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Abstract

Phylodynamics is an area of population genetics that uses genetic sequence data to esti-
mate past population dynamics. Modern state-of-the-art Bayesian nonparametric methods
for phylodynamics use either change-point models or Gaussian process priors to recover
population size trajectories of unknown form. Change-point models suffer from compu-
tational issues when the number of change-points is unknown and needs to be estimated.
Gaussian process-based methods lack local adaptivity and cannot accurately recover trajec-
tories that exhibit features such as abrupt changes in trend or varying levels of smoothness.
We propose a novel, locally-adaptive approach to Bayesian nonparametric phylodynamic
inference that has the flexibility to accommodate a large class of functional behaviors. Lo-
cal adaptivity results from modeling the log-transformed effective population size a priori
as a horseshoe Markov random field, a recently proposed statistical model that blends to-
gether the best properties of the change-point and Gaussian process modeling paradigms.
We use simulated data to assess model performance, and find that our proposed method
results in reduced bias and increased precision when compared to contemporary methods.
We also use our models to reconstruct past changes in genetic diversity of human hepatitis
C virus in Egypt and to estimate population size changes of ancient and modern steppe
bison. These analyses show that our new method captures features of the population size
trajectories that were missed by the state-of-the-art phylodynamic methods.

1 Introduction
Estimation of population sizes and population dynamics over time is an important task in ecol-
ogy and epidemiology. Census population sizes can be difficult to estimate due to infeasible
sampling requirements or study costs. Genetic sequences are a growing source of informa-
tion that can be used to infer past population sizes from the signatures of genetic diversity.
Phylodynamics is a discipline that uses genetic sequence data to estimate past population dy-
namics. Many phylodynamic models draw on coalescent theory (Kingman, 1982; Griffiths and
Tavaré, 1994), which provides a probabilistic framework that connects the branching times of
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a genealogical tree with the effective size and other demographic variables, such as migration
rates, of the population from which the genealogy was drawn. Effective population size can
be interpreted as a measure of genetic diversity in a population and is proportional to census
population size if coalescent model assumptions are met. When genetic diversity is high, the
effective population size approaches the census population size, given random mating and no
inbreeding or genetic drift, but is otherwise smaller than the census size. In our work we con-
centrate on estimation of effective population sizes over evolutionary time, which can be short
for rapidly evolving virus populations and longer (but still estimable with preserved ancient
molecular sequence samples) for more slowly-evolving organisms. Some examples of success-
ful application of phylodynamics include describing seasonal trends of influenza virus spread
around the world (Rambaut et al., 2008), quantifying dynamics of outbreaks like hepatitis C
(Pybus et al., 2003) and Ebola viruses (Alizon et al., 2014; Volz and Pond, 2014), and assessing
the effects of climate change on populations of large mammals during the ice ages using ancient
DNA (Shapiro et al., 2004; Lorenzen et al., 2011).

Some approaches to phylodynamics use parametric functional relationships to describe ef-
fective population size trajectories (e.g., Pybus et al., 2003; Rasmussen et al., 2014), but non-
parametric methods offer a flexible alternative when an accurate estimate of a complex popula-
tion size trajectory is needed and knowledge of the mechanisms driving population size changes
is incomplete. Nonparametric models have a long history of use in phylodynamics. Pybus et al.
(2000) introduced a nonparametric method, called the skyline plot, that produced point-wise
estimates of population size, where the number of estimates was equal to the number of sam-
pled genetic sequences minus one. The estimates from this method were highly variable, so
a modification, referred to as the generalized skyline plot, created a set of discrete time inter-
val groups that shared a single effective population size (Strimmer and Pybus, 2001). These
likelihood-based approaches were adapted to a Bayesian framework with the Bayesian sky-
line plot (Drummond et al., 2005) and the variable-knot spline approach of Opgen-Rhein et al.
(2005). Minin et al. (2008) provided an alternative to these change-point methods by introduc-
ing a Gaussian Markov random field (GMRF) smoothing prior that connected the piecewise-
constant population size estimates between coalescent events without needing to specify or
estimate knot locations. Palacios and Minin (2012) and Gill et al. (2013) extended the GMRF
approach of Minin et al. (2008) by constructing a GMRF prior on a discrete uniform grid.
A grid-free approach, introduced by Palacios and Minin (2013), allowed the population size
trajectories to vary continuously by using a Gaussian process (GP) prior.

Modern nonparametric Bayesian methods for phylodynamics offer the state-of-the-art for
recovering effective population size trajectories of unknown form. However, current methods
cannot accurately recover trajectories that exhibit challenging features such as abrupt changes
or varying levels of smoothness. Such features may arise in populations in the form of bottle-
necks, rapid population changes, or aperiodic fluctuations with varying amplitudes. Accurate
estimation of features like these can be important for understanding the demographic history of
a population. Outside of phylodynamics, various nonparametric statistical methods have been
developed to deal with such nonstationary or locally-varying behavior under more standard
likelihoods. These methods include, but are not limited to, GPs with nonstationary covariance
functions (Paciorek and Schervish, 2006), nonstationary process convolutions (Higdon, 1998;
Fuentes, 2002), non-Gaussian Matérn fields (Wallin and Bolin, 2015), and adaptive smoothing
splines (Yue et al., 2012, 2014). Each of these methods has good qualities and could poten-
tially be adapted for phylodynamics, but methods based on continuous random fields or process
convolutions can be computationally challenging for large data sets, and some spline methods
require selection or modeling of the number and location of knots.
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A recent method by Faulkner and Minin (2018) uses shrinkage priors in combination with
Markov random fields to perform nonparametric smoothing with locally-adaptive properties.
This is a fully Bayesian method that does not require the use of knots and avoids the costly
computations of inverting dense covariance matrices. Computations instead take advantage
of the sparsity in the precision matrix of the Markov random field to avoid matrix inversion.
Faulkner and Minin (2018) compared different specifications of their shrinkage prior Markov
random field (SPMRF) models and found that putting a horseshoe prior on the kth order differ-
ences between successive function values had superior performance when applied to underlying
functions with sharp breaks or varying levels of smoothness. We refer to the model with the
horseshoe prior as a horseshoe Markov random field (HSMRF).

In this paper, we propose an adaptation of the HSMRF approach of Faulkner and Minin
(2018) for use in phylodynamic inference. We describe the first application of the HSMRF
prior to the coalescent model and devise a new MCMC scheme for the model that uses efficient,
tuning-parameter-free, high-dimensional block updates. We provide an implementation of this
MCMC in the program RevBayes, which allows us to target the joint distribution of genealogy,
evolutionary model parameters, and effective population size parameters. We also develop
a method for setting the hyperparameter on the prior for the global shrinkage parameter for
coalescent data. We use simulations to compare the performance of the HSMRF model to that
of a GMRF model and show that our model has lower bias and higher precision across a set of
population trajectories that are difficult to estimate. We then apply our model to two real data
examples that are well-known in the phylodynamics literature and compare its performance to
other popular nonparametric methods. The first example reanalyzes epidemiological dynamics
of hepatitis C virus in Egypt and the second looks at estimation of ancient bison population size
changes from DNA data.

2 Methods

2.1 Sequence Data and Substitution Model
Suppose we have a set of n aligned RNA or DNA sequences for a set of L sites within a
gene. We assume the sequences come from a random sample of n individuals from a well-
mixed population, where samples were collected potentially at different times. Let Y be the
n × L sequence alignment matrix. We assume the sites are fully linked with no recombination
possible between the sequences. This allows us to assume the existence of a genealogy g,
which is a rooted bifurcating tree that describes the ancestral relationships among the sampled
individuals.

