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ABSTRACT OF THE DISSERTATION

Bayesian Estimation of Finite Population Quantities

from Spatially Correlated Data under

Ignorable and Nonignorable Survey Designs

by

Alec Michael Chan-Golston

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2020

Professor Sudipto Banerjee, Chair

Data which is geographically referenced has become increasingly common in many fields of

study, such as public health, education, forestry, medicine, and agriculture. When data is

sampled from a population, there is often knowledge pertaining to the units not sampled,

such as a total count and simple demographics. This knowledge can be leveraged to estimate

finite population quantities such as the population total or mean, using design or model-based

estimators. However, it is unknown how these estimators perform in the presence of spatial

correlation, that is, when the outcome sampled is assumed to be a partial-realization of a

spatial process. This dissertation first presents an analysis predicting store patronage and

fruit and vegetable expenditures during a corner store intervention using Bayesian spatial

techniques and then presents a brief example of finite population estimation in an ignorable

sampling setting. Next a general Bayesian framework is presented that accounts for both

study design and spatial association. Under this, posterior samples of finite population quan-

tities can be retrieved. This framework is first given under the assumption of an ignorable

sampling design and is used to construct four models to account for two-stage designs with
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spatial dependence. These models are first applied to simulated data and then are used in an

analysis of nitrate levels in California groundwater. We find that models accounting for both

study design and spatial association perform best. This general framework is then extended

to allow for a nonignorable sampling design, specifically to account for missing data patterns

seen in reported annual household income in the corner store data. Through this, we are

able to construct finite population estimates of the percent of income spent on fruits and

vegetables. Such a framework provides a flexible way to account for spatial association and

complex study designs in finite populations.
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Chapter 1

Introduction

The aim of this dissertation is to introduce a flexible Bayesian framework that can account for

both study design and spatial dependencies, first given the assumption of design ignorability, and

then without it. A brief review of four topics are provided in this chapter: sampling, finite pop-

ulation estimation (from the design and model-based perspectives), design ignorability, Bayesian

modeling of spatial data, and finite population estimation in the presence of spatial data. The

chapter concludes with a summary of the main contributions of this work and a brief outline of the

dissertation.

1.1 Sampling

The development of random sampling (Neyman 1934) has been incredibly influential in all fields of

science. As inference is desired for large populations, simple random sampling is often replaced with

more complicated sampling designs, such as stratified, probability-proportional-to-size, and cluster

sampling. In particular, multistage sampling has become a common technique to collect data on a

population that is geographically diverse, has naturally discrete groups, or can be split into more

homogenous districts. It is the process of first randomly selecting a subset of predefined groups,

referred to as primary sampling units, before taking a random sample of the elements contained

in each chosen primary sampling unit, referred to as the secondary sampling units. This process

is continued for the desired number of levels of sampling. This technique has been implemented in

numerous large scale surveys in a variety fo fields such as health (the National Health Interview

Survey and the National Health and Nutrition Examination Survey) and education (the National

Postsecondary Student Aid Study and the National Assessment of Educational Progress), as well

as forestry, medicine, agriculture, and many other disciplines. While a simple random sampling is

may be preferred to multistage sampling, it is often the case that time and monetary considerations
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make multistage sampling a more viable alternative to collect a representative sample.

In order to collect such datasets, a population of interest must first be identified and all members

must be recorded so that some form of sampling may take place. It is important to recognize,

especially in surveys which sample a high percentage of the population, that in selecting one

individual for the study, the probability of another individual being selected changes (this is not

true in the case of a theoretically infinite population). Additionally, an indicator of inclusion in the

sample can be defined by:

Ii =


1, if the ith case is included in the sample

0, otherwise

.

Comparing this indicator to the commonly used indicator of missing, Mi discussed by Little

and Rubin (2002) it is evident that Ii = | 1 −Mi | . This notation allows quick reference to the

wide literature of missing data. Given a random sample of size n from the population, n < N ,

denote ”s” the ”seen” index set {i : Ii = 1} and ”ns” the ”not seen” index set {i : Ii = 0}.

For notational convenience and without loss of generality, take the sampled units to be the first

n elements of y, then y = {ys, yns}, where where ys = (y1, . . . , yn) are the sampled elements and

yns = (yn+1, . . . , yN ) are the unsampled elements.

1.2 Design and Model-Based Finite Population Esti-

mates

Finite population survey sampling concerns statistical modeling and inference on finite populations

from sampling designs; see, for example, Cochran (1977), Hartley and Sielken Jr. (1975), Royall

(1970), and Horvitz and Thompson (1952). These estimates are derived from statistical techniques

which take such probabilities into account. For instance, suppose there is interest in estimating the

population total T =
∑N

i=1 yi for some observable characteristic y in a population of size N .

One of the most common approaches to estimating T is the Horvitz-Thompson estimator

(Horvitz and Thompson 1952), T̂ =
∑N

i=1 Ii
yi
πi

=
∑n

i=1
yi
πi

, where P(Ii) = πi. This statistic is
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unbiased if all units are independent and is easily interpreted as a weighted sum where each ele-

ment contributes proportional to their inverse probability of selection. In the case of each element

having an equal probability of being sampled, the estimate simplifies to T̂ = N
n

∑n
i=1 yi, which is

the sample total multiplied by the inverse of the sampling fraction, n/N . This concept can be ex-

tended to other sampling schemes where πi is known, such as two-stage, stratified, and systematic

sampling.

Horvitz-Thompson estimators are popular design-based statistics; estimates that are derived

from knowledge of the sampling scheme and the observed data. This style of inference relies the

assumption that the outcome y in the population is fixed and that randomness is only introduced

by the random selection process. One main criticism of the design-based inference is that it can

perform poorly in small sample settings. In addition, it has no techniques to account for non-

response or measurement error (Kalton 2002), which are both common in large survey datasets.

The assumption of a fixed outcome is in stark contrast to the model-based approach, which

assumes that the outcome is a random sample from a specified distribution. Inferences is performed

on the joint distribution of y and I and values are imputed for the unobserved values in the

population. The complete likelihood for y is

p(y, I | θ, ψ) = p(y | θ)p(I | y, ψ) , (1.1)

where θ are the set of parameters associated with the distribution of the outcome, y, and ψ are the

set of parameters associated with the probability of inclusion, I. We refer to the parameter(s) θ

as superpopulation parameters. Little (2004) explains that these model-based approaches can be

further divided into superpopulation and Bayesian methods.

Superpopulation techniques assume the parameters of the distribution are fixed and aim to

maximize 1.1. For example, consider the simple case when p(I | y, ψ) ∝ constant and each yi are

independent, following an exponential distribution with rate parameter θ. Then the likelihood is

maximized when the estimate of the rate parameter is taken to be θ̂ = ȳobs and in the absence

of any other covariates, we take ŷi = θ̂, yi ∈ yns. Then T̂ =
∑n

i=1 yi +
∑N

i=n+1 ŷi =
∑n

i=1 yi +∑N
i=n+1 ȳ = Nȳ. It is immediately apparent that in this example, the superpopulation estimate

3



is identical to the Horvitz-Thompson estimator, but this need not always be the case. Royall

(1970) extended this concept a linear regression framework by predicting non-sampled outcomes

with known characteristics and made direct comparisons to the Horvitz-Thompson estimators.

A discussion of the distribution of the inclusion mechanism, p(I | y, ψ), and its implications for

inference and interpretation will be discussed in the following section. A comprehensive review of

superpopulation techniques has been compiled by Valliant et al. (2000). Little and Rubin (2002)

present a similar missing data approach, making the distinction between likelihood-based estimation

and bayesian estimation.

The Bayesian approach specifies prior distributions for these superpopulation parameters and

makes inferences on the posterior distribution of the finite population estimate. Bayesian imputa-

tion is performed using the predictive distribution:

p(yns | ys, I) =

∫
p(yns | ys, I, θ, ψ)p(θ, ψ | ys, I) dθdψ . (1.2)

If non-informative priors are taken, the results will often yield more classical conclusions. For

instance, suppose that we make the additional assumption that yi |µ, πi
iid∼ N

(
πiµ,

π2
i

1−πi

)
and take

p(µ) ∝ 1. Integrating out µ, Ghosh and Sinha (1990) note that

yns | ys ∼ N

(∑n
i=1(1− πi)yi/πi∑n
i=1(1− πi)/πi

πns , diag
( π2

n+1

1− pn+1
, . . . ,

π2
N

1− pN

)
+

1∑n
i=1(1− πi)/πi

πnsπ
>
ns

)
,

where πns = (πn+1 . . . πN )>. As
∑N

i=n+1 πi = n−
∑n

i=1 πi =
∑n

i=1(1− πi),

E[T | ys] =
n∑
i=1

yi +

∑n
i=1(1− πi)yi/πi∑n
i=1(1− πi)/πi

×
N∑

i=n+1

πi =

n∑
i=1

yi +

n∑
i=1

yi(1− πi)/πi =

n∑
i=1

yi/πi ,

which is the Horvitz-Thompson estimator.

As another example, consider estimating the population mean ȳ using a fully specified conju-

gate model where yi |µ, σ2 iid∼ N(µ, σ2), µ | θ ∼ N
(
θ | , σ2

n0

)
, and σ2 ∼ IG(a, b). Integrating out µ,

notice that ȳns ∼ N
(
n0θ+nȳs
n0+n , σ2

n0+n
1+n0/N
1−n/N

)
and therefore

ȳ−{ n
N
ȳs+(1−n/N)

n0θ+nȳs
n0+n

}√
σ2 (1−n/N)(1+n0/N)

n+n0

| ys, σ2 ∼ N(0, 1).

Letting n0 → 0, e.g. the prior for µ becomes uninformative, and p(σ2) ∝ 1/σ2, we have that
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ȳ−ȳs√
s2

n
(1−n/N)

∼ tn−1. Taking N to be large so that n
N ≈ 0, we arrive at our standard statistic for

the one-sample t-test.

Bayesian inference for finite population survey sampling is discussed in great detail in Gelman

(2007), Little (2004), Ghosh and Meeden (1997), and Ericson (1969). In this domain, there is a

substantial literature on small area estimation for regionally aggregated data (see, e.g., Rao, 2003;

Ghosh et al., 1998; Ghosh and Rao, 1994; Clayton and Kaldor, 1987), where interest lies in modeling

dependencies across regions.

1.3 Design Ignorability

In an example presented in Section 1.2, the conclusion was only valid under the assumption that

p(I | y, ψ) ∝ constant, meaning that the study design was ignorable. Such designs make the as-

sumption that the probability of inclusion is independent from the outcome measurement, y. This

section presents an introduction to design ignorability, summarizing remarks made by Gelman et al.

(2014) in Chapter 8, ”Modeling Accounting for Data Collection” and by Little and Rubin (2002)

in Chapters 1, ”Introduction, and 6, ”Theory of Inference Based on the Likelihood Function”.

When considering the complete data likelihood, we can incorporate covariates x observed for

the entire population by rewriting (1.1) as

p(y, I |x, θ, ψ) = p(y |x, θ)p(I |x, y, ψ) . (1.3)

We would like to perform our standard Bayesian inference on θ by ignoring the inclusion mechanism,

p(I |x, y, ψ), e.g.

p(θ |x, ys) ∝ p(θ |x)p(ys |x, θ) . (1.4)

However, the posterior distribution of θ stemming from (1.3) is dependent on I:

p(θ |x, ys, I) ∝ p(θ |x)

∫∫
p(ψ |x, θ)p(ys |x, θ)p(I |x, y, θ)dynsdψ . (1.5)

The inclusion mechanism can be ignored if it can be assumed that yns are missing at random (MAR)
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and parameters ψ and θ are a priori independent, such that p(θ, ψ) = p(θ)p(ψ). This independence

condition is often referred to as ”distinctness of parameters” and an equivalent definition is given by

Gelman, which is p(ψ |x, θ) = p(ψ |x). Data is said to be MAR if p(I |x, ys, yns, ψ) = p(I |x, ys, φ)

for all yns, which means that the inclusion mechanism does not depend on unobserved values of y.

Under these two conditions, (1.5) immediately simplifies to (1.4), as the function no longer depends

on yns and ψ is easily integrated out.

In the special case that p(I |x, ys, yns, ψ) = p(I |ψ) = ψ, where ψ is a constant, we say that

the data is missing completely at random (MCAR). This means that the probability of inclusion

is independent of all characteristics of sampled and nonsampled observations. For instance, when

performing simple random sampling on a population of size N, ψ = 1
N . As it is uncommon to find

true instances of MCAR, the hope is if a large enough set of covariates, x, is collected, the data

can be assumed to be MAR. However, if this assumption cannot be made, then the data is said to

be not missing at random (NMAR), meaning the data has a nonignorable design.

When considering these patterns of missing, it is important to understand if the inclusion

mechanism is known, meaning that p(I |x, ys, yns, ψ) can be assigned a distribution, even if ψ is

unknown. If data is MCAR, then the inclusion mechanism is known and ignorable. In the MAR

case, if the probability of inclusion only depends on a set of covariates observed in the population,

p(I |x, ys, ψ) = p(I |x, ψ), then the mechanism is known and said to be strongly ignorable. As an

example, in stratified sampling the probability of inclusion is dependent on which strata a unit

falls into, so conditioning on level of strata, the inclusion mechanism is understood. If p(I |x, ys, ψ)

cannot be simplified further, then the mechanism is known and ignorable. One example of this

given by Gelman et al. (2014) is a sequential sampling scheme in which the selection probability of

the current member is dependent on a measurement of the previously selected member.

More complicated cases arise when the designs are nonignorable. Censored and rounded data

are examples of nonignorable data with known mechanisms. The most complex problems stem

for nonignorable designs which have unknown inclusion mechanisms. As discussed earlier, this

can occur when the superpopulation parameters and the parameters that define the inclusion

mechanism are not distinct. In an example given by Little and Rubin (2002), consider a stochastic

censoring model in which a bivariate outcome {y1, y2}, where y1 is observed only if y2 is greater
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than 0. Then the inclusion mechanism for y1 is always dependent on the parameters defining

the distribution of the outcome y2, and therefore ψ and θ cannot be assumed to be a priori

independent. Alternatively, suppose that we cannot make the assumption of MAR, meaning the

inclusion mechanism is dependent on all values of y. For instance, suppose we would like to estimate

average income and perform a simple random sample to survey a community. If the probability of

response differs by income then the data cannot be assumed to be MAR.

The assumption of ignorability can be further complicated if the covariates x are only observed

for the sampled units. Sugden and Smith (1984) identify 6 combinations of design variables, x,

and proxy design variables (e.g. a summary function of x, w(x)) observed for some part of the

population: {x}, {w, xs}, {w}, {ws, xs}, {xs}, and {ws}. Considering these different cases, they

comment on validity of the ignorability assumption for various sampling schemes.

