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.. ·· . 

A erossing symmetric.Regge representation for the invariant scattering~ 
. . ' . '· 

amplitude is constructed which simultaneously exhibits !11 Regge poles in 

. the three channels. It is assumed that the amplitude satisfies the Mandelstam. 

· ·,. representation, and that the 'usual· Mandelstam-Sommerfi!!ld-Watson transform 

exists. To achieve explicit crossing-symmetry it is found necessary to 

work with the Legendre function of th~ second kind. .Except for neglecting 

... : 

· the influence of possible angular momentum cuts, the representation is .exact •".(>' 

·,. 

. . . 

for all s, t, and u, with no restriction on the location of the Regge poles •. 

As an illustration of how it might be used lin pr.actice, .the Chew-Jones , _·-. 
.. ·. l 

formula. for the amplitude of definite signature is derived in the strip ·· 

approximation. _ . 
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1. INTRODUCTION 

In this paper we· construct. a crossing symmetr~c Regge represents.-

tion for the invariant scattering amplitude with the assumption that 

A(s,t,u) satisfies the ~~ndelstam representation, and that the amplitudes 

of definite signature have an "ordinary" Handelstam-Sommerfeld-Watson 

(NSW) representation (see Section 2). Furthermore, for our approach to 

make sense, we must require that the Regge poles rece~e into the left half 

angular momentum plane above a certain energy. The final expressio~ for 

the ampl:itude will be exact to the ext'ent that we have neglected any 

~ngular momentum cuts, if they exist;1 such neglect is often justified. 

Concerning the Gribov-Pomeranchuk singularities, 2 we shall assume that ,'j 

they are absent 'on the angular momentum sheet of interestj and thus will 

not contribute directly to ·che asymptotic behavior. For certain cases 

Mandelstam has shown this to be true.1 

Khuri3 •4 has proposed a crossing symmetric Regge representation 

using power series expansions in s, t, and u. As a consequence of this 
i 

•· 
' 

technique, the "Regge te~s" in his expression contain poles which have no 

physical meaning; Chew and Jones~ 5 on the other hand, choose to work with 

the Legendre function of the first kind; their expression, however, is 

strictly correct only if none of the trajectories lies in the left half 

angular momentum plane. In this paper we propose to construct a represen-

tation for the amplitude with neither one of the just-mentioned drawbacks; 

± 
in return we must assume that A·(s,t) has a HSW representation. Rather 

. than wor~ing with Pi(z), we choose to work with the Legendre function of 

the second kind, Q~~z), since Pi(z) has the undesirable property of 

diverging for Re i <-1, as lzl + ~. 
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Since the 1-iS\-T transform plays a. dominant role in our calculation, we 

shall devote the following section to its brief examination. In Section 3 we 

· then discuss the analytic continuation of the "Regge te"rm" to arbi tra.ry complex 

values<of-·its· argument, and in Section 4 we finally construct the crossing 

symmetric Regge representation. We;conclude vith Section 5, where we use the 

representation to extend the C~ew-Jones form of the new strip approximation5 to 

include trajectories lying in the left half angular momentum plane; in particular 

we sha~l·recover their expression if we limit ourselves to those poles lying 

in the right ha.J,.f angular momentum pl:ane. · 

2. THE l-1ANDELSTAM-SOMHERFELD-WATSON (MS\{) .TRANSFORM 

It. is well known that the presence of exchange forces requires us.· 

to work with the amplitudes of definite signature; it is these amplitudes, 
:t.. . . ) • . 6 7 

k···(s,t), which (we assume have a MSW representation: • .· 

+ 1-L+ioo + Q ·· (-z ) 
A-(s,t) D - i . d1(21 + l)a-(1 s) -t-l s 

2 L i . , ~ cos ~~ 
- - GO 

Q-· • ( ) ( -z ) -aj s -1 s 

cos ilfaj{s) 
, (2.1) 

where the summation extends only over trajectories of a given (~) signature. 

• Throughout this pa~er the subscript j will label a Regge trajectory or definite 
. . 

signature, and we shall suppress any Ct) superscript on aj(s) and Bj(s) if ~hat 

is meant is clear from the context in which the expression appears. Here· z is 
s 

defined in terms of s and t as follows: 

z s 

s 

= l + t/2q 2 
s 

2 2 . = 4(q + m ) s 

, 

t 

+ 
and a·(&,s) is given by the Froissart-Gribov formula, 8 

:t 
a (R.,s) = !100 ~ 

1f t 2 2 
0 ~s 

• (2.2) 

( 

! 
I 

I 
I 

. l 

'· ·, 

i 

I 
• ! 