We assume that Y is generated by a continous time Markov chain (CTMC) substitution
modelthat models the evolution of the discrete states (e.g., A,C,T,G for DNA) along the geneal-
ogy g for each alignment site. A variety of substitution models are available and are typically
differentiated by the form of the transition matrix M(Ω), which controls the substitution rates in
the CTMC for the nucelotide bases with a set of parameters Ω (see Yang (2014) for examples).
The likelihood of the sequence data given the genealogy and substituion parameters can be
written p(Y | g,Ω). This is often referred to as the Felsenstien likelihood and can be efficiently
computed using Felsenstien’s pruning algorithm (Felsenstein, 1981).
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Figure 1: Genealogical tree under heterochronous sampling showing the relationship between
sampling times si, coalescent times ti, intervals Ii,k, number of lineages ni,k, and the uniform
grid points,xh, used for approximating coalescent densities.

2.2 Coalescent
Suppose that we now have a genealogy g, where branch lengths of the genealogical tree are
measured in units of clock time (e.g., years). To build a Bayesian hierarchical model, we need
a prior density for g. The times at which two lineages merge into a common ancestor on the
tree are called coalescent times. The coalescent model provides a probabilistic framework for
relating the coalescent times in the sample to the effective size of the population. Kingman
(1982) developed the coalescent model for a constant effective population size and Griffiths
and Tavaré (1994) extended it for varying effective population sizes.

Let the coalescent times arising from genealogy g be denoted tn = 0 < tn−1 < · · · < t1, where
0 is the present and time is measured backward from there. We will assume the general case
where sampling of the genetic sequences occurs at different times (heterochronous sampling),
which will include the special case where all sampling occurs at a single time point tn = 0
(isochronous sampling). We denote the set of sampling times as sm = 0 < sm−1 < · · · < s1 < t1

for samples of size nm, . . . , n1, respectively, where n =
∑m

j=1 n j (Figure 1). We let s denote
the vector of sampling times. Further, we let the intervals that end with a coalescent event be
denoted I0,k = (max{tk, s j}, tk−1], for s j < tk−1and k = 2, . . . , n, and let the intervals that end
with a sampling event be denoted Ii,k = (max{tk, s j+i}, s j+i−1], for s j+i−1 > tk and s j < tk−1, k =
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2, . . . , n. If we let ni,k be the number of lineages present in interval Ii,k and let the vector of
number of lineages be denoted n, then the joint density of the coalescent times given s and
Ne(t) can be written as

p(t1, t2, . . . , tn−1 | s, n,Ne(t)) =

n∏
k=2

p(tk−1 | tk, s, n,Ne(t))

=

n∏
k=2

C0,k

Ne(tk−1)
exp

− m∑
i=0

∫
Ii,k

Ci,k

Ne(t)
dt

 ,
(1)

where Ci,k =
(

ni,k
2

)
is the coalescent factor (Felsenstein and Rodrigo, 1999). This model can be

seen as an inhomogeneous Markov point process where the conditional intensity is Ci,k[Ne(t)]−1

(Palacios and Minin, 2013).
The integrals in equation (1) are computationally intractable since Ne(t) is an unknown

infinite-dimensional parameter. However, following Palacios and Minin (2012), Gill et al.
(2013), and Lan et al. (2015) we can use an approximation over a finite grid to make the
computations tractable. We construct a regular grid, x = {xh}

H
h=1, and set the end points of the

grid x such that x1 = 0 and xH = t1 (Figure 1). Now for t ∈ (xh, xh+1], we have Ne(t) ≈ exp[θh],
where θh is an unknown model parameter. This implies that θ = {θh}

H−1
h=1 is a piecewise-constant

approximation to f (t) = ln[Ne(t)] for t ∈ [sm, t1]. The piecewise constant population size can
be integrated analytically, leading to a discrete approximation to the likelihood in Equation (1).
The details of this approximation are provided in Appendix A.

2.3 Prior for Effective Population Size Trajectory
Next we develop a prior for the unknown function Ne(t) that describes the effective population
size trajectory over time. Let θ = (θ1, . . . , θH−1) be a vector of parameters that govern the
effective population size trajectory Ne(t). We propose using a SPMRF model (Faulkner and
Minin, 2018) for θ, which is a type of Markov model where the pth-order differences in the
forward-time evolution of the sequence {θh}

H−1
h=1 are independent and follow a shrinkage prior

distribution. The pth-order forward difference is defined as ∆pθl ≡ (−1)p ∑p
j=0(−1) j

(
p
j

)
θl+ j, for

l = 1, . . . ,H − p − 1, and is a discrete approximation to the pth derivative of f (t) evaluated at
t. If we assume a horseshoe distribution (Carvalho et al., 2010) as our shrinkage prior on the
order-p differences in θ, then

∆θ
p
l | γ ∼ HS(γ), (2)

where γ is the scale parameter of the horseshoe distribution and controls how much we allow
f (t) to vary a priori. We put a half-Cauchy prior on γ with scale hyperparameter ζ, so that
γ ∼ C+(0, ζ). Note that the horseshoe distribution is centered at zero. Depending on the
order p of the model, we also place proper priors on θ1, . . . , θp. To do this, we start by setting
θ1 ∼ N(µ, σ2), where µ and σ are hyperparameters typically set to create a diffuse prior. Then
for p ≥ 2 and q = 1, . . . , p − 1, we let ∆qθq | γ ∼ HS(aqγ), where aq depends on p and q. For
p = 2, we set a1 = (1/3)1/2, and for p = 3, we set a2 = (3/10)1/2 and a1 = (1/10)1/2. These
values are derived from letting the scale of the distribution on ∆θ

p
l be equal to γ and then using

the definition of the forward differences to solve for the scale of the lower-order differences.
It is rarely of interest to fit a model of order greater than 3, so we do not derive values of aq

for higher order models here. We will refer to this specific model formulation as a state-space
formulation of a horseshoe Markov random field (HSMRF).
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The horseshoe distribution is leptokurtic with an infinite spike in density at zero and Cauchy-
like tails. In our setting, this combination results in small θ differences being shrunk toward
zero and larger differences being maintained, which corresponds to smoothing over smaller
noisy signals while retaining the ability to adapt to rapid functional changes. This is in con-
trast to the normal distribution, which has higher density around medium-sized values and
normal tails. These attributes result in noisier estimates and reduced ability to capture abrupt
functional changes. Different shrinkage priors will result in different levels of shrinkage and
therefore different smoothing behavior. Faulkner and Minin (2018) found that the horseshoe
prior performed better than the Laplace prior in terms of bias and precision for nonparametric
smoothing with SPMRFs, but we do not investigate the effect of different shrinkage priors here.

