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Abstract In a perturbative QCD approach we study the
direct CP violation in the pure annihilation decay process
of B̄0

s → π+π−π+π− induced by the ρ and ω dou-
ble resonance effect. Generally, the CP violation is small
in the pure annihilation type decay process. However, we
find that the CP violation can be enhanced by double ρ–ω

interference when the invariant masses of the π+π− pairs
are in the vicinity of the ω resonance. For the decay pro-
cess of B̄0

s → π+π−π+π−, the CP violation can reach
ACP (B̄0

s → π+π−π+π−) = 27.20+0.05+0.28+7.13
−0.15−0.31−6.11%.

1 Introduction

CP violation is an important area in searching new physics
signals beyond the standard model (SM). It is generally
believed that the B meson system provides rich informa-
tion as regards CP violation. Theoretical work has been done
in this direction in the past few years. CP violation arises
from the weak phase in the Cabibbo–Kobayasgi–Maskawa
(CKM) matrix [1,2] in SM. Meanwhile, it is remarkable that
CP violation can still be produced by the interference effects
between the tree and penguin amplitudes. Since the kinematic
suppression, the strong phase associated with long distance
rescattering is generally neglected during the past decades.
The appearance of the ρ and ω resonance is associated with
complex strong phase which is responsible for the CP vio-
lation except for the weak phase. The CP violation can be
enhanced in the decay process of B± → π±π+π− via a
ρ–ω mixing mechanism [3]. Recently, the LHCb Collabo-
ration found the large CP violation in the three-body decay
channels of B± → π±π+π− and B± → K±π+π− [4–6].
Hence, the nonleptonic B meson decay from the three-body

a e-mail: ganglv66@sina.com
b e-mail: luye189@163.com

and four-body decay channels has been become an important
area in searching for CP violation via the ρ and ω resonance.

A mixing between the u and d flavor leads to the breaking
of isospin symmetry for the ρ–ω system. The chiral dynamics
has been shown to restore the isospin symmetry [7]. The ρ–
ω mixing matrix element �ρω gives rise to isospin violation
which refers to the contribution of the mixing of ω → ρ →
2π . The magnitude has been extracted by the pion form factor
through the cross section of e+e− → π+π− from relatively
broad ρ resonance region [8–13]. The appearance of the ρ

and ω resonance is associated with a complex strong phase.
Especially, there is perhaps larger strong phase from double
ρ and ω interference. TheCP violation origins from the weak
phase difference and the strong phase difference. Hence, the
decay process of B̄0

s → π+π−π+π− is a great candidate
for studying the origin of the CP violation.

Meanwhile, it is well known that the CP violation is
extremely tiny from the pure annihilation decay process
in experiment. There is relatively large error in dealing
with the decay amplitudes from the QCD factorization
approach [14,15]. The perturbative QCD (PQCD) factor-
ization approach [16–24] is based on kT factorization. The
amplitude can be divided into the convolution of the Wil-
son coefficients, the light-cone wave function, and hard ker-
nels by the low energy effective Hamiltonian. The endpoint
singularity can be eliminated by introducing the transverse
momentum. However, the transverse momentum integration
leads to the double logarithm term, which is resummed into
the Sudakov form factor. The nonperturbative dynamics is
included in the meson wave function which can be extracted
from experiment. The perturbative contribution can be cal-
culated by perturbation theory.

The remainder of this paper is organized as follows. In
Sect. 2 we present the form of the effective Hamiltonian. In
Sect. 3 we give the calculation formalism and details of CP
violation from ρ–ω mixing in the B̄0

s → ρ0(ω)ρ0(ω) →
π+π−π+π− decay. In Sect. 4 we show the input parame-
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ters. We present the numerical results in Sect. 5. A summary
and discussion are included in Sect. 6. The related functions
defined in the text are given in the appendix.

2 The effective hamiltonian

With the operator product expansion, the effective weak
Hamiltonian can be written as [25]

He f f = GF√
2

{
VubV

∗
uq

[
C1(μ)Qu

1(μ) + C2(μ)Qu
2(μ)

]

− VtbV
∗
tq

[ 10∑
i=3

Ci (μ)Qi (μ)
]}

+ H.c., (1)

where q = (d, s), GF represents Fermi constant, Ci (i =
1, . . . , 10) are the Wilson coefficients, Vq1q2 (q1 and q2 rep-
resent quarks) is the CKM matrix element, and Oi is the four
quark operator. The operators Oi have the following forms:

Ou
1 = d̄αγμ(1 − γ5)uβ ūβγ μ(1 − γ5)bα,

Ou
2 = d̄γμ(1 − γ5)uūγ μ(1 − γ5)b,

O3 = d̄γμ(1 − γ5)b
∑
q ′

q̄ ′γ μ(1 − γ5)q
′,

O4 = d̄αγμ(1 − γ5)bβ

∑
q ′

q̄ ′
βγ μ(1 − γ5)q

′
α,

O5 = d̄γμ(1 − γ5)b
∑
q ′

q̄ ′γ μ(1 + γ5)q
′,

O6 = d̄αγμ(1 − γ5)bβ

∑
q ′

q̄ ′
βγ μ(1 + γ5)q

′
α,

O7 = 3

2
d̄γμ(1 − γ5)b

∑
q ′

eq ′ q̄ ′γ μ(1 + γ5)q
′,

O8 = 3

2
d̄αγμ(1 − γ5)bβ

∑
q ′

eq ′ q̄ ′
βγ μ(1 + γ5)q

′
α,

O9 = 3

2
d̄γμ(1 − γ5)b

∑
q ′

eq ′ q̄ ′γ μ(1 − γ5)q
′,

O10 = 3

2
d̄αγμ(1 − γ5)bβ

∑
q ′

eq ′ q̄ ′
βγ μ(1 − γ5)q

′
α,

(2)

where α and β are color indices, and q ′ = u, d, s, c or b
quarks. In Eq. (2) Ou

1 and Ou
2 are tree operators, O3–O6

are QCD penguin operators and O7–O10 are the operators
associated with electroweak penguin diagrams. Ci (mb) can
be written [24],

C1 = −0.2703, C2 = 1.1188,

C3 = 0.0126, C4 = −0.0270,

C5 = 0.0085, C6 = −0.0326,

C7 = 0.0011, C8 = 0.0004,

C9 = −0.0090, C10 = 0.0022. (3)

So, we can obtain numerical values of ai . The combinations
ai of Wilson coefficients are defined as usual [19–21]:

a1 = C2 + C1/3, a2 = C1 + C2/3,

a3 = C3 + C4/3, a4 = C4 + C3/3,

a5 = C5 + C6/3, a6 = C6 + C5/3,

a7 = C7 + C8/3, a8 = C8 + C7/3,

a9 = C9 + C10/3, a10 = C10 + C9/3.

(4)

3 CP violation in B̄0
s → ρ0(ω)ρ0(ω) → π+π−π+π−

3.1 Formalism

The amplitudes Aσ of the process B̄s(p) → V1(p1, ε1) +
V2(p2, ε2) can be written [26]

Aσ = ε∗
1μ(σ)ε∗

2ν(σ )

(
agμν + b

m1m2
pμ pν + ic

m1m2
εμναβ p1α p2β

)

(5)

where σ is the helicity of the vector meson. ε1(p1) and ε2(p2)
are the polarization vectors (momenta) of V1 and V2, respec-
tively. m1 and m2 refer to the masses of the vector mesons V1

and V2. The invariant amplitudes a, b, c are associated with
the amplitude Ai (i refers to the three kind of polarizations,
longitudinal (L), normal (N) and transverse (T)). Then we
have

Aσ = M2
Bs AL + M2

Bs AN ε∗
1μ(σ = T ) · ε∗

2μ(σ = T )

+ i AT εαβγρε∗
1α(σ )ε∗

2α(σ )p1γ p2ρ. (6)

The longitudinal H0, transverse H± of helicity amplitudes
can be expressed H0 = M2

Bs
AL , H± = M2

Bs
AN ∓

m1m2
√
r2 − 1AT . The decay width is written

� = Pc
8πM2

Bs

A(σ )+A(σ ) = Pc
8πM2

Bs

|H0|2 + |H+|2 + |H−|2.
(7)

The interaction of the photon and the hadronic matter can
be described by the vector meson dominance model (VMD)
[27]. The photon can couple to the hadronic field through a
ρ meson. The mixing matrix element �ρω(m2

ρ) is precisely
extracted by fitting to recent data from the cross section for
e+e− → π+π−, which does not include the non-resonant
contribution of direct ω → π+π− [12,13]. We can express
�ρω(m2

ρ) = Re�ρω(m2
ρ)+Im�ρω(m2

ρ) for the real part of

123
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Re�ρω(m2
ρ) and the imaginary part of Im�ρω(m2

ρ) at the ρ

mass.
The ρ–ω mixing parameters were recently determined

precisely by Wolfe and Maltman [12,13]:

Re�ρω(m2
ρ) = −4600 ± 220model ± 170data MeV2,

Im�ρω(m2
ρ) = −6100 ± 1800model ± 1110data MeV2.

(8)

One can find the mixing parameters is the momen-
tum dependence absorbing the non-resonant contribution of
direct decay ω → π+π−. We introduce the momentum
dependence of the ρ–ω mixing parameters �̃ρω(s) where√
s is the invariant mass of π+π−. It is sensible to devote

one’s energies to search the mixing process at the ω mass
where the two pions can be produced. We write �̃ρω(s) =
Re�̃ρω(m2

ω) + Im�̃ρω(m2
ω) as follows:

Re�̃ρω(m2
ω) = −4900 ± 400 MeV2,

Im�̃ρω(m2
ω) = −6500 ± 3100 MeV2.

