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Abstract

Implicit and explicit learning were onginally distinguished
in terms of accessibility to verbal report. We identify ev-
idence for the proposal that the implicit/explicit contrast
corresponds to a divide between connectionist and sym-
bolic representations. We show that explicit learning shows
marked improvement between 4 and 8 years of age. This
finding contrasts against very early implicit learning abili-
ties, and concurs with other evidence on the progressive de-
velopment of symbolic reasoning abilities.

The identification and study of human learning mech-
anisms is a central concern of psychology and cognitive
science. An important contemporary debate in this area
concerns the distinction between implicit and explicit learn-
ing. Generally, implicit and explicit learning mechanisms
have been distinguished in terms of the accessibility of the
knowledge acquired to conscious awareness, as assessed by
verbal report (e.g., Reber, 1967).

At first this division appears to be relatively convincing:
In implicit learning, by definition, participants’ verbally re-
ported knowledge is insufficient to account for their perfor-
mance on some task. For example, participants who mem-
orise strings generated by a finite state grammar are subse-
quently able to classify strings as obeying or violating the
grammar to a significant degree, despite being unable to re-
port the rules of the grammar verbally (e.g., Reber, 1967,
Reber & Allen, 1978).

By implication, explicit learning is defined as those cases
where participants are able to verbally report sufficient
knowledge to account for their performance. For example,
if a person can play a legal game of chess, and can also re-
port the rules of chess, then one might conclude that their
ability to play a legal chess game was based on this explicit
knowledge.

However, the claim that dissociations between verbal re-
port and performance mark the boundary between two dis-
tinct learning mechanisms, differing in the accessibility of
their knowledge to conscious awareness, has proved prob-
lematic. The strongest critics, Shanks and St. John (1994),
argue that the insensitivity of verbal report, and the prob-
lems of relating participants’ reports to the knowledge rep-
resentations underlying their performance render apparent
dissociations between performance and verbal report sus-
pect. Shank and St. John do however endorse the view
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that learning mechanisms can be distinguished in terms of
the representational form of the knowledge acquired, con-
trasting exemplar or instance-based learning mechanisms,
for which connectionism provides a natural model, against
processes of hypothesis testing and rule-discovery, best de-
scribed by symbolic mechanisms,

In connectionist learning mechanisms, knowledge and
cognition are embodied in patterns of activation of many
simple units, and in the flow of activations between those
units. Learning is the modification of the strengths of
the connections between units. In symbolic mechanisms,
knowledge is embodied by statements or rules composed
of arbitrary symbols, and interpreted according to a consis-
tent syntax and semantics. Learning is the addition of new
statements or rules.

Dienes and Perner (1996) suggest that viewing implicit
and explicit learning in terms of a divide between con-
nectionist and symbolic mechanisms explains the differing
availability of implicit and explicit knowledge to verbal re-
port. The form of knowledge in a connectionist network—
the strengths of interunit connections—does not lend itself
to verbal communication. In contrast, symbolic knowledge
can be easily communicated, and utilised by the receiver.

In this paper we present evidence in support of an im-
plicit/explicit divide based on representational form. We
first describe a recent study which dramatically contrasts
explicit and implicit learning. We then present evidence
on the development of explicit learning, showing marked
developmental changes between four and eight years of
age. This contrasts against developmental evidence on im-
plicit learning, which appears to function in mature form
from the first year of life. We discuss similar findings on
the development of symbolic reasoning abilities from other
paradigms.

Two dissociable human learning systems

Shanks, Johnstone and Staggs (1997, Experiment 4) re-
port a study where, as in implicit learning studies, they
presented participants with a set of rule-governed training
strings, and subsequently tested their ability to distinguish
between test strings which obeyed or violated the rules un-
derlying the training strings.

However, the materials used by Shanks et al. (1997)
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were very different to those of implicit learning studies.'
Generally in artificial grammar learning studies, materials
are drawn from complex grammars, with many (e.g., ten)
rules, which specify relationships between adjacent letters.
The distinction between grammatical and nongrammatical
strings is usually correlated with simple local distributional
properties of the training materials, such as the frequency
of letter pairs and triples.

