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| ABSTRACT '

A 6rosszng symmetric Regge representation for the invariant scattering -

1

J':'amplitude is constructed which simultaneously exhibits all Regge poles in

representatibn,'and that the usual Mandelstam-Sommerfeld-Watson transform fif'
"vﬁiexists.' To achieVe explicit crossing symmetry it is found necessary to &

‘f.afr work with the Legendre function of the second kind. Except for neglecting

'a'the influence of possible angular momentum cuts, the representation is exact*_

T"fi for sll 5, t, and u, with no restriction on the location of the Regge poles.:}

As an 1llustration of how it might be used in practice, the Chew-Jones

”';5fﬂﬂformula for the amplitude of definite signature is derived in the strip

v ;
Toeu e A AT
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't?“lthe three channels. It is assumed that the amplitude satisfies the Mandelstamf"i;ﬁ
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{. INTRODUCTION

In this paper we’éorstruct=a croséing symmétr;c Regge representa-
tion for the invariant scattering amplitude with the assumpfion that
va(s,t,u) sgtisfiés the Mandelstem représentation, and that the amélitudes
of definite signature have an "6rdinary" Mandelstem-Sommerfeld-Watson
(MSW) representafion (see Section 2), Furthermore, for our approach to
“make - sense, we must require that the Regge poles recege into the left half
angular momentum plane above a certain energy. The final expressioq for
: vﬁhe amplitude will be exact to the extent that we have neglected any
a%gular momentum cuts, if they exist}l such neglect is often.justified.
Cohcgrning rhe.Gribov-Pomeranchuk singularities,_2 #e shall assume that f{
‘they are absent on the angular momentum sheet of interest; and thus will
not contribute direcily to the asymptotic behévibr. For certain cases

Mandelstam has shown this to be true.l

‘Khuri has proposed & crossing symmetric Regge representation

using power series expansions in s, t, and u, As a consequence of this

{
" technique, the "Regge terms" in his expression contain poles which have no

physical meaning;. Chew and Jones:S

on the other hand, choose to work with
', the Legendre funétion of the first kind; their expression, however, is
strictlj:corréct‘only if nome of the trajectories lies in the left half
anguiar momentum plane; bIn this paper we propose to construcf &8 represen=
tation for the amplitude with neither one of the Just-ﬁentionéd/drawbacks;
in return we muét_gsgume that A;(s;t) has a MSW representation, Ratherb
_than workiﬁgﬂ;ith P (z), we choose to wbrk with the Legendre function of

the second kind, Q, (z), since P (z) has the undesirable property of

: dlverging for Re 2 <=l, as [zl > @,

Vo
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‘Sinee the MSW transferm plays a dominant role in our_calcuiation,‘we
»shall devote the following section to its brief examination. In Section 3 we
'thea discuss the’analytic continuatien:of the "Regge term" to aibitrary complex‘
value;of:itaiargumenf,'and in Section 4 we finally construct the crossing
- symmeﬁric‘Regge representation. We:conclude with Section 5, where we use the
_ 5

representation to extend the Chew=-Jones form of the new strip approximation’ to

include trajectories lying ih the left half angular momentum plane; in particular

v.we_eha;l\recover their expression if we limit ourSelyes to those poles lying .

in the right half angular momentum plane.

2. THE MANDELSTAM-SOMMERFELD-WATSON (MSW)‘TRANSFORM
It is well known that the presence of exchange forces reqpires us:

to work with the amplitudes of definlte ‘signature; it is these. amplitudes, -

A (s,t), whlch (we assume) have a MSW representation.6’7.~
wLtie Q, ,(=z_) ;
R e i‘. t ______'9"'1 — )
A (s t) zf_L-im aa(2e + 1)a"(8,s) = —
3 - Q- (=z_) +
+ 2 8,(s) =4(s)-1" " B e | (2.1)
" Rea,>-L, cos ma,(s) .

