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Information Aggregation, Currency Swaps,

and the Design of Derivative Securities

Abstract

A model of security design based on the principle of information aggregation and alignment

is used to show that (i) ¯rms needing to ¯nance their operations should issue di®erent secu-

rities to di®erent groups of investors in order to aggregate their disparate information and

(ii) each security should be highly correlated (closely aligned) with the private information

signal of the investor to whom it is marketed. This alignment reduces the adverse selection

penalty paid by a ¯rm with superior information. Adverse selection costs are often contin-

gent on ex post publicly observable and contractible state variables such as exchange rates.

In such cases, debt contracts are dominated by currency swaps and optimal securities, in

general, are derivative contracts that are contingent on state variables that in°uence adverse

selection costs. This is because the netting of cash °ows in these derivative contracts, in

e®ect, alters the state-by-state seniority of di®erent claims in a desirable way.

JEL classi¯cation: G10



One of the long held tenets of ¯nancial economics is that in a perfect capital market,

the precise packaging of securities is irrelevant. However, the practice of ¯nance in the

1980's and 1990's is largely noted for the proliferation of new contractual arrangements that

package securities payo®s in di®erent ways. As Ross (1989) suggested in his presidential

address to the American Finance Association, we still do not understand why ¯rms go

through the trouble of creating such redundant assets and liabilities. Surely, such ¯nancial

engineering is costly.

The role of standard securities like debt and equity in the ¯nancing of real investments

has been explored in a rapidly burgeoning literature on security design.1 However, only

recently has research in ¯nancial economics begun to address why seemingly trivial packag-

ings of securities are so popular. Allen and Gale (1988) show that when it is costly to issue

securities and when di®erent groups of investors place di®erent values on the same security,

optimal securities split up the ¯rm's state-contingent cash °ows, allocating all cash °ow in

a given state to the investor who values it the most. Madan and Soubra (1991) introduce

marketing costs into the Allen and Gale model and show that the sharing of cash °ow in

several states may be optimal in the presence of marketing costs. Ross (1989) also explores

the implications of marketing costs and shows that ¯nancial innovation can reduce the costs

of marketing securities; Pesendorfer (1991) generalizes this result to a general equilibrium

framework. Boot and Thakor (1993) argue that selling multiple ¯nancial claims partitions

a ¯rm's total cash °ow into \informationally sensitive" and \informationally insensitive"

components. This encourages the acquisition of information by investors, which enhances

¯rm revenue. DeMarzo and Du±e (1995) analyze the e®ect of adverse selection when issuing

¯rms possess superior information. In their model, the signal from the quantity issued gen-

erates a downward sloping convex demand curve for the security. They then show that the

design of securities like Collaterized Mortgage Obligations allows intermediaries to retain

the portion of the security's return for which adverse selection, due to private information,

is greatest, thereby reducing the demand curve e®ect on revenues collected.

We model a situation in which di®erent agents possess signals about di®erent compo-

nents of a ¯rm's aggregate cash °ow and show that the joint pricing of the ¯rm's securities

may reveal these signals to all of the agents.2 For example, suppose domestic banks receive
1See Allen and Winton (1994) for a recent survey of literature on security design.
2An example of this is also found in Kraus and Smith (1995).
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private signals about a ¯rm's domestic cash °ows and foreign banks receive private signals

about its foreign cash °ows. Then the joint pricing of domestic and foreign debt instruments

may reveal information about foreign cash °ows to domestic banks and vice versa. Indeed,

in the models developed here, full revelation of investor information occurs in equilibrium.

This may explain why ¯rms raise capital from several investors simultaneously.

The more elaborate versions of our models show that all investor information, but not all

issuer information, is revealed in equilibrium. In this case, securities with payo®s that are

highly correlated or \aligned" with the private information signals of the investors to whom

the securities are sold are superior to less aligned securities. Such information alignment

reduces the adverse consequences of a high quality issuer being pooled with low quality

issuers. This not only reduces ¯nancing costs for high quality issuers, but also for low

quality issuers, who would otherwise be revealed as low quality types if they do not follow

the optimal security design of the high quality issuers.

Such a model argues that in each bankrupt state, claims should be designed so that only

one cash °ow claimant { the one facing the least amount of adverse selection in the realized

state { owns all of the ¯rm's assets. Such claims are derivatives, in the sense that their

payo®s in bankruptcy depend on economic variables that determine the state-contingent

adverse selection of each investor. Moreover, the netting of cash °ows in many derivative

contracts alters the state-by-state seniority of many issues in a desirable way.

A point that is often missed in thinking about derivatives is that while the out-of-

bankruptcy cash °ows of derivatives can be replicated by a portfolio of investments in more

fundamental securities, it may be di±cult to replicate the cash °ows of the derivatives in

bankruptcy with the same portfolio. For example, if the swap rates, swap notional amounts,

and face values are set correctly, two currency swaps with opposite exchanges of domestic

for foreign currency can have their out-of-bankruptcy cash °ows replicated by a combination

of domestic and foreign debt. However, in bankruptcy, there will be states of nature where

one swap owes money to the ¯rm and the other swap is owed money. This state-contingent

seniority pattern, which arises from the cash °ow netting in a swap, can never be replicated

by two debt contracts. Hence, if the recipient of a cash °ow in a particular bankrupt state

is as important for valuation as the asset's distribution of promised payouts, the ¯rm may

perceive a pair of swaps to be very di®erent from a pair of seemingly equivalent debt issues.
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The model of ¯nancing that we develop motivates the existence of currency swaps even

in the absence of hedging needs. For example, if the exchange rate determines the degree

of adverse selection faced by domestic and foreign banks who will share the ¯rm's assets in

bankruptcy, contracts with exchange rate contingent payo®s would be appropriate. Properly

designed currency swaps can ensure that in bankruptcy, only one counterparty owes money

when the other is owed money. This is never true for pari passu domestic and foreign debt,

which is always suboptimal. Nor is it true for a senior-subordinated debt structure which,

in e®ect, cannot switch the ordering of priority, depending on the realized exchange rate in

bankruptcy. The ¯rm can raise the same amount of money and promise less to investors

by entering into \o®-market" currency swap agreements.3

The outline of the paper is as follows. Section I develops a model of security design for

securities with linear payo®s. It demonstrates that investor information revelation generally

occurs and computes the di®erence between revenue and cost to the ¯rm for each linear

security design. Section II applies the model to analyze optimal security design when we

add stochastic elements to the payo® and design space and shows that currency swaps

dominate debt contracts. Section III discusses the principles of optimal security design in

more general models. Section IV brie°y concludes the paper.

I. A Model with Linear Payo®s

In this section we present two simple models of security design. These are used to

develop some preliminary results that apply more generally. They also help us develop

intuition for the model that analyzes currency swaps, which is developed in the next section

of the paper. Speci¯cally, we analyze a particularly strong initial information asymmetry

between the ¯rm and its investors.

In the ¯rst subsection, we develop a model where all information about a ¯rm is aggre-

gated as a consequence of investors bidding for its securities. The distinguishing feature of

the model is that these investors have di®erent information about various components of

the ¯rm's cash °ows. We draw conclusions about the number of securities that the ¯rm

should issue. Beyond this, however, the model has little to say about security design.

In the second subsection, we introduce an additional source of uncertainty that prevents
3In an o®-market swap, the ¯rm may receive or pay cash payments up-front.
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the full aggregation of information in equilibrium. Security design plays a role in this slightly

more complex model. In particular, security design can mitigate adverse selection arising

from residual information asymmetry between the ¯rm and its investors.

A. E®ectively Complete Markets

We begin by analyzing a simple two date world (dates 0 and 1) in which securities issued

to investors at date 0 are assumed to have a date 1 linear payout of the form

®x+ ¯y:

Here, x and y are nonnegative random variables, which can be thought of as cash °ow

components, and ® and ¯ denote security design parameters, which are assumed to be

common knowledge. Later in the paper, we will analyze the security design problem in the

presence of some interesting contracting constraints that can be modeled as constraints on

the security design parameters. For instance, we will consider the case in which contracts

cannot be written on the individual cash °ow components x and y but only on the aggregate

cash °ow x+y. In this case, we will impose the constraint that ® = ¯. Another interesting

case arises when x represents cash °ow in domestic currency and y represents cash °ow

in foreign currency. The aggregate cash °ow in this case is x + sy, where s denotes the

exchange rate. If contracts can only be written on aggregate cash °ow, this is modeled as

the constraint ¯(s) = s®(s).

The realized values of x and y are known to the issuing ¯rm, but not to all investors.