Shanks et al. (1997) drew their training and tesl strings
from a crypto-grammar: Grammatical strings possessed the
structure 1234.1234, with each number being replaced by
the two halves of a pair of letters according to the follow-
ing three rules: D ¢+ F, G & L, K ¢ X. Thus a typical
string might be DFGK.FDLX. Nongrammatical strings vi-
olated one or more of these rules. Additionally, the train-
ing and test items were painstakingly constructed so that
only conformance to the rules distinguished grammatical
and nongrammatical strings: Local distributional properties
provided no useful information.

Shanks et al. (1997) utilised two different training con-
ditions. In the match condition, participants were shown
a single grammatical training item, and then had to match
that example to one of a display of five training items. This
is akin to the memorisation training usually used in stud-
ies of implicit learning, with participants uninformed that
the training stimuli were rule-governed. In the edit training
condition, participants were informed of the rule-governed
nature of the materials. They were shown items which vi-
olated the rules, and were required to indicate which ele-
ments (letters) were correct and which were not. After each
item they were shown the correct string and given feedback
as to the actual errors present in the string. This training
was intended to facilitate rule-discovery processes.

At test, the match group showed no ability to appro-
priately classify the test items as obeying or violating the
rules. Participants in the edit group fell into two distinct
subgroups. One subgroup scored at or around chance on
the grammaticality judgment test, while, the other sub-
group scored at or near 100% of classifications correct. The
manipulation of materials and training conditions appears
to flip participants between implicit and explicit learning
modes, with the latter resulting in a distinctive bimodal pat-
tern of performance.?

The Shanks et al. (1997) results also provide support for
the view that the differences between implicit and explicit
knowledge are best explained in terms of the contrast be-
tween connectionist and symbolic representations.

'"The materials and training conditions used by Shanks et al.
(1997) were based on those of a similar study by Mathews, Buss,
Stanley, Blanchard-Fields, Cho and Druhan (1989, Experiment
4). However, the contrast between implicit and explicit learning
is much clearer in the Shanks et al. study.

*[t is the interaction of materials and training conditions that is
important: In an earlier study Shanks et al. (1997, Experiment 3)
used the same training conditions with typical artificial grammar
learning materials (with many complex rules, governing local de-
pendencies). Both match and edit groups showed typical implicit
learning effects (i.e., performance was unimodal and imperfect).

The failure of the match group, who were presented
with a typical implicit learning paradigm, to make accu-
rate grammaticality judgments concurs with accounts of
implicit learning which stress the learning of local distribu-
tional properties (e.g., Perruchet & Pacteau, 1990; Reding-
ton & Chater, 1996). In the Shanks et al. (1997) materials,
by design, local distributional properties of the materials
give no cue to grammaticality. However, in most artificial
grammar learning studies, such distributional properties are
strong predictors of grammaticality, and sensitivity to such
properties is sufficient to account for human performance.
Connectionist models, such as the simple recurrent network
(Elman, 1990), provide a natural framework for learning of
this kind, and are able to capture much of the data on artifi-
cial grammar learning (Redington, 1996).

As for the the edit group, three features of their perfor-
mance contrast clearly against implicit learning, and sug-
gest a process of symbolic, rule-based learning:

1. The step function of participants’ performance: Par-

ticipants either discover the correct rules, or they do
not. With “typical” artificial grammar learning materials
(e.g., Reber, 1967, or the commonly used set from Reber
& Allen, 1978), participants performance is unimodal,
and imperfect: Participants’ classification scores exceed
chance and untrained controls, but never approach 100%
(60-70% correct is a typical score).

2. The ability to capture relationships between “arbitrary”

(non-adjacent) elements is consonant with a rule-based
representation. Evidence from both the Shanks et al.
(1997, Experiment 4) study and St. John & Shanks
(1997) suggests that implicit learning is limited to local
dependencies (between adjacent or near-adjacent letters).