J

where the summatien eXtendsAonly over trajectories of a given (:) signature,

V; Threughout this paper the subscript J will label a Regge traJectery of definite.

eignature, and we shall.suppress any (+) superscript on af(s) and Bi(s) if what'

v'is meant is clear from the context ‘in which the expression appears. Here g is

defxned in terms of s and t as follows: |
z, = 1+ t/2qs2 Y

2)‘

s = h(qs2 +m ,

. ,
and a (2,s) is given by the Froissart-Gribov formula,8

at(ﬂ,,s) = ?lr‘j -‘-1—%- Q21+ [A (st)+A(s,u )l R o (,2.2).
' N ts 295 _ 2qs » o o
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for all & for which the. integral converges, and is determined otherwise

| by analytic continuation, A, (s, t) and A (s,u) are the absorptive parts

of A(s,t,u)‘in the t and u channels respectively, with B,t, and u

related by the equation s + ¢t + u = Emiz, where m; are the external particle ,
i

. masses; u (or t) is obtained from u (or t) by making the substitution

2z - nzsi thus for the equal mass case u=1tandt=u The quantities =

aJth)c and 33(5)' appearing in (2.1) ere the Jth Regeg pole of (:)‘ |

signature, and the residue of (24 + l)a (2,8) at the jth Regge pole, .

. respectively. The last term in (2, l) is defined as follows:

ZGL -'é-

55(s,t) = Z (1) ez[ {z - 5—, s) - aiﬂ-z’- %—,vs)lQ NERE
~ A 1a 8

1 y I ) '
+= /. ,(-l) 222”8 - =, 8lQ (w2 ) , -
" L=N+1 \ 2! . 2_‘ g’ ®
SNeS<L<ales .3

Let us consider formula (2.1); wve notice that the second term seems to have

poles at the half integers of a(s), such signularities must, of course, be
{

. absent in the full amplitude, If howeverD we assume that the Mandelstanm

1 1

reflection symmetry holds [i.e., that a (-2 -, s) = g (2 -5 s) for

2
L integral], then one may readily verify, by letting L + « (thus.extending

the domain of analyticity in s of the second term in 2.1), that these

poles will cancel pairwise in the sum,. so.that the sum itself has no such

" spurious singularities. The symmetry is known to hold for a large class of

potential problems. In order to avoid these poles we shall assume henceforth
that the partial-wave'amplitudes satisfy the Mandelstam reflection.symmetry;
it then follows also that A(s,t) is always dominated at large t by Regge

poles.



_of’ s and 1t this means that we must choose - L s&fficiently large 50 that -

x'atructures. In fact, it follows from the definition of A (a,t), . -

;.A (s.u),

Camo
~ze

. T

i

One final remark should be added here; it is essential that the second ternm

P

' :in (2.1), hereafter referred to as the "Regge term," be an analytic functign//

-
“ +

all Regge trajectories will lie to the right of the Integration;éontour; in

particular we shall teke L to be 1nfinite.:

¥73. ANALYTIC CONTINUATION OF THE "REGGE TERM".

/

Expression (2.1), vith Q_- (-z ) defined on the conventional sheet

cut from z m ol to +l, and from z = +e to +1, does not equal A (s,t) for

.all s &nd t, as can be- seen by comparing their respective analytic

v ) A (s,t") o A (s,u') - . S
A-(s,t) = %-L as? '-:-,-—-1-_'—:%-'[1 du’ :, -’-u ’ " (3.1)
4 A 0 L | o

and from the dispersion relations for the absorptive parts A (s,t) and

, 1™ pgelst,t) 4 e ptu(t.u ) ‘
;; A{,‘(s,‘t) = ;-‘]; ds’ ——"—""'8. - ‘i";' du"u - (L = s - ) ,5.’

0 : Yo ’
(3.2)
' (5 ou) @ ptu(t' ’u) |
. A (S.u) = &'f as :"1 -5 "%r',[ S gy
. %0 - TR )

that A?(a,t) is an analytic function of s and t with the s plane

- cut from threshold to += and from I - u, -t  to -;, and with the 1t plane-

0 0

cut from t, to infinity along the positive axis. As usual, 80' 0 and

0

uo are the lowest:thresholds in the s,t and u channels respectively, and .