Speci¯cally, we assume that there are two investor-types X and Y with respective infor-

mation sets generated by private signals and the observation of securities prices.4 The

realization of x is known to X-type investors. That of y is known to a distinct set of Y-type

investors. Neither investor-type can credibly announce their private signals to the other

investor-type. Moreover, there is no common knowledge about the prior distributions of x

and y held by Y-types and X-types, respectively.

For expositional clarity, we will often simplify the discussion of \the market" by treating

it as though there is a single X-type investor, denoted X, and a single Y-type investor,

denoted Y. We will analyze a pair of securities: one issued to X at an agreed to price of

PX , with coe±cients ®X and ¯X , and the other issued to Y, at an agreed to price of PY ,
4The model can easily be generalized to multiple investor-types.
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with coe±cients ®Y and ¯Y . We will later see that the issuance of more than two securities

is super°uous.

Investors are assumed to be risk-neutral, which allows us to demonstrate (in the next

section) that the use of derivatives need not be driven by any hedging motivation due to

risk aversion.5 For expositional simplicity, we set the risk-free rate in this one-period model

to zero. From a valuation perspective, the information of investor-types X and Y is thus

summarized by the expectation operators EX and EY respectively.

Investors are assumed to behave rationally and competitively. Let V ji denote the valu-

ation of security i by investor j.

De¯nition 1 PX and PY are rational and competitive bids for their respective securities

by investor types X and Y if and only if,

PX = V X
X = ®Xx+ ¯XEXy; (1)

PY = V Y
Y = ®Y EY x+ ¯Y y: (2)

De¯nition 2 Given ®X, ¯X , ®Y , ¯Y , an equilibrium is a pair of bids P ¤X and P ¤Y such that

1. the bids are rational and competitive and

2. the ¯rm accepts the bids with the knowledge that no rational competitive bid pair, PX

and PY , with PX + PY > P ¤X + P ¤Y is possible.

What is missing at this point is the rules, which we call conjecture functions, that X- and

Y-type investors use to map observed prices and private signals into posterior distributions

that generate their expectation operators and ultimately, their bids. A pair of rules that

investors use to generate VX and VY are rational if they are consistent with Bayes's rule

and generate the observed PX and PY as ¯xed points.

We now discuss the bidding process for these securities and the information it generates.

Consider investor X, who knows little about y, bidding for a security with a positive ¯X :6

5Alternatively, we can view expectations as being generated by the equivalent martingale measure that
follows from no arbitrage provided that this measure is invariant to the design of securities by the ¯rms we
study.

6We will later explore reasons that might explain why ¯X > 0.
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In the absence of further information, he is at a disadvantage when trading with the issuing

¯rm, which knows y (and x) perfectly. Of course, investor Y knows y perfectly, but it is

not obvious how he can credibly communicate this information to X. If investors X and

Y bid for their securities using their prior distributions about y and x, respectively, and,

importantly, if these priors are common knowledge, then the bids reveal each investor's

private information to all investors. In this case, a bidding process in which investors are

allowed to revise their bids after observing the bids of other investors will surely end on the

second bid since all information asymmetry will be resolved by then. However, common

knowledge, particularly with an in¯nite state space, is a very strong assumption despite its

prevalent use in models with asymmetric information.7 In the absence of common knowledge

about each others' priors, it is not obvious that full revelation will occur even with a bidding

process that permits revision. Indeed, unless the securities issued to X and Y are distinct,

full revelation will not generally occur and market failure may result.

It may be useful to picture a real-world analogy to the game modeled here. Consider

an investment bank using its sales force to shop among partially informed investors for the

best deal for a corporate client. It o®ers a security to X, informs him that it will also be

o®ering another security to Y, and asks X what he will price his security for. X returns a

price, PX . This price quote is not ¯rm until X sees Y's price for his security, PY , and it is

common knowledge that 1) both X and Y are jointly satis¯ed with their quotes knowing

each other's quotes and 2) the issuing ¯rm is also satis¯ed with the quotes for the securities.

The bank then approaches Y, informs him of X's PX quote and asks for his PY quote. Once

again, the quote is not ¯rm unless it is common knowledge that neither investor has regrets

about his price quotes. This process may iterate as the investment bank shuttles pricing

information between the two investor-types until an equilibrium pair of prices is reached.8

Thus, the information sets of the two investors not only contain the private signals, x or

y, and securities prices, PX and PY , but also knowledge that all investors are happy with

their price quotes given this information and that the ¯rm does not think it can do better.

The joint \no regrets" condition limits the rational competitive bid that each investor can

make, based on their expectation about the \unknown variables," y for X and x for Y.
7See Geanakoplos (1992).
8The investment bank also could, but need not, suggest prices that the ¯rm ¯nds acceptable, in the

interest of speeding the interactive process along. Our description of the negotiations between di®erent
parties is not far from reality; see Allen (1987).
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The following lemma illustrates that rational competitive bids can be generated.

Lemma 1 The following pair of conjecture functions

EY x =
PX ¡ ¯Xy

®X
;

EXy =
PY ¡ ®Y x

¯Y
;

lead to rational competitive bids and full revelation of investor information if ®X
¯X
6= ®Y

¯Y
. 9

Proof: See the Appendix.

Lemma 1 implies that if the security design coe±cients satisfy ®X
¯X
6= ®Y

¯Y
, the ¯rm need

never settle for a pair of bids that undervalue the securities. This immediately implies

Lemma 2.

Lemma 2 If ®X
¯X
6= ®Y

¯Y
then the conjecture made by X about y, EXy, and the conjecture

made by Y about x, EY x, imply rational and competitive bids if and only if X and Y agree

about the valuation of the securities issued to X and Y. That is,

V YX = PX ; (3)
9Lemma 1, in addition to providing an example of a situation in which prices aggregate all information,

also suggests an underlying iterative inference process by which such an outcome may be realized in equi-
librium. Let fx¤t g, fy¤t g denote the sequence of conjectures and let fPX;tg, fPY;tg denote the sequence of
price quotes. Let us assume that X moves ¯rst with the following initial conjecture:

y¤1 = E(yjÁ0
X);

where Á0
X denotes the initial information set of investor X which is his private information and is not observed

by any other investor. Using this conjecture, X quotes the ¯rst price as

PX;1 = ®Xx+ ¯Xy¤1 :

Observing PX;t, investor Y makes the following conjecture:

x¤t =
PX;t ¡ ¯Xy

®X
8t ¸ 1

to determine the price quote for his security

PY;t = ®Y x¤t + ¯Y y 8t ¸ 1:

Observing PY;t, investor X makes the following conjecture:

y¤t+1 =
PY;t ¡ ®Y x

¯Y
8t ¸ 1

to determine the next price quote for his security

PX;t+1 = ®Xx+ ¯Xy¤t+1 8t ¸ 1:

This iterative process converges to the equilibrium speci¯ed in Lemma 1 if ®X
¯X

> ®Y
¯Y

.
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V XY = PY : (4)

Proof: See the Appendix.

Both investor-types realize that the structure of the game means that they cannot

rationally disagree about the value of the two securities if the ¯rm accepts their bids. This

is because the ¯rm will accept the bids only when it generates revenues that are at least

as high as those that are generated using the conjecture functions speci¯ed in Lemma 1.

Disagreement, therefore, implies that the two investors must be overpaying for the two

securities in the aggregate. Clearly, rational conjectures cannot be such that any investor

thinks that he himself is overpaying. This implies that each investor thinks that the other

investor is overpaying when they disagree about the valuation.

However, believing that only the other investor is overpaying cannot be rational either.

For example, suppose that X, knowing x, thinks that Y's conjecture about x is 10 when

he knows that x is 8. Then X must believe, not only that Y is overpaying for Y's security,

but also that Y believes that X is underpaying for X's security.10 The latter belief is not

consistent with X and Y having common knowledge about the structure of the game; a

structure which implies that X has to think that Y thinks X cannot be underpaying. Thus,

both investors realize that beliefs that lead to disagreement about securities values cannot

be rational in equilibrium.

The following lemma shows that rational competitive bids that are consistent with

agreement about the values of the two securities lead to full revelation.

Lemma 3 If ®X
¯X
6= ®Y

¯Y
then the only conjectures associated with rational competitive bids

are those for which EY x = x and EXy = y.

Proof: See the Appendix.

Since Lemma 1 proves the existence of rational competitive bids, we obtain the following

proposition.

Proposition 1 All investor information is revealed in equilibrium when ¯rms issue two
10Since Y has superior information about y, X has to believe that it is only Y's conjecture about x that

could possibly lead to Y making a valuation error. Similarly, only Y's view of X's conjecture about y enters
into Y's opinion about X's valuation error.
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distinct securities to investors with distinct information sets.

