
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Modeling the Relational Shift in Melodic Processing of Young Children

Permalink
https://escholarship.org/uc/item/0jz1w3ks

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 35(35)

ISSN
1069-7977

Authors
Lim, Ahnate
Doumas, Leonidas
Sinnett, Scott

Publication Date
2013
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0jz1w3ks
https://escholarship.org
http://www.cdlib.org/


 

 

Modeling the Relational Shift in Melodic Processing of Young Children 
 

Ahnate Lim (ahnate@hawaii.edu) 
Department of Psychology, University of Hawaii at Manoa 

2530 Dole Street, Honolulu, HI 96822 USA 
 

Leonidas A. A. Doumas (leonidas@hawaii.edu) 
Department of Psychology, University of Hawaii at Manoa 

2530 Dole Street, Honolulu, HI 96822 USA 
 

Scott Sinnett (ssinnett@hawaii.edu) 
Department of Psychology, University of Hawaii at Manoa 

2530 Dole Street, Honolulu, HI 96822 USA 
 
 

Abstract 

As a ubiquitous trend in the cognitive development of 
children, the ‘relational shift’ accounts for a change in 
preference for absolute percepts towards a preference for 
relational percepts, and is observed across a wide variety of 
domains. Extensive evidence indicates that this prepotency 
for relational processing is also observed in how children 
process melodies. When recalling melodies, younger children 
typically recall more absolute pitch properties than older 
children, while the exact opposite occurs in older children. 
Using DORA (Discovery Of Relations by Analogy; Doumas 
et al., 2008), a domain-general symbolic-connectionist model 
of relation learning, we simulated the relational shift in 
melodic perception of children age 3-6 years based on an 
experiment by Sergeant and Roche (1973). DORA’s 
performance matched the children’s well, suggesting common 
developmental and perceptual mechanisms between the 
relational shift in melodic processing and the shift seen across 
other domains. 

Keywords: Melodic perception; relation learning; 
development; relational shift; absolute pitch; computational 
modeling; DORA. 

Introduction 
One of the fundamental cross-domain trends in human 
development is characterized by a qualitative 
transformation, or shift, in how children process 
information. Evidence from developmental psychology 
overwhelmingly indicates that while children initially attend 
to, recall, and reason about absolute perceptual properties, 
around the age of 4-6 they begin to rely on structured 
relational properties (Allport, 1924; Gentner & Rattermann, 
1991; Halford, 2005; Pollack, 1969; Vernon, 1940). This 
shift has been observed in areas such as language (Gentner, 
1988), spatial tasks (Case & Khanna, 1981; DeLoache, 
Sugarman, & Brown, 1985), number comprehension 
(Gelman & Gallistel, 1978; Michie, 1985), and visual shape 
perception (Abecassis, Sera, Yonas, & Schwade, 2001), to 
name but a few. This phenomenon has been termed the 
‘relational shift,’ as the characteristic trend is towards 
greater reliance on relational attributes as children mature. 

Consistent with the developmental trajectory for the 
relational shift in other domains, in the domain of music 

children also develop from initially processing more 
absolute aspects of melodies to processing more relational 
aspects as they grow older. In an especially revealing study, 
Sergeant and Roche (1973) trained three groups of children 
from the age of three to six to reproduce melodies from 
invariant recordings. When the children were required to 
recall the melodies one week later, the younger group 
reproduced the absolute pitches more accurately than the 
older group, while the older group reproduced the relational 
aspects (melodic shape, interval sizes, and tonality) more 
accurately than the younger group. This perceptual shift and 
exchange in proficiency levels between the recall of 
absolute and relational musical aspects in younger and older 
children has been replicated in many other studies as well 
(Saffran, 2003; Saffran & Griepentrog, 2001; Sergeant, 
1969; Sergeant & Roche, 1973; Stalinski & Schellenberg, 
2010; Takeuchi & Hulse, 1993). 

