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ABSTRACT OF THE DISSERTATION 

 

Investigating Predictive Disease Model Transportability through 

 Cohort Simulation and Causal Analysis 

 

by 

 

Kyle Wilson Singleton 

Doctor of Philosophy in Biomedical Engineering 

University of California, Los Angeles, 2016 

Professor Alex Anh-Tuan Bui, Chair 

 

A tenet of precision medicine is the ability to predict a clinical response or outcome for a given 

individual. The creation of predictive disease models as a part of this evidence-based process has 

increased in recent years as electronic medical data and machine learning techniques have grown 

in popularity. A number of methods are available for testing internal validity when developing 

models. However, the performance of developed disease models must also be tested in external 

populations. This practice of external validation, or transportability, can help determine the extent 

to which information in a predictive model can be applied generally across population samples. 

Model performance can suffer when applied in external settings because populations have inherent 

differences or data was collected with different practices. A number of impediments, particularly 

in reporting, continue to hinder the widespread application of transportability methods. This 

dissertation addresses these concerns using a methodology for improving the classification of 

models and evaluating a proposed technique for partially adjusting problematic models. A set of 
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simulations are proposed, taking advantage of a minimal set of published values to extend reported 

findings through bootstrap analysis. Interpretations derived from this method are able to guide the 

assignment and selection of models by transport levels. Causal transportability analysis, a 

previously proposed transportability theory in graphical models, is also evaluated for use in partial 

adjustment scenarios. The resulting process allows for evaluation of model transportability with 

minimal information and for assessing model adjustments. These investigations serve as useful 

tools for future transportability analysis. In addition, the results of this work introduce new items 

that can be added to reporting guidelines and support current trends to establish improved 

validation frameworks.  
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CHAPTER 1  

INTRODUCTION 

A primary goal of the medical research community is to assist with and improve decision making 

in the clinical setting. Clinicians spend a great deal of time applying their personal experience 

while also considering the wide body of medical evidence and literature. Their medical knowledge 

must be used to assess symptoms, choose relevant medical tests and treatments, and reason across 

a vast space of evidence to obtain the best possible outcome for patients. Researchers strive to 

develop studies and aggregate medical findings into systems that can help the medical community 

understand and describe disease processes and the behavior of the human body. Through statistical 

analysis, findings from research update and fill in gaps of knowledge used to train and inform 

clinicians. 

Models are important tools used by researchers to define a set of assumptions regarding the 

structure of relationships between features and an outcome. The working knowledge of a disease 

is represented in a disease model to provide a mechanism for statistically analyzing and predicting 

patient disease states and outcomes for a disease of interest. Clinicians must consider all the 

variability of each specific case they encounter and attempt to accurately recall past cases and 

medical knowledge from their realm of experience. Yet, the growing complexity of our 

understanding of disease, the continuous publication of research results, and the growing number 

of patients in need of evaluation threaten to overwhelm physicians struggling to track information 

on a patient by patient basis. Models can capture and summarize this information in a compact 

form useful in future decision making. In this way, predictive models supplement clinicians’ 

knowledge and reduce the cognitive load placed on healthcare practitioners. 
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The development of disease models, however, is also a complex task. A great deal of research has 

been done to determine best practices for selecting features, designing models, and analyzing 

model accuracy. Models contain evidence of the contribution of features to given treatment and 

patient outcomes, but their interpretations are often tied closely to study designs and/or patient 

cohorts. Models are useful to researchers and clinicians when they can be used broadly for 

prediction of the patient population outside the original cohort. Testing models for use in other 

cohorts is a growing research need, particularly so that models can be trusted for decision making. 

In this dissertation, I explore issues restricting model reuse and evaluate a method for improving 

assessments of model transportability (also commonly called external validity and 

generalizability). Assessing transportability is important to determining the settings outside of the 

original model design where predictions are valid. 

1.1 BACKGROUND AND MOTIVATION 

Medical evidence is obtained using a number of research assessments. The primary scientific 

method for studying disease features and treatments are randomized controlled trials (RCTs). In 

RCTs, researchers establish a particular question (query) of interest about the disease being 

studied. These questions are tied to a specific experimental goal that tests a hypothesis. Examples 

include attempting to find a link between disease elements (e.g., "Is there evidence of a link 

between EGFR expression and cancerous cell growth?"), finding evidence that a treatment helps 

patients with disease (e.g., "Does treatment with temozolomide reduce tumor size in patients?"), 

or if testing methods in the hospital are effective for diagnosis (e.g., "Does the use of MRI 

information improve cancer detection?"). Randomization techniques separate patients into 

treatment and control study arms in order to manage experimental conditions. In this way, RCTs 
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seek to find causal connections between elements of disease or between a treatment and effect on 

a disease by comparing the results of separate testing environments. 

As RCTs provide the scientific means to understand disease, their use is integral to evidence-based 

medicine. However, RCTs are not without their faults. To reach a consensus about a hypothesis, 

multiple trials should be conducted. Often these trials will arrive at different findings or be difficult 

to compare because of methodological differences. For this reason, the process of systematic 

review and meta-analysis has been made paramount to demonstrating the validity of findings 

across the large body of medical research. Despite the rigors employed to ensure statistical 

accuracy and understanding, the derived knowledge can only represent a level of certainty in 

regards to the populations examined during experimentation. It is often unclear how much the 

original findings were biased by study design or the query of interest. These drawbacks can often 

impede the determination of how applicable findings are to future patients. 

While RCTs and meta-analysis help to realize the overall domain of disease processes and 

treatments in controlled environments, the medical community must apply this knowledge to the 

uncontrolled environment of clinical practice. Physicians rely on observational data collected from 

patients to make informed decisions on treatment and survival. In the same way, researchers utilize 

the combined findings from experimental studies and collected observational data to create 

predictive disease models. These models are meant to aid in clinical decision making, but are also 

highly varied in design, much like RCTs and meta-analysis. There remains a substantial difficulty 

in applying the predictions of models to new cohorts of patients not involved in the original model 

design. This difficulty in generalizing models has relegated most disease models to research 

practice and made them impractical for application in a clinical setting. 
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The growing success of disease modeling for prediction tasks has encouraged the consideration of 

their use for every-day clinical decision making. This trend has been supported by the upswing of 

big data, machine learning, and innovative statistical analysis methods. Currently, models are 

heavily scrutinized for internal validity of predictions by assessing accuracy with repeated tests of 

held out sets of data. But, additional validation is required to determine if models apply, or 

transport, to external settings. Subsequently, tests for transportability (external validity) are a 

recent and growing topic of interest. Existing validation tests follow a paradigm similar to internal 

validation by assessing accuracy changes. Most current transportability methods interpret cohort 

differences qualitatively while considering the final results of discrimination and calibration. 

Often, this interpretation designates a specific type of difference (e.g., temporal or geographic) or 

reclassifies the analysis into a different goal (e.g., reproducibility) to explain validation success or 

failure. However, the degree of differences between a source (original) and a target (new) cohort 

can be caused by a combination of factors that are still difficult to evaluate. Experts and researchers 

with knowledge of the data collection process can reveal some contributors to source/target 

difference, but an inability to observe all factors and confounding influences may mean many 

differences will remain obscured. 

Problematic differences are adjusted for new target locations when possible. These approaches are 

common because new data is often scarce or difficult to gather in a practical time frame. In 

addition, general approaches are applied as it remains difficult to understand model performance 

in the context of (typically smaller) cohorts of external data. As such, updates are often performed 

using broad assumptions about the applicability of predictions in the population or often by simply 

generating new model parameters de novo. To improve the updating process, it would be useful to 

assign models to particular transportability states based on the success of validation tests. An 
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example of this assignment is shown in Figure 1.1 where five theoretical models are assigned to 

four transportability states. Other proposed external validation frameworks and updating 

techniques can be mapped to these four classes, helping define what types of techniques are 

applicable to specific transportability settings. In this way, researchers and clinicians can use more 

specific transportability assignments in place of a binary usable/unusable classification and 

potentially target the next steps of analysis and adjustment more easily across many models. 

 

Figure 1.1 Proposed transportability classification levels for more appropriately dividing models considered for future 
use. 

The results of external validity assessments continue to be difficult to interpret. For example, 

discrimination values such as the c-statistic might show only small variations of one or two percent 

for a source model applied to multiple target cohorts. Thus, determining if the model is trivially 

transportable for one target and partial adjustable for another is not a straightforward task. New 

approaches are needed to provide more detailed tests in order to better determine the ability of 

models to generalize in one or more cohorts. In addition, these approaches need to be capable of 

working with limited amounts of source information, as not all values are publicly reported or 
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available during transportability analysis. Assignment of models to transportability states may be 

useful in future analysis to help expose classes of source/target difference that could be addressed 

with new methods. For example, models assigned to the partial transportability state could be 

candidates for evaluation with a novel method like causal transportability for picking features for 

re-estimation. 

1.2 CONTRIBUTIONS 

A great deal of effort is put into the development of models and important training information is 

supplied in the original effort. Researchers should attempt to take full advantage of the original 

and complex model building process and reuse information from source environments whenever 

possible. Transportability of a model is considered by testing the discriminative performance and 

calibration of models in new settings. Current techniques classify models into binary categories 

and often require direct access to complete datasets. In addition, ineffective models do not receive 

additional analysis for potential adjustments to correct issues. In this dissertation I attempt to 

address these issues through the following two contributions: 

1. Improvement of transportability assessments and classifications using a methodology 

to retrospectively evaluate discrimination variability using a minimal set of reported 

information to perform simulation. 

2. A process for investigating partial adjustments in models with significant performance 

deficits using causal graphical techniques to extract potential targets in need of 

updating. 

The first contribution takes advantage of previously tested validations and proposed frameworks 

as a guide in the definition of new transportability classifications. An examination of current 
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reporting practice in modeling publications and summarization of common issues restricting 

transportability assessment was reviewed as a first step. Assessment and classification are difficult 

due in part to the inability to access previous information about the original model. Therefore, a 

methodology for estimating discrimination performance using a minimal set of published 

information is proposed and tested. The resulting methodology improves the ability of researchers 

to define transportability levels for models. A set of examples are used to demonstrate how updated 

assessments and subsequent model designations can help define additional steps required for 

model adjustment after initial validation. 

The second contribution provides a potential approach to updating models classified with the 

transportability level of partial adjustment. Few techniques currently exist to define what parts of 

a model are unaffected during external use. The approach explored in this contribution takes 

advantage of a novel model description process with causal information to consider what 

subcomponents of models are transportable between two settings. A set of steps from this method 

are examined and a process for applying the technique to an example modeling scenario is 

evaluated. This process takes advantage of additional causal assumptions to make decisions 

concerning what subsets of model features should be partially adjusted, providing a means for 

updating problematic models and correcting predictions. Updated models can then be further 

validated and more frequently used in new settings without requiring full model re-estimations or 

extensions. 

1.3 ORGANIZATION OF THE DISSERTATION 

This dissertation is separated into seven chapters, including the introduction and conclusion. 
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Chapter 2 provides a brief foundation covering previous work related to the areas of evidence 

based medicine, model validation and updating, and causal transportability analysis. Each area 

plays a role in the development of robust models and assessing their generalization. 

Chapter 3 describes a review of four published models for brain cancer prediction. These models 

were used to gauge current publication practices and determine the availability of values in reports 

necessary to perform transportability testing. 

Chapter 4 introduces an evaluation of methods for simulating patient data to replace source 

information that is frequently unavailable as part of the publication process. This evaluation is 

performed using a large cohort of lung cancer cases collected in the National Lung Cancer 

Screening Trial (NLST). 

Chapter 5 applies the resulting simulation methods to evaluate four published brain cancer models, 

proposing a novel evaluation method that estimates the variability of an original model’s 

performance based on the size of the external cohort of interest. The proposed evaluation can be 

generalized to other disease model validations. 

Chapter 6 applies causal graphical models as an introduction to novel approaches to partial model 

adjustment. This process can be used to further expand models classified using the proposed 

evaluation of Chapter 5. 

Chapter 7 summarizes the results of previous chapters, provides suggestions for adjusting current 

publication and validation processes, and discusses future directions to push transportability 

evaluation further and approach broader clinical utility for disease models. 
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CHAPTER 2  

BACKGROUND 

Many research areas have contributed to the current state of predictive disease modeling including 

evidence-based medicine, randomized controlled trials, statistical modeling, and validation testing. 

More recently machine learning and artificial intelligence (e.g., deep learning) have also become 

popular areas for improving model design and performance. This chapter reviews previous 

research relevant to medical research from a number of these areas and reviews the current 

practices for evaluating and adjusting disease models. The first section covers the paradigm of 

evidence-based medicine research, which has downstream influence on predictive modeling 

design. The second section reviews current practices for validating models, the metrics used to 

evaluate model accuracy, and established techniques for updating models. The third section 

provides a foundational background on graphical and causal models, important tests of their 

properties, and a causal theory of transportability that holds potential for applying models more 

broadly when only certain parts of a model are transportable. 

2.1 EVIDENCE-BASED MEDICINE 

Prognostic modeling research is largely driven by evidence-based medicine (EBM) tasks [1]: 

randomized controlled trials (RCTs), subsequent systematic reviews of RCTs, and meta-analysis 

derived from completed systematic reviews play a critical role in establishing accepted clinical 

practice. Physicians update their understanding of disease, as well as new and existing treatment 

options, by reviewing these studies. Subsequently, these research efforts in controlled scientific 

experimentation test important etiological findings and establish focal points for decision making. 

In essence, clinicians construct their own internal view of relationships between patients and 
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disease processes from evidence. Predictive disease models derive values for variables and 

parameters from the same space while also frequently leveraging clinicians’ expertise and 

observational data. The goal of predictive models is then to contribute additional evidence by 

taking advantage of statistical analysis and computing power to make risk evaluations and create 

accurate decision-making tools. 

2.1.1 Randomized Controlled Clinical Trials 

A randomized controlled trial is a scientific study design that takes advantage of the randomization 

of cases into control and intervention groups in order to reduce bias when testing a hypothesis of 

an experimental outcome. Different combinations of randomization and case control are applied 

for general scientific use. The medical community is well-versed in using specific trial designs to 

perform medical research. For example, clinical trials are most commonly known for their use in 

testing drug and device effectiveness. The goal of such trials is to evaluate the etiology or causal 

factors that contribute to a disease or changes in disease (such as after treatment). A wide variety 

of clinical trial designs are employed each year to generate new evidence and improve medical 

outcomes and treatments [2]. 

A randomized controlled clinical trial (RCCT) takes advantage of both randomization and 

controlled treatments. Two or more study arms are defined with one arm designated as a control 

that receives no form of treatment/intervention. Enrolled subjects are then randomized to a study 

arm and their results can be compared against subjects assigned to other intervention or control 

groups. Randomization helps reduce selection bias, a type of systematic error where subjects are 

not objectively represented. Selection bias can mask the true effects of the treatment/process under 

evaluation. For example, if a non-random subject assignment is applied in a trial, patients given a 

drug therapy might be biased towards certain age ranges, causing an imbalance between treatment 
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and control groups. The resulting outcome might show the drug treatment as highly effective, but 

it would be unclear if the effect is a product of the drug itself or the age of the subjects in each 

group. Control groups are intended to provide an effective null hypothesis for comparison in 

statistical analysis, but in some cases, control groups may be infeasible or unethical. Therefore, 

the controlled aspect of RCCT design is not required or universal. In fact, clinical trial designs 

included complex options such as single and double blinding, paired and crossover assignment, 

and varying randomization algorithms [3]. A full discussion is beyond the scope of this work, but 

it is important to understand the fundamental RCCT trial design that drives evidence generation. 

Clinical trials are such a ubiquitous part of evidence-based medicine that a specialized guide 

known as the CONSORT statement has been developed by the clinical research community to 

guide reporting of results [4]. Despite attempts to design RCCTs to a set of standards, it is often 

difficult to compare results across trials due to the complexity of their designs, even when two 

studies examine the same drug’s effect on a given condition. While each trial provides results that 

are validated to their given cohort, it is rarely possible to apply the results externally. Confounding 

often exists due to differences in sampling size, data collection constraints, the number of patients 

lost to follow-up, etc. These studies validate the efficacy of an intervention under ideal conditions 

but do not necessarily address the clinical effectiveness across a real-world population (i.e., the 

external validity/generalizability of the intervention to routine practice) [5]. 

While more “practical” or “pragmatic” clinical trials are now promoted [6,7] to relax subject 

eligibility requirements (thereby broadening the test population), these changes do not definitively 

overcome the fact that a given investigation encompasses important assumptions about the 

underlying study group and environment. As such, the majority of current RCCTs could be 

considered a unique population of patients with constraints that can only be interpreted internally 
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until evaluated further to determine generalizability. To combat this issue, researchers attempt to 

evaluate RCCTs and other clinical trials with meta-analysis. Some literature has suggested specific 

aspects of trials that should be considered for comparison during generalization [5,8]. 

2.1.2 Meta-analysis 

Meta-analyses generate a further statistical evaluation of the reported validity of a set of clinical 

trials, linking results through a systematic review process. Efforts such as the Cochrane 

Collaboration recognized the need for maintaining unbiased systematic review and meta-analysis 

for all of medical research [9]. Meta-analysis publications are now regularly seen from Cochrane 

and other groups striving to understand the full ramifications of clinical trial results. Providing a 

grouped evaluation of results can establish which trial findings generalize more widely across the 

medical community. 

Meta-analysis can be seen as aggregating the statistical findings of a group of RCCTs into the 

semblance of a single, larger study. Yet this analysis is not a combination of all the raw data from 

the individual populations of each trial, but an examination of the outcome ratios calculated in the 

results of each trial by performing a weighted average. This revised statistical evaluation of the 

individual findings is used to make claims about the consensus of medical research on the given 

topic examined. The conflicting information from individual trials often leads to inconclusive 

findings concerning a treatment. When consensus cannot be reached, continued research becomes 

the suggested result.  

Significant findings from a meta-analysis are suggestive of strong associations of experimental 

findings. However, these conclusions are still related to the original trial environments which were 

internally validated. When the designs and populations across a set of clinical trials are broad, 



13 

there is greater opportunity for the contributions from each differing population to support 

generalization of the meta-analysis findings to a broad set of patients or diseases. But, this same 

variation can also make it more difficult or impossible to complete the meta-analysis at all. Thus, 

it remains difficult to apply the knowledge to future cases when the examined populations of each 

trial in the meta-analysis are varied to enlarge the tested population space. The consensus of 

research indicates causal connections between variables in the disease studied, but not all 

circumstances of the many RCCT-defined environments will hold in real-world application for 

treatment or prediction. Establishing external validity has remained a difficult task despite the 

growing attempts to provide meta-analysis of RCCTs. Direct application of past studies’ results to 

future analysis and prediction is a continuing goal of many researchers in the meta-analysis area 

and also extends into the domain of predictive modeling. 

2.1.3 Predictive Disease Models 

Statistical models provide a means for taking evaluations from many sources (e.g., RCCTs, meta-

analysis, and observational data) and making use of them as predictive values for individual cases. 

In medical research, such models are commonly referred to as disease models, as the outcomes 

and variables of interest are related directly to disease characteristics. The terms predictive and 

prognostic are commonly applied to these models, often depending on their intended goals of 

predicting a patient state or determining long term prognostic risks. Other titles such as prediction 

rules, risk scores, and risk calculators are also common [10]. In this dissertation, statistical models 

will largely be referred to as predictive disease models or predictive models. 

In general, models are built to calculate the probability of an outcome/response variable 

(dependent variable) as related to a set of candidate predictors (independent variables). A large 

variety of modeling options are available and model choice is guided, in part, by the outcome of 
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interest and the predictions targeted. Researchers work diligently to combine disparate sources of 

knowledge into candidate predictors for the modeling task. Deciding what features to consider in 

modeling is not straightforward; RCCT findings and expert clinician input provide starting points 

when choosing potential variables for modeling. Early in the design process, multivariate models 

start off by considering as many features as possible that have been found in previous research or 

have a reasonable chance of confounding other features of interest. However, the use of large 

groups of features can be detrimental if used incorrectly. First, the included features for a disease 

model must be items that are commonly collected and easily measured in the clinical environment. 

If clinicians have no access to the features used in a model, it becomes useless to their daily 

practice. Second, unless the available cohort of cases is orders of magnitude larger than the number 

of features considered, parameter estimates can become biased. These models have become 

overfit, as they have been trained to match particular patterns of the original data and not the 

underlying relationships of the disease in the population as a whole. Feature selection, or pruning, 

is often used to combat some of these issues by reducing the considered feature space to those that 

are most useful to prediction. 

Following feature selection and model estimation, a model must be evaluated for prediction 

accuracy on the cohort of interest and should also be tested in outside datasets for reliability. As 

the main focus of this dissertation is assessments of model validity, different validation stages are 

considered in more depth in section 2.2. Many other factors, such as variable discretization, sample 

size, and missing data play important roles in model design and performance, but a full discussion 

on the breadth of model development is beyond the scope of this dissertation. Chapter 3 includes 

discussion on why some of these decisions can restrict further validation and replication efforts, 
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but an assumption is made in this work that sufficient efforts were made by the original model 

designers to provide robust model training and validation analysis. 

Multiple regression models are still dominant in clinical research: including linear regression for 

continuous outcomes, logistic regression for binary outcomes, and Cox proportional hazard 

regression for time based measures of outcome (such as time to progression or death). Much of 

this dissertation works with published models and examples related to logistic and Cox regression. 

Brief descriptions of these models are provided below with focus given to elements relevant to 

testing validation in later chapters. 

Binary Logistic Regression 

In binary logistic regression, the probability of a binary outcome, 𝑌, is estimated as related to a set 

of candidate predictor variables, 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑝) . Intercept and model coefficients 

(parameters) for each of the predictor variables, 𝜷 = (𝛽0, 𝛽1, … , 𝛽𝑝) are then estimated using 

available training data for X and Y. The intercept, 𝛽0, is not always estimated for other model 

designs (e.g., Cox regression). For each subject, the predictor variables, 𝑿, are assumed to be 

known constants and a fixed value of 𝑋0 = 1 is added to the vector to account for the intercept 

value, 𝛽0. By multiplying against the model coefficients, 𝜷, a weighted sum of the contribution of 

a set of p predictors is generated, commonly called the linear predictor, LP: 

𝐿𝑃 = 𝑿𝜷 = 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑝𝑋𝑝 

For the binary logistic regression model, the probability of outcome given predictors, 𝑃(𝑌|𝑿) can 

be calculated based on the linear predictor with the following equation described by Harrell [11]: 
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𝑃(𝑌|𝑿) = 𝑃𝑟𝑜𝑏{𝑌 = 1|𝑿} =
1

(1 + 𝑒−𝐿𝑃)
 

To test model accuracy, linear predictor values or predicted probabilities can be assessed against 

the known outcomes of subjects using different thresholds. This process is discussed further in 

section 2.2.1 covering internal validation. For clinical use, the predicted probability of a newly 

observed subject provides an indicator of the patients predicted future status. 

Cox Proportional Hazards Regression 

The proportional hazards model provides the ability to estimate the effects of covariates on subject 

outcomes over varying amounts of time. The proportional hazards assumption states that the 

hazards of predictors do not vary over time between subjects which allows for estimation of the 

regression coefficients, β. If the proportional hazards assumption does not hold, a different form 

of hazards analysis using time-varying coefficients or fully parametric models such as the Weibull 

model should be used [11]. The linear combination of covariates (LP) follows the same form as 

logistic regression but the intercept value is replaced by baseline hazard over time, ℎ0(𝑡), for all 

patients. Proportional hazards models are useful for modeling time to event outcomes (e.g., 

progression or survival) and are able to handle subject censorship as many subjects may not be 

able to be followed for the entire time period of interest. The Cox model is a semi-parametric form 

of the proportional hazards model and is most frequently used because it does not require direct 

estimation or assumption of the baseline hazard function, ℎ0(𝑡). The Cox proportional hazards 

model has the following form when stated with the baseline hazard for a given time, t: 

ℎ(𝑡|𝑿) = ℎ0(𝑡)𝑒(𝐿𝑃) 
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The linear predictor, LP, is computed based on feature coefficients and feature values for a set of 

predictors, p, without terms for an intercept value for this model design: 

𝐿𝑃 = 𝑿𝜷 = 𝛽1𝑋1 + ⋯ + 𝛽𝑝𝑋𝑝 

During model training, regression coefficients necessary for computing the linear predictor are 

estimated from training data based upon a conditional form of the log partial likelihood. Cox’s 

derivation of this conditional estimator of β allows for the baseline hazard function to drop out. 

This process considers the relative risk between an individual’s survival time compared with the 

range of unique ordered failure times represented by 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛, for a set of n cases. The 

set of all individuals with observed survival time, 𝑌𝑗, greater than or equal to a given time, 𝑡𝑖, 

comprise the set, 𝑅𝑖, of all individuals at risk at that time. Thus, the estimator for Cox regression 

takes the following form, as described by Harrell, where the baseline hazard cancels [11]: 

ℎ0(𝑡𝑖)𝑒(𝑋𝑖𝜷)

∑ ℎ0(𝑡𝑖)𝑒(𝑋𝑗𝜷)
𝑗∈𝑅𝑖

=
𝑒(𝑋𝑖𝜷)

∑ 𝑒(𝑋𝑗𝜷)
𝑗∈𝑅𝑖

=
𝑒(𝑋𝑖𝜷)

∑ 𝑒(𝑋𝑗𝜷)
𝑌𝑗≥𝑡𝑖

 

This property of the conditional probability allows for estimation of the log partial likelihood 

including cases that are censored: 

log 𝐿(𝛽) = ∑ {𝑋𝑖𝜷 − 𝑙𝑜𝑔 ( ∑ 𝑒(𝑋𝑗𝜷)

𝑌𝑗≥𝑌𝑖

)}

𝑌𝑖  𝑢𝑛𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑

 

While the baseline hazard function cancels out during the model estimation, knowledge of the 

hazard is necessary for computing survival probabilities. Modern software packages therefore 

estimate a cumulative baseline hazard function, 𝐻̂0(𝑡) , from training data that is also non-
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parametric with respect to the form of the baseline hazard. Applying this cumulative hazard with 

the estimated coefficients, it is possible to estimate a survival probability at a given time, t: 

𝑆(𝑡|𝑿) = 𝑒−𝐻̂0(𝑡)𝑒(𝐿𝑃)
 

As with logistic regression, the linear predictor and survival probability can be used in model 

assessment and the predicted survival probability can be used as an estimate to assess the future 

risk a current patient has given recent feature observations. [11,12] 

2.2 MODEL VALIDATION AND UPDATING 

Internal and external validity are properties inherent in the results of both scientific 

experimentation and predictive models. For example, in clinical trial design a researcher can 

determine if true statistical differences exist between groups by controlling for important variables 

and using proper randomization. Claims can be reached concerning the causal connections 

between variables involved in disease processes for the patients and selection criteria involved in 

a study. This level of claim falls within the confines of internal validity and physicians can 

reasonably apply these findings if their patient matches characteristics from the study [5,8,13,14]. 