Proof: Follows from Lemmas 1-3.

Proposition 1 suggests that when the information set of investor X and the information

set of investor Y can be spanned by the cash °ows of some portfolio of the two securities,

the ¯rm gets full value for its securities. In this case, it is because the joint pricing of the

securities reveals both x and y to investors Y and X, respectively. Note that it is not the

securities issuance per se that reveals ¯rm type, as in typical ¯nancial signaling models.

Rather it is the information aggregating property of the joint pricing of the securities that

reveals the disparate information. In this sense, the model developed here is more closely

related to the rational expectations equilibrium work of Grossman (1976) and Admati (1985)

than it is to the models in the signaling literature like Ross (1977) or Leland and Pyle (1977).

It may not be immediately obvious how each investor-type is able to extract relevant

information by observing each other's price quotes. Each investor-type lacks one piece of

information (y for X and x for Y) that will be relevant in pricing his security and knows

neither the conjecture nor the private information signal of the other investor-type which is

to generate the observed price of the other security. We also know from Grossman (1977)

that, generally, equilibrium prices do not perfectly aggregate information. At ¯rst glance,

it thus seems possible that both investor-types could be simultaneously overoptimistic or

underoptimistic in their conjectures. However, this is where the issuance of two distinct

securities, i.e., ®X
¯X
6= ®Y

¯Y
, becomes important. The equilibrium is attained when each

investor-type is convinced that not only is his valuation of his own security the same as the

other investor-type's valuation, but also that his valuation of the other security (which he

may not necessarily purchase himself) also agrees with the other investor-type's valuation.

If, for instance, investor X was overly optimistic about y and investor Y was overly optimistic

about x, their valuations could agree for one security, but could not agree for the other since

the two securities have di®erent relative sensitivities to the x and y components.

Full revelation cannot occur if the same security is issued to X and Y, i.e., ®X
¯X

= ®Y
¯Y

.

Consider the scenario where a security paying x + y is issued to both X and Y. Since X

prices the security at x + EXy and Y prices the security at EY x + y, both EY x and EXy

could overestimate x and y by the same amount and the investors would be agreeing on the

values of both securities. There is no way to distinguish these conjectures from states where
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the conjectures underestimate x and y. Hence, in contrast to the pricing of two distinct

securities, the pricing of two identical securities cannot fully reveal information.11

In general, full revelation of investor information is obtained if there exists a portfolio

of the linear securities with payo®s that span each investor-type's private information set.

This conclusion is robust to the number of pieces of private information and the distribution

of private information across investor-types. By simply issuing as many securities as there

are pieces of information among this set of investors, and selecting any securities coe±cient

matrix that is of full rank, one can achieve full revelation of the private information held

by this subgroup. This result thus provides an explanation for why ¯rms raise ¯nancing

from several di®erent sources even when a single ¯nancial intermediary may be capable of

satisfying the ¯nancing requirements of any given ¯rm.

Finally, the results in this subsection suggest that it is easy to circumvent many security

design constraints, such as not being able to spin o® a part of the ¯rm that just pays x

to X, or just pays y to Y. Indeed, for the model developed in this subsection, no aspect

of security design, beyond sheer numbers of securities, is relevant. However, the e®ectively

complete market that drives this result is not apparent when one examines the real world.

In the remainder of this paper, we will explore barriers to the issuance of the types of

securities that eliminate the asymmetric information problem described above. If complete

contracting is not possible, we have more to say about security design.

B. Incomplete Markets

In our model, an incomplete market is generated by introducing a set of state variables

{ the z's { that a®ect the pricing of securities, but are not publicly observable, so that all

investors cannot easily write contracts on the variables x and y. The z's exist merely to

provide some uncertainty about the source of the variation in equilibrium prices. In this

sense, they serve the same function as noise trading in rational expectations equilibrium

models. Here, however, there is a more appealing interpretation of the z's (which we will

discuss further in the next section). In this model, the z's represent the di®erence in the
11If there is common knowledge about the supports of investors' priors, then in some cases full revelation

may occur. For instance, this may happen when the state space is ¯nite, as we learned from an interesting
example provided to us by Peter DeMarzo. However, in a continuous state space it is straightforward to
prove that revelation cannot occur unless both x and y lie on the same boundary (lower or upper). The
proof is available from the authors upon request.
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payo®s of each of the two state variables to the two investor-types. For example, the ¯rst

state variable pays x to Y-type investors and x+zx to the X-type investors. Private signals

communicate x + zx (but not x) to X-type investors and y + zy (but not y) to Y-type

investors. As before, X-type investors do not know y and Y-type investors do not know x.

The ¯rm knows everything, x; y; zx, and zy, as before.

In algebraic terms, we assume that the security issued to X has (positive) payo®

®X(x+ zx) + ¯Xy

and the security issued to Y has (positive) payo®

®Y x + ¯Y (y + zy):

The conditional expectation functions

¹x(x + zx) ´ E(xjx+ zx);

¹y(y + zy) ´ E(yjy + zy);

are assumed to be common knowledge and monotonically increasing in their arguments.12

In spite of this common knowledge, the payo® structure implies that an asymmetry

between the information of the issuing ¯rm and the information of its investors cannot be

eliminated. A Y investor observing a high price for a security issued to X cannot distinguish

between a high value of x and a high zx. Such an investor must pool ¯rms with high x's and

low zx's together with ¯rms that have low x's and high zx's. The latter ¯rm types bene¯t

by being in the pool and get favorable pricing on the securities they issue to Y. The former

¯rms receive unfair pricing on securities issued to Y given their information set. They

will do anything they can to either break out of the pool or to alter the composition of the

intrinsic security values in the pool so that their securities pricing is not so disadvantageous.

This, as we will show, is accomplished via security design. The low x high zx ¯rms will

remain in the pool by mimicking the high x low zx ¯rms' security design. In this pooling

equilibrium, all ¯rms issue the same securities. Hence, pools distinguish themselves by the

prices they receive for securities from X and Y.
12This condition obtains when x and x+ zx are a±liated (i.e., loosely speaking, positively correlated; see

Milgrom and Weber (1982), Theorem 5), and similarly y and y + zy are a±liated .
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More formally, let V j
i denote the valuation of security i by investor j. Speci¯cally,

V X
X = ®X(x+ zx) + ¯XEXy; (5)

V Y
X = ®XEY (x+ zx) + ¯XEY y; (6)

V YY = ®Y EY x+ ¯Y (y + zy): (7)

V X
Y = ®Y EXx+ ¯Y EX(y + zy); (8)

Then, rational competitive bids PX and PY satisfy

PX = V X
X = ®X(x+ zx) + ¯XEXy; (9)

PY = V YY = ®Y EY x+ ¯Y (y + zy): (10)

As in Section A, an equilibrium is de¯ned by De¯nition 2.

Once again, we ¯rst establish a pair of rational competitive bids. These make it possible

to rule out candidate equilibria where the ¯rm undercharges relative to the aggregated

private information sets of all investors.

Lemma 4 The following pair of conjecture functions

EY x = ¹x
µ
PX ¡ ¯X ¹y(y + zy)

®X

¶
;

EXy = ¹y
µPY ¡ ®Y ¹x(x+ zx)

¯Y

¶
;

lead to rational competitive bids and full revelation of investor information.13

Proof: See the Appendix.

Lemma 5 The conjecture made by X about y, EXy, and the conjecture made by Y about

x, EY x, are rational and competitive if and only if X and Y agree about the valuation of

the securities issued to X and Y. That is,

V Y
X = PY ; (11)

V X
Y = PX : (12)

13There could be degenerate cases in this model { as found, for example, in Section A { where full
revelation cannot occur. In contrast to Section A, where such degenerate cases arose only when the ¯rm
issued two identical securities, the degenerate cases here may arise with distinct securitities with speci¯c
security design parameters. Using analogous arguments to those found in Section A, one can show that it
is not in the interests of the ¯rm to issue a degenerate pair of securities that cannot lead to full revelation.
For Lemma 4 and the remainder of this paper, we simply rule out such degenerate cases by assumption.
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Proof: See the Appendix.

Lemma 6 The only conjectures associated with rational competitive bids are those for which

EY x = EXx and EXy = EY y.

Proof: See the Appendix.

Proposition 2 All investor information is revealed in equilibrium when ¯rms issue two

nondegenerate securities to investors with distinct information sets.

Proof: Follows from Lemmas 4-6.