The horseshoe density does not have a closed form (although see Faulkner and Minin (2018)
for an approximation in closed form). However, a horseshoe distribution can be represented
hierarchically as a scale mixture of normal distributions by introducing a latent scale parameter
that follows a half-Cauchy distribution (Carvalho et al., 2010). That is, if τl ∼ C

+(0, γ) and
∆θ

p
l | τl ∼ N(0, τ2

l ), then integrating over τl results in the marginal relationship in equation (2).
The hierarchical HSMRF models are a type of pth-order normal random walk with separate

variance parameters for each increment. The inherent Markov properties and properties of the
normal distribution allow the joint distribution of θ conditional on the vector of scale parameters
τ to be expressed p(θ | τ, µ, σ2) = p(θ1 | µ, σ

2)p(∆pθ1, . . . ,∆
pθH−p−1 | τ), which results in a

multivariate normal distribution with mean µ and precision matrix Q(τ). Specifically, θ follows
a Gaussian Markov random field (GMRF; Rue and Held, 2005) conditional on τ, where the
order p of the differencing in θ determines the structure of the sparse Q(τ). For the models
presented here, µ = µ1, where µ is a constant and 1 is a vector of ones. We specify p(τ)
by assuming that the τ’s are independent C+(0, γ)-distributed random variables, where τl ∼

C+(0, γ) for l = p, . . . ,H − p − 1 and τl ∼ C
+(0, alγ) for l = 1, . . . , p − 1. The marginal joint

distribution of θ that results from integrating over τ is a HSMRF. Note that a GMRF model
results when a single scale parameter τ is used for all order-p differences in θ. For our GMRF
models, we use τ ∼ C+(0, ζ), where ζ is a fixed hyperparameter. The order of the HSMRF
will determine the amount of smoothing, with higher orders resulting in more smoothing. We
only consider first-order and second-order models here. In practice, we use the state-space
formulation described previously but with the independent hierarchical representations of the
horseshoe distributions for the individual order-p differences, which improves computational
efficiency over the conditional multivariate normal representation.

2.4 Posterior Inference
For the case where we have a fixed genealogical tree, g, which consists of sampling times s
and coalescent times t, the posterior distribution of the parameters {θ, τ, γ} can be written as

p(θ, τ, γ | g) ∝ p(g | θ)p(θ | τ)p(τ | γ)p(γ). (3)

Here g is considered data and we assume the coalescent times are known. Then p(g | θ) is the
coalescent likelihood and p(θ | τ)p(τ | γ)p(γ) is the HSMRF prior described in Section 2.3.
For our GMRF models, the righthand side of equation 3 becomes p(g | θ)p(θ | τ)p(τ).

For our analyses with fixed genealogical trees, we follow Faulkner and Minin (2018) and
Lan et al. (2015) and use Hamiltonian Monte Carlo (HMC; Neal, 2011) for posterior inference.
HMC performs joint proposals for the parameters that are typically far from the current param-
eter state and have high acceptance rates, resulting in efficient posterior sampling. We used
the Stan computing environment (Carpenter et al., 2016) for implementing HMC. Specifically,
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we used the open source package rstan (Stan Development Team, 2017), which provides a
platform for fitting models using HMC in the R computing environment (R Core Team, 2017).
Our R package titled spmrf allows for easy implementation of our models for use on fixed
genealogical trees via a wrapper to the rstan tools. The package code is publicly available
at https://github.com/jrfaulkner/spmrf. We present a method for objectively setting
the scale hyperparameter ζ of the prior distribution of the global smoothing parameter γ in
Appendix B.

When there are genetic sequence data available and we want to jointly estimate evolutionary
parameters, coalescent times, and population size trajectories, our posterior can be written as

p(g,Ω, θ, τ, γ | Y) ∝ p(Y | g,Ω)p(g | θ)p(Ω)p(θ | τ)p(τ | γ)p(γ), (4)

where Y are the sequence data and Ω are the parameters related to the DNA substitution model.
The likelihood of the sequence data given the parameters is p(Y | g,Ω), and now p(g | θ) is a
prior for the coalescent times. The remaining components are the prior for the evolution param-
eters p(Ω) and the HSMRF prior as in equation (3). HMC requires the calculation of gradients
over continuous parameter space and therefore cannot be used for inference on discrete pa-
rameters. To the best of our knowledge, HMC has not been fully developed for inference on
phylogenetic trees due to the presence of discrete parameters related to the tree configuration,
although some recent progress has been made by Dinh et al. (2017). Therefore, we developed a
custom MCMC algorithm that uses a combination of Gibbs sampling, elliptical slice sampling,
and the Metropolis-Hastings (MH) algorithm to sample from the joint posterior of the evolution
parameters and the effective population size parameters. In particular, elliptical slice sampling
(Murray et al., 2010) was used to sample from the joint field of log effective population sizes
conditional on the latent scale parameters, a Gibbs sampler based on an approach developed
by (Makalic and Schmidt, 2016) for horseshoe random variables was used to sample the la-
tent scale parameters conditional on the field parameters, and standard phylogenetic MH steps
were used to update the genealogy and substitution model parameters. We implemented our
custom MCMC in RevBayes— a statistical computing environment geared primarily for phy-
logenetic inference (Höhna et al., 2016). The standard phylogenetic MH updates mentioned
above were already implemented in RevBayes, so we contributed a heterochronous coales-
cent likelihood calculator, elliptical slice sampling, and Gibbs updates of our model parameters
to the RevBayes source code. The details of the sampling scheme are provided in the Ap-
pendix C and code for implementing our methods for analyzing sequence data is available at
https://github.com/jrfaulkner/phylocode.

3 Results

3.1 Simulated Data
We used simulated data to assess the performance of the HSMRF model relative to the GMRF
model. We investigated four scenarios with different trajectories for Ne(t): (1) Bottleneck (BN),
(2) Boom-Bust (BB), (3) Broken Exponential (BE), and (4) Nonstationary Gaussian Process
(NGP) realization. The trajectory shapes are shown at the top of Figure 2. For each scenario,
we generated 100 data sets of coalescent times and fit GMRF and HSMRF models of first and
second order using the fixed-tree approach. The scenario descriptions and further methodolog-
ical details of the simulations are provided in Appendix D.

We assessed the relative performance of the models using a set of summary statistics. As
a measure of bias, we used the mean absolute deviation (MAD) to compare the posterior me-
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Figure 2: Effective population size trajectories used in simulations and simulation results by
model and scenario. Models are GMRF of order 1 (G1) and order 2 (G2) and HSMRF of
order 1 (H1) and order 2 (H2). Top row shows true effective population size trajectories used
to simulate coalescent data. Remaining rows show mean absolute deviation (MAD), mean
credible interval width (MCIW), and mean absolute sequential variation (MASV). Horizontal
dashed line in plots on bottom row is the true mean absolute sequential variation (TMASV).
Shown for each model are standard boxplots of simulation results (left) and mean values with
95% frequentist confidence intervals (right).

dians of the trend parameters (θ̂i) to the true trend values (θi): MAD = 1
H−1

∑H−1
i=1 |θ̂i − θi|.