Direct reproductions of trials could further support results, but monetary and time costs of such 

trials make such direct repetition a rare occurrence. Instead, similar trials with variations in 

populations, protocols, and locations are usually funded to provide further extrapolation of 

statistical claims to general use. In this way, researchers and physicians are convinced of the 

external validity, or generalizability, of results across the entire population due to the growing 

amount of experimental evidence in trials with closely related designs. 
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Within predictive models, obtaining discrimination between groups of cases is the primary goal. 

Unlike a clinical trial where subjects are grouped for analysis, a model tries to predict groupings 

and all the data is mixed for model training. In using all the data to maximize predictive power, 

the model may be biased and demonstrate overoptimistic performance on the specific set of cases 

observed (especially if data is used in both training and testing steps). Therefore, internal validation 

techniques split cohorts and perform repeated testing to check for bias in the model design and 

training. In situations where overfitting has been avoided, models are considered internally valid 

for cases drawn from the same cohort, commonly referred to as the source cohort. However, 

internal results do not guarantee good performance on new cohorts of patient cases, commonly 

known as target cohorts. 

In fact, when applying models in new situations, model accuracy typically suffers because target 

cohorts have a key systematic difference or because the variability of the true population has not 

been completely modelled by the source data. Unlike the significant body of work for evaluating 

internal validity, few techniques have been developed to test external validity. Methods used in 

assessing internal validity need further study to determine if they can be directly applied to 

understanding how findings generalize. Epidemiological research has demonstrated the growing 

exploration of external validity [15–17]. Such research is encouraging a move to focus on testing 

all data findings with methods relevant to both internal and external validity so that evidence and 

study conclusions are fully contextualized and applied appropriately. In addition, researchers can 

begin to study how external performance decreases can identify steps to update models for 

continued use, rather than having to rebuild and retrain models from scratch. 

Validation is therefore one of the most important and also difficult tasks involved in modeling. In 

this section, I further describe the two major stages of model validation mentioned above: 1) 
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internal validation, where performance and bias of the model are assessed with data from the 

original model training environment (the source) and 2) external validation (also referred to as 

generalizability and transportability), where the model is applied for prediction on new data from 

cohorts not tied to the original selected population (the target). For each validation stage, I review 

previously used performance metrics and variability assessments. In addition, I review current 

suggestions for model updating. 

2.2.1 Internal Validity 

In order to obtain the best model, the number of cases supplied during training should be as large 

as possible. Ideally, that means all available source data should be used to determine the selected 

features and learn the regression coefficients. However, if all data is used in this process, there is 

no independent data available for testing the accuracy of predictions. While a model can 

technically be tested on the same data used in training, the results will usually be overoptimistic. 

Using 100% of a subject cohort for both training and testing is called apparent validation [12]. 

While some studies report this result, other methods are recommended for splitting or subsampling 

the available cases to obtain more reasonable assessments of model performance. 

Evaluating bias and variability 

The simplest internal validation method creates a single split-sample from the source. The source 

cases are randomly divided into training and testing samples used for model development and 

model validation respectively. Common split-samples sizes are fifty:fifty or two-thirds:one-third. 

While simple in practice, there are many drawbacks to this method. First, the validation process 

may be unstable both in training and validation if the original source cohort is small. For example, 

there is an increased chance trained coefficients may be unreliable because split sampling can 

remove important cases from the training dataset.  Similarly, if the split is chosen to favor larger 
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training size, the test set may not be large enough for a robust evaluation. Second, a researcher 

may be unlucky in the random split and the two samples could end up highly imbalanced in relation 

to certain features or outcomes, greatly influencing prediction accuracy. Simulation studies 

demonstrate that large cohorts help mitigate some of these issues and split-sample validation can 

be used when thousands of subjects are available [18]. Increases in computing power have made 

it possible to perform other forms of sampling instead of relying on split-sample validation. 

[11,12,19,20] 

Cross-validation is the successor to split-sample validation, extending the technique by completing 

repeated splits of the data. Each data split is referred to as a fold and by repeating folds across the 

cohort all subjects contribute to training and testing of the model. For example, in a five-fold cross-

validation, the data is divided in five groups and 1/5 of the data is used for testing and the remaining 

data for training. The test and training sets are changed over five repetitions and prediction results 

are aggregated. When completed, each case will have served once as a test case. Common cross-

validation splits are five-fold, ten-fold, and N-fold cross-validation. The extreme case uses all the 

cases except one for training and tests the singled test example (from 1…N); this validation is also 

known as leave-one-out cross-validation (LOOCV) or jack-knife validation. Repeating the 

analysis across the full cohort in this way provides more stability in the evaluation, but there are 

tradeoffs in the extent of bias introduced depending on the chosen fold size. Extra stability against 

the bias of random sample splits can be gained by further repeating the entire cross-validation 

process M times using different random splits on each iteration. For example, the standard cross-

validation procedure could be repeated 50 or 100 times to evaluate the variability caused choosing 

many different random folds. There is still some debate concerning the need to perform feature 

selection prior to validation or as a repeated step in the cross-validation process. [11,12,19,20] 
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Bootstrap validation imitates the process of drawing from an underlying population in order to 

assess model bias. A bootstrap sample is created by sampling with replacement from the cohort of 

interest. These resulting samples are the same size as the original data. Each bootstrap is then used 

as a training source for the model and evaluation is performed on both the bootstrapped sample 

and the original cohort. The difference between each sample’s performance provides an estimate 

of the model optimism and the final optimism value is subtracted from the apparent validation 

performance of the original data. Previous research notes that 100-500 bootstraps are usually 

sufficient for achieving accurate estimates [12]. Bootstrapping has stability advantages because 

training and testing are always performed at the largest sample size based on the source cohort. In 

addition, bootstrapping has been shown to be more useful than cross-validation when performing 

feature selection during the validation process. Computational advances have driven more 

widespread use of the bootstrapping approach that were not previously possible. However, in some 

cases discretization and feature selection decisions can make it difficult to take advantage of the 

bootstrap procedure. Future research will continue to elucidate the impact of these decisions and 

which form of cross-validation or bootstrapping is most appropriate for successful analysis. In 

general, the validation procedures above can be applied for testing any metric of interest to a 

researcher. [11,12,20] 

Performance metrics 

Discrimination measures test the ability of a model to differentiate between cases with and without 

the outcome of interest. Cases are classified above and below a chosen decision threshold, 

establishing a set of correct classifications, true-positives (TP) and true-negatives (TN), and 

incorrect classifications, false-positives (FP) and false-negatives (FN). The total number of cases 

with the event of interest is equal the sum of the TP and FN groups, (TP+FN), and the cases without 
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the event are equal to the sum of the TN and FP groups, (TN+FP). Two important ratios used to 

consider discrimination accuracy using these counts are sensitivity and specificity. Sensitivity is 

the ratio of true-positive classifications to the total number of cases with an event, (TP/(TP+FN)), 

and specificity is the ratio of true-negative classifications to the total number of cases without the 

event, (TN/(TN+FP)). A receiver operating characteristic (ROC) curve can be created by 

comparing the performance of sensitivity against 1-specificity across a set of discrimination 

thresholds for the predicted probability of cases (based on P(Y|X) or LP). ROC curves are 

commonly plotted against a non-informative model with a random chance of correct prediction. 

The area under the ROC curve (AUC or AUROC) is derived from the ROC plot and is one of the 

most common summary measures of discriminative ability. Models with good discrimination 

between event classes are expected to have AUC values greater than random chance, AUC = 0.5. 

Models, with perfect discrimination would achieve an AUC = 1. 

For binary decision tasks (common for disease models using logistic and Cox regression) the value 

of the AUC is equivalent to another measure, the concordance statistic (c-statistic). The c-statistic 

is computed by evaluating all pairs of subjects with and without the outcome being modeled. The 

final value is calculated by comparing the proportion of pairs where a case with the outcome (i.e., 

Y=1) has a higher predicted probability (based on P(Y|X) or LP) than the paired subject that did 

not experience the outcome. Therefore, the c-statistic indicates the proportion of times the model 

will make a correct decision by assigning an appropriate probability to subjects with events. 

Interpretation of the c-statistic is the same as the AUC where the c-statistic value is evaluated on 

a range from 0.5 to 1 (random predictions to perfect predictions). Higher scores indicate that the 

model can discriminate the outcome classes with higher accuracy. The c-statistic is related to 

another rank correlation measure, Somers’ Dxy, through the following identity [11]: 
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𝐷𝑥𝑦 = 2(𝑐 − 0.5) 

Somers’ Dxy is the difference between concordant and discordant probabilities and is interpreted 

on a range of 0 to 1 rather than starting at a value of 0.5. While the Somers’ Dxy variation can help 

interpretation by scaling the probability range, the AUC and c-statistic are the preferred metrics 

for reporting predictive discrimination in disease modeling literature. 

One limitation of current discrimination measures is their summarization across many decision 

thresholds. In clinical practice, a specific threshold or set of risk cutoffs are likely to be applied. 

However, significant study is often required to define optimal cutoffs. Summary metrics have 

become the standard since it is difficult to determine risk levels for many diseases. Another 

limitation for discrimination metrics include diminishing returns of the magnitude of difference 

between the internal validity scores of competing models. In particular, minor adjustments to 

model parameters or the addition of a feature to a model might result in a slight discrimination 

increase in the c-statistic [21,22]. These incremental changes in discrimination make it difficult to 

state when one model clearly outperforms another. 

As an approach to this issue, a set of reclassification measures were proposed by Pencina to test 

for finer changes in discrimination. They include the net reclassification index (NRI) and 

integrated discrimination index (IDI) [21]. Reclassification measures compare two models to 

determine if adding a feature causes a beneficial shift in the number of true-positive and true-

negative classifications. The NRI was originally designed to use risk cutoffs, making the measure 

susceptible to similar flaws in the c-statistic requiring pre-defined cutoffs. Therefore, a continuous 

version of the NRI (cNRI or NRI>0) was proposed, comparing the relative increase in the predicted 

probabilities for cases with events and the corresponding decrease for those without the event [23]. 
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The IDI does not require risk assignment as the value is an integration across the valid cutoffs of 

the predicted sample [21]. These metrics are most commonly discussed in relation to internal 

validity as they can inform if a model is incomplete and should use additional features. NRI and 

IDI may have additional utility for external validation by providing a new means for comparing 

across model designs published in different studies. However, researchers continue to consider the 

full utility of these recently proposed metrics [24–29] and some controversy still exists about the 

stability of the NRI score in particular [27,29,30]. Similarly, appropriately defining and evaluating 

thresholds for clinical use remains a significant hurdle to application of these prediction metrics 

[31,32]. 

2.2.2 External Validity (Transportability) 

External validation is intended to compare a complete, internally validated model to an external 

target cohort that is “plausibly similar” to the source. The extent to which a target cohort is similar 

to a source environment is frequently left open-ended in general discussion. Just as RCCTs can be 

tweaked into a multitude of designs to target specific bias and confounding, external validation 

can be assigned a whole variety of terms depending on the known or anticipated differences 

between source and target cohorts. For example, Justice et al. differentiated between 

transportability studies with historical, geographical, methodological, spectrum, and follow-up 

properties [33]. Similarly, when describing the overall evaluation process of models in new 

settings, authors use a variety of terms such as external validity, generalizability, and 

transportability interchangeably. In this dissertation the same terminology is widely applied. 

Preference is given to the term transportability due to its common usage in both general and causal 

modeling publications. 
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Justice et al., introduced multiple definitions of transportability to help define scenarios of cohort 

difference where models should be tested. In their discussion, specific definitions of accuracy and 

generalizability (Table 2.1) were proposed to describe what combinations of transportability could 

be evaluated in published works. An iterative validation approach was proposed that included a 

five-level hierarchy of external validation. Each level of Justice’s hierarchy accumulates evidence 

from additional aspects of transportability, ultimately leading to a comprehensive evaluation. The 

fifth and most comprehensive level, for example, requires evidence from multiple independent 

validations and varying follow-up time periods to provide a complete assessment of model 

transportability across Justice’s proposed transportability differences [33].  

Term Definition or Criteria 

Accuracy The degree to which predicted outcomes match observed outcomes 

      Calibration Predicted probability is neither too high too low (commonly shown with nor 
calibration curves) 

      Discrimination Relative ranking of individual risk is in correct order (observed event rates in 
those with higher scores are higher); commonly measured with the area under 
the receiver-operating characteristic curve 

Generalizability Ability of a prognostic system to provide accurate predictions in a new sample of 
patients 

      Reproducibility The system is accurate in patients who were not included in development but 
who are from an identical population 

      Transportability The system is accurate in patients drawn from a different but related population 
or in data collected by using methods that differ from those used in development 

            Historical Accuracy is maintained when the system tested in data from different calendar 
time 

            Geographic Accuracy is maintained when the system is 
tested in data from different locations 

            Methodologic Accuracy is maintained when the system is tested in data collected by using 
different methods 

            Spectrum Accuracy is maintained in a patient sample that is, on average, more or less 
advanced in disease process or that has a somewhat different disease process or 
trajectory 

            Follow-up interval Accuracy is maintained when the system is tested over a longer or shorter period 

Table 2.1 Justice et al.’s definitions of accuracy and generalizability terms. [33] 

Historical (or temporal) transportability referred to assessments of source and target cohorts from 

different time periods, such as data collected 10 years apart where treatment and disease severity 
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may have changed drastically. Geographic transportability references comparisons of cohorts 

collected in different locations, such as comparing Los Angeles and San Francisco subjects or 

European models tested in the United States. When different data collection methods were used 

for a target cohort, the validation would then assess a model for methodologic transportability. 

Spectrum transportability requires that a model generalize in both discrimination and calibration 

to subjects known to have more (or less) advanced cases of the disease. Increased or decreased 

severity could require a model to predict scenarios that are outside of the original selection criteria 

used to collect training data. Finally, follow-up period transportability describes the scenario where 

a model must generalize to previously untested time frames, such as testing a model developed for 

5 year survival outcome to predict 2 year survival [33]. These five types of transportability are not 

mutually exclusive and target cohorts may contain differences from multiple definitions. Justice’s 

groupings serve as useful guides and examples of the types of difference expected between internal 

and external cohorts. Recently, Steyerberg proposed a more concise variation of these 

transportability definitions [12]. When known or observed, these differences between cohorts 

should be clearly reported. 

During external analysis, there may be reasons for a researcher to evaluate one type of 

transportability over another. However, in most cases, a researcher should not perform external 

validation for the sake of proving a model transports to a particular case of difference (e.g., 

temporal or geographic). Focusing too heavily on one type of difference can bias findings to 

specific use cases rather than testing overall generalization. Therefore, model transportability 

should be tested as widely as possible and greater numbers of successful validations would dictate 

support for overall use of a given model. For example, the higher a model is placed in Justice’s 

hierarchy of validation, the more confidence there is in the model’s generalization. Current 
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external validation analysis continues to have difficulty broadly evaluating models due to the 

complexities of reporting models, difficulties formatting target cohorts to source model designs, 

and the need for new methods for assessing transportability. In the rest of this section, I discuss 

the current state of external validation methods. 

Discrimination and Calibration 

To date, metrics used for internal validation are also applied as the standard in external validation. 

First and foremost, discrimination of the target cohort is tested with either the c-statistic or AUC 

[19,34]. As the target cohort is independent of the source model, special techniques like cross-

validation or bootstrapping are not performed. It is common practice to compare the c-statistics 

from internal and external evaluations to determine if model accuracy is affected by application to 

a target cohort. Robust comparison would contrast the external c-statistic against the three values 

of internal validation: the apparent, optimism corrected, and 95% confidence intervals of 

discrimination. However, this comparison is rarely made and many discrimination evaluations 

only consider the apparent c-statistic score. There are no obvious suggestions for testing the 

significance of difference between internal and external c-statistics. In addition, differences in 

discrimination scores may be difficult to interpret for iterative changes between similar models 

when many features are used. 

Assessment of model calibration is also warranted for transportability testing. Model calibration 

is, by definition, perfect for the original model when comparing against the source data. Therefore, 

calibration is not typically included in internal validation analysis (though there can be uses for 

this test when performing model selection). Calibration measures explore the model’s ability to 

predict outcomes at rates that match with observed outcomes. For example, if 25 of 100 patients 

in a cohort have brain cancer, then a well-calibrated model should predict a 25% risk for a newly 
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observed subject with the same characteristics as the known cancer cases used in model 

development [12]. For statistical examination of calibration, a re-calibration model equivalent to 

the regression being analyzed (e.g. logistic regression, Cox regression) should be fit, modeling 

target outcome versus the linear predictor values calculated using the source model. A perfectly 

calibrated model will assign probabilities that are equal to the observed outcomes and therefore 

have a slope of 1 and an intercept of 0. The fit of the calibration model is often visualized 

graphically and a perfect model falls along a 45-degree angle. Models offset from this optimal line 

indicate the amount of over/underfit and over/underestimation the model has in the target data. 

These discrepancies are summarized from the calibration curve by the intercept (overestimation) 

and slope (overfit) in logistic regression models or a baseline hazard and hazard ratio in Cox 

survival models. Adjustments can be made to update the linear predictor values using these 

calibration findings. 

Other previously mentioned metrics, such as NRI and IDI, are not commonly discussed for use in 

external validation. However, there may be ways to utilize these metrics for a deeper understanding 

of transportability. An additional area being explored due to increased interest in external validity 

is the concept of clinical utility [22,31,35]. If a given model can pass a majority of transportability 

assessments, it is likely useful to provide to clinicians for decision making. However, standard 

discrimination and calibration tests summarize over many thresholds and analysis at specific 

intervals would be useful to external validation. Vickers introduced a technique called decision 

curve analysis (DCA) as a way to evaluate performance based on potential clinical decision 

thresholds [31]. Decision curves are a simple approach for quantifying the clinical usefulness of a 

prediction model compared to never treating patients, always treating patients, or treating patients 

using a competing model. The performance of prediction models is calculated at one or more risk 
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thresholds in order to determine the net benefit of using the predicted probabilities for decisions. 

However, appropriate risk thresholds can be difficult to define in many domains, limiting the 

application of decision curve analysis. As DCA is explored further, it would seem appropriate to 

apply it as part of external validity evaluations since many models might show clinical potential 

at specific thresholds despite having issues generalizing at other thresholds. 

Evaluating external validity 

External validation is not a new concept, but it has taken some time for it to become a prominent 

need and for researchers to formalize a process for evaluation in predictive modeling. Only 

recently have publications made strides towards more quantitative evaluations, but it is important 

to understand the foundation these recent methods build upon. One of the earlier and more 

complete discussions concerning proper external validation steps was provided in 1999 by Justice 

et al. [33]. Altman and Royston further reviewed the reasoning behind and need for validation 

[36]. Other useful papers by Bleeker and Konig began to propose formal practices for analysis in 

ensuing years and Steyerberg went in depth on proper practice in the book, Clinical Prediction 

Models [12,15,16]. Following a four paper series by Moons, Royston, Altman, and Vergouwe in 

2009 for The BMJ, publications related to evaluation frameworks and external validity study began 

to increase. Steyerberg proposed a framework in 2010 that began to include more novel metrics 

such as NRI and DCA [22]. A paper by Dekkers that same year discussed external validity in 

clinical trials with interesting similarities in discussion points related to modeling.  In 2012, Moons 

addressed a wider clinical audience with a two part publication in the journal, Heart [37].  Many 

other papers reviewing external validation or proposing frameworks have been published in the 

last few years [38–44] 
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While current practice results in quantitative values for discrimination and calibration and 

graphical reviews of calibration plots, the discussion and conclusions of these quantitative 

measures is often quite subjective. Theories are put forward concerning the reasons for the success 

or failure of the validation. Often the only objective results include statements concerning if the c-

statistic is higher or lower in the target sample and if a re-calibration of the model is warranted. 

Yet, even these results are subjectively interpreted at times; for example, there are not concrete 

ways to define if a c-statistic that decreased by 0.01 is significantly different from a decrease of 

0.05 or more. Similarly, when recalibrated models are presented in publications, there is not a 

defined method for establishing that the adjusted model is no longer statistically different from the 

perfect reference. Ultimately, there are many cases where it is unclear if a model should be defined 

as an external validation success or failure. 

One of the most useful current attempts to address some of these issues, by Debray et al.,  proposes 

a framework for quantifying the relatedness of development and validation samples (source and 

target in the parlance of this dissertation) by testing case mix [41].  Depending on the sample 

difference, external validity evaluations were designated as a test of reproducibility (similar case 

mix) or transportability (different case mix). Development decisions in the source and target 

populations can result in varying case mix, where numbers of cases with the outcome or particular 

feature distribution are different. Such variations could be considered akin to a mix of geographic 

and spectrum transportability as described by Justice [33]. Thus, Debray’s case mix and 

performance assessment is useful for disambiguating the source and target relatedness in order to 

better interpret the model contribution to transportibility. Debray used a three step framework to 

enhance the validation assessment. First, cohort relatedness was assessed with the c-statistic of a 

relatedness model between source and target cohorts. The mean and standard deviation of linear 
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predictors in the two datasets were also evaluated. Second, standard external evaluation using 

discrimination and calibration was performed. Finally, the results of the first two steps were 

interpreted together to designate a model as “reproducible” or “transportable”. 

The “reproducibility” designation was related to the similarity of cohort case mix, and 

discrimination and calibration were not expected to change a great deal. The “transportability” 

designation was used for different case-mixes and the expectation was that discrimination and 

calibration were more likely to change in this scenario. Debray tested three validation datasets and 

concluded that two of the validation cohorts (with both similar and different case mix) required 

calibration adjustment while a third validation (different case-mix) did not require adjustment [41]. 

Therefore, the case-mix assessment was not perfect for disambiguating the affects of of differences 

between cohorts. Nevertheless, Debray’s framework is an interesting method to consider case 

differences in parallel to discrimination and calibration tests. Determining the source of differences 

will likely become an important factor for performing model updating, the next step in the 

validation when transportability fails. 

2.2.3 Updating Techniques 

If all transportability tests – such as discrimination, calibration, or others – are insignificant and 

designate a model as generalizable, then a model can be applied to a target cohort. Given enough 

positive results on other targets, the model may even be used widely in many situations. Yet in 

most cases, some level of adjustment will be required before applying a model on outside subjects. 

Re-calibration is a simple and commonly used technique for model updating. Steyerberg proposed 

a useful ordering of progressive stages of model updating in relation to logistic regression[12]. 

These stages are reproduced in Table 2.2 and discussion on their relationship to the model 

transportability is included below. 



33 

Updating Method Notation 

No updating  

Apply original model 𝛽𝑠𝑜𝑢𝑟𝑐𝑒   

Re-calibration  

Update Intercept 𝛼 +  𝛽𝑠𝑜𝑢𝑟𝑐𝑒   

Update Slope and Intercept 𝛼 +  𝛿 ∗ 𝛽𝑠𝑜𝑢𝑟𝑐𝑒   

Model revision  

Re-calibration  
     + selective re-estimation 

𝛼 +  𝛿 ∗ 𝛽𝑠𝑜𝑢𝑟𝑐𝑒 + 𝛾𝑡𝑎𝑟𝑔𝑒𝑡|𝑝≤0.05  

Re-estimation 𝛼 +  𝛽𝑡𝑎𝑟𝑔𝑒𝑡   

Model extension  

Re-calibration  
     + selective re-estimation  
     + selective extension 

𝛼 +  𝛿 ∗ 𝛽𝑠𝑜𝑢𝑟𝑐𝑒 + 𝛾𝑡𝑎𝑟𝑔𝑒𝑡|𝑝≤0.05 + 𝛽𝑛𝑒𝑤𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠|𝑝≤0.05  

Re-estimation  
     + selective extension 

𝛼 +  𝛽𝑡𝑎𝑟𝑔𝑒𝑡 + 𝛽𝑛𝑒𝑤𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠|𝑝≤0.05  

Re-estimation  
     + extension 

𝛼 +  𝛽𝑡𝑎𝑟𝑔𝑒𝑡 + 𝛽𝑛𝑒𝑤𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠   

Table 2.2 Steyerberg’s proposed methods and notation for updating previously developed logistic regression models 
for future use [12]. 

The first case involves no updating of the source model. Findings were deemed transportable 

during external validation and the coefficients from the source model, 𝛽𝑠𝑜𝑢𝑟𝑐𝑒, are used directly. 

The next category of updates covers re-calibration procedures. If the model slope or intercept are 

substantially affected for a target cohort, the intercept or calibration slope can be used to adjust the 

previous model coefficients. By adding or multiplying coefficient values, the linear predictor 

values of the model will calibrate more closely with the outcomes observed in the target cohort. 

Updating in this way is preferable to subsequent updating methods because only two parameters 

must be estimated and the original regression coefficients do not have to be re-trained. It is 

important to note, however, that re-calibration has no direct effect on the discrimination of the 

model in the target cohort and cannot be used to improve model accuracy. If discrimination is 

substantially affected, more aggressive model updating methods are needed. The next adjustment 

approach requires that the coefficients of the model be re-trained with target information. 
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Therefore, at this stage, adjustment becomes more problematic as incorporating target information 

begins to mix new coefficients into the model that would need to be reviewed with additional 

internal validity testing. Selective re-estimation attempts to replace specific coefficients in order 

to make this problem manageable. If a full re-estimation is performed, the original source model 

is only contributing feature selection information to the modeling process. At this stage, 

transportability has largely failed as the source coefficients were not able to generalize to the target. 

Full re-estimation is not preferred because large target datasets would be required to re-train the 

model and new internal and external validation analysis would be required. A final updating option 

considers the addition of new features to update a model, creating a model extension. In this case, 

the source study and cohort missed or removed important features during model design. This 

finding is problematic because model extensions also require new internal validation analysis that 

might have been more robust if applied in the source setting where more data is usually available. 

Therefore, extension methods are indicative of additional situations where models fail to 

generalize. 

Many of Steyerberg’s suggested updating methods are used to address failures of external validity. 

Future research will be required to determine if there are novel methods that can update models in 

these settings while minimizing repeated evaluation. Methods for adjustment that can maximize 

the amount of data used from the source model will ensure that time and money are not wasted 

during research studies in the source setting. 

2.3 CAUSAL TRANSPORTABILITY 

One future approach to the method of selective re-estimation (or partial re-estimation) is related to 

the theory of causal transportability published in the domain of artificial intelligence [45]. The 
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theory states that under certain causal model structures, experimental findings can be deemed 

transportable between source and target domains. The theory itself has been reviewed for use in 

observational cases and meta-analysis [45–47]. Generating causal models is another complex 

process, but the theory provides sound principles for analyzing models that should be adaptable 

for more general use. In this way, causal analysis could help identify model designs where 

estimated values from source and target cohorts could be used interchangeably when features are 

properly controlled for confounding. Chapter 6 of this dissertation presents an exploration into this 

potential updating process. The rest of this section provides background on graphical disease 

models, causal models, and the transportability theory developed by Bareinboim and Pearl. 

2.3.1 Graphical Disease Models 

Graphical models are an increasingly prevalent technique for modeling probabilistic and causal 

relationships across observation and outcome variables of a disease. Combining probabilistic 

statistics and graph theory, a graphical model provides the capability to visually interpret and 

manipulate relationships between variables and move to an algebraic computation of probability 

distributions in a parsimonious fashion. Graphical representation is particularly advantageous 

because it provides an intuitive method for examining conditional independence of variables. 