The equilibrium speci¯ed in Proposition 2 implies that low zx high x issuers are pooled

with high zx low x issuers of the same pair of securities when Y makes the conjecture EY x.

Similarly, high zy low y issuers are pooled with low zy high y issuers when X makes the

conjecture EXy. The implications of this pooling for security design are profound. For

example, in the pool of ¯rms that has the same sum, x + zx, and issues the same security

at the same price to X, the high x ¯rms in the pool are receiving ¯nancing from Y, on a

separate security, on relatively unfavorable terms. These good ¯rms would like to break out

of the pool if possible. However, any attempt to do this via security issuance is doomed to

failure. Suppose the high x ¯rms attempt to issue a security to X with a di®erent value of
®X
¯X

. Low x ¯rms in the pool will then mimic the high x ¯rms' security issuance so that they

can continue to pool with high x ¯rms and thus receive ¯nancing on favorable terms from Y.

This suggests that security design is dictated by the preferences of types with x > ¹x(x+zx)

and y > ¹y(y+zy), who, in e®ect, ¯nance their projects at unfavorable rates. With the next

proposition, we show that the design of the securities issued a®ects the ¯nancing revenue for

these high quality issuers who are pooled (by pricing) with lower quality (higher z) issuers.

This proposition describes the optimal way to divide up the cash °ow components to the

two investor-types.

Proposition 3 Consider two securities, one issued to X and the other to Y. Let

PX ¡ CX = [®X(x+ zx) + ¯XEXy]¡ [®X(x+ zx) + ¯Xy]; (13)

PY ¡CY = [®Y EY x+ ¯Y (y + zy)]¡ [®Y x+ ¯Y (y + zy)]; (14)
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denote the di®erence between revenue and cost to the ¯rm from security issuance to X and

Y, respectively. If the adding up constraints:

®X + ®Y = 1; (15)

¯X + ¯Y = 1; (16)

hold then the aggregate pro¯t, P ¡C, is increasing in ®X and ¯Y .

Proof: Substituting from (5) and (6), into (3) and (4), adding, and simplifying, we get:

P¡C = [PX+PY ]¡[CX+CY ] = ¡[(x¡EY x)+(y¡EXy)]+®X(x¡EY x)+¯Y (y¡EXy): (17)

Since x > EY x and y > EXy for pool leaders (as described in the paragraph preceding the

proposition), the result immediately follows.

Investor X has precise information about (x + zx) but knows y only imperfectly. A

high value of ®X and a low value of ¯X thus more closely aligns the ¯rst security with

his private information. Similarly, Y has precise information about (y + zy) but knows x

only imperfectly. A low value of ®Y and high value of ¯Y aligns this security more closely

with his private information. Such alignment reduces the impact of the adverse selection:

y ¡ EXy for X and x¡EY x for Y, thus increasing pro¯t.

The proposition is based on an adding up constraint for the nonnegative coe±cients,

which can be loosely interpreted as suggesting that the ¯rm's assets must be divided up

between the two cash °ow claimants, X and Y. If ®X and ¯Y are individually unconstrained,

Proposition 3 suggests that the optimal issuance strategy is \the spin-o® solution": issue

a security to X that pays x + zx only, and a security to Y that pays y + zy only. This

design eliminates all adverse selection. In the real world, however, security design may

be constrained. For example, it may be impossible, because of technological constraints,

regulation, accounting standards, transaction costs, or agency issues to completely unbundle

y from x. If there exist independent constraints on the maximum values for ®X and ¯Y ,

Proposition 3 suggests that the issuer should design securities to get as close as possible to

the spin-o® solution as the constraints allow.

There are other interesting constraints that involve dependence between the security

design coe±cients. Consider cash °ow components that cannot be unbundled. In this case,
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all ¯nancial claims must be written on the aggregate cash °ow rather than the cash °ow

components. In terms of our model, this amounts to imposing the constraints that ®X = ¯X

and ®Y = ¯Y . Substituting these constraints into Equation 17, we get

P ¡C = ¡(x ¡EY x) + ®X [(x¡EY x)¡ (y ¡ EXy)]:

If

x¡ EY x > y ¡EXy;

(i.e., pool leading X-type investors experience less adverse selection), the pro¯t P ¡ C is

increasing in ®X and vice versa.14

Here, the determinant of optimal security design, the relative magnitudes of x¡EY x and

y¡EXy, are constant, as is the relevant security design parameter ®X . In the next section,

we consider one of the cash °ow components, y, to be denominated in a foreign currency.

This makes the domestic currency value of the foreign currency component of the cash °ow

contingent on the exchange rate. With adverse selection costs contingent on the exchange

rate, it becomes optimal to have security design parameters that are also contingent on the

exchange rate, as we show in the next section.

II. Optimal Security Design and Currency Swaps

In this section, we present a modest elaboration of the abstract model at the end of the

last section and provide concrete interpretations of the variables used there.

A. The Model

Consider a multinational operating in two countries, which is attempting to secure ¯-

nancing of I to fund projects with domestic and foreign cash °ows. The values of these

projects depend on whether the ¯rm is in bankruptcy or not, and, if in bankruptcy, on the

structure of the ¯rm's ¯nancial claims. We also assume asymmetric information about the

value of ¯rm's assets in bankruptcy. We will contrast the e±ciency of di®erent combinations

of ¯nancial instruments for achieving this ¯nancing. Following Townsend (1979) and Dia-

mond (1984), the non-veri¯ability of some of the payo®s make it impossible to issue equity

to obtain this ¯nancing. However, debt need not be the optimal issuance here because there
14We still need to issue two securities to obtain full revelation.
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are some publicly observable and veri¯able state variables, such as the exchange rate, s, on

which contractual payo®s can be made contingent.15

After investing the ¯nancing, the out-of-bankruptcy cash °ows from the assets at date

1 are A(s; µ).16 In contrast to s, contracts cannot be written that are contingent on µ

(perhaps because realized µ at date 1 is unobservable). With µ noncontractible, bankruptcy

cannot be eliminated with a security design that hedges away all risk. In bankruptcy, if the

¯rm is run e±ciently, its domestic assets have cash °ows of x + zx and the foreign assets

have cash °ows (denominated in foreign currency) of y + zy.

The joint distribution of [s;A(s; µ)] is assumed to be common knowledge. The informa-

tion structure for x, zx, y, and zy is identical to that described in the model of the previous

section, except that the common knowledge expectations, ¹x(x+ zx) and ¹y(y + zy), are ex-

pectations conditional on bankruptcy.17 Consistent with a long literature on bankruptcy

costs, we assume that for all s, A(s; µ) ¸ (x+ zx) + s(y + zy).

x and sy, which are assumed to be nonnegative, can be thought of as the values of the

tangible component of the domestic and foreign assets of the ¯rm in bankruptcy. By tangible

component of the assets, we mean that component of asset value that is una®ected by who

runs the ¯rm in bankruptcy. The intangible component of asset values varies depending on

whether the owner/manager of the assets in bankruptcy is e±cient at employing them. For

example, it is not unreasonable to presume that a key employee will work for the ¯rm if X is

the owner, but quit if Y is the owner. In the ¯nance literature, Titman (1984) discusses how

di±cult it is for ¯rms in ¯nancial distress to e±ciently employ their assets. He notes that

di®erent ¯nancial claimants have di®erent incentives about the e±cient liquidation policy

for assets.18

Along these lines, we assume that, in bankruptcy, the cash °ows of the domestic and

foreign assets depend on who controls the assets. If either equity holders or a home country

bank controls the assets, the domestic asset cash °ows are x + zx and the foreign asset
15Debt contracts are optimal when state veri¯cation is costly and done nonstochastically. Border and

Sobel (1987), Townsend (1988), and Mookherjee and Png (1989) show that with costly state veri¯cation
stochastic veri¯cation is optimal. Boyd and Smith (1994) argue that the welfare loss, calibrated for realistic
parameter values, from exogenously restricting state veri¯cation to be nonstochastic, is small. We therefore
restrict our attention contracts with nonstochastic veri¯cation of states that are not publicly observable.

16Unless speci¯ed otherwise, all cash °ows are denominated in the domestic currency.
17For expositional simplicity, we do not add uncertainty to the cash °ows in bankruptcy. However, it is

possible to view x+ zx and y + zy as mean cash °ows without altering our results.
18Market imperfections may prohibit perfectly e±cient contracting solutions to this problem.
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cash °ows (denominated in foreign currency) are y + zy. If an inferior investor, such as

a non-home bank ends up with the assets in bankruptcy, only the tangible component of

value is captured. Hence, for a foreign bank controlling domestic assets, the domestic cash

°ow is x. For a domestic bank controlling foreign assets, the foreign cash °ow (in foreign

currency) is y.