. : + _
Lusg+t+us in, The analytic structure of a (%,s),which enters into

the béckground integral, may be obtained from the FroissartGribov

¥
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definition, Eq. (2.2)} Writing b (2 s) = a (2 s)/(q )l, we find that

b (£ s) is an analytlc function of 8 except for a rlght-hand cut starting -

o° and two left-hand cuts extending to -« from By = to and from

L = to - U, respectively. It should be noticed that (q82)°£Q2(1;+ t/2q82)

has no discontlnulty for -t/h < g 2 < 0,

at s

Next we consider the "Regge term" of the MSW transform:
a.(s) dej(s)-l(”l-t/?qs ’-‘)

hd(s.td =y (s(a )9 R . (3.3)
v : cos wad(s) ,

- a,(s) ' :
Here we have written B (s) = yj(s)(q ) J where yj(s) is the residue
- | S : )
- of (24 ﬁ,l)b (E,s) at & = “J(S)’ o is the signature of the trajectory aJ(s).g

‘ Equation'(3,3) has'thevdesired threshold ‘cut in . s plus & number of other
cuts arising from the argument of the Legendre function and the féctor_(qszyg; 
comp&ring the right- and left-hand sides of (2.1), we conclude that the latter
cuts must be absent in the full amplltude. Fér 8 physxcal (i.e., 8)s ),
“we notlce that the cuts in t -of R (s, t) are consistent with those of

A (s,t): airlght-hand cut beglnnlng at t s_o, and a finite left-hand cut
extending from t = 0 to t = -hqs2; both cuts are éeeﬁ to mo#e with s . Sipce
the Legendre function contains_the‘entire t dependence, and(since,yj(s).and
a (s)‘are,assumed to have only the right-hana threshold cut, we conclude

from the foregoing analysis that the desired continuation of R (s, t) must

' leave the RH s and t cuts fixed., Consider the- expression. :

2yap e} L Lstmme [T_aw 2. [, )
(q )R, (-1 -3 - == fo Tt G ) g |1 T
o \ U : . : o k . QB_/'
+1 : o . _ I
1 dz* 2 0, ' A '
= : P -z R 0 R
+2f'.1 z'-'(n 3 ) (a2 5 z-'). » Reac > _(3 ).

¢ 2
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for Re « 3 0 it is defined by analytic continuation. Except .for.cuts,.the
RHS defines an analytic function of s and t. Now for s bhysical,
q

Y (-zs), since for s > s, (3.4) vecomes the dispersion

(qzs) = Qma-l

- relation for the conventional Legendre function of the second kind, [for
convenience we have multiplied both sides of the equation by the threshold

. fdctor'(gsz)q]. It is clear that (3,&) is the desired continuation; its
analytic structure in the t plane needs no comment. Concerning tﬁevcuts

~in s, ve notice that the first integral on the RHS has a cut extending

along the negative q82 axis. The discontinuity across this cut is given by

2
bl at! | l2 1 -hqs ' ) ' '
‘ dt ' o - i t : 2.a . dt t
Asjf ot (95 ) Q|1 * 5| = ~in(~q") TN =% Feael|” 2" TF)
0 . 2q - ~0 42q
s/ : . ' ’ K 8
-0 < q52 < 0 N : (3-5)

Examination of the second integral, however, shows that it has & similar cut
_ whose'discontinuity is the negative of (3.5) [this is easily verified .
2)(1

by using the relation‘(qs2 + 16)% = (g% - 16)% = 24(=q ) sin wal, 'In

s
i .
conclusion, we therefore find that (3.4) defines an analytic function of s
and t , with the t plane cut from -hqs2 tot =0, and from t = 0 to +=,
and with ‘che"qs2 plane cut from q52 = 0 to %mahd from q52,= -t/hvto infinity

in a radial direction. For future reference we state the formula for the

analytically continued "Regge term:"

| | San may (= g [ e
R, (s,t) = =8, (s) . Ao 1
J " | J n JO t' =t -uj-l \ ‘ 2qs2
L 1 f*l dz' N |
+ .8, (s) .- P (-2!) , o, 2 as) .
».J 2 cos nujj_l s1.2 (1 1 5 ~.-aj-l - 3
. . zqs o ‘
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T4 A CROSSING SYMMETRIC REGGE REPRESENTATION

Let ﬁs define the following set of variables:

‘zs = 14 1:/2%2 =l »u/2q82 s : | (k,la)
z, = 1+s/20° = -1-u/eg? N (S O
& = '1'+.s/equ’2 = -1 6/2¢° (kle)

X = (g 2+ m?) ., | | (k.1a)

“where x = s, t; or u; in the physical regions of the s, t, and u reactions,
Zos Zs end.zu are the cosines of the respective c.m. (center of mass)
scattering angles, and s, t, and u are the squares of the respective c.m.
energies. We now write down three alternative expressions for the amplltude
A(s,t,u) expressed in terms of the three possible pairs of independent
varinbleé: (s,zs), (t,zt), and (u,zﬁ); in fact, these expresions are the