3. A hitherto unmentioned manipulation in the Shanks et al.

(1997) crypto-grammar study was that test items were ei-
ther similar specific training items (two letters different
to), or dissimilar (at least four letters different from) to all
of the training items. The edit group were equally likely
to classify both kinds of items as grammatical. The ab-
sence of effects of surface similarity is often proposed as
an indicator of rule-learning, and contrasts against stud-
ies such as Vokey and Brooks (1992), where under im-
plicit conditions, participants showed clear effects for the
similarity of training and test items (which can generally
be explained in terms of similarity in terms of distribu-
tional properties).

The Shanks et al. (1997) effects appear to be robust: We
replicated the crypto-grammar study, using only the edit
training condition. Using the exact same procedure and
stimuli, six of our participants (n = 12) clearly showed ev-
idence of rule-learning (near-ceiling performance), while
the remainder scored at or around chance. Verbal reports
and a post-task questionnaire provide convergent evidence
that this study captures the implicit/explicit distinction:
Participants who showed near-ceiling classification were
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able to report the rules of the crypto-grammar without er-
ror, whereas those who scored near chance were unable to
report the rules.

Alternative hypotheses

Although the Shanks et al. (1997) effects do point towards
the operation of two distinct learning mechanisms, and two
different forms of representation, the possibility that a sin-
gle learning mechanism (and representational form) un-
derlies performance on both explicit and implicit tasks re-
mains.

To sketch one possible alternative hypothesis, match and
edit training might encourage the consideration of different
hypotheses, or different orderings of hypotheses, by a sin-
gle, symbolic, learning mechanism. Edit training might en-
courage the initial consideration of nonlocal relationships,
while memorisation training might limit hypotheses to local
dependencies. With a small number of rules, participants
might be able to discover and report them all (as for the
learners in the edit condition). When the number of rules is
large (as in the relatively complex artificial grammars), par-
ticipants may well fail to discover every rule, and the sheer
number of rules might preclude accurate reporting of ev-
ery rule that has been learnt. These additional assumptions
about the effect of training conditions and the relationship
between the complexity of the knowledge base and acces-
sibility to verbal report allow the evidence to be reconciled
with a single symbolic learning mechanism.

In general, the problem of distinguishing between dif-
ferent kinds of representational form is very difficult (e.g.,
see Barsalou, 1990). Additional assumptions will always
permit apparent dissociations to be reconciled with a sin-
gle learning mechanism or representational form. However,
it may be possible (and possibly necessary) to support the
case for distinct learning mechanisms by appealing to mul-
tiple lines of converging evidence. For example, if implicit
and explicit learning mechanisms show different profiles of
development, this would reinforce the case that there are
two distinct mechanisms. Below we present some evidence
from a developmental study of the explicit learning effects
found by Shanks et al. (1997).

Developmental evidence

As far as the development of implicit learning is concerned,
preliminary evidence suggests that implicit learning mech-
anisms are functioning to a considerable degree within the
first year of life. For instance, Saffran, Newport, and Aslin
(1996) found that 8-month-old infants exposed to a stream
of phonemes of an artificial language subsequently exhib-
ited sensitivity to the sequential structure of the sequence
in a preferential listening paradigm. Gomez and Gerken
(1997) have observed artificial grammar learning effects in
11- to 13-month old infants, again using a preferential lis-
tening paradigm. In both of these studies, performance was
unimodal and far from ceiling. Although cross-sectional
studies remain to be performed, the indication is that im-
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plicit learning mechanism functions in essentially the adult
form from very early on.

The question we investigated here was the developmental
profile of the explicit rule-learning effects found by Shanks
et al. (1997). We assessed the performance of four, six,
and eight-year-olds on a variation of the edit training condi-
tion. We predicted that if explicit learning reflected the the
action of a separate learning mechanism, then we would
observe a substantial increase in the proportion of learn-
ers (participants showing near-perfect classification perfor-
mance) with increasing age. As well as the classification
task, we also administered the Test for Reception of Gram-
mar (TROG test, Bishop, 1981), in order to provide some
measure of the cognitive development of each child.