We assessed the width of the 95% Bayesian credible intervals (BCIs) using the mean credi-
ble interval width (MCIW): MCIW = 1

H−1

∑H−1
i=1

(
θ̂97.5,i − θ̂2.5,i

)
, where θ̂97.5,i and θ̂2.5,i are the

97.5% and 2.5% quantiles of the posterior distribution for θi. To measure local variability in
the estimated population trend, we used the mean absolute sequential variation (MASV) of θ̂,
which was computed as MASV = 1

H−2

∑H−2
i=1 |θ̂i+1 − θ̂i|. We compared the observed MASV to

the true MASV (TMASV) in the underlying trend function, which is calculated by substitut-
ing true θ’s into the equation for MASV. For a measure of model complexity, we estimated
the effective number of parameters pe f f using an approach suggested by Raftery et al. (2006):
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Figure 3: Example fits of first- and second-order Gaussian Markov random field (GMRF) and
horseshoe Markov random field (HSMRF) models for four different simulation scenarios. Sce-
narios are a) Bottleneck (BN), b) Boom-Bust (BB), c) Broken Exponential (BE), and d) Non-
stationary Gaussian Process (NGP). Results for all models within a particular scenario are for
the same set of simulated data. Shown are the true effective population size trajectories that
generated the data (dashed line), posterior medians of estimated trajectories (solid line) and
associated 95% Bayesian credible intervals (shaded band).

pe f f = 2
R−1

∑R
r=1(Lr − L̄)2, where Lr is the log-likelihood evaluated at the parameter values for

the rth of R samples from the posterior, and L̄ is the mean value of L across the R samples. For
a measure of computational efficiency, we calculated the mean effective sample size (ESS) of
the posterior samples across parameters for each model and simulated data set and used those
with the total sampling times to calculate the mean ESS per second of sampling time.

For the BN scenario, the HSMRF model clearly had better performance than the GMRF
model for the main performance metrics for both model orders (Figure 2 , Table 1). Example
model fits from each scenario provide some intuition for the simulation results (Figure 3). First
order models did better than second order models within model types for the BN scenario.
Differences between model types were not as strong for the other scenarios. The second-order
HSMRF performed the best in terms of MAD and and MCIW for the remaining scenarios.
However, the HSMRF models were not noticeably different from the second-order GMRF in
terms of MASV for the BB and BE scenarios. The second-order GMRF had mean MASV
closer to TMASV than did the second-order HSMRF for the NGP scenario. Although the
GMRF tended to estimate excess variation in the middle section of the trend for the NGP
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Table 1: Mean values of performance measures across 100 simulations for each model and
scenario. Models are GMRF of order 1 (G1) and order 2 (G2) and HSMRF of order 1 (H1)
and order 2 (H2). Abbreviations are mean absolute deviation (MAD), mean credible interval
width (MCIW), mean absolute sequential variation (MASV), true MASV (TMASV), effective
number of parameters (pe f f ), and effective sample size (ESS). Values of MAD, MRW, MCIW,
MASV, and TMASV are multiplied by 100 for readability.

Scenario Model MAD MCIW MASV TMASV pe f f ESS/s

Bottleneck G1 20.55 1.07 12.43 4.61 30.5 8.78
H1 8.81 0.58 5.19 4.61 10.5 3.01
G2 21.47 0.73 7.04 4.61 15.8 0.89
H2 16.16 0.66 5.86 4.61 14.3 0.26

Boom-Bust G1 7.18 0.46 4.68 3.28 25.6 9.25
H1 7.06 0.41 3.08 3.28 21.6 1.53
G2 6.76 0.32 3.18 3.28 13.1 0.80
H2 5.85 0.29 3.06 3.28 10.9 0.20

Broken Exp. G1 9.38 0.51 2.89 2.51 15.5 8.42
H1 8.47 0.46 2.00 2.51 13.5 2.29
G2 9.54 0.36 2.03 2.51 8.2 1.57
H2 7.86 0.35 2.11 2.51 7.7 0.56

Nonstationary GP G1 11.20 0.64 13.03 10.24 46.1 1.91
H1 10.92 0.55 8.84 10.24 37.3 0.56
G2 9.95 0.49 9.84 10.24 28.1 0.08
H2 9.69 0.43 9.04 10.24 23.5 0.05

scenario, it did capture the peaks and troughs a little better than the HSMRF in other parts of
the trend (see Figure 3 for an example). In all scenarios, the HSMRF had lower pe f f compared
to the GMRF of the same order. The GMRF was consistently more computationally efficient
than the HSMRF, with mean ESS/sec approximately 1.5 to 6 times higher for models of the
same order. These differences are due to the additional parameters in the HSMRF models. The
second-order models were relatively slow for both model types, but the HSMRF was always
slower.

3.2 Egyptian Hepatitis C Virus
The hepatitis C virus (HCV) is a blood-borne RNA virus that exclusively infects humans. HCV
infection is often asymptomatic, but can lead to liver disease and liver failure. HCV infections
have historically had high prevalence in Egypt (Miller and Abu-Raddad, 2010). This is thought
to be due to past widespread use of unsanitary medical practices in the region. A particular
example of interest is a treatment for the parasite disease schistosomiasis known as parenteral
antischistosomal therapy (PAT), which uses intravenous injections. PAT was practiced from the
1920’s to 1980’s in Egypt and is thought to have contributed to the spread of HCV during that
period due to unsterilized injection equipment (Frank et al., 2000; Medhat et al., 2002).

We analyze 63 RNA sequences of type 4 with 411 base pairs from the E1 region of the
HCV genome that were collected in 1993 in Egypt (Ray et al., 2000). Pybus et al. (2003)
used a piecewise demographic model for effective population size with a period of exponential
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growth between two periods of constant population size and concluded that the HCV pop-
ulation grew exponentially during the period of PAT treatment. Other authors have applied
nonparametric methods to estimate the effective population size trajectory for these data (e.g.,
Drummond et al., 2005; Minin et al., 2008; Palacios and Minin, 2013). Different nonparametric
methods lead to different estimated trajectories and different levels of uncertainty. This exam-
ple is interesting for both the nature of the change in population size and for the period before
1900 with few coalescent times.

We fit four different models to these data: 1) Bayesian Skyline — a piecewise constant/-
linear model with estimable locations of change-points (BSKL; Drummond et al., 2005), 2)
Bayesian Skyride (BSKR; Minin et al., 2008) 3) GMRF (equivalent to Bayesian Skygrid, Gill
et al. (2013)), and 4) our HSMRF model. We note that the BSKR model is also a type of GMRF
model where the non-uniform grid cell boundaries are determined by coalescent events. For all
four models we jointly estimated the evolution parameters, the genealogies, and the effective
population size parameters. We used the program BEAST implementation of the BSKL and
BSKR models (Drummond et al., 2012), and used our own RevBayes implementation of the
GMRF and HSMRF models. Although the GMRF model is available in BEAST, the HSMRF is
not, so we decided to use common software for the GMRF and HSMRF models. We used the
same distributional forms and parameterizations for priors representing model components in
common across the models. Where possible, we also attempted to use the same proposal distri-
butions and maintain the same relative weighting of different MCMC moves in common to the
models across the two software packages. We fixed the mean mutation rate to 7.9×10−4 substi-
tutions/site/year, which is a value estimated by Pybus et al. (2001) and used by others for these
data. We used the HKY nucleotide substitution model (Hasegawa et al., 1985) with gamma
distributed rate heterogeneity and invariant sites (Yang, 1994). For the GMRF and HSMRF
models we used 101 equally-spaced grid cells where the first 100 ended at a fixed boundary of
278 years before 1993, and the final cell captured any coalescent events beyond the boundary.
The BSKL model requires specification of the number of discrete population intervals, where
each interval describes a piecewise constant population size between two coalescent events. We
used 40 population groups to allow fair flexibility to capture sharp features in the population
trend. The BSKR model uses first-order differencing, so we also used first-order formulations
for the GMRF and HSRMF models.