! 
I 

·I 
! 
t 
I 
i 
i 

I 
! 

f 

I 
i 
I 
; 

\ 
' ., I 

I 
I 
I 
! 

• I 

j 

l 
I 
I 
I 

.. , 
! 



.. 

•. 

i 
.. 

-3-

for all. R. for which the.integral·converges,.and is determined otherwise 
. 

by analytic continuation; At(s,t) and Au(s,u) are the absorptive parts 

~f A(s,t,u) in the t and u channels respectively, with s,t, and u 

2 . . 
related by the equation s + t + u = :mi , where · mi are the external particle 

1 

masses; u (or t) is obtained :from u (or t) by making the substitution - -
z + -z ~ thus for the equal mass case u = t and t = u. The quantities 
s s . - -

'· 

aj ('8)'- and Bj (6} appearing in (2.1) are the J.th Regg<r pole o:f (;!:) 

signat~e, and the residue ~f (2R. + l)a~(R.,s) at the J.th Regge pole, 

. respectively. The last term in (2.1) is defined as follows: 
N 

B±(s,t) = ~ {;. (•l)
12+±(t -t. •) -a;l:(-t - ;, •) h..l(~z6 ) 

. . 2 
00 

1 
-2· 

. . 

s)Q 1{-zs) • 
t- -2 

3 1 -N ~ - < L < -N - -2 2 
{2.3) 

Let us consider formula {2.1); we notice that the second term seems to have 

poles at the half integers o:f a{s); such signularities must, of course, be 

absent in the full amplitude, If, however 8 we assume that the Mandelstam 
- ' :.t l . ;t 1 

reflection symmetry holds [i.e., that a (-R.- 2, ~) =a. (9.. ... 2, s) for 

R. integral], then one may readily verify, by letting L + oo {thus·extending 

the domain of analyticity in s o:f the second term in 2.1)• that these 

poles will cancel_pairwise in the sum, so.that the sum itself has no such 

· spurious singularities. The symmetry is known to hold for a large class of 

·• . potential problems. In order to avoid these poles we shall assume henceforth 

c \ that the partial-wave amplitudes satisfy the fJiandelstam reflection symmetry; 

it then follows ·also that A(s 0t) is always dominated at large t by Regge 

poles. 
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One final remark should be added he~e; it is essential that the second term ,. 
in (2.1); he~eafter· refe~red to as the "Regge term," be an analytic function,/ .. 

' _,// 
of s . and 't; this means that we 'must choose · L suff!.clently large so that 

all Regge traJectories will lie to the right of the integration·~ontour; in -' 
particular we shall take L to be infinite. 

_;· :.3. ANALYTIC CONTINUATION OF THE "REGGE TERM". 

Expression (?.l), with Q_~1(-z8 ) defined on the conventional sheet 
' ' ~· ' 

cut.from z • -l to +l, and"from z = +• to +l, does not equal A (s,t) for 
S. S 

all s and t, as can be·seen by comparing their respective analytic 
' . ' . ;t 

structures. In fact, it follows from the definition of A (s,t), I 

~ ~ 
.• 

' ~3.1) 

and from the dispersion relations for the absorptive parts.At(s,t) a.nd 

(3.2) 
·l)tu(t•,u) 

+ ~1
00

dt 1 .. . . • 

" t• - {t- s- u)· • . to ·. 

' ;t 
that A (s,t) is an analytic function of s and t' with the s plane 

cut ~rom threshold to +01) and from t - u0 - t 0 to ~. and with the t plane 

cut from t 0 to infinity along the ~ositive axis. As usual, s0, t 0, and 

uo are the lowest'thresholds in the s,t and u channels respectively, and 
' ' 2 + 

I as+ t + u • 4m • ~he .analytic structure of a-(t,s)Jwhich enters into 

the background integral, may be obtained from the Froissa.rt-Gribov 

·, Jl 

: /i 



. . definition, Eq. (2.2)' • 

b:t(.t;s) is an analytic function of s except for a. right-hand cut starting 

at s 0, and two left-hand cuts extending to -~ from s 0 - t 0 and from 
2 _, 2 

1: - t 0 - u0 , respectively. It should be noticed that (q
8 

) Q1 (L.+ t/2q
5 

) 

has no discontinuity for ~t/4 < q 2 < o. 
s 

Next we consider the ."Regge term" of the HSW transform: 

{ ) Q : ( ) l(-l-t/2q 2) a s -a s - s 
R J { s, t) = y ( s )' ( q 2 ) J j · . :! 