Relationships in disease models are descriptive of the inferences derived from experiments, the 

belief the model developer has about the variables from past experience/observation, and other 

sources of knowledge. For example, disease models can make use of RCCT and meta-analyses 

findings to provide guidance to graph structure or prior probability distributions, as they provide 

the set of presumed belief in the relationships between disease variables.  
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A graph incorporates well-defined sets of vertices and edges: vertices are representative of the 

variables chosen for a domain of interest, while edges drawn between vertices describe 

relationships that exist between a pair of variables. Therefore, a graph G is comprised of a set of 

edges E, and a set of vertices V: 𝑮 = (𝑽, 𝑬). 

Graphs have two important properties that influence their use for prediction: the inclusion or 

exclusion of directed edges and cycles. The simplest graphical form is a Markov random field, 

which is a graph with undirected edges (Figure 2.1a). This graphical form denotes correlation 

relationships between variables but does not designate directionality to the connection. Directed 

edges impart a specific knowledge concerning the dependence relationship between variables 

(Figure 2.1b). Modelers can take advantage of important traits of these relationships to reduce 

computational complexity. Graphs are called cyclic if they include at least one cycle between a set 

of variables. Their inclusion adds complexity to the system and makes it difficult to understand 

relationships between variables. Therefore, the most common graphical disease models do not 

allow for cycles. [3,48] 

 

 (a)       (b) 

Figure 2.1 Examples of Graphical models. a) An un-directed graph and b) a directed acyclic graph 
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Bayesian Belief Networks 

When graphs only contain directional edges and do not provide any cyclical pathway between 

vertices they are termed directed acyclic graphs (DAGs). A Bayesian belief network (BBN) is a 

model developed around DAG structure. Directed edges in a DAG characterize the associations 

between variables, establishing which nodes are parents and children in the graph. When no 

directed link exists between a pair of variables they are conditionally independent. These 

independencies allow modelers to take advantage of a property known as the Markov condition.  

Definition: Markov condition  

A variable is conditionally independent of its non-descendants given its parents. 

 

Taking advantage of the Markov condition provides the ability to represent a DAG with a compact 

factorization to compute the joint probability distribution, the Markov Factorization: 

𝑃(𝑥) =  ∏ 𝑃(𝑥𝑣|𝑥𝑝𝑎(𝑣))

𝑣∈𝑉

 (1) 

 

Another way modelers view probabilities is with conditional probability tables (CPTs). For a given 

node in the graph, the CPT is representative of the node and the parents affecting the node (Figure 

2.2). CPTs are an example of the simplification achieved by the Markov condition. The Markov 

factorization decomposes the joint probability into a product of the individual CPTs. Taking 

advantage of independence allows for a tractable solution to probabilistic calculations from these 

models. 
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Figure 2.2 Example of conditional probability tables (CPTs) for parent and children nodes. 

D-Separation Criterion and the Markov Blanket 

As previously mentioned, independencies are important for understanding the factorization of a 

graph and the probability distributions a graph can represent. Conditional independencies of 

variables can be read directly from a given graph using the d-separation criterion. The criterion 

consists of rules used to determine if a set of variables X are independent of a second set Y, given 

a third set of known variables Z. The formal definition of d-separation is as follows: 

Definition: D-separation 

A path p is said to be d-separated by a set of nodes Z if and only if 

1. p contains a chain i → m → j, such that m is in Z 

2. p contains a fork i ←m → j, such that m is in Z 

3. p contains a collider (or inverted fork) i→m ← j, where m is not in Z and no children of m are 

in Z 

A set Z d-separates X from Y if and only if Z blocks every path from a node in X to a node in Y using 

the conditions above. [48] 
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The above rules can be seen graphically in Figure 2.3 below. For rule 1 and 2, inclusion of the 

node m into Z allows for the d-separation of i and j. However, for rule 3 the exclusion of m and its 

children from Z is necessary so they do not open up a path. 

 

 

Figure 2.3 Minimal graphs that satisfy the d-separation criteria. 

D-separation can be thought of as examining the flow of information between sets of variables. 

When a path is connected, information can flow between variables and dependence exists. A 

separated (blocked) path has no information flow between variables due to the inclusion or 

exclusion of other variables on the path based on the rules above. We use the terms d-connected 

or d-separated to describe these connections based upon the links between variables and a given 

separating set.  

To provide a bit more context, consider an example based on Figure 2.4 where we consider d-

separation as influenced by a set of variables. In the example, the nodes marked in blue, r and v, 

are included as members of set Z. The set Z is able to d-separate x from y since r blocks the path 

to y. Though v opens a path at the collider t, it does not affect the ability of r to block the path. 

However, the set Z is not able to d-separate s from y. The node r has no effect on s and the inclusion 
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of a child of t opens the collider path s→t←u→y. If v is excluded from Z, as described in rule three 

of the d-separation criteria, then s and y are d-separated.  

 

Figure 2.4 A DAG with separating set Z={r,v} 

Another special property of DAGs drawn from the rules of d-separation is the Markov blanket. 

The set of parents, children and spouses of a given node in the graph makes up the Markov blanket 

for a given node. This collection of neighbors consists of the variables that shield the node from 

the rest of the network. That is, when values are provided for variables in the blanket or those 

variables are conditioned on, the target node becomes independent of all other variables outside 

the blanket.  

 

Figure 2.5 An example of the Markov blanket for a selected node (blue) 
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Bayesian Belief Networks in Biomedical Informatics 

BBNs have become a widely used tool for prognostic and prediction models in medicine.  Bayesian 

techniques have also become popular for modeling in many different domains including 

econometrics [49], artificial intelligence [48,50], and epidemiology [51]. BBNs provide particular 

advantages over other methods due to their parsimonious representation of probabilities using 

independence and a capability to compute probabilities with partial data. Early diagnostic and 

prognostic efforts for classification were reviewed by Shipster [3] include HEPAR, MUNIN, and 

Pathfinder [52–54]. Each of these efforts tackled models for different medical domains: HEPAR 

for liver and biliary tract, MUNIN for muscle and nerves, and Pathfinder for lymph-node 

pathology. These varying targets exemplify the capability of BBNs for use across the medical field 

as graphical models are flexible in handling a variety of variables and causal considerations.  

One long running example of Bayesian network use in medicine can be found in predicting breast 

cancer risk. MammoNet was one of the first networks for mammographic screening based around 

patient history, current physical data, and radiologic features [55]. Information from experts and 

literature were used to establish conditional probabilities and 77 cases were evaluated for benign 

or malignant lesion status. Later, another Bayesian network was developed around well studied 

breast cancer imaging features (BI-RADS features) and was able to increase predictive accuracy 

over the previous model [56]. Further refinement of the model for predicting lesion malignancy 

was able to demonstrate prediction accuracy similar to an expert radiologist [57,58]. In addition, 

the results of ROC analysis indicated that combining the model and expert information would 

increase the accuracy over using either technique alone [58]. 

Bayesian techniques have also led to comparison work against other predictive modeling options. 

Lung cancer predictions using Bayesian networks and support vector machines (SVMs) were 



42 

compared by Jayasura et al. [59]; both techniques performed with similar accuracy, but Bayesian 

techniques retained higher accuracy when missing data became a factor. Bioinformatics 

researchers also utilize BBNs to search genomic and proteomic data for predictive cell markers to 

expand the features available for clinical models. Guha et al. provide an example where a Bayesian 

network was used to target lung cancer by analyzing proteins related to two highly studied cancer 

genes, EGFR and KRAS [60]. Cancer is a popular target for predictive modeling and publications 

continue to point to increased use of BBNs for targeting different forms [55,56,61]. BBNs are also 

increasingly seen for other predictive tasks in medicine such as head-injury [62], trauma [63], and 

venous thrombosis [64].  In addition to predictive and prognostic tasks, BBNs can be constructed 

for use in diagnostic reasoning or treatment selection; a more in depth discussion of these methods 

can be found in [65]. 

Utilizing Bayesian models for prediction in glioblastoma multiforme (GBM) is relatively 

unexplored. Efforts are still largely focused on determining appropriate prognostic variables. 

Recent studies have considered standard clinical and treatment variables [66,67], imaging markers 

[68,69], and genetic factors [70,71] for use in modeling GBM evolution. Many of these efforts 

utilize logistic regression models or Cox proportional hazard models for testing appropriate 

predictive variables, but few have considered transitioning to Bayesian techniques. 

2.3.2 Causal Models 

The special constraints of a DAG are useful for the purposes of probabilistic prediction modeling. 

But, a distinction should be made concerning the differences between causal and probabilistic 

models (e.g., BBNs). A causal model provides a directed edge from node X to node Y if the value 

assumed by X is used in the function that determines the value of Y. These connections in a causal 
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model are representative of an “X causes Y” relationship, conveying an inherent sequential 

ordering of events and representing a direct functional relationship.  

Within the probabilistic (Bayesian) context, the edges between nodes are commonly interpreted in 

a similar fashion as causal connections because modelers derive their assumptions from the 

intuition of experts or experimental findings. However, BBNs are not causal models of the disease 

at hand simply because modelers have an intention of using directed edges as assumptions of 

causality. The relationships between variables are encoded by means of a conditional probability 

table of variables given their parents. These probabilistic dependencies can be described by a 

number of equivalent graphs. For example, Figure 2.6 presents a network with three variables 

where the directionality of the edges is presented in two ways. A single probability distribution 

can be described by either of these directed models because they contain the same set of conditional 

independencies. In contrast, arrows in a causal model not only represent probabilistic dependence 

but also direct causation. 

 

Figure 2.6 Two graphs with different directed edges but the same joint probability. 

Thus, a causal graph should be utilized to construct a causal model (network), embedding the 

strong causal claims that move beyond probabilistic descriptions. Examining the model with these 

properties provides a modeler with the ability to consider interventions on the system.  
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External intervention on a model can be described as forcing a variable to take a set value rather 

than allowing it to follow the underlying function it naturally contributes to the model. For 

example, for intervention on a single variable X, the value of X in the graph is forced to the value 

𝒙𝒊 rather than following the natural distribution. This procedure is commonly described in equation 

form using a do() operator. The previous example is the intervention 𝑑𝑜(𝑥) on the variable X. 

Interventions are used for determining the causal effect of one variable on another. This can be 

easily equated to the experimental process in RCCTs, where randomization steps are used to force 

a value of interest to a specific value to study its causal effect on another variable. 

Intervention on a set of variables has implications on the causal graph. As intervention is a forced 

action, a variable under the influence of intervention is no longer dependent on its parents. 

Graphically, this is represented by a break in the directed link between the parent and child nodes. 

The updated graph under intervention is commonly noted as a mutilated graph. Using different 

sets of mutilated graphs, inference rules can be used to convert probabilistic sentences involving 

interventions to sentences that involve only observations. These inference rules are known as the 

do-calculus and are described further below. 

In addition to the added capability to explore interventions using a causal model, it is also possible 

to consider arcs in the graph representing uncontrolled confounders. Represented by bi-directed 

edges, confounding links describe correlations caused by unknown or unmeasurable variables 

related to the system. Uncontrolled confounders are very problematic for the d-separation 

characteristics of a graph as there is no available data or distribution to condition upon. This results 

in connections that obscure the direct causal connections between the variables, ultimately 

disrupting the ability to identify effects and perform accurate predictive inference. 
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Figure 2.7a contains an example of a possible graphical causal model for prediction of GBM 

survival from treatment and genetic variables. Additionally, the graph can also incorporate 

confounding links as shown in Figure 2.7b by dashed bi-directed arcs. The square nodes of Figure 

2.7b are an additional item used for the purpose of transportability theory and are discussed in 

section 2.3.3. 

 
 

(a) (b) 
Figure 2.7 Example causal diagram for (a) GBM survival prediction and (b) the same causal diagram of GBM with 
links and nodes represented expected confounding information and population differences for variables. In the 
diagram, solid circular nodes represent observed variables; while square nodes indicate selection nodes controlling 
for population differences. Causal links are represented with solid lines with directional arrows. Bi-directional dashed 
lines indicate a variables linked by confounders. The selected observational variables are Tumor Protein 53 (TP53); 
O6-methylguanine-DNA-methyltransferase (MGMT); Temozolomide (Temodar); CCNU (Lomustine); and Karnofsky 
Performance Score (KPS). Unique selection nodes for CCNU and temozolomide are shown as SC and ST 

Identification 

The end goal of a disease modeler is typically to provide a prediction concerning a patient or 

population utilizing passive observations. Yet, causal models are built around assumptions and 

interventions that explain events based upon experimentation. To utilize causal models 

appropriately for probabilistic inference, we must determine when a model is identifiable from 

observational findings.  

Following from Pearl's definition of causal effect identifiability, we can state that when 

𝑃(𝑦|𝑑𝑜(𝑋 = 𝑥))  is identifiable, we can infer the effect of the 𝑑𝑜(𝑋 = 𝑥)  intervention from 

observational data and the causal graph, G. That is, identifiability allows for non-experimental data 
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to be used with our incomplete causal knowledge in order to estimate values when large samples 

exist for estimating the probability distribution of a variable, 𝑃(𝑣) . Two graphical tests are 

particularly useful when dealing with identification of effects with existing covariates: the back-

door and front-door criteria. 

The back-door criterion indicates if a set of variables is able to block specific paths that point into 

a node X. Therefore, the set Z is able to block edges with arrows that enter X through the “back-

door”. The back-door criterion is defined as follows: 

Definition: Back-door criterion 

A set of variables Z satisfies the back-door criterion relative to an ordered pair of variables 

(X, Y) in a DAG G if: 

i. No node in Z is a descendent of X; and 

ii. Z blocks every path between X and Y that contains an arrow into X. [48] 

 

The criterion is easy to examine graphically as seen in the example in Figure 2.8. Particular sets 

of variables from 𝑋1 … 𝑋6 can be a part of Z and satisfy the criterion.  In the example, the sets 

Z={𝑋3, 𝑋4} and Z={𝑋4, 𝑋5} both satisfy the back-door criterion. The set Z={𝑋4} does not satisfy 

the needed criteria, because a path remains that can cross the collider at 𝑋1→𝑋4←𝑋2. 
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Figure 2.8 Example DAG for Back-door criterion. 

The Front-door criterion examines the case where covariates affected by the variable X can be 

used to identify the causal effect unlike in the back-door criterion above. The front-door criterion 

is defined as follows:  

Definition: Front-door criterion 

A set of variables Z satisfies the font-door criterion relative to an ordered pair of variables 

(X,Y) if: 

i. Z intercepts all directed paths from X to Y; 

ii. There is no unblocked back-door path from X to Z; and 

iii. All back-door paths from Z to Y are blocked by X. [48] 

 

Just as with the back-door criterion above, we can examine this test graphically. Figure 2.9 is 

drawn from Figure 2.8 where 𝑋1 … 𝑋5 are now unmeasured variables. As 𝑋1 … 𝑋5 can no longer 

serve to block back-door paths we need another mechanism for identification. With the front-door 

criterion, we see that 𝑋6 intercepts the path from X to Y as required in (i) while X itself is able to 

block the only back-door path across the unknown variables, U. 
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Figure 2.9 Example DAG for Front-door criterion. 

Pearl notes that the front-door criterion is overly restrictive and that some paths denied by 

conditions (ii) and (iii) can be loosened depending on other covariates of the graph. Due to this 

issue, Pearl moved forward with developing a formal set of inference rules for working with 

identification in causal graphs called the do-calculus. [48] 

Do-Calculus 

The do-calculus is a set of inference rules for transforming probabilistic sentences with 

interventions and observations into new sentences.  The rules follow the use of the do() operator 

mentioned previously for describing interventions in causal graphs. The application of the do-

calculus rules can be used iteratively to reduce an expression for P(y|𝑑𝑜(𝑋 = 𝑥))  into an 

expression with no do() terms. When this reduction is possible, the causal effect of X on Y is 

identifiable for the graph, G. An equivalent notation for 𝑑𝑜(𝑋 = 𝑥) is 𝑥̂ and is used to simplify 

the do-calculus notation. 

The do-calculus rules follow from the interpretation of the do() operator causing a sub-model of 

the original model that is represented by a mutilated graph. A mutilated graph, 𝐺𝑋, represents a 

graph where all incoming arrows to node X have been removed. A graph  𝐺𝑋 represents the graph 

where outbound arrows from node X have been removed. The first rule of do-calculus, therefore, 
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relates to the conditional independencies after the graph changes from a do intervention, 𝑥̂ . 

Removing variables from the set Z do not introduce new dependencies to the graph. Rule two 

observes that an intervention on Z has the same effect as simply observing Z=z. This rule is related 

to the back-door criterion as Z is blocking those paths. Rule three deals with interventions on Z 

that have no effect on Y at all. The independence of Y and Z allows for the intervention to be 

removed completely. Z should not include ancestors of W, however, as they are important for 

blocking back-door paths involved in the front-door criterion. The rules of the do-calculus are as 

follows: 

Definition: Rules of do-calculus 

1. (Insertion/deletion of observations): 

𝑃(𝑦|𝑥̂, 𝑧, 𝑤) = 𝑃(𝑦|𝑥̂, 𝑤)  if (𝑌 ⊥ 𝑍|𝑋, 𝑊)𝐺
𝑋

 

2. (Action/observation exchange): 

𝑃(𝑦|𝑥̂, 𝑧̂, 𝑤) = 𝑃(𝑦|𝑥̂, 𝑧, 𝑤)  if (𝑌 ⊥ 𝑍|𝑋, 𝑊)𝐺
𝑋𝑍

 

3. (Insertion/deletion of actions): 

𝑃(𝑦|𝑥̂, 𝑧̂, 𝑤) = 𝑃(𝑦|𝑥̂, 𝑤)  if (𝑌 ⊥ 𝑍|𝑋, 𝑊)𝐺
𝑋,𝑍(𝑊)

 

Where Z(W) is the set of Z-nodes that are not ancestors of any W-node in 𝐺𝑋 [48] 

 

The do-calculus has been proven complete [72,73], meaning that it is sufficient for deriving all 

identifiable causal effects. Repeated application of the do-calculus rules can render a given 

interventional sentence to be “hat-free”, where the sentence is written in terms of only 

observational values. When such a statement cannot be completely reduced, then the causal graph 

is unable to be used to identify the effect of X on Y. [48] 
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2.3.3 Transportability Theory 

Transportability theory provides a basis for describing the ability to “transport”, or move, data 

between populations based on the relations expressed through a causal model. For example, a 

physician in a rural setting might wish to apply the results of an RCCT conducted at a large 

research hospital to decision making for patients locally under his/her care. The RCCT findings 

can be understood in the context of a causal graph, per Figure 2.7, as a treatment (A) with effect 

on a patient outcome (B), with additional measured factors such as clinical history, imaging, or 

genetics (C, D, E). Transportability allows a researcher to identify potential confounding evidence 

between variables (represented by dotted lines) and population differences (indicated by the square 

nodes, SC and ST) that influence if the findings from the RCCT can be applied to the rural patients 

in a principled way. For instance, the physician may not have genetic information for his 

population; applying transportability can help ascertain whether the genetic information collected 

in the RCCT can be reused (i.e., transported) with the local group (and if not, under what additional 

circumstances such data transport is valid). Likewise, differences between the hospital and local 

populations (e.g., demographics, disease prevalence within the region) can be accommodated via 

transportability. Thus, if no substantial differences can be proven to exist, or existing differences 

can be accounted for utilizing properties such as the do-calculus, then the external validation can 

be used to confirm the model is transportable to the new population. A suitably constructed causal 

graph can be used to ascribe the set of variables which are not portable and must contribute 

probabilities to an inference task for a given population. The remaining variables in the graph are 

those capable of reuse to transport information from a study population to a new population. 

To properly describe the full set of causal connections in the graph and make it useful for 

transportability testing, additional information not commonly captured in a BBN must be explicitly 
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represented. First, unmeasured confounding information expected to exist between any two nodes 

needs to be marked accordingly. These confounders are represented by bi-directional dashed edges 

and cover the counterfactual circumstances of variables that may be impossible to observe or 

measure. An example of this situation could be the potential interaction of a non-prescription pain-

killer and treatments prescribed by the physician (Figure 2.7, the dashed arc between A and B). 

Patients may not report their non-prescription use and there may be unmeasurable interactions 

even if the physician knows both drugs are being taken. Second, when population differences are 

suspected or known to exist for a particular variable, a selection node is added that embeds the 

need to control for variation. A selection node serves this purpose by explicitly identifying 

population differences (e.g., disparities in demographics, socioeconomic status) that are 

responsible for assigning a value to that variable. By way of illustration, if age differences were 

significant between two populations, a selection node could be used to define a patient selection 

that maintains age-matching. I discuss these points further in the context of the simplistic Bayesian 

model of GBM in Figure 2.7. 

In the example GBM model in Figure 2.7a, we have a set of six variables and their causal 

connections. The example network comprises no connective links other than the direct causal 

connections derived from the literature. With no additional links to consider, we would find 

ourselves in a state where the findings for one population are (in theory) transportable to another. 

However, causal assumptions have been made in constructing this graph, and we must consider 

the differences that likely exist between our nodes and the target populations upon which the model 

could be applied. Rather, most networks will more reasonably be in a state where there are specific 

confounders and selection nodes to manipulate. A graph with a number of these issues, such as in 

Figure 2.7b, is a case where data may not be transportable unless certain constraints can be met 
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either by transportability rules and the use of do-calculus. Otherwise, modelers should have strong 

evidence or support that removal of the connections can be made without affecting the outcomes. 

The goal is to map between the real-world graph in Figure 2.7b and the ideal causal graph in Figure 

2.7a to enable the transport of information.  

Having properly described the links assigned to the graph, the application of Pearl’s work with 

transportability is now possible. The algebraic rules of do-calculus [45,48] enable a formal 

mathematical statement to be derived that determines what elements of information are 

transportable with the given variables, relationships, confounders, and selection nodes. Further 

graphical analysis via d-separation and back-/front-door criteria can help determine which 

variables of the model are identifiable. In this way, the full spectrum of techniques related to causal 

graphical models can be used to determine identification. When a causal graph is not identifiable, 

its findings are not transportable. Further examples drawn for these situations are reviewed in more 

detail in the available work from Pearl and Barenboim [45,46]. 

2.4 SUMMARY 

As reviewed in this chapter, randomized controlled clinical trials and meta-analysis provide a 

wealth of knowledge to clinicians and researchers, and disease models have the potential to provide 

decision support through statistical prediction. Validation is required to assess predictive model 

accuracy and to evaluate the capability of models to generalize to the population at large. In this 

chapter, I established the primary types of validation and prior work that has laid the foundation 

of validation analysis. This dissertation proposes new methods for calculating internal validation 

statistics with limited information and methods for improving the classification of external 

validation (transportability) decisions. Partial model updating is an important area of study for 
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providing effective tools for addressing transportability failures. Thus, graphical and causal model 

concepts were reviewed in order to provide a background in causal transportability theory. 

Transportability theory is considered for updating models evaluated in this dissertation. As the 

number of disease modeling papers continues to grow each year, understanding and improving 

model validation and updating techniques have become more important. This dissertation builds 

from the previously discussed works in order to improve transportability assessments and work 

towards the wide use of models in clinical decision making. 

  



54 

CHAPTER 3  

GATHERING AND ANALYZING PUBLISHED MODELS 

Predictive disease models are becoming more widespread in medical literature. A PubMed search 

for “prediction model” shows that the number of papers making references to models has been 

increasing steadily (2005: 1622 publications, 2010: 2741 publications, 2015: 5135 publications) 

[74]. Models are useful to medical research and clinical decision making because of their ability 

to combine multivariate relationships from varied data sources for more detailed disease analysis. 

The transition to electronic health records and new analytic techniques in imaging and genetics 

have caused an explosion of medical data contained in clinical trial reports, treatment guidelines, 

laboratory results, drug interaction databases, imaging results, and genetic profiles. The increased 

wealth of electronically stored information along with more powerful computing resources have 

driven data analysis and machine learning techniques that have brought modeling to the forefront 

as a tool for prediction in many fields including medicine. 

 Taking advantage of the knowledge produced across many modeling investigations is challenging. 

Models are built to answer many types of clinical questions and predictions are meant to provide 

support for important medical decisions. However, determining if a specific model or set of models 

can reliability support decision-making tasks is an important area under investigation. Insufficient 

reporting of methods and findings is one of the primary problems when considering models for 

application in decision making. A number of important steps in data collection, cleaning, 

discretization and imputation occur before models are trained. Discretization and imputation 

decisions can be particularly important when applying a model to future cases. Feature and model 

selection decisions are also important and provide context for what medical data is important to 
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collect and what outcomes a model is attempting to predict. Finally, the inclusion of interval 

validation analysis indicates the performance and potential bias of the model to the original data. 

Reporting standards for these decisions and tests are not fully developed and review papers in 

different disease domains have described the inconsistency of published values [5,75–78]. One set 

of recommendations based on literature review, surveying, and discussions between statisticians, 

epidemiologists, methodologists, health care professionals, and journal editors was recently put 

forward in the TRIPOD statement (Transparent Reporting of a multivariable prediction model for 

Individual Prognosis Or Diagnosis) [79,80]. Increased exposure of reporting recommendations 

should improve the quality and consistency of model publications and enable improved 

comparisons of model results and validity. 

Another difficulty of applying models in new environments relates to the underlying differences 

that exist between the source cohort (i.e., subjects collected and analyzed during model 

development) and the target cohort (i.e., the subjects in need of future prediction and decision 

making). Internal validation provides an understanding of the bias in a model. Biased models are 

frequently overfit, leading to strong source performance that will not carry forward to different 

cases. Nevertheless, future model performance is not guaranteed even when bias is minimized. 

Target environments will frequently include patient cases the original model did not cover. Insights 

into potential differences could be used to control data collection and model factors and improve 

results. Clear reporting can provide awareness of potential differences. New techniques tied to 

external validation could also increase the number of models considered after failures by providing 

model adjustment or updating options.  

The development of predictive models in cancer is driven by current medical knowledge and 

treatments. Future therapies and disease prognosis methods build from previous care and research. 
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However, it takes time to reach consensus in clinical trial research and predictive models have seen 

similar trends in determining a unifying set of biomarkers. For example, studies of glioblastoma 

multiforme (GBM), a type of primary brain cancer, have been unable to reach a definite consensus 

on the most effective predictive variables for GBM patients [66,71,81–86]. Researchers continue 

to work towards integrative models of disease that better utilize the influx of experimental data. 

Important to this task is the creation of models that are able to generalize between patient 

populations. External validation provides a means for determining the success or failure of a model 

to transport to target cohorts, but these analyses are not yet able to pinpoint differences and their 

causes. Previous epidemiological experiments have demonstrated the difficulty of carrying source 

results forward. Bleeker et al. examined model parameters using derivation (source) and validation 

(target) test sets. Coefficients derived for both sets of data were compared and the derivation model 

was unable to predict validation cases with sufficient accuracy [15]. A similar review of stroke 

models found some generalization was possible with temporally separated cases (i.e., temporal 

transportability), but all examined models had issues when applied to external data with other 

forms of difference [16]. 

