease in error
is consistent across both maximum VM stress and location.

In figure 4.4b, we examine the effect of training dataset size on performance. Between 20%
and 60% of the original dataset, the metric for peak angle decreases linearly but between
60% and 100%, the slope decreases. For the location of max VM stress, the metric does
not seem to have qualitatively fully converged, meaning there is still room for additional
training data to increase model performance. For the maximum VM stress value, the metric
does seem to have likely converged as the difference between 80% and 100% of the data is
about 0.05%. Additional training data will likely have a greater effect on location prediction
performance.

Figure 4.4: Comparative studies on varying baseline models and training dataset size. a)
Deep learning model outperforms other baseline and machine learning strategies. b) Varying
amounts of data are utilized for training the same model to examine performance vs data
size.

4.4 Discussion

As training deep learning models can be data-intensive, our parametric model enabled us
to generate a large dataset of topologically feasible geometries. This allowed the model to
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witness a large variation of different scenarios with their respective outputs. We were able to
successfully parallelize our pipeline to both generate geometries and solve the finite element
calculations to develop a sizeable database of input-output pairs. Our data could be further
improved by adding different shape distributions as well as random noise distortions to the
shape lines. The next step would be to include real patient data, i.e. from intravascular
ultrasound [71], as either testing and/or additional training data. The choice of real versus
simulated geometries is not exclusive. The incorporation of real and synthetic data is an
active area of research that could be especially relevant when attempting to learn physics
mechanisms [95].

Consistent with breakthroughs in the application of machine learning (ML) to multiple
domains, deep learning seems to learn an underlying functional mapping that is solved by
FEM with minimal assumptions regarding its structure. Our prediction task, as opposed
to object recognition or other canonical ML tasks, is unique in that the machine learning
model needs to learn the underlying physics at play. We are encouraged to see that our
models are able to perform reasonably well at learning physics, particularly the prediction
of maximum von Mises stress. Our best performing models are able to predict the peak von
Mises stress magnitude with an average error less than 10%, peak stress polar angle with
respect to lumen center by 34.3 degrees, and a peak stress relative Euclidean distance error
of 12.2% with respect to the vessel axis. The performance of stated techniques also scale
with amount of training data which can be efficiently augmented with our finite element
simulation generation pipeline to improve stress prediction performance even further.

The exact mapping of solid mechanics is difficult to interpret with deep learning models.
Some progress is being made with respect to model interpretability as a whole [12]. Particu-
larly interesting would be investigating the manner and patterns learned by the ML model.
It could potentially shed light on whether the model is learning a similar approximation to
the partial differential equations at-hand. It might also reveal the model has learned dif-
ferently by developing an implicit coarse-grain model or employing a fast, nearest neighbor
search by implicit memory [114].

In our study however, we were able to gain confidence in our model by a couple different
practices and results. We appropriately divided the data into training/validation and held-
out test sets with sample sizes larger than the thousands. Our training and validation loss
curves do not exhibit large gaps, indicating a lack of observable overfitting. The comparison
of our model performance with other baseline prediction models is satisfactory. Lastly, our
feature importance study generally affirms intuitions behind causal determinants.

Our results demonstrate the importance of data representation in effective model training.
The model approaches utilized different input representations and intermediary outputs.
Based on the prediction task and metric of interest, the choice of type of input data can
vary. Overall, vision-based approaches seemed to outperform parameter-input approaches for
maximum von Mises stress location prediction. Convolutional neural networks are especially
well-suited for computer vision and learn both low- and high-level patterns in the training
data.

The clinical importance of this study exists in two dimensions: automation for preci-
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sion medicine and exploration of clinical insights. The subject of our study is regarding
atherosclerosis, one of the largest health concerns globally. Precision medicine could pro-
vide a unique avenue to help with clinical evaluation and treatment. More specifically, the
evaluation of patient-specific stress distributions could be informative for patient risk as-
sessment. Physicians can currently use invasive and non-invasive techniques to characterize
geometry and material properties of arteries [11]. However, it is not scalable to require a
specialist to formulate finite element simulations for each patient. Our study, by successfully
predicting maximum von Mises stress for arterial geometries, lays the groundwork to utilize
deep learning for automatic stress distribution analysis while the patient is being seen by
a physician. This type of information delivered to the physician in real-time could greatly
improve assessment and treatment for conditions such as plaque rupture.