. usual one-dimeneional dispersion relations for A(s,t,u), with 8, %, andvu

held fixed in turn:

§ o CAL(s,.t") ' A (s,u")
. . 1 e f ] .J; R u o ?
. : 0 . '
= FL M) e s ) S e
1 e A(st,t) 1°°v A (t,u') .
_A(t’z.t‘)" = -T?‘/; ds' S - S(t Z ) J\; du' u' - u(t )

0. 7Y

s F[A (tz)+£A“(t,_—z)] o | v-*v'(h.‘zb)
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: : ' | o | A (5' u) ' « VA (t",u) _ .
. ! z.-J-"o 1 ! }. 1 t ’
o o ”A(u,zu) 1rJf ds §' = s(u z, ) d{ dv t' - t(u,z )
o o 2 . u :
- ‘ | N
D NZACER RN R o (hze)
> . v

_Hené g, N, and A equal (+) depending on the signatnre, and §, =+ 1. Tne
expréssion below each of the dispersion relations is readilf_nbtalned
from the definition of A (x z ); we construct A “(x, 2, ) by attachlng-a (+)“
sxgn to the second integral in the dispersion relatlon for A(x z ), and by

' substituting -z for zx in the integrand. Thus, for example, . (4.2a) is seen

| - L
to follow_from (3.1). Let us make a partial-wave expansion of A (x,zx):

A:(x,zx) = j{i (22 + l)a:(g,x)pg(éx) . | x = s,t,u; , ‘: ‘(h.3)

where zx is g;ven in terms of s, t, and u by Eqs. (b1 a=d); performlng a
MSW transformatxon ‘on this series we obtain )
{
e i ~ ECINC S
Ac(x,zx) B - é%J[' as(22 + 1)a%(2,x) =l X

| 2. oo T cos L

ﬁ:a (x) ('zx)

jg: By(x) cns ma, I B | (k.4)

where Qigz)-is defined by (3.&), and where the summation extends only over
trajedtories of a given signat_ure° Next we consider the.Mandelstam repre=~
sentation for the amplitude A(s,t,u),lo

13(8

A(é,t,u) & A12(s’t) + A Ju) + A23(t?u)"., - ,_' (k.é)



T

" We leave it understood thét the necessary subtractions have been made, Our:

Al3(s,u) and'A23(t,u). In what follows we shall concentrate our attention

-9

where a typical terme=-say, Ala(s,t)--is~given by

. s‘(s' t') .
Alz(s,?t) = --jj ds'dt' »,r _s)r, R (4.6)

program is to extract explicitly that part of the amplitude which has Régge4

type asymptotic behaVipr.ll&ﬂAcccrdingly, we shall split the various

" integrals in (4.5) into parts whose domains of integration correspénd to

 the various double spectral regions shown in Fig. 1. .Thus, for example,

s, .t

™ o

App(s,t) “v"%.Jr

T Po %o R . 1t
sl . tl ’ _ o
+ [AlQ(S,t) + Al2(8.t)] , o ; (4.7)
where , '
: .v s Q “
5: 17 p (s',t")
1 1 [ st ’ .
Alz(s,t) = "g‘j J ds'dt! e —7 _(u.a)_
w8 t ;
(- _ 0 1 :
t

. with a similar expression for Alé(s,t); s, and t, are determined by the

1
inequa.lityl2

" Re ad(x) < - %-, for x> x; (4.9)

where x = s,%t, Now p t(s,t) is bounded in regions 1' and 2' of Fig. 1;

- furthermore, for s and t in region 2', p t(s t) vanishes faster than

-1/2

i x for large x(x = g or t), it therefore follows that the first two

'integrals in (4.7) need no subtractions; we shall refer to them as "background

integrals.” A simdlar decomposition to (4.7) can be made for the amplitudes

R R e

ir p. (s',t") (s',t! )
’ 1 ] st ._1_" t S‘t
ft e U] L) ,?f_,, [t A e IR



on the contributions to A(s,t,u) coming from‘strips 1 througﬂ 6 (see Fig. l),'