1.4 Bayesian Methods for Spatial Data

Data believed to be correlated as a function of geographic distance is typically described using

a spatial process model. Unlike the literature of small area estimation (see, e.g., Rao (2003),

Ghosh and Rao (1994), and Clayton and Kaldor (1987)), where the sampling units are regions

such as counties, states or census-tracts, spatial process models consider quantities that, at least

conceptually, exist in continuum over the entire domain. The process assigns a probability law to an

uncountable subset within a d-dimensional Euclidean domain. In general, spatial process modeling

(Banerjee et al. 2014; Cressie and Wikle 2011; and Ripley 2004) follows the generic paradigm

[data |process]× [process | parameters]× [parameters] , (1.6)

which accommodates complex dependencies and multiple sources of variation.

The data is assumed to be a partial realization of a Gaussian process with dependencies between

elements defined by an isotropic covariance function, C(d), where d is the distance between any

two points. Several choices for C(d) are available (see, e.g. Banerjee et al., 2014), but a versatile

family is the Matérn, defined as

7



C(dab) =


σ2 + τ2 if dab = 0

τ2

2ν−1Γ(ν)

(√
2νdabφ

)ν
Kν

(√
2νdabφ

)
if dab > 0

,

for a given distance, dab, between two locations `a and `b. Here Kν(·) is the modified Bessel

function, ν is a smoothness parameter, σ2 describes the variation due to measurement error, τ2

measures the spatial variance, and φ is a decay parameter which determines the rate of decline in

spatial association. The exponential covariance function is a special case of Matérn when η = 1/2

and is of the form:

C(dab) =


σ2 + τ2 if dab = 0

τ2exp(−φdab) if dab > 0

.

In this specific instance, the decay parameter is used to calculate the effective spatial range, 3/φ,

which is the distance where spatial correlation between two points drops below 0.05.

1.5 Finite Population Estimation for Spatial Data

With regard to finite population sampling in spatial process settings, the literature appears to be

considerably more scant than small area estimation. Here, Hoef (2002) discuss connections between

geostatistical models and classical design-based sampling and develop methods for executing model-

based block kriging. Cicchitelli and Montanari (2012) present a spline regression model-assisted,

design-based estimator of the mean for use on a random sample from both finite and infinite spatial

populations. A linear spatial interpolator is used by Bruno et al. (2013) to create a design-based

predictor of values at unobserved locations which outperforms non-spatial predictors. While related

to these developments, none of these techniques have presented a Bayesian approach.

1.6 Contributions and Dissertation Outline

In this article, we will concern ourselves with Bayesian inference for finite populations when the

sampling units are spatially oriented. For instance, one may consider estimating the total biomass
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in a forest given a sample of trees, the average income of a city given a sample of individuals and

their addresses, or the total amount of air pollution attributable to cars on a freeway given a sample

of pollution measurements.

This dissertation provides a Bayesian framework by which posterior estimates of finite popula-

tion quantities can be collected while correctly accounting for spatial correlation in both sampled

and nonsampled units. To our knowledge, this is the first work to examine the implications of finite

population sampling performed on a partial realization of a spatial process. This flexible frame-

work allows for a variety of study designs which may have complex inclusion mechanisms, which

may be appealing to researchers working with geographically referenced data. This current chapter

has provided a brief introduction to some of the literature discussed in this dissertation, including

sampling, finite population estimation, ignorability assumptions, spatial data, and finite population

estimation of spatial data. In Chapter 2 an Bayesian spatial data analysis is used to predict store

patronage and fruit and vegetable expenditures during a corner store intervention, incorporating

multiple spatial random effects. Using this, a brief example of finite population estimation under

an ignorable sampling setting is provided. Chapters 3 and 4 work to create and describe a cohesive

Bayesian framework that allows for the estimation of finite population quantities while accounting

for study design and various spatial associations. In Chapter 3 an ignorable sampling design is

assumed and a Bayesian framework is presented. In particular, a two-stage sampling design in the

presence of spatial correlation is examined. Four models are considered to analyze such data, and

these are first applied to simulated data and then for a data analysis of nitrate levels in California

groundwater. This Bayesian framework is then extended to account for nonignorable sampling

designs in Chapter 4. Specifically, this is used to account for complex missing data patterns seen in

reported annual household income in the aforementioned corner store intervention data. Through

this, we are able to construct finite population estimates of the percent of income spent on fruits and

vegetables at the community level. The dissertation concludes with a brief discussion in Chapter 5.
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Chapter 2

Estimating the Impact of Competing Stores on Corner

Store Patronage and Purchasing Behaviors During an

Intervention

2.1 Introduction

In a response to rising obesity and other health disparities that have been linked to diet, more

Public Health research has targeted the food environment. One common approach theorized to

change food purchasing behaviors at the community level are corner store interventions (Langellier

et al., 2013). These interventions are particularly attractive for communities in “food swamps”

(Rose et al., 2009), regions with a higher density of stores which primarily sell unhealthy products

(such as fast-food or junk food) than stores with healthier food options (such as grocery stores

with fresh produce). In a review of this literature, Langellier et al. (2013) notes that corner

stores are often the main food supplier for low-income families but primarily sell staples (i.e. eggs

and milk) and unhealthy items (i.e. chips and soda). However, fresh fruit and vegetables (FV)

are sold infrequently at these stores, and if sold, are often of poor quality and expensive. The

authors summarize that most commonly, researchers partner with existing stores to increase the

amount of fresh FV, while reorganizing the store to make unhealthy less visible. These interventions

may provide business consultations and refrigeration units, as well as provide support to increase

awareness in the community by improving signage, holding cooking demonstrations, and remodeling

the corner store.

Among these studies, findings have been mixed. Cavanaugh et al. (2014) reports large increases

in the availability of FV were seen in conversion stores and Thorndike et al. 2017 concludes that

stocking and displaying quality produce increased FV purchases in customers using WIC. Increased

sales of healthy foods were also seen by Song et al. 2009. Paek et al. (2014) finds increases in FV,
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bean, and nut purchasing, post-conversion, as well a higher awareness of the intervention stores.

Similarly, more positive perceptions of the converted stores are reported by Albert et al. 2017.

However, the authors find no difference in the reported consumption of FV or money spent on

FV. Lawman et al. 2015 also reports that the conversion had no effect on the nutrient content of

purchases made in the store.

Mixed findings are also seen in an intervention in eight neighborhoods in East Los Angeles and

Boyle Heights, California (Ortega et al., 2016). While community perceptions of healthy food access

and corner stores improved, there were no intervention effects corresponding to store patronage,

as well as FV purchasing and consumption. One unique feature of this study is that respondents

were asked to list all stores where they shopped for food. We are interested in determining if

patronage at an individual’s corner store and FV purchasing are influenced by that individual’s

other shopping locations. As all stores have been geocoded, we are challenged to incorporate this

spatial information into a cohesive analysis that can answer such questions. To accomplish this, we

first consider how the analysis of spatial data is approached in the food environment literature.

A majority food environment studies appear utilize areal data, where units are referenced by

geographic regions, such a zip codes or counties. For instance, Frank et al. (2012) constructs

measures of the nutritional and physical activity environments at the census block level to identify

clusters of blocks which have poor measures of both environments. Smith et al. (2010) measures

accessibility to food in data zones, which define geographic regions in Scotland, by measuring

the travel time from the centroid of each data zone to the nearest food store. They find that

deprived neighborhoods tended to have better access to grocery stores, especially those that sell

fresh produce. A similar conclusion was found in rural Texas neighborhoods (Sharkey et al., 2010),

where the authors conclude that access to fruits and vegetables was higher in regions with higher

percentages of social and material deprivation or low rates of vehicle ownership.

To present evidence of spatial autocorrelation for area data, Moran’s I is often presented.

Sisiopiku and Barbour (2014) use this technique in identifying food deserts in Alabama counties

and Dekker et al. (2017) demonstrates spatial clustering of neighborhood dietary scores. Koleilat

et al. (2012) examine the association between rates of obesity in 3 and 4 year old WIC participants

and the retail food environment index in Los Angeles County zip codes, but did not perform
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spatial analyses as Moran’s I found no evidence of spatial association in obesity. Such analyses

typically involve spatial regression models for areal data, which typically define correlation between

a unit and its neighbors (see, for example, Banerjee et al. 2014 and Cressie and Wikle 2011). For

instance, Smiley et al. (2010) and Hillier et al. (2009) perform spatial lag models to estimate

the density of health resources and to predict the number of outdoor advertisements near child-

serving institutions, respectively. Neelon et al. (2017) found associations between nursery manager’s

perceptions in food insecurity by area-level deprivation using an adjusted geographically weighted

logistic regression. Further, such models can extended to permit spatiotemporal data. Using such

models, Lamichhane et al. (2015) detects a positive association between poverty and larger number

of food stores at the census track level.

The literature that involves spatial locations that are point-referenced (e.g. a pair of coordinates

can be identified for that location) is much more sparse. One approach is to assess evidence of spatial

clustering using Ripley’s K function. Hillier et al. (2009) employs this to describe clustering of

outdoor advertisements around child serving institutions, where the authors detect such clustering

in Los Angeles and Philadelphia, but not Austin. Day and Pearce (2011) uses an extension of this

K function that allows for multiple types of spatial patterns (in this instance, type of food outlet)

and presents evidence of spatial clustering of food outlets around schools, with more outlets closer

to primary and intermediate schools that secondary schools. Auchincloss et al. (2007) detected

spatial association in the availability of healthy foods and accounted for this when interpolating

to non-sampled locations in their survey data. The authors obtain these predictions in two ways,

first by using residual kriging after performing a standard linear regression and second by fitting a

linear model with a spatial error term and then drawing predictions from this.

To approach a dataset which has two spatially referenced locations (i.e. an individual’s corner

store and a rival store that they may go to), we employ the linear coregionalization models described

Goulard and Voltz (1992). These analyses draw inspiration from Banerjee et al. (2000), who

accounts for spatial association in observations with pairs of locations using a bivariate Gaussian

spatial process. In their application, they sought to examine postal performance by considering both

the location of where a package was sent and where it was received. In our scenario, we propose that

attributes of an individual’s neighborhood corner store may dictate if an individual shops at this
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location and in general, their FV expenditures. In the same vein, rival stores (such as supermarkets

and other corner stores) may negatively affect patronage of an individual’s neighborhood corner

store and also may be associated with FV expenses. Additionally, by considering a coregionalization

model, we are able to examine if these corner store and rival store effects are independent.

The rest of this chapter is as follows: Section 2.2 briefly describes the study and presents the

data, Section 2.3 presents the models used in the paper, and Section 2.4 provides a brief simulation

comparing the spatial models employed in this paper. Section 2.5 presents the results of the data

analysis and the paper concludes with a brief discussion of our findings in Section 2.6.

2.2 Data

Researchers carefully identified 4 corner stores in East Los Angeles for conversion and 4 corner

stores in Boyle Heights to act as control sites. Corner store conversions included a reorganization

of store items to promote healthy food purchasing, an external transformation of the store, a

social marketing campaign and cooking demonstrations put on by local youth, connections to local

wholesale markets, and refrigeration units. A full discussion of the study design and implementation

is described by Ortega et al. (2015). In order to assess the effect of this intervention, a survey was

given to residents within a five block radius of each of the eight corner stores. This community

survey sought to extensively catalog the food purchasing of residents, including where they shopped,

what types of food they bought, and who they were purchasing food for. As such, the survey was

limited to only adults who were the main food purchaser of the family. Many other items, such

as demographics, health problems, family history of residency, food program participation (such

as food stamps or WIC), and others were also collected. This survey was conducted before the

conversion and then again roughly one year after the conversion. There were 1,035 observations

collected at baseline and 1,052 observations collected at follow-up. Roughly 60% of the individuals

surveyed at baseline were surveyed again at follow-up.

There are two primary outcomes of interest: store patronage and the percent of food purchasing

money spent on fruits and vegetables. More formal definitions of these quantities are provided later.

In the survey, respondents are first asked where they usually shop, which allows up to four responses,
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and then asked what corner stores they shop at, which allows up to three responses. In practice, no

respondent listed seven stores in the survey, so there is confidence that the data adequately captures

the shopping regions in the area. Stores mentioned were then catalogued, tabulated, and finally

assigned geographic coordinates using Google Maps. While there were one hundred and ninety-one

stores, besides the eight study stores, mentioned, it was decided to exclude stores with cumulative

frequencies (combining baseline and total) less than ten, which reduced the number to forty-four.

This was done so that there would be a large enough sample to draw from to make valid estimates

regarding the stores effects on corner store patronage. These forty-four stores will be referred to

as the ”rival stores”. Before exclusion, the mean number of stores reported at baseline was 2.67

while the mean at follow-up was 2.81, with standard deviations of 0.70 and 0.69 respectively. After

exclusion the mean number of stores reported at baseline was 1.91 while the mean at follow-up was

2.07, each with standard deviations of 0.77. Figure 2.1 shows the relative locations of these stores,

as well as the 8 corner stores included in the study.

Figure 2.1: Locations of Stores
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Other individual-level variables that were considered to affect patronage or fruits and vegetables

purchasing were intervention status, age at time of interview, gender, household size, language of

interview (English or Spanish), WIC participation, number of hours worked per week, marital

status, and education level. Language spoken at home was considered (with categories English,

Spanish, English/Spanish, and Other) but preliminary analyses revealed similar relationships with

the outcomes when comparing Spanish only speakers and English/Spanish speakers, so Language

of Interview was used as there was no missingness in this variable. While marital status initially

consisted of six categories (single, married, separated, divorced, widowed, and living with a partner

in a marriage-like relationship) this was consolidated whether or not the respondent was in a

marriage or marriage-like relationship, as one might suspect an individual in a long term relationship

might have different shopping trends than a single individual. Education reduced from twenty-seven

distinct categories to three: less than a high school education, a high school education, and greater

than a high school education. Income was excluded due to high levels of non-response and a

concern that this might bias the analyses. A brief summary of these variables is presented in Table

1. Except for education level and age, there were differences in demographics between the baseline

and follow-up data. A majority of respondents were female, Hispanic, and spoke Spanish. Roughly

one-fifth utilized WIC and more than half were married. About half of the respondents had at

least a high school education. The average respondent at baseline was 45.6, lived in a household

with 3 other individuals, and worked 36.9 hours per week. Due to the homogeneity of ethnicity in

the sample, identifying as Hispanic was not considered in the analyses.