Given the prevalence of the relational shift across 
multiple domains, it is reasonable to assert that any 
comprehensive theory or model of cognitive development 
must necessarily account for this phenomenon. One of the 
models of higher cognition that has successfully been used 
to account for the relational shift in development is DORA 
(Discovery Of Relations by Analogy; Doumas, Hummel, & 
Sandhofer, 2008). DORA has been used to simulate the 
relational shift in visual shape perception (Doumas & 
Hummel, 2010), analogical problems (Doumas, Morrison, 
& Richland, 2009; Morrison, Doumas, & Richland, 2011), 
categorical reasoning, spatial reasoning, general relational 
reasoning, and progressive alignment (Doumas et al., 2008). 

In this study, we aim to understand how the relational 
shift in melodic processing occurs in children. We 
hypothesize that the same processes that cause the relational 
shift in other domains are also responsible for the shift in 
the domain of melodic processing. Specifically, we propose 
that as children learn about the world, they increasing rely 
on relational invariants in the environment. This reliance is 
itself a direct result of the cognitive processes that allow for 
relational invariants to be detected in the first place. That is, 
equipped with a cognitive architecture that allows for 
intersection discovery of shared properties, the natural trend 
over time (i.e., repeated exposure) is to preferentially 
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perceive the world in terms of these regularly occurring 
relational invariants (Doumas & Hummel, 2010; Doumas et 
al., 2008). 

This raises the question as to how relational invariants are 
discovered in the first place. Our proposal for this 
mechanism of discovery is instantiated in DORA’s 
symbolic-connectionist architecture, and has been used to 
account for how melodic perception occurs in infants (Lim, 
Doumas, & Sinnett, 2012). Consequently, providing an 
account for the relational shift in melodic processing may 
also help to shed light on other issues. For instance, the 
argument could be made against the existence of a musical 
relational shift by citing evidence of infants’ ability to detect 
relational properties from melodies (Plantinga & Trainor, 
2005; Stalinski & Schellenberg, 2012; Trehub, Bull, & 
Thorpe, 1984). That is, given that the relational shift 
indicates that younger children preferentially process 
melodies based on absolute percepts (i.e., absolute pitch), 
would evidence of infants ability to process melodies based 
on relative percepts (i.e., relative pitch) not be 
contradictory? Since DORA has been used to simulate the 
latter phenomenon (Lim et al., 2012), by using DORA to 
simulate the former phenomenon (i.e., the relational shift in 
musical processing), we hope to provide an answer to this 
question as well.1 

The LISA/DORA models 
LISA (Learning and Inference with Schemas and Analogies; 
Hummel & Holyoak, 1997, 2003) is a symbolic-
connectionist model of analogy and relational reasoning. 
DORA is an extension of LISA that learns structured (i.e., 
symbolic) representations of relations from unstructured 
inputs. That is, DORA provides an account of how the 
structured relational representations LISA uses to perform 
relational reasoning can be learned from examples. At 
present, DORA accounts for over 30 phenomena from the 
literature on relational learning, and cognitive development, 
and as it learns representations of relations it develops into 
LISA and can simulate the additional 40+ phenomena in 
relational thinking for which LISA accounts for (e.g., 
Doumas et al., 2008). In the following, we provide a very 
brief description of the LISA/DORA models (for full 
details, see Hummel & Holyoak, 1997, 2003; Doumas et al., 
2008) 
 
LISAese Representations  In LISA (and DORA after it has 
gone through learning), relational structures are represented 
by a hierarchy of distributed and localist codes (see Figure 
1). At the bottom, “semantic” units (small circles in Figure 
1) represent the features of objects and roles in a distributed 
fashion. At the next level, these distributed representations 
are connected to localist units (POs) representing individual 

                                                             
1 Due to spatial constraints, we provide only summary 

information on melodic and relational processing here, for more 
background on melodic processing, including details about 
absolute and relative pitch and the other features used within these 
simulations, see Lim et al. (2012). 

predicates (or roles) and objects (triangles and larger circles 
in Figure 1). Localist role-binding units (RBs; rectangles in 
Figure 1) link object and role units into specific role-filler 
bindings. At the top of the hierarchy, localist P units (ovals 
in Figure 1) link RBs into whole relational propositions.  
 