(9)

The formalism of the CP violation is presented for the
B̄0
s meson decay process in the following. The amplitude

A ( Ā) for the decay process B̄0
s → π+π−π+π− (B0

s →
π+π−π+π−) can be written as

A = 〈π+π−π+π−|HT |B̄0
s 〉 + 〈π+π−π+π−|HP |B̄0

s 〉,
(10)

Ā = 〈π+π−π+π−|HT |B0
s 〉 + 〈π+π−π+π−|HP |B0

s 〉,
(11)

where HT and HP refer to the tree and penguin operators
in the Hamiltonian, respectively. We define the relative mag-
nitudes and phases between the tree and penguin operator
contributions as follows:

A =
〈
π+π−π+π−|HT |B̄0

s

〉
[1 + rei(δ+φ)], (12)

Ā =
〈
π+π−π+π−|HT |B0

s

〉
[1 + rei(δ−φ)], (13)

where δ and φ are strong and weak phases, respectively. The
weak phase difference φ can be expressed as a combination
of the CKM matrix elements: φ = arg[(VtbV ∗

ts)/(VubV
∗
us)].

The parameter r is the absolute value of the ratio of tree and
penguin amplitudes:

r ≡
∣∣∣∣
〈
π+π−π+π−|HP |B̄0

s

〉
〈
π+π−π+π−|HT |B̄0

s

〉
∣∣∣∣. (14)

The parameter of CP violating asymmetry, Acp, can be writ-
ten as

ACP = |A|2 − | Ā|2
|A|2 + | Ā|2

= −2(T 2
0 r0 sin δ0 + T 2+r+ sin δ+ + T 2−r− sin δ−) sin φ∑

i=0+− T 2
i (1 + r2

i + 2ri cos δi cos φ)
,

(15)

where

|A|2 =
∑
σ

A(σ )+A(σ ) = |H0|2 + |H+|2 + |H−|2 (16)

and the Ti (i = 0,+,−) are the tree-level helicity amplitudes.
The r j ( j = 0,+,−) refer to the absolute value of the ratio
of tree and penguin amplitude for the three kinds of polar-
izations, respectively. The sin δk(k = 0,+,−) represent the
relative strong phases between the tree and penguin opera-
tor contributions from three kinds of helicity amplitudes. We
can see explicitly from Eq. (15) that both weak and strong
phase differences are responsible for CP violation. ρ–ω mix-
ing introduces the strong phase difference and is well known
for the three-body decay processes of the bottom hadron [28–
34]. Due to ρ–ω interference from u and d quark mixing, we
can write the formalism in an approximate form in terms of
the first order isospin violation:

〈
π+π−π+π−|HT |B̄0

s

〉
= 2g2

ρ

s2
ρsω

�̃ρωtρω + g2
ρ

s2
ρ

tρρ, (17)

〈
π+π−π+π−|HP |B̄0

s

〉
= 2g2

ρ

s2
ρsω

�̃ρω pρω + g2
ρ

s2
ρ

pρρ, (18)

where tρρ(pρρ) and tρω(pρω) are the tree (penguin) ampli-
tudes for B̄s → ρ0ρ0 and B̄s → ρ0ω, respectively. gρ is the
coupling for ρ0 → π+π−. �̃ρω refers to the effective ρ–ω

mixing amplitude which also effectively includes the direct
coupling ω → π+π−. sV , mV and �V (V=ρ or ω) is the
inverse propagator, mass and decay rate of the vector meson
V , respectively.

sV = s − m2
V + imV�V , (19)

with
√
s being the invariant masses of the π+π− pairs. There

are double ρ–ω interference in the decay process of B̄0
s →

ρ0(ω)ρ0(ω) → π+π−π+π−. Hence, a factor of 2 appears
in Eqs. (17) and (18) compared with the case of single ρ–ω

interference [28–36]. From Eqs. (10), (12), (17) and (18) one
has

reiδeiφ = 2�̃ρω pρω + sω pρρ

2�̃ρωtρω + sωtρρ

. (20)

Defining

pρω

tρρ

≡ r ′ei(δq+φ),
tρω

tρρ

≡ αeiδα ,
pρρ

pρω

≡ βeiδβ , (21)

123
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where δα , δβ and δq are strong phases, one finds the following
expression from Eqs. (20) and (21):

reiδ = r ′eiδq
2�̃ρω + βeiδβ sω
2�̃ρωαeiδα + sω

. (22)

In order to obtain the CP violating asymmetry in Eq. (15),
sin φ and cos φ are needed, where φ is determined by the
CKM matrix elements. In the Wolfenstein parametrization
[37,38], one has

sinφ = − η√
ρ2 + η2

,

cosφ = − ρ√
ρ2 + η2

.
(23)

3.2 Calculation details

We can decompose the decay amplitude for the decay pro-
cess B̄0

s → ρ0(ω)ρ0(ω) in terms of tree-level and penguin-
level contributions depending on the CKM matrix elements
of VubV ∗

us and VtbV ∗
ts . Due to Eqs. (15), (20) and (21), we

can calculate the amplitudes tρρ , tρω, pρρ and pρω in a per-
turbative QCD approach. The F and M function associated
with the decay amplitudes can be found in the appendix from
the perturbative QCD approach.