Also included was how (drove, public transportation/ride with someone, taxi/public transporta-

tion, or other) and how frequently (high, medium, or low) a patron went to a given store. High

frequency was defined as going to a store at least three times a week, medium frequency as at

least once a month and at most twice a week, and low frequency as less than once a month. A

single store-level covariate was included, whether or not the store was a supermarket, with the

assumption that an individual’s food purchasing and patronage behaviors may be very different

for supermarkets compared to other types of stores (such as meat markets, corner stores, and

convenience stores).

This primary goal of this paper is to assess the effect of rival stores on the outcomes of the eight
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Table 2.1: Description of the Sample

Baseline
N = 1,035

Follow-up
N = 1,052

Demographic
% or

M (SD)
% or

M (SD)
Intervention Status

Intervention 50.1 50.6
Control 49.9 49.4

Sex
Male 21.9 20.0
Female 78.1 80.0

Language of Interview
English 39.5 42.7
Spanish 60.5 57.3

Ethnicity
Hispanic 97.2 97.3
Non-Hispanic 2.8 2.7

WIC Participation
Participant 19.5 18.5
Non-Participant 80.5 81.5

Marital Status
Married 57.1 58.2
Not Married 42.9 41.8

Education Level
> High School 24.9 29.7
High School 27.5 23.1
< High School 47.7 47.2

Age 45.6 (16.6) 47.1 (15.6)
Household Size 4.0 (1.9) 4.0 (2.0)
Hours Worked per Week 36.9 (15.3) 35.2 (12.1)
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corner stores at baseline and follow-up. A secondary aim is to determine if controlling for these

effects helps better understand the effect of the intervention of these outcomes. It is also important

to note that one of the stores assigned to intervention gained a liquor license during the course of

the study and did not convert their store. This paper presents an intent to treat analysis, but it is

possible that this fifth “control” store diminishes the treatment effect.

2.3 A Bayesian Spatial Interaction Model

2.3.1 Logistic and Linear Models

As there is interest in determining what is associated with corner store patronage, the outcome

variable is defined as follows:

Yijk =

 1 if individual k went to corner store i and rival store j,

0 if not ,

where i = 1, . . . , Ncs, j = 1, . . . , Nrs, and k = 1, . . . , n. Here Ncs is the number of corner stores, Nrs

is the number of rival stores, and n is the total number of individuals. To account for covariates

and neighborhood effects, one can formulate a logistic regression model,

logit(P (Yijk = 1)) = q>ijkα+ u(si) + v(sj) , (2.1)

where qijk is a vector of covariates as well as an intercept term, u(si) and v(sj) are spatial effects

corresponding to corner store at location si and rival store at location sj , respectively. The covari-

ates will include individual-level information such as gender, store-level information such as store

type, and individual-store level such as an individual’s frequency of store patronage.

Our other primary outcome is percent of food purchasing money spent on fruits and vegetables,

defined as

Yijk =
Dollars individual k reported spending on FV

Dollars individual k reported spending on food

where i = 1, . . . , Ncs, j = 1, . . . , Nrs, and k = 1, . . . , nij . Here Ncs is the number of corner stores,
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Nrs is the number of rival stores, and nij is the number of individuals who reside in the region

with corner store i and report shopping at rival store j. In this way, individuals who reported

shopping a multiple rival stores are repeated in a dataset. However, as variability in the number of

stores reported was los, we are less concerned that individuals who reported more stores are over

represented in the dataset. A percentage was preferred to a raw amount of money spent on produce

because it controls for amount of money an individual spent on food generally, and is therefore less

confounded by income than the raw amount. Similar to (2.1), one can formulate a linear regression

model,

Yijk = q>ijkα+ u(si) + v(sj) + eijk , eijk ∼ N(0, τ2) . (2.2)

In both (2.1) and (2.2), interest lies in modeling the spatial effects u(si)’s and v(sj)’s appro-

priately. We opt for process-based models because (i) we have the geographic coordinates for each

store (i.e., point-referenced data), and (ii) we are interested in producing predictive probability

surfaces for the spatial effects over the entire region of interest (including at arbitrary points). As

there are two sets of point referenced data, those of the corner stores and those of the rival stores,

we are interested in modeling a bivariate Gaussian spatial process

z(s) =

u(s)

v(s)

 ∼ GP

0

0

 ,Kθ(·, ·)

 ,

where for any corner store location si and rival store location sj , we define Kθ(·, ·) as the cross-

covariance matrix

Kθ(s, t) = cov(z(s), z(t)) =

cov(u(s),u(t)) cov(u(s),v(t))

cov(v(s),u(t)) cov(v(s),v(t))

 .

The cross-covariance function maps a pair of spatial locations to a 2 × 2 matrix such that

(i) Kθ(s, t) = K>θ (t, s) and (ii)
∑n

i,j=1 a
>
i Kθ(si, sj)aj > 0 for all ai ∈ <2 \ {0} and for any finite

collection of spatial locations S = {s1, s2, . . . , sn}. The latter ensures that var(z) is positive definite,

where z = (z(s1), z(s2), . . . , z(sn))> and z ∼ N(0,Kθ), where Kθ is the 2n× 2n block matrix with

Kθ(si, sj) as the (i, j)-th block. We consider two different approaches for modeling the cross-
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covariance function that we describe in the following section.

2.3.2 The Coregionalization and Conditional Approaches

For the coregionalization approach, suppose that z(s) can be described as a linear combination of

two underlying independent Gaussian processes. Then we write

z(s) =

u(s)

v(s)

 =

a11 0

a12 a22


w1(s)

w2(s)

 = Aw(s),

where w1(s) and w2(s) are Gaussian processes that have unit variances and are independent of each

other. Therefore, if Kz(s, t) is the cross-covariance matrices corresponding to z(s) then

Kz(s, t) =

a11 0

a12 a22


Cw1(s, t) 0

0 Cw2(s, t)


a11 a12

0 a22

 . (2.3)

If s = t, then Kz(s, s) = AA> and A is the lower-triangular Cholesky factor of Kz(s, s).

Alternatively, we can build bivariate process models by regressing one process on the complete

realizations of the other (Cressie and Zammit-Mangion, 2016). Let u(s) and e(s) be zero-mean

Gaussian processes with covariance functions Cθu(s, t) and Cθe(s, t), respectively, and suppose we

construct

v(s) = β0 +

∫
β(s, x)u(x)dx+ e(s) . (2.4)

Then, z(s) = (u(s), v(s))> is a legitimate bivariate Gaussian process with mean (0, β0)> and cross-

covariance matrix function

Kz(s, t) =

 Cθu(s, t)
∫
β(t, x)Cθu(s, x)dx∫

β(s, x)Cθu(t, x)dx
∫ ∫

β(s, x)β(t, x′)Cθu(x, x′)dxdx′ + Cθe(s, t)

 . (2.5)

Since our consideration here is primary one of practical efficiency, rather than full generality, we
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focus upon a useful simplification. To be precise, we set

β(s, x) =

 β1 if s = x

0 otherwise ,

which simplifies (2.4) to v(s) = β0 +β1u(s)+e(s) and the cross-covariance function in (2.5) reduces

to the more tractable form (without the integrals),

Kz(s, t) =

 Cθu(s, t) β1Cθu(s, t)

β1Cθu(s, t) β2
1Cθu(s, t) + Cθe(s, t)

 . (2.6)

Since the spatial process is introduced after adjusting for the global mean, we further set β0 = 0, so

z(s) is a zero-mean process. Then, for any finite collection of n locations in S, the joint distribution

of u and v, i.e., the n× 1 vectors with elements u(si) and v(si), respectively, is multivariate normal

u
v

 ∼ N

0

0

 ,

 Cu,θu β1Cu,θu

β1Cu,θu β2
1Cu,θu + Ce,θe


 ,

where Cu,θu and Ce,θe are the covariance matrices corresponding to u(si)’s and e(si)’s respectively.

In fact, it is easy to establish a one-one correspondence between the process parameters in (2.6)

and those in (2.3). Letting Cθu(s, t) = σ2
θu
Cw1(s, t) and Cθe(s, t) = σ2

θe
Cw2(s, t), we easily deduce

the following correspondence:

σ2
θu = a2

11 , β1 =
a12

a11
and σ2

θe = a2
22 . (2.7)

2.3.3 Modeling Using the Data

We will extend (2.1) and (2.2) to a general Bayesian spatial hierarchical model,

p(θ)× p(σ)×N(z | 0,Kθ)×N(α | 0, Vα,σ)×
Ncs∏
i=1

Nrs∏
j=1

ni∏
k=1

f(Yijk) , (2.8)
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where θ is the set of parameters in the spatial variance-covariance matrix for the 2n× 1 vector of

process realizations z = (z>(s1), . . . , z>(sn))> with n = Ncs + Nrs, and σ is a set of parameters

in the prior variance-covariance matrix for α. In the logistic case, f(Yijk) = Ber(Yijk | pijk =

logit−1(q>ijkα+ u(si) + v(sj))), and in the linear case, N(µijk |µijk = q>ijkα+ u(si) + v(sj), τ
2).

Four models were considered for each outcome. In general, q>ijkα = x>1,kζ + x>2,jγ + x>3,jkδ.

Individual-level covariates were selected using simple linear regressions, as additive missingness

from covariates was a concern. Models of both outcomes had the individual-level covariate vector,

x1k include an intercept, gender, the number of persons that individual lives with, intervention

status, time-point (baseline or follow-up) and the interaction between intervention status and time

point (to detect an intervention effect). The linear regression also included WIC participation,

weekly food budget, and language of interview. The rival store covariate for store j, x2,j , is an

indicator variable denoting whether the store being supermarket or not. Finally, x3,jk, comprise

covariates specific to rival store j and individual k, include the method of transportation used

and frequency of shopping. The prior distributions for ζ, γ and δ are zero-mean normal with

variance-covariance matrices σ2
ζIp1 , σ2

γIp2 , and σ2
δIp3 , respectively, where p1, p2, and p3 are the

corresponding dimensions of ζ, γ and δ. For simplicity, we set σ2 = σ2
ζ = σ2

γ = σ2
δ} and a half-

cauchy prior distribution was assigned to this parameter. Vα,σ is block-diagonal with the preceding

variance-covariance matrices as the diagonal blocks.

The first model, referred to as the “simple model”, does not incorporate any spatial random

effects and is obtained by setting z(s) = (u(s), v(s))> = 0 in (2.8), which excludes p(θ) and

N(z | 0,Kθ) from (2.8). The most complex model incorporates the proposed spatial random effects

using the coregionalization technique presented in 2.3.2. The matrix Kθ in (2.8) is a 2n by 2n block

variance-covariance matrix with Kz(si, sj) as the (i, j)-th block, where Kz(si, sj) is as described

in (2.3) with Cwi(t) = exp(−φit) for i = 1, 2, reflecting the exponential covariance function. The

parameter θ = {φ1, φ2, A} in (2.8). These are taken to be independent apriori, with φ1 and φ2

having uniform prior distributions and AA> an Inverse-Wishart prior distribution. We refer to this

as the “coregionalization model” and it will be the fourth model presented. The second model,

referred to as the “independent model”, modifies the “coregionalization model” as well, restricting

A to a diagonal matrix by setting a12 = 0 in (2.3), simplifying Kz(si, sj) to a diagonal matrix. The
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third model simplifies the “coregionalization” model by setting φ1 = φ2, thus Cw1(t) = Cw2(t), and

θ only comprises φ1 and A. This is called the “separable model”.

Given the correspondence between (2.3) and (2.6) and that we have already obtained posterior

samples for the parameters in (2.3), there is no benefit to estimating the conditional model again.

We can obtain the posterior samples for the process parameters for (2.6) from those of (2.3) using

the correspondence in (2.7).

2.3.4 A Conjugate Bayesian Model

Here we present a conjugate bayesian model for the linear case. Let yijk be a continuous measure-

ment or score associated with individual k = 1, 2, . . . , nij who visited corner store i = 1, 2, . . . , ncs

and rival store j = 1, 2, . . . , nrs and qijk be a vector of covariates associated with the outcome

through a regression model

yijk = q>ijkα+ u(si) + v(sj) + eijk , eijk ∼ N(0, τ2) . (2.9)

Here α is the vector of unknown regression coefficients, u(si) and v(sj) are spatial random effects

corresponding to corner store i and rival store j, and eijk represents Gaussian nonspatial error or

noise with zero mean and variance τ2. Stacking measurements over individuals, we obtain

yij = Qijα+ 1⊗ u(si) + 1⊗ v(sj) + eij , eij
ind∼ N(0, τ2Dij) ,

where yij is the nij × 1 vector obtained by stacking yijk’s over individual indices, Qij is the matrix

with rows q>ijk, 1 is the nij × 1 vector of ones, and eij is an nij × 1 vector of nonspatial error with

nij × nij covariance matrix τ2Dij and Dij is diagonal with variance components. Next, stacking

over the corner stores and then the rival stores produces

y = Qα+R1u+R2v + e , e ∼ N(0, τ2D) , (2.10)

where y, u, v and e are vectors of yij ’s, u(si)’s, v(sj)’s and eij ’s, respectively, Q is a matrix formed

by stacking the Qij ’s, R1 and R2 are design matrices corresponding to u and v, and τ2D is the
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covariance matrix for e. We rewrite (2.10) as

y = XΩ + e , e ∼ N(0, τ2D) ,

where X = [Q : R1 : R2] is an n × r matrix and Ω = [α> : u> : v>]> is an r × 1 column vector.

Assuming Ω ∼ N(µΩ, τ
2VΩ) and τ2 ∼ IG(a, b), the joint posterior distribution is

IG(τ2 | a, b)×N(Ω |µΩ, τ
2VΩ)×N(y |XΩ, τ2D)

∝ IG
(
τ2 | a∗, b∗

)
×N

(
Ω | Ω̂, τ2(X̃>Ṽ −1X̃)−1

)
, (2.11)

where Ω̂ = (X̃>Ṽ −1X̃)−1X̃>Ṽ −1ỹ, ỹ =

 y
µΩ

, X̃ =

X
I

, and Ṽ =

D 0

0 VΩ

, a∗ = a +
n

2
and

b∗ = b+
1

2

(
ỹ − X̃Ω̂

)>
Ṽ −1

(
ỹ − X̃Ω̂

)
.

VΩ has been chosen and assuming D is fixed, sampling from this posterior is achieved by first

drawing τ2 from its marginal posterior IG(a∗, b∗) and then drawing Ω from its conditional posterior

distribution N
(

Ω̂, τ2(X̃>Ṽ −1X̃)−1
)

given the sampled value of τ2. Repeating this M times results

in M exact posterior samples from (2.11).