.sénce they "will lead to.Regge asymptotic behgvior. We proceéd.#s follows:

to evaluate the contributions to the amplitude coming from strips 1 and 2,

) ! we -compute tﬁe dbuble spectral fugctions pst(s,t) and o;u(s,u) from

expregsion_(h.2a),-ﬁhefe Ac(s,z;) is given by (h.h) with x = s, Simiiarl&,

io evaluate the contributions:from strips 3 and h,Awe compute the double

.. spectral functions pst(s,t) and;ptu(t‘u) ffom‘expression (4.2b), where

- AMNt, z, ) is given by (h L) with x = t.  Finally, ve obtain the contribution .
- from strips 5 and 6 u51ng expression (4.2¢). It should be.gotlced that
‘either A (x,zs) gz.A “(x,y = zx) contributes to‘theAdouble spectral function
in a given strip, but not both; this will become clearer in what follows:

'AAs an example we‘compuée the contributions to the full amplitude'éoming ]

from gtrips 1 and 2 6f Fig. 1:

s ' ' S : -
A%(s,t) = (s t) + A (s t) . ~ (ka20)

The doqbie spectral functionS'ost(s,t) and psu(s3u) may be computed from

expressionsi(h.éa) and (Lk.4), i.e., from

...oo+loo

A<sz)=-,§j mazu)a‘“’r““-zwacz“(z)]

. T cos WL
m-lw

' B, (s) [ R N oy
N e ) - R T P I W
2 cos T& =0l , =L : 2 J o -1 2
-y J J 2q_ 3 . : - J
o z uj(s) R “ (4,11)
" where we have written z explicitly in térms of s and t , and of s and

u, using relation (L,1a); Q (z) is defined by (3.4). Notice that the
’ ’ : 2 ! . I, : .
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‘vsummation index J runs over all Regge trajectories, and_gs = 41
depending on the siénature of the jth trajectory. From (4.11) we see

‘that p;£(s’t) gets a’contribution only from the éermsAinvolvingla;p_i(-zs),
p=24,a, qince‘alp_l(zs)»bas no right-hand cut in t for s > 86. |
Similarly, p;u(s,u) gets a contribution'onl& from the terms involviné
fqi_p;l(zs). It is sufficiep?ito evaluate‘expligitly; say Aié(s,t); the

~ contributions from the remaining strips may then be obtained in a'similar

: s
way. The first step consists in splitting Alé(s,t) into the following

inpegrals:

. 5.

1 .1 ‘

- Ala(s,t) 3—2—f
. " /s

5 (s - 5)(%"
{ w '31 to' J
where ‘
. R C L 10 N
ZR(& (s);s,t) =-—-';-/ j ds'dt? —=& , " (4.13)
y J T 8 to (s' = s)(t' = t) : ’

and where Bsts(s,£0 and Rsts(s,t) denote the contributions to the double
spectral function coming from the "background integral" and "Regge term"

of (4,11) respectively. The reason for the notation in. (4.,13) will soon

' become apparent. If-we assume that Bj(s) ¢ s-l/? for s + =, then it

follows from the definition of s

1» Eq. (k;9),_that the first three integrals

! .(°°'f°°" " . Rsts(s',t') ‘ | ] o
- -j ds'dt =) +Z R(uj(s');‘s,-t‘) , }(1».12.)
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“12a

of (4.12) need no subtractions; we therefore group them with the other

. "background terms." Expression (4,13) is the desired candidate which

exhibits Regge- asymptotic behavior and has only the right-hand threshold

cuts in s and t. Now R%(s,t) = - E: R “(s,t) where R (s,t) is given
3

by (3.6); for s >vso'only the_first integral on the RHS‘of4(3.6) has &

‘right;hand cut in t;vhenoe we obtain

S pe a2 (s* ) | ‘ g\ T
“It - -—,t (q ) . _a (s* )-l 1+ """“""2 5 . (h.lh)
0 | C Qe : ‘ ,
Next consider the expression -
‘ tan na, [ ' a (s) ;
~ . dt' . t' .
R(a,(s)38,t) = =y (s) —57 ji T (qs») = (s) ERER -l (4.15)

As we have pointed out before, the integrand of (k4.15) has no discontihuity'

: S : " .
in s for the argument of the :Legendre function between -1 and ==, Hence