J · 8 cos iraj (s) 
• . (3.3) 

2 
a (s) 

Here we have written Bj(s) = yj(s)(q
5 

) J where yj(s) is the residue ., 

of (21 ~· l)b0 (t,~) a.t I=· aj{s); a is the signature of the trajectory aj(s~? 

Equation ·(3e3) has the desired threshold cut in s plus a number of other 
· 2·.a · 

cuts arising from the argument of the Legendre function and the factor (q ) ; . . s . 

comparing the right- and left-hand sides of {2.1), we conclude that the latter 

cuts must be absent in the full amplitude. For s physical (i.e., s ) s0 ), 

·we notice that· the cuts in t of Rj(s,t) are consistent with those of 
± . 

·A (s,t): a. right-hand cut beginning a.t 
l 

extending from t = 0 to t = -4q 2 ; both . s 

t = o, and a finite left-hand cut 

cuts are seen to move with s • Since 

the Legendre function contains .the entire t dependence, and si.nce yj(s).and 

aj(s) are assumed to have only the right-hand threshold cut, we conclude 

from the foregoing analysis ~hat the desired cont·i~uation of R J ( s, t) must 

leave the RH s and t cuts fixed. Consider the-expression~ 

+·11+1 
. 2 . 

-l 

= -

dz' 

{
' ' t ) 

z '-· ,l+ 2qs 2 

sin '!fa roo dt' 2 a { . t' \ 
11 ) 

0 
t 1 - t ( qs ) Q-a-l \ 1 + ~ l · 

• 

\. .. · 2qs / 

Re a < 0 · • ) (3.4) 
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f'or Re: a >,.- 0 it is defined by analytic continuation. Except .for. cuts,. the 

RHS defines an analytic function of· s and t. Nov for s physical, 

•<t l(~z ) = Q 1(-z ), since for s > so• (3.4) becomes the dispersion 
~- s ~- s . 

relation for·. the_ conventional Legendre function of. the second kind, [for 

convenience ve have multiplied both sides of the equation by the threshold 

· ( 2 a factor . q ) . ] e 
·S 

It is clear that (3.4) is the desired continua.tion;_its 

analytic structure in the t plane needs no comment. Concerning the cuts 

in _s, ve notice that the first integral on the RHS ·has a cut extending 

2 along the negative q axis. The discontinuity across this cut is given by s 

. f.. c:lt' 
As 

0 
t' - t 

_ ... < 

~----:- p - l - -dt' . ( t' )' 
t' - t -a-l : 1 . 2qs 2 

(3.5) 

Examina.tion.of the second integral, however, shows that it·has a similar cut 

whose discontinuity is- the negative of (3.5) [this is easily verified 

by using the relation (q 2 + i·-')a- (q 2 - is)a = 21(-q 2 )a sin 'ITa]." In s s s . 
'i 

conclusion, we therefore find that (3.4) defines an analytic function of s 
. 2 

and t , .with the t plane cut from -4q
8 

to t = o, and from t = 0 to + ... , . 

and with the· qs2 plane cut from q
5

2 = 0 to ~and from q
6

2 = -t/4 to infinity 

in a. radial direction. For future reference we state the formula. for the 

analytically continued "Regge term:".· 

( .., I ) · dt' I t' 
' Q \l +-j 0 t - t -aJ-l \ · 2 2 

\ , qs 

l 
I 
I 
I 

.; 
! 

~-·. 