Fractional ownership of the assets produces proportional cash °ows. Hence, if the do-

mestic bank owns the fraction fX of the domestic and foreign assets, its cash °ow would be

fX [x+zx + sy], while the foreign bank's cash °ow would be [1¡ fX ][x+ s(y+zy)]. Clearly,

there are rents attached to assigning control of the cash °ows to existing management team

rather than have inferior investors control the assets of the ¯rm. The dead weight loss

associated with the transfer of operating control of the ¯rm to inferior investors suggests a

rationale for why absolute priority is often violated in practice. Reorganizations and debt

restructurings occur in bankruptcy, which allow equityholders to maintain a measure of

control of the ¯rm. In the United States, for example, Chapter 11 bankruptcy involves a

reorganization of the ¯rm as an operating entity.

In this spirit, when bankruptcy occurs in our model, we assume that s, x, and y are

revealed, and negotiations go on between these managers and the senior claimants over the

payment owed to the claimants. In this case, X owns the fraction fX(s) of the ¯rm, which

produces a cash °ow of fX(s)[(x + zx) + sy] if run by X and fX(s)[(x + zx) + s(y + zy)]

if run by the existing management. For expositional purposes, we assume that all of the

bargaining power belongs to the equity-maximizing managers. Hence, equityholders can

reorganize the ¯rm by paying fX(s)[(x + zx) + sy] to X and keeping the rent fX(s)szy

for themselves. Similarly, equityholders can pay [1 ¡ fX(s)][x + s(y + zy)] to Y and keep

[1¡ fX(s)]zx for themselves.19

The model allows ¯rms to write contracts that make promised payments to X-type

and Y-type investors contingent on the exchange rate. The design of these contracts is

common knowledge and they are priced simultaneously using the \joint no-regrets crite-

rion" described in the previous section. X-type investors (domestic banks) receive the

state-contingent promise of FX(s) and Y-type investors (foreign banks) receive the state-
19Rather than negotiating this arrangement, this solution may also be mandated by a bankruptcy court

judge.
If the rents are shared, simply rede¯ne, y and x to be the sum of the tangible component plus the rent

captured in negotiation by the domestic and foreign banks, respectively.
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contingent promise of FY (s). We allow FX(s) and FY (s) to be positive or negative at

di®erent values of s.

Bankruptcy occurs whenever the promised claims exceed the cash °ow the ¯rm can

provide when run by management, i.e.,

FX(s) + FY (s) > A(s; µ):

Note that the probability of bankruptcy is common knowledge.

A key assumption of the model is that assets cannot easily be spun o®. For exam-

ple, moral hazard may make it impossible to separate the foreign and domestic assets in

bankruptcy. There may be too much fungibility of domestic and foreign assets to make

¯nancing secured by domestic or foreign assets alone feasible. In this case, while ¯nancial

claims have rights, in bankruptcy, to some fraction of the ¯rm's aggregate assets, they can-

not own di®erent fractions of the domestic and foreign assets. In algebraic terms, if we think

of the payo®s to X and Y in bankruptcy as s-contingent linear functions of the domestic

and foreign cash °ows, i.e., having payo®s to X of

®X(s)(x+ zx) + ¯X(s)sy;

and payo®s to Y of

[1¡ ®X(s)]x+ [1¡ ¯X(s)]s(y + zy);

then ®X(s) = ¯X(s). A key point that we will return to in the next subsection is that even

if ®X(s) = ¯X(s), the e®ective coe±cient on y for X, which is the expectation E[®X(s)s]

di®ers from E[®X(s)] which is the e®ective coe±cient on x for X. Because of the \adding-

up constraint," this implies that the relative coe±cients on x and y di®er for X and Y.

Hence, based on our analysis of the previous section's models, information will be revealed

by issuing two securities. We will shortly prove this formally.

Clearly, in bankruptcy, the ¯rm cannot meet its aggregate contractually promised pay-

ment,

F (s) = FX(s) + FY (s):

Hence, there must be some rule that divides up what the ¯rm can pay in bankruptcy

to its cash °ow claimants. In principle, the rule for determining the realized payo®s in

bankrupt states need not be tied to the promised payo®s, FX(s) and FY (s). As a practical
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matter, however, what a cash °ow claimant gets in bankruptcy is related to what he is

promised. This perhaps has to do with the nebulous nature of what constitutes bankruptcy

and the moral hazard attached to legally pushing a ¯rm into bankruptcy if the relative

state-contingent payo®s can be distorted by this legal event. In this vein, we assume that

the asset fraction received by X in bankruptcy is

fX(s) =

8
><

>:

1 if FX(s) ¸ 0; FY (s) < 0
FX(s)

FX(s)+FY (s) if FX(s) ¸ 0; FY (s) ¸ 0
0 if FX(s) < 0; FY (s) ¸ 0

and 1 ¡ fX(s) is the fraction received by Y in default. Given this constraint, a security

design is de¯ned by FX(s) and FY (s).

The aggregate proceeds, P , of the ¯rm's securities issuance is the probability-weighted

average of conditional expectations, which are denoted by subscripts next to the expectation

operator. Speci¯cally,

P = Pr[A(s; µ) ¸ F (s)]EA(s;µ)¸F (s)F (s)

+Pr[A(s; µ) < F (s)]EA(s;µ)<F (s)[fX(s)f(x+ zx) + sy¤g+ [1¡ fX(s)]fx¤ + s(y + zy)g]:

Note that if FX(s) < 0 or FY (s) < 0 in bankruptcy, there will be a transfer payment

between X and Y. However, such a transfer payment does not a®ect P . Let T denote the

set of all bankrupt states where such transfers occur.

As in the previous model, the pricing of the securities issued to X and Y reveal the

private information signals x + zx and y + zy, as proved in the following proposition. To

simplify exposition, we denote x¤ ´ ¹x(x+ zx) and y¤ ´ ¹y(y + zy).

Proposition 4 All investor information is revealed in equilibrium when ¯rms issue two

nondegenerate securities to investors with distinct information sets. The price of the security

issued to X is

PX = Pr[A(s; µ) ¸ F (s)]EA(s;µ)¸F (s)[FX(s)]

+Pr[A(s; µ) < F (s)]EA(s;µ)<F (s)[fX(s)f(x+ zx) + sy¤g]

+Pr[T ]ET [min(0; FX(s)) + max(0;¡FY (s))]

and the price of the security issued to Y is
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PY = Pr[A(s; µ) ¸ F (s)]EA(s;µ)¸F (s)[FY (s)]

+Pr[A(s; µ) < F (s)]EA(s;µ)<F (s)[1¡ fX(s)]fx¤ + s(y + zy)g

+Pr[T ]ET [max(0;¡FX(s)) + min(0; FY (s))]]:

Proof: See the Appendix.

B. The Optimal Security Design for a Given Bankruptcy Boundary

Note that, in bankruptcy, the ¯rm is giving up its assets to X and Y and then, in

e®ect, buying them back at the reservation prices of X and Y, leaving a surplus for equity

holders. Thus, the equityholders of the ¯rm have cash not only in non-bankrupt states, but

in bankrupt states as well because absolute priority is generally violated in reorganizational-

type bankruptcies. In particular, equity value, V , is cash raised, less cash invested, plus

cash °ows to equity holders after payments to senior cash °ow claimants, i.e.,

V = ¡I + Pr[A(s; µ) ¸ F (s)]EA(s;µ)¸F (s)[F (s)]

+Pr[A(s; µ) < F (s)]EA(s;µ)<F (s)[fX(s)f(x+ zx) + sy¤g+ [1¡ fX(s)]fx¤ + s(y + zy)g]

+Pr[A(s; µ) ¸ F (s)]EA(s;µ)¸F (s)[A(s; µ)¡ F (s)]

+Pr[A(s; µ) · F (s)]EA(s;µ)·F (s)[f(x+ zx) + s(y + zy)g]

¡Pr[A(s; µ) · F (s)]EA(s;µ)·F (s)[fX(s)f(x+ zx) + syg+ [1¡ fX(s)]fx+ s(y + zy)g]

= ¡I + Pr[A(s; µ) ¸ F (s)]EA(s;µ)¸F (s)F (s)

+Pr[A(s; µ) ¸ F (s)]EA(s;µ)¸F (s)[A(s; µ)¡ F (s)]

+Pr[A(s; µ) · F (s)]EA(s;µ)·F (s)[(x+ zx) + s(y + zy)]