'_(k.ls) defines an analytic function in the s plane cut from threshold to -

'+, and from s, = t. to ==, The discontinuity across the left-hand cut is

0. 0

. 'hqz : _ o
+iw(s)(-q 2)%an ma J: s at'(p_ _l(—l-t'/zq 2)/t* -t], with a = ey (s)
0

~ Thus (4,15) is seen to- be the contribution of ‘the right-hand cut in s to
the dispersion relation at fixed t for the function R(a (s) s,t). Hence

-we obtain .
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| | ' an mo (s) . | N ,.
Mayledis ) = 5y(a) """‘L_ft ToT Yo (6)-1 {1 -
*0 J 2q,

.‘ISO-tO _' . | ' a,(s') tan na, (s')
lf T (o)(eg 2 Y

s' -8 '§ : . 2n

x B _ , : .
where |
' a,(s)

B"(s) = (%2) J Y»‘.(S) .

The second term of (h 16) merely removes the left-hand cut in s of the'
first integral. The full contribdution to AS(s »t), Eq. (h 10), which

fexhibits Regge behavior, is given by E: [R(a (s);s t) + 5 R(u (s);s,u)le

e remind the reader that the first integral appearing on the RHS of (h 16)

s to‘be takep in the ordinary sense if it converges and is de#ermined
 _otherwise by analytic continuation.: ' |

- The method Qe have used to evaluete Ai;(s,t ) may be appiied,-of :
couree; to the remaining strips, Collecting the various background terms,
‘which we did not explicitlﬁf evaluate, we find thet we can bring:themitb

the form

(s',t')

el ¢ Pgt |

= — . ' J N R

B, ,(s,t) 3 f j ds'8t! T oyrer Ty
557%0 T

using a method due to Khuri.3 Here bst(s,t) is given as follows:



wlla

«l/2+iw =1/2+i»

b ‘(s,t)- = 1 duJ{ dv- C(v,u)s t ,
st o (21)2,[-1/2-1~ -1/2-#» . -

where C(v,u) is defined by

B ,(s,t) = Z clv,u)st”
UyV c
for s,t in the Mandelstam triangle. Since in practice C(v,u) cannot be
- obtained explicitly,'we shall omit giving its expression in terms of

" integrals over the double spectral functions, and shall limit ourselves

13

.- to a statement of the final expression for the amplitude:’

- : .. e ». 3 b_ (s’ t') ® fo Cp (8 ,ut)

. - L et st ’ 131yt Su !
Alsstyu) ,,2-,[., —/; b e ey j ] I L) CUEE)
IR 0 %0 .

" w0 w0 . b (t' u’)' .
1 attan? tu '
-+ ;-é'jt L dt tdu (t' " t)(u' - u)

0 0

(Rla,(8)33,t) + (o, (s)ia,u)]

..-+ .

+ .(R(aj(t);t,s) + EJR(aJ(t);t.u)]

i

1]

[R(aj(u);u,S) + EJR(aJ(u);u.f)] . | (4.17)
" Here Rﬂdj(s);s,tﬁ is given by (4.16), with similar expressions for the other o

five "Regge functions." The "background terms" venish at least as fast as

x';/a_for large x (x = s,t, or u),
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. With the assumption that BJ(x)’i,x'l/2 and that Re a,(x) < =1/2 for

X * ®, onemay readily verify that for 1erge t and fixed s

A(s t,u) E:[R (s,t) + ¢ Rj(s,u)] + r(s,t,u) , (h.l8)>

where Rd(s't) is given vy (3.6) and where r(s,t,u) ~th

" relation to (3.6) holds for.Rj(s,u)]a Furthermore, with the help of the

re}ation‘r(%-+ z)P(%:« zl/P(z)F(l - z) = tan 7z one may verify that

Rd(e,t) - -ij(s)PaJ(s)(-l~t/2q;2)/éin ﬂaJ(sQ for large t , if Re aj(s) >

‘ -’%u Ve therefore find that A(s,t,u) does indeed have the Regge asymptotic
| behavior:given by the usual Sommerfeld-Watson transform, With the' |

'”,‘assumpﬁion of the &endelstam_refiectiop symmetry, there presumably exists4
"a furtherlcéncellatiénebetween the background terms and Regge terms, so.that

the amplitude is always dominated at large t and any s by the sum in

(h 18)

. 5. DISQUSSION OF THE RESULTS
i .