In this chapter, a set of papers using predictive models for the analysis of GBM survival were 

selected. After review of a large set of queried papers, four modeling papers were reviewed in 

detail.  Each model was then applied to a target cohort of UCLA patients and tested for model 

discrimination, the most common test for deciding model transportability. The difficulties of 

gathering relevant details concerning data processing, model design, and validation results are 

discussed, highlighting the obstacles clinicians and researchers face when considering the 

application of models to their data. These key issues were considered in relation to widely 

published reporting issues and influenced research presented in other chapters of this dissertation. 
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3.1 METHODS 

To better understand the issues of gathering published data to support external validation, 

published literature was reviewed for recent models of GBM disease survival. A set of relevant 

papers were obtained from PubMed, following the common search practices of clinicians 

searching for publications applicable to their patients. PubMed results were reviewed and a set of 

models were selected for external application. The external dataset was created by mining a UCLA 

database of GBM patients treated after 2005. Parameters of the selected models were then used to 

determine performance and assess transportability by predicting UCLA outcomes. Figure 3.1 

provides and overview of the analysis stages which are expanded on below. 

Model Evaluation

UCLA data collection

Feature matching, discretization

Hazard score calculation

Prediction and evaluation

Model Review

Cohort size

Model findings

Design choices

Prior validity tests

+

+

+

Paper Selection

PubMed search

Title/abstract review

Reference/citation augmentation

Final paper selection

 

Figure 3.1 Selection, review, and evaluation process for this chapter. Paper selection combined search engine and 
manual review methods to choose a final paper set. Model review gathered and analyzed relevant elements from 
papers. Evaluation applied gathered knowledge to test prediction accuracy using a local dataset. 

3.1.1 Paper selection 

Papers were selected through a combination of PubMed database querying and manual curation. 

First, a PubMed search string was created using input from the PubMed online query builder. The 

search targeted papers containing references to glioblastoma multiforme and predictive modeling. 

The final search string combined free text phrases with expanded MESH terms to account for 

different wording choices in publications. 
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("glioblastoma"[MeSH Terms] OR "glioblastoma"[All Fields] OR ("glioblastoma"[All Fields] 

AND "multiforme"[All Fields]) OR "glioblastoma multiforme"[All Fields]) AND 

(prognostic[All Fields] OR predictive[All Fields] OR cox[All Fields] OR ("risk"[MeSH Terms] 

OR "risk"[All Fields]) OR prediction[All Fields] OR statistical[All Fields] OR hazard[All 

Fields]) AND ("Survival "[ All Fields]) AND model[All Fields] 

A total of 220 related papers were returned in the PubMed query in January 2014. Titles and 

abstracts of returned entries were manually reviewed to constrain the set further. Paper selection 

criteria used in this step included: studied survival outcome, published in 2010 or later, and 

included a detailed model description. This filtering reduced the PubMed set to 18 papers. Many 

of these remaining papers examined specific predictive targets in univariate analysis rather than 

multivariate prediction models. These univariate models were excluded and the references and 

citations of three remaining multivariate papers were used to expand the search for multivariate 

modeling papers [69,87,88]. Four papers [87–90] were chosen as the final modeling set. They 

included descriptions of the following model elements: cohort size, cohort demographics, model 

variables, significant variables chosen in multivariate Cox regression, and coefficients of the Cox 

model. One multivariate modeling paper by Mazurowksi et al., for example, did not include 

description of model coefficients and was removed from consideration [69]. Cox proportional 

hazard models were explored because they were the most studied model design in GBM papers 

during the review process. Table 3.1 summarizes details of the selected papers. 
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Title Author Published 

Study 

Period 
Cases      

Considered 

Cases 

Used 
Median Survival 
Time (Months) 

Overall survival, prognostic 
factors, and repeated 
surgery in a consecutive 
series of 516 patients with 
glioblastoma multiforme 
[89] 

Helseth 2010 2003-2008 516 516 9.9 

Clinical variables serve as 
prognostic factors in a 
model for survival from 
glioblastoma multiforme: 
an observational study of a 
cohort of consecutive non-
selected patients from a 
single institution [87] 

Michaelsen 2013 2005-2010 225 225 14.6 

MR Imaging Predictors of 
Molecular Profile and 
Survival: Multi-institutional 
Study of the TCGA 
Glioblastoma Data Set [90] 

Gutman 2013 2006-2008+ 75 68 13.3* 

Evaluation of outcome and 
prognostic factors in 
patients of glioblastoma 
multiforme: A single 
institution experience [88] 

Kumar 2013 2002-2009 439 360 7.67** 

Comparison UCLA Dataset Singleton - 2005-2015 482 125 16.9 

Table 3.1 Summary of selected papers for model comparison. +End date approximated from first publication on the 
Cancer Genome Atlas (TCGA) data in Nature. *Value derived from data, not reported in literature. **Higher survival 
(7.97 months) reported for Group II (KPS>70). 

3.1.2 Model review 

The four selected GBM modeling papers were inspected for elements important to understanding 

the creation of the patient cohort and the purpose of the original model. Some important items 

considered include the source cohort size, model hazards for calculating feature coefficients, 

descriptions of design choices (i.e., discretization, feature selection), and discussion points 

concerning data complexities or limitations that might imply population differences likely to 



60 

influence external validity. Each publication is identified by the first author of the work when 

referenced in the remainder of this dissertation: Helseth, Michaelsen, Gutman, and Kumar. Details 

of the source study size and survival times are summarized in Table 3.1 and compared to the local 

target dataset. The hazard ratios of significant multivariate features used in discrimination testing 

are reported in Table 3.2 for each model. Discretization and imputation findings are discussed in 

the next section as they influenced the target cohort creation. Other relevant details are discussed 

in the results when considering their implications in relation to validation tests. 

 Helseth Michaelsen Gutman Kumar 

Sex 1.44    
Age (a, b) 1.02 1.31   
ECOG (c) 2.13 1.22   

  2.06   
KPS   0.972  

Tumor Location 2.31   1.52 
Tumor Site    2.34 

Surgery 2.72    
Corticosteroids  2.06   
Radiation Dose    2.03 
Chemotherapy    0.44 

Proportion of Contrast Enhancement   7.745  
Tumor Major Axis   1.016  

Table 3.2 Cox Regression Hazard Ratio Summary: a – Helseth Age continuous, b – Michaelsen Age discretized by 10, 
c – Michaelsen ECOG split into two dummy variables. 

Authors for each of the papers were contacted in an attempt to gather training data, as the use of 

such data would provide the ability to replicate the original models and estimate additional metrics 

for transportability analysis. Unfortunately, data was unavailable either because authors did not 

respond or because data protections restricted access. The Gutman dataset was an exception; the 

source cohort was built form a public database and was therefore available for follow-up analysis. 

Without previous training data, evaluation is limited to more qualitative comparisons based on 

reported findings and discussion. Additional quantitative assessment is difficult beyond direct 

comparison of discrimination metrics. For instance, depending on the level of internal validation 
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reporting, an assessment of the calibration and overfit of hazard values may not be clear. 

Replication with the original data would provide an opportunity to review the internal validity of 

the model estimation. Similarly, design details were typically interpreted from published text 

summaries that data access could clear up. Ambiguities in language could lead to 

misinterpretations in application of the model that would affect the transportability. Thus, it can 

be difficult to pinpoint sources of error if the model performs poorly on new cases. 

3.1.3 Transportability analysis 

UCLA data collection and preprocessing 

A retrospective cohort of UCLA patients was obtained by manually reviewing the records of 

patients seen for GBM assessment from 2005 to 2014. Manual chart review was performed and 

cases were removed from consideration when baseline clinical reports, pre-surgical imaging, or 

long-term follow-up information were missing, as this made it impossible to gather information 

relevant to the features in the selected published models. Patient and feature information was 

recorded to a local database as part of the chart review. Figure 3.2 summarizes the selection 

process. The final dataset used for evaluation included 125 cases. A primary reason for missing 

reports or imaging in the manual review was patient referral; initial evaluations from other 

hospitals were often not shared when subjects were referred to UCLA. 
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UCLA GBM Patients (n=482)

Clinical records (incomplete) (n=109) Clinical records (complete) (n=373)

Pre-operative imaging (no) (n=209) Pre-operative imaging (yes) (n=164)

Complete features (n=125)

Uncensored (n=94)
 

Figure 3.2 Patient selection process for building the UCLA test cohort. 

Manual review attempted to gather complete case data for all clinical and imaging features seen in 

the Cox models. Collected values were recorded to a database of UCLA GBM subjects. The system 

was queried following collection to further determine the completeness of requisite clinical and 

imaging information. Baseline reports were important for determining age, sex, baseline diagnosis 

information, and initial Karnofsky performance score (KPS), a cognitive assessment variable. 

Follow-up reports were necessary for treatment variables such as surgery, chemotherapy, radiation 

therapy, and corticosteroid treatment (used to control cerebral edema and inflammation, thereby 

altering imaging appearance). Information for KPS and corticosteroid treatment proved to be the 

most difficult to obtain from reports. Imaging features were obtained from pre-surgical magnetic 

resonance (MR) imaging. A subset of the VASARI imaging feature set was recorded from these 

images by an expert neuro-radiologist (22 years of experience). 

A total of 482 cases diagnosed with GBM were examined, yielding a final cohort of 125 cases 

with clinical and imaging data matching the feature sets of the previous models. Given that most 

of the papers did not report an imputation process, selection was conservative to avoid missing 

data and match the absence of imputation in previous works. Missing data was allowed only for 
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the KPS feature (six cases) as it was the only feature with a described imputation approach. 

Missing KPS values were imputed to a score of 80 in the Gutman paper. 

Target cohort prediction 

The risk rates of features in Cox models are usually reported as hazard ratios as seen in Table 3.2. 

Hazard ratio values can be easier to interpret than model coefficients as they indicate the increased 

or decreased hazard rate of an outcome (often death) for a patient with the presence of a feature. 

For example, a hazard ratio of 2 for a binary feature like Sex (e.g., Sex: Male = 1, Female=0) 

describes that that hazard rate for a male patient is double the rate for females. 

Regression coefficients, 𝜷 = (𝛽1, … , 𝛽𝑖), can be obtained by taking the log10 of the hazard ratio 

values. Regression coefficients can be multiplied against the respective feature states of a subject, 

𝒙 = (𝑥1, … , 𝑥𝑖), and summed to obtain a linear predictor value used to predict outcome. 

𝐿𝑃 = 𝒙𝜷 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑖𝑥𝑖 

Discrimination is commonly measured with either the area under the curve (AUC) of a receiver 

operating characteristic (ROC) curve or with the concordance statistic (c-statistic). Both measures 

are summary statistics of the overall predictive capability of a model. In this work we use the 

concordance measure, a rank statistic that compares predicted values for pairs of subjects with the 

outcome (Y=1) and without the outcome (Y=0). The proportion of pairs where a subject with 

positive survival outcome at a given time (i.e., Y=1|t) has a lower linear predictor, LP, than a paired 

subject that dies indicates the proportion of times the model will make a correct decision between 

these outcomes. 
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Using this procedure to convert reported hazards (Table 3.2), linear predictor values were 

calculated for target UCLA cases from the Helseth, Michaelsen, Gutman, and Kumar papers [87–

90]. The c-statistic was calculated using these linear predictor values, outcome status, and survival 

times. Statistical analysis was programmed in R (v 3.1.3) and run in RStudio [91,92]. Linear 

predictors were calculated manually and adjusted based on feature means derived from the 

published summary statistics. Mean feature values were not published for the Gutman model and 

were instead calculated from shared data. The c-statistic was calculated using the rcorr.cens 

function of the ‘rms’ package [93]. The resulting target c-statistics for discrimination of each 

model were compared against published values of the source cohort c-statistic where available.  

3.1.4 Replication analysis 

In addition to applying the four models, source data from Gutman et. al was used to perform a 

replication analysis. Patient selection and discretization were attempted on the source cohort using 

the Gutman paper’s design description. A set of 68 cases were selected, removing cases with 

missing outcome information as closely as possible to the process described in the original work. 

Missing KPS values were imputed to a value of 80. This 68 case cohort was used to train a Cox 

proportional hazards model in with the cph function in the ‘rms’ package [93]. The hazards from 

this Cox model were compared directly with the published values to determine if a replication of 

the original process was successful. In addition, the resulting model was used to compute linear 

predictors and c-statistic for the target UCLA cohort. 

As the original Gutman work did not report an assessment of internal validation, the c-statistic 

from apparent validation of this replication model was used for comparing performance c-statistics 

found when applying to the target cohort. 
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3.2 RESULTS 

3.2.1 Selected Papers 

Four papers [87–90] were selected as final targets for analysis based on the overall strength of their 

reporting. Descriptions of selection criteria, population statistics, and modeling methods were 

more robust than other modeling papers that were considered. However, each paper had data 

collection and modeling decisions that were difficult to decode or apply. For example, Helseth 

made a number of references to significant factors related to patient ages greater than 60 and 70 

years (likely from a stratified analysis that was not completely included). However, the reported 

hazard ratio for age was based on a continuous measurement during modeling. This added 

confusion, initially causing an incorrect analysis to be run with a binary discretization based on 

age greater than 60 before the misinterpretation was detected. In Michaelsen, corticosteroid 

therapy was determined at the start of treatment following surgery. When collecting the status of 

this treatment for UCLA patients, initial treatment time was not static. Some patients received 

steroids immediately after surgery; others received steroids weeks later, following radio-

chemotherapy. Subsequently, decisions concerning corticosteroid treatment were sometimes 

unclear in UCLA cases, making it difficult to code values based on the descriptions given by 

Michaelsen. In Gutman, a standardized feature set for imaging (VASARI) was evaluated using a 

team of readers. However, VASARI features have yet to be fully validated using radiologists who 

were not trained as part of the original study [69]. Classification of percentages of enhancing tumor 

in the UCLA dataset were lower than values determined from cases in the Cancer Genome Atlas 

(TCGA) dataset. As only one expert reader was available for this analysis, additional tests could 

not be performed to determine whether this difference was due to radiologist interpretation, MRI 

protocols, or disease traits. Finally, given patients’ limited access to facilities in India, the Kumar 
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study was partly focused on complex analysis of radiation treatment schedules. UCLA follows a 

more standardized treatment pattern. To make these difference more comparable, radiation 

treatment groups were simplified into treatment and non-treatment classes rather than being judged 

at a specific dosage. Each of the described issues impart the need to clearly define model 

constraints. Even with the detailed reporting in this set of papers, some constraints had to be 

adjusted due to the availability of information and difference of treatment at UCLA. When reports 

were unclear, application became a game of assumptions. Errors based on assumptions are more 

likely, such as incorrect discretization or improper feature collection, which might affect model 

performance. 

Additional threats exist to the external validation of models beyond interpretations of modeling 

decisions. For the Helseth model, the inclusion of data from before and after 2005 might be 

problematic. In 2005, Stupp’s report [94] became a milestone publication revealing that tumor 

resection and temozolomide therapy result in the longest GBM survivals. Including cases prior to 

this milestone might threaten temporal validity since survival chances increased when treatment 

protocols were replaced by the Stupp protocol. Patient selection in Michaelsen’s evaluation 

excluded cases where ECOG scores were high (i.e., individuals with poorer outcomes). 

Michaelsen’s population, therefore, is likely skewed to predicting cases with longer survival. This 

difference in survival rates could influence the generalizability of the model to other populations 

with higher ECOG scores and worse prognosis. In Gutman, the size of the original dataset is of 

concern. The primary goal of the work was to assess predictive ability of imaging features, but 

prediction was not directly evaluated with an internal validation. Follow-up replication showed a 

large amount of variability in the predictions made with this feature set, implying that the model 

coefficients might not be sufficiently trained and more cases could be added to the cohort. Like 
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Michaelsen, Kumar stratified patients prior to analysis. Based on KPS values, two groups of 

patients were created and all reported multivariate results are related to Group II with KPS>70. 

Patients with low KPS values received a different treatment protocol and did not contribute to 

model training. Future cases with low KPS might not be accurately predicted by the model as a 

result. Finally, the Helseth, Michaelsen, and Kumar models include populations of patients from 

Europe and India. An Indian cohort with known differences in race, overall health, and 

socioeconomic status from patients in our California dataset might strongly influence the 

transportability of a model. European cohorts might have less difficulty transporting to other 

locations like those in the United States, but population differences could still play a role in model 

performance depending on the nature of the disease being studied. 

3.2.2 Transportability evaluation 

Decreased performance was seen in all models when comparing against available source c-statistic 

values (Table 3.3). Helseth and Michaelsen c-statistics indicated the best overall external 

performance, approaching a value of 0.7. Michaelsen, had the largest total decrease in performance 

on target data, dropping by about 12%. The original performance for Michaelsen was quite strong 

at 0.82. This large decrease is disappointing as Michaelsen’s external performance, while still best 

overall, is now much closer the Helseth model. Gutman’s performance decreased the least, but the 

source model had the worst original performance. Kumar did not report internal validity findings 

and values could not be obtained from the authors after multiple follow-up inquiries. Therefore, 

no direct interpretation can be made about the change in discrimination performance between the 

source and target. Similarly, it is unclear how to interpret the external performance compared to 

other models without some idea of the original c-statistic. 
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Model Internal c-statistic External c-statistic 

Helseth 0.72 0.679 
Michaelsen 0.82a 0.696 
Gutman 0.632b 0.601 
Kumar - 0.633 

Table 3.3 Previously published or derived internal c-statistics and external validation c-statistics when applied to a 
target UCLA cohort. a) Five-fold cross-validation c-statistics were reported as >0.80; b) Value derived from shared 
data, reported value was unavailable. 

Based on current external validity assessments, the implication is that none of the models are 

transportable due to their performance decreases. Gutman might be considered the most 

generalizable to the target setting given that it had the smallest performance decrease between 

source and target. However, the overall utility of the model is lower than the other models because 

the c-statistic is closest to the random decision threshold of 0.5. If overall discrimination 

performance is preferred, Michaelsen would be chosen due its high discrimination performance 

(c-statistic = 0.696). However, the large difference in performance compared to internal validation 

indicates that the Michaelsen model does not generalize as well to the target as other models. 

Therefore, direct comparisons of internal and external c-statistics are not helpful for deciding 

whether each of these models are transportable to the target. Instead, confidence intervals should 

be obtained in order to perform significance testing of the differences between c-statistics. Further 

investigation of these models with CI’s and additional statistics could provide a more accurate 

assessment of which models are transportable. 

3.2.3 Replication evaluation 

The replication attempt resulted in hazard coefficients that did not exactly match the previously 

reported values (Table 3.4). The hazard of KPS values remained the same as previously reported 

with a similar p-value. Smaller hazard coefficients were seen for the imaging features of major 

axis length (a measure of tumor size) and proportion of contrast-enhanced tumor (pCET). The 

decrease in hazard was not substantial for tumor length, but pCET hazard dropped from 7.7 to 5.1. 
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In addition, the significance of the imaging features was decreased in the replicated model attempt. 

Both imaging features were previously reported as significant predictors, but these features 

appeared more borderline (Length p=0.051) or insignificant (pCET p=0.066) in the replication 

attempt. However, the overall model was still able to significantly predict cases compared to a null 

model ( 𝜒2 = 16.6, p=0.0009). The apparent performance measured with the c-statistic was low 

(c-statistic = 0.632) compared to the other Cox regression models considered (c-statistic > 0.7). 

 Reported Replicated 

Variable Hazard Ratio P-Value Hazard Ratio P-Value 

KPS 0.972 0.006 0.972 0.004 

Major Axis Length 1.016 0.030 1.013 0.051 

Proportion contrast-enhanced tumor 7.745 0.037 5.861 0.066 

Table 3.4 Reported and replicated Cox proportional hazard values for the Gutman paper. Likelihood ratio tests with 
three degrees of freedom – Reported: 𝜒2 = 17.4 (P=0.00059), Replicated: 𝜒2 = 16.6 (P=0.0009). 

Much of this instability in the model parameters is related to the small sample size of the Gutman 

cohort. When removing cases from the original 75 Gutman cases, there was some ambiguity in 

how to select survival outcome. Multiple survival features existed based on the reports allowed in 

TCGA. This made it unclear what 7 cases were removed in the original analysis, as multiple 

combinations seemed possible depending on the outcome features considered. Therefore, the 

changes seen are likely due to a different selection of the final 68 cases used in analysis. In 

discussions with Dr. Gutman, it was determined that the original selection method could not be 

repeated because the contributing statistician from that paper had moved to another institution. 

3.3 DISCUSSION 

Discovering relevant papers is one impediment to model application due to the varied goals of 

predictive disease models. In this work, an attempt to create a focused search string returned over 

two hundred papers with references to predictive models and GBM. However, only a handful 
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studied the target outcome of interest (overall survival) using multivariate prediction. Instead, 

univariate analysis was most prevalent and a number of loosely related papers were included in 

the results. Researchers and clinicians must have a clear understanding of the clinical question they 

wish to answer in order to select papers with designs that are useful. For example, other outcome 

targets such as time to progression or survival after progression might have more study with 

multivariate models. However, these modeling goals would require different decisions during data 

collection and feature specification, resulting in a separate analysis from the models in this work. 

Even when the best papers can be found in literature searches, there are deficiencies in reporting 

when describing model choices and assumptions. During selection of GBM papers, similar 

reporting issues were observed to previous investigations in other disease domains [5,75–78]. 

Publications typically include population summaries and model coefficients, but the details of the 

processing used to obtain the case data and models are often lacking. Even when discussion 

appears complete, the ambiguity of free text description and inclusions of stratification analysis 

can obscure the most important decisions made during model construction. For example, in 

Helseth et al., discussion involving the effects of stratification at certain age cutoffs was included. 

However, these stratifications had no bearing on the final model design. In both Helseth and 

Michaelsen’s papers, feature discretization used in modeling did not match with the population 

splits presented in summary tables. Without reading closely, a researcher may collect feature 

values for the target cohort incorrectly and influence the transportability comparison. The ability 

to combine relevant findings from the growing publication base is concerning if the quality of 

reporting cannot be improved so that inherent differences between studies can be clarified and 

compared. 
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Variance of populations and modeling decisions across papers is often the largest impediment to 

model application. Some of these differences can be detected with robust reporting. Within our 

example publications, data was drawn from four different countries. Gutman drew on public data 

from a large multi-institutional collaboration, which might have some extra strength when applied 

across domains, but might also suffer if similar protocols could not be applied to a target cohort. 

The other papers used data from local institutions, which can more easily follow a specific set of 

protocols and standardization, but might also be overfit to predicting patients from those 

institutions. Helseth and Michaelsen used ECOG score, more common to European clinics, to 

measure cognitive deficits while KPS measures were used in the UCLA target cases. This required 

feature conversion to use their models which adds a potential source of error [95]. These examples 

illustrate how quickly data collection and model design differences can accumulate across studies. 

When the chosen source models were applied to the UCLA cohort, performance decreased in all 

cases. Such decreases are common in external analysis [5,75–78]. The many factors already 

discussed and additional population difference that may not be identifiable from descriptions of 

the source population are the primary contributors to this decrease. Current assessments of external 

validity using only discrimination cannot provide enough detail to gauge the extent of differences. 

Debray et al. discussed how performance decrease is often tied to the homogeneity, or case-mix, 

of a target sample [41]. Therefore, additional metrics can further distinguish between source and 

target differences and their relationships to transportability outcomes. Models will continue to be 

published exploring potential clinical markers in disease. However, without a means to apply these 

models more generally, a number of opportunities to translate research to the clinical setting are 

being wasted.  
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Standardized sets of expected items in reporting should continue to be pushed to aid the transition 

to increased transportability assessment. Twelve journals have publicly supported the TRIPOD 

statement and additional journals should consider TRIPOD or alternative guidelines. Regular use 

of appendices can provide extra space for detailed model information and programming code. 

Breaking down barriers to data sharing should also be explored further. Additional data may have 

been available for this analysis, but patient data access was restricted by legal protections. The 

Observational Health Data Sciences and Informatics (OHDSI) network could serve as an example 

system for applying standards in data sharing. OHDSI uses the Observational Medical Outcomes 

Partnership (OMOP) Common Data Model (CDM) to create datasets from multiple institutions. 

Datasets shared with the CDM can be easily run with multiple open source tools with fewer 

restrictions as researchers do not store data locally [96–99]. Finally, formalized model standards 

could provide computer readable model descriptions. Encapsulating all the design choices and 

steps into a standard, annotated representation removes any ambiguity when reapplying modeling 

steps to process future data. The Predictive Model Markup Language (PMML) is an example of 

an XML standard for model description used within the data mining community [100]. Reporting, 

data sharing, and computerized model standards could be combined to open the door to easier 

identification and transport analysis of models. In particular, these standards can provide easier 

access that will facilitate new analytical tests that can enhance definitions of source and target 

difference. 

3.3.1 Limitations 

The paper selection process targeted modeling papers with reference to GBM. The original search 

string did not make a distinction between univariate and multivariate models, increasing the 

number of returned results and likely allowing for additional false positives. In addition, the 
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targeted outcome of overall survival was important and many returned papers had other outcome 

targets. For this analysis, a reference and citation review was used to expand the search for more 

relevant works to partly address this limitation. In depth review of the most relevant works could 

be performed in future work to better define a new query that could more accurately return relevant 

papers. 

Deriving all of the relevant modeling information from publications was limited to available free-

text. This process mirrors how a clinician reviews literature to apply a published model. However, 

some items concerning distribution, discretization, and variable selection techniques were not 

always clear. Internal validity tests of discrimination were also not available for the Gutman and 

Kumar papers. Authors of each paper were contacted by email to attempt to address this limitation, 

requesting access to data or reports of missing c-statistics in addition to inquiring about 

interpretations of the text. Gutman and Michaelsen were responsive, but extra input was usually 

limited due to time and sharing constraints. In the end, Gutman data was shared and used for 

additional analysis. No other data or updated values were able to be obtained for the other three 

publications. 

The examination of four separate model designs limited the overlap of relevant features, as many 

potential predictive features are still under investigation in GBM research. This may have biased 

the cases selected during construction of the UCLA cohort. When selecting patients and gathering 

data for relevant features, more effort was necessary to gather the full set of considered features. 

This limited the total number of patients that were reviewed since data entry required manual 

review of patient reports. In addition, during final patient selection, patients who only had data 

relevant to one or two of the model designs were often excluded in favor of a more complete case 

selection. A database of GBM cases including these cases and future additions will be available to 
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better track these findings and may help with future imputation attempts rather than dropping many 

cases with missing values. 