+Pr[A(s; µ) < F (s)]EA(s;µ)<F (s)[fX(s)s(y¤ ¡ y) + [1¡ fX(s)](x¤ ¡ x)] (18)

For a pool leader, equity value is increased whenever a security design, [FX(s); FY (s)]

can reduce the claims in non-bankrupt states, EA(s;µ)>F (s)[F (s)] or reduce the number of

bankrupt states, ceteris paribus, or both and still raise at least I . Holding the aggregate

promised claim, F (s) = FX(s) + FY (s), ¯xed, it follows that the maximum equity value is

attained with the security design described below:

Proposition 5 Holding F (s) ¯xed, the maximum equity value of a ¯rm is achieved for the

(bankrupt state) security design when fX(s) = 1 when x¡ x¤ > s(y ¡ y¤) and 0 otherwise.
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Proof: The set of bankrupt states depends only on FX(s) + FY (s), which is ¯xed. Hence,

every term but the last expectation in Equation 18 is ¯xed. This expectation is

EA(s;µ)<F (s)[fX(s)s(y¤ ¡ y) + [1¡ fX(s)](x¤ ¡ x)]

= EA(s;µ)<F (s)[x¤ ¡ x+ fX(s)f(r ¡ s)(y ¡ y¤)g];

where r = x¡x¤
y¡y¤ . This expression is maximized on a state by state basis by the security

design with

fX(s) =

(
1 when r > s, i.e., x¡ x¤ > s(y ¡ y¤)
0 otherwise:

Proposition 5 shows that the proceeds from bankrupt states are maximized by mini-

mizing adverse selection on a state by state basis, where states are de¯ned by the realized

exchange rate. Alternatively, this can be viewed as writing a state-contingent contract that

allocates each state contingent cash °ow to the claimant who values it the most.20 Obvi-

ously, two pari passu debt contracts, e.g., foreign and domestic debt, cannot be optimal

because bankruptcy proceeds are shared. Also, senior and junior debt are suboptimal be-

cause they cannot reverse priority contingent on s. However, two currency swaps, one issued

to the domestic bank and one to the foreign bank, can implement the design suggested in

Proposition 4, as we show later.

The fX(s) pattern suggested in Proposition 5 is also one that maximizes EA(s;µ)<F (s)[fX(s)]
EA(s;µ)<F(s)[sfX(s)]

and minimizes EA(s;µ)<F (s)[1¡fX(s)]
EA(s;µ)<F(s) [s(1¡fX(s))]

given the constraint that the domestic and foreign cash

°ow cannot be unbundled. Hence, consistent with Proposition 2, Proposition 3 suggests that

one should design securities as close to the spin-o® solution as possible, given constraints.

C. Characterizing the Optimal Security Design

Proposition 4 implies that there is only one cash °ow claimant to the ¯rms asset's in

bankruptcy with the optimal security design. To see this, note that the sum of the aggregate

promised claims in a security design, F (s) = FX(s) +FY (s) can always be mimicked by an

alternative security design where

FX(s) =

(
positive number when r > s, i.e., x¡ x¤ > s(y ¡ y¤)
nonpositive number otherwise

20Thus, our result is consistent with the results of Allen and Gale (1989).
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and

FY (s) =

(
nonpositive number when r > s, i.e., x¡ x¤ > s(y ¡ y¤)
positive number otherwise:

For this alternative security design the bankruptcy boundary is kept the same, and the

aggregate claims out of bankruptcy are kept the same, but, by Proposition 3, it dominates

the ¯rst security design by minimizing adverse selection within bankruptcy.

D. Security Design and Currency Swaps

A plain vanilla currency swap involves the exchange of the cash °ows of a domestic bond

for the cash °ows of a foreign bond. The bonds may be ¯xed or °oating. Both interest

and principal are typically exchanged. There may even be an exchange of cash for foreign

currency at the initiation of the swap. Traditional analyses have ignored the default risk

inherent in these contracts.21

It is noteworthy that many currency swap participants have credit risk. Indeed, some

swap investors (e.g., Disney in the mid-80's) explain their use of swaps as being driven by

credit risk.22 Solnik (1994) notes that ¯rms with default risk are charged a markup over the

market swap prices that are determined (and quoted) using traditional methods that ignore

default risk considerations. Moreover, G¶eczy, Minton, and Schrand (1995) have shown that

the use of currency swaps is positively correlated with the debt to equity ratios of ¯rms.

Because default risk is critical to our motivation for swaps, the models in this paper are

designed to explain the currency swap market between corporations and banks, as opposed

to the marked-to-market swap market that almost exclusively involves money center banks

and investment banks. The latter swap market operates more like a futures market and

exhibits negligible default risk.

In this subsection, we analyze simpli¯ed representations of currency swaps and show

that they can be used to implement the optimal security design. A currency swap to bank

X in the home country, (which uses dollars as currency units), contractually obligates the

¯rm to pay nX dollars to bank X and in return the bank is obligated to pay rXnX in foreign

currency to the ¯rm. Clearly, if rX = 0, the instrument is domestic debt with face value nX

dollars. Similarly, a currency swap issued to bank Y in the foreign country contractually
21However, see Cooper and Mello (1991) and Litzenberger (1992).
22See Allen (1987).
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obligates the ¯rm to pay nY units of foreign currency to bank Y and in return the bank is

obligated to pay rY nY units of dollars to the ¯rm. Here, rY = 0 represents foreign debt.

In general, for positive values of rX and rY these instruments represent currency swap

contracts. We assume that in bankruptcy, each swap has a pari passu claim in proportion

to its contractually promised payment. Using the notation of the previous subsection, this

means

FX(s) ´ nX(1¡ srX);

FY (s) ´ nY (s ¡ rY ):

Proposition 6 Two currency swaps, one issued to X and the other to Y, with

1
rX

= rY =
x¡ x¤

y ¡ y¤

implement the maximal equity value bankruptcy design described in Proposition 3.

Proof: If s < rY = x¡x¤
y¡y¤ , FX(s) > 0 and FY (s) < 0 and in bankruptcy fX(s) = 1 and

x¡ x¤ > y ¡ y¤. The complementary case is symmetric.

In our model, the exchange rate is intimately tied to both probability of bankruptcy

and adverse selection in bankruptcy. Propositions 5 and 6 describe securities that minimize

adverse selection in bankruptcy. Optimally designed securities, however, must determine the

bankruptcy boundary as well as the cash °ow allocation rules in bankruptcy simultaneously.

This complicates the description of optimal securities. However, it is possible to show that

currency swaps dominate debt.

Proposition 7 Any pair of debt contracts as well as any pairing of a currency swap with

debt is dominated by a pair of currency swaps.

Proof: We show this by proving that a pair of currency swaps alone (not necessarily the

pair described in Proposition 5) can achieve the same bankruptcy boundary as the design

involving debt and yet realize lower adverse selection for each realization of s.

We ¯rst note that a pair of swaps that promise nX(1 ¡ srX) to X and nY (s ¡ rY ) to

Y with the swap rates rX or rY or both set to zero (i.e., debt) has the same s-contingent

bankruptcy boundary for any realization of µ as a pair of swaps with swap rates RX and
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RY that are closer to 1=r and r, respectively. The respective notional amounts for the

alternative design that achieves this are

NX =
nX(1¡ rXRY ) + nY (RY ¡ rY )

1¡RXRY

and

NY =
nY (1¡RXrY ) + nX(RX ¡ rX)

1¡RXRY
:

There is now complete freedom to select RX and RY to reduce adverse selection. It follows

that the equity value from bankrupt states is higher and the equity value from non-bankrupt

states is the same. Hence, equity value is larger with the alternative design than with the

proposed debt-based design.23

III. Generalizing the Adverse Selection Model

The need for contractual derivatives in the optimal security design strikes us as a fairly

generic conclusion that will hold in more complex models. The fact that these are imple-

mented in a risk-neutral world makes this a conservative solution and one that would only

be made stronger by the formal introduction of risk aversion into the model.