; 
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T4. A CROSSING SYMMETRIC REGGE REPRESENTATION 

Let us define the following set of variables: 

l + t/2q 2 -1 -u/2q 2 z ·= = s s s • (4.la) 

l + s/2~ 
2 2 

zt = = -1 -u/2~ · • (4.lb)' 

l + s/2~2 -l -t/2~ 
2 z = = u 

. 
' 

( 4 .lc) 

. 2 2 
x = 4(<lx +m) • ' ( 4 .ld) 

· where x = s, t, or u; in the physical regions of the s~ t, and u reactions, 

z
6

, zt, and zu are the cosines of the respective c·.·n;t~ · (center of ·mass) 

scattering angles, and s, t, and u are the squares of the respective c.m. 

energi_es. We now write down t'hree alternative expressions for the amplitude 

A(s,t,u) expressed in terms of the three possible pairs of independent 

variables: (s,z
6

), (t,zt)• and (u,zu); in fact, these expresions are the 

usua~ one-dimensional dispersion re~ations for A(s,t,u), with s, t, and u 

held fixed in turn: 

A( s ,·z ) 
s 

= ! 1' ... dt' 
'If t 

0 

a ~ L(Aa(s,zs) + f; Aa(s, a . 
a 

~ J ... ds' 
A (s',t) 

A( t, zt)_ s 
= s' .. s(t,zt) 

so 

- z )] s 

1 ... +! du' 
'• 'IT u 

0 

1 L 1'\ + E;
11
A 11 

( t, - zt) ] II! 2 __ ..(A (t,zt) 
n 

A·(su') u • 

u' - u{s,z ) s 

t ' 

A (t,u'}. u 
u' . - u{ t,zt) 

.(4.2a.) 

(4.2b} 
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A(u,z ) .. u 
A (s' ,u) l ... 

s . + l dt' 
s' - s(u,z ) n t · 

u 0 
t' - t(u,z } u 

(4.2c) 

Here a, n, and A equal (!) depending on the signature, and ~+ = ~ 1. The 

expression belov each of the dispersion relations is readily obtained. 
. + . + . 

from the definition of A·(x,z ) ; we construct A-(x,z ) by attaching a (_+) 
· X X 

sign to the second integral in the dispersion relation for A(x,z ), and by 
. X 

substituting -zx for zx_in t~e integrand. Thus, for example, (4.2a) is seen 
•• 

to follow from (3.1). Let us make a partial-wave expansion of A-(x,z ): 
X. 

=L t x r:: s,t,u (4.3) 

R.. 

where z is given in terms of s, t, and u by Eqs. (4.1 a-d); performing a 
X 

MSW transformation on this series ve obtain 

., . · 
1 

.. oo+i... Q (-z ) 
a - -

2
i · di(2.2, + l)a0 (R.,x) -R.-l x 

n cos nR. . _oo.,ioo 

(4.4) 

......., 
where Q R.( z) is defined by ( 3. 4) , and where the summation extends only over 

trajectories of a given signature. Next we consider the __ Mandelstam repre­

sentation for the amplitude A(s,t,u)/0 : 

• (4.5) 



. . ·, . •. 
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where a typical term--say, A12(s,t)--is given by 

J
, ... 1 ... · p · (s' .. t•) 

1 . d 'd ' . st . . = 2 s t (s• - s)(t• - t) 
n s

0
_ t

0 
. 

(4.6} 

i-le leave it understood that the necessary. subtractions .have been made. OUr 

program is to extract explicitly that part of the amplitude which has Regge­

type asymptotic behavipr. 11, .... -Accordingly, we shall split the various 

· integrais in {4.5) into parts whose domains of integration correspond to 

the various double spectral regions shown in Fig. 1. Thus, for example, 

. ·1s1lt1 - p cs• ,t' > oO(~ p (s' t'> 
· ( t) = 1 , , st 11 st , ' 

Al2 s • ~ . s t d.s. dt .. ..,.{-s':"• ...;-;.;...s'"")..,.{ t"!""':'"'• ---t-r-) + 2 ds • dt' . ( s' - s) ( t' ~ t"T 
" 0 0 11'-· Sf"· tl , 

t . 8
1 · 1( + [A12Cs,t) + A12 s,t)] , 

where 

' 

s1 and t 1 are determined by the 

inequality12 

t 

where x = s;'.t. Now pst(s,t) is bounded in regions 1' and 2' of :Fig. 1; 

·furthermore, for s and t in region 2', pst(s,t) vanishes faster than 

x·l/2 for large x(x = s or t); it therefore follows that the first two 

(4.7) 

(4.8) 