2.3.5 A Finite Population Framework

As only 60% of individuals participated at both baseline and follow-up, suppose we are interested in

estimating the average percent of food purchasing money spent on fruits and vegetables at baseline

and follow-up, as modeled in (2.2). To achieve this, we predict responses at follow-up for individuals

who only responded at baseline and predict responses at baseline for individuals who only responded

at follow-up. All covariates associated with these individuals remain unchanged, except the indica-

tor of time point. We therefore modify our notation slightly to make the distinction that Y
(1)
ijk is the

kth individual in the region served by corner store i who went to the jth rival store at baseline, Y
(1)
ijk

is such an individual at follow-up. These individual’s corresponding covariates would then be de-

noted q
(1)
ijk and q

(2)
ijk, respectively. Decomposing nij = n

(both)
ij +n

(1)
ij +n

(2)
ij , where n

(both)
ij ,n

(1)
ij , and n

(2)
ij

as the observed number of individuals in the region served by corner store i who shop at rival store j
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at both timepoints, only at baseline, and only at follow-up, respectively. Then assuming that unob-

served individuals at baseline and follow-up did not change the rival stores they shop at, the number

of individuals in the baseline and follow-up finite populations is n
(max)
ij = n

(both)
ij + 2n

(1)
ij + 2n

(2)
ij .

Using this fact, we define the set of individuals at baseline who are observed to be Y
(1)
s =

[Y
(1)

111 , . . . , Y
(1)

11(n
(both)
11 +n

(1)
11 )
, . . . , Y

(1)
NcsNrs1

, . . . , Y
(1)

NcsNrs(n
(both)
NcsNrs

+n
(1)
NcsNrs

)
]> and unobserved to be Y

(1)
ns =

[Y
(1)

11(n
(both)
11 +n

(1)
11 +1)

, . . . , Y
(1)

11n
(max)
11

, . . . , Y
(1)

NcsNrs(n
(both)
NcsNrs

+n
(1)
NcsNrs

+1)
, . . . , Y

(1)

NcsNrsn
(max)
NcsNrs

]>. Similarly, for

follow-up, we have: Y
(2)
s = [Y

(2)
111 , . . . , Y

(2)

11(n
(both)
11 +n

(2)
11 )
, . . . , Y

(2)
NcsNrs1

, . . . , Y
(2)

NcsNrs(n
(both)
NcsNrs

+n
(2)
NcsNrs

)
]>

and Y
(2)
ns = [Y

(2)

11(n
(both)
11 +n

(2)
11 +1)

, . . . , Y
(2)

11n
(max)
11

, . . . , Y
(2)

NcsNrs(n
(both)
NcsNrs

+n
(2)
NcsNrs

+1)
, . . . , Y

(2)

NcsNrsn
(max)
NcsNrs

]>. We

now stack the observed measurements and unobserved measurements into a single vector, Y =[
Y >s , Y

>
ns

]>
=
[
Y

(1)>
s , Y

(2)>
s , Y

(1)>
ns , Y

(2)>
ns

]>
. Defining the total population size at baseline to be

T , e.g. the dimension of
[
Y

(1)>
s , Y

(1)>
ns

]>
is T × 1, we also have that the total population size

at follow-up is T and therefore the dimension of Y is 2T × 1. We construct the following linear

regression model:

 Ys
Yns

 =

Qs
Qns

α+

 R1s

R1ns

 υ +

 R2s

R2ns

 ν +

 εs
εns

 ;

 εs
εns

 ∼ N(
0

0

 , τ2I

)
. (2.12)

Here Qs, R1s, and R2s are constructed such that the rth element of Ys, corresponds to the rth

row of each of these matrices, similar to those presented in 2.3.4. For example, if the rth element of

Ys is Y
(1)

121 , the rth row of Qs will be the corresponding set of covariates, q
(1)
121. Similarly, the rth row

of R1s will a vector of length Ncs with a 1 in the first position and 0 elsewhere, while the rth row

of R2s will a vector of length Nrs with a 1 in the second position and 0 elsewhere. The matrices

Qns, R1ns, and R2ns are constructed similarly, corresponding to Yns. Additionally, εs and εns are

constructed in a manner identical to Ys and Yns.

We have that p(Yns |Ys, α, υ, ν, τ2) = N(Yns |µns | s, τ2I), where µns | s = Qnsα+R1nsυ+R2nsν.

Therefore for each posterior sample of {α, υ, ν, τ2} from 2.8, we draw Yns ∼ N(Yns |µns | s, τ2I).

These samples from the posterior predictive distribution can be then used to obtain posterior finite

population estimates. Specifically, at each iteration g, estimates of the unobserved units are drawn
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and estimates for the baseline population mean,

Ȳ (1,g) =
1

T

Ncs∑
i=1

Nrs∑
j=1

n
(both)
ij +n

(1)
ij∑

k=1

Y
(1)
ijk +

Ncs∑
i=1

Nrs∑
j=1

n
(max)
ij∑

k=n
(both)
ij +n

(1)
ij +1

Y
(1,g)
ijk

 ,

and the follow-up population mean,

Ȳ (2,g) =
1

T

Ncs∑
i=1

Nrs∑
j=1

n
(both)
ij +n

(2)
ij∑

k=1

Y
(2)
ijk +

Ncs∑
i=1

Nrs∑
j=1

n
(max)
ij∑

k=n
(both)
ij +n

(2)
ij +1

Y
(2,g)
ijk

 ,

are calculated.

2.3.6 Model Comparison and Assessment

Model fit is evaluated using the Watanabe-Akaike Information Criteria (WAIC), expressed as

WAIC = −2êlpd = −2(l̂pd+ p̂WAIC) in Vehtari et al. (2017), where êlpd is the estimated expected

log pointwise predictive density. To calculate this, at each iteration, g = 1, . . . , G, p(yh |Θ(l)) is com-

puted; the likelihood of each observed value conditional on that iteration’s parameters. For a sample

of size k, the estimated log pointwise predictive density is the sum of the log average likelihood for

each observation, l̂pd =
∑k

h=1 log
[

1
G

∑G
g=1 p(yh |Θ(g))

]
. The sample variance of the log-likelihood

for each observation is s2
lp(yh) = 1

G−1

∑G
g=1

[
log(p(yh |Θ(g))) − 1

G

∑G
g=1 log(p(yh |Θ(g)))

]2
and the

estimated effective number of parameters is the sum of these variances: p̂WAIC =
∑k

h=1 s
2
lp(yh).

2.4 Simulation

In order to assess the ability of our models to detect the true underlying process, three simulations

were performed using the conjugate model presented in 2.3.4. The first simulation assumed that

true underlying process is described by the coregionalization method in Section 2.3.2 by setting

the u(si) and v(sj) as the true random effects coming from this process. At each iteration, 20

locations (10 locations for each process) had coordinates randomly sampled from two Uniform(0,50)
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distributions. 10 replicates were sampled at each location pair such that

Yij ∼ N(µij , σ
2) ; µij = β0 + u(si) + v(sj) ; i = 1, . . . , 10 ; j = 1, . . . , 10 .

β0 was assigned -5 and σ2 9. To define u(s) and v(s), φ1 was set to 3, φ2 to 1 to refect similar

conditions to the true data, and A to

2 −1

0 1

. One quarter of the data was set aside as a

test set and an exact sampler was employed to fit the coregionalization model, separable model,

and independent model to the remaining data. This process was repeated 50 times, so that the

KL-Divergence (Kullback and Leibler 1951) could be calculated to assess deviations from the true

parameter values. For this statistic, higher values indicate distributions that are farther from the

true distribution. A second simulation repeated this process, but assumed that the true underly-

ing process is the separable coregionalization model described in Section 2.3. Thus A was altered

to

2 0

0 1

. The final simulation repeated the first process but made the assumption that the

true underlying process is the independent coregionalization model described in Section 2.3. Thus

φ1 = φ2 = 10.

Table 2.2: Comparing KL-Divergence Results of 3 Simulations

Simulation (Truth)
Coregionalization Separable Independent

Model Median (95% CI) Median (95% CI) Median (95% CI)
Coregionalization 154.5 (114.2, 193.4) 164.9 (124.6, 215.0) 276.3 (230.2, 323.2)
Separable 153.2 (113.3, 196.4) 166.5 (121.8, 221.3) 276.7 (228.2, 319.7)
Independent 236.6 (189.6, 307.2) 224.5 (178.1, 285.5) 275.6 (224.6, 325.8)

Table 2.2 suggests that with respect to the KL-Divergence measure, while coregionalization

models are adept at detecting truly correlated processes, there are no benefits from using this model

instead of a separable model. While different values of φ1 were considered, it’s possible that larger

differences in effect spatial range between the two processes may result in the coregionalization

model fitting better. Density plots corresponding to Table 2.2 are provided in Figure 2.2.
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Figure 2.2: K-L Divergence Comparisons from 3 Simulations

2.5 Data Modeling

2.5.1 Implementation

Each logistic model was was run for 3 chains of 12,000 iterations with 500 burn-in. Initial values

for regression coefficients were drawn from a Normal(0, 1) distribution, while the initial values

for φ parameters were set to 1, the σ2 (and τ2, in the linear case) parameters set to 10, and the

spatial random effects set to 0. The regression coefficients were given Normal(0, σ2) priors, with σ

having a half-cauchy prior (Gelman et al., 2008) centered at 0 with 5 degrees of freedom. In the

coregionalization and independent models, the priors for φ1 and φ2 were established by allowing the

spatial range to vary between 10% to 40% of the maximum distance between stores, which was 5.46

for the corner stores and 14.23 for the rival stores. As 3/φ is the effective spatial range, φ1 was given

a Uniform(1.37, 5.49) prior and φ2 a Uniform(0.53, 2.11) prior. The maximum distance between

all stores was 15.86, so using the same spatial range guidelines φ1 was given a Uniform(0.47, 1.89)

in the Separable Model. An Inverse-Wishart prior was set on AA> with a starting value of the

identity matrix. In the independent case, rather than employing an Inverse-Wishart distribution,

A11 and A22 were given Uniform(0,10) priors to save on computation costs. Mixing was assessed

using the Gelman-Rubin Diagnostic. After combining the three chains, fit was compared using the

WAIC. All modeling was performed using the STAN software (Stan Development Team and others,
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2018) in R 3.3.3 (R Core Team, 2018).

2.5.2 Results

The results of the logistic model predicting store patronage is presented in Table 2.3. While it is

evident that the spatial models fit the data better than the non-spatial model, there does not seem

to be a large difference in WAIC between the three spatial models. As the independent model

provides negligibly better fit and the 95% Credible Interval for the A21 parameters in Models 3

and 4 include 0, we conclude that the corner store and rival store processes may in fact be inde-

pendent. Importantly, we do not find any evidence of an intervention effect improving patronage.

Additionally, we do find in both Model 1 and 4 that the odds are lower in the intervention sites at

baseline.

Few covariates were associated with patronage, but the supermarket covariate is significant

in Models 1 and 4, and sees a similar trend in Models 2 and 3 (although their credible intervals

contain 0). This suggests that individuals are more likely to be patrons of their local corner store

and a supermarket than their local corner store and another non-supermarket. When considering

this result and the locations of the study stores (presented in Figure 2.1), we note that the the

intervention stores have twelve non-supermarkets within close proximity, compared to six for the

comparison stores. This higher density of rival, non-supermarket stores may have contributed to a

non-significant intervention effect, as there is more competition among these stores. Additionally,

transportation type and frequency of visit to the rival stores were not found to be associated with

the outcome.

Finally, the posterior estimates of the spatial random effects of the coregionalization and inde-

pendent models are provided in Figures 2.3 and 2.4. In both cases, the rival store random effects

identify five stores with positive random effects. Further work is needed understand what qualities

of these stores can explain such results. We note that while the intercept term in the independent

model is closer to 0, the negative random effects in the independent case are negative, suggesting

that the mean has simply been absorbed into the random effect term.

Evidence of process independence can be seen in the 95% Credible Interval for the A21 param-
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eter, which in both models contains 0.
Table 2.3: Results of Logistic Model Predicting Store Patronage

Model 1 Model 2 Model 3 Model 4
M (95% CI) M (95% CI) M (95% CI) M (95% CI)

Intercept -5.92 (-6.2, -5.64) -0.07 (-0.41, 0.19) -4.63 (-7.05, 0.05) -6.08 (-7.15, -4.88)
Male -0.04 (-0.19, 0.11) -0.05 (-0.20, 0.04) -0.11 (-0.28, 0.03) -0.13 (-0.29, 0.03)
Household Size -0.02 (-0.05, 0.01) 0.01 (-0.02, 0.04) 0.01 (-0.02, 0.04) 0.01 (-0.02, 0.04)
Intervention -1.12 (-1.32, -0.92) -0.03 (-0.37, 0.20) -1.11 (-2.49, 0.07) -1.29 (-2.32, -0.33)
Followup 0.01 (-0.13, 0.15) 0.01 (-0.09, 0.10) 0.00 (-0.15, 0.14) -0.01 (-0.16, 0.14)
Intervention×Followup 0.13 (-0.14, 0.41) 0.03 (-0.08, 0.23) 0.12 (-0.13, 0.41) 0.14 (-0.14, 0.42)
Supermarket 2.32 (2.09, 2.56) 0.09 (-0.09, 0.86) 1.42 (-0.03, 2.54) 1.71 (0.82, 2.57)
Transportation

Don’t go (ref)
Drive 0.52 (-1.05, 2.10) -0.01 (-0.18, 0.13) -0.03 (-1.46, 1.37) -0.03 (-1.60, 1.54)
Walk/Public Trans. -0.04 (-1.62, 1.56) -0.05 (-0.36, 0.08) -0.27 (-1.77, 1.11) -0.32 (-1.90, 1.28)
Taxi/Ride 0.52 (-1.07, 2.12) -0.02 (-0.24, 0.13) -0.10 (-1.56, 1.29) -0.11 (-1.71, 1.47)
Other 0.80 (-0.94, 2.52) 0.02 (-0.19, 0.32) 0.24 (-1.31, 1.84) 0.30 (-1.43, 2.03)

Freq. of Visit
Don’t go (ref)
Low 0.52 (-1.09, 2.12) -0.06 (-0.40, 0.07) -0.30 (-1.79, 1.08) -0.37 (-1.96, 1.23)
Medium 0.64 (-0.94, 2.21) -0.02 (-0.19, 0.11) -0.03 (-1.43, 1.39) -0.03 (-1.60, 1.54)
High 0.62 (-1.12, 2.34) 0.01 (-0.20, 0.26) 0.10 (-1.44, 1.69) 0.12 (-1.61, 1.84)

σ 2.05 (1.38, 3.16) 0.10 (0.01, 0.40) 1.55 (0.02, 2.96) 1.99 (1.29, 3.11)
φ1 3.51 (1.5, 5.39) 1.35 (0.49, 1.87) 3.65 (1.66, 5.39)
φ2 1.32 (0.57, 2.07) 1.32 (0.57, 2.07)
A11 6.11 (3.54, 9.43) 1.02 (0.46, 3.45) 0.72 (0.42, 1.28)
A21 0.00 (0.00, 0.00) -0.17 (-1.52, 2.47) -0.39 (-1.29, 0.69)
A22 1.86 (1.39, 2.49) 1.77 (1.02, 3.74) 1.29 (0.87, 1.77)
WAIC 10281.6 8420.9 8428.2 8426.5

Figure 2.3: Corner and Rival Store Random Effects from the Coregionalization Model
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Figure 2.4: Corner and Rival Store Random Effects from the Independent Model

In the linear models predicting percent of food budget spent on FV presented in Table 2.4, there

is little evidence of spatial association in the outcome, as the non-spatial model fits better than

the separable and coregionalization model and is very similar to the independent model. While the

independent model shows a slight improvement to model fit, this may be due to simply adding a

random effect term. The poorer model fit of 3 and 4 suggests that permitting association between

the two spatial random effects is not appropriate in this instance. Interpreting the coefficients from

the independent spatial model, we find that men spent on average about 5% less on FV than women

and Spanish speakers spent about 5% more on FV than non-Spanish speakers. No differences by

WIC participation, food budget, store type, or transportation were detected. While there was no

difference between intervention and control sites at either time point, while the interaction term

has a 95% credible interval that contains 0, as a large majority of this interval excludes 0, we note

this may be evidence of a slight, positive intervention effect. Similarly, while the credible interval

contains 0, there may be some evidence that individuals who report shopping at specific stores

more frequently spend 2% less of their food budget on FV.