There are a few general conclusions that one can draw from the model in the last

section. One is that securities should be designed so as to minimize the penalty from

adverse selection. In the model above, with one state variable, the cost of adverse selection

is either a constant or a linear function of s depending on whether X or Y owns the ¯rm (see

Figure 1). In general, securities generate cost of adverse selection that is a weighted average

of these lines. It is obvious, as seen in Figure 1, that two debt contracts cannot minimize
23For example, if rX = rY = 0, (two debt contracts) then, letting all expectations be conditional on

A(s; µ) < F (s), if

E
h r ¡ s
nX + nY s

i
> 0;

set RX = 0 and RY > 0 but small. In this case, the portion of equity value that is a®ected by security
design (see Proposition 3) is

E[fX(s)(r ¡ s)] = Pr(s · RY )Es·RY [r ¡ s] + Pr(s > RY )Es>RY
h r ¡ s
nX + nY s

i
[nX + nYRY ];

which is increasing in RY for small RY . For the complementary case, set RY = 0 and RX > 0 but small. In
this case,

E[fX(s)(r ¡ s)] = Pr(s · 1=RX)Es·1=RX

h r ¡ s
nX + nY s

i
[nX(1¡ sRX)];

which is increasing in RX for small RX .
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the cost of adverse selection, but two currency swaps can.24 Even in a world with multiple

state variables, with a di®erent (nonlinear) model of asymmetric information, there would

always be an investor for each s such that the cost of adverse selection will be minimized if

he owned the ¯rm. In an optimal security design, that investor should own the ¯rm for that

realization of s. In contrast to our model, where the cost of adverse selection is linear in s

if either investor owned the ¯rm, in more general models, the realizations of s for which a

particular investor should own the ¯rm in bankruptcy may be non-contiguous.

It is tempting to think that having a single cash °ow claimant for each state of nature

in bankruptcy is one of the more robust empirical conclusions to come out of the model
24A call and put option on foreign currency could also implement this.
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developed in the last section. However, this conclusion is driven by the production and

bankruptcy technology of our model. Clearly, if there were advantages to teaming up with

other cash °ow claimants in running the ¯rm, this conclusion need no longer hold.

For example, if the ¯rm's assets consist of a Japanese and an American factory, it may

be useful to have Japanese and American banks jointly controlling both factories with the

Japanese having more control over the operations of the Japanese factory and the Americans

having control over more control over the American factory. This generalization divorces

management of bankrupt assets from fractional ownership of promised claims and may

introduce a whole host of agency problems that complicate the analysis. However, these

agency problems may be small in relation to the e±ciency drain arising from attempts to

trade assets or liquidate them. Within this agency framework, there may be a precise mix

of ownership that minimizes the ine±ciencies of the agency relationship. Such a mix would

argue for a portfolio of cash °ow claimants rather than a single one.

We have also suggested that moral hazard may prevent the spinning o® of assets. How-

ever, in weighing the loss from moral hazard, such as the costs of monitoring, against the

loss from adverse selection, it may be that partial spino®s of the assets mitigate the adverse

selection cost more than they increase the moral hazard problem. This could be bene¯cial

to the ¯rm. For example, bankruptcy could imply that the Japanese bank's fractional claim

of the Japanese factory could exceed his fractional claim of the ¯rm's promised aggregate

cash °ow, and his fractional claim to the American factory in bankruptcy could be less than

his fractional claim to the ¯rm's promised aggregate cash °ow. i.e., 1¡fX(s)6= FY (s)
FX(s)+FY (s) .

However, the bene¯t of this must be weighed against the possibility that management may

cut a deal with one of the cash °ow claimants and shift assets between factories (through

such mechanisms as favorable transfer pricing) for the bene¯t of management and one of

the cash °ow claimants. If this latter problem is su±ciently small, then even if asset man-

agement is tied to asset ownership in bankruptcy, a nonlinear asset sharing rule may be

optimal. Such a nonlinear rule may generate an adverse selection function that is minimized

with a portfolio of claimants in a particular state.

IV. Conclusion

This paper has argued that di®erent groups of investors may be asymmetrically informed
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about di®erent components of the cash °ows generated by ¯rms. For instance, banks in a

given country may be better informed about a multinational ¯rm's costs and revenues in

that country than about the ¯rm's costs and revenues from its operations in other countries.

In this case, ¯rms should allocate cash °ows from di®erent countries to di®erent securities. It

should then market each of these securities to the group of investors that possesses the most

precise and, because of the possibility of adverse selection most favorable information about

that particular country's cash °ow. This intuition is consistent with the results obtained

in Allen and Gale (1988). However, such partitioning of cash °ows { which is essentially

equivalent to a ¯rm spinning o® its di®erent operations { may be infeasible because of

contractual, regulatory, or operational constraints. If each feasible security contains several

di®erent cash °ow components, any group of investors buying any given security will have

superior information only about some components of the relevant cash °ows.

This is not problematic for superior ¯rms in an e®ectively complete market. In such a

market, the joint pricing of securities can reveal all information relevant for pricing securities

to all investors. However, if the cash °ows of the assets di®er, depending on the agent who

owns and operates the asset, then the observable pricing of a security may not perfectly

reveal information possessed by the ¯rm.

In order to minimize an adverse selection distortion caused by such imperfect revelation,

¯rms should design securities that are aligned with the private information of investors. The

non-stochastic model of Section I can be linked to the stochastic currency swap model of

Section II by taking expectations of the latter's stochastic coe±cients. In this case, we

can show that currency swaps are more aligned than any other debt-oriented security. The

use of securities such as a currency swap may be explained by their superior alignment. A

multinational ¯rm will typically have cash °ows denominated in di®erent currencies. The

domestic currency value of cash °ows denominated in foreign currencies is highly sensitive to

the relevant exchange rate whereas the domestic currency value of cash °ows denominated

in the domestic currency is relatively insensitive to exchange rate movements. Since one

could write ¯nancial contracts contingent on the ex post observable value of exchange rates,

an appropriate contingent contract may allow one to design securities that have di®erent

sensitivities to cash °ows denominated in di®erent currencies. Domestic debt and foreign

debt have relatively similar sensitivities to domestic and the foreign cash °ows. On the other

hand, it is possible to show that an appropriately designed currency swap has very di®erent

27



sensitivities to the two cash °ow components. This may explain, not only why a redundant

security, such as a currency swap, exists, but also why ¯rms simultaneously engage in

¯nancial contracts with di®erent intermediaries when a single ¯nancial intermediary could

carry out all of the ¯rm's contracts.

The model used to show this did not make use of risk aversion and hedging needs to

motivate the purchase of derivative securities. This does not fundamentally alter our results

and indeed strengthens many of them since we are able to show that ¯rms may issue secu-

rities such as a currency swap based purely on issue-cost minimization considerations. We

believe that this also sheds light on the behavior of many corporations that issue derivative

securities of various types when a motive based purely on risk-management considerations

seems implausible.
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Appendix

Proof of Lemma 1

Substituting the given conjecture functions in the pricing relations (1) and (2), we get

PX = ®Xx+ ¯x
PY ¡ ®Y x

¯Y
; (19)

PY = ®Y
PX ¡ ¯Xy

®X
+ ¯Y y: (20)

Substituting (20) into (19) and rearranging and simplifying, we get,

(1¡ Á)PX = (1¡ Á)®Xx+ (1¡ Á)¯Xy;

where

Á ´
®Y =¯Y
®X=¯X

:

Á = 1 represents the degenerate case for which the two securities are identical. For the

nondegenerate cases assumed here, Á6= 1, implying

PX = ®Xx+ ¯Xy;

which upon substitution into (20) yields

PY = ®Y x+ ¯Y y:

The results then follow immediately.

Proof of Lemma 2

Let VX and VY denote the full information values of the two securities. From Lemma 1,

we know that there exists an equilibrium in which the bids for the two securities equal their

full information value. This implies that for any pair of bids PX and PY to be a candidate

for equilibrium, it must be the case that

PX + PY ¸ VX + VY ;

which implies that

(PX ¡ VX) + (PY ¡ VY ) ¸ 0: (21)

Taking expectations of (21) with respect to X's and Y's information sets respectively we

get,

¢X
X + ¢X

Y ¸ 0; (22)
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¢Y
X + ¢Y

Y ¸ 0; (23)

where ¢j
i represents the amount by which the price of security i exceeds j's valuation of

the security. Clearly, for the bids to be rational

¢X
X · 0;

¢Y
Y · 0;

which from (22) and (23) implies that

¢X
Y ¸ 0; (24)

¢Y
X ¸ 0: (25)

Taking expectations of (24) with respect to Y's information set, and of (25) with respect to

X's information set, we get

EY [¢X
Y ] ¸ 0; (26)

EX [¢Y
X ] ¸ 0: (27)

Now,

¢X
Y ´ PY ¡ V

X
Y = ®Y [EY x¡ x] + ¯Y [y ¡EXy]; (28)

¢Y
X ´ PX ¡ V

Y
X = ®X [x¡EY x] + ¯X [EXy ¡ y]: (29)

Taking expectations of (28) and (29) with respect to the information sets of X and Y , we

get:

EX [¢X
Y ] = ¢X

Y = ®Y [EXEY x¡ x]; (30)

EX [¢Y
X ] = ®X [x¡EXEY x]; (31)

EY [¢X
Y ] = ¯Y [y ¡EY EXy]; (32)

EY [¢Y
X ] = ¢Y

X = ¯X [EY EXy ¡ y]: (33)

From (31) and (30), we get

EX [¢Y
X ] = ¡

®X
®Y

¢X
Y : (34)

Since EX [¢Y
X ] ¸ 0 from (27), combining it with (34), we get

¢X
Y · 0: (35)

From (35) and (24), we get ¢X
Y = 0:
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Similarly, from (32) and (33), we get

EY [¢X
Y ] = ¡

¯Y
¯X

¢Y
X : (36)

Since EY [¢X
Y ] ¸ 0 from (26), combining it with (36), we get

¢Y
X · 0: (37)

From (37) and (25), we get ¢Y
X = 0: 25

Proof of Lemma 3

From Lemma 2, ¢Y
X = ¢X

Y = 0 which implies from (28) and (29) that

®X
¯X

[x¡EY x] = [y ¡EXy]: (40)

[x¡EY x] =
¯Y
®Y

[y ¡EXy]: (41)

Substituting for [x¡EY x] from (40) into (41), rearranging and simplifying, we get:

[y ¡ EXy] = Á[y ¡ EXy]:

Since, for the nondegenerate cases assumed, Á6= 1,

y ¡ EXy = 0:

This implies that EXy = y which from (41), in turn implies that EY x = x.
25If we assume that X and Y have common knowledge that x and y are bounded, then it is possible to

prove this lemma without the assumption that ¯rms only accept the best rational competitive bids. We
hinted at this earlier. Taking expectation EX of (36), substituting from (34) and rearranging, we get

¢X
Y = ÁEXEY [¢X

Y ]; (38)

where
Á ´

®Y =¯Y
®X=¯X

:

Repeated substitution for ¢X
Y from (38) into the R.H.S. of (38) yields:

¢X
Y = Án(EXEY )n[¢X

Y ] for n = 1; 2; 3::::: (39)

where (EXEY )n represents the EXEY operator applied n times.
Since it is common knowledge that x and y are bounded it implies that it must be common knowledge that

¢X
Y is also bounded. If Á < 1, then from (39) it implies that ¢X

Y = 0. If Á > 1 then Án becomes unbounded
as n becomes large. The only way the R.H.S. of (39) will be bounded in that case is if (EXEY )n[¢X

Y ] = 0
which from (39) implies that ¢X

Y = 0. The case when Á = 1 is ruled out by assumption since that implies
that both securities are identical.

Analogous arguments can be used to show that ¢Y
X = 0.
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Proof of Lemma 4

Substituting the given conjecture functions in the pricing relations (9) and (10), we get

PX = ®X(x+ zx) + ¯X ¹y
µPY ¡ ®Y ¹x(x+ zx)

¯Y

¶
; (42)

PY = ®Y ¹x
µ
PX ¡ ¹y(y + zy)

®X

¶
+ ¯Y (y + zy): (43)

Substituting (43) into (42), we get,

PX = ®X(x+ zx) + ¯X ¹y
µ
y + zy +

®Y
¯Y

½
¹x
µ
PX ¡ ¯X ¹y(y + zy)

®X

¶
¡ ¹x(x+ zx)

¾¶
:

Subtracting ®X(x+ zx) + ¯X ¹y(y + zy) from both sides, we get

PX ¡ f®X(x+ zx) + ¯X ¹y(y + zy)g

= ¯X
·
¹y
µ
y + zy +

®Y
¯Y

½
¹x
µPX ¡ ¯X ¹y(y + zy)

®X

¶
¡ ¹x(x+ zx)

¾¶
¡ ¹y(y + zy)

¸

= ¯Xm0Y
®Y
¯Y

½
¹x
µ
PX ¡ ¯X ¹y(y + zy)

®X

¶
¡ ¹x(x+ zx)

¾

=
®Y =¯Y
®X=¯X

mXmY [PX ¡ f®X(x+ zx) + ¯X ¹y(y + zy)g]

where mX and mY are given by the mean value theorem.

Rearranging, we get

(1¡ Á0)[PX ¡ f®X(x+ zx) + ¯X ¹y(y + zy)g] = 0;

where

Á0 ´
®Y =¯Y
®X=¯X

mXmY :

For nondegenerate cases (see footnote 13), Á06= 1. Therefore,

PX = ®X(x+ zx) + ¯X ¹y(y + zy);

which, upon substitution into (43) implies that

PY = ®Y ¹x(x+ zx) + ¯Y (y + zy):
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Proof of Lemma 5

Let,

¢X
Y ´ PY ¡ V

X
Y = ®Y [EY x¡ EXx] + ¯Y [(y + zy)¡EX(y + zy)]; (44)

¢Y
X ´ PX ¡ V

Y
X = ®X [(x+ zx)¡ EY (x+ zx)] + ¯X [EXy ¡EY y]: (45)

Taking expectations of (44) and (45) with respect to the information sets of X and Y yields:

EX [¢X
Y ] = ¢X

Y = ®Y [EXEY x¡EXx]; (46)

EX [¢Y
X ] = ®X [(x+ zx)¡EXEY (x+ zx)]; (47)

EY [¢X
Y ] = ¯Y [(y + zy)¡EY EX(y + zy)]; (48)

EY [¢Y
X ] = ¢Y

X = ¯X [EY EXy ¡EY y]: (49)

Since ¹x and ¹y are increasing in their arguments, we obtain

EXx¡EY x = ¹x(x+ zx)¡ EY ¹x(x+ zx) = m0X [(x+ zx)¡EY (x + zx)]; (50)

EY y ¡EXy = ¹y(y + zy)¡EX ¹y(y + zy) = m0Y [(y + zy)¡EX(y + zy)]; (51)

where m0X > 0 and m0Y > 0 by the mean value theorem.

From (47), (46) and (50), we get

EX [¢Y
X ] = ¡

®X
®Y

1
m0X

¢X
Y :

From (48), (49) and (51), we get

EY [¢X
Y ] = ¡

¯Y
¯X

1
m0Y

¢Y
X :

The arguments used to prove Lemma 2 immediately apply.

Proof of Lemma 6

From Lemma 5, ¢Y
X = ¢X

Y = 0 which from (45) and (44) implies that

®X
¯X

[(x+ zx)¡ EY (x+ zx)] = [EY y ¡ EXy]: (52)

[EXx¡ EY x] =
¯Y
®Y

[(y + zy)¡ EX(y + zy)]: (53)
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Substituting for [EXx¡ EY x] from (53) into the L.H.S. of (50), we get

m0X [(x+ zx)¡EY (x+ zx)] =
¯Y
®Y

[(y + zy)¡EX(y + zy)]: (54)

Substituting from (52) into the L.H.S. of (54), we get:

m0X
¯X
®X

[EY y ¡ EXy] =
¯Y
®Y

[(y + zy)¡ EX(y + zy)]: (55)

Substituting from (53) into the R.H.S. of (55) and simplifying, we get

Á00[EY y ¡ EXy] = [EY y ¡ EXy]:

For nondegenerate cases, Á006= 1, implying

EY y ¡EXy = 0:

This implies that EXy = EY y which from (52) and (50), in turn implies that EY x = EXx.

Proof of Proposition 4

The following pair of conjecture functions lead to rational competitive bids and y + zy

being revealed to X and x+ zx being revealed to Y:

EY x =
PX ¡Pr[A(s; µ) ¸ F (s)]EA(s;µ)¸F (s)[FX(s)]¡ Pr[T ]ET [min(0; FX(s)) + max(0;¡FY (s))]

Pr[A(s; µ) < F (s)]EA(s;µ)<F (s)[fX(s)]

¡
EA(s;µ)<F (s)[sfX(s)]¹y(y + zy)

EA(s;µ)<F (s)[fX(s)]
;

EXy =
PY ¡Pr[A(s; µ) ¸ F (s)]EA(s;µ)¸F (s)[FY (s)]¡Pr[T ]ET [max(0;¡FX(s)) + min(0; FY (s))]

Pr[A(s; µ) < F (s)]EA(s;µ)<F (s)[1¡ fX(s)]

¡
EA(s;µ)<F (s)[1¡ fX(s)]¹x(x+ zx)

EA(s;µ)<F (s)[s(1¡ fX(s))]
:

The proof of this is a trivial extension of Lemma 4. The remainder of the proof follows

directly from Lemmas 5 and 6.
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