(4.9) 

integrals in (4.7) need no subtractions; we shall refer to them as "background 

integrals." A similar decomposition to (4.7) can be made for the amplitudes 

A13Cs,u) and A23(t,u). In what follows we shall concentrate our attention. 
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on the contributions to A(s,t,u) coming from strips l through 6 (see Fig. 1), 

since they '.will lead to Regge asymptotic behavior. We proceed as follows: 

to evaluate the contributions to ~he.amplitude coming from strips land 2, 

we compute the double spectral functions p 8t{~,t) and Psu(s,u) from 
. . a 

express~on {4.2a), where A (s,z ) is given by {4,4) with x 121 s. Similarly, . . s . . 

to evaluate the contributions from strips 3 and 4, we compute the doub.le 

'. spectral functions p
5
t{s,t) and.ptu(t,u) from expression (4.2b), where 

A.l'l(t,zt)'is given by (4.4) with x =t •. Finally, we obtain the contribution 

·from strips 5 and 6, using expression (4.2c). It should be noticed that 
+ + . 

either A-(x,z ) or A-(x, - z ) contributes to the double spectral function 
S - X 

in a given strip, but not both; this will become clearer in what follows. 

As an example wecompute the contributions to the full amplitude coming 

from strips :1 and 2 of Fig. 1: 

{4.10) 

The do~ble spectral functions p
8
t(s,t) and p (s,u) may be computed from su . 

expressions (4.2a) and {4.4), i.e., fro:o 
. \ ' 

' A(s,z.) a- tLr:.:: dt(2t + l) ::~!·!~ (Q~t-1<-•.> + •l-t-1( •• )] 
.. a 

+! L BJ(s) [~ (-1- ~\+ ~ Q (-1··- ..E.-\ l ' 2 cos :rr~j Q_aj-1 j -a j~l \ . 2 2 l 
j 2q ( . . qs J j \ s J 

aj - aj.< s) • (4.11) 

where we have written z explicitly in terms or s and t , and of s and s ,..., 
u, using relation {4,la); QR.(z) is defined by {3.4), Notice that the 
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summation index j runs over !1l Regge trajectories, and ~j = !1 

depending on the signature of the ~th trajectory. From (4.11) ve see 

that p (st ( s, t) gets a contribution only fro~ the terms involving Q 
1

( -z ) , 
. -p- s 

f'o.; 

p = t, a, since Q 
1

(z ) bas no right-hand cut 
. . -P- s 

Similarly, 
~ 

' Q 1( z ) • . -p- s 

p (s,u) gets a contribution only from the terms involving 
su . s 
It is sufficient to evaluate explicitly, say A1~(s,t); the 

contributions from the remaining strips may then be obtained in a similar 
. s 

. 1 
splitting A

12
(s,t) vay. The first step consists in into the following 

integrals: 

B s(s' t') 
st • 

(s• • s)(t•- t) 1 
, .• 'I 

R 8 (s' t') 
st • d$'dt' (s• - sHt' - t) 

· R 5 (s' t') 1 roo (.., • ~ Js Jt ds'dt' 
. 1 0 

st ' \ 
{s• - sHt' - t{ + L 

j 

• (4 .12) 

vhere 

L R(~j(s);s,t) 
j 

a 5 (s' t') 
st ' 

• (s' - s)(t' - t) 

and where B
5
t 5 (s,t•) and R

5
t 5 (s,t) denote the contributions to the double 

spectral function coming from the "background integral" and "Regge term" 

• of (4.11) respectively. The reason for the notation in. (4.13) vill soon 

( ) -1/2 become apparent. If·vc assume that Sj s s s for s -+ ... , then it 

(4.13) 

follows from the definition of _s1 , Eq. ( 4_. 9) , that the first three integrals 

'·! 

I 
i 
i 

. ! 
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of (4.12) need no subtractions; we therefore group them with the other 

''background terns." Expression (4.13) is the desired candidate which 

exhibits Regge asymptotic behavior and has only the right-hand threshold_ 

cuts in. s and t. Now Rs(s,t) = ~ L R-·(s,t) where R (s,t) is given 
'j j J 

by (3.6); for s >. s
0 

only the _first integral on the RHS .of_ (3.6) has a · 

right-hand cut in t; hence we obtain 

Next consider the expression 

( ~ + t r 

2 
) .. 