The participants (n = 36) were all students at a Hert-
fordshire primary school. There were 12 participants for
each age group, with mean ages of 61, 82, and 102 months.

The materials were based on those used by Shanks et al.
(1997, Experiment 4). We simplified the material in order
to reduce the effect of differences in cognitive ability or
memory capacity due to age, The materials were expressed
in terms of animals and fruit in order to provide an engaging
task for four- to eight-year-olds.

Grammatical strings all followed the pattern 123.123,
with numbers being replaced by elements of the follow-
ing rules: elephant — orange, lion — apple, rabbit — ba-
nana. Note that unlike the Shanks et al. materials, the
rules here are unidirectional: Grammatical strings always
follow the pattern “animal animal animal fruit fruit fruit”
as in the sample test item shown in Figure 1. The divider
between the animals and fruits in Figure 1 was present in
both training and test stimuli, in order to make the division
more salient for participants.

& ‘ .. :".:.'.'

Figure 1: A sample test item (27.5% of actual size).



We constructed two sets of materials (shown in Table
1). Each test set consisted of 12 grammatical and 12 non-
grammatical strings. The grammatical and nongrammatical
strings had the same combinations of animals, but the com-
binations of fruit in the nongrammatical strings violated
one, two, or three of the above rules. The distributional
properties (letter pairs and triples) of the grammatical and
nongrammatical items were roughly balanced, and all let-
ter pairs or triples in the nongrammatical strings were also
present in the grammatical strings, and vice versa. The non-
grammatical items from each test set served as the training
items for participants tested on the opposite set. Training
and test items were presented to participants on individual
sheets of paper.

Table 1: The two sets of test items. A, B, and C refer to ele-
phant, lion and rabbit, and 1, 2, and 3 refer to orange, apple
and banana respectively . Underlining indicates a violation
of the rules. The training items for each test set were the
nongrammatical items from the opposite set.

Set 1 Set 2
AAB.112 AAB.113 AAC.113 AAC.112
ACA.131 ACA.133 ABA.121 ABA.122
BAA 211 BAA.213 CAA311 CAAZ312
BBC.223 BBC.113 BBA.221 BBA.331
BAB.212 BAB.332 BCB.232 BCB.112
CBB.322 CBB.132 ABB.122 ABB.321
CCA.331 CCA.223 CCB.332 CCB.113
CBC.323 CBC.231 CAC313 CAC.231
ACC.133 ACC.321 BCC.233 BCC.312
ABC.123 ABC.323 ACB.132 ACB.232
BCA.231 BCA.321 BAC.213 BAC.231
CAB.312 CAB.123 CBA.321 CBA.132

The procedure of the study was as follows: Partici-
pants were tested individually in a quiet room, performing
the TROG test first, and then performing the edit training
and classification test. Prior to edit training, the experi-
menter informed the child about the task, using the follow-
ing words:

I am now going to show you some pictures. Each ani-
mal likes only one kind of fruit. I will show you three
animals and three fruit. In each of these pictures some
of the animals don’t get the fruit they like. Can you tell
me which animals get the fruits they like and which
don’t?

If you think the animal gets the fruit they like then tick
the box under the animal and the fruit. If you think
they don’t then cross the box under the animal and the
fruit.

The order of the animals and the fruit is important.
They must be in the right place to get the fruit they
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like. Al first you will be guessing. I will put the correct
answers in the grey boxes to help you learn the rules.