Comparing the finite population estimates of baseline and follow-up, we see that the addition

of random effects resulted in more variability and an overall decrease in the estimates. However, as

Models 3 and 4 may not be appropriate for this data, we focus on the non-spatial and independent
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spatial models. Comparing these estimates to the averages found from the raw data, 34.99 at

baseline and 34.46 at follow-up, both models agree that the finite population mean is lower than

the sampled data at baseline. At follow-up, the non-spatial model presents a 2% increase, while

the independent spatial model presents a 1.6% decrease. While the apparent disagreement, we note

that the estimate from non-spatial case is contained in the credible interval of the spatial case (as

is the mean from the raw data), and cannot conclude that there is a significant difference.

Table 2.4: Results of Linear Model Predicting Percentage of Food Expenditure Spent on FV

Model 1 Model 2 Model 3 Model 4
M (95% CI) M (95% CI) M (95% CI) M (95% CI)

Intercept 0.35 (0.32, 0.37) 0.12 (-0.03, 0.37) 0.00 (-0.05, 0.06) 0.01 (-0.04, 0.07)
WIC Participant -0.009 (-0.022, 0.004) -0.009 (-0.021, 0.005) -0.008 (-0.021, 0.004) -0.008 (-0.021, 0.004)
Spanish Speaker 0.05 (0.04, 0.06) 0.05 (0.04, 0.06) 0.05 (0.04, 0.06) 0.05 (0.04, 0.06)
Food Budget 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)
Male -0.05 (-0.06, -0.04) -0.05 (-0.06, -0.04) -0.05 (-0.06, -0.03) -0.05 (-0.06, -0.03)
Household Size 0.001 (-0.002, 0.004) 0.001 (-0.002, 0.004) 0.001 (-0.002, 0.004) 0.001 (-0.002, 0.004)
Intervention 0.00 (-0.02, 0.01) 0.01 (-0.04, 0.06) 0.00 (-0.05, 0.06) 0.00 (-0.05, 0.06)
Followup -0.009 (-0.023, 0.006) -0.009 (-0.023, 0.005) -0.01 (-0.024, 0.003) -0.011 (-0.024, 0.003)
Intervention×Followup 0.013 (-0.007, 0.033) 0.014 (-0.004, 0.033) 0.017 (-0.002, 0.036) 0.018 (-0.001, 0.037)
Supermarket 0.00 (-0.02, 0.02) 0.00 (-0.02, 0.02) 0.00 (-0.04, 0.04) 0.00 (-0.04, 0.05)
Transportation

Drive (ref)
Walk/Public Trans. 0.01 (-0.01, 0.02) 0.01 (-0.01, 0.02) 0.01 (-0.01, 0.02) 0.01 (-0.01, 0.02)
Taxi/Ride 0.01 (-0.01, 0.02) 0.01 (-0.01, 0.02) 0.01 (0.00, 0.02) 0.01 (0.00, 0.02)
Other -0.01 (-0.05, 0.03) 0.00 (-0.04, 0.03) 0.00 (-0.03, 0.03) 0.00 (-0.04, 0.03)

Freq. of Visit
Low 0.00 (-0.02, 0.01) 0.00 (-0.02, 0.01) 0.00 (-0.02, 0.01) 0.00 (-0.02, 0.01)
Medium (ref)
High -0.03 (-0.057, -0.003) -0.024 (-0.051, 0.001) -0.02 (-0.045, 0.004) -0.02 (-0.045, 0.004)

σ 0.10 (0.07, 0.15) 0.05 (0.02, 0.13) 0.03 (0.02, 0.04) 0.03 (0.02, 0.04)
σε 0.15 (0.15, 0.16) 0.15 (0.15, 0.16) 0.15 (0.15, 0.16) 0.15 (0.15, 0.16)
φ1 3.12 (1.42, 5.36) 0.51 (0.47, 0.65) 1.64 (1.37, 2.7)
φ2 1.32 (0.57, 2.07) 1.32 (0.57, 2.07)
A11 0.24 (0, 0.61) 0.37 (0.24, 0.58) 0.4 (0.26, 0.64)
A21 0.00 (0.00, 0.00) 0.00 (-0.06, 0.07) 0 (-0.05, 0.06)
A22 0.01 (0, 0.02) 0.18 (0.14, 0.22) 0.17 (0.13, 0.21)
Ȳ (1) ∗ 100% 32.84 (32.47, 33.20) 26.69 (22.06, 33.16) 23.31 (21.46, 25.23) 23.54 (21.65, 25.64)
Ȳ (2) ∗ 100% 36.54 (36.33, 36.74) 32.86 (30.08, 36.70) 30.78 (29.61, 31.96) 30.92 (29.72, 32.22)
WAIC -3293.5 -3296.5 -3276.7 -3272.1

2.6 Discussion

This paper has demonstrated a method for flexible modeling where the researchers suspect that

multiple spatial processes are influencing the outcome. In our case, we hypothesized that there
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might be two spatial processes, one related to the location of an individual’s closest corner store

and another related to the location of other rival stores that an individual shopped at. Both binary

and continuous data were modeled using this technique and in the logistic case, the inclusion of

spatial random effects resulted in significant improvements in model fit compared to the standard

logistic models. By employing coregionalization models, we allowed for, but did not force, spatial

processes to be correlated with one another. In both outcomes, there was no evidence that the

local corner store spatial process and rival store spatial process were correlated.

While much work has been done to describe the food environment and health, regression mod-

els which account for spatial models are not commonly used, particularly if locations are point-

referenced. Specifically, we believe that the use of coregionalization models as a technique to account

for pairs of geographic points (rather than a single point) attributed with one observation may be

beneficial to this field of work. For instance, pairs such as home-work, work-preferred supermarket,

school-advertisements, could all be described using this technique.
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Chapter 3

Multistage Bayesian FPS Models for Spatial Data with

Ignorable Designs

3.1 Introduction

Bayesian finite population survey sampling is essentially model-based (see, e.g., Little 2004). In a

Gaussian setting, Scott and Smith (1969) devised Bayesian hierarchical models for inferring with

two-stage designs, while Malec and Sedransk (1985) extended this framework to general multi-stage

(more than two-stages) models and also discussed handling unknown variances. Our current contri-

bution focuses on incorporating survey sampling designs within (1.6). We extend this framework to

spatial process settings under the context of ignorable sampling designs (Rubin 1976; Sugden and

Smith 1984), where the probability of element selection is assumed independent of the measured

outcome given the design variables. We specifically develop the distribution theory and algorithms

for implementing (1.6) in the context of two-stage designs that encompass simple random, cluster

and stratified sampling (as defined in Cochran, 1977) as special cases. Extension of this work to

multi-stage present no new methodological difficulties, building upon Malec and Sedransk (1985).

The remainder of this chapter evolves as follows. In Section 3.2, we review a general framework

for Bayesian modeling for multi-stage sampling and how simple, two-stage, and stratified random

sampling designs arise as special cases. Section 3.3 presents modeling strategies for spatially corre-

lated data sampled using a two-stage design, the implementation of which, along with the model

proposed by Scott and Smith (1969), is discussed in Section 3.4 using Bayesian exact and Markov

chain Monte Carlo (MCMC) sampling. These models are then applied to simulated data in Sec-

tion 3.5 and then used in an analysis of nitrate levels in California groundwater in Section 3.6. The

chapter concludes with a brief discussion of the results in Section 3.7.
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3.2 Bayesian modeling of multi-stage sampling

Suppose that n samples are randomly drawn from a finite population of size N , n ≤ N and for the

i-th sampled unit, the outcome yi is measured. Without loss of generality, let the set of outcomes

from the finite population be stacked into a vector y = [y>s : y>ns]
>, where ys = [y1, . . . , yn]> and

yns = [yn+1, . . . , yN ]> are vectors of outcome values from the sampled and nonsampled units,

respectively. This vector has corresponding design matrix X = [X>s : X>ns]
>, which observed for

the entire finite population and denotes group membership.

From a superpopulation perspective, we consider the finite population to be a random sample

of size N from an infinitely large population. This superpopulation is assumed to follow a Gaussian

distribution with mean ν and a covariance function defined by parameters θ. In general, we can

construct the following linear regression model:

 ys
yns

 =

Xs

Xns

β +

 εs
εns

 ;

 εs
εns

 ∼ N(
0

0

 ,
 Vs(θ) Vs,ns(θ)

Vns,s(θ) Vns(θ)

) . (3.1)

Bayesian specifications further model β ∼ N(Aν, Vβ), where A and ν are a vector with length equal

to the number of groups and a scalar, respectively, and Vβ is the variance of β. The hierarchy

continues with probabilistic specifications on ν and θ.

Our goal is to estimate linear finite population quantities of the form α>y, where α is a given,

fixed vector of weights defined for the entire population. Suppose ν ∼ N(0, γ2). Define Vβ | ys =

[(γ2AA>+Vβ)−1 +X>s V
−1
s Xs]

−1 and Q = Xns−Vns,sV −1
s Xs. Fixing the variance parameters, the

posterior expectation of the finite population quantity is:

E[α>y | ys] = {α>s + α>ns[Vns,s + α>nsQVβ | ysX
>
s ]V −1

s }ys .

Defining BV = Vns,s +QVβ | ysX
>
s , the variance of this expectation is:

Var[E[α>y | ys]] = α>s Vsαs + 2α>s B
>
V αns + α>nsBV V

−1
s B>V αns .
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Additionally, the posterior variance of α>y is:

Var[α>y | ys] = α>ns(QVβ | ysQ
> + Vns − Vns,sV −1

s Vs,ns)αns .

For the special case of a census, in which all members of the population are sampled, e.g.

ys = y, the conditional expectation of the finite population quantity is finite population consistent,

in the sense that E[α>y | ys] = E[α>y | y] = α>y. Different sampling designs can incorporated

by appropriately structuring the sampled and nonsampled elements. We provide a few examples

below. All derivations can be located in the supplementary materials.

Example 1 Simple Random Sampling

In simple random sampling, n units are randomly drawn from a population of size N , where

each unit in the population is independent and identically distributed with mean µ and variance σ2.

To express this as in (3.1), define ys = [y1, . . . , yn]> and yns = [yn+1, . . . , yN ]>, with corresponding

design matrices Xs = 1n and Xns = 1N−n, respectively, where 1n represents the n × 1 vector of

ones. Let A = 1 and take β to be a scalar µ with mean ν = 0 and variance Vβ = ξ2. Additionally,

let Vs = σ2In, Vns = σ2IN−n, and Vs,ns = V >ns,s = O, where O is a matrix of zeroes of appropriate

order. Define finite population weights α = [α1, . . . , αN ]>. Fixing the variance parameters, the

posterior expectation of α>y is:

E[α>y | ys] =
n∑
i=1

(
αi +

∑N
i=n+1 αi
σ2

ξ2 + n

)
yi (3.2)

�

Example 2 Two-Stage Sampling

In a more complex case, suppose that the population is divided into N distinct groups defined

by geography or other characteristics, with the i-th group of size Mi. Assume that within the i-th

group, each unit is independent and identically distributed with mean µi and variance σ2
i . The

group means µ1, . . . , µN are independent and follow a normal distribution centered at ν with a

variance of δ2, hence β = µ = [µ1, . . . , µN ]>, A = 1N and Vβ = δ2IN . Suppose that only n of

the N groups are randomly sampled, where n ≤ N . Without loss of generality, take the first n
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groups to be sampled, and then within the chosen i-th group, mi units are randomly selected;

mi ≤ Mi, i = 1, . . . , n. As N − n groups are not sampled, the number of observed units in these

groups are zero, e.g. mi = 0, i = n+ 1, . . . , N . Hence, we can define the number of sampled units

as k =
∑N

i=1mi =
∑n

i=1mi, the number of unsampled units as K =
∑N

i=1(Mi − mi), and the

population total to be T = K + k =
∑N

i=1Mi.

To examine (3.1) in the context of a two-stage design, define outcome vectors ys = [y>1 , . . . , y
>
n ]>

and yns = [y∗>1 , . . . , y∗>N ]>, with ith components yi = [yi1, . . . , yimi ]
> and y∗i = [yimi+1, . . . , yiMi ]

>,

respectively. The design matrix for the sampled units can be modified by fixing the k ×N matrix

Xs = [⊕ni=11mi : O], reflecting thatN−n of theN sites are unobserved. Similarly, for the unobserved

units, define Xns as a block diagonal, K × N matrix with upper block [⊕ni=11Mi−mi ] and lower

block [⊕Ni=n+11Mi−mi ]. For notational convenience, we also define Xs1 = [⊕ni=11mi ] and divide the

group mean vector µ into sampled, µs = [µ1, . . . , µn]>, and nonsampled, µns = [µn+1, . . . , µN ]>,

components such that µ = [µ>s , µ
>
ns]
>. Note that distributional mean of ys, Xs1Nµ, can be simplified

to Xs11nµs, as the mean of the sampled units does not depend on µns. Define the sampled and

nonsampled covariance matrices to be Vs = V
(σ)
s = [⊕ni=1σ

2
i Imi ] and Vns = V

(σ)
ns = [⊕Ni=1σ

2
i IMi−mi ],

respectively, and set Vs,ns = V >ns,s = O. Additionally, define V (σ) =

V (σ)
s O

O V
(σ)
ns

.