The four methods differed in both the estimated trajectories and the uncertainty about those
trajectories (Figure 4). The shape of the median trajectory from the HSMRF model was most
similar to that of the BSKL model, yet the HSMRF model showed a very rapid increase in
population between 1925 and 1945, while the BSKL and other models showed more gradual
increases that started earlier and ended later. The increase estimated by the BSKR model lasted
the longest, starting near 1900 and ending near 1970. The HSMRF and the BSKL also showed
relatively constant population size following the increase in the mid 20th century, while the
BSKR and GMRF models showed a decrease after 1970. The HSMRF model had the most
uncertainty in the time period prior to the year 1900, but the marginal posteriors in that region
were actually highly skewed with long tails in the direction of higher population sizes and with
90% of the posterior density below population sizes of approximately 105 (not shown). This
high uncertainty was due the lack of coalescent times during that period. The GMRF model
also displayed high uncertainty in this region relative to the other two models, but it probably
did not display as much uncertainty as the HSMRF because it is not flexible enough to fit the
increase after 1920 and still allow a high population size prior to 1900 in the way that the
HSMRF model did. Both the BSKL and BSKR models had narrow credible intervals in the
period prior to 1900, with the BSKR model showing more uncertainty than the BSKL. Both of
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Figure 4: Posterior medians (solid black lines) of effective population sizes and associated
95% credible intervals (grey shaded areas) for the HCV data for the Bayesian Skyline (BSKL),
Bayesian Skyride (BSKR), Gaussian Markov random field (GMRF), and horseshoe Markov
random field (HSMRF) models. Vertical reference lines are shown at years 1920, 1970, and
1993.

these models use piecewise constant trajectories between coalescent events, which means they
are restricted to be nearly flat over the long period without coalescent events. The uncertainty in
that region was therefore grossly underestimated due to the constrained nature of those models.

3.3 Beringian Steppe Bison
Modern molecular methods have allowed the recovery of DNA samples from specimens that
lived hundreds to hundreds of thousands of years ago (Pääbo et al., 2004; Shapiro and Hofre-
iter, 2014). Large mammals that lived in the Northern Hemisphere during the Pleistocene and
Holocene epochs have been a valuable source of this ancient DNA due to conditions favorable
for specimen preservation in the northern latitudes (e.g., Shapiro et al., 2004; Lorenzen et al.,
2011). We focus on bison (Bison spp.) that lived on the steppe-tundra of Northern Asia and
Europe and crossed into North America over the Bering land bridge during the middle Pleis-
tocene (Shapiro et al., 2004). Interest has been in determining whether human impact or climate
and related habitat change were behind the decline of bison across their range during the late
Pleistocene. Shapiro et al. (2004) used a parametric piecewise-exponential model for the bi-
son effective population size and estimated that the time of transition from population growth
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to decline was 37 thousand years ago (kya). Drummond et al. (2005) used the more flexible
BSKL model, which indicated a more rounded and prolonged peak in population size followed
by a rapid decline and bottleneck around 10 kya. Here we use a modified version of the bison
data described by Shapiro et al. (2004) and fit coalescent models directly to the sequence data
as with the HCV data. We make qualitative comparisons among the resulting estimated pop-
ulation trajectories and in relation to some benchmark times describing the arrival of humans
and the period of the Last Glacial Maximum (LGM). In Appendix E we perform additional
analyses that apply GMRF and HSMRF models of first and second order to a fixed genealogy
derived from the sequence data and we use Bayes factors to compare the model performance.

We analyze 152 sequences (135 ancient and 17 modern) of mitrochondrial DNA with 602
base pairs from the mitochondrial control region. DNA was extracted from bison fossils from
Alaska (68), Canada (46), Siberia (13), the lower 48 United States (6), and China (2). Sample
dates were estimated for the ancient samples using radiocarbon dating, with dates ranging up to
59k years. We treat the calibrated radiocarbon dates as known in the following analyses. These
data are the same as those used by Gill et al. (2013), and are slightly modified from the data first
described by Shapiro et al. (2004) to remove sequences identified as potentially contaminated
with young radiocarbon (Shapiro et al., 2010) and include additional sequences generated since
generation of the initial data set. In this data set, radiocarbon dates are calibrated to calendar
time using the IntCal09 calibration curve (Reimer et al., 2009).

The LGM in the Northern Hemisphere is estimated to have occurred between 26.5 to 19
kya (Clark et al., 2009). A small, isolated population of humans existed in central Beringia,
including. potentially, the land bridge that connected the continents during the LGM (Llamas
et al., 2016). Humans may have ventured into eastern Beringia (Alaska and Yukon) as early as
26 kya (Bourgeon et al., 2017), but there is as yet no evidence of continuous occupation until
14 kya (Easton et al., 2011; Holmes, 2011). Humans probably first entered continental North
America via a western coastal route that became available close to 16 kya (Llamas et al., 2016;
Heintzman et al., 2016), where they would have encountered the population of steppe bison
that were isolated in the south with the coalescence of the Laurentide and Cordilleran glaciers
(Shapiro et al., 2004; Heintzman et al., 2016). Because the majority of our bison samples were
collected in North America, we used 16-14 kya as the time of first human occupation.

As with the HCV data, we used BEAST to fit the BSKL and BSKR models and used
RevBayes to fit the GMRF and HSMRF models. We used 15 groups for the BSKL model
to match the approach used by Drummond et al. (2005), which allowed for sufficient flexibility
to fit important change points without introducing computational challenges associated with
more groups. To improve mixing and reduce computation time, we used a strick molecular
clock with mutation rate set to 5.38 × 10−7 substitutions per year, which was based on ini-
tial runs in BEAST where the clock rate was estimated under a GMRF model for the effective
popuation sizes. We used the HKY nucleotide substitution model with gamma distributed rate
heterogeneity.

Results indicated quite different population trajectories from the different models (Figure 5).
The posterior median trajectory from the HSMRF model was most similar to the BSKL model,
but the credible intervals for the HSMRF model were most similar to the GMRF model. The
BSKL model underestimated the uncertainty in the population trajectory over areas assumed
to have constant population size. The BSKR and GMRF models did not have the flexibility
to capture rapid changes in trend that the HSMRF, and to a lesser extent, BSKL models did.
The HSMRF model displayed a more complex descent from the peak size to the present in
comparison to the other models, and the areas of rapid descent are coincident with the arrival
of humans in eastern Beringia and ice-free North America and the initial retreat of the glaciers,
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Figure 5: Posterior medians of effective population sizes and associated 95% credible intervals
obtained from the bison DNA sequence data using the Bayesian SkyLine (BSKY) with 15
groups, Bayesian SkyRide (BSKR), and order-1 GMRF and HSMRF models. The effective
population sizes and evolution process are estimated jointly for each of these models. The
period of the Last Glacial Maximum and timing of first human settlement in North America are
shown for reference.

both of which are coincident with changes in habitat.

4 Discussion
We introduced a novel and fully Bayesian method for nonparametric inference for phylody-
namics that we call the HSMRF. This method utilizes a shrinkage prior known as the horseshoe
distribution, which allows more flexibility in the possible forms of the effective population size
trajectories, yet also generates smoother trajectories in comparison to standard GMRF meth-
ods. Our simulations demonstrated that the HSMRF had lower bias and higher precision than
the GMRF and was able to recover the underlying true trajectories better in most cases. We
introduced a new joint model for the coalescent and HSMRF prior, and we presented a new
MCMC scheme using Gibbs sampling in combination with elliptical slice sampling that re-
sulted in efficient, high-dimensional block updates for the effective population size parameters
and latent scale parameters without tuning parameters.