There are four types of Feynman diagrams contributing
to B̄s → M2M3(M2, M3 = ρ or ω) annihilation decay
mode at leading order. The pure annihilation type process can
be classified into factorizable diagrams and non-factorizable
diagrams [39,40]. Through calculating these diagrams, we
can get the amplitudes A(i), where i = L , N , T stand for the
longitudinal and two transverse polarizations. Because these
diagrams are the same as those of B → K ∗φ and B → K ∗ρ
decays [39,40], the formulas of B̄s → ρρ or B̄s → ρω

are similar to those of B → K ∗φ and B → K ∗ρ. We just
need to replace some corresponding wave functions, Wilson
coefficients and corresponding parameters.

With the Hamiltonian (1), depending on CKM matrix ele-
ments of VubV ∗

us and VtbV ∗
ts , the decay amplitudes A(i)(i =

L , N , T ) for B̄0
s → ρ0ρ0 in PQCD can be written as

√
2A(i)(B̄0

s → ρ0ρ0) = VubV
∗
us t

i
ρρ − VtbV

∗
ts p

i
ρρ. (24)

The tree-level amplitude tρρ can written as

t iρρ = GF√
2

{
fBs F

LL ,i
ann [a2] + MLL ,i

ann [C2]
}
, (25)

where fBs refers to the decay constant of B̄s meson.
The penguin-level amplitude are expressed as follows:

piρρ = GF√
2

{
fBs F

LL ,i
ann

[
2a3 + 1

2
a9

]
+ fBs F

LR,i
ann

[
2a5 + 1

2
a7

]

+ MLL ,i
ann

[
2C4 + 1

2
C10

]
+ MSP,i

ann

[
2C6 + 1

2
C8

]}
.

(26)

The decay amplitude for B̄0
s → ρ0ω can be written as

2A(i)(B̄0
s → ρ0ω) = VubV

∗
us t

i
ρω − VtbV

∗
ts p

i
ρω. (27)

We can give the tree-level contribution as follows:

t iρω = GF√
2

{
fBs F

LL ,i
ann [a2] + MLL ,i

ann [C2]
}
, (28)

and the penguin-level contributions are given as follows:

piρω = GF√
2
VtbV

∗
ts

{
fBs F

LL ,i
ann

[
3

2
a9

]
+ fBs F

LR,i
ann

[
3

2
a7

]

+ MLL ,i
ann

[
3

2
C10

]
+ MSP,i

ann

[
3

2
C8

]}
+
[
ρ0 ↔ ω

]
.

(29)

Based on the definition of (21), we can get

αeiδα = tρω

tρρ

, (30)

βeiδβ = pρρ

pρω

, (31)

r ′eiδq = pρω

tρρ

×
∣∣∣∣ VtbV

∗
ts

VubV ∗
us

∣∣∣∣, (32)

where

∣∣∣∣ VtbV
∗
ts

VubV ∗
us

∣∣∣∣ =
√

ρ2 + η2

λ2(ρ2 + η2)
. (33)

4 Input parameters

The CKM matrix, which elements are determined from
experiments, can be expressed in terms of the Wolfenstein
parameters A, ρ, λ and η [37,38,41]:

⎛
⎝ 1 − 1

2λ2 λ Aλ3(ρ − iη)

−λ 1 − 1
2λ2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎞
⎠ , (34)

where O(λ4) corrections are neglected. The latest values for
the parameters in the CKM matrix are [42]:

λ = 0.22506 ± 0.00050, A = 0.811 ± 0.026,

ρ̄ = 0.124+0.019
−0.018, η̄ = 0.356 ± 0.011, (35)

where

ρ̄ = ρ

(
1 − λ2

2

)
, η̄ = η

(
1 − λ2

2

)
. (36)
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Table 1 Input parameters used
in this paper

Parameters Input data References

Fermi constant (in GeV−2) GF = 1.16638 × 10−5 [42]

mB0
s

= 5.36682, τB0
s

= 1.510 × 10−12s

mρ0(770) = 0.77526, �ρ0(770) = 0.1491,

Masses and decay widths (in GeV) mω(782) = 0.78265, �ω(782) = 8.49 × 10−3, [42]

mπ = 0.13957, mW = 80.385,

mu = 0.0022, md = 0.0047,

ms = 0.096, mc = 1.27,

mt = 173.21, mb = 4.18,

Decay constants (in MeV) fρ = 215.6 ± 5.9, f Tρ = 165 ± 9, [43,44]

fω = 196.5 ± 4.8, f Tω = 145 ± 10,

From Eqs. (35) and (36) we have

0.109 < ρ < 0.147, 0.354 < η < 0.377. (37)

The other parameters and the corresponding references are
listed in Table 1.