In addition, deep learning can enable the exploration of clinical insights gleaned from pat-
tern recognition across large data samples. In our feature importance study, we see intuitive
correlations such as between arterial pressure and maximum von mises stress. However, we
also observe that the presence of lipid pool information, in comparison to calcium deposits,
has a greater effect on maximum von Mises stress and a lesser effect on the location of the
maximum point. This could be put into context by experimental results such as [41]. Deep
learning models can potentially be utilized to develop better insights on the nature of disease
itself.

In this work, we attempt to bridge the gap between finite element and machine learn-
ing modeling by using a clinical use-case of prediction of maximum von Mises stress for
atherosclerotic arteries. In essence, we utilize deep learning to learn the underlying physics
of our solid mechanics problem as determined by the finite element method. We demonstrate
the strength of this approach on a widespread biomechanics problem with clear impact. We
hope to lay the groundwork for further theoretical and applied investigation in this domain.
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Chapter 5

Bridging Molecular Dynamics
Modeling and Graph Neural
Networks for CH Domain
Conformational Mechanics

5.1 Introduction

The primary sequence of a well-ordered protein encodes its structural information as well as
its functional properties. Proteins undergo dynamic shifts in conformation to perform their
designated tasks. The growth of computational resources and simulation algorithms allow
for studying molecular trajectories at atomic resolution commonplace. However, because of
the heterogeneity of bio-molecules and their chemical environments, computational models
can suffer in performance when tasked with predicting molecular conformations, physical
and chemical properties, and protein-protein interaction networks. Along with the growing
excitement in machine learning in tangent fields, there is emerging interest in data-driven
approaches to studying biological function at scales ranging from biochemical properties to
tissues mechanics [30, 7, 90, 28, 65, 113, 83].

Mechanosensitive proteins are central to a plethora of biological phenomena [26]. Our
goal in this paper is to bridge the primary sequence of proteins to their intrinsic force
observables while undergoing large-scale conformational changes. To accomplish this, we
generated a molecular dynamics database of trajectories of two calponin homology domain
mutants being pulling apart [Figure 5.1] by Steered Molecular Dynamics (SMD) [43]. SMD
is a technique that allows for biasing the interaction potential between explicit regions in
a simulation; in our case, two globular domains, CH1 and CH2, are gradually pulled apart
during the simulation. While these simulations are computationally expensive and require
careful consideration for proper physical dynamics, they provide information at the atomic
resolutions about the sensitivity of the roles mutations play in response to mechanical loads



CHAPTER 5. BRIDGING MOLECULAR DYNAMICS MODELING AND GRAPH
NEURAL NETWORKS FOR CH DOMAIN CONFORMATIONAL MECHANICS 69

in proteins. Our aim to cast protein structures as graphical models allows us to take the first
imperative steps towards building relationships between sequences and physical observables
that can be computed with more expensive techniques such as molecular dynamics. We
show that the force between the two CH domains, a global property over a long simulated
trajectory, can accurately be predicted using graph neural networks.

5.2 Methods

Generating a database of point-mutated protein dynamics

To generate models to predict protein dynamics, we established the first ProDyn dataset
with high-throughput in silico mutagenesis experiments of proteins undergoing large-scale
conformational changes. The generated trajectories span 2020 unique point-mutations along
two calponin homology domains, CH1 and CH2, connected by a tether that comprise a total
of 224 residues. The data per simulation was processed to yield a graphical input represen-
tation of residue interactions in terms of node and edge features, in addition to an output
representation for force profile classification and regression. We then construct and compare
conventional and graph neural network architectures to predict the force characteristics of
our biophysical system.