The two different sets of materials shown in Table 1 were
counterbalanced within each age group. The training items
were presented in random order. Each training item con-
sisted of a nongrammatical item, with a white and grey
box under each animal/fruit, for the child’s response and
feedback from the experimenter. After the child had indi-
cated which animals and fruits they thought were correct,
the experimenter would write the correct sequence of ticks
and crosses. This is very similar to the edit task used by
Shanks et al. (1997), with the exception that the corrected
sequences were not presented with the feedback. Partici-
pants also received verbal feedback intended to encourage
rule-discovery. If the child correctly identified all of errors,
they were told “Well done. You got all of them right.” In
items containing two errors, the experimenter would draw
the child’s attention to the correct animal-fruit pair, by ask-
ing “What do you think the X likes?” In items contain-
ing only one error, the experimenter would draw the child’s
attention to the two “satisfied” animals and their food, by
stating “The X gets what they like and the Y gets what they
like. The A is eaten, and so is the B.” The set of 12 non-
grammatical training items was presented twice, for a total
of 24 training trials. After training, participants received the
following instructions before proceeding to the test phase.

Now you will see some more pictures of the same an-
imals and fruit. I want you to tell me if each page is
right. It is right if each animal gets the fruit they like,
and wrong if any of the animals don’t get the fruit they
like.

The 24 test items were then presented in random order.
The experimenter recorded the children’s responses, but
gave no feedback as to whether they were correct or not.

Results

We first analysed the training data. For each training item,
the child's response was correct if they correctly identi-
fied all rule violations, and incorrect otherwise. The 24
training trials were divided into four blocks of six items
each. A 2 x 3 x 4 (Training Set x Age Group x Block)
mixed model ANOVA revealed effects for Training Set,
F(1,30) = 11.27,p = 0.002, Age Group, F(2,30) =
13.04,p = 0.0001, and Block, F(3,90) = 5.12,p =
0.0026. The Training Set x Age interaction was also re-
liable, F(2,30) = 5.72,p = 0.0079. The effect of Train-
ing Set, and the reliable interaction suggest that Train-
ing Set 2 was more likely to encourage rule-learning than
Training Set 1, moreso with increasing age, despite the
identical nature of the two sets of materials. In fact, it
appears that despite random allocation of participants to
materials within each age group, participants trained and
tested on Set 2 were significantly more advanced, as mea-
sured by their TROG scores, than those tested on Set 1,



t(35) = 14.84,p = 0.0001, and this difference may well
account for the apparent effect of training materials.

The effect of Block is consistent with a process of
hypothesis-testing, and the eventual discovery of the cor-
rect rules (similar effects during learning were observed by
Shanks et al., 1997, for participants trained on the edit, but
not the match task). The effects for Age Group suggests
that the ability to discover the correct rules increases with
age, although we also expected to observe an interaction
between Age Group and Block, which was not reliable.

A notable feature of the training data (also observed in
our replication of the Shanks et al. 1997 study), was that
some participants reached ceiling performance on the train-
ing task early on in training (by the third block). These four
participants were all eight years of age, and performed per-
fectly on the subsequent classification task.

Overall, the mean proportion of classifications correct
for the four, six, and eight year-olds were, respectively,
49 (.10), .69 (.18), and .82 (.21), (standard deviations in
parentheses). A 2 x 3 Test Set x Age Group ANOVA,
with proportion of classifications correct as the depen-
dent variable, revealed reliable effects for both Test Set,
F(1.30) = 8.61,p = 0.006, and Age Group F(1,30) =
16.27.p = 0.0001. There was also a reliable interaction
effect, F(2,30) = 4.63,p = 0.018.

Once again, the effect of materials, and the interaction
with Age Group is probably due to differing levels of de-
velopment in the participants, despite random allocation of
participants to materials. The effect of Age Group on the
classification task provides clear evidence of improvement
in explicit rule-learning between the ages of four and eight.

Examination of the raw data (shown in Figure 2) shows
that participants’ performance exhibited the bimodal pat-
tern observed in the edit group of the Shanks et al. study.
Although some participants’ performance was intermedi-
ate, most children showed either chance or perfect perfor-
mance (i.e., no learning, or correct learning of all rules).
The prevalence of intermediate performance may be due to
the fact that some test strings could be rejected merely on
the basis of the training instructions. For example, given
that “each animal likes only one kind of fruit” in items like
“lion lion rabbit apple orange banana” one of the lions will
clearly not be happy. However, this possibility cannot ac-
count for scores of .80 or more.