Expreseion (4,17) is the desired.representation for the invariant
.amplitude with no subtractions needed in the background integrels, and

with all Regge poles displayed in an explicit crosszng symmetric way. To

" the extent that -we ignored the p0551b111ty of cuts in the angular momentum
plane, it is an exact expression, valid for all S, t and u, and with no
restrictions on the location of the Regge poles, The three background
iotegrals and the collection of six Regge terms each.separately statisfies
‘the Mandelstam representation, furthermore, our assumptlon that the residue |

-1/2

B(x) vanishes faster than x ’or large x(x = s,t,u), garantees the usual

Y Regge-type asymptotic behavior of (h 17) in all three channel variables.

y N < =1/2, [a.similar

O ——

" peren, —
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From thé practical standpoint our expression seems to suffer from a disease, -

for the individual Regge functions haje poles at the half integer; of aJ(Q);
aslwe have pointed out iﬁ~S§ction 1, these poleé are ébsent in the sum.

What this meaﬁs in practice is that we must include the necessary Regge
poles lying in the left half angular momentum plane to remove these spufious
-singularities., - We wish to point out ‘that the above difficulty may often be
av§idéd. For reasons of comparis§n we make thé following substitution in

" the first integral of (4,16):
270 S .n 2 2,a 2 ;
(ag ).Q_a_l(l +t/2q.7) = (=g "), ,{-1- t/2¢.7)

 although we had found it necessary to use Ql(z)‘instead of Pl(z) in order

" to arrive at (L.17), we‘nov reintroduce Pl(z) with the help of the relation

Qﬁz_l(z)'=-m ctn nﬁ'%éz) + Qz(z) .

A tjpical Regge term, say R(uj(s);s,t) then.takes the fornm

. ’ _. . P . ' , . e ! o

e (eYea T 2% [T atr LAY
R(qd(s)is.t) = E‘YJ(S)(-QS )_ -y N e — Paj(s) -)= —3

0 _?qs

+R’(aJ(s);’s,t.)' . (5.1)

Except for the switch in the signs of qsz.and 6f the argument of the Legendre

- funection, which was not necessary but convenient, the integral in (5.1) is
essentially the conventional Regge term; furthermore we notice that this -

iniegral with t . replaced by tl is identical to the Chew-Jones definition

0
of the Regge term, Eq. II-3 of reference SPJ‘The quantity RY(aJ(S);s,t),

‘which now contains the undesirable half integral poles, plays the role of

a background term as long‘aé"Re ad(s) > - %-, (R' < fiZZE for large t);
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~ this is often the domain of interest. Formula (5.1) also sho@s-yhy (4.,17)
is valid regafdless of the location of the Regge poles; the presence of
the term R'(ad(a);é,t), which competes with the first integral for

wOlml

Re o, (s)‘s ~%£ (both terms behave like t for large t), produces the

necessary cancellation to 1naure the correct asymptotic behavior for all 8.

"If in a calculation one wishes to go- beyond the region . Re u (s) > - % .

then one will have to deal with the half integral poles. ,In general these
will be few,. The explicit crossing symmetry of (4.17) allows us to keep

B an easy watch on the approxxmations being made in certainccalculations. As
an illustration ‘we shall use expression (h 17) to derive the Chew—Jones

formula for A (s t) in the strip approximation [Egs. (III T) and (111.9)

of Ref. sj A (s t) had been defined by Eq. (3.1); if we denote by A’ (s t)
and AR (s t) the contributions to this amplitude comlng from the background

integrals and Regge terms of (h 17), respectlvely, ‘then

| | bsti(SSﬂ) o A 3 _‘.
AB ( ,t) = «—-jf[ 48'at" Ty rTRT 0. - (5.2)

. where -"

boy(sst) £ b (s,m) for s>
bsti(e,t)'=
| ;: b, (t,u) ¥ btu‘ﬁnE) for s<0_,
aud‘wbere ‘ | ' |
s +'E_+ u = ﬁma

' fﬂere g and £_are ooﬁained-from u ahd u‘respectively by.letﬁiné zs"*f--_zs in

‘,definitiouﬂ (4,1a); for the equal mass case u = t, and‘t = e Formula (5.2)
is readlly obtalned by usxng the dispersion relatlons for A (s,t) and =