3.3.2 Conclusion 

Inconsistencies in reporting were seen in a review of predictive modeling papers on GBM patient 

survival. These reporting issues are a substantial hurdle to transportability analysis, as 

demonstrated in an analysis of four previously published models. Overall performance dropped in 

all model applications to target UCLA data and in one case a comparison to the original results 

was not possible due to reporting issues. Without further understanding of the significance of these 

performance changes, researchers would consider these previous modeling attempts non-

transportable. Reporting guidelines have been proposed and should continue to be pushed by 

journals. In the meantime, researchers should attempt to improve transportability assessments 

under the restriction of limited information and encourage collaborations to share data. Such These 

efforts can help emphasize the importance of transportability findings to the research community 

which will further encourage the desire to provide structured, sharable model designs.  
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CHAPTER 4  

SIMULATING SOURCE DATA FROM PUBLISHED SUMMARY DATA 

Data sharing can be challenging in medical research. Patient data contains a great deal of protected 

personal information that must be adjusted or removed before communicating values between 

researchers. For example, sharing of protected health information (PHI) in the United States is 

regulated based on a set of 18 identifiers as part of the Health Insurance Portability and 

Accountability Act (HIPAA). Similar laws exist in the European Union and sharing between 

countries requires additional paperwork. The protection of PHI often means data cannot be shared 

as part of the publication process and that extra work is required to share data retrospectively with 

other researchers.  

As a consequence, summary statistics (such as mean, standard deviation, and group counts) of the 

source population are typically provided in publications. These values are meant to put the current 

population under study in context with other publications. Yet, inconsistencies in reporting often 

hinder the ability to compare the internal validation results of many models due to author-specific 

choices concerning what values and discretizations are used in tables and figures. In addition, these 

varied decisions make it difficult to construct an external cohort that can be evaluated against 

multiple models. Thus, many transportability assessments are unworkable because of the time 

required to process patient data to match previous models. 

Unclear values could be clarified by requesting feedback from authors. Unreported values could 

also be sought retrospectively or access could be given to the original data to run analysis directly. 

Unfortunately, both of these options are largely impractical. Some authors may be unresponsive 

to inquiries concerning their results. In other cases, the communicating author may be a clinician 
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not completely familiar with the statistical process. The staff or students that performed statistical 

analysis may no longer be available to clarify values or reprocess data for new statistics. In extreme 

circumstances, the original data may have been mislaid and the steps to recreate the cohort may 

not be repeatable. Given these major difficulties in obtaining previous source data, two procedures 

for simulating a set of cases similar to the study population using only summary data were 

evaluated. I hypothesize that these simulated cohorts contain enough information to substitute for 

unavailable source information when retrospectively evaluating the variability of the c-statistic 

reported in published models.  

4.1 METHODS 

4.1.1 Evaluation dataset 

To assess this application of cohort simulation, an evaluation was performed using previously 

collected data from the National Lung Screening Trial (NLST) [101,102]. The NLST was a large 

multicenter trial that enrolled 53,454 subjects with high lung cancer risk between 2002 and 2004. 

The trial was designed to randomly assign participants to screenings to evaluate the effectiveness 

of using either low-dose CT or standard radiography. Subjects were followed until 2009, during 

which data was collected on tumor development and deaths from lung cancer. The study was 

conclusive in demonstrating that low-dose CT was useful in reducing mortality in lung cancer 

compared with radiography. The NLST cohort is useful for secondary evaluation due to its 

previous application in the external validation of a lung cancer risk prediction model built using 

data from the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO). The primary 

PLCO risk model is a logistic regression model constructed in 2011 that was updated for 

comparison to NLST data in 2013 [103,104]. An additional Cox regression model is included in 
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PLCO publications. In addition to its use in PLCO evaluations, the large size of the NLST cohort 

helps to simplify the simulation evaluations. 

Prior to simulation, the NLST cohort was randomly split into a training and testing group 

(Ntrain=40,000 and Ntest=10,000) to mirror a split-sample internal validation. Split-sample 

evaluation is possible in this case because the original dataset is large. However, split-sample 

analysis is primarily used to simplify the interpretation of comparisons between the test data and 

simulations rather than having multiple results to consider in a cross-validation. The evaluation 

process could be adapted to run with cross-validation or bootstrapping if desired in future analysis. 

The PLCO model was used to derive the features of interest for model building. Training cases 

were used to develop a logistic regression and Cox proportional hazards model of cancer risk. 

Training cases are only used to determine the source models to be evaluated using the test data and 

simulated data. In order to simulate cohorts based on the NLST test split, test data was also used 

to train logistic and Cox models. However, these models were only used to supply regression 

coefficients to calculate risk probabilities necessary for simulating outcomes. The application of 

these coefficients from the test cohort for event assignment is described in more detail in the 

section 4.1.2. 

Test cases were also used to compute additional values employed as inputs of the simulation 

process that are commonly reported in the literature. Namely, the c-statistic as a test of internal 

validation, summary statistics of features in the population, and for Cox model examples a Kaplan 

Meier curve of overall survival. In addition to these common values, a covariance matrix of the 

test cohort was calculated for use in analyzing the importance of including feature correlations in 

simulation. 
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4.1.2 Simulation designs 

The simulation approach in this work takes advantage of the information in the previous modeling 

publications to inform the designs used to sample values and create simulated cases. Creating each 

case in the simulation requires two steps: 1) sampling of values for each feature described in the 

model and 2) assignment of the event status of the case based on the simulated features. 

Feature sampling is performed by making assumptions on the shape of a feature’s distribution of 

values and assigning a sampling distribution to draw simulated values. Commonly assigned 

distributions are: binomial distributions for binary features, multinomial distributions for 

categorical features, and normal distributions for continuous features. The inputs for the sampling 

distributions are drawn from reported summary statistics. In addition, feature correlations can be 

considered using covariance information. In this chapter, simulations are designated as naïve or 

covariance simulations depending on the inclusion or exclusion of correlation information. Two 

types of sampling are performed depending on the simulation design used. 

Naïve simulation with independent sampling 

Independent sampling is a simple and straightforward way to generate feature and outcome values. 

Each feature is independently sampled from an assigned distribution, then transformed into a 

probability for sampling from an outcome distribution. A full pass of this sampling process creates 

a single simulated case. Cases are drawn until the simulated cohort reaches the desired size. As 

independent sampling does not take feature correlation into account, simulated cases may have 

significant differences from the source data. Yet, the independent approach may be preferable if 

these differences do not affect later applications, because it only requires summary statistics 

commonly reported in literature (mean, standard deviation, and probabilities derived from feature 
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counts). Therefore, it requires a minimal set of information and is less cumbersome to collect and 

report when simulating cases. 

Covariance simulation with Gibbs sampling 

Although feature correlation information is not readily available in current reporting, the influence 

of correlations may have significant effects on the similarity and variability of a simulated cohort. 

For this evaluation, a second sampling method was performing incorporating covariance 

information to determine the importance of correlation to the final performance of simulated 

cohorts. This method was performed by computing the covariance matrix of the source NLST test 

cohort. A covariance matrix is a generalization of the pairwise comparison of features into a 

multidimensional space, providing feature correlation information in the form of covariance. Use 

of the covariance matrix is attractive because it is easy to compute and is a summary of the original 

dataset that is more easily shared between researchers when data access is restricted. Features 

compared against themselves during pairwise tests define the variance of that predictor. Therefore, 

a covariance matrix provides data necessary to sample correlated features from a joint multivariate 

distribution of Gaussian models (e.g., Table 4.1). 

 age bmi smokeday smokeyr smokequittime 

age 25.18079 -1.68555 0.060203 19.44629 3.542062 

bmi -1.68555 24.89754 -0.08511 -4.40085 3.772599 

smokeday 0.060203 -0.08511 0.015884 0.198613 -0.16917 

smokeyr 19.44629 -4.40085 0.198613 54.30047 -18.051 

smokequittime 3.542062 3.772599 -0.16917 -18.051 23.988 

Table 4.1 Example covariance matrix of continuous features from the NLST test cohort. A full multivariate covariance 
matrix is included in Table A.1. 

In the case of a simulation with only continuous features, summary means and a covariance matrix 

make it possible to easily draw values from a joint multivariate normal distribution. In many 

models, however, there are binary and categorical features. To efficiently sample from a 
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multivariate distribution with a mix of normal, binomial, and multinomial distributions, Gibbs 

sampling was performed. 

Gibbs sampling is a Markov chain Monte Carlo algorithm for obtaining a sequence of values from 

a multivariate probability distribution [105]. Sampling is performed by taking draws while 

performing a “random walk” through the state space of the features. The Gibbs sampling process 

iteratively updates one feature at a time, while holding remaining features constant. The chosen 

feature is updated to a new value based on the assumed sampling probability distribution, which 

uses an updated probability conditioned on the states of other constant features [106]. After 

completing a full pass by updating each feature, a new random case is completed.  

The state space for this Gibbs sampling application was defined by the summary statistics and 

covariance matrix of the NLST test cohort. For features following a normal distribution, these 

values are defined by the following matrices for the jth sampled feature and the other remaining 

features from the set K, where 𝐾 = {1, … , 𝑗 − 1, 𝑗 + 1, … , 𝑛}. The sampled feature vector, x, is 

partitioned for the jth feature being estimated by: 

𝑥 = [
𝑥𝑗

𝑥𝐾
] 

The mean, μ, and covariance, Σ, matrices are similarly split for the jth feature as follows: 

𝜇 = [
𝜇𝑗

𝜇𝐾
] 

Σ = [
Σ𝑗𝑗 Σ𝑗𝐾

Σ𝐾𝑗 Σ𝐾𝐾
] 



81 

When sampling normal features, updated inputs for the mean and covariance matrix are obtained 

using conditional distributions computed with the j and K subsets of the mean and covariance 

matrices [107]. These updated values are used as input for sampling from the multivariate normal 

distribution.  The multivariate normal distribution used for sampling a new value for feature 𝑥𝑗, 

given that the remaining features 𝑥𝐾  are equal to a, is defined with the following updated 

conditional mean and variance distributions: 

(𝑥𝑗|𝑥𝐾 = 𝑎)~𝑁(𝜇̅, Σ̅) 

𝜇̅ = 𝜇𝑗 + Σ𝑗𝐾Σ𝐾𝐾
−1(𝑎 − 𝜇𝐾) 

Σ̅ = Σ𝑗𝑗 − Σ𝑗𝐾Σ𝐾𝐾
−1Σ𝐾𝑗 

In order to sample values from binary and multinomial distributions, the conditional probabilities 

of possible choices must be determined. The equation for determining the conditional probabilities 

for a binary example is: 

𝑃(𝑥𝑗 = 1|𝑥𝐾) = 𝑓 ([
𝑥𝑗 = 1

𝑥𝐾
]) ∑ 𝑓 ([

𝑏
𝑥𝐾

])

𝑏={0,1}

⁄  

where the probability of a state is determined from the density function of the multivariate normal 

distribution. Input probabilities for the previous equation were calculated using the dmvn function 

from the ‘mvnfast’ package in R. The mvnfast package supplies efficient C++ implementations of 

multivariate normal functions [108]. For example, the probability of a binary feature equal to 1 

given other feature states, 𝑃(𝑥𝑗 = 1|𝑥𝐾), was drawn in R by setting values for the feature being 

drawn and calling the dmvn function as follows:  
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𝑓 = 𝑑𝑚𝑣𝑛([
𝑥𝑗 = 1

𝑥𝐾
] , 𝜇, Σ) 

These steps are easily generalized to multinomial features by calculating the conditional 

probability of each potential choice. 

The assumed sampling distributions used in the covariance simulation are the same as those 

employed in naïve simulation. Gibbs sampling requires an initialization state before starting the 

sampling process. A single randomly generated case was drawn using the naïve simulation to serve 

as the initialization point. It is standard when using Gibbs sampling to perform an initial set of 

random samples using an assigned burn-in period. Burn-in is a specified set of initializing runs 

that allow for the sampling to reach a stable state space that is not correlated with the initialization 

state. Burn-in samples are discarded and are not used for the final cohort. Complete samples are 

then drawn to act as cases of the cohort using a thinning technique. Selecting within successive 

samples is not recommended for creating a simulated sample because neighboring samples will 

have some degree of correlation. Instead, a thinning parameter is set to select every ith Gibbs 

iteration to create the simulated cohort. For this simulation, burn-in was set at 10,000 iterations 

and thinning was set to select every 10th iteration as a simulated case. 

Event assignment 

Assignment of an event or outcome state occurs for each sampled case selected by the thinning 

parameter. Information from a trained model is required to transform the features into a risk 

probability that can be used for sampling binary outcome from a binomial distribution. The form 

of this probability distribution function depends on the model chosen to provide simulation inputs. 

Binary logistic regression and Cox proportional hazards models are relevant in this evaluation. 
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Binary Logistic regression 

In the case of binary logistic regression, the probability of an event given a set of features, P(Y|X), 

can be computed with a set of estimated feature coefficients, 𝜷 = (𝛽0,  𝛽1, … , 𝛽𝑖), and features, 

𝒙 = (𝑥0 = 1, 𝑥1, … , 𝑥𝑖), with the following probability distribution function: 

𝑃(𝑌|𝑋) = 𝑃𝑟𝑜𝑏{𝑌 = 1|𝑋} =
𝑒𝜷𝒙

1 + 𝑒𝜷𝒙
 

Therefore, sampling an outcome requires the reported coefficient values of a model and the 

features of a simulated case created with naïve or covariance sampling to compute outcome risk 

and make an assignment for logistic model examples. 

Cox Proportional Hazards Regression 

The corresponding estimation for Cox proportional hazards is more complicated. Outcome is 

sampled based on an estimate of risk, much like logistic regression. However, determining survival 

risk requires further sampling of an associated time to event which follows a hazard function. The 

probability of survival at a given time based on features, S(t|X), is estimated using a cumulative 

baseline hazard function, 𝐻̂0(𝑡), and the linear coefficients, 𝜷 = (𝛽1, … , 𝛽𝑖), and features, 𝒙 =

(𝑥1, … , 𝑥𝑖), defined by the following survival probability function: 

 𝑆(𝑡|𝑋) = 𝑒−𝐻̂0(𝑡)𝑒(𝜷𝒙)
 

The cumulative baseline hazard function is additional information that is not directly reported as 

part of Cox regression analysis. It can, however, be estimated based on characteristics of the cases 

in a dataset. One common approximation of the cumulative hazard is based on the Kaplan-Meier 

estimator, 𝑆̂(𝑡), a non-parametric statistic that estimates the survival function of a cohort. When a 



84 

model is trained, Kaplan-Meier estimates are often derived as part of the Cox regression modeling. 

These values are not commonly published as a table of raw values, but instead are summarized 

using a survival curve plot. Using the survival curve of the NLST test cohort, graph digitizer 

software [109] was used to extract values of survival time and survival probability (Figure 4.1). 

This process mimics steps necessary to obtain these survival values from a published graph. 

 

Figure 4.1 Kaplan-Meier survival curve for the NLST 10k test cohort (black) and extracted survival data points (red) 
using graph digitizer software. 

The extracted probabilities of the Kaplan-Meier survival function were then log transformed to 

provide an estimate of the cumulative baseline hazard function: 

𝐻̂0(𝑡) = − log (𝑆̂(𝑡)) 
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Survival times, 𝒕 = (𝑡𝑠1
, … , 𝑡𝑠𝑁

), were simulated using a method described by Bender et. al. that 

uses a set of transformations to the inverse of the cumulative baseline hazard function, 𝐻̂0
−1

 [110]. 

The resulting expression allows for sampling a survival time, 𝑡𝑠, by first sampling from a uniform 

random distribution on the interval of zero to one, U~U[0,1]: 

𝑇 = 𝐻̂0
−1

[−log (𝑈)e−𝜷𝒙] 

The sampled time and previously sampled features are then used to estimate a survival probability, 

𝑝𝑠(𝑡𝑠|𝒙), that serves as input for sampling outcome.  

𝑝𝑠(𝑡𝑠|𝒙) = 𝑒−𝐻̂0(𝑡𝑠)𝑒(𝜷𝒙)
 

A binary outcome was simulated using a binomial distribution for each of these individual survival 

probabilities to complete the simulated case data. 

4.1.3 Evaluations 

Simulated cohorts were created for logistic and Cox regression analysis using both the naïve and 

covariance simulation designs described above. Each cohort consisted of 10,000 simulated cases, 

matching the size of the source NLST test cohort used as a gold standard in comparisons. 

Ability of simulated values to model source 

The test statistic of interest in this examination is the c-statistic, a measurement of the performance 

of a model on a cohort of cases. As simulation is a random process, it is important to test whether 

the c-statistic of the original data source is significantly different from c-statistics computed from 

repeated simulations. Necessary values were first obtained from the NLST test cohort to perform 

simulations. Summary statistics, variances, logistic coefficients, and Cox coefficients are reported 
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in Table 4.2. The source NLST survival function is shown in Figure 4.1a. A simplified covariance 

matrix example for continuous features is shown in Table 4.1 and the full covariance matrix is 

provided in Table A.1 in the appendix. Next, 1000 simulated cohorts were created for both the 

naïve and covariance simulation methods in the logistic regression modeling setting (2000 

simulations total). Gibbs sampling was performed using a burn-in of 10,000 and thinning of 10. 

The c-statistic was computed for each cohort and used to determine the distribution of c-statistics 

created with each simulation design. The c-statistic of the NLST test set was compared for 

significant difference against the simulated c-statistic distribution using a two-sided t-test. The 

same process was performed in the Cox regression setting for the naïve simulation design. 

  Means StdDev Logistic Coefficients Cox Coefficients 

age 61.3974 25.1808 0.0530 0.0525 

race=1 reference class reference class reference class reference class 

race=2 0.0438 0.0419 0.1898 0.2308 

race=3 0.0193 0.0189 -0.0789 -0.0811 

race=4 0.0031 0.0031 1.2064 1.1092 

race=5 0.0044 0.0044 -6.8030 -3.0059 

hispanic 0.0124 0.0122 0.0400 0.0552 

educat 3.6466 2.3273 -0.0855 -0.0870 

bmi 27.8757 24.8975 -0.0317 -0.0311 

diagcopd 0.0516 0.0489 0.4315 0.4192 

histcancer 0.0418 0.0401 0.7368 0.7032 

famhistcancer 0.2212 0.1723 0.1855 0.1777 

cigsmok 0.4856 0.2498 -0.1244 -0.1175 

smokeday_nl 0.3986 0.0159 -2.0911 -2.0655 

smokeyr 39.8328 54.3005 0.0472 0.0459 

smokequittime 3.6414 23.9880 -0.0329 -0.0327 

Intercept  -   -  -6.4666  -  

Table 4.2 Means, standard deviations, and logistic and Cox coefficients for the NLST test cohort used for simulation. 

Comparing bootstrapped variances 

The simplicity of the current simulation process makes it likely that c-statistics of simulations 

would be different from the c-statistic of actual NLST cases. However, the current goal of these 
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proposed simulations is not to perfectly match the original c-statistic, but to provide a simulated 

cohort with similar variability to the original data when bootstrapping values. When assessing 

transportability, a target cohort’s performance is compared to the reported c-statistic, but the 

confidence interval of this value is rarely provided. If the variation of bootstrapped values in 

simulated data match with real data, then the simulation can be used to compute retrospective 

confidence intervals to aid in external validity evaluations. 

Assessing the ability of a simulated cohort to match bootstrapped variance required a comparison 

of the performance of bootstrapped c-statistics from naïve simulation, covariance simulation, and 

the NLST test cohort. In addition, since c-statistics of simulated cohorts were anticipated to be 

different, the comparison of these methods was further stratified by taking two simulations from 

the previously created 1000 cohorts. One cohort with c-statistic closest to the original NLST c-

statistic and a randomly selected cohort were chosen. Bootstrap analysis was performed on these 

chosen simulated cohorts and the NLST test cohort, taking 1000 bootstrap samples and calculating 

the variability over the resulting 1000 c-statistics. 

In most real world applications, the target dataset used to evaluate external validity is smaller than 

the number of cases in the source.  With available data, it would be possible to bootstrap values at 

smaller cohort sizes to determine variability at the level of the target’s size. Therefore, another 

comparison of the four simulation cohorts was used to evaluate the stability of bootstrapping 

subsamples of the original cohort size. If bootstrapped variation is similar between simulation and 

source data in the previous test, then subsample bootstrapping is expected to also be stable. The 

bootstrap subsamples used for evaluation ranged in size from 200-1000 in increments of 100 and 

from 1000-10000 in increments of 1000. The resulting bootstrapped simulation distributions at 

varying sample sizes were compared to the NLST bootstrap distribution using the Kolmogorov-
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Smirnov test (KS-test). The means of the randomly selected examples were centered to the NLST 

c-statistic before the KS-test was performed. Multiple comparisons correction was performed 

using a Bonferroni adjustment to address the increased number of tests calculated across these 

many sample sizes. 

4.2 RESULTS 

As anticipated, the c-statistic of the NLST source cohort was significantly different from 

simulated cohorts created with naïve simulation (p=0.0017). Covariance simulation 

incorporating correlation between features showed a distinct improvement in similarity, but the 

NLST c-statistic was still significantly different from simulated examples (p=0.0304). The 

relationships between the source c-statistic and 1000 simulated cohorts for logistic regression is 

shown in Figure 4.2. 
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Figure 4.2 Comparison c-statistic distributions from naive and covariance simulation (mean c-statistic: black dashed 
line, confidence interval: grey) to source NLST c-statistic (red line) predicted with logistic regression. 

Performance of naïve simulations for Cox proportional hazards regression were also significantly 

different from the source NLST c-statistic (p=0.007). The distribution of simulated c-statistics was 

similar to naïve performance in logistic regression (Figure 4.3). Therefore, the proposed simulation 

designs were not able to generate a cohort that is statistically indistinguishable from the original 

NLST data based upon calculation of the c-statistic. 
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Figure 4.3 Comparison of naïve simulations for logistic regression and Cox proportional hazards regression. Simulated 
values (mean c-statistic: black dashed line, confidence interval: grey), NLST c-statistic (red line). 

Results comparing bootstrap analysis of the four selected simulation cohorts to the source NLST 

dataset were more promising. Differences between the bootstrapped variance of simulated cohorts 

at sample size 10,000 was minimal (Figure 4.4). None of the four simulation cohorts were 

significantly difference from the source NLST bootstrap using the KS-test with Bonferroni 

correction for multiple comparisons (Table 4.3).  
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Figure 4.4 Bootstrapped variance of the c-statistic in source NLST and four simulated cohorts. (Random cohorts were 
normalized to the NLST c-statistic mean for graphical comparison) 

Bootstrapping at smaller sizes showed similar results. C-statistic variances increased as smaller 

bootstrap samples were drawn, with larger increases seen as sample size decreased. An increase 

in the number of outliers and the disagreement in variance between source and simulation were 

seen at samples below 1000, but none of the bootstrapped differences were statistically significant 

at the subsample sizes (Figure 4.5 and Table 4.3). These bootstrap results are based on simulation 

cohorts for the logistic regression model design. 
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Figure 4.5 Comparison of bootstrap sampling at varying sample sizes. 

Sample Size Naive Closest Naive Random Covariance Closest Covariance Random 

200 0.370 0.069 0.263 0.055 

400 0.648 0.573 0.263 0.164 

600 0.536 0.828 0.859 0.723 

800 0.181 0.341 0.062 0.006 

1000 0.148 0.241 0.087 0.005 

2000 0.288 0.219 0.097 0.466 

3000 0.087 0.859 0.723 0.466 

4000 0.033 0.500 0.181 0.121 

5000 0.020 0.794 0.219 0.400 

6000 0.370 0.573 0.723 0.241 

7000 0.002 0.048 0.241 0.148 

8000 0.001 0.723 0.011 0.164 

9000 0.055 0.794 0.859 0.536 

10000 0.017 0.241 0.008 0.134 

Table 4.3 Kolmogorov-Smirnov test p-values for significant difference between NLST bootstraps and simulated 
bootstraps at various sample sizes. Bonferroni corrected significance value = 0.00089. 
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4.3 DISCUSSION 

Simulation is a complex process comprising a set of assumptions when assigning distributions, 

determining sampling procedures, and collecting important values for setting parameters and 

initializing values. Many different items can be adjusted in an attempt to simulate values that are 

statistically similar to a source dataset. However, a great deal of time can be spent to maximize 

this similarity. The simulations in this chapter, by contrast, attempt to make use of a minimal set 

of information from the source environment. This approach is used, in part, because current 

reporting practice indicates that many values will be unavailable and are unlikely to be supplied 

even when requests are extended to authors. 

The cost of this approach is that the resulting simulations are typically different from the source 

cohort they attempt to match. The c-statistic was used to judge difference in this work and over 

1000 simulations, a significant difference was seen between the source data and the simulated 

statistics. The difficulty of significantly matching the original cohort with naïve simulation was an 

expected issue. Covariance simulation was included in an attempt to include enough information 

on the original cohort to closely match source. The addition of covariance to the simulation process 

was helpful in moving the resulting simulated c-statistics closer to the NLST source. This 

improvement suggests it may be useful to add a covariance matrix of the source data in publication 

results. This addition would be much less cumbersome than requiring researchers to spend time 

de-identifying data or completing paperwork before sharing information. However, the covariance 

simulation was still significantly different from the source cohort, indicating that additional 

adjustments would be necessary to most accurately represent the source. 

Nevertheless, the intended use of the simulated cohorts in this work was to retrospectively 

calculate the variance of the source cohort c-statistic through bootstrapping. It was anticipated that 
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very closely simulating the source cohort was not a requirement for this capability. Comparison of 

two simulated cohorts, one with very similar performance and another selected at random, 

demonstrated that the simulated cases were able to accurately represent the variance of the source 

population even when those cases did not have a c-statistic performance comparable to the original 

data. In addition, there was no significant difference between simulating values using the naïve 

and covariance simulations for this purpose. Since naïve simulation is sufficient for computing the 

variance of the c-statistic retrospectively, this method provides a simple way for researchers to 

obtain extra information about discrimination performance while only requiring a minimal amount 

of reported information. 

A set of comparisons for bootstrapping subsamples of a cohort (i.e., smaller sample sizes) indicate 

that simulated cohorts can be of additional use for computing variance assessments at many sample 

sizes. This capability allows for variance statistics to be generated flexibly to match the size of a 

target cohort being considered in transportability assessments. Such an adjustment to a confidence 

interval can provide useful context when comparing small target validation datasets to source 

statistics calculated with large cohorts. In this analysis, the calculated variance remained stable 

down to sizes 10%-20% of the size of the original cohorts. Values for sample sizes between 200-

1000 had much higher variability, causing the confidence interval to be more susceptible to the 

random selection of cases. It is unclear if the larger differences between source and simulation 

examples for sample sizes below 1000 is related to sample size relative to the original source 

cohort (i.e., less than 10% of source) or if this variability is common to all samples below 1000. 

The community should be wary of the potential for higher error rates, but in this analysis none of 

the differences were statistically significant. Additional bootstrap samples might be able to 

stabilize the measurements in future analysis. 
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4.3.1 Limitations 

A large, highly curated dataset from lung cancer research was used to provide inputs for this 

analysis. Few published models are built on such substantial collections of subjects. Consequently, 

some of the bootstrap findings may not be as stable when applied to the simulation of smaller 

source cohorts. Performing this same analysis with example datasets of varying size would help to 

clarify if the simulation process can be applied widely to model validation. 

Logistic regression and Cox proportional hazards models were considered in this evaluation due 

to their common use on the NLST dataset and also in medical prediction models. Many additional 

model options are available and appropriate derivations of probability distributions are required as 

part of simulating values for other model designs. The use of simulation for calculating the 

performance using the c-statistic can be generally applied to models of many types, but there may 

be additional difficulty employing this technique on complex models used in machine learning 

without additional development and research. 