5 The numerical results of CP violation in
B̄0
s → ρ0(ω)ρ0(ω) → π+π−π+π−

In the numerical results, we find that the CP violation can be
enhanced via double ρ–ω mixing for the pure annihilation
type decay channel B̄0

s → ρ0(ω)ρ0(ω) → π+π−π+π−
when the invariant mass of π+π− is in the vicinity of the ω

resonance within perturbative QCD scheme. The CP viola-
tion depends on the weak phase difference from CKM matrix
elements and the strong phase difference. The CKM matrix
elements, which relate to ρ, η, λ and A, are given in Eq. (35).
The uncertainties due to the CKM matrix elements come
from ρ, η, λ and A. In our numerical calculations, we let
ρ, η, λ and A vary among the limiting values. The numeri-
cal results are shown from Figs. 1, 2 and 3 with the different
parameter values of the CKM matrix elements. The dash line,
dot line and solid line corresponds to the maximum, middle,
and minimum CKM matrix element for the decay channel of
B̄0
s → ρ0(ω)ρ0(ω) → π+π−π+π−, respectively. We find

the results are not sensitive to the values of ρ, η, λ and A. In
Fig. 1, we give the plot of the CP violating asymmetry as a
function of

√
s. From Fig. 1, one can see that theCP violation

parameter is dependent on
√
s and changes rapidly due to ρ–

ω mixing when the invariant mass of π+π− is in the vicinity
of the ω resonance [see Eq. (15)]. From the numerical results,
it is found that the maximum CP violating parameter reaches
27.25% in the case of (ρmini, ηmini).

From Eqs. (15) and (22), one can see that the CP violating
parameter depends on both sin δ and r . The plots of sin δ and
r as a function of

√
s are shown in Figs. 2, and 3, respectively.

It can be seen that sin δ0 (sin δ− and sin δ+) vary sharply in the

0.70 0.75 0.80 0.85 0.90

0.2

0.1

0.0

0.1

0.2

0.3

s GeV

A c
p

Fig. 1 The CP violating asymmetry, Acp , as a function of
√
s for dif-

ferent CKM matrix elements. The dash line, dot line and solid line
corresponds to the maximum, middle, and minimum CKM matrix ele-
ment for the decay channel of B̄0

s → ρ0(ω)ρ0(ω) → π+π−π+π−,
respectively

range of the resonance in Fig. 2. One can see that r changes
largely in the vicinity of the ω resonance.

6 Summary and conclusion

In this paper, we study the CP violation for the pure annihi-
lation type decay process of B̄0

s → π+π−π+π− in pertur-
bative QCD. It has been found that the CP violation can be
enhanced greatly in the neighborhood of the ρ–ω resonance.
There is the double resonance effect via ρ–ω mixing which
can produce large strong phase in this decay process. The
maximum CP violation value can reach 27.25% due to dou-
ble ρ and ω resonance in Fig. 1. Hence, this decay process
may be a good channel to test the ρ–ω mixing mechanism.
The LHC experiment may search the large CP violation by
reconstructing the π+π− pairs at the region of the ρ and
ω mass. It is impossible to produce the decay process of
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Fig. 2 sin δ as a function of
√
s

corresponding to central
parameter values of the CKM
matrix elements for B̄0

s →
ρ0(ω)ρ0(ω) → π+π−π+π−.
The dash line, dot line and solid
line corresponds to sin δ0, sin δ+
and sin δ−, respectively

0.70 0.75 0.80 0.85 0.90

1.0

0.5

0.0

0.5

1.0

s GeV

si
n δ

0.70 0.75 0.80 0.85 0.90
0.0

0.2

0.4

0.6

s GeV

r

Fig. 3 Plot of r as a function of
√
s corresponding to central param-

eter values of the CKM matrix elements for B̄0
s → ρ0(ω)ρ0(ω) →

π+π−π+π−. The dash line, dot line and solid line corresponds to r0,
r+ and r−, respectively

Bs → ρ(ω) → π+π−. So we could not obtain large CP
violation by this decay process via ρ–ω mixing.

The theoretical errors are large, which follows from the
uncertainties of the results. Generally, power corrections
beyond the heavy quark limit give the major theoretical
uncertainties. This implies the necessity of introducing 1/mb

power corrections. Unfortunately, there are many possible
1/mb power suppressed effects and they are generally non-
perturbative in nature and hence not calculable by the pertur-
bative method. There are more uncertainties in this scheme.
The first error refers to the variation of the CKM parame-
ters, which are given in Eq. (35). The second error comes
from the hadronic parameters: the shape parameters, form
factors, decay constants, and the wave function of the Bs

meson. The third error corresponds to the choice of the hard
scales, which vary from 0.75 to 1.25t, characterizing the
size of next-to-leading order QCD contributions. Therefore,
the results for CP violating asymmetry of the decay process
B̄0
s → π+π−π+π− is given as follows:

ACP (B̄0
s → π+π−π+π−) = 27.20+0.05+0.28+7.13

−0.15−0.31−6.11%. (38)