Molecular Dynamics - A Primer

Although the continuum assumption can be applied to mechanics at the organ, tissue, and
even (in some applications) the cellular scales, it does not hold as we approach molecular
scale phenomena. Molecular dynamics (MD) simulations, which are rapidly progressing due
to increasingly powerful computational capabilities, must be used to analyze molecular-scale
interactions. An MD simulation is a system of Newtonian equations of motion, where the
Newtonian equation is special case of the Lagrangian equation of motion for mass points in
a Cartesian system. The fundamental equation relating the force in terms of accelerations
can be expressed as the gradient of the potential energy as follows:

Fi = mir̈i = −∇Ui, (5.1)

where Fi, mi, ri, and Ui are the force, mass, position and potential of particle i, respectively.
Therefore, to calculate the forces acting on the atoms, the potential energy of the system
must be known. The non-bonded potential energy terms are traditionally considered for
the pair potential, U(ri, rj) = U(rij), and neglected for higher order interactions. One of
the most commonly used potentials is the Lennard-Jones potential with two parameters: σ,
finite diameter at which the inter-particle potential is zero, and ε, the potential well depth:

Ui,j = 4ε

[(
σ

r

)12

−
(
σ

r

)6]
. (5.2)
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Figure 5.1: Workflow Schematic: From Biophysics to Graph Neural Networks
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In addition, there are a variety of bonding potentials that describe the intramolecular in-
teractions. Force fields have been constructed to describe the complex interactions between
atoms through the parameterization of potential functions via experimental data or ab initio
and semi-empirical quantum mechanical calculations. The functional form of a force field
such as AMBER [19] or CHARMM [10] can be described by the following terms:

Ufield = Ubond + Uangle + Utorsion + Uimproper + UvdW + Uelec, (5.3)

where each term is representative of bond energies, angle, torsional effects, van der Waal’s,
electrostatic. For a system composed of atoms with positions, potential energy, and kinetic
energy (derived from atomic momenta), the classical equations of motion will be a set of
coupled ordinary differential equations. Methods exist, such as the original Verlet, velocity
Verlet, and predictor-corrector algorithms, that perform the step-by-step numerical integra-
tion. [78, 2, 104] With the proper selection of parameters and algorithm, MD techniques are
able to accurately reproduce macroscopic properties of the system.

Mutagenesis and Steered Molecular Dynamics

The creation of the mutation library was primarily informed by a BLOSUM95 matrix dis-
playing frequencies of swaps between pairs of residues in closely-related protein homologues
[38]. In addition, an alanine scan over most of the sequence was made to complement work
done by saturation mutagenesis experiments [111]. To augment our data set beyond this, a
random sample of positions were mutated to random residues with no further bias.

To generate the database of single point-mutated calponin homology domain trajectories,
all-atom molecular dynamics was performed. Experimental procedures were largely adapted
from previous work documenting the SMD experimental protocol for the wild-type CH1-
CH2 domain [93]. The wild type structure from Shams et al. was modified at single residue
locations using a MODELLER (https://salilab.org/modeller/) script that swaps residues,
optimizes dihedral angles, reduces bad contacts with conjugate gradient steps, and performs
a few steps of molecular dynamics to allow the swapped residue to relax [87].

All subsequent molecular dynamics was performed with GROMACS [103, 60, 6] using
the CHARMM27 all-atom force-field. Pulling simulations were performed in a 11.5 x 11.5
x 13 nm3 box solvated with SPC216 water molecules and 100 mM KCL. The system was
minimized with steepest-descent to remove bad contacts until the total energy was less than
1000.0 kJ/mol/nm. Periodic boundary conditions were set in all 3 directions, a Verlet cutoff
scheme truncated non-bonded long-range interactions at 1.2 nm, and PME electrostatics with
Fourier spacing of 0.12 nm was used. Following minimization, each system was equilibrated
for 100 ps in NVT followed by 100 ps of NPT, both using 2 fs time steps and a target
temperature of 300K and 1 bar, respectively. The equilibration was closely monitored for
each mutation to ensure that the system was properly sampling the correct equilibrium
distribution before steering experiments were performed.