To make this model fully Bayesian, let ν ∼ N(0, γ2) and δ2 ∼ IG(a, b). As our interest lies in

estimating αT y, we can derive the posterior distributions of p(δ2 | ys) and p(ν | ys) for exact sampling

of the superpopulation parameters, the details of which are provided in Section 3.4.2. This approach

yields results similar to those derived by Scott and Smith (1969), but has the added strength of

including a prior distribution on ν, and Ghosh and Meeden (1997), who replaced distributional

assumptions with the assumption of posterior linearity and fixed the variance parameters.

In the two-stage case, for a set of weights α = [α11, . . . , αNMN
]>, define the group mean of

sampled units as ȳi = 1
mi

∑mi
j=1 yij , i = 1, . . . , n, and the group weight of nonsampled units as αi =∑Mi

j=mi+1 αij , i = 1, . . . , N . Also, let γ̃2 = γ2/δ2 and define λi = δ2/(δ2 + σ2
i /mi) if i ∈ {1, . . . , n}

and λi = 0 if i ∈ {n + 1, . . . , N}. Fixing all variance parameters, the expected value of the finite
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population estimate is

E[α>y | ys] =
n∑
i=1

mi∑
j=1

(
αij +

[
αi +

∑N
i=1 αi(1− λi)

1/γ̃2 +
∑n

i=1 λi

]
λi
mi

)
yij (3.3)

Additionally, the two-stage case can be extended to a three-stage case by assuming that the jth

element of the ith group has m∗ij subelements. Malec and Sedransk (1985) derive posterior distri-

butions for the means for a three-stage sampling scheme and provide a framework to extend this

to data with t stages of sampling. �

Example 3 Stratified Random Sampling

Stratified sampling is a special case of two-stage sampling where all groups are sampled (e.g.

n = N and mi > 0, i = 1, . . . , N), and, therefore, considering the same population described

in Example 2, the number of sampled units is k =
∑N

i=1mi, the number of nonsampled units

is K =
∑N

i=1(Mi − mi), and the population total is again T = K + k =
∑N

i=1Mi. Thus, to

express this design as (3.1), let ys = [y>1 , . . . , y
>
N ]> and yns = [y∗>1 , . . . , y∗>N ]>, with ith components,

yi = [yi1, . . . , yimi ]
> and y∗i = [yimi+1, . . . , yiMi ]

>, respectively. To reflect a membership to one of

N groups, we take Xs = [⊕Ni=11mi ], Xns = [⊕Ni=11Mi−mi ], β = µ = [µ1, . . . , µN ]>, and A = 1N .

The variance components also reflect this and are defined as Vβ = δ2IN , Vs = [⊕Ni=1σ
2
i Imi ], Vns =

[⊕Ni=1σ
2
i IMi−mi ], and Vs,ns = V >ns,s = O.

The posterior expectation of α>y is given by (3.3), noting that n = N and λi = δ2

δ2+σ2
i /mi

,

i = 1, ..., N , is well-defined as mi > 0 for all i. In fact, if non-informative priors are taken for the

means, e.g. γ2 → ∞ and δ2 → ∞, then λi → 1, i = 1, . . . , n and the stratified finite population

mean is E

[
1

T
1>T y | ys

]
=

N∑
i=1

Mi

T
ȳi, (see, e.g. Little, 2004). �

3.3 Bayesian spatial process modeling for multi-stage

sampling

Extending Example 2 to a geographic context, our spatial domain comprises N regions. Let `ij

denote the j-th location in region i. The finite population is described by values y(`ij), i = 1, . . . , N
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and j = 1, . . . ,Mi. Let ys be the k × 1 vector corresponding to measurements from the sampled

locations and yns be the K × 1 vector of unsampled measurements. Consider the following spatial

regression model for the two-stage finite population,

y(`ij) = µ(`ij) + ω(`ij) + ε(`ij) ;ω ∼ N(0,Ω) ; ε ∼ N(0, V (σ)) , (3.4)

where µ(`ij) is the mean of the outcome at `ij , ω = [ω>s : ω>ns]
> and ε = [ε>s : ε>ns]

> are T × 1

vectors formed by stacking up ω(`ij)’s and ε(`ij)’s, respectively (analogous to y in Example 2).

Here, ω accounts for spatial effects and Ω is the T × T spatial covariance matrix constructed with

C(dab) and is partitioned as Ω =

 Ωs Ωs,ns

Ωns,s Ωns

. Introducing spatial effects in Example 2 yields

µ(`ij) = µi, Vs = Ωs + V
(σ)
s , Vns = Ωns + V

(σ)
ns , and Vs,ns = V >ns,s = Ωs,ns in (3.1). This also

accommodates spatial versions of Examples1 and 3 by setting N = 1 and N = n, respectively.

Analogous to (3.3), the posterior estimate of a linear function of the population values is

E[α>y | ys] =
n∑
i=1

mi∑
j=1

(
αij + α>ns

{
Ωns,sQs + [Xns − Ωns,sQ

−1
s Xs]×

(
1
δ2 IN +X>s Q

−1
s Xs

)−1

×

[
X>s Q

−1
s +

1
δ2 1N1>NX

>
s (δ2XsX

>
s +Qs)

−1

1
γ2 +

∑n
i=1 λ

∗
i

]}
qij

)
y(`ij) ,

(3.5)

where λ∗> = [λ∗1 . . . , λ
∗
N ] = 1>NX

>
s (δ2XsX

>
s + Ωs + V

(σ)
s )−1Xs, Qs = Ωs + V

(σ)
s , and qij is a set

of k indicator vectors of length k, i = 1, . . . , n, j = 1, . . . ,mi. For i = 1, q1j = j and 0 elsewhere,

and if i > 1, qij is 1 at element
∑i−1

i=1mi + j and 0 elsewhere. This two-stage spatial model, (3.4),

can be written as an intercept-only spatial model by setting µ(`ij) = µ and σ2
i = σ2, i = 1, . . . , N ,

i.e., simplifying V (σ) to σ2IT . As region is not accounted for, the design matrices Xs and Xns are

replaced with 1k and 1K , respectively.

However, as the size of the finite population, T , grows, the scaleability of (3.4) diminishes due to

an increased computational burden stemming from the inversion of the T ×T matrix Ω. To address

this, we also consider a more computationally efficient model which also allows for region specific

means, but specifies that each region is defined by its own process parameters and is independent
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from all other regions. To reflect this regional independence, we specify the covariance function

specifying the spatial process ω(`) in (3.4) to be 0 for any two points in different regions, and equal

to the value of the Matérn covariance function for any two points within the same region.

Comparing the finite populations estimates given in (3.3) and (3.5), it is evident that accounting

for spatial variation results in a more complex equation, as all observed and unobserved outcome

values in a population can no longer be assumed to be independent conditional on the group means.

This can also be seen in the calculation of the λ parameters, which in the two-stage model, are a

simple ratio of variances. In the spatial case, however, the complexity of the parameters is increased

by the addition of the spatial covariance matrix.

3.4 Model Implementation and Assessment

3.4.1 General framework

A Bayesian linear model corresponding to the likelihood of the sampled data in (3.1) is

p(θ, ν, β | ys) ∝ p(θ)×N(ν | 0, Vν)×N(β |Aν, Vβ)×N(ys |Xsβ, Vs(θ)) . (3.6)

We use Markov chain Monte Carlo algorithms (see, e.g. Robert and Casella, 2004) for sampling

from (3.6). Subsequeny Bayesian inference for yns is available in posterior predictive fashion by

drawing samples from

p(yns | ys) =

∫
p(yns | ys, θ, ν, β)× p(θ, ν, β | ys) dθ dν dβ . (3.7)

Using the conditional independence of parameters in (3.1), we obtain p(yns | ys, θ, ν, β) = N(yns |µns | s, Vns | s),

where µns | s = Xnsβ + Vns,s(θ)Vs(θ)
−1(ys − Xsβ) and Vns | s = Vns(θ) − Vns,s(θ)Vs(θ)

−1Vs,ns(θ).

Therefore, sampling from (3.7) is achieved by drawing one {β, θ} from (3.6) followed by one

yns ∼ N(Xnsβ, Vns(θ)), for each posterior sample of {β, θ}. The resulting samples provide inference

on the nonsampled group means µns and Bayesian imputation for the nonsampled population units,

yns.
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These samples from the posterior predictive distribution can be used to obtain posterior finite

population estimates of the form α>y. We consider four models using (3.6).

Model 1. Two-Stage

For the model provided in Example 2, we take θ = [γ2, δ2, σ2
1, . . . , σ

2
N ]>, p(θ) = IG(γ2 | aγ , bγ) ×

IG(δ2 | aδ, bδ)×
∏N
i=1 IG(σ2

i | aσi , bσi) in (3.6), and follow the other specifications as in the two-stage

setting in Example 2.

As the priors have been chosen to be fully conjugate, one can derive the full posterior conditional

distributions for each of the parameters. Specifically, the variance parameters will have posterior

distributions of the form IG(a∗, b∗), while the rest of the parameters will have posterior distributions

of the form N(Mm,M). However, as only n of the N groups are observed, the variance terms of

the unsampled groups, σ2
n+1, . . . , σ

2
N , must either be fixed or given informative priors. If not, draws

from the posterior predictive distribution corresponding to units in the nonsampled groups will

have arbitrary variability and could spuriously dominate the finite population estimates.

Model 2. Spatial

Under (3.6), the intercept-only spatial model defines θ = [φ, δ2, σ2, τ2]> with corresponding prior

distribution p(θ) = p(φ) × IG(δ2 | aδ, bδ) × IG(σ2 | aσ, bσ) × IG(τ2 | aτ , bτ ) and Vβ = δ2, Vs =

Ωs + σ2Ik. As there are no group terms, replace Xs with 1k and take ν = 0 with probability 1, e.g.

V −1
ν = 0.

Unlike model 1, regardless of the prior distribution placed on p(φ), a closed-form posterior

distribution cannot be found for φ. In practice, φ is often fixed using an estimate found from a

variogram and then full posterior conditional distributions can be found using the same techniques

described for the non-spatial case. However, MCMC can still be implemented by specifying a prior

distribution for φ (Banerjee et al. 2014), which is often taken to be a uniform distribution.

To recover the spatial effects ω absorbed into the variance parameter of y, note that β = µs and

p(ω | y, θ, µs) ∝ N(ω | 0,Ω) × N(y | 1Tµs + ω, σ2IT ) ∝ N(Mωmω,Mω), where mω = 1
σ2 (y − 1Tµs)

and Mω = (Ω−1 + 1
σ2 IT )−1. Thus, drawing one ω ∼ N(Mωmω,Mω) for each posterior sample of

{θ, µs, yns} will result in a set of posterior samples of ω.

Model 3. Two-Stage + Spatial

The spatial model in (3.4) can be rewritten using (3.6) by letting θ = [φ, γ2, δ2, τ2, σ2
1, . . . , σ

2
N ]>,
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with p(θ) = p(φ)× IG(γ2 | aγ , bγ)× IG(δ2 | aδ, bδ)× IG(τ2 | aτ , bτ )×
∏N
i=1 IG(σ2

i | aσi , bσi), Vν = γ2,

Vβ = δ2IN , A = 1N , Vs = Ωs + V
(σ)
s , and β = µ. After posterior samples of {θ, µ, yns} are drawn

as described in (3.7), posterior samples of the spatial effects can be recovered by sampling one

ω ∼ N(Mω2mω2,Mω2) for each posterior sample of {θ, µ, yns}, where mω2 = V (σ)−1(y −Xµ) and

Mω2 = (Ω−1 + V (σ)−1)−1.

Model 4. Regional Spatial

To rewrite the region-specific spatial model given using (3.6), let Vν = γ2, Vβ = δ2IN , A = 1N ,

Vs = Ωs∗ + V
(σ)
s , and β = µ. Also take θ = [φ1, . . . , φN , γ

2, δ2, τ2
1 , . . . , τ

2
N , σ

2
1, . . . , σ

2
N ]> with

p(θ) =
∏N
i=1 p(φi)× IG(γ2 | aγ , bγ)× IG(δ2 | aδ, bδ)×

∏N
i=1 IG(τ2

i | aτi , bτi)×
∏N
i=1 IG(σ2

i | aσi , bσi).

Similar to model 1, as not all locations are sampled, informative priors must be placed on the

φn+1, . . . , φN spatial decay parameters. Additionally, to recover posterior samples of ω, sample one

ω ∼ N(Mω3mω3,Mω3) for each posterior sample of {θ, µ, yns} drawn using (3.7), where mω3 =

V (σ)−1(y −Xµ) and Mω3 = (Ω−1
∗ + V (σ)−1)−1.

To achieve computation efficiency, redefine y = [y>1 , y
∗>
1 , . . . , y>n , y

∗>
n , y∗>n+1, . . . y

∗>
N ]> so that the

outcome is organized by region and then Ω∗ becomes a T × T block diagonal matrix composed of

N blocks. This allows us to instead invert N covariance matrices of size M1 ×M1, . . . ,MN ×MN ,

rather than one T × T matrix, in the estimation of ω.

3.4.2 Exact Monte Carlo Estimation

If we are able to provide reasonable fixed values of the parameters, (3.1) can be simplified into a

conjugate Bayesian linear model resembling:

IG(δ2 | a, b)×N(ν | 0, δ2Ṽν)×N(β |Aν, δ2Ṽβ)×N(ys |Xβ, δ2Ṽs) . (3.8)

For a model such as this, the components a, b, Ṽν , Ṽβ, and Ṽs are fixed, reducing the model to three

unknown parameters, δ2, ν, and β. Thus, we can avoid MCMC and sample from the joint posterior

p(δ2, ν, β | ys) using the following steps. First sample δ2 from p(δ2 | y−S) = IG(a∗, b∗) and then for

each δ2 drawn, draw a corresponding ν from N(Mνmν , δ
2Mν). Next, for each pair of {δ2, ν}, draw

β from N(Mβmβ, δ
2Mβ) (see the Supporting Information for details). As an example, we recast

41



each model presented in Section 3.4.1 in the form of (3.8) and derive the posterior conditional

distributions for model 1 and model 2, details of which are provided in the Appendix at the end of

this chapter.