When
√
s = 0.76 GeV, the CP violating asymmetry varies

from around 20.63% to around 34.64%. Here the first uncer-
tainty corresponds to the CKM parameters, the second comes
from the hadronic parameters, and the third is associated with
the hard scales.
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Appendix: Related functions defined in the text

In this appendix we present explicit expressions of the fac-
torizable and non-factorizable amplitudes with perturbative
QCD in Eqs. (24) and (27) [22–24,45,46]. The factorizable
amplitudes FLL ,i

ann (ai ), and FSP,i
ann (ai ) (i = L , N , T ) are writ-

ten as

fBs F
LL ,N
ann (ai ) = fBs F

LR,N
ann (ai ), (39)

fBs F
LL ,N
ann (ai ) = −8πCFM

4
Bs fBs r2r3

∫ 1

0
dx2dx3

×
∫ ∞

0
b2db2b3db3

{
Ea(tc)ai (tc)ha(x2, 1 − x3, b2, b3))

× [
(2 − x3)

(
φv

2 (x2)φ
v
3 (x3) + φa

2 (x2)φ
a
3 (x3)

)
+ x3(φ

v
2 (x2)φ

a
3 (x3) + φa

2 (x2)φ
v
3 (x3))

]
− ha(1 − x3, x2, b3, b2)[(1 + x2)(φ

v
2 (x2)φ

v
3 (x3)
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+φa
2 (x2)φ

a
3 (x3)) − (1 − x2)(φ

v
2 (x2)φ

a
3 (x3)

+φa
2 (x2)φ

v
3 (x3))]Ea(t

′
c)ai (t

′
c)
}
, (40)

fBs F
LL ,T
ann (ai ) = − fBs F

LR,T
ann (ai ), (41)

fBs F
LL ,T
ann (ai ) = −16πCFM

4
Bs fBs r2r3

∫ 1

0
dx2dx3

×
∫ ∞

0
b2db2b3db3{

[x3(φ
v
2 (x2)φ

v
3 (x3) + φa

2 (x2)φ
a
3 (x3))

+ (2 − x3)(φ
v
2 (x2)φ

a
3 (x3) + φa

2 (x2)φ
v
3 (x3))]

×Ea(tc)ai (tc)ha(x2, 1 − x3, b2, b3)

+ ha(1 − x3, x2, b3, b2)[(1 − x2)(φ
v
2 (x2)φ

v
3 (x3)

+φa
2 (x2)φ

a
3 (x3))

− (1 + x2)(φ
v
2 (x2)φ

a
3 (x3)

+φa
2 (x2)φ

v
3 (x3))]Ea(t

′
c)ai (t

′
c)
}
, (42)

fBs F
LL ,L
ann (ai ) = 8πCFM

4
Bs fBs

∫ 1

0
dx2dx3

∫ ∞

0
b2db2b3db3

×
{
ai (tc)Ea(tc)

×
[
(x3 − 1)φ2(x2)φ3(x3) − 4r2r3φ

s
2(x2)φ

s
3(x3)

+2r2r3x3φ
s
2(x2)(φ

s
3(x3) − φt

3(x3))
]
ha(x2, 1 − x3, b2, b3)

+
[
x2φ2(x2)φ3(x3) + 2r2r3(φ

s
2(x2) − φt

2(x2))φ
s
3(x3)

+ 2r2r3x2(φ
s
2(x2) + φt

2(x2))φ
s
3(x3)

]

×ai (t
′
c)Ea(t

′
c)ha(1 − x3, x2, b3, b2)

}
, (43)

FLR,L
ann (ai ) = FLL ,L

ann (ai ), (44)

with the color factor CF = 3/4 and fBs refer to the decay
constant of the B̄s meson and ai represents the corresponding
Wilson coefficients for annihilation decay channels. In the
above functions, r2(r3) = mV /mBs and φ2(φ3) = φV (V =
ρ or ω), where mV is the chiral scale parameter.

The non-factorizable amplitudes MLL ,i
ann (ai ), and MSP,i

ann (ai )
(i = L , N , T ) are written as

MLL ,N
ann (ai ) = MSP,N

ann (ai ), (45)

MLL ,N
ann (ai ) = −64πCFM

4
Bs r2r3/

√
6
∫ 1

0
dx1dx2dx3

×
∫ ∞

0
b1db2b2db2φBs (x1, b1)[φv

2 (x2)φ
v
3 (x3)

+ φa
2 (x2)φ

a
3 (x3)]E ′

a(td )ai (td )hna(x1, x2, x3, b1, b2),

(46)

MLL ,T
ann (ai ) = −MSP,T

ann (ai ), (47)

MLL ,T
ann (ai ) = −128πCFM

4
Bs r2r3/

√
6
∫ 1

0
dx1dx2dx3

×
∫ ∞

0
b1db2b2db2φBs (x1, b1)[φv

2 (x2)φ
a
3 (x3)

+ φa
2 (x2)φ

v
3 (x3)]E ′

a(td )ai (td )hna(x1, x2, x3, b1, b2), (48)