SMD experiments were performed by anchoring down and pulling on a selected group of
heavy carbon atoms on the interface between the CH1 and CH2. To maintain this experi-
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mental control, residues that include these atoms were not mutated in our experiments. All
other parameters of our simulations is held constant except for a single point mutation that
is unique to each simulation. The reaction coordinate distance is defined here as the distance
between the center of masses of the fixed and steered residues. Steering was performed by
moving an umbrella potential with stiffness 1255 kJ mol-1 nm-2 at a rate of 2 nm/ps along
a reaction coordinate defined by the axis connecting the center of masses of the fixed and
steered atoms. Temperature coupling was performed by a Nose-Hoover thermostat targeting
310K and coupling was maintained at 1 bar with an isotropic Parrinello-Rahman piston for
the duration of the pulling experiment. Throughout the 600 ps pulling experiment, readouts
of the reaction coordinate distance and the force between the fixed and steered atoms were
measured. The maximum force applied between the domains as well as the entirety of the
force profile are the observables of interest predicted with our neural networks. Figure 5.1
shows the force profiles can be vary dramatically in shape for different mutations, while
remaining relatively stationary for different initial conditions per mutation.

Data Pre-processing

A molecular dynamics (MD) simulation under a given force field outputs a trajectory file
that includes type, position, and velocity information for every atom in the system for each
time step. There are several prediction problems of interest that can be encapsulated by our
data. In this study, our specific objective is to predict the force characteristics for a given
protein initial state (i.e. residue information and interactions pre-steering).

The input representation is a directed graph, G, with node features, xv and edge features,
evw. As shown in table 5.1, node features comprise of the residue type, residue properties,
and initial secondary structure type as calculated by mdtraj [70]. Edge features currently
consist of pair-wise dihedral angles, Kabsch-Sander (K-S) hydrogen bonds [46], and the initial
distance between steered and fixed residues.

The output representation, a graph-level target of protein mechanosensitivity, is of two
types: regression and classification. Each SMD simulation exhibits a characteristic force re-
sponse over time of the simulation. The regression target is a 2 dimensional vector encoding
maximum pulling force magnitude and maximum pulling force time-point respectively. The
classification target is a one-hot encoded 2-dimensional vector that encodes a force mode
category. The force mode categories were ascertained via spectral k-means (k=2) clustering
on the force-response graphs in a lower dimensional t-SNE [62] derived space as shown in
Figure 5.1. There emerged two clearly well-separated clusters which we utilized as cate-
gories for graph-level classification. Lastly, all continous data was scaled to [0,1], and the
entire dataset was split randomly into a 404 sample held-out test set and 1616 sample 80-20
training/validation split. For the classification task, we compute the accuracy and macro-
averaged F1-score as performance metrics. For the regression task, we calculate the mean
absolute error (MAE) for maximum force magnitude and maximum force time-point.
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Feature Node/Edge Type Index Examples
Residue Type Node One-hot [0 : 20] ALA, GSP, ALY, ...

Residue Secondary Structure Node One-hot [21 : 26] alpha-helix, turn, ...
Residue Properties Node Multi-label [27 : 43] acidic, polar, ...

Dihedral-φ Edge Continuous [0] 0− 2π
Dihedral-ψ Edge Continuous [1] 0− 2π
Dihedral-ω Edge Continuous [2] 0− 2π

Hydrogen Bond Edge Continuous [3] K-S energy
Steer-to-Fixed Residue Dist Edge Continuous [4] average distance

Table 5.1: Input Representation Features

Baseline Conventional Deep Learning Models

As a comparison to graph-based neural networks described below, conventional multi-layer
perceptron (MLP) and gated recurrent unit (GRU) were trained [14]. The graph node
features xv were provided as input either by concatenation or sequentially. For the MLP
architectures with one vector input of concatenated features, the number of layers [1-5], acti-
vation functions [ReLU, eLU], nodes per layer [128-512], dropout regularization [0.0-0.5], and
loss functions [L1, L2, logcosh, cross-entropy] were experimented with. For the GRU+MLP
architecture with inputs features passed sequentially through the GRU, we experimented
with different GRU implementations- varying hidden dimensions [16-64], stacking [1-2], bi-
directionality, regularization [via dropout], and outputs [last layer depth-wise vs time-wise].