Model 1. Two-Stage

To create a conjugate Bayesian model such as (3.8) from the non-spatial model, define A = 1N ,

Ṽν = γ̃2 = γ2

δ2 , Ṽβ = IN , and Ṽs = Ṽ
(σ)
s = [⊕ni=1

σ2
i
δ2 Imi ]. Noting that p(ν | ys) ∝ N(ν | 0, δ2γ̃2) ×

N(ys |Xs11nν, δ
2[Xs1X

>
s1 + Ṽ

(σ)
s ]) a little algebra reveals

ν | ys, δ2 ∼ N(ν | c, δ2d) , (3.9)

where c =
∑n
i=1 λiȳi

1
γ̃2 +

∑n
i=1 λi

and d =
[

1
γ̃2 +

∑n
i=1 λi

]−1
. The mean of the posterior distribution, c, is the

weighted average of the sampled group means, where each mean is weighted by a function of each

group’s element-wise variance. Integrating out ν and µ from p(δ2, ν, µ | ys) yields p(δ2 | ys), which

is:

δ2 | ys ∼ IG

(
a+

k

2
, b+

1

2

[
y>s (Xs1X

>
s1 + Ṽ (σ)

s )−1ys +
c2

d

])
. (3.10)

Taking the limits of c and d as γ̃2 →∞ (e.g. γ2 →∞) we recover the findings of Scott and Smith

(1969), who assigned p(ν) ∝ 1:

lim
γ̃2→∞

c =

∑n
i=1 λiȳi∑n
i=1 λi

and lim
γ̃2→∞

δ2d =
δ2∑n
i=1 λi

.

As p(µs | ys, δ2, ν) ∝ N(µs | ν1n, δ
2In)×N(ys |Xs1µs, δ

2Ṽ
(σ)
s ) we have that:

µs | ys, ν, δ2 ∼ N(µs | c∗, δ2d∗) , (3.11)

where c∗ =


(1− λ1)ν + λ1ȳ1

...

(1− λn)ν + λnȳn

 and d∗ =

[
⊕ni=1(1− λi)

]
. The posterior mean is appealing for

interpretation, as its i-th element is the weighted average of the i-th group’s sample mean and

the superpopulation mean estimate. Finally, note that µns | ys, ν, δ2 ∼ N(µns | ν, δ2IN−n), as ys

provides no information pertaining to the nonsampled groups.
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Model 2. Spatial

The spatial model can be recast as (3.8) by defining Ṽ −1
ν = 0 and Ṽs = Ω̃s = 1

δ2 Ωs + Ik, where Ṽβ

is fixed to 1. Defining VΩ̃s
= (1 + 1>k Ω̃−1

s 1k)
−1, the posterior conditionals are:

δ2 | ys ∼ IG
[
a+

k

2
, b+

1

2
y>s

(
Ω̃−1
s − Ω̃−1

s 1kVΩ̃s
1>k Ω̃−1

s

)
ys

]
and (3.12)

µs | ys, δ2 ∼ N

[
VΩ̃s

1>k Ω̃−1
s ys, δ

2VΩ̃s

]
. (3.13)

Model 3. Two-Stage + Spatial

The form of (3.8) is achieved by defining Ṽν = γ̃2, Ṽβ = IN , A = 1N , and Ṽs = 1
δ2 Ωs + Ṽ

(σ)
s .

Model 4. Regional Spatial

The form of (3.8) is achieved by defining Ṽν = γ̃2, Ṽβ = IN , A = 1N , and Ṽs = 1
δ2 Ωs∗ + Ṽ

(σ)
s .

3.4.3 Model Comparison and Assessment

Model fit was evaluated in two ways. In general, consider a sample of size k drawn from a

population of size T with outcome y = [y>s : y>ns]
>. Without loss of generality, say yh ∈ ys

if h = 1, . . . , k and yh ∈ yns if h = k + 1, . . . , T . First we evaluate the predictive accuracy

of the models using the Watanabe-Akaike Information Criteria (WAIC), which is expressed as

WAIC = −2êlpd = −2(l̂pd+ p̂WAIC) in Vehtari et al. (2017), where êlpd is the estimated expected

log pointwise predictive density and is multiplied by −2 to be on the deviance scale. To calculate

this, at each iteration, l = 1, . . . , L, p(yh |Θ(l)) is computed; the likelihood of each observed value

conditional on that iteration’s parameters. The estimated log pointwise predictive density is the

sum of the log average likelihood for each observation, l̂pd =
∑k

h=1 log
[

1
L

∑L
l=1 p(yh |Θ(l))

]
. The

sample variance of the log-likelihood for each observation is s2
lp(yh) = 1

L−1

∑L
l=1

[
log(p(yh |Θ(l)))−

1
L

∑L
l=1 log(p(yh |Θ(l)))

]2
and the estimated effective number of parameters is the sum of these

variances: p̂WAIC =
∑k

h=1 s
2
lp(yh). To calculate the standard error of the WAIC, rewrite −2(l̂pd+

p̂WAIC) = −2
∑k

h=1 êlpdh =
∑k

h=1

{
log
[

1
L

∑L
l=1 p(yh |Θ(l))

]
+s2

lp(yh)

}
. Under the assumption that

each êlpdh is independent, the sample variance of each individual êlpdh is s2
elpd,ind = 1

N−1

∑k
h=1

[
êlpdh−

1
k

∑k
h=1 êlpdh

]
. Then SE(WAIC) =

√
V ar(−2

∑k
h=1 êlpdh) = 2

√
nV ar(êlpdh) = 2selpd,ind

√
n.
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Second, for simulated data the true values y = [ys : yns]
> are known and so we compare

these with replicated datasets, y
(l)
rep = [y

(l)
rep,1 . . . y

(l)
rep,k]

>, generated from the pointwise posterior

predictive distribution at each iteration l. These are used to formulate the goodness of fit mea-

surement D = G + P described in Gelfand and Ghosh (1998), composed of an error sum of

squares term and a penalty term for large predictive variances. For L iterations, G =
∑k

h=1(yh −

E[yrep,h | ys])2 and P =
∑k

h=1 var(yrep,h | ys). We approximate E[yrep,h | ys] ≈ 1
L

∑L
l=1 y

(l)
rep,h and

var(yrep,h | ys) ≈ 1
L−1

∑L
l=1(y

(l)
rep,h −

1
L

∑L
l=1 y

(l)
rep,h)2. For non-simulated datasets, where yns is un-

known, D can still be calculated by restricting the replicate datasets to the observed units, ys, e.g.

y
(l)
rep = [y

(l)
rep,1 . . . y

(l)
rep,k]

>, at the l-th iteration.

3.5 Simulation

3.5.1 Data Generation

To simulate spatial correlation and allow for two-stage random sampling, a unit square was divided

into 100 equally sized square regions and 2,500 locations were randomly drawn from the unit square.

Data was simulated from the intercept-only spatial model described in Model 2 with µ = 2. A

distance matrix for all points was constructed and used to create a covariance matrix that reflects

an exponential covariance function described in Section 3.3, where φ was assigned a value of 10,

reflecting an effective spatial range of 3/10. The spatial variance, τ2, was fixed at 9, while the

non-spatial variance, σ2, was set to 4. After a dataset was generated, a cluster random sampling

scheme was implemented. 25 regions were randomly selected and then in each cluster, a random

number of individuals were selected (the minimum and maximum percent of those selected from a

region was set to be 20% and 90%, respectively). 20 datasets containing information of both the

sampled and nonsampled units were generated in this way. To examine Models 1 and 4 for larger

dataset, this process was then repeated with the same parameters to generate 20 datasets with

8,100 locations from 324 regions, where 81 regions were randomly sampled. All data generation

and analyses were performed using R version 3.5.1 (R Core Team, 2018).
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3.5.2 Exact Monte Carlo Simulation

To perform the two-stage procedure using the conditional distributions and methods described

in Section 3.4.2, sample means, µ̂i, and sample variances, σ̂2
i , were calculated from each ob-

served region, i = 1, . . . , 25. The variance matrix of the sampled units was fixed to be Ṽ
(σ)
s =[

⊕ni=1
σ̂2
i

Var(µ̂)Imi

]
where Var(µ̂) represents the sample variance of the observed sample means. Similar

to fixing V
(σ)
s , the variance matrix of the nonsampled units was fixed at Vns =

[
⊕Ni=1

σ̃2
i

Var(µ̂)IMi−mi

]
,

where σ̃2
i = σ̂2

i if i ∈ {1, . . . , n} and σ̃2
i = 1

n

∑n
i=1 σ̂

2
i if i ∈ {n+1, . . . , N}. The value of γ2 was fixed

to be half of the value of δ2, reflecting the belief that there was less variability in the population

mean than between group means. The prior distribution for δ2 was assigned to be IG(3, 5). Sam-

pling from the posterior was performed using the conditional distributions and methods described

in Section 3.4.2. At each iteration g, the population mean estimate for that iteration was then

calculated as ȳ(g) = 1
T

(∑n
i=1

∑mi
j=1 yij +

∑N
i=1

∑Mi
j=mi+1 y

(g)
ij

)
.

As we have fixed the ratios of all variance components, we have also fixed λ̃i = Var(µ̂)/(Var(µ̂)+

σ̂2
i /mi) if i ∈ (1, . . . , n) and λ̃i = 0 if i ∈ (n + 1, . . . , N).. Define c =

∑n
i=1 λ̃iȳi

1
2

+
∑n
i=1 λ̃i

, d =
[

1
2 +

∑n
i=1 λ̃i

]−1
, c∗(g) =


(1− λ̃1)ν(g) + λ̃1ȳ1

...

(1− λ̃n)ν(g) + λ̃nȳn

, and d∗ =

[
⊕ni=1(1− λ̃i)

]
. The following procedure was

implemented to produce posterior estimates of the population mean, ȳ(g), for G iterations.
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for(g in 1:G){

δ2(g) ∼ IG

(
3 +

1

2

n∑
i=1

mi, 5 +
1

2

[
y>s (Ṽ (σ)

s +XsX
>
s )−1ys +

c2

d

])

ν(g) ∼ N(c, δ2(g)d)

µ(g)
s ∼ N(c∗(g), δ2(g)d∗)

µ(g)
ns ∼ N(ν(g)1n, δ

2(g)IN−n)

y(g)
ns ∼ N(Xnsµ

(g), δ2(g)Ṽns)

ȳ(g) =
1

T

( n∑
i=1

mi∑
j=1

yij +
N∑
i=1

Mi∑
j=mi+1

y
(g)
ij

)
}

To perform the spatial random effect procedure, φ was set to its true value of 10 and the ratio

of δ2/τ2 to its true value of 4/9. The posterior conditionals of δ2 | ys and µs | ys, δ2, (3.12) and

(3.13) respectively, were sampled as outlined in Section 3.3. This sampling and the prediction of

yns was performed using commands from the spBayes R package (Finley et al., 2015, 2007). The

population mean estimate was calculated using the technique described in the non-spatial sampling

case above.

Figure 3.1: Centered Population Mean Estimates from 2 Exact Models with 95% CI

Figure 3.1 plots population average-centered mean estimates and 95% credible intervals from
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both methods applied to the twenty simulated datasets. While the spatial cases consistently have

a smaller credible interval, their point estimates are similar to the two-stage case. However, as the

ratio of spatial and non-spatial variance is fixed for this method, this may result in a reduction in

the overall variance of the population mean. Posterior mean estimates and their associated 95%

credible intervals of the superpopulation parameters and finite population mean, ȳ, from the first

generated dataset are given in Table 3.1, along with the WAIC, its standard error, and D values.

While both models have similar estimates for ν, the two-stage model overestimates the non-spatial

variance. This is expected, as we know that there is additional variance due to spatial correlation

that is not being accounted for otherwise in the model. Similarly, both measures of goodness of fit

prefer the spatial model.

Table 3.1: Comparison of Parameter Estimation and Model Fit in Two Exact Models

Two-Stage Spatial
ν (2) 2.60 (1.55, 3.58) 2.79 (1.36, 4.23)
δ2 (4) 6.36 (5.47, 7.45) 3.84 (3.35, 4.43)
τ 2 (9) — 8.65 (7.53, 9.96)
ȳ (2.60) 2.66 (7.53, 9.96) 2.92 (7.53, 9.96)
WAIC 1803.83 (25.52) 1686.7 (27.6)
D = G + P 66100.83=34203.26+31897.56 45335.54=22875.45+22460.08

3.5.3 Markov Chain Monte Carlo Simulation

To explore these findings further, we implemented the four models described in Section 3.4 using

the JAGS software in R on the same generated datasets. Models were run for 650 iterations with

50 burn-in, as examination of individual trace plots suggested sufficient mixing and convergence of

the non-spatial parameters. At each iteration g, estimates of the nonsampled units were drawn and

estimates for the population mean, ȳ(g) = 1
T

(∑n
i=1

∑mi
j=1 yij+

∑N
i=1

∑Mi
j=mi+1 y

(g)
ij

)
were calculated.

All variance parameters (σ2, τ2, and δ2, as well as site-specific variances such as σ2
i and τ2

i ) were

given an inverse-gamma prior with shape 2 and scale 10, reflecting a weakly-informative prior

distribution with mean 10. There is a substantial literature in theoretical spatial statistics regarding

the identifiability, or lack there of, of the spatial process parameters, hence, non-informative or
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completely flat priors are excluded from consideration. The prior families and specifics we use are

fairly customary in spatial modeling. They exploit some information about the spatial domain and

the extent of spatial association that can be detected from finite samples using variograms. For

example, in practice, given a real data set, we would pass the data through an exploratory analysis

tool, such as a variogram, glean some information about the spatial variance component and the

measurement error component, and use the weakly informative centered inverse-gamma priors to

reflect these values. In addition, ν was given a flat prior to not inform the estimation of the mean

and all φ parameters were given Uniform(5,15) priors to allow the spatial range to vary from 0.2

(3/15) to 0.6 (3/5). While our priors were chosen to be weakly-informative to be conservative in

estimation, more informative priors could easily be added in a data analysis if additional information

regarding the parameters was known. MCMC sampling was performed using the computer program

JAGS (Plummer, 2017) in R.

When assessing model fit in the first realization of the data with WAIC, the spatial model

performed slightly worse than the rest of the models with a value of 1,912.70 (SE = 26.36). This

may be due to the additional variation which comes from varying the spatial range parameter.