A (s,u)o-i e., Eq. (3 2)~-and the definition of A (s t). To obtain
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Ay (s,t) we compute the contributions to the absorptive parts, At(s't)<
and Au(s,uj, coming from the six Regge functions of (L.,17); for 5 ) 5o

we obtain

’ 3 . ] '

.+ Z; €JRt€aJ(t);t.u) + i: EJRf(aJ(u);u.t) s  _: | (5-3)

' where u and t are related by s + t +u = km®, The first two terns of
(5.3), when substituted into (3.1), clearly yield
RS |
) Rlay(s)ingt) +) Rla (8)it,8)
d ‘ : J

This follows from the analytic structure of R(aj(x);x,y). ‘The contribution
of the third term in (5.3) to A" (s,t) may be rewritten in the following

' manner:

=1 (21 g e .
_;jt Tt gR (g (81)380 00 = ) EgRleg(e)ita)
P | |
; i- £,R. (u (t Yit? u)
TT ' J 9
J uou - .

‘where s + u' + t' = hng'we have made a change_of.variables in the last

integral. Hence we obtain
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- o ) A(s,t') o ' N -
%’-j ag! t, = Z R(ad(s);s,t) + ZJ [R(aj(t);t’,'s)
e 3 - |

. 7 -t
0 ' c J
g e 1 (7 gt ' o
* Ejg(ag(to;t,u)i+azta ;-J; ;7-—€ JR (a (u')ju’,t")

J 0

| : y -J; - u-—-d-}l—'-- tYeqt L “ ’ .
s "-/f - u-EJRu(qj(t Jyttut) X v‘_(s.h)
d “u .
. 0 ' ‘
The second 1ntegral in (3. l) may be evaluated’ in a similar way. Hence

. A (s,t) becomes

. . f‘ | o -
A (5,8) = Ay (s,t) +.-§E: [R(aj(s);s,t) :_ij(as(s);s,g)]

+%:mmﬁwaﬁf+5m%unmwu§:muﬁym@>
: |

‘*53“(“Nt”t 7‘ f u",f e ENCHCORIRY

g o

Z f dt &-t' - t.; . 1 J JR (G (u '.t') 'nv (SDS)

So far we have made no ;pproximations. If we neglect the background contris-
bution to Aé(s,t)hai.e.; the quantity ABév(s,t)--and if we make the ;ﬁb- N ;3
sitution.ﬁo > ul and t, * t, in the limits of integration, then we obtain :. .

an approximate expression for A:(s,t) which is seen to be identical in .

form wiﬁﬂ the Chgw—ﬁones fofﬁula, Eqs., (III.7) and (III.9) of Ref. 5;

S,

the two expressionsrdiffér only in the definition of the Regge functions.
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As we have pointed out before, Chew and Jones define R(a (s);s,t) to be

1

of the previous discussion of this expression, we see that there is no

equal to the integral appearing in (5.1) with tg replaced by t In view

essential difference between (5.5) and the Chea-Jones formula if we worry
only about those trajectories which stay in.the'right haif angular momentam
plaae; however,iwe point out once more, that at least in'pringipie,.oar .
defiﬁition of the Regge‘functian allows us to include tha effectsvof_gii
Regge poles; but until we ﬁave more knowledgé about the regian Re a < -i/2;'

_this‘ia of purely academic interest,
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For simplicity we shall omit throughout:this paper: any bound~state pole
terms in the Mandelstam representation and in any other dispersion

relation, for these terms do not contribute to the final answer. The

bound states will appear'as poleé in the Legendre function of the

second kind,

The  general spirit of the calculation is thaﬁ of references 3 and 5.

plus the assumptidn‘that B‘j(x)<‘x"l/2 for

1
large x, our background terms will vanish faster than;y-l/? for large’

; y,vwhere'y stands for either variable of its argument.

-



22«

.13. By ad(x) we mean the Jth trajectory in the channel.ﬁhere x iS‘ihe

- square of the c.m. energy. Each one of the summations extends ovef
A;l Regge trajectories in a given channel. |

14, Our reduced residue Yj(s) differs from their reduced residue by the

‘_factor,[zaa(s) + lj.

FIGURE CAPTIONS

Fig. 1 '~ The Mandelstam diagram showing strips 1 through 6 which give rise
' to Regge asymptotic behavior; the remaining double spectral

:egiohs contribute only to the background terms.
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or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in

this report.

As used in the -above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
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