Our HCV example showed that the HSMRF can have more uncertainty than the GMRF in
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certain cases where data are sparse. However, the HSMRF also showed that HCV may have
undergone a sharper increase in effective population size than previous estimates had shown.
In addition, the HSMRF-estimated timing of this increase was later than other method’s esti-
mates. The later increase is more plausible in light of other epidemiological information that
links increased prevalence of HCV in Egypt with mass administration of parenteral antischisto-
somal therapy (Frank et al., 2000; Medhat et al., 2002). Although it was not conclusive which
model was the best in the bison example, the first-order HSMRF model captured some fea-
tures in the population trajectory that the corresponding GMRF did not. Our results from both
data examples indicated that the properties of the population size trajectories estimated by the
HSMRF model were somewhere between those from the GMRF model and the BSKL model.
The BSKL model is a type of change-point model, which suggests the HSMRF can produce
behavior of change-point models without explicitly needing to specify number or location of
change points.

It is possible that shrinkage priors other than the horseshoe could provide better perfor-
mance for nonparametric phylodynamic inference. The Cauchy-like tails of the horseshoe dis-
tribution can create challenges for MCMC due to the complexities of the posterior parameter
space. One could use a half-t-distribution with low degrees of freedom (2 to 5) in place of
the half-Cauchy on the individual scale parameters (τ). We have informally investigated these
shrinkage priors based on half-t-distributions and found they resulted in similar smoothing as
the horseshoe but their ability to capture abrupt functional changes diminishes with increasing
degrees of freedom. Other shrinkage priors such as the double-Weibull (Reményi and Vi-
dakovic, 2015) and Dirichlet-Laplace (Bhattacharya et al., 2015) could be promising options
due to their favorable shrinkage properties. We have not investigated other shrinkage priors
for nonparametric smoothing in phylodynamics, but further research in that direction could be
productive.
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A Discrete Approximation to Coalescent Likelihood
The integrals in equation (1) of the main text are computationally intractable since Ne(t) is an
unknown infinite-dimensional parameter. However, following Palacios and Minin (2012), Gill
et al. (2013), and Lan et al. (2015) we can use an approximation over a finite grid to make the
computations tractable. We assume Ne(t) = exp

[
f (t)

]
, where f (t) is a function of continuous

time. We approximate f (t) by estimating it at discrete locations on a fixed grid with uniform
spacing. We construct a regular grid, x = {xh}

H
h=1, and set the end points of the grid x such that

x1 = sm and xH = t1 (see Figure 1 of main text). Now for t ∈ (xh, xh+1], we have Ne(t) ≈ exp[θh],
where θh is an unknown model parameter. This implies that θ = {θh}

H−1
h=1 is a piecewise-constant

approximation to ln[Ne(t)] for t ∈ [sm, t1].
Calculating the likelihood in equation (1) of the main text requires first sorting the combined

set of time points {t, s, x} and creating a new set of D = n + m + H − 4 half-open subintervals
{I′d}

D
d=1, such that for each d = 1, . . . ,D there exists an i, k, and h that satisfy I′d = Ii,k∩ (xh, xh+1].

Now the integrals in equation (1) can be approximated by∫
Ii,k

Ci,k

Ne(t)
dt ≈

∑
I′d⊂Ii,k

Ci,k

exp[θh]
∆d, (A.1)

where ∆d is the length of the subinterval I′d. If we introduce an auxiliary variable zd that takes
the value 1 if interval Id ends with a coalescent event (I′d ⊆ I0,k) and 0 otherwise, then we can
use equation (A.1) to write an approximation to the component of the density in equation (1)
of the main text associated with interval (xh, xh+1] as

p(zh | s, n,Ne(t)) =
∏

I′d⊂(xh,xh+1]

{
Ci,k

exp[θh]

}zd

exp
{
−

Ci,k

exp[θh]
∆d

}
, (A.2)

where zh is the vector of zd values such that I′d ⊂ (xh, xh+1]. An approximation to the complete
density in equation (1) is then the product of the components in equation (A.2):

p(t1, . . . , tn | s, n,Ne(t)) ≈
H−1∏
h=1

p(zh | s, n,Ne(t)). (A.3)

B Setting the Global Smoothing Hyperparameter
The global smoothing parameter γ controls the variation in the estimated effective population
size trajectory. It is therefore important to have a way to select the scale hyperparameter ζ
of the prior distribution of the global smoothing parameter that reduces subjectivity. We fol-
low a method suggested Sørbye and Rue (2014) for intrinsic GMRF models and modified by
Faulkner and Minin (2018) for SPMRF models for selecting this hyperparameter. Let Q be
the precision matrix for the Markov random field corresponding to the model of interest (see
Faulkner and Minin (2018) for examples), and Σ = Q−1 be the covariance matrix with diagonal
elements Σii. The marginal standard deviation of all components of θ for a fixed value of γ is
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σγ(θi) = γσref(θ), where σref(θ) is the geometric mean of the individual marginal standard de-
viations when γ = 1 (Sørbye and Rue, 2014). We want to set an upper bound U on the average
marginal standard deviation of θi, such that Pr(σγ(θi) > U) = α, where α is some small prob-
ability (typically 0.01 to 0.05). Using the cumulative probability function for a half-Cauchy
distribution, we can find a value of ζ for a given value of σref(θ) specific to a model of interest
and given common values of U and α by:

ζ =
U

σref(θ) tan
(
π
2 (1 − α)

) . (B.1)

For phylodynamic inference, we set U equal the estimated standard deviation of the log-
transformed values the Skyline estimates of population size (Pybus et al., 2000) based on a
fixed genealogy and set of sample times. We choose this value of U since we know that the
marginal variances of the θs should not exceed the variance in the log-Skyline estimates, on
average. For the examples in this paper, we set α = 0.05 as the probability of the average
marginal standard deviation exceeding U.

C Elliptical Slice within Gibbs Sampler
For models based on sequence data, we used a combination of elliptical slice sampling (Murray
et al., 2010) for the latent effective popultation size parameters and Gibbs sampling for the
latent local and global scale parameters. The Gibbs sampler was based on a modification of
the approach derived by Makalic and Schmidt (2016) for Gibbs sampling of horseshoe random
variables.

C.1 Model Specifications
Using a state-space representation of the HSMRF where µ is the fixed overall mean and σ2 is a
fixed variance for θ1 and ζ is the fixed hyperparameter on the global scale, following Makalic
and Schmidt (2016) the first-order HSMRF model conditional on a set of auxiliary variables
can be written:

y | θ ∼ L(y | θ)
∆θ j ∼ N(0, λ2

jη
2ζ2) j = 1, . . . , n − 1

θ1 ∼ N(µ, σ2)

θi = θ1 +

i−1∑
j=1

∆θ j i = 2, . . . , n

λ2
j | ψ j ∼ IG(1/2, 1/ψ j)

η2 | ξ ∼ IG(1/2, 1/ξ)
ψ1, . . . , ψn−1, ξ ∼ IG(1/2, 1),

where y is the coalescent data, L is the coalescent density, and IG is an inverse-gamma dis-
tribution. This formulation implies that λ j ∼ C

+(0, 1) and η ∼ C+(0, 1). We translate this to
our original model formulation by allowing the global scale parameter γ ∼ C+(0, ζ), where
γ = ηζ, and the local scale parameters τ j ∼ C

+(0, γ), where τ j = λ jγ = λ jηζ. This implies that
∆θ j ∼ N(0, τ2

j), which is our original way of formulating the model.
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Similar to above but absent the local scale parameters, the first-order GMRF model can be
written:

y | θ ∼ L(y | θ)
∆θ j ∼ N(0, η2ζ2) j = 1, . . . , n − 1

θ1 ∼ N(µ, σ2)

θi = θ1 +

i−1∑
j=1

∆θ j i = 2, . . . , n

η2 | ξ ∼ IG(1/2, 1/ξ)
ξ ∼ IG(1/2, 1).