Neural Message Passing Network Model

In line with [29], we developed various neural message passing network (MPNet) architec-
tures. Our models learn to compute a function of the entire graph by learning features,
invariant to graph isomorphisms, through a message passing algorithm. We define the hid-
den state of each node in the graph by htv with h0v = xv where v denotes residue/node
number and t denotes the cycle number, and the directed edge from node w to v as ev←w.
The message passing scheme runs for a total of T cycles which can be interpreted as the
message-passing neighborhood size. During each cycle, messages are passed between a neigh-
boring node and the current node based on the edge direction. There is a unique message
function, M , that computes the message given the current node features, neighboring node
features, and edge features which is then aggregated into one message update per node, mt

v.
This message is then used to update the hidden node state by the function, U . The final
hidden states of all nodes are then passed through a readout function, R, which yields an
output layer of the dimension of the sample target. To formalize, for each message passing
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cycle the node states are updated in the following fashion:

mt
v =

1

|N(v)|
∑

w∈N(v)

M(htv, h
t
w, ev←w) (5.4)

ht+1
v = U(htv,m

t
v) = htv +mt

v (5.5)

where N(v) denotes the neighbors of v in graph G. The message function, M, is a 3-layer
MLP with 0.4 dropout, 256 hidden layer dimensions, and output layer of the same dimension
as node features. After T cycles, the readout function R is applied as follows:

ŷ = R({hTv |v ∈ G}) (5.6)

We did not see a significant increase in performance for increasing T cycles and present our
MP models for T=1 in Results. For the choice of R, we experimented with a max-pooling
operation over the feature dimension and also feeding the nodes in primary sequence order
to a GRU. The final output time-wise of the GRU is fed to a 2-layer MLP with 0.5 dropout.
The final loss function, L(ŷ, y) was either a L1-norm for regression or softmax+cross-entropy
for classification. Models were trained using stochastic gradient descent with ADAM [51]
and batch size of 25.

Residual Gated Graph ConvNet Model

Residual Gated Graph ConvNets (RGGCN) is a method introduced by [9] that combines the
vanilla graph ConvNet [99] and the edge gating mechanism [68] with residual connections for
problems involving variable graphs. We extend this method by incorporating edge features,
such that each graph convolution layer follows the layer-wise propagation rule:

h`+1
i = ReLU

(
U `h`i +

∑
j→i

ηj→i � (V `h`j +D`ej→i)

)

where h`i denote features of node i at layer l, ej→i denote features from edge j → i, and edge
gates ηj→i = σ

(
A`h`i +B`h`j + C`ej→i

)
. U , V , A, B, C and D are learnable parameters.

In our experiments, we used a 4-layer RGGCN and applied max pooling as our readout
function. For classification, our model had 50 hidden dimensions and a single linear layer. For
regression, our model had 256 hidden dimensions with a 2-layer MLP. Batch normalization
was employed, as with residual connections between successive convolution layers.

Our models were initialized using Glorot initialization [31]. We used the Adam SGD
optimizer with an initial learning rate of 0.0005, and computed loss using binary cross-
entropy for classification, and L1 for regression. Dropout rate was set to 0.4 for both node
features and edge gates in classification, and only for the 2-layer MLP in regression.
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5.3 Results and Discussion

One of our main achievements is creating a database that is uniquely well-positioned to
benchmark the rapid development and evaluation of novel graph neural network architec-
tures on both a graph-level classification and regression task. As shown in table 5.2, our
baseline non-graph-based deep learning models– both (1) variations of concatenating fea-
tures and processing through an MLP and (2) sequentially feeding primary sequence-ordered
nodes through a GRU – were unable to learn effectively and predicted tightly near the ma-
jority/mean target. Within our data size scale, the complexity of many biophysical phe-
nomena, through initial states and short/long-range bonded and non-bonded interactions
partially captured in this study, is too difficult to train effectively unconstrained via an MLP
or recurrently via a GRU.