 
 

Figure 1: LISA/DORA representation of the proposition, 
chase (dog, cat). 

 
Relational structures (or propositions) are divided into 

two mutually exclusive sets: a driver and recipient(s). In 
LISA/DORA, the sequence of firing events is controlled by 
the driver. Specifically, one (or at most three) proposition(s) 
in the driver become(s) active (i.e., enter working memory). 
When a proposition enters working memory, role-filler 
bindings must be represented dynamically on the units that 
maintain role-filler independence (i.e., POs and semantic 
units) to allow for reusability of units and preservation of 
similarity across different bindings (Hummel & Holyoak, 
1997). In LISA, binding information is carried by synchrony 
of firing (with roles firing simultaneously with their fillers). 
In DORA, binding information is carried by systematic 
asynchrony of firing, with bound role-filler pairs firing in 
direct sequence (for details, see Doumas et al., 2008).2 

Relational Learning In broadest strokes, DORA learns 
structured representations by comparing objects to isolate 
their shared properties and to represent these shared 
properties as explicit structures. More specifically, DORA 
starts with simple feature-vector representations of objects 
(i.e., a node connected to set of features describing that 
object; large and small circles from Figure 1). When DORA 
compares one object to another, corresponding elements 
(i.e., shared features) of the two representations fire 
simultaneously (Figure 2a). Any semantic features common 
to both objects receive twice as much input and thus become 
roughly twice as active as features connected to one but not 
the other (Figure 2b). By recruiting a new PO unit and 
learning connections between that unit and active semantics 
via Hebbian learning (wherein the strength of connections is 
a function of the units’ activation), DORA learns stronger 
connections between the new PO unit and more active 

                                                             
2 Asynchrony-based binding allows role and filler to be coded 

by the same pool of semantic units, which allows DORA to learn 
representations of relations from representations of objects 
(Doumas et al., 2008). 
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semantic units (Figure 2c). The new PO thus becomes an 
explicit representation of the featural overlap of the 
compared objects and can act as a single place predicate, 
taking other object representations as arguments to form 
role-filler pairs (Figure 2d; see also Doumas et al., 2008). 
Applied iteratively, this process allows DORA to learn 
structured explicit single-place predicate representations of 
any properties that compared objects may share. 
Comparison also allows DORA to learn representations of 
multi-place relations by linking sets of constituent role-filler 
pairs into relational structures (i.e., to learn the chases 
relation by linking together representations of the roles 
chaser and chased; see Doumas et al., 2008 for details). 
Moreover, when DORA has learned representations of 
whole relational structures, this intersection discovery 
algorithm allows it to learn schemas by comparing sets of 
structural relations to one another. For example, if after 
DORA has learned about a dog chasing a cat (chase (dog, 
cat)) and a boy chasing a girl (chase (boy, girl)), it can 
compare these and learn a representation coding for the 
intersection of the two chase relations and their arguments, 
or chase (generic-object1, generic-object2). 
 

 
 

Figure 2: The process through which DORA learns a single-
place predicate representation of “higher” from two musical 

notes. 
 
Mapping For the purpose of analogical mapping, 
LISA/DORA learns mapping connections between units 
coactive of the same type in the driver and recipient (e.g., 
between PO units in the driver and PO units in the 
recipient). These connections grow whenever corresponding 
units in the driver and recipient are active simultaneously.  
They permit LISA to learn the correspondences between 
matching structures in separate analogs. They also permit 
correspondences learned early in mapping to influence the 
correspondences learned later. 

Methods 
In this section we describe the Sergeant and Roche (1973) 
study, followed by the details and outcomes of DORA’s 
simulations. 

Task Description 
In Sergeant and Roche’s (1973) cross-sectional study, 
children were divided into three groups: one group with 
children between 3 to 4 years, one with children of 5 years, 
and one with children of 6 years. All groups received the 
same training and testing procedures. They were trained to 
vocally reproduce three melodies from an invariant 
recording in six training sessions spread out over three 
weeks. All children were given the exact same melodies at 
each training session. Each melody lasted for 8 or 16 bars. 