C.2 Full Conditional Distributions
First we describe the full conditional distributions of the latent scale and auxiliary variables
used in the Gibbs sampler for the first-order HSMRF. It can be shown that for j = 1, . . . , n − 1,
the full conditional distributions are:

p(λ2
j | ·) ∝ IG

1, 1
ψ j

+
∆θ2

j

2η2ζ2


p(η2 | ·) ∝ IG

n
2
,

1
ξ

+
1

2ζ2

n−1∑
j=1

∆θ2
j

λ2
j


p(ψ j | ·) ∝ IG

1, 1 +
1
λ2

j


p(ξ | ·) ∝ IG

(
1, 1 +

1
η2

)
Similarly, the full conditional distributions for the scale and auxiliary variables for the first-
order GMRF are:

p(η2 | ·) ∝ IG

n
2
,

1
ξ

+
1

2ζ2

n−1∑
j=1

∆θ2
j


p(ξ | ·) ∝ IG

(
1, 1 +

1
η2

)

C.3 Elliptical Slice Sampling and Gibbs
We follow the algorithm in Figure 2 (pg 543) of Murray et al. (2010) for elliptical slice sam-
pling, but with a few modifications. Suppose the elements of our observation variable y are
conditionally independent given a function of underlying latent Gaussian variables θ = f + µ,
where f ∼ N(0,Σ) and µ is a fixed constant. We denote the likelihood of y conditional on θ
as L(y | θ). Following Murray et al. (2010), let f be the current state of the zero-centered field
parameters on the natural log scale. The algorithm proceeds by first selecting ν ∼ N(0,Σ) and
drawing u ∼ U(0, 1). We set the slice value s = ln u + lnL(y | f +µ). We then draw a proposed
angle α ∼ U(0, 2π), and define a bracket [αmin, αmax] = [α − 2π, α]. The current proposal is
f ′ = f cosα + ν sinα. If lnL(y | f ′ + µ) > s, then we accept and set f = f ′. Otherwise, we
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shrink the bracket by setting αmin = α if α < 0 or setting αmax = α if α ≥ 0, and draw a new
α ∼ U(αmin, αmax). We then calculate a new proposal and keep shrinking the bracket in this
manner until the proposal is accepted.

One modification we make to this process is in drawing the initial f and subsequent ν vec-
tors. Instead of using the multivariate normal specification, we use the state-space formulation.
To do this, we first draw ν1 ∼ N(0, σ2) and then draw ∆ν j ∼ N(0, λ2

jη
2ζ2) for j = 1, . . . , n − 1

and calculate νi = ν1 +
∑i−1

j=1 ∆ν j for i = 2, . . . , n. Then, prior to evaluating the likelihood, we
need to calculate θ = f + µ. The likelihood is then L(θ | y). This approach allows us to sample
the variables as multivariate normal with mean zero without needing to use the multivariate
normal distribution and costly computations that come with it.

We can specify µ and σ2 using the natural log of the maximum likelihood estimates (MLE)
of Ne(t) on a grid, where the coalescent times are obtained from a fixed maximum clade credi-
bility tree, where µ is the log of the mean of the MLE estimates and σ2 is 4 times their variance.
These should provide reasonable hyperparameters that will not result in too diffuse of a sam-
pling distribution.

We use elliptical slice sampling to sample from the field parameters θ conditional on the
latent scale parameters and use Gibbs sampling to update the latent scale parameters conditional
on the field and other parameters. We alternate between these updates until convergence and
the desired number of posterior samples are obtained.

C.4 Checking Validity of Algorithms
We performed two checks of our implementation of the random field models in RevBayes. We
simulated coalescent times from the four trajectories that were used in our simulations and gen-
erated genealogical trees from those times. Our first-pass check of our elliptical-slice-within-
Gibbs sampler in RevBayes was to feed these trees directly into RevBayes as fixed (as in
Section 3.1 of the main text) and compare the results to those obtained with our spmrf package
using Hamiltonion Monte Carlo (HMC). Trace plots for a few parameters from the RevBayes
implementation indicate decent mixing (Figure S1), and plots of trends from RevBayes im-
plementations do not show appreciable differences from those estimated using HMC with the
spmrf package (Figure S2).

We then tested our joint inference procedure in RevBayes, estimating the tree topology,
coalescent times, and coalescent trajectory. To reduce computation times, we first down-
sampled each tree to 100 tips, ensuring that the retained tips spanned the entire range of
non-contemporaneous tips. We then simulated alignments of 500 sites using mutation rates
that produced alignments with an expectation of ≈ 0.93 substitutions per site. Thus the sim-
ulated alignments were approximately the size of the empirical alignments and contained ap-
proximately the same amount of information (number of substitutions). For simplicity, we
employed the Jukes-Cantor substitution model (with no free parameters) with no rate hetero-
geneity across sites. When performing the full joint analyses on these datasets, we assumed
the clock rate was known (as with the Bison analysis). All tests indicated that our MCMC
sampler was working correctly. The code we used for conducting these tests is available at
https://github.com/jrfaulkner/phylocode
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Figure C.1: Trace plots for posterior samples from two Ne parameters from models fit using
our elliptical-slice-within-Gibbs sampler in RevBayes. Examples are for fixed tree coalescent
data generated from the Bottleneck scenario used in the main simulations.
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Figure C.2: Posterior medians and 95% credible intervals for Ne trajectories for two different
MCMC samplers. The top row shows results from the elliptical-slice-within-Gibbs sampler
in RevBayes, and the bottom shows results from the HMC sampler in Stan interfaced from
the spmrf package. Examples are for fixed tree coalescent data generated from the Bottleneck
scenario used in the main simulations.
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D Simulation Details
We used simulated data to assess the performance of the HSMRF model relative to the GMRF
model. We investigated four scenarios with different trajectories for Ne(t): (1) Bottleneck (BN),
(2) Boom-Bust (BB), (3) Broken Exponential (BE), and (4) Nonstationary Gaussian Process
(NGP). The BN scenario had true Ne(t) = 0.1 for 4 ≤ t ≤ 6 and Ne(t) = 1.0 elsewhere. The BB
scenario had Ne(t) = 0.4 + 0.25[sin((5.5 − t)/3) + 0.75 exp(−2.5(t − 5)2)]. The BE trajectory
was Ne(t) = exp(−1.20 + 0.09t) for 0 ≤ t < 4.5, Ne(t) = exp(9.09 − 2.20t) for 4.5 ≤ t < 5, and
Ne(t) = exp(−3.57+0.33t) for t ≥ 5. The trajectory for the NGP scenario, was generated from a
Gaussian process with mean 0.55 and a nonstationary Matérn covariance function (Paciorek and
Schervish, 2006). The covariance function was constructed so that the length scale increased
rapidly in the center of the domain, resulting in a smoother Ne(t) trajectory in the center. The
trajectories used for each scenario are shown at the top of Figure 2 of the main text. These
effective population sizes were set to be small so the the coalescent times would be quick and
would mostly fall within a time window specified for each scenario (see below).