The ability of the simulations to significantly match with the source data was shown to be 

inconsequential for this approach where the primary goal was performing bootstrap analysis. 

However, other metrics may be more heavily influenced by the ability of a simulation to create a 

cohort that matches closely to the original data. Future research could test this approach in other 

validation metrics such as the calibration intercept, calibration slope, and integrated discrimination 

index. 

4.3.2 Conclusion 

Cohorts simulated with naïve and covariance methods can be used to retrospectively asses the 

bootstrap variability of the c-statistic. In the current implementation, however, they should not be 
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used for analyzing the central tendency of the c-statistic which should instead be inherited from 

reported values. Simulated cohorts also appear to be useful for calculating variance at sample sizes 

smaller than the original data, but future work is needed to determine how accurate these tests are 

in smaller cohorts and at small sample sizes. 
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CHAPTER 5  

CATEGORIZING MODEL TRANSPORTABILITY WITH SIMULATED COHORTS 

Disease models are an important step in exploring the relationships between multiple predictive 

features. Each individual model can provide some insight into the predictive power of distinct 

feature combinations in different situations. Thus, disease models have become frequently used to 

help solidify understanding of the measurements and observations that describe disease and 

outcome relationships. Some predictive disease models are currently trusted to provide risk 

estimates as seen in risk calculators for cardiovascular disease [111–113] and lung cancer 

[104,114,115]. Predicted risks can be informative to both patients and clinicians when making 

lifestyle and treatment decisions. Models must be properly validated in cases outside of the 

development environment before being widely accepted for these risk calculation, prediction, and 

decision-making tasks.  

Most models are not evaluated for transportability to other settings. In previous chapters, a number 

of limitations were discussed concerning why evaluations are difficult to accomplish. Most 

assessments also take an all or nothing approach, where failure to validate implies that the model 

only has use in the original environment. Under this view, even if all models were validated, a 

majority would be set aside as unusable when an external validation failed. It would be useful to 

categorize models further into levels of transportability in order to consider what problematic 

models might updated for continued use. 

In Chapter 3, four published Cox regression models for brain cancer were reviewed and applied to 

an external UCLA cohort. The predictive performance on the target UCLA data, measured with 

the c-statistic, was compared to the reported performance of the original studies. C-statistic 
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performance was lower in the target data for all of the applied models, indicating that the models 

were generally non-transportable. Building from this initial analysis, the four brain cancer survival 

models were evaluated with an extended simulation analysis used to interpret the level of 

transportability achieved by each model. 

5.1 METHODS 

Given the decreased performance of the brain cancer models in Chapter 3, it might appear that 

none of the models are appropriate for additional use. However, model performance is known to 

vary across different test datasets and the external c-statistic values might be lower by chance. 

Determining if a c-statistic decrease is significant is not possible without information concerning 

the confidence interval on the original internal validation. In addition, the cohort sizes of the source 

and target environments are not identical. At a smaller sample size, the variability of the c-statistic 

will be larger, so larger differences in c-statistic performance should be expected to occur by 

chance. 

To get a better perspective on the variation in the source cohort, the naïve cohort simulation method 

described in Chapter 4 was used to determine the bootstrapped variability of the source c-statistic. 

Simulations were built for each published model and 1000 simulated cohorts were generated 

matching the sample size of the unavailable source cohorts (Helseth=516 cases, Michaelsen=225 

cases, Gutman=68 cases, Kumar=312 cases). Based on the results in Chapter 4, a single cohort 

with minimum difference in the c-statistic from the reported value was selected from the 1000 

simulations. These selected simulated cohorts were used for bootstrap analysis. Determining the 

significance of performance changes is a first step in determining if a model is trivially 

transportable or should be assigned to a more restrictive transportability level. 
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Calibration assessments were also performed for each model. Calibration tests a model’s ability to 

predict outcomes at rates that match with observed outcomes. The observed rates in a target cohort 

may be different enough from the source that the predictions generated for new cases are 

systematically over or underestimated. Detecting such bias in combination with the previous c-

statistic examination can help determine when validated models should be assigned to the trivial 

or calibration adjustment transportability levels. 

All simulations and statistical analysis were coded in R (v3.1.3) and run with RStudio (v0.98) 

[91,92]. 

5.1.1 Simulation assumptions 

Simulated cohorts were constructed for each model based on published values, following the 

process for naïve simulation of a Cox regression cohort presented in Chapter 4. Summary statistics 

of patient characteristics and regression coefficients of the Cox regression model were obtained 

from published text or tables in three of the four models. Regression coefficients were available 

for the Gutman model, but summary statistics were not. Gutman et al. were able to provide access 

to the source dataset, but the original case selection could not be perfectly duplicated (see Chapter 

3.2.3). Therefore, summary statistics were drawn from a subset of 68 cases that were similar by 

not identical to the original training set. These collected coefficients and summary statistics are 

provided in Table 5.1 with the sampling distribution assumptions used to sample each feature. 
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Helseth Michaelsen 

Features Statistics Hazard 
Ratio 

Distribution Features Statistics Hazard Ratio Distribution 

Sex M: 0.411 
F: 0.589 

1.44 Binomial ECOG 0: 0.608 
1: 0.304 
2: 0.088 

Reference: 0 
1: 1.22 
2: 2.06 

Multinomial 

Age 63.7 (13.26) 1.02 Normal Corticosteroids Yes: 0.733 
No: 0.267 

2.06 Binomial 

ECOG 
Score 

Low: 0.812 
High: 0.188 

2.13 Binomial Age (by 10) 59.2 (12.40) 1.31 Normal 

Tumor 
Location 

Unilateral: 0.853 
Bilateral: 0.147 

2.31 Binomial         

Primary 
surgery 

Biopsy: 0.089 
Resection 0.911 

2.72 Binomial      

Gutman Kumar 

Features Statistics Hazard 
Ratio 

Distribution Features Statistics Hazard Ratio Distribution 

KPS 40: 0.015 
60: 0.176 
80: 0.721 
100: 0.132 

0.972 Multinomial Tumor Site Central: 0.045 
Other: 0.955 

2.336 Binomial 

Tumor 
Major  
Axis 
Length 

78.95 (19.62) 1.016 Normal Tumor 
Location 

Parietial: 0.564 
Other: 0.446 

1.516 Binomial 

pCET 0.025 
0.195 
0.505 
0.815 

7.745 Multinomial Radiation Dose Yes: 0.776 
No: 0.224 

2.026 Binomial 

        Chemotherapy Yes: 0.715 
No: 0.285 

0.435 Binomial 

Table 5.1 Extracted values and assumptions for simulation process. Summary statistics and hazard ratios were 
derived from published text and tables. Distribution choices were based on published feature discretizations. 

Survival times and probabilities were extracted from Kaplan-Meier overall survival figures using 

offline graph digitizer software [109]. A screenshot was taken from PDF copies of the Helseth and 

Michaelsen papers. The survival figure for the Kumar model was downloaded from the full text 

version of the online paper. For these images, points were generated along the curve using 

“Automatic Mode” using the averaging window algorithm set to draw points at steps of 5 pixels 

in X and Y directions. Prior to running the automatic process, the foreground color of the curve 

was set and a masking box excluding the figure axes and text was drawn. For Michaelsen and 

Kumar, points were automatically generated along secondary curves in the figure. These extra 

points were manually removed before extracting values. 
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An overall survival figure was not available from the Gutman paper, which only included Kaplan-

Meier plots stratified by tumor enhancement categories. Therefore, Kaplan-Meier estimates were 

derived using the 68 cases from the original cohort. Extracted values for each cohort are plotted in 

Figure 5.1. The raw values for survival time and survival probability are included in Table A.3 of 

the appendix. 

 

Figure 5.1 Extracted survival curve values from published figures (Helseth, Michaelsen, and Kumar) and replicated 
data (Gutman). Values were extracted from published figures using WebPlotDigitizer software (examples shown in 
Figure 4.1 and Appendix A). 

5.1.2 Bootstrapped c-statistic assessment 

One simulated cohort was drawn from a set of 1000 simulations for the Helseth, Michaelsen and 

Gutman cohorts based on the mean c-statistic closest to the reported value. Kumar et al. did not 

report a c-statistic value for their model. Since this ground truth was unavailable, two simulated 

cohorts were drawn to examine the interval ranges at extremes of model performance. A low and 

high c-statistic value, ± two standard deviations from the mean c-statistic of the 1000 simulation 

set, were used to select two simulated cohorts.  Bootstrap analysis was performed to create 1000 

bootstrap samples for each of the selected set of five simulations. C-statistics were calculated for 
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each bootstrap sample using the survConcordance function of the ‘survival’ package [116] to 

determine an associated confidence interval. External c-statistics of the target cohort were then 

compared against these intervals. 

Next, 1000 bootstrap samples were drawn at size N=125, equal the sample size of the target UCLA 

cohort. The bootstrap evaluation at N=125 for the Gutman cohort is actually oversampled using 

this technique (Gutman cohort N=68). This oversampling was included as a comparison point 

against the other models, but may be a biased representation. C-statistics were computed for each 

bootstrap using the same steps described above to determine confidence intervals. External c-

statistics were compared to this second confidence interval to determine if different conclusions 

would be drawn with subsample bootstraps. 

5.1.3 Calibration assessment 

Calibration was evaluated for each model by fitting a Cox proportional hazards model regressing 

survival time and outcome against the computed linear predictor values of the target cohort. This 

regression results in a calibration coefficient, 𝛽𝑐 , that summarizes the ability of the linear 

predictors of each model to match with target outcomes. A calibrated model will predict target 

cases accurately and have a calibration coefficient equal or close to one. Values above and below 

one are indicative of the overall under and overestimation of the linear predictor values obtained 

with a source model. A simple re-calibration can be achieved by using the calibration coefficient 

as a scaling factor for the linear predictor. Cox calibration models were fit using the cph function 

from the ‘rms’ R package [93]. Calibration was also assessed by reviewing calibration curves 

created using the val.surv function from the ‘rms’ package. 
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5.2 RESULTS 

Based upon the bootstrap analysis of the simulated cohorts, the decreased performances of the 

Helseth and Gutman models on target UCLA cases were not significant when compared against 

the source and target sized samples. Therefore, these models are reasonable candidates for 

transportability as they are able to predict UCLA cases at rates not significantly different than 

predictions in the source environment. However, the Gutman model is built using a dataset smaller 

than the target cohort and the overall variability of the c-statistic from bootstrap analysis is high. 

The confidence interval of the N=68 bootstrap includes a prediction rate of 0.5, indicating that the 

model does not perform better than random chance in some cases. When bootstrap oversampling 

was performed at N=125, the confidence interval decreased and was close to excluding the 0.5 

rate. Though the oversampling test can be biased, this demonstrates that a larger sample would be 

more effective at indicating the predictive capabilities of the Gutman model. These comparisons 

are shown in Figure 5.2. 

Michaelsen’s performance in the UCLA cohort was significantly decreased. The decrease was also 

significant in the subsample bootstrap evaluation. These significant decreases indicate that this 

model is unable to transport directly to the target cases. The UCLA and Michaelsen cohorts should 

be reviewed in more detail to determine if there is an underlying difference that could be adjusted. 

When comparing results in Kumar, no final determination can be made because the c-statistic of 

the source data is not known. As shown in Chapter 4, the naïve simulation design is unable to 

represent the source cohort with enough accuracy to derive this value retrospectively. In Figure 

5.2, c-statistics at the 95% confidence extremes of 1000 simulated examples were used to draw 

cohorts as an alternative approach to reviewing the performance significance. In the lower c-

statistic case, Kumar performance changes are not significant. However, the high c-statistic 
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simulation was significantly different and a final determination of transportability is not clear. This 

finding highlights the importance of providing the internal validation analysis including the AUC 

or c-statistic during publication in order to enable future validation reviews. 

 

Figure 5.2 Bootstrap results of simulated cohort data at source and target sample sizes, displayed by source model. 
Two simulations (low and high c-statistic performance) were considered for Kumar as a c-statistic value for the source 
data was not reported. 

Calibration analysis demonstrated that all of the models had some degree of miscalibration. The 

Helseth model showed a minor overestimation of predicted probabilities compared to observed 

rates in the UCLA cohort (𝛽𝑐 = 0.922).  A calibration plot of prediction at median survival time 

(506 days) makes this apparent (Figure 5.3), as the calibration curve is below the perfect calibration 

reference line. Since target performance was not significant in the discrimination analysis and re-

calibration looks reasonable, the Helseth model can be assigned for calibration adjustment. 
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Figure 5.3 Calibration plots for each model at median UCLA survival time (506 days) 

Michaelsen showed a strong and consistent underestimation (𝛽𝑐 = 0.608). The calibration plot 

shows that this underestimation was worse for cases with low probabilities of survival. A re-

calibration would be useful to put observed and predicted rates in line in the target setting, but the 

significant performance decrease means that adjusting the calibration alone would not be enough 
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to make the Michaelsen model transportable. Therefore, the Michaelsen model cannot be assigned 

for calibration adjustment. Instead, it should be considered for partial adjustment. If further 

investigation into the source and target cohorts does not yield potential adjustment targets, 

Michaelsen might ultimately be assigned as a non-transportable model. 

The calibration plot of Gutman crosses the perfect calibration line. Some cases with higher 

observed outcomes appear to be assigned very low predicted probabilities as seen by a bowing in 

the calibration plot.  The calibration coefficient is also low (𝛽𝑐 = 0.576) and it is unclear if a re-

calibration would be effective with many highly observed outcomes being assigned low 

probabilities. The small sample size of the training data for the Gutman model may be one 

explanation for these poor predictions. As the performance was similar between the simulated 

source and target cohorts in bootstrap analysis, we can consider the model for calibration 

adjustment. However, more data should be used to reconstruct the model. Therefore, the model 

should be revisited in case the external validation changes with more data and the model needs 

reclassification to a partial or non-transportable level in the future.  

Kumar’s overall calibration (𝛽𝑐 = 0.84) was better than Michaelsen and Gutman. However, the 

calibration plot shows a bowing point where many high probability cases were assigned low 

probability predictions, similar to the calibration plot for Gutman. This apparent mixing of 

predictions would suggest that a simple scaling with the calibration coefficient will not provide an 

effective re-calibration. Recalibrating in this fashion does not change the order of assigned 

predictions and will not improve discrimination performance. Without a reported c-statistic for the 

source cohort, it is difficult to judge the transportability of the Kumar model. If the target c-statistic 

was determined to be high, then the model would likely need partial adjustments given the 

significant c-statistic difference and mixture of calibration values. If the difference was found to 



107 

be insignificant, then the model might be able to be calibration adjusted with further review of the 

calibration issues 

 Helseth Michaelsen Gutman Kumar 

C-statistic Performance Not significant Significant Not Significant Inconclusive+ 

Calibration Coefficient 0.922 0.608 0.576 0.84 

Calibration Curve Analysis Overestimation Underestimation Mixed Mixed 

Transportability  
Determination 

Calibration  
Adjustment 

Partial  
Adjustment 

Calibration 
Adjustment* 

Inconclusive+ 

Table 5.2 Summary of Transportability Evaluation Findings. * Larger sample size could update transportability 
determination. + Missing source c-statistic makes assessment inconclusive. 

5.3 DISCUSSION 

Predictive model transportability is too strictly defined into usable and non-usable groupings using 

current methods that compare source and target c-statistics. Incorporating the variability of the c-

statistic from internal validation can more completely describe the significance of performance 

changes when applying source models to target cohorts.  Calibration testing is also suggested for 

understanding source and target predictions with better context in the external validation process 

[11,35,37]. By combining information from both types of evaluation, a more detailed interpretation 

can be made of a given model’s transportability. Most models may not be directly applicable to 

target locations, but many could be strong candidates after appropriate adjustment. 

In the four models above, c-statistic variability was calculated retrospectively by performing 

bootstrap analysis using simulated cohorts created with a naïve simulation method. All four models 

were able to be assessed with this method, though final interpretation was not obvious for the 

Gutman and Kumar models. Gutman’s interpretation suffered due to the small sample size of the 

source cohort. Kumar could not be fully assessed because the c-statistic performance in the source 

data was not available, even after repeated requests were extended to the author. However, 
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simulated cohort analysis appears useful for determining the significance of performance changes 

in target data when these obstructions can be avoided. 

The calibration analysis in this chapter was based on current practice [12]. A calibration model 

was fit to the linear predictor to test the overall difference in predicted probabilities and observed 

outcomes. This calibration fit can supply a slope and intercept value in logistic regression, but in 

Cox regression only a calibration coefficient is estimated. In either modeling case, a calibration 

plot should also be reviewed to visual assess if target locations have different outcome rates. Yet, 

interpretation of calibration plots appears to be a rather subjective, often reducing to a general 

claim of calibration/miscalibration. This issue is apparent in this analysis as some degree of 

miscalibration occurs in each validation, but interpretation of the effects on re-calibration 

adjustment is unclear. Being unable to make a strong assessment, the classification of models 

between the calibration adjustment and partial adjustment levels of transportability remains 

difficult as seen in the uncertain classifications of the Gutman and Kumar models. Calibration 

adjustment cannot correct for poor performance in a target cohort and, in general, significant c-

statistic decreases point towards partial or non-transportable situations. Nevertheless, future 

improvements to calibration assessments might prove useful to clearly define the line between the 

calibration and partial adjustment categories. A bootstrap analysis akin to the c-statistic 

comparison might be used to attain this goal in future work. 

Overall, the addition of the simulation cohort analysis appears to provide a more definitive decision 

in regards to discrimination between source and target (Table 5.2).  For example, the small sample 

size of the Gutman cohort could have been used to screen out this model before testing 

transportability. But, simulated cohort evaluation made this fact clear; variability was too large at 

the Gutman sample size to use the model for prediction. In the case of the Helseth and Michaelsen 
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models, the ability to compare against intervals at two sample sizes made the appropriateness of 

each model more obvious. These additional comparisons are therefore helpful to further define 

transportability groups beyond simple transportable and non-transportable divisions. Detailed 

separation of models will help guide future frameworks searching to test specific models for 

adjustment or immediate application. Reporting bootstrapped c-statistic variability by estimating 

directly from source data rather than a simulated cohort would be ideal and is highly recommended 

for future publications.  

5.3.1 Limitations 

The models chosen for this analysis were selected based upon the inclusion important modeling 

details (i.e., clear descriptions of summary statistics, feature selection and discretization, and 

multivariate Cox regression coefficients). However, the initial development of disease models may 

be performed to explore the predictive impact of features of interest rather than targeting direct 

prediction. For example, Kumar et al. were interested not only in multivariate predictors, but also 

in the influence of specific features such as treatment regimens [88]. Some of the current hurdles 

to obtaining internal validity values from papers may be explained by these alternative goals of 

modeling. Therefore, additional analysis of this methodology to interpret transportability groups 

may be warranted in other disease modeling domains where values are missing more/less 

frequently from publications. 

Many cohorts used for analysis are limited in size. In previous analysis of the simulation process 

using lung cancer data, confidence intervals appeared less stable at smaller sample sizes. However, 

the potential influence of this contribution could not be assessed with brain cancer data as source 

cohorts were not readily available. Brain cancer cohorts are rarely larger than 500 cases as seen by 

the cohort range in this analysis (68-516 cases) and publicly available data from the Cancer 
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Genome Atlas (529 cases). Additional analysis should be performed to confirm if sample size is a 

significant issue in the simulation and bootstrapping task. 

The comparisons used in this evaluation were based on currently suggested validation practices 

[10–12,37]. The field has settled on specific practices such as the analysis of discrimination and 

calibration. However, incorporating additional tests to consider case-mix [41], discrimination 

indexes [21], and decision curve analysis [31] may further inform the interpretations of 

transportability assignments. Other existing simulation approaches for survival data might prove 

useful for investigating the influence of specific population changes on these statistics. In addition, 

methods targeting partial model adjustments are currently limited. New evaluation methods such 

as causal graphical analysis (Chapter 6) might help pinpoint the exact features degrading 

transportability and allow targeting model updates. The methodology presented here is one piece 

of a large set of potential improvements to transportability assessment and should be assessed for 

use when these other items are included in analysis. 

5.3.2 Conclusion 

Using variability measurements of the c-statistic from simulated cohorts and calibration tests of 

the target cohort, model transportability was more specifically classified for two brain cancer 

models. In the remaining models, sample size and reporting issues made classification less clear. 

Overall, when adequate information is available from previous work, assessments of 

transportability seem to benefit from the inclusion of discrimination variability.  
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CHAPTER 6  

EXPLORING CAUSAL TRANSPORTABILITY 

Substantial amounts of time, money, and effort are exerted to run scientifically sound experiments 

to determine the efficacy of medical therapies and natural progression of disease. The primary 

focus of such studies is to determine the ability of internal validated findings to impart knowledge 

about clinical questions. Over many studies, findings can be combined to assess the generalization 

of this knowledge to the population as a whole. The combined findings from many experimental 

studies and collected observational data can also be used to approach generalized knowledge about 

broad disease classes. Scientific findings are often used to inform the development of multivariate 

models for predicting disease treatments and progression. Accurate predictions of risk and 

outcomes have potential to aid clinical decision making. However, examination of models beyond 

internal applications in the original population has yet to become common practice. External 

validation is a necessary test to explore an individual model’s ability to transport to new 

environments. 

External validation (transportability) assessments are becoming more prevalent, but a majority of 

validation results show decreased performance in target cohorts. As seen in the previous chapters, 

classification of model transportability can be extended beyond a transportable and non-

transportable paradigm. Defining more specific classification levels can help to determine what 

adjustments would be appropriate for correcting differences between source and target locations. 

For example, scaling of a model’s linear predictor values is a straightforward approach for models 

in need of calibration adjustments. These models have similar performance in source and target 

locations, but consistently over/underestimate the correct probabilities for patients. When models 
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have substantial discrimination decreases, calibration alone cannot adjust the model in a 

meaningful way for target application. Such models need to consider the potential differences in 

the cohorts in order to define if partial adjustments to specific features can adjust predictions into 

more accurate ranges. 

Partial adjustments are an important area of study in transportability because it is preferential to 

reuse as much information as possible from previous studies. This is particularly true for models 

trained with cohorts larger in size than a target domain; these models have reduced variability due 

to access to more data. Consequently, models trained with more data can often avoid overfit 

compared to models trained with a target cohort of smaller size. Another example where partial 

adjustment can be beneficial is in the collection of expensive or difficult features. High costs or 

limited resources might make it impossible for some features to be collected in all locations. In 

contrast, understanding of population differences can also indicate features that are required for 

proper model predictions. Few approaches currently exist to consider which partial adjustments 

are appropriate before classifying a model as non-transportable. Transportability theory, 

introduced by Pearl and Bareinboim, is a novel method from the artificial intelligence community 

that has potential for evaluating when partial model adjustments are appropriate [45]. 

Transportability theory is based on graphical analysis and assessment of causality assumptions of 

a model to determine if particular features meet the proper constraints to be transported from the 

source population in combination with specific target information. For example, a physician in a 

rural setting might wish to apply the results of a clinical trial conducted at a large research hospital 

to decision making for patients under their care. The trial findings can be understood in the context 

of a causal graph, per Figure 6.1, as a treatment (A) with effect on a patient outcome (B), with 

additional measured factors such as clinical history, imaging, or genetics (C, D, E). 
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Transportability theory allows a researcher to identify potential confounding evidence between 

variables (represented by dotted lines) and population differences (indicated by square nodes, S1 

and S2) that are known or believed to exist between two cohorts. The influence of these constraints 

can be used to determine what data from the trial environment can be applied to the rural patients 

in a principled way. For instance, the physician may not have enough genetic information for the 

population to build a model on their own; applying transportability can help ascertain whether the 

genetic information collected in the trial can be transported (i.e., reused) to the local group (and if 

not, under what other graphical circumstances such data transport would be valid). Similarly, 

differences between the hospital and local populations (e.g., demographics) can be accommodated 

via transportability. In general, if all existing differences can be accounted for, then model 

variables can be considered transportable to the new population through a partial transport utilizing 

source values in combination with updates from target information. If substantial differences 

cannot be addressed, the reviewed model would likely be classified as non-transportable and other 

models should be considered instead. In depth discussion concerning the properties of graphical 

and causal models that contribute to transportability theory are included in background section 2.3. 

Transportability theory is investigated in this chapter by 1) developing a limited Bayesian belief 

network (BBN) disease model of glioblastoma multiforme (GBM) targeting overall survival; 2) 

reviewing the ability of transportability theory to encode information concerning the potential 

issues of transporting source findings; and 3) testing the transport of partial data between different 

source and target cohorts under the assumption of an evaluated causal graph. Publicly available 

data from The Cancer Genome Atlas (TCGA)[117] initiative of the National Cancer Institute 

(NCI) were used to create source and target cohorts based on the multi-institutional nature of the 

TCGA dataset. These source and target examples were applied to train and test results of the model 
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under different partial transportability settings. The results from applied TCGA data help to 

demonstrate the use of transportability for partial model adjustments, as well as helping to describe 

the complexities involved in this practice. The graphical model used in this paper is simplified to 

provide an opportunity to examine the characteristics of a disease model and transportability theory 

without the complications that a large set of predictive variables may add to the process. 

 

Figure 6.1 Example causal diagram for lung cancer treatment. Variables: (A) treatment; (B) tumor progression; (C) 
tumor biopsy gene expression; (D) clinical history; and (E) CT imaging findings. In this causal diagram, solid circles 
represent standard variables (such as in a Bayesian belief network), and solid arrows between these nodes represent 
causal relationships. Dashed arrows/arcs indicate confounding influences between two variables that may exist when 
considering other populations. Selection nodes, shown as squares, provide a means to sub-select or filter a given 
variable so that the evidence is comparable between two groups. 

6.1 METHODS 

6.1.1 Evaluation dataset 

A number of multi-institutional efforts now exist to establish observational databases, 

supplementing experimental datasets. Two efforts focused on building databases for GBM 

research are The Cancer Genome Atlas (TCGA) and the Repository for Molecular Brain Neoplasia 

Data (REMBRANDT)[117,118]. TCGA is a public database containing primarily clinical and 

genomic (copy number, DNA methylation, gene expression, single nucleotide polymorphisms) 

information for 20 different types of cancer. In addition, TCGA is a part of ongoing efforts to make 

radiological and pathological images more readily available in cancer research. The 
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REMBRANDT database is focused specifically on data obtained for brain gliomas (astrocytoma, 

mixed glioma, oligodendroglioma, GBM) with a limited number of unmatched non-tumor 

controls. When considering the design of a simplified graphical model, the TCGA and 

REMBRANDT datasets were examined to consider the full scope of features of interest in GBM 

prediction. A large number of clinical, imaging, and genetic features are now collected for research 

(Table 6.1), but current predictive models have not revealed a particular feature set best adapted 

to outcome predictions. The final graphical model for this evaluation uses a set of features that 

overlap with those seen in these multi-institutional databases. 