Model Accuracy F1-Score Forcemag MAE Forcetime MAE
Conventional 70.54 0.414 89.68 111.39

MPNet + Maxpool 77.09 0.673 85.39 92.44
MPNet + GRU 86.63 0.839 81.59 76.99

RGGCN + Maxpool 86.39 0.904 89.00 100.52

Table 5.2: Prediction Performance of Various Architectures

Our goal was to experiment with 2 types of graphical neural networks: our own designed
MPNet and a state-of-the-art graph technique such as the RGGCN. Both graph neural
network architectures, MPNet and RGGCN, capture the graphical structure, information
communication, and structural invariances to learn an effective node embedding for classi-
fication/regression tasks. In end-to-end training after node embedding, a readout function
is applied that is agnostic to the number of nodes/residues. Among functions invariant to
graph isomorphism, we observed that maxpool outperformed average pool. As proteins have
multiple hierarchies of structure, we can view the MPNet with GRU readout as encoding the
protein structure hierarchy with the GRU applied after message passing cycle, as to allow
message passing interactions to be communicated between nodes before the recurrent pri-
mary structure network. The choice of GRU readout is likely more effective for protein-like
graph systems; the RGGCN+Maxpool would be more generalizable otherwise. As shown in
table 5.2, all graph neural networks significantly outperform conventional deep learning tech-
niques. The RGGCN+Maxpool and MPNet+GRU perform well on the classification task
at around 86%. For the regression task, the MPNet+GRU is able to learn with a MAE of
81.59 kJmol−1nm−1 MAE on max force magnitude prediction and 76.99 psec MAE on max
force time prediction. To put into context the performance to the natural stochasticity of the
MD system, we ran duplicate SMD simulations and observed the mean standard deviation
of the max force mag was 57.94. Also, in figure 5.2, we show the well-behaved convergence
of the classification model training in addition to the resemblant output statistics of the true
and predicted targets for regression.
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Figure 5.2: MPNet + GRU Performance. a) Classification training statistics b) Regression
histograms of predicted vs actual values
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Future work can include learning edge states in addition to node states, set2vec as read-
out function [106] or GRU as an update function, and experimenting with unsupervised
graph embedding techniques such as [105]. From the biophysical perspective, we can expand
the choice of node/edge features, try different protein systems, or formulate a plethora of
pertinent biophysical prediction tasks.

To conclude, the progress of geometric deep learning techniques is inextricably linked
to the quality of benchmark datasets– analagous to the impact of benchmark datasets for
vision and language. We view our work as laying the groundwork for the intersection of
graph neural network and biophysics researchers for the advancement of both fields.
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Chapter 6

Conclusion

6.1 Synopsis

The nature of the work above is inherently interdisciplinary. We start by addressing clinical
assessment and diagnosis via the development of computer vision algorithms for medical
imaging, specifically echocardiography. The initial study validated our ability to use deep
learning to predict cardiac anatomical orientation quickly and accurately with greater than
physician-level performance. The subsequent study delves deeper into the comparison of
state-of-the-art data-efficient and semi-supervised techniques that can be applied for patient
diagnosis and disease characterization purposes generally across medical imaging. Clinically,
we extended the work to be able to predict left ventricular hypertrophy.

We then move into addressing atheroscelerosis and plaque rupture prediction via stress
analysis with deep learning. Traditionally, numerical methods such as the finite element
method are utilized to be able to perform mechanical analysis. The drawbacks of these
techniques for clinical adoption to have real-time mechanical analysis available for clinicians
are the computational constraints and non-automated specialized work required to deliver
accurate predictions. We attempt to bridge the fields of machine learning and finite element
(FE) analysis to learn the underlying mapping described the FE process, and more clinically
predict maximum von Mises stress and associated factors as an potential indicator for plaque
rupture risk.