For each scenario we generated 100 simulated data sets by first generating a random set
of sampling times over a fixed interval and then generating a corresponding random set of
coalescent times using the thinning algorithm proposed by Palacios and Minin (2013) and the
true deterministic Ne(t) trajectories defined for each scenario. For each simulated data set, this
is equivalent to assuming we know the fixed genealogical tree for a sample of DNA sequences.
We found that 100 simulations per scenario was sufficient to identify meaningful differences
between models without excessive computation time. We used heterochronous sampling and
set the sample sizes based on the complexity of each scenario. The sample sizes were n =

500, 2, 000, 1, 000, and 2, 000 and the number of lineages sampled at time zero were nm =

50, 50, 100, and 200 for the BN, BB, BE, and NGP scenarios, respectively. The remaining
sample times followed a uniform distribution over the domain of the sampling grid. We used a
fixed grid of 101 cells where the boundary of the 100th cell was S and the final cell collected
any coalescent times greater than S . The values of S were 8.5, 12, 8, and 12 for the BN, BB,
BE, and NGP scenarios, respectively.

We used HMC to approximate the posterior distribution of model parameters. For each
simulated data set we ran four independent chains, where each chain had 1,000 iterations of
adaptation followed by 500 sampling iterations. This resulted in a total of 2,000 posterior
samples. The hyperparameter on the global scale parameter was selected using the method
described in Web Appendix B based on the order of the model and the observations from a
single data set generated for a scenario.

E Bison Analyses with Fixed Tree
For our analyses that assumed a fixed genealogical tree, we first had to estimate a representative
tree from the sequence data. To do this, we first used the program BEAST to generate a posterior
distribution of genealogical trees relating the bison specimens. We used the HKY nucleotide
substitution model (Hasegawa et al., 1985) with gamma distributed rate heterogeneity, and used
a Skygrid (GMRF) prior for effective population size with 100 grid cells and upper boundary of
150k years before present. Given the posterior sample of trees, we then estimated the maximum
clade credibility (MCC) tree based on median node heights. The MCC tree provided a fixed set
of coalescent times that were then used with the sampling times in a heterochronous likelihood
to estimate effective population sizes using the posterior inference with HMC described in
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Section 2.4 of the main text. We fit both first-order and second-order GMRF and HSMRF
models to the fixed coalescent times.

We used Bayes factors (Kass and Raftery, 1995) and posterior model probabilities to com-
pare evidence for different models for the fixed tree analyses only. The posterior odds of Model
1 (M1) relative to Model 2 (M2) conditional on the data (D) is calculated as

Pr(M1 | D)
Pr(M2 | D)

=
Pr(D | M1)
Pr(D | M2)

Pr(M1)
Pr(M2)

,

where Pr(D | ·) is the marginal (or integrated) likelihood of the data given a particular model,
and the Bayes factor is the ratio of marginal likelihoods: B12 = Pr(D | M1)/Pr(D | M2). For
our set of four modelsM1, . . . ,M4, we calculated the posterior probability ofMk as

Pr(Mk | D) = αkBk1/

4∑
r=1

αrBr1

where αk = Pr(Mk)/Pr(M1) is the prior odds ofMk relative toM1 (GMRF-1), and B11, . . . , B41

are the Bayes factors calculated relative toM1. We assumed equal prior model probabilities,
so B11 = α1 = 1. The marginal likelihoods used in the Bayes factors were calculated using
bridge sampling (Meng and Wong, 1996) with the bridgesampling package (Gronau et al.,
2017) in R. Calculation of marginal likelihoods typically requires many more samples than are
necessary for parameter estimation, so for each model we ran four chains with 5,000 iterations
of adaptation (burn-in) followed by 25,000 iterations thinned at an interval of 5, which resulted
in a combined total of 20,000 posterior samples per model.

Quantitative comparison of the four models from the fixed tree analysis indicated relatively
weakly positive evidence in favor of GMRF-1 and HSMRF-2. The Bayes factor comparing the
marginal likelihood of HSMRF-1 relative to GMRF-1 was 0.25, the inverse of which was 4.05.
The Bayes factor comparing HSMRF-2 to GMRF-2 was 13.90, with inverse 0.07. Comparing
within model types, the Bayes factor for GMRF-2 vs. GMRF-1 was 0.06 (inverse 18.15), and
that for HSMRF-2 vs. HSMRF-1 was 3.10 (inverse 0.32). The resulting posterior model prob-
abilities were 0.48, 0.12, 0.03, and 0.37 for the GMRF-1, HSMRF-1, GMRF-2, and HSMRF-2
models, respectively. Using the guidelines suggested by Kass and Raftery (1995), a Bayes fac-
tor of 1 to 3 is ”not worth a bare mention,” of 3 to 20 is ”positive,” of 20 to 150 is ”strong,”
and of > 150 is ”very strong.” Based on these guidelines and the posterior model probabilities,
one could rank the models from best to worst as GMRF-1, HSMRF-2, HSMRF-1, and GMRF-
2, respectively, but strength of evidence is at best ”positive” for any single model relative to
another.

Qualitative visual comparison of the estimated effective population size trajectories from
the four models from the fixed tree analysis indicates large differences in local behavior but
general adherence to a common global trend (Figure E.1). The HSMRF-1 trajectory was less
variable than the GMRF-1 on the population ascent from the past approaching the peak, but
captured more complexity in the descent toward the present than the relatively straight-line
descent of the GMRF-1. The HSMRF-1 indicates a slowing of decline during the LCM which
the GMRF-1 does not capture, followed by a decline just after the LGM which is sharper than
that shown by the GMRF-1. The results for the HSMRF-1 are similar to those for the BSKL
model of Drummond et al. (2005). The GMRF-2 and HSMRF-2 models resulted in much less
variable trajectories than the respective first-order models and had more clearly defined peaks.
Interestingly, the HSMRF-2 results are very similar to those of the piecewise-exponential used
by Shapiro et al. (2004).
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Figure E.1: Posterior medians of effective population sizes and associated 95% credible inter-
vals for the bison data for fixed genealogies for the GMRF and HSMRF models of orders 1
and 2. Posterior median transition times (time of maximum population size) and associated 95
% credible intervals and posterior model probabilities are shown for each model. The period
of the Last Glacial Maximum and estimated time of first human settlement North America are
shown for reference.

For these fixed tree analysis, we calculated the time of maximum population size for each
posterior sample and estimated the posterior median and associated 95% credible intervals for
each model (Figure E.1). These times are the estimated times of transition from population
growth to population decline. Each model had similar median transition times, ranging from
39.8k years ago for the HSMRF-2 model to 42.4k years ago for the HSMRF-2 model. The
credible intervals for the transition times were quite different, with the HSMRF-1 having the
widest interval and the HSMRF-2 having the narrowest. It is clear from all of the models that
the decline in bison population size started before the appearance of humans and before the
LGM. The timing of the major decline does coincide with changes in habitat such as increased
occurence of trees and shrubs brought about by warming temperatures between 50k-35k years
ago (Anderson and Lozhkin, 2001; Shapiro et al., 2004; Lorenzen et al., 2011) . However,
the sharp acceleration in decline around 13k to 15k years ago indicated by the GMRF-1 and
HSMRF-1 models could coincide with increased hunting pressure from humans as their popu-
lations expanded.
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