Variable 

Demographics Total radiation dosage 

Presenting age  Other drug name 

Family & social history  Other drug Frequency 

Environmental exposure Other drug Dosage 

Tumor location Steroid drug name 

Tumor size Steroid frequency 

Tumor grade Steroid dosage 

VEGF Karnofsky performance score 

EGFR VIII Other performance score 

PTEN  Tumor volume (on imaging) 

TP53 Necrosis imaging finding 

MGMT Contrast enhancement imaging finding 

DNA methylation Non-contrast enhancing region 

Chemotherapy drug name Tumor multi-focality 

Chemotherapy frequency/dosage Edema volume (on imaging) 

Number of chemotherapy cycles Mass effect 

Type of surgical resection  

procedure 

Satellites 

Extent of resection ADC map (imaging) 

Type of radiation therapy Time to progression (TTP) 

Radiation therapy fractionation Time to survival (TTS; death) 

Table 6.1 Partial list of collected variables from among two multi-institutional data sources, TCGA and REMBRANDT. 

Data for this analysis was obtained from the TCGA public data repository. A total of 579 cases are 

available in the TCGA database with clinical information. TCGA cases with available clinical and 

genomic data were evaluated with variable selection and preprocessing. Cases were first removed 
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if there was prior evidence of a glioma. Overall survival models require new cases of brain cancer 

for studying the length of survival. Cases with prior evidence of tumor are unlikely to contain 

necessary baseline survival time data. This selection reduced the number of available cases to 544. 

Due to the small number of variables in the Bayesian network, complete case analysis was 

considered to reduce the amount of missing data and imputation. KPS values were blank or 

unavailable for 143 cases. For this Bayesian analysis, censorship could be problematic and some 

censored cases were removed to target only cases observed until death or past a median survival 

cutoff. The final count of selected cases for analysis was 346. 

The selected TCGA cohort was discretized prior to evaluation using the categories in Table 6.2. 

The dataset was divided into three source and target subsets based on contributing hospital 

locations in the TCGA population. Source cohorts included multiple institutions and were used in 

model training; target cohorts included cases from a single institution and served as patients from 

a target location. Three target splits were made (large, medium, and small sets of cases) to examine 

the effects of prediction when varying amounts of target data were available. The final TCGA 

locations chosen to serve as targets for analysis were Hospitals 2, 6, and 19. These target cohorts 

contained 84, 65, and 18 cases respectively. All remaining cases were combined to create source 

cohorts (262, 281, and 328 cases respectively). 

Variable Range/Categorical values 

Age 0 (<40); 1 (40<65) ; 2 (65<80) ;3 (>80) 

Karnofsky Performance Score 20,40,60,70,80,90,100 - 7 Category Assignment 

Metagene Score 0 (Low, Score <= 0), 1 (High, Score > 0) 

Survival past median 0 (No); 1 (Yes) 

Table 6.2 Selected model variables and discretization choices. 
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6.1.2 Bayesian model design 

The base Bayesian model used for transportability theory review (Figure 6.2a) contains four 

variables; 1) a demographic variable, age; 2) a cognitive assessment variable, Karnofsky 

performance score (KPS); 3) a genetic variable, a 9-gene metagene score derived from Colman, et 

al. [119]; and 4) an outcome variable, overall survival (survival past median of 12 months). The 

choice of features in the Bayesian network was based primarily upon common use in past models 

and the ability to create a simple, yet plausible network. Age and KPS features, for example, were 

chosen due to their predictive significance in previous GBM models [69,89,90]. Similarly, overall 

survival was the most common outcome variable used in previous GBM prediction studies. 

  
(a) (b) 

Figure 6.2 Example causal diagram for (a) GBM survival prediction and (b) the same causal diagram of GBM with 
links and nodes representing expected confounding information and population differences for variables. In the 
diagram, solid circular nodes represent observed variables; while square nodes indicate selection nodes controlling 
for population differences. Causal links are represented with solid lines with directional arrows. Bi-directional dashed 
lines indicate variables linked by confounders. The selected observational variables are Patient Age (Age); Karnofsky 
Performance Score (KPS); 9-gene metagene score (Metagene); and Patient Survival at Population Median (Survival). 
Unique selection nodes for Age and KPS are shown as SA and SK. 

A genetic variable was included based upon the growing interest in genetic prediction variables 

for cancer. Genetic testing is not available in all clinical locations and large samples are difficult 

to collect in current clinical practice. The TCGA and REMBRANDT studies were conducted, in 

part, for obtaining these values for general review and future application to external studies. 
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Therefore, a genetic variable is a suitable example of an item from a model that would benefit 

from transport between source and target locations. A number of recent papers discuss the 

predictive potential of genetic markers such as O6-methylguanine-DNA-methyltransferase 

(MGMT) methylation and tumor protein 53 (TP53) gene expression. For example, significant up-

regulation of MGMT expression when treated with O6-alkylating agents such as temozolomide 

(Temodar) demonstrate potential benefits for patient survival [70,120–124]. Similarly, up/down 

regulation of TP53 factors into cell apoptosis; reduced rates of apoptosis are characteristic of many 

types of cancer and can contribute to large growth rates of cancerous cells [125]. 

For this evaluation, the genetic feature used was a metagene score derived from nine gene 

expression values measured in the TCGA dataset. The selection of these significant genes and the 

metagene scoring technique originated from previous work by Colman, et al. [119]. Colman’s 

score is calculated by summation of the weighted expression levels of the nine genes of interest. 

Meta-gene scores for each patient were discretized into high and low score classes before model 

training (Table 6.2). 

6.1.3 Transportability theory discussion 

In the example GBM model in Figure 6.2a, a set of four variables and their causal connections are 

shown. The example network comprises no connective links other than the direct causal 

connections derived from literature review. Given the set of causal assumptions made in the 

proposed graph, differences that may exist between source and target populations should be 

considered. Expected differences are encoded as additional nodes or bidirectional links between 

existing variable nodes. Additional nodes relate to assumed or known population differences. 

Bidirectional links indicate expected sources of confounding. Some form of confounding and 

population difference are likely in most graphical networks and must be dealt with when 
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problematic to the transportability task. An example graph with a considered set of these issues is 

provided in in Figure 6.2b. A model may not be transportable unless certain constraints can be met 

either by transportability rules (Chapter 2.3: do-calculus/d-separation) or evidence that the added 

differences in model connections can be removed or adjusted without affecting the outcomes. 

Thus, the goal of the transportability theory can be seen as an attempt to map between the messy 

real-world graph with lots of disruptions in Figure 6.2b and the ideal causal graph in Figure 6.2a 

to enable the transport of information. 

Unobserved and confounding variables.  

Consider the dotted connections in the example GBM network (Figure 6.2b). Bidirectional dotted 

links in the causal graph represent latent confounding variables. A confounding connection 

represents interactions mediated by unmeasured variables (i.e., data that could not be observed). 

In this example, the added link between age and Karnofsky performance score might denote the 

belief that unmeasured complex biological interactions can explain the interaction between KPS 

and age, masking direct effects of the stated causal assumption. For example, KPS is derived from 

an examination of a patient’s current mental and physical status. This status derives from a 

combination of the current symptomatic state of disease in the patient and some mix of other prior 

disease. The patient’s symptoms might be tied to a damaged hip from osteoporosis, causing a 

decreased score due to lost mobility, or symptoms could be tied to a past neurological event such 

as a stroke, causing a decreased score due to stroke related aphasia. These kinds of effects would 

mask the attempt to measure age’s causal effect on KPS values caused exclusively by GBM 

involvement. If proof exists in the literature that such an interaction is common between features, 

additional variables might be required for the model to correct the confounding before a proper 

transportability assessment can be made. The impact of the particular confounding example used 
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above would be minimal, as physicians are trained to account for prior disease during KPS 

evaluation. Therefore, the confounding link could be removed as there is a reasonable belief that 

clinicians are considering past injuries when quantifying the KPS value. 

Population differences.  

In addition to confounders, consideration must be given to the population differences that exist in 

the collected data. For example, chemotherapy treatment may vary between two locations 

depending on physician treatment preferences/experience, hospital practices, and availability of 

drugs. The number of patients treated might influence the predicative capabilities of the model 

depending on how the features were included and their causal links to other features. Selection 

nodes in Figure 6.2b represent potential cohort differences in age and KPS scoring. Age often 

varies depending on the type and the location of hospital where data is collected. Available training 

in performance scoring, overall experience of evaluators with patients in the domain, and standard 

variability of measurements taken by different examiners can have effects on KPS scoring if these 

differences are systematic. Adding new selection nodes can change how information flows 

between variables as the network is examined with transportability theory rules. Unless variance 

between the populations can be explained with evidence or well supported assumptions, 

stratification or re-estimation of variables connected to selection nodes may be warranted. 

Theory application 

Application of Pearl and Bareinboim’s work with transportability theory is possible for a given 

graph following the consideration of difference with relevant links and nodes. A set of algebraic 

rules called the do-calculus [45,48] (Chapter 2.3) enables a formal mathematical statement to be 

derived for the causal graphical structure with considerations for known controlled information. 

Analysis of the function can determine what elements of information are transportable based upon 
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fixed variables and the relationships, confounders, and selection nodes in the graph. This process 

is performed with do-calculus by breaking defined causal links between nodes based upon forced 

experimental constraints. Graphical analysis of the separated nodes via d-separation, and the front- 

and back-door criteria, can help determine which variables of the model are identifiable. 

Identification entails the evaluation of the graph edges that remain when observational data is used 

to set a variable to a specific state, and then determining when the network is not directly affecting 

the transportation of findings. Thus, when a causal graph is not identifiable, its findings are non-

transportable. For example, KPS can serve as a surrogate measure for imaging findings of brain 

tumor growth, which are influenced by population differences. As long as the KPS variable can be 

established as conditionally independent of population differences, information from the feature 

can serve as a replacement for the imaging information using the front door criterion of d-

separation. This process can unblock a situation where imaging findings may not be available and 

their causal relationship is obstructing successful model application. More information on do-

calculus and d-separation can be found in Chapter 2.3 or Pearl and Bareinboim’s work [45,48]. 

Similar examples for situations involving back-door paths and bidirectional counterfactual edges 

can be drawn for the examples above; a number of examples are provided with more detail in the 

Pearl and Barenboim’s discussions [46–48]. 

6.1.4 Network evaluation 

An example of the utility gained by controlling for disruptive factors in the causal graph is provided 

using a Bayesian belief network evaluation. Cohorts built from TCGA data were applied to the 

proposed Bayesian network to demonstrate the use of a partial adjustment. After reviewing the 

obstructed causal graph, the transportability of specific features can be run based on how the 
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assigned differences are cleared from the graph in causal analysis (such as in Figure 6.2a with no 

remaining obstructions). 

To perform this evaluation, the Bayesian belief network predictive model for GBM was tested 

using custom code in MATLAB (version 7.10.0, MathWorks, Inc, Natick, MA). Source and target 

cohorts were built by splitting the TCGA dataset by contributing location; one TCGA participating 

location was held out as a target cohort while all remaining data formed the source set. A 

breakdown of the number of cases in each source and target cohort are provided in Table 6.3. 

Breaking cases into these groups allowed the source cohort to act as a previous evaluation site for 

model construction and training. Target cohorts served as external locations with new patients in 

need of prediction. For this analysis, three splits were performed targeting contributing hospitals 

in the TCGA dataset with large (Hospital 2), medium (Hospital 6), and small (Hospital 19) sample 

sizes.  

TCGA Hospital ID Target Size Source Size 

2 84 262 

6 65 281 

19 18 328 

Table 6.3 Sample sizes of source and target cohorts created by splitting TCGA data. 

Four model combinations were created by varying the training and test cohorts from the three 

source-target splits. The four combinations were: Source versus Source (SS), Target versus Target 

(TT), Source versus Target (ST), and Transported Source versus Target (TrST). Each 

consideration describes the Training-Test setup used for modeling as summarized in Table 6.4. 

Leave-one-out cross-validation was performed on test cases to determine the prediction rate of the 

models. Mann Whitney U-tests were used to test for significant difference between prediction 

classes of the model.  
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Model Training Data Test Data 

SS All Source Source 

TT All Target Target 

ST All Source Target 

TrST Age:  Source, KPS: Target,  

Metagene: Source, Survival: Source 

Target 

Table 6.4 Description of training and test data used in the model considerations. Test data is cross validated using 
the leave-one-out cross-validation method. 

As a gold standard evaluation, SS and TT examinations represent the construction of a model using 

data from source and target locations with no knowledge of the other cohort. This emulates the 

current state of practice where research locations frequently build models for local use and perform 

internal validation. In this case, past models are not taken into account and transportability is not 

assessed between locations. In the ST comparison, the external validity of the source model is 

highlighted by predicting new cases from the target cohort. The ST examination applies 

information directly from source to target and in the case where all source and target variables are 

similar, model performance would be similar indicating a case of trivially transportability. All 

model probabilities are obtained from the source cohort with no training input; target cases provide 

no model training and are simply tested with the source model. This examination stage parallels 

with previous transportability investigations of this work. The chance of no differences existing 

between the source model and target are rare, as seen in previous results in other chapters, and 

performance was expected to suffer. Finally, the TrST split examines a partial transport adjustment 

where the probabilities of the KPS variable were retrained by the target data instead of the source. 

The assumption from the causal analysis was that the source KPS data differed greatly from the 

observations of target patients. Therefore, retraining this feature with target information can adjust 

for difference but does not influence the effects of the other features in the model. The trained 

information of the remaining variables was transported from the source model. The expectation 

was that the joint use of information from the source and target cohorts will outperform the ST 
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method because proper partial adjustments have been targeted using the causal transportability 

considerations. Table 6.4 provides a full breakdown of how source and target data were assigned 

for training the model in each of the four model combinations. 

6.2 RESULTS 

6.2.1 Network evaluation 

A total of 346 TCGA cases were available for analysis and were split into three source-target 

cohorts. Each source-target cohort was then used for model training, followed by testing using 

leave-one-out cross-validation (LOOCV) across the four described training variations (SS, TT, 

ST, TrST). LOOCV was chosen in order to maximize the number of cases available for the training 

steps, as the available sample sizes for the target splits were all small.  Final results of the analysis 

of the trained and tested Bayesian networks are presented in Table 6.5. Overall model performance 

was modest (SS and TT). Directly applied source models showed reduced discrimination in two 

of the three comparisons (ST) and all showed reduced performance compared to the complete 

source constructed model (TT). When partially adjusted, two models showed similar and improved 

performance, while one model continued to have reduced discrimination (TrST). An in depth 

discussion of these findings for each source-target combination are discussed below. 

 Model 

  SS TT ST TrST 

Hospital 2 (262,84) 0.69 (2.7E-08) 0.76 (1.5E-05) 0.74 (1.1E-04) 0.76 (1.7E-05) 

Hospital 6 (281,65) 0.72 (1.6E-11) 0.68 (0.007) 0.63 (0.056) 0.63 (0.059) 

Hospital 19 (328,18) 0.71 (4.7E-12) 0.94 (0.004) 0.68 (0.248) 0.94 (0.004) 

Table 6.5 Leave-one-out validation results of transportability analysis. Values represented are Area under the curve 
(AUC) and Mann-Whitney U p-value for significant difference between survival prediction classes. Three hospitals in 
the TCGA dataset are compared to demonstrate the effects of target cohort size. Karnofsky performance score (KPS) 
was held out as missing/unmeasured data in this model. 
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6.2.1.1 Prediction using source training data (SS and TT) 

Internal validation using LOOCV showed moderate performance for the models trained with 

source (SS) and target (TT) data. Performance measures for this analysis were calculated using 

area under the ROC curve (AUC). Discrimination ranged from 0.69-0.72 (LOOCV) for SS models 

and TT models ranged from 0.68-0.94. While target trained models managed to outperform source 

models, these performance gains were related to the small sample sizes in the TT combination. 

The models were more likely to be overfit than their SS counterparts, as noted by the exceptional 

performance in the target of Hospital 19 (AUC = 0.94). The larger p-values from Mann-Whitney 

testing also indicate that the SS model performances were more likely to be appropriate. The SS 

and TT model performances served as gold standards of discrimination performance from internal 

validation when comparing to subsequent model applications, ST and TrST. 

Decreased model discrimination when applying to the target implies the need for partial 

adjustment. These adjustments were attempted in the TrST case and can be compared to both the 

SS and TT values to understand the final improvement of a partial adjustment made in light of 

transportability theory. 

6.2.1.2 Prediction using outside training data (ST)  

A comparison of the SS with ST performance is equivalent to the analysis process described in 

Chapter 3. The trained source model is applied for predicting target location values. Measurement 

of the applied AUC discrimination with LOOCV analysis provides the ST comparison results. 

Lower AUC values indicated that the training data from the source cohort did not create a model 

that was transportable for predicting cases in the case of Hospital 6 and 19 splits. Results would 

be similar and externally valid when populations are similar and variable differences are minimal. 

Only in the large target cohort split, Hospital 2, was performance the same or improved. A 
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significant differentiation (p=1.1E-04) between prediction classes was detected for this application 

by the Mann-Whitney U-test supporting the external validity of this source-target example. For 

the other splits, transportability did not hold for the source model on outside data as seen by the 

decreased AUCs and p-values that do not reach significance (0.056 and 0.248). 

When comparing to the target trained models, a decrease in performance was seen for all cohort 

combinations. The TT score served as a theoretical performance maximum where no source 

information was supplied. AUC values dropped by 2.7%, 5.3%, and 26% respectively for the three 

hospital splits compared to TT models. Therefore, by comparing ST discrimination performance 

to the target trained model performance, it can be seen that more accurate discrimination is possible 

(though potentially overfit). 

6.2.1.3 Prediction using transported probabilities (TrST) 

Adjusting models with decreased performance by taking appropriate information from both the 

source and target locations is intended to improve the original model by replacing variable and 

distribution information to improve overall predictive performance in the target. In the TrST 

model, KPS values were assumed to vary between source and target populations. Therefore, KPS 

probabilities were trained using target patient data while other variables use transported data from 

the source. In two applications of the TrST model, an improvement of AUC over the application 

of the source trained model, ST, was observed. Performance for Hospital 2 and Hospital 19 

improved, matching the prediction accuracies seen in the TT model validations. These values meet 

or exceed the performance indicated by the SS validation results as well. In the case of Hospital 

19, the smallest target cohort, the Mann-Whitney U test statistic changed from being insignificant 

(ST p=0.248) to significant (TrST p=0.004). These improvements suggest that data from the KPS 

variable in the target was able to better model local cases. Hospital 6 showed no improvement in 
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accuracy between ST and TrST attempts. This result suggests that there was actually no significant 

underlying difference between the source and target KPS data for this split as was assumed for 

analysis. When these values are similar between populations, no new information is added by 

retraining information using a target cohort. In the Hospital 6 case, partial adjustment was not 

warranted for the KPS feature. Additional confounding links and selection nodes in the causal 

transportability analysis should be considered to search for other partial adjustment targets. 

However, if no other differences are easy to define or test in a causal graph, then a given model 

should be classified as a non-transportable case. Detecting and classifying non-transportable cases 

is important to using transportability theory effectively for model adjustment and improving model 

accuracies. 

6.3 DISCUSSION 

Given the general decrease in performance observed when applying models to external 

populations, it is important to consider mechanisms for adjusting models before classifying them 

as non-transportable. Examination of the specific differences between source and target cohorts 

can be informative for combining source and target information into a more effective model. These 

types of partial adjustments may also be informative for future model building if many complete 

source and target cohorts can be combined for retraining a model with a larger set of predictive 

features. Transportability theory is a novel method for considering the influence of feature and 

cohort differences on the ability to transport partial information from a source to a target.  

The transport of probabilities for prediction from a source model to a target cohort imparted an 

increase in the predictive power of the model over an original source model for two of the three 

sites in this evaluation. These results demonstrate at a basic level the potential power of 
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transportability theory to assess a model and determine appropriate variables for transport. 

Consideration of possible confounding and population difference in new cases is important when 

determining whether external validity applies to a model.  

In this chapter, core concepts of transportability were reviewed in the context of a GBM model to 

investigate the potential contributions of the method to partial model adjustment. In the examined 

scenario, feature information for a metagene biomarker based on gene expression was usable in a 

model applied between two cohorts. Target information was used to retrain another problematic 

feature, KPS, and performance improvements were observed in two of three cohort scenarios. This 

result indicates that the retrained target information can work in concert with transported source 

information to improve the predictive capabilities of a model with previous performance decreases. 

Performance was even equal to rates observed when completely retraining a full model from 

scratch. Transporting data in this way can also be used to extend models when data is unmeasurable 

or unavailable. In addition, the causal transportability analysis has potential to be reviewed prior 

to data collection. Subsequently, it can prove beneficial by reducing the number of variables that 

must be measured at the target location, saving time and money. For example, in the Bayesian 

network evaluation (Figure 6.2) age, metagene, and survival information were transported from 

the source model in the final comparison (TrST). In doing so, the target was not required to provide 

information to estimate probabilities for these variables, only KPS data was collected from the 

target. 

Application of transportability theory to increasingly complex model designs will be important to 

expand the utility of this approach. For instance, expanding a model with the addition of a new 

variable can cause a number of complications in the causal network not fully discussed in this 

chapter. Examples of additional considerations that might need review when inserting new features 
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into the network include: how the variable is measured, what other variables it is causally 

connected to, how the addition affects the previous assumptions of the links between features (i.e., 

changes to independence), and if measurement of the variable introduces new differences between 

populations. As model complexity increases, it appears that the number of considerations may 

become difficult to appreciate. Yet, inclusion of model information and graph designs to modeling 

experiments may be a way for investigators to clarify the model’s experimental target, 

assumptions, and design decisions. Published graphs might then act as a template for outside 

researchers to test the model’s transportability against target datasets. 

While the effectiveness of transportability theory is demonstrated by this examination, future work 

is needed to allow transportability theory to be accessible to many researchers. An honest 

evaluation of confounding arcs and selection nodes is required to faithfully consider the causal 

nature of the relationships described in a graph. In this way, a researcher can use transportability 

theory to demonstrate that conflicts have been considered and that assumptions made when 

attempting to claim findings are externally valid. However, the method to identify this information 

is not well defined and would currently require additional input from experts or literature review.  

Causal transportability assessment is one potential method for improving models in need of partial 

adjustment. Other options should be explored further to define what adjustment path is simplest 

for researchers. The transportability theory evaluation in this work makes it clear that partial 

adjustments are possible and will be useful to applying models more freely rather than discarding 

the important feature information contained in source models. 
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6.3.1 Limitations 

One limitation of this discussion and evaluation is the overall simplification of the problem. A 

probabilistic model of GBM should include a number of variables covering clinical, treatment, 

imaging, and genetic factors. The presented model only examines two such facets (clinical and 

genetic) and minimized the feature set to four specific nodes for the prediction task. This 

simplification is necessary for an introductory discussion of transportability theory, but is 

unrealistic when compared to model designs with larger feature sets seen in regression analysis. 

Models with 10-20 features will likely complicate the ability to determine and analyze the causal 

relationships of the model. Future analysis must examine the computational sophistication of larger 

disease models in order to find tractable solutions to transportability questions. Further efforts must 

be made to provide descriptions of the theory that are accessible to a broader audience with an 

interest in testing external validity. This will require communication between computer scientists, 

statisticians, and informaticians to balance the descriptive language used and ensure that papers 

related to transportability can be published more widely. 

Low prediction rates for the current models are potentially tied to the simplistic model 

representation chosen to facilitate discussion. Other statistical models have reported higher rates 

of discrimination in GBM survival prediction (AUC 0.81-0.82) [69,87], though some models 

perform at a similar level to the proposed Bayesian model. In addition, a limited number of 

confounding and population differences were considered. Examination of location differences in 

the TCGA dataset might elicit other variables that influence partial adjustment, allowing for 

improvement for a split like Hospital 6, where KPS updating did not improve discrimination. 

Providing a robust examination of factors that can disturb the external validity of data is necessary 
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to support claims made when completing causal transportability evaluations. Overlooked or 

ignored confounders could have influenced the capability of the model to perform in this work. 

Finally, the use of a 9-gene metagene score to summarize gene expression values allowed for 

simplification of the Bayesian network, but may not be the best feature design for prediction. The 

metagene score was used in this work based upon Colman’s evaluation that found the grouped 

feature was more predictive, but this finding itself has not been externally validated in a meaningful 

way [119]. An examination that treats each gene as a variable of the model might yield improved 

results in some cases. Many other gene expression rates are also measured for these populations 

and more statistical examination of the predictive involvement of these genes may suggest changes 

in the included genetic factors. 

6.3.2 Conclusion 

The core concepts of transportability theory were discussed in relation to a simple Bayesian model 

for GBM overall survival. The evaluation and discussion in this simplified context provides an 

understandable introduction to transportability and the examination of how poor assumptions and 

population differences may discourage outright dismissal of models from applied use. Increases in 

AUC when testing a partially adjusted model with information from both source and target cohorts 

(TrST) improved two of three examined test cases. These improvements are indicative of the utility 

of transporting partial information from a source model. Additional work in the area of 

transportability theory can act as a useful tool for defining partial adjustment targets. The 

complexities of causal analysis require future work, however, before determining that this process 

is able to outperform other methods for identifying where source findings are valid for transport 

and use with target populations.  
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CHAPTER 7  

CONCLUSION 

The increasing ubiquity of electronic health records, along with improved computational methods 

in statistical analysis and machine learning, have driven an explosion of predictive modeling for 

medical decision making. Evidence-based practice would benefit from well-constructed and 

validated models that provide probabilities of risk or suggest treatment paths for patients. It is well 

understood that internal validation should be tested when presenting potential models. However, 

external validation to other related environments is rarely attempted. Subsequently, few models 

are validated for decision making, despite an expanding supply of modeling publications. 

7.1 SUMMARY OF RESULTS 

In this dissertation, an investigation of the current state of transportability (external validation) 

analysis noted many of the current obstructions to providing effective evaluations. Clear reporting 

is particularly important to allow future researchers to understand the design choices of a given 

predictive model and apply it appropriately in other settings. Guidelines have already been 

suggested by consortiums of researchers in hopes of improving these practices. Internal validation 

steps have been sufficiently established, but many authors do not report discrimination or 

calibration values in relation to their published models. These validation tests are the most 

important analytic step for assessing transportability without access to the original source dataset. 

The results of this work support the need for discrimination values and suggest that the reporting 

of internal validations assessments should be further emphasized. 

The inclusion of retrospectively evaluated variability in discrimination metrics, such as the 

concordance statistic, was demonstrated as a new method for improving the evaluation and 
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understanding of model transportability. Simulated information was able to classify models into 

more distinct transportability groups. As target cohorts are rarely the same size as source cohorts, 

observed performance differences should also be checked for significance at multiple data sizes. 

Increases and decreases in discrimination may be related to the random selection of cases in the 

target rather than a true underlying population difference. Calculating the variability of applied 

metrics during internal validation is important for understand the bias of the source evaluation and 

enables comparisons for significance with the target. The method described in this work is 

particularly useful in present applications as it can make use of a minimal set of values that authors 

commonly report. Decreases in performance for the examined brain cancer models imply that none 

of the models were able to generalize, but do not distinguish between the need for calibration or 

partial adjustments. Final interpretations of transportability were more concrete when appropriate 

internal values were available, making it possible to separate between calibration and partial 

adjustment cases in particular. For example, the Michaelsen brain cancer model was able to be 

classified specifically for partial adjustment based on the significant decrease seen by adding 

discrimination variability to the transportability assessment. This capability can make it easier to 

determine what models should be approached for adjustment with specialized methods in the 

future. 