Lastly, a deep understanding of cardiovascular disease necessitates the exploration of
phenomena occurring at the cellular and molecular scales. Our last endeavor engages in
utilizing graph neural networks, in the paradigm of geometric deep learning, to predict
the biomechanical behavior of mechanosensitive proteins that are normally computationally
modeled via molecular dynamics simulations. The advancement of techniques to model
proteins, such as the calponin domains responsible for cytoskeletal integrity, can enable us
to better understand the nature of cardiovascular disease and assist in the development of
therapeutics by communities such as in protein engineering.
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6.2 Future Work

There are a multitude of natural extension and future developments of the body of work
presented in this study– ranging from clinical to applied/engineering to scientific. I will
limit the discussion to more direct extensions:

• Expansion of clinical diagnosis prediction tasks for echocardiography and
other medical imaging domains. Deep learning for echocardiography is uniquely
positioned for high impact due to the wide-adoption, ease-of-use, and scale of datasets.
In terms of further extensions of work, there are a range of prediction tasks relevant
within echocardiography, i.e. to characterize ejection fraction, pericardial effusion,
cardiac output, and valvular disease, that are well-positioned for deep learning algo-
rithms. In addition, this work can be extended both in terms of other imaging modali-
ties (such as magnetic resonance imaging (MRI) and computed tomography (CT)) and
other types of cardiovascular disease (such as coronary artery or abdominal/thoracic
aneurysms).

• Integration with bioinformatics. The body of work in bioinformatics and its use of
machine learning is well-documenting and vast. A particularly exciting bridge between
that work and ours, would be to combining -omics (genomics, proteomics, etc) data
with precision phenotyping with deep learning. Many of the current day healthcare
guidelines are established from limited study samples or are not granular enough. From
a pattern matching perspective on high dimensional data, deep learning is uniquely
positioned to be applied to the integration of these two data sources (informatics and
biophysical broadly speaking) could reveal altogether new insights on cardiovascular
disease.

• Computer vision advancement for anomaly detection and limited labeled
data. In general, application-ended needs can help steer core discipline / theory re-
search. In this case, medical imaging and automated diagnosis have pertinent needs
that overlap with core machine learning / computer vision goals in (1) anomaly detec-
tion and (2) limited labeled data training.

• Full deep learning pipelines from imaging to mechanical analysis. To extend
the atherosclerosis finite element work, there should be efforts to develop a full deep
learning pipeline from imaging to mechanical analysis. Using our specific use-case as
an example, intravascular imaging could be fed to a model for geometry and material
property characterization. The parameters extracted could then be fed to a trained
model for stress distribution prediction. This endeavor requires sufficient data and
labeling for the multiple prediction tasks and ideally could be trained end-to-end.

• Bridging traditional computational modeling techniques for biomechanics
with ML. A theme in the last two chapters is bridging computational modeling with



CHAPTER 6. CONCLUSION 80

machine learning. The extension of this work could enable high-throughput simula-
tions (of both finite element and molecular dynamics simulations) for experimentalists
(like clinicians or protein engineers). More specific to finite element, there could be
further development in enabling multi-scale FEM which suffers from computational in-
efficiency. Further development of machine learning for molecular dynamics simulations
could also alleviate computational inefficiency concerns to enable longer timescales of
simulation.

• Advancement of graph neural networks. The merging of graph theory with
deep learning particularly for the use of non-Euclidean data is an emerging field. The
availability of benchmark datasets across other domains from computer vision to speech
recognition enabled major breakthroughs in deep learning. Biophysical simulations
are inherently structured in a graphical fashion with nodes and edges which make it
well-positioned as an interesting data domain to help advance graph neural network
techniques.

6.3 Closure

Machine learning and neural network research are by no means a new field of study – with
roots in the mid to late twentieth century. The proliferation of ”big”, open datasets, advances
in computer hardware, and technical refinements in neural networks enabled the rise of deep
learning and renewed interest in advancing the field of neural networks. While we try to
steer away from excessive hype, unchecked inflated expectations, and excessive fear around
deep learning, it is undeniable that deep learning will have a lasting impact (if not already)
on multiple industries and alter the way we interact with the world.

In this body of work, I aimed to apply and advance deep learning for the benefit of
mankind and human health. Healthcare as a whole is a behemoth of an industry that is ripe
for technological innovation. More specifically, cardiovascular disease is a complex, pertinent
public health issue that can be understood and addressed through various means. With the
lens of a biomechanicist, I hope to lay the groundwork for deep learning approaches to better
understand and address cardiovascular disease.
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