One week after training, the children were then asked to 
vocally recall the melodies, which were tape recorded and 
scored by two independent judges on perceptual dimension 
(pitch accuracy), and conceptual dimensions (melodic 
shape, intervals, and tonality). 

Simulations 
In the first simulation, we simulated the development of 
representations of individual relations that could define 
auditory sequence from experience with the world. In the 
second simulation, we used the representations DORA 
learned during the first simulation to simulate the behavior 
of Sergeant and Roche’s (1973) subjects. Crucially, these 
two simulations were interleaved, which allowed us to test  
Simulation Part 1 In the first simulation we tested DORA’s 
ability to learn relational concepts from examples. This 
simulation proceeded like several simulations of relation 
learning from our previous work (e.g., Doumas & Hummel, 
2005, 2010; Doumas et al., 2008; Doumas et al., 2009). We 
started DORA with representations of 100 objects 
(represented as PO units) attached to random sets of features 
(chosen from a pool of 100). We then defined 4 relations 
(those that could be used to describe a melodic sequence, 
e.g., contour (higher/lower), and interval (long-interval, 
short-interval, medium-interval)). 

Each relation transformation consisted of two roles each 
with three semantic features (e.g., for the higher relation, 
both the roles above and below were each defined by three 
specific semantic units). Each of the 100 objects was 
attached to the features of between 2 and 4 relational roles 
chosen at random such that if an object was part of a 
relation, it was attached to the features of one of the roles, 
chosen at random. For example, object1 might be attached 
to the features for above (one role of the relation higher) and 
start-long-interval (the agent role of the relation long-
interval). We presented DORA with sets of objects selected 
at random, and allowed it to compare the objects and learn 
from the results (as per DORA’s relation learning 
algorithm). As DORA learned new representations it would 
also use these representations to make subsequent 
comparisons. For instance, if DORA learned an explicit 

(a)

note2

note1

(b)

"higher1"

"higher2"

note2

note1

(d)

higher(note2)

(c)

"higher"
note2

note1

note2

note1

"higher"
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representation of the property above by comparing two 
objects both attached to the features of above, it could use 
this new representation for future comparisons. On each trial 
we selected between 2 and 6 representations and let DORA 
compare them and learn from the results (i.e., perform 
predication, and relation learning routines). We assume that 
this act of inspection and comparison is similar to what 
happens when children encounter objects in the world—
where objects are part of several relations—and learns from 
these experiences. 

We ran 600 learning trials and measured the quality of the 
representations DORA had learned after each 100 trials. 
Quality was calculated as the mean of connection weights to 
relevant features (i.e., those defining a specific 
transformation or role of a transformation) divided by the 
mean of all other connection weights + 1 (1 was added to 
the mean of all other connection weights to normalize the 
quality measure to between 0 and 1). A higher quality 
denoted stronger connections to the semantics defining a 
specific transformation relative to all other connections (i.e., 
a more pristine representation of the transformation). Figure 
3 indicates the quality of the representations DORA learned 
at each level of iteration. Early in learning, DORA’s 
representations are ‘dirty’ in that it’s representations of 
relations and their roles are also highly connected to 
extraneous features specific to the instances from which the 
representations are learned. These representations are 
consequently very context dependent. As learning 
progresses however, DORA’s representations become 
progressively more refined. By the end of learning, DORA 
has learned representations of relations and their roles that 
are context-independent, connected strongly to only the 
features specific to the particular relational roles defining 
the relation and very weakly connected to context features. 
Thus, in time DORA can use these representations to reason 
about instances regardless of context, like older children and 
adults (see, e.g., Doumas et al., 2008).  

For the analysis herein, the ‘quality’ of DORA’s 
representations (how relationally clean or context dependent 
they are) is considered an analogous measurement to the 
vocal reproductions of the children in Sergeant and Roche’s 
(1973) study. That is, more pristine representations in 
DORA would be analogous to children reproducing 
melodies with more conceptual (relational) dimensions, 
whereas dirty presentations in DORA would be analogous 
to children reproducing melodies with more perceptual 
(absolute) dimensions. 