Minimal investigation has been performed to determine how to approach partial adjustments to 

models. Evaluation of a Bayesian belief network in this work helped demonstrate that the 

combined use of source and target information can provide performance improvements. 

Transportability theory was shown as a useful tool for stating assumptions of causality and 

population differences. By using graphical rules from the theory, a formal process can be followed 

to define what features should be targeted for adjustment. Performance in the transportability 
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theory evaluations were able to recover to levels comparable with a complete re-estimation process 

when appropriate features are targeted. Currently, this process is still difficult to apply as more 

features and disruptive assumptions are applied to model graph. However, the application holds 

promise as a targeted approach to updating problematic models in need of partial adjustment. 

7.2 FUTURE DIRECTIONS 

This dissertation touches on two areas of external validation in need of improvement. However, 

the design and study of external validation is a relatively young area of research. Many additional 

areas can be targeted in future research and the currently proposed methods can also be extended 

further. Furthermore, the results of this dissertation are informative for suggesting updates to 

recently proposed guidelines and the validation process as a whole. 

7.2.1 Additional use of simulations and metrics 

Simulated cohorts built from limited published information were useful for making new 

determinations about models in this work. This process was used to focus on estimating variability 

of discrimination in the c-statistic, but may be generalizable to many different performance 

metrics. For example, calibration serves as another primary metric for analyzing external 

validation, but is not incorporated in current interval validation assessments. However, during 

cross-validation or bootstrapping, the calibration of the trained model to test cases will vary over 

folds/bootstraps in the same way that the discrimination metrics vary. Incorporating calibration 

scores and calibration variance with confidence intervals can help better describe the stability of 

the model in the internal setting. These values should be computed as a new addition to standard 

validation analysis of the source data. In addition, the simulation process from this work can be 

applied to consider these calibration values retrospectively if necessary. 
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Deeper analysis of model calibration may also prove useful for studying transportability of 

findings over time. For example, as updated evidence informs new treatments options, patient care 

may be significantly revised. Observed event rates would change and previously validated models 

would become miscalibrated. Future research should evaluate how models can be re-calibrated for 

these types of medical updates and calculate at what point a previously validated model would 

begin to require partial adjustment or complete retraining. Thus, assessment of calibration over 

time would inform researchers of what features are most susceptible to change and whether models 

are broadly applicable over long time periods. Providing a form of continuous model review could 

generate new forms of transportability adjustment and model designs that robustly handle rapid 

updating. 

Other novel metrics for understanding transportability should be considered moving forward. 

Some publications make use of additional performance measures such as explained variation (R2) 

and the Brier score in reporting [126,127]. Future research should consider what metrics might be 

more appropriate in certain circumstances and how effectively a simulation process can estimate 

their values. Two additional discrimination measures, the net reclassification index (NRI) and 

integrated discrimination index (IDI), help quantify model performance when adding/changing 

predictors in a model and may provide insight into model updating [21]. However, the application 

of NRI for validation has been controversial and requires further study to become reliable a 

measure [27,128]. Finally, model research needs to assess clinical utility in more detail. Clinical 

utility requires a choice between decision-making thresholds that are difficult to define across 

many different models. Discrimination measures such as the c-statistic generalize over many 

thresholds to summarize overall performance. Decision curve analysis (DCA) is a metric for the 

calculating the benefit of different models when comparing false-positive and false-negative rates 
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of predictions [32]. DCA is limited by a need for expert input to define threshold comparisons and 

future research should attempt to learn appropriate thresholds through validation procedures. 

While additional metrics are unlikely to supplant discrimination or calibration for validation 

assessment, they may ultimately prove useful for further defining transportability classifications. 

Thus, future work should explore new metrics broadly to determine how they can provide accurate 

separation of the most useful models for evidence-based decision making. 

Lastly, the proposed simulation approaches in this work are relatively simple, striving to provide 

ease of implementation while requiring minimal data. The proposed naïve approach, for example, 

requires only two or three sets of published inputs and makes general assumptions of sampling 

distributions. As a result, the naïve approach was unable to consistently create a cohort that had a 

discrimination c-statistic significantly similar to the compared source cohort during NLST 

investigation. The covariance approach adds complexity to the simulation process, attempting to 

model feature correlations. Simulated covariance cohorts showed improved similarity in c-

statistics compared to the naïve approach, although they continued to be significantly different. In 

order to more accurately generate simulated values, future work should explore what information 

is required to reach significant similarity with simulations. One direct improvement would include 

further constraining the simulation process to follow selection criteria from the source paper. For 

example, patients are frequently restricted to specific ranges based on certain features (e.g., ages 

between 50-70 years old). The current naïve and covariance approaches do not take such 

restrictions into account, generating a set of cases that can potentially fall outside the bounds of 

the source cohort criteria. Maximizing the similarity of feature bounds to source examples is 

important for creating a cohort with significantly similar discrimination performance. Another 

approach to maximizing similarity would include further optimization with more advanced 
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Markov chain Monte Carlo sampling. This method attempts to optimize performance by choosing 

samples that move the simulated performance closer to the published c-statistic. The difficulty of 

this method, however, is in defining the stopping condition for the sampling process. Adding this 

functionality could complicate the simulation process, making it less accessible to researchers. 

Nevertheless, simulated cohorts that are insignificantly different from the source would be able to 

estimate the central tendency of internal validation metrics and help extend the utility of the 

simulation process. Future adjustments to the simulation approach must balance robust 

specification while remaining as simple as possible to allow for widespread adoption. 

7.2.2 Publication guidelines 

Ultimately, retrospective reviews using simulation might not be necessary if researchers follow a 

proper set of guidelines for reporting predictive model design and validation. The recently released 

TRIPOD statement [79] is the most comprehensive attempt to provide a checklist of reportable 

information in modeling papers. It covers what information should be reported in all sections of a 

paper from abstract to conclusions. The results of evaluations in this dissertation help stress the 

importance of items such as c-statistic variability and calibration details. These items should be 

strongly emphasized in any reporting guidelines. 

TRIPOD includes both confidence intervals and calibration in the current checklist as part of 

results sections covering “Model performance” and “Model-updating” [79]. The findings of this 

work support the descriptions provided by the TRIPOD statement. As seen when interpreting 

model transportability in this work, discrimination values are crucial and the lack of AUC or c-

statistic values make it impossible to fully evaluate external validity. This work found calibration 

metrics were important for distinguishing between the trivial and calibration adjustment levels of 

model transportability as well. Other recent publications on proper validation procedures stress 
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calibration testing but do not always include suggestions for measurements of confidence intervals 

during internal validation [35,37–39,129]. Some researchers may assume inclusion of items like 

confidence intervals is implied as part of standard analysis. However, given the general absence 

of confidence intervals in current reporting, all items relevant to internal and external validation 

should be stressed explicitly. Therefore, this work emphasizes the need for discrimination, 

calibration, and confidence interval assessment to support transportability analysis. Repeated 

evaluations in other domains can further underscore how following TRIPOD guidelines will create 

well described publications that lead to increased model evaluation and reuse. 

Based on the findings in previous chapters, a source covariance matrix could be suggested as an 

additional reporting requirement for revised TRIPOD guidelines. The covariance matrix contains 

important feature correlation information and can be shared more easily than the source data in 

most circumstances. As demonstrated in this dissertation, the addition of information from the 

covariance matrix can be used to simulate cohorts that are more closely related to the source cases. 

Consequently, the addition of this matrix is a relatively simple step that can allow for more accurate 

external analysis. Adding the covariance matrix as a requirement to supplementary materials in 

publications would allow for more widespread simulation and validation analysis while reducing 

concerns of exposing protected health information. 

The current state of external validation research is moving quickly, often with multiple newly 

proposed frameworks or revised evaluation processes being published each year. Future analysis 

of techniques like those presented in this work may support other additions or subtractions from 

the current guidelines. Therefore, steering committees must act quickly to update guidelines. 

Similarly, researchers interested in predictive modeling must stay appraised of current suggestions 

provided by guideline efforts. Finally, the modeling community should broaden the reporting 
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guideline focus beyond publications and into databases of model findings. The important context 

of data collection, cleaning, feature selection, and model design can be standardized as seen by 

efforts such as PMML and ODHSI [96,100]. Researchers should be required to summarize their 

findings in programmatic forms that allow for easy review, replication, and validation. These 

computer readable descriptions of model designs and outcomes are less ambiguous than free text 

descriptions. Creating a database of models would help the community compare and contrast 

model findings more quickly, particularly when searching for the most generalizable models to 

apply to specific predictive tasks. 

7.2.3 Transportability validations and classifications 

There are a variety of proposed options for approaching external validity analysis. Most overlap 

with each other and the methods in this work also inherit from them closely. Nevertheless, 

continued evaluation of these approaches can help define the most effective techniques. In this 

work, heavy focus was given to model discrimination, in line with the majority of other proposed 

frameworks. Discrimination is certainly the most important analytic measure for initial assessment 

of a model’s use in decision making. Decision classes must be separated into clear groups to 

achieve accurate conclusions. However, new methods are needed for exploring the intricate 

differences between cohorts. The primary method of this work takes advantage of c-statistic 

variability and confidence intervals to provide additional insight into discrimination. Debray et 

al.’s approach inspects case-mix, linear predictor difference, and standard deviation ratios, 

providing another novel approach that might change the way researchers analyze transportability 

[41]. Additional work is needed to push the boundaries of analysis with improved metrics. 

Calibration, in particular, can still be difficult to interpret. For example, direct comparison of 

calibration intercepts and slopes does not yield clear interpretations of which models are most 
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appropriate for adjustment. Novel approaches can more clearly define these interpretations and 

consider validation issues from the clinical perspective of decision making [31]. However, their 

use should be clearly grounded in the differentiation of model external validity. Transportability 

assessments clearly require further extension to reach this goal and provide distinct classifications 

that can give clinicians confidence that predictive models can become a part of their regular 

practice. 

One contribution of this work includes a proposed set of transportability classifications that attempt 

to divide models more evenly between levels of utility. The primary goal of this grouping is to 

provide a clear differentiation between the trivial, calibration, and partial transportability 

categories. Most research to date focuses on models that meet trivial and calibration adjustment 

constraints. However, these models are relatively easy cases to evaluate as most of the information 

is transportable with minor adjustments. More focus is needed to target models with significant 

predictive issues (i.e., models in the partial adjustment category). 

As more assessments of model transportability are completed, the proposed categories of this work 

can be updated. For example, many frameworks attempt to separate transportability evaluations 

based on the known difference in cohorts, such as temporal or geographic transportability. New 

categorizations combining this predefined knowledge with the more general categories of 

transportability levels might be explored in future work. Subcategorizations for the calibration and 

partial adjustment categories could also be defined as new processes are developed for adjusting 

models in these states. Causal transportability evaluation, for example, is just one technique for 

partial model adjustment. Additional research might define that this method or others are only 

applicable to certain classes of difference within the partial adjustment category. 
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7.2.4 Causal analysis and partial model adjustments 

Causal graphical analysis with transportability theory stands as an interesting tool for partially 

adjusting models. However, graphical modeling is not a widely used technique for disease 

modeling. Future work must consider ways to define graphical assumptions more easily from 

existing models. For example, a process for converting regression models to a graphical structure 

by combining information from regression coefficients and a source covariance matrix might allow 

for a guided definition of the nodes and edges of a Bayesian belief network (BBN). These resulting 

BBNs would make it easier to define model assumptions and add causal constraints so that 

transportability theory could be tested more broadly. In addition, researchers might also include 

their own assumptions of feature and outcome relationships when designing regression models. 

With widespread adoption and reporting, these expert defined graphs would serve as templates of 

graphical structure and could inform broad structure designs. Finally, current explorations of 

transportability theory are often limited in the scope of variables explored. Increasing the size of 

networks in future analysis will be important for understand the limitations of applying this method 

in complex model designs. 

Overall, cohort differences and partial model adjustments are in need of much deeper examination. 

Big data and machine learning attempt to surpass issues of difference by including larger and larger 

training datasets. Yet, in medical practice, the number of patients and data points are still relatively 

limited due to the rarity of certain diseases and the need for controlled experimentation. Modeling 

efforts in healthcare must balance between these two approaches and make use of partial 

adjustments as a tool for correcting specific models. Trained models can then be made generally 

useful when the collection of multiple, large datasets is not possible. While this work demonstrated 
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one method for the identification of model difference and partial adjustment, this task remains an 

open area of research in need of other novel solutions. 

7.3 CONCLUSION 

Machine learning and predictive analysis can play an important role in improving medical decision 

making. Before clinicians and patients are comfortable trusting predictive models developed with 

these techniques, they must undergo robust validation analysis in many related, but slightly 

different settings. Evaluations of the transportability of models are still obstructed by current 

reporting practices and the relative novelty of the need for this secondary evaluation. Many 

researchers from computer science, epidemiology, informatics, and other medical fields have 

begun driving reliable and standard approaches for this field.  

This dissertation investigated improvements to the assessment and categorization of models. In 

addition, a novel process for evaluating models in need of partial adjustment was explored. These 

applications show that additional improvements can be made for assessments of external validity 

by obtaining information on the performance of a model that may be unstudied or unreported in 

previously published findings.  

The methods presented in this dissertation can help solve certain problem cases in validation 

analysis, but overall can be considered on step in future advances in this field. Some future 

directions are discussed as part of this chapter, but advancements may elucidate broader 

approaches than those suggested. The results of this dissertation help demonstrate how 

transportability can be given a more nuanced analysis so that model reuse can be clearly defined. 

External validation is now at the forefront of predictive modeling research and through continued 
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research efforts will begin to provide confidence for applying models to aid evidence-based 

decision making. 
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APPENDIX A  

SIMULATION CONSTRAINTS: COVARIANCE AND SURVIVAL VALUES 

 age bmi sday syr squit race2 race3 race4 race5 hisp educ copd hcancer fhcancer cigsmok 

age 25.181 -1.686 0.060 19.446 3.542 -0.035 0.015 -0.007 -0.002 -0.004 -0.540 0.069 0.064 -0.037 -0.270 
bmi -1.686 24.898 -0.085 -4.401 3.773 0.041 -0.032 0.004 0.009 0.001 -0.321 0.013 -0.015 0.050 -0.496 
sday 0.060 -0.085 0.016 0.199 -0.169 0.003 0.000 0.000 0.000 0.000 0.004 -0.001 0.000 -0.001 0.015 
syr 19.446 -4.401 0.199 54.300 -18.051 0.043 0.005 -0.003 0.003 0.002 -1.960 0.120 0.076 -0.053 1.394 
squit 3.542 3.773 -0.169 -18.051 23.988 -0.073 0.008 -0.002 -0.003 -0.004 0.457 -0.019 -0.007 0.030 -1.762 
race2 -0.035 0.041 0.003 0.043 -0.073 0.042 -0.001 0.000 0.000 0.000 -0.024 0.000 0.000 0.000 0.008 
race3 0.015 -0.032 0.000 0.005 0.008 -0.001 0.019 0.000 0.000 0.000 0.003 0.000 -0.001 -0.002 -0.001 
race4 -0.007 0.004 0.000 -0.003 -0.002 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
race5 -0.002 0.009 0.000 0.003 -0.003 0.000 0.000 0.000 0.004 0.000 -0.003 0.000 0.000 0.000 0.000 
hisp -0.004 0.001 0.000 0.002 -0.004 0.000 0.000 0.000 0.000 0.012 -0.005 0.000 0.000 -0.001 0.000 
educ -0.540 -0.321 0.004 -1.960 0.457 -0.024 0.003 0.000 -0.003 -0.005 2.327 -0.001 -0.004 -0.034 -0.046 
copd 0.069 0.013 -0.001 0.120 -0.019 0.000 0.000 0.000 0.000 0.000 -0.001 0.049 0.002 0.002 -0.002 
hcancer 0.064 -0.015 0.000 0.076 -0.007 0.000 -0.001 0.000 0.000 0.000 -0.004 0.002 0.040 0.000 0.001 
fhcancer -0.037 0.050 -0.001 -0.053 0.030 0.000 -0.002 0.000 0.000 -0.001 -0.034 0.002 0.000 0.172 -0.003 
cigsmok -0.270 -0.496 0.015 1.394 -1.762 0.008 -0.001 0.000 0.000 0.000 -0.046 -0.002 0.001 -0.003 0.250 

Table A.1 Complete covariance matrix of the NLST test cohort. Compact variable names used for spacing, see Table A.2 for full NLST feature names. 
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NLST Coding Short Coding 

age age 

bmi bmi 

smokday sday 

smokyear syr 

smokquittime squit 

race2 race2 

race3 race3 

race4 race4 

race5 race5 

hispanic hisp 

educat educ 
diagcopd copd 

histcancer hcancer 

famhistcancer fhcancer 

cigsmok cigsmok 

Table A.2 NLST and short feature name reference. 

 

Figure A.1 Data extraction for Helseth overall survival curve. 
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Figure A.2 Data extraction for Michaelsen overall survival (OS) curve. Points generated on the time to progression 
(TTP) survival curve were removed manually. 

 

Figure A.3 Data extraction for the Kumar overall survival curve for Group II cases used for Cox regression (KPS >= 70 
and 60 Gy chemotherapy). Points generated on the Group I survival curve were removed manually.  
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Table A.3 Extracted survival times and probabilities from published (Helseth, Michaelsen, Kumar) or derived (Gutman) 
Kaplan-Meier survival curves. Extracted values were used for Cox hazards cohort simulation. 

Helseth Michaelsen Gutman Kumar 

Time 
(months) 

Survival 
Time 

(months) 
Survival 

Time 
(months) 

Survival 
Time 

(months) 
Survival 

0.238 0.992 0.140 1.001 0.000 1.000 1.234 0.990 
0.838 0.972 0.502 1.001 0.526 0.988 1.750 0.975 
1.213 0.951 0.863 1.001 0.723 0.975 2.165 0.964 
1.663 0.932 1.225 1.001 1.282 0.963 2.319 0.949 
2.023 0.914 1.587 1.001 2.104 0.950 2.517 0.919 
2.413 0.892 1.949 1.001 2.696 0.925 2.535 0.935 
2.863 0.872 2.311 0.999 3.353 0.912 2.671 0.907 
3.163 0.854 2.673 0.990 3.419 0.899 2.980 0.892 
3.464 0.835 3.035 0.982 3.945 0.885 3.524 0.878 
3.764 0.815 3.385 0.973 4.044 0.872 3.599 0.858 
4.064 0.789 3.639 0.963 4.142 0.858 3.752 0.843 
4.439 0.771 4.000 0.958 4.175 0.845 3.984 0.828 
4.664 0.754 4.362 0.946 4.241 0.831 4.181 0.806 
5.114 0.738 4.724 0.938 4.471 0.818 4.321 0.786 
5.714 0.719 5.086 0.924 4.800 0.804 4.443 0.770 
6.014 0.701 5.448 0.916 5.753 0.776 4.472 0.754 
6.374 0.682 5.809 0.906 5.852 0.762 4.724 0.739 
6.764 0.661 6.141 0.893 6.148 0.748 4.825 0.720 
7.176 0.642 6.473 0.882 7.233 0.734 5.123 0.699 
7.514 0.623 6.835 0.875 7.397 0.719 5.396 0.681 
7.814 0.605 7.167 0.858 7.726 0.705 5.550 0.666 
8.114 0.587 7.468 0.840 8.416 0.691 5.751 0.654 
8.264 0.570 7.800 0.827 8.581 0.676 5.904 0.635 
8.614 0.555 8.132 0.817 9.764 0.662 6.313 0.616 
9.014 0.540 8.403 0.800 9.797 0.647 6.406 0.604 
9.614 0.523 8.705 0.782 10.093 0.633 6.786 0.591 
9.974 0.503 9.067 0.772 10.652 0.618 6.934 0.574 

10.214 0.486 9.308 0.762 10.718 0.603 7.140 0.561 
10.664 0.470 9.398 0.741 10.816 0.588 7.309 0.545 
10.889 0.453 9.670 0.726 11.079 0.574 7.525 0.532 
11.489 0.437 10.001 0.717 11.737 0.558 7.809 0.517 
11.924 0.416 10.333 0.701 11.901 0.542 7.988 0.500 
12.464 0.398 10.635 0.689 12.164 0.525 8.017 0.484 
12.889 0.376 10.936 0.674 12.559 0.509 8.202 0.470 
13.424 0.353 11.238 0.666 12.625 0.492 8.527 0.455 
13.934 0.336 11.382 0.653 13.644 0.475 8.634 0.440 
14.714 0.319 11.449 0.640 13.907 0.458 8.835 0.428 
15.214 0.300 11.751 0.623 13.973 0.442 9.144 0.416 
15.614 0.283 12.022 0.611 14.301 0.425 9.309 0.400 
16.214 0.269 12.203 0.592 14.926 0.408 9.763 0.386 
16.814 0.252 12.444 0.580 15.353 0.390 10.151 0.371 
17.489 0.236 12.806 0.576 15.386 0.373 10.371 0.356 
18.239 0.222 13.138 0.559 17.786 0.356 10.692 0.345 
18.914 0.206 13.470 0.545 17.951 0.340 10.846 0.333 
19.339 0.186 13.801 0.532 18.378 0.323 11.055 0.315 
20.189 0.168 14.103 0.519 19.332 0.307 11.386 0.295 
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21.089 0.156 14.374 0.494 19.595 0.290 11.773 0.279 
21.989 0.146 14.736 0.487 19.660 0.273 12.161 0.266 
22.814 0.133 15.038 0.481 20.252 0.257 12.444 0.250 
23.640 0.118 15.279 0.463 20.877 0.240 12.857 0.233 
24.540 0.114 15.581 0.451 22.290 0.222 13.401 0.224 
25.440 0.111 15.861 0.430 22.685 0.204 13.866 0.210 
26.340 0.107 16.244 0.424 24.164 0.186 14.020 0.197 
27.240 0.093 16.546 0.417 24.230 0.168 14.720 0.183 
28.140 0.083 16.847 0.403 24.559 0.150 15.653 0.177 
29.040 0.081 17.209 0.400 25.348 0.134 16.391 0.164 
29.940 0.080 17.571 0.396 26.696 0.117 17.286 0.156 
30.840 0.079 17.933 0.389 27.222 0.100 17.818 0.142 
31.740 0.076 18.295 0.383 29.195 0.081 18.607 0.134 
32.640 0.071 18.657 0.377 31.101 0.065 18.956 0.121 
33.540 0.066 19.019 0.369 33.666 0.049 19.668 0.109 
34.440 0.060 19.350 0.364 37.578 0.037 20.628 0.103 
35.340 0.056 19.682 0.349 42.148 0.023 21.562 0.101 
36.240 0.055 20.044 0.339 44.581 0.012 22.418 0.092 
37.140 0.055 20.406 0.334 51.321 0.006 23.430 0.089 
38.040 0.055 20.738 0.321 56.877 0.001 24.174 0.079 
38.940 0.055 21.069 0.304    25.142 0.077 
39.840 0.053 21.431 0.298    26.076 0.077 
40.740 0.050 21.793 0.288    27.011 0.077 
41.640 0.044 22.155 0.287    27.946 0.075 
42.541 0.042 22.517 0.286    28.880 0.070 
43.441 0.040 22.879 0.279    29.814 0.069 
44.341 0.032 23.241 0.273    30.749 0.069 
45.241 0.031 23.603 0.273    31.657 0.062 
46.141 0.031 23.965 0.273    32.617 0.061 
47.041 0.031 24.327 0.271    33.552 0.061 
47.941 0.031 24.688 0.270    34.486 0.061 
48.841 0.031 25.050 0.260    35.421 0.061 
49.741 0.031 25.412 0.247    36.356 0.061 
50.641 0.031 25.774 0.244    37.290 0.061 
51.541 0.031 26.136 0.237    38.225 0.061 
52.441 0.031 26.498 0.234    39.082 0.058 
53.341 0.031 26.860 0.232    39.469 0.043 
54.241 0.031 27.222 0.229    40.403 0.041 
55.141 0.031 27.584 0.224    41.338 0.041 
56.041 0.031 27.946 0.217    42.273 0.041 
56.941 0.031 28.307 0.216    43.207 0.041 
57.841 0.031 28.609 0.215    44.142 0.041 
58.741 0.031 28.942 0.209    45.077 0.041 
59.641 0.031 29.408 0.209    46.011 0.041 
60.541 0.031 29.876 0.208    46.946 0.041 
61.441 0.031 30.238 0.208    47.881 0.041 
62.342 0.031 30.599 0.202    48.815 0.041 
63.242 0.031 30.961 0.199    49.750 0.041 
64.142 0.031 31.323 0.198    50.685 0.041 
65.042 0.031 31.685 0.192    51.620 0.041 
65.942 0.031 32.047 0.185    52.554 0.041 
66.842 0.031 32.409 0.181    53.489 0.041 
67.742 0.031 32.771 0.181    54.424 0.041 
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68.642 0.031 33.133 0.181    55.358 0.041 
69.542 0.031 33.495 0.181    56.293 0.041 
70.442 0.031 33.857 0.172    57.228 0.041 
71.342 0.031 34.218 0.169    58.162 0.041 
72.242 0.031 34.580 0.162    59.097 0.041 
73.142 0.031 34.942 0.157    60.032 0.041 
74.042 0.031 35.247 0.150    60.966 0.041 
74.717 0.032 35.543 0.150    61.901 0.041 

   35.847 0.141    62.602 0.038 
   36.209 0.134    62.833 0.023 
   36.571 0.130    63.768 0.022 
   36.933 0.123    64.702 0.022 
   37.295 0.123    65.637 0.022 
   37.656 0.123    66.572 0.022 
   38.018 0.123    67.506 0.022 
   38.380 0.123    68.441 0.022 
   38.742 0.123    69.376 0.022 
   39.104 0.118    70.311 0.022 
   39.466 0.117    71.245 0.022 
   39.828 0.117    71.944 0.006 
   40.190 0.117    71.946 0.018 
   40.552 0.116      

   40.914 0.109      
   41.275 0.107      
   41.637 0.106      
   41.999 0.106      
   42.361 0.106      
   42.723 0.106      
   43.085 0.104      
   43.447 0.098      
   43.809 0.097      
   44.020 0.092      
   44.344 0.090      
   44.653 0.086      
   45.015 0.082      
   45.377 0.081      
   45.739 0.081      
   46.101 0.081      
   46.463 0.081      
   46.825 0.081      
   47.186 0.080      
   47.548 0.073      
   47.910 0.073      
   48.272 0.073      
   48.634 0.073      
   48.996 0.073      
   49.358 0.073      
   49.720 0.073      
   50.082 0.073      
   50.444 0.073      
   50.805 0.073      
   51.167 0.073      
   51.529 0.073      
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   51.891 0.072      
   52.253 0.062      
    52.615 0.059         
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