Informal questioning of the participants, and a question-
aire administered to a subset of participants both confirmed
our findings in the adult version of the task: Participants
who scored at or near-ceiling were able to accurately report
all of the rules, whilst those who scored below ceiling were
not.

Discussion

The results reported above suggest that, in contrast to im-
plicit learning, the ability to acquire and utilise a system
of explicit rules does show clear developmental effects in
early childhood.
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Figure 2: Classification score (proportion of judgments cor-
rect) as a function of age (months) and test set. Circles in-
dicate participants tested on Test Set 1, and squares indicate
participants tested on Test Set 2.

The improvement over age does not appear to be di-
rectly due to improvements in memory capacity or general
cognitive ability: While piloting the materials, we tested
children’s ability to follow the rules (as opposed to hav-
ing to both discover and follow the rules). When told the
rules, children of four, six, and eight years were all able to
make appropriate grammaticality judgements, and scored
near ceiling.

As well as providing converging evidence in favour of
two distinct learning mechanisms; an early functioning im-
plicit system, and a gradually developing explicit system,
this study reinforces other evidence on the development of
apparently symbolic reasoning abilities. Raijmakers and
Molenaar (1995, 1996) have recently drawn attention to
the discrimination-shift task, which they argue provides
a strong test for distinguishing between purely associa-
tive representations, and mechanisms possessing represen-
tations of “mediating concepts.”

In the discrimination-shift task (Kendler, 1995), partici-
pants are reinforced for distinguishing between four stimuli
presented in two distinct pairs. The stimuli are distinguish-
able on two dimensions (e.g., shape [round/triangle] and
colour [white/black]), one of which is reinforced. After
participants make the appropriate distinction to a given cri-
terion, the shift phase of the experiment begins (without in-
forming the participant). The reinforcement contingencies
undergo either a reverse shift (RS), where the previously re-
inforced stimuli get negative reinforcement and vice versa,
or an extradimensional shift (EDS), where the dimension
on which reinforcement is based (e.g., shape or color) is
shifted. According to Kendler (1995), animals learn by an



associative mechanism, and learn an EDS faster than an RS.
Adult humans learn by forming “mediated concepts” and
learn a RS faster than an EDS.

As for the rule-discovery task reported here, child per
formance on the discrimination-shift task shows a clear de-
velopmental progression, with the proportion of children
showing adult-like performance in the majority only after
around 6 years of age. Prior to this, most children show
discrimination-shift performance characteristic of animals,
learning a EDS faster than an RS.

Raijmakers and Molenaar (1996) report that feedforward
connectionist networks perform like animals or young chil-
dren on the discrimination-shift task. In contrast, symbolic
representations provide a natural metaphor for mediating
concepts. Future studies might assess children’s perfor-
mance in both the rule-discovery and discrimination-shift
tasks, in order to see if the apparent correspondence be-
tween development in these two tasks is present within par-
ticular individuals.

Another interesting line of potential research concerns
the performance of amnesic and elderly patients on the ex-
plicit rule-discovery task. Implicit learning appears rela-
tively unimpaired in amensic patients (Knowlton, Ramus
& Squire, 1992), despite their known deficits in declarative
memory. This tallies neatly with the properties of connec-
tionist and symbolic representations. Connectionist repre-
sentations degrade gracefully in the face of damage, be-
cause their knowledge is distributed over many interunit
connections. Symbolic mechanisms are brittle, because
their knowledge is concentrated in discrete statements, in-
terpreted by a single processing mechanism. Damage to ei-
ther rules or processor can have drastic consequences. The
finding of impaired explicit rule-learning in amnesic pa-
tients would further reinforce the case for representation-
ally distinct implicit and explicit learning mechanisms.
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