 
Simulation Part 2 During the second simulation we 
simulated Sergeant and Roche’s (1973) training and test 
conditions. We created a 20 note melody represented as 20 
PO units attached to features indicating absolute frequency 
(between f1 and f24), the note’s place in the sequence (1-
20), two semantics describing whether the note is higher 
(above) or lower (below) the previous note in the sequence, 
two semantics describing the relative interval from the 
previous note (high-, medium-, low-interval), a semantic 

describing the absolute interval from the previous note, and 
four random features (from a pool of 100). The features 
represent the properties that infants, children, and adults are 
capable of representing about melody (Thorpe & Trehub, 
1989; Trehub et al., 1984). Importantly, all of the frequency 
direction (higher/lower) and frequency interval, both 
absolute and relative, can be generated from raw frequency 
values (i.e. sensory input) using a simple comparator circuit 
described in Doumas et al. (2008) and Hummel and 
Biederman (1992).  

 

  
Figure 3: The quality of DORA’s representations as a 

function of learning iterations. 
 

During training, we presented DORA with the note 
sequence and allowed it to fire each two note sequence in 
the melody (e.g., notes 1 and 2, then notes 2 and 3). During 
each two note firing sequence DORA attempted to retrieve 
relations from LTM describing the sequence (these 
representations were the same as those DORA had learned 
during part one of the simulation; see below for details). If 
DORA successfully retrieved a relation from LTM, DORA 
predicated the respective roles of the relation about the notes 
in the sequence. For example, if a two note sequence caused 
DORA to recall the higher (x, y) relation from LTM 
(consisting of the roles above(x) and below(y)), DORA 
would link the above PO to the note that was higher with an 
RB unit, and the below PO to the note that was lower. This 
process reflects our assumption that children and adults 
attempt to understand melodies using representations at their 
disposal. After DORA has attempted to classify the 2 note 
sequences in the melody, DORA stores the resulting 
representation in LTM. 

Importantly, to simulate 4, 5, and 6-year olds, we used 
representations that DORA had learned during the first part 
of the simulation in DORA’s LTM. Specifically, to simulate 
the representations of 4 year olds, we used the 
representations that DORA had learned after 200 training 
iterations, to simulate 5 year olds we used the 
representations DORA had learned after 400 iterations, and 
to simulate 6 year-olds we used the representations DORA 
had learned after 600 iterations. At each age we also 
included distractor predicates describing extraneous 
properties (e.g., loudness, timbre, etc.) in LTM. For every 
relevant relation in DORA’s LTM (i.e., relations describing 
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higher and relative interval) we also included 2 irrelevant 
relations. Our addition of distractor relations in LTM 
instantiates our assumption that children learn about 
multiple relations at the same time during development.  

We trained DORA in this manner six times (reflecting the 
six training sessions from the Sergeant & Roche (1973) 
study). After the second training session, and after each 
subsequent training session, DORA compared the 
representation it had learned during training to the 
representation it had learned during the previous training 
session and learned a new representation (or a schema) 
using it’s learning algorithm.  

To simulate the testing phase from Sergeant and Roche’s 
(1973) study, we examined the representation of the melody 
DORA has learned after the six training sessions. Four-year-
old DORA’s relational representations were quite dirty and 
tied to the semantics of the objects from which they had 
been learned. DORA, consequently, had difficulty retrieving 
these representations from memory given the melody as a 
context cue. As a result, the representation of the melody 
that DORA stores is essentially the melody itself, without 
much (if any) explicit relational information predicated 
about it. As DORA get’s older (i.e., has its LTM populated 
with representations produces by more extensive learning 
during simulation part 1), it becomes more likely to retrieve 
and thus predicate relations about the two note sequences in 
the melody during training. More precisely, 4-year old 
DORA retrieved predicates about only 18% of the 2 note 
sequences it thought about, 5 year-old DORA retrieved 
predicates about 63% of the two note sequences it thought 
about, and 6 year-old DORA about 91% of the instances it 
though about. Importantly, the predicates in DORA’s LTM 
that it could retrieve varied in their refinement across ages 
(as described above). We used the representations that 
DORA had learned after the six training session as a proxy 
for what it would recall as melody production during the test 
session of the Sergeant and Roche study. We evaluated 
these final representations for the presence of relational 
properties with the assumption that increases in relational 
properties indicate increased reliance and accuracy on the 
conceptual dimensions of melodic shape and relative 
interval. Just as the children in Sergeant and Roche (1973), 
early in development DORA’s ratio of relational/categorical 
features to absolute features was low, but as DORA learned 
the ratio increased strongly. At age 4, the ratio value was 
0.85. This value increased to 1.1 at age 5 and 1.6 at age 6. 
This progression very closely mirrors the change in reliance 
on absolute to relational properties observed in children. 