2q I s 

tan :rraj 1oo· dt' · 2 aJ(s) 
211' t' t (qs,.) Q_a (s)-1 . t - j 

. . . 0 (
l + ~). 

2q s . 

As we have pointed out before, the int~grand of (4.15) has no discontinuity 
l 

in s for the argument or the :Legendre function betl-reen -1 and -oo. · Hence 

(4.15) defines an analytic function in the s plane cut from threshold to 

. +oo, and from s - t to -oo. The discontinuity across the left-hand cut is 
. 0 0 2 

. i 2 r 4qs 2 . . . 
+~(s)(-qs )atan wa Jt dt'[P_a_1 (-l-t'/2q

8 
)/t' ~ t], with a = aj(s). 

0 . 
Tl}us (4.15) is seen to _be the contribution or the right-hand cut in s to 

the dispersion relation at fixed t for the function R(aj(s);;s,t). Hance 

we obtain 

(4.14) 

(4.15) 
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where 

ds' 
s' - s 
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dt' 
t' - t F.a (s~)-l . . . j (-l - t' 2) 

2qs' 

2 
a (s) 

s··(s) = (q ) j y: (s) 
j s J 

. . . (4.16) 

... 

The second term of (4.16) merely removes the left-hand cut in s of the 

firs~ integral. The full contribution to As(s,t), Eq. (4.10) 1 which 

exhibits R~gg~ behavior~ i.s given by ·~ [R(aj(s)ts,t) + tJR(aj(s);s,u)]. 

'We remind the reader that the first·integral appearing on the RHS of (4.16}· 

is to be taken in the ordinary sense if it converges and is det.ermined 

otherwise by analytic continuation •. 
.. . 

sl 
The method we have used to evaluate A12(s,t } may be applied, of 

course, to the remaining strips. Collecting· the various background terms, 

which we did not explicitly:- evaluate, we find that we can bring them to 

the form 

1
""1"" , . b st ( s' • t ' ) 

. ds'dt' 
(~· ~ s)(t• - ~[ 

so ~0 . 

•• 

using a method due to Khuri. 3 Here b
8
t(s,t) is given as follows: 



.' 
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. . 1 J-l/2+i... J-l/2+i'"' . v 1J 
a 2 dlJ . dv·.c(v,IJ)~,' t 

(2i) -1/2-i• -1/2-i'"' • 

where·c(v,~) is defined by 

B (s t) = ~ C(v,~)s"tlJ 12 • L .. • IJ,\1 

for s,t in the Mandelstam triangle. Since in practice C(v,IJ) cannot be 

obtained explicitly, 'we shall omit giving its expression in terms of 

integrals over the double spectral functions, and shall limit ourselves 

.. to a statement of the final expression for the amplitude:~3 

1 ... 1... b ( s' t ' ) 
A(s,t,u) a~. ds'dt' (s' ~ts)(~• _ t-} 

1f so to l
eo reo b (s' u') 

1 j ·ou • + - 2 · ds'du'. (s'- s)(u' -u) 
1f so uo . 

, 

1 1 co J.., . . btu ( t ' 'u~ 
•· - 2 dt'du' (t• - t){u• - u) 

1f to uo 

.• + I [R(aj(s);s,t) ~ ~jR(aj(s);s,u)] . 

j 

+ I (R(aj(t);t,s) + ~jR(aj(t};t,u)] 

j 

'· 
+ I [R(aj(u);u,s) + ~jR(aj(u);u,t)] (4.17) 

j 

Here R~(aj(s);s,t:) is given by (4.16:}, with similar expressions for the other 

f'ive !!Regge functions." The "background terms" vanish at least as fast as 

x-l/2 for large x (x a s,t, or u). 

) 

j 
I 

~ 
i 
i 
i 

. 
! 

~1 

., 
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With the assumption that S j (x) ~ x·l/2 and that Re a j (x) < -l/2 for 

x -+- •• one may·readily verify that for large t and fixed s 

A(s,t,u) 
" 

-+-~ 2.) R j ( s , t) 
' j 

• (4.18) 

where Rj(s,t) is given by (3.6) and where r(s,t,u) -tN, N < -1/2, [&;;.similar,· .. 

relation to (3.6) holds for Rj'(s,u)]. Furthermore, with the help of the 

l l• . 
relation r(2 + z) r(2 ... z)Jr( z) r(l - z) = tan nz on'e may verify that 

RJ(s,t)-+- -nSj(s)Paj(s)(-l-t/2qs
2

)/sin naJ(s1)' for ·l'a.rge t , if Re aj(s} > 

- ;. We therefore find that A(s,t,u) does indeed have the Regge asymptotic 

behavior given by the usual Sommerfeld-Watson transform. With· the· 

assumption of tne Mandelstam reflection symmetry, there presumably exists 

a further c~cellation between the background terms and Regge terms, so that 

the amplitude is always dominated at large t and any s by the sum in 

(4.18). 