MLL ,L
ann (ai ) = 32πCFM

4
Bs /

√
6
∫ 1

0
dx1dx2dx3

×
∫ ∞

0
b1db2b2db2φBs (x1, b1)

×
{
hna(x1, x2, x3, b1, b2)

[
− x2φ2(x2)φ3(x3)

− 4r2r3φs
2(x2)φs

3(x3)

+ r2r3(1 − x2)(φs
2(x2) + φt

2(x2))(φs
3(x3) − φt

3(x3))

+ r2r3x3(φs
2(x2) − φt

2(x2))(φs
3(x3)

+φt
3(x3))

]
ai (td )E ′

a(td )

+ h′
na(x1, x2, x3, b1, b2)

[
(1 − x3)φ2(x2)φ3(x3)

+ (1 − x3)r2r3(φs
2(x2) + φt

2(x2))(φs
3(x3) − φt

3(x3))

+ x2r2r3(φs
2(x2) − φt

2(x2))(φs
3(x3) + φt

3(x3))
]
ai (t

′
d )E ′

a(t
′
d )
}
,

(49)

MSP,L
ann (ai ) = 32πCFM

4
Bs/

√
6
∫ 1

0
dx1dx2dx3

×
∫ ∞

0
b1db1b2db2φBs (x1, b1)

×
{
ai (td)E

′
a(td)hna(x1, x2, x3, b1, b2)

×
[
(x3 − 1)φ2(x2)φ3(x3)

− 4r2r3φ
s
2(x2)φ

s
3(x3) + r2r3x3(φ

s
2(x2)

+φt
2(x2))(φ

s
3(x3) − φt

3(x3))

+ r2r3(1 − x2)(φ
s
2(x2) − φt

2(x2))(φ
s
3(x3) + φt

3(x3))
]

+ ai (t
′
d)E

′
a(t

′
d)h

′
na(x1, x2, x3, b1, b2)

[
x2φ2(x2)φ3(x3)

+ x2r2r3(φ
s
2(x2) + φt

2(x2))(φ
s
3(x3) − φt

3(x3)))

+ r2r3(1 − x3)(φ
s
2(x2) − φt

2(x2))(φ
s
3(x3) + φt

3(x3))
]}

.

(50)

The hard scale t is chosen as the maximum of the virtuality
of the internal momentum transition in the hard amplitudes,
including 1/bi :

ta = max{√x3MBs , 1/b1, 1/b3}, (51)
t ′a = max{√x1MBs , 1/b1, 1/b3}, (52)

tb = max{√x1x3MBs ,
√|1 − x1 − x2|x3MBs , 1/b1, 1/b2}, (53)

t ′b = max{√x1x3MBs ,
√|x1 − x2|x3MBs , 1/b1, 1/b2}, (54)

123
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tc = max{√1 − x3MBs , 1/b2, 1/b3}, (55)
t ′c = max{√x2MBs , 1/b2, 1/b3}, (56)

td = max{√x2(1 − x3)MBs ,
√

1 − (1 − x1 − x2)x3MBs , 1/b1, 1/b2},
(57)

t ′d = max{√x2(1 − x3)MBs ,
√|x1 − x2|(1 − x3)MBs , 1/b1, 1/b2}.

(58)

The hard functions h are written as [47]

he(x1, x3, b1, b3) = [
θ(b1 − b3)I0(

√
x3MBsb3)

K0(
√
x3MBsb1) + θ(b3 − b1)I0(

√
x3MBsb1)

× K0(
√
x3MBsb3)

]
K0(

√
x1x3MBsb1)St (x3),

hn(x1, x2, x3, b1, b2)

= [
θ(b2 − b1)K0(

√
x1x3MBsb2)I0(

√
x1x3MBsb1)

+ θ(b1 − b2)K0(
√
x1x3MBsb1)I0(

√
x1x3MBsb2)

]

×
{

iπ
2 H (1)

0 (
√

(x2 − x1)x3MBsb2), x1 − x2 < 0
K0(

√
(x1 − x2)x3MBsb2), x1 − x2 > 0

, (59)

ha(x2, x3, b2, b3) =
(
iπ

2

)2

St (x3)
[
θ(b2 − b3)H

(1)
0

×(
√
x3MBsb2)J0(

√
x3MBsb3)

+ θ(b3 − b2)H
(1)
0 (

√
x3MBsb3)

×J0(
√
x3MBsb2)

]
H (1)

0 (
√
x2x3MBsb2),

hna(x1, x2, x3, b1, b2) = iπ

2

[
θ(b1 − b2)H

(1)
0

×(
√
x2(1 − x3)MBsb1)J0(

√
x2(1 − x3)MBsb2)

+ θ(b2 − b1)H
(1)
0 (

√
x2(1 − x3)MBsb2)

×J0(
√
x2(1 − x3)MBsb1)

]

×K0(
√

1 − (1 − x1 − x2)x3MBsb1),

h′
na(x1, x2, x3, b1, b2) = iπ

2

[
θ(b1 − b2)H

(1)
0

×(
√
x2(1 − x3)MBsb1)J0(

√
x2(1 − x3)MBsb2)