Discussion 
The purpose of this study was to 1) test our hypothesis that a 
common mechanism could potentially underly both the 
relational shift in melodic perception and the relational shift 
observed in other domains, and to 2) instantiate this 
mechanism within a computational model. To this end, our 
hypotheses were supported by DORA’s simulations, which 
matched the behavioral data from children in Sergeant and 

Roche’s (1973) study. To our awareness this is the first time 
the relational shift in melodic processing has been modeled 
using 1) a neurally plausible architecture, 2) a domain-
general model of cognition, and 3) the first run of 
simulations without any parameter fittings. 

Consequently, DORA’s success in simulating both the 
relational shift in children’s melodic processing in this 
study, and in simulating infants’ ability to detect relational 
properties of melodies (Lim et al., 2012), provides insights 
into a misunderstood (what we view as nonexistent) 
contradiction. Specifically, the argument has been made 
(e.g., Stalinski & Schellenberg, 2012) that the evidence for a 
relational shift in melodic processing may be contradicted 
by findings that infants can process relational properties of 
melodies (for a review, see Trehub, 2001). We argue that 
these two findings are not contradictory, as evidence of a 
relational shift does not indicate that younger children 
cannot process relations, only that they show a preference 
for absolute pitch percepts. As they grow older this 
preference shifts towards relational melodic features 
(Takeuchi & Hulse, 1993). Our theory posits that detection 
of relational features in melodies by infants (and humans of 
all ages for that matter) is facilitated by the temporal nature 
of melodies (each note in the melody sequentially occurs 
over time), and the corresponding temporality through 
which our brain encodes and recalls each note (i.e., binding 
through asynchrony).3 

We propose that cognitive systems (e.g., DORA) that use 
temporality as a binding mechanism between the individual 
units (notes) of a perceptual group (melodies), is inherently 
equipped to detect relational invariants within the group 
(Lim et al., 2012). Through development, learning (i.e., 
repeated exposure to the environment) occurs and the 
system inevitably detects more relational invariants, 
develops cleaner representations that are closer to these 
invariants (Simulation 1), and learns that this type of 
information is valuable and predictive. As a result, the 
system comes to prefer these types of percepts, as observed 
in the relational shift and predicted by DORA. 

It has been proposed that the ability to detect relational 
properties in melodies may have a common ontogenetic 
origin as the ability to process vocal speech patterns, where 
our ability to detect relational melodic features may be a by 
product of our ability to detect invariants in speech 
(Terhardt, 1974). Additionally, our model lends support to 
the notion that absolute (i.e., perfect) pitch—the ability to 
recount specific note names or frequencies of auditory 
stimuli—may be a common ability in all humans that is 
robust in early childhood and subsequently diminishes 
through development, specifically as the relational shift 
occurs (Sergeant, 1969; for a review on aboslute pitch, see 
Takeuchi & Hulse, 1993). We speculate that the high 
correlation of musical training during childhood with 

                                                             
3 Although we propose for time as a binding mechanism, we 

agnostically acknowledge that other mechanisms could serve a 
similar function. For a detailed algorithmic level account of 
DORA’s mechanisms, see Doumas et al., 2008. 
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absolute pitch abilities (that subsequently endures into 
adulthood) may be due to increased exposure to pitch 
relevant stimuli as young children, and hope to examine 
such questions in future research. 
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