5. DISQUSSION OF THE RESULTS 

Expression (4.17) is.the desired representation for the invariant 

. amplitude with no subtractions needed in the background integrals, and 

with !1l Regge poles displayed in an explicit crossing symmetric way. To 

the extent that we ignored the possibility.of cuts in the angular momentum 

plane, it is an exact expression, valid for all s,t, and u, and with no 

restrictions on the location of the Regge poles. The three background 

integrals and the collection of six Regge terms each:separately statisfies 

., the Mandelstam representation; ·furthermore, our assumption that the residue 

S(x) vanishes faster than x-1/ 2 for large x(x = s,t,u), garantees.the usual 

Regge-type asymptotic behavior of (4.17) in all three channel variables. 

. I 
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From the practical standpoint our expression seems to suffer from a disease, 

for the individual Regge functions have pqles at the half integers of aj(s); 

as we have pointed out in·Section l, these poles are absent in the sum. 

What this means in practice is that we must include the necessary Regge 

poles lying in the left half.angular momentum ?lane to remove these spurious 

singularities.· We wish·to point out ·that the above difficulty may often be 

avoided. For reasons of ~omparison we make the following substitution in 

the first integral of (4.16): 

although we had found.it necessary to use Q1(z) instead of P1(z) in order 

to arrive at (4.17), w~ now reintroduce P1(z) with the help of the relation 

A typical Regge term, say R(aj(s);·s,t) then:..takes the form 

(5.1) 

2. . . 
Except for t~e switch in th~ signs of q

8 
and of the argument of the Legendre 

function, which was not necessary but convenient; the integral in (5.1) is 

essentially the conventional Regge term; furthermore we notice· that this · 

integral with t
0 

replaced by t 1 is identical to the Chew-Jones definition 
. 14 . . . 
of the Regge term,, Eq. II~3 of reference 5. The quantity R'(aj(s);s,t), 

which now contains the undesirable half integral poles, plays the role of 

b l · ( ) l ( 1 ·~l/2 f l t), a ackground term as ong as Re a j s > - 2 , R < t "· :;· or· . arge . _; 

.. 

\-
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this is often· the domain of interest. Formula.(5.l) also shovs ~hy (4.17) 

is valid regardless of the location of' the Regge poles; the ·.presence of 

the term R' (a j ( s) ; s, t) • which competes vi th the first integral for 

Re aj(s)." -·~(both terms behave like t-a-+ for large t), produces. the 

necessary cancellation to insure the correct asYIIlptotic behavior .for all s. 
' ' '•' l 

· If in a calc~lation one vishes to go beyond the region ;Re a~{s)1:> .. 2 , 
:· 

then· one will have to deal vith the half integral poles·. ,·, In general, these 

vill ·be f'ev,. The. explicit crossing symmetry of (4.17) allows us to keep 

an easy watch on the approximations being made in certainct:alc;:ulations. As 

an illustration:ve shall use expression (4.17) to derive the Chev-Jones 
'+ 

formula· for A-(s,t) in the strip approximation [Eqs. (III.7) and (!!!.9), 
' + ' ± ' 

of' Ref'. 5.']. A.·-(s,t) had been defined by Eq. (3.1); if ve denote by\. (s,t) 

and ~:t (s,t) the contributions to ·this amplitude coming from the background 

integrals and_Regge terms of (4.17), respectively, then 

+ 
.+ ;. 