+ θ(b2 − b1)H
(1)
0 (

√
x2(1 − x3)MBsb2)

× J0(
√
x2(1 − x3)MBsb1)

]

×
{

iπ
2 H (1)

0 (
√

(x2 − x1)(1 − x3)MBsb1), x1 − x2 < 0,

K0(
√

(x1 − x2)(1 − x3)MBsb1), x1 − x2 > 0,

(60)

where J0 and Y0 are Bessel functions with H (1)
0 (z) = J0(z)+

i Y0(z).
The threshold re-sums factor St follows the parameterized

[48]

St (x) = 21+2c�(3/2 + c)√
π�(1 + c)

[x(1 − x)]c, (61)

where the parameter c = 0.4. In the non-factorizable con-
tributions, St (x) has a very small numerical effect on the
amplitude [49]. Therefore, we drop St (x) in hn and hna .

The evolution factors E (′)
e and E (′)

a entering in the expres-
sions for the matrix elements are given by

Ee(t) = αs(t) exp[−SB(t) − S3(t)],
E ′
e(t) = αs(t) exp[−SB(t) − S2(t) − S3(t)]|b1=b3 , (62)

Ea(t) = αs(t) exp[−S2(t) − S3(t)],
E ′
a(t) = αs(t) exp[−SB(t) − S2(t) − S3(t)]|b2=b3 , (63)

in which the Sudakov exponents are defined as

SB(t) = s

(
x1

MBs√
2

, b1

)
+ 5

3

∫ t

1/b1

dμ̄

μ̄
γq(αs(μ̄)), (64)

S2(t) = s

(
x2

MBs√
2

, b2

)
+ s

(
(1 − x2)

MBs√
2

, b2

)

+ 2
∫ t

1/b2

dμ̄

μ̄
γq(αs(μ̄)), (65)

where γq = −αs/π is the anomalous dimension of the quark.
The explicit form for the function s(Q, b) is

s(Q, b) = A(1)

2β1
q̂ ln

(
q̂

b̂

)
− A(1)

2β1

(
q̂ − b̂

)
+ A(2)

4β2
1

(
q̂

b̂
− 1

)

−
[
A(2)

4β2
1

− A(1)

4β1
ln

(
e2γE−1

2

)]
ln

(
q̂

b̂

)

+ A(1)β2

4β3
1

q̂

[
ln(2q̂) + 1

q̂
− ln(2b̂) + 1

b̂

]

+ A(1)β2

8β3
1

[
ln2(2q̂) − ln2(2b̂)

]
, (66)

where the variables are defined by

q̂ ≡ ln[Q/(
√

2�)], b̂ ≡ ln[1/(b�)], (67)

and the coefficients A(i) and βi are

β1 = 33 − 2n f

12
, β2 = 153 − 19n f

24
,

A(1) = 4

3
, A(2) = 67

9
− π2

3
− 10

27
n f + 8

3
β1ln(

1

2
eγE ),

(68)

with n f is the number of the quark flavors and γE the Euler
constant. We will use the one-loop expression of the running
coupling constant.

In this study, we use the model function

φBs (x, b) = NBs x
2(1 − x)2 exp

[
−M2

Bs
x2

2ω2
b

− 1

2
(ωbb)

2

]
,

(69)
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where the share parameter ωb = 0.5 ± 0.05 GeV, and the
normalization constant NBs = 63.5688 GeV is related to the
Bs decay constant fBs = 0.23 ± 0.03 GeV.

For ρ and ω vector mesons, we use ρ0 = 1√
2

(
uu − dd

)
and ω = 1√

2

(
uu + dd

)
. The distribution amplitudes of a

vector meson (v=ρ or ω), φρ , φω, φt
V , φs

V , φv
V , and φa

V , are
calculated using the light-cone QCD sum rule [50,51]:

φρ(x) = 3 fρ√
6
x(1 − x)

[
1 + 0.15C3/2

2 (t)
]
, (70)

φω(x) = 3 fω√
6
x(1 − x)

[
1 + 0.15C3/2

2 (t)
]
, (71)

φt
V (x) = 3 f TV

2
√

6
t2, (72)

φs
V (x) = 3 f TV

2
√

6
(−t), (73)

φv
V (x) = 3 fV

8
√

6
(1 + t2), (74)

φa
V (x) = 3 fV

4
√

6
(−t), (75)

where t = 2x − 1. Here fV is the decay constant of the
vector meson with longitudinal polarization, whose values
are shown in Table 1.

The Gegenbauer polynomials Cν
n (t) read

C1/2
2 (t) = 1

2 (3t2 − 1), C1/2
4 (t) = 1

8 (35t4 − 30t2 + 3),

C3/2
2 (t) = 3

2 (5t2 − 1), C3/2
4 (t) = 15

8 (1 − 14t2 + 21t4),

C3/2
1 (t) = 3t.

(76)
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