~~(s,t) 
-( ' ') 

=. -'11'.21 J· .r· bst s,t .ds'dt' rs· - s)(t'• ;..'t) 

where 

b t(~,t) + b (s,u) s - .. su -
for 

for s < 0 

andwqere 

s + t + u • 4m2 - - . 
Here ~ and l are obtained from u and t respectively by letting zs + .. zs in· 

definition. (4.la); 'for the equal mass case;;:,= t, and l = u. Formula (5.2) 

is readily obtained by using the dispersion relations for A:t(s,t). and 
+ 

A (s,u) .... i.e., Eq. {3.2)--and the definition of' A-(s,t). To obtain 
u 
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t 
~ ~s,t) we compute the contributions to the absorptive parts, At(:s,t) 

and Au(s,u), coming from the six Regge functions of (4.17).; for s > s0 

we .obtain 

R:;.(aj(s);s,t) + L Rt(aJ(t};t,s). 

J 

+ I tjRt(aj (t) ;t,u) + L ~JRt(aJ (u) ;u,t) ' 
J J 

(5.3) 

where u and t are related by s + t + u = 4m2• The first two terms of 

(5.3), when substituted into (3.1), clearly yield 

LR{aj(s);s,t) + LR{aj(t);t,s) 

j J 

'' 

This follows from the analytic.structure of R(aj(x);x,y). The contribution 
;t . 

of the third term in {5.3) to A {s,t) may be rewritten in the following 

manner: 

L 
J 

I !,(... du' 
• j f;jRu(aJ(t,');t~eu') .. ·.; 

j .... n: uo u' - u 

. 2 
where s + u' + t• = 4m ; we have made a change of.variables in the last 

' 

integral. Hence we obtain 

~. 

'';' 

v. 
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1
00 At(s,t'> 

·!_ . dt • ---=--~-w . .t' - t 
. to 

[R(aj(t);t,s) 

The second inte.sra.l in (3.1) nia.y be eva.lua.ted in a. simila.r way. Hence 
... 

A .. (s,t) becomes 

A:t(s,t) = Ap,t.(s 1t) + I, [R(aJ{s)ts,t)!. f;jR(aj(s);s,~)] . 

j 

+ L [R(aj(t);t,s).+ f;jR(aj(t);t,u)]!,~ [R(aj(~);~1 s) 
j j 

{5~4) ' 

r ~ Joo du' 

j uo 

r 

I 
l_u·• 

1 
- u 

+ t ]~ R (a (t•)·t' u~) u• - u .·J u j , • 

• 

. . ··· So fa.r we have made no approximations. If we neglect the background contri-

t ± . 
bution to A·{s,t) ..... i.e. 1 the quantity~. (s,t)--a.nd if we make the sub• ;•· 

(: ,.. . . ... .. sitution u
0 

+ u1 and t
0 

+ t
1 

in the limits of integration, then we obtain. ·.'. 
. :t 

an approximate expression for A (s,t) which is seen to be identical in 
; . 

form with the Chew-Jones formula, Eqs. (III.7) and (III.9) of Ref. 5; 

the two expressions differ only in the definition of the Regge functions. 
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As we have.pointed out before, Chew and Jones de:t"ine R{aj{s};s,t} ~o be 

equal to the integral appearing in (5.1:} with t 0 replaced by t 1 • In viev 

of the previous discussion of this expression, we see that there is no 

essential differ.ence between ( 5 .·5) and the Chew-Jones formula if we worry 

only about those trajectories which stay in the right half angular momentum 

plane; hovever, we point out once more, that at least in principle, our 

definition of the Regge function allows us to include the effects of~ 

Regge poies; but until we have more knowledge about the region Re a < -1/2, 

this 'is of purely academic interest. 
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terms in the Mandelstam representation and in any other dispersion 

relation, for these terms do not contribute to the final answer. The 

bound states vill appear as poles in the Legendre function of the 

second kind. 

11. The·general spirit of the calculation is that of references 3 and 5. 

12. .With this definition of x1 plus the assumption that 8j(x) < 

large x, our background terms vill vanish faster . than y -l/2. 

y, vhere y stands for either variable of its argument. 

-1/2 -. 
x for 

for large 
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13. By aj(x) we mean the ~th trajectory in the channel where x is the 

square of the c.m. energy. Each one of the summations extends over 

all Regge trajectories in a given_ channel. 

l4. Our reduced residue yJ(s} differs :f'rom.their reduced residue by the 

factor [2aj(s) + l]. 

Fig. l 

FIGURE CAPTIONS 

The Mandelstam diagram showing strips l through 6 which give rise 

to Regge asymptotic behavior; the remaining double spectral 

~egions contribute only to the background terms. 

,) 
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