This was followed closely by the two-stage model with 1,870.26 (35.00) , which was outperformed

by both the regional spatial model with 1,202.08 (38.99) and the two-stage + spatial model with

455.67 (17.03). It is interesting that while the data was generated by the spatial model and sampled

by a two-stage framework, neither of these models perform better than the two models which take

both the spatial correlation and study design into account.

Figure 3.2: Centered Population Mean Estimates from 4 MCMC Models with 95% CI
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Figure 3.2 shows the models’ posterior mean estimates of the finite population mean, which

are centered at the true population mean and presented with 95% credible intervals for the 20

simulated datasets. While point estimates remain similar across models, the best fitting model,

Model 3, has the widest credible intervals for the population mean. Accounting for only regional

effects results in tight credible intervals in Models 1 and 4, which are narrow compared to Model 2,

which fails to take into account region specific variability. Table 3.2 compares the finite population

mean estimate, ν estimate, and model fit for the first simulated dataset. Recall that ν = 2 and

the finite population mean was 2.60. Notice that while the true values are included in the credible

intervals for all models, the credible intervals for ν are wider than those of the FP mean.
Table 3.2: Comparison of Estimates and Model Fit from MCMC

Model FP Mean (95% CI) ν (95% CI) WAIC (SE)
1. Two-Stage 2.84 (1.93, 3.67) 2.84 (1.82, 3.82) 1870.26 (35.00)
2. Spatial 3.04 (1.33, 4.56) 3.24 (1.20, 5.01) 1912.70 (26.36)
3. Two-Stage + Spatial 3.11 (-0.86, 6.70) 3.22 (-1.23, 7.33) 455.67 (17.03)
4. Regional Spatial 2.56 (1.74, 3.37) 2.44 (1.49, 3.47) 1202.08 (38.99)

Similar results were found when applying Models 1 and 4 to the larger simulated datasets.

Figure 3.3 recreates the centered mean plots presented in Figure 3.2 for the larger data case, in

which the number of regions is 324. As in the N = 100 case, the point estimates and 95% credible

intervals are similar for the two models. Additionally, the regional spatial model still outperforms

the two-stage model with a WAIC of 1,052 (SE = 38.89) compared to 1,869 (SE = 34.77).

Figure 3.3: Centered Population Mean Estimates from 2 MCMC Models with 95% CI.
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3.6 Data Analysis: Nitrate in Central California Ground-

water

In this section, we provide an analysis of groundwater nitrate content of the Tulare Lake Basin

(TLB) in Central California from the California Ambient Spatio-Temporal Information on Nitrate

in Groundwater (CASTING) Database, which is described in Harter et al. (2017) and Boyle et al.

(2012) and is available as the University of California, Davis, nitrate data in the data repository of

the Groundwater Ambient Monitoring and Assessment Program (2019). Interest lies in identifying

regions in which ground water nitrate levels exceed 45 mg/L, which is the maximum contaminant

level established by the EPA Boyle et al. (2012). At high levels, infants and pregnant women are

more susceptible to nitrate poisoning, which makes it more difficult for oxygen to be distributed to

body and can be fatal to infants less than six months old. Besides human sources such as sewage

disposal, many sources of nitrate are agricultural, such as fertilizer for crops and animal waste

(Harter and Lund, 2012). Because of this, regions with high agricultural activity, such as the TLB,

have experienced rising levels of nitrate over the past few decades. As groundwater, and therefore

nitrate levels in groundwater, can be assumed to be present at all areas of the Central Valley, we can

assume that water samples taken from wells come from a spatial field. Therefore, given a sample of

readings from various wells, our primary goal is to estimate of the finite population average of all

known wells, which represents an overall measure of water-health. Additionally, plots of posterior

predictive distribution may be useful in identifying high-risk regions which exceed the maximum

contaminant level.

The CASTING Database is an extensive collection of nitrate readings from the TLB and Salinas

Valley collected by multiple agencies, over 70% of which were collected between 2000 and 2011.

Of these, most wells had repeated measurements taken over the time. As the Salinas Valley and

the TLB are geographically separate regions of California, only the TLB was included. In order to

avoid associations over time, the data was restricted to a single year. The year 2009 was selected

as variogram plots suggested nitrate levels followed a roughly exponential distribution. While

directional variograms suggested that the measurements may be anisotropic, we continued with the
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methods presented above, recognizing that a model accounting for directional spatial dependence

may provide a better fit to the data.

While the data roughly covers the TLB, we construct a likely sampling scenario in which the

TLB is separated into distinct geographic regions and due constraints (perhaps time or financial),

a random subset of these regions are sampled. In our scenario, zip codes were used as it is common

to collect such geographic information in large scale health surveys, but many alternatives such as

cities or grid-based approach could have also been used. A map of California zip codes tabulation

areas obtained from the tigris R package (Walker, 2018) was overlaid on the approximate geographic

locations of each of the sampled wells, effectively assigning each well to one specific region, defined

by a zip code. 1) Only the most recent observation was taken from each well so that each well

was only represented once. 2) If unique wells had the same geographic coordinates, one was chosen

at random to be removed. 3) Sparse zip codes with less than 10 wells were excluded to ensure

that each selected zip code would have a large sample size and to avoid overfitting when modeling.

These restrictions resulted in a dataset with 6,117 unique wells among 63 zip codes. Nitrate level

had a mean of 37.9 mg/L, standard deviation of 52.3 mg/L, and ranged from 0.0 to 903.1 mg/L.

In order to recreate a cluster sampling scenario, 21 of the zip codes were randomly chosen and

50-90% of the population in that zip code was randomly sampled. This resulted in an observed

sample size of 489 with a mean nitrate level of 34.2 mg/L and a standard deviation of 40.0 mg/L.

The nitrate level ranged from 0.0 to 269.6. Figure 3.4 presents a map of these and surrounding zip

codes, denoting them as either sampled or non-sampled, while all other zip codes are denoted as

excluded.

The variograms provided in Figure 3.5 were fitted to the entire population of wells (left) and

sampled wells (right). For the population variogram, the estimated values of the nugget, partial

sill, and range were 2527.4, 319.9, and 2.29, respectively. For the sample variogram, the estimated

values of the nugget, partial sill, and range were 1808.6, 1014.4, and 335.9, respectively.

Using this sampled data, all four models in Section 3.5.3 were implemented and the results are

shown in Table 3.3. In all models, ν was given a flat prior. For model 1, the regional variance

parameters were given an inverse-gamma prior with shape 2 and scale 1600 to reflect the sample

variance. For the spatial models, a variogram was fit and spatial variances were given an inverse-
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Figure 3.4: Plot of California zip code tabulation areas.

Figure 3.5: Variograms from Population and Sampled Data.

gamma prior with shape 2 and scale 1800. Similarly, non-spatial variance terms were assigned an

inverse-gamma prior with shape 2 and scale 1000. The variance of regional means was assigned

an inverse-gamma prior with shape 2 and scale 10 to allow for small, localized deviations. All φ

parameters were given Uniform(0.01,5) priors to reflect a spatial range varying between 0.6 km

(3/5) and 300 km (3/0.01). MCMC sampling was performed using JAGS (Plummer, 2017) in R
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(R Core Team, 2018).

With respect to the estimate of the true mean nitrate level, only the intercept-only spatial

model contained the true mean value within its 95% credible intervals. However, as evidenced

by the larger mean, standard deviation, and range in the complete dataset, it appears that the

sampled units did not capture some of the larger outliers, so it is unsurprising that the estimates

of the population mean are lower than the truth. Comparing WAIC, we see results similar to those

found in Section 3.5.3. The spatial models which accounted for regional means had lower WAIC

values than the two-stage model, which is evidence that this data is spatially correlated. However,

the intercept-only spatial model did not fit the data as well as the two-stage model, which may be

due to ignoring the study design. Additionally, the two-stage + spatial model again fits the model

the best.

Figure 3.6: Interpolated surfaces using the population (truth) and posterior predictive sam-
ples from the four models.
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Figure 3.6 shows the interpolated population surface from the complete sample and the inter-

polated surface from posterior predictive samples. While there are common regions at high risk

(nitrate level greater than 45 mg/L) in all the posterior predictive maps, the spatial and two-stage

+ spatial maps predict larger regions. Also seen in Table 3.3, it is clear that Model 3 estimates a

population mean that is larger than Models 1 and 4, but smaller than Model 3.

Table 3.3: Results of Data Analysis

Model FP Mean (95% CI) WAIC (SE)
1. Two-Stage 26.6 (19.2, 35.1) 4701.6 (78.6)
2. Spatial 32.6 (27.2, 38.7) 4858.4 (78.0)
3. Two-Stage + Spatial 31.2 (24.2, 37.3) 2697.0 (150.5)
4. Regional Spatial 26.2 (18.7, 34.4) 4536.6 (93.1)

Figure 3.7 provides spatial residual plots arising from the three spatial models. The spatial

model which does not account for regional effects sees the most dispersed spatial effects, while the

two-stage + spatial and regional spatial models show more localized spatial variability.

Figure 3.7: Spatial residual plots from the three spatial models.

3.7 Discussion

This paper examines the implications of performing two-stage random sampling on point-referenced

data which exists in a spatial field. While Scott and Smith (1969) and Malec and Sedransk (1985)

provided a Bayesian model-based framework to account for such a study design, we have demon-
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strated that an analysis ignoring the underlying spatial correlation between locations or sampling

design may lead to spurious inference and poorer model fit.

This work is a first step in developing an overarching framework for Bayesian finite population

sampling from spatial process based populations. In our two-stage case, additional work may

be done to further improve this model. For instance, CAR priors could be placed on regional

parameters such as the µi’s, the regional means, to induce additional spatial correlation in the

model. Also, many of the models presented account for regional differences in variance but if other

sources of heteroscedasticity are suspected, new approaches (such as Zangeneh and Little 2015)

may be needed to account for this. While an exponential covariance function was employed in the

analyses in this paper, other spatial covariance functions could be used to create similar simulations

and data analyses, as well as account for anisotropy.

Future work is needed to establish a more general framework that can account for more sophis-

ticated sampling designs in a spatial context. The sampling designs presented in this paper are

said to be ignorable (Rubin 1976; Sugden and Smith 1984), which allows us to perform inference

on the superpopulation parameters while ignoring the inclusion probability distribution. However,

designs in which the data cannot be assumed to be missing at random or where parameters define

both the outcome and inclusion distributions are referred to as nonignorable and must account for

the inclusion probability distribution. One example of this in the spatial context is preferential

sampling (Diggle et al. 2010, Gelfand et al. 2012), in which the measurement values and sampling

strategy are assumed to stem from the same spatial process. While Pati et al. (2011) have analyzed

such data using Bayesian hierarchical models, an overall framework is needed to account for this

and other non-ignorable design types.

Additionally, the implications of study design on finite population estimates when sampling

from a spatially correlation population over time are unknown. In order to better understand this,

these Bayesian models must first be extended to account for both study design and spatio-temporal

associations.

Finally, while this paper provided a scaleable model which can account for study design and

spatial correlation in massive survey data by assuming regional independence, further work should

be done to incorporate recent strategies in modeling large spatial data (Heaton et al., 2018) when
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analyzing survey data with spatial correlations, such as nearest neighbor processes (Datta et al.,

2016), covariance tapering (Furrer et al., 2006), and metakriging (Guhaniyogi and Banerjee, 2018).

Finite population models would particularly benefit from such techniques, as computation increases

as a function of the population total, T , rather than the sample size, k.

3.8 Appendix

This section first provides the derivation of the empirical Bayesian estimators presented in Sec-

tion 3.4.2 and then the finite population estimates presented in Sections 3.2 and 3.3.

The values a∗, b∗, Mν , mν , Mβ, and mβ for the general case (3.8) in Section 3.4.2 are presented

below.

a∗ = a+
n

2

b∗ = b+
1

2

(
y>s ys − y>s Ṽ −1

s X>s [(Ṽβ +AṼνA
>)−1 +X>s Ṽ

−1
s Xs]

−1X>s Ṽ
−1
s ys

)
Mν =

[
Ṽ −1
ν −A>Ṽ −1

β (Ṽ −1
β +A>X>s Ṽ

−1
s XsA)−1Ṽ −1

β A>
]−1

mν = A>Ṽ −1
β (Ṽ −1

β +A>X>s Ṽ
−1
s XsA)−1A>X>s Ṽ

−1
s ys

Mβ =
[
Ṽ −1
β +A>X>s Ṽ

−1
s XsA

]−1

mβ = Ṽ −1
β Aν +A>X>s Ṽ

−1
s ys

The derivation of these values arise the conjugacy of the Normal and Inverse-Gamma distributions.

We first derive (3.10) and (3.11). Take εs ∼ N(0, δ2Ṽ
(σ)
s ), εns ∼ N(0, δ2Ṽ

(σ)
ns ), and ν ∼ N(0, δ2γ̃2),

where γ̃2 = 1
δ2γ

2, Ṽ
(σ)
s = 1

δ2V
(σ)
s =

[
⊕ni=1

σ2
i
δ2 Imi

]
, and Ṽ

(σ)
ns = 1

δ2V
(σ)
ns =

[
⊕ni=1

σ2
i
δ2 I(Mi−mi)

]
. Since

the elements of y are independent conditional on µ, Vs,ns = 0 and Vns,s = 0. Define observed

group means as ȳi = 1
mi

∑n
j=1 yij and the ratio of variances as λi = δ2/(δ2 + σ2

i /mi) if i ∈

(1, . . . , n) and λi = 0 if i ∈ (n + 1, . . . , N). Also define the vector of observed group variances

to be σ̃2 = [σ2
1, . . . , σ

2
n]>. Recall µs = ν1n + εµs ; εµs ∼ N(0, δ2In), then ys = Xs1µs + εs =

Xs11nν + e∗s, where e∗s ∼ N(0, δ2[Xs1X
>
s1 + Ṽ

(σ)
s ]). Then we have that p(ν | ys) ∝ N(ν | 0, δ2γ̃2) ×
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N(ys |Xs11nν, δ
2[Xs1X

>
s1 + Ṽ

(σ)
s ]) ∝ N(ν |Bb, δ2B), where

b = 1>nX
>
s1(Xs1X

>
s1 + Ṽ (σ)

s )−1ys =

[
1>m1

, . . . , 1>mn

][
⊕ni=1

(
δ2

σ2
i

)(
Imi −

δ2

σ2
i

1mi1
>
mi

1+ δ2

σ2
i

mi

)]
ys and

B−1 =
1

γ̃2
+ 1>nX

>
s1(Xs1X

>
s1 + Ṽ (σ)

s )−1Xs11n =
1

γ̃2
+

n∑
i=1

( δ2

σ2
i

)
1>mi

(
Imi −

δ2

σ2
i
1mi1

>
mi

1 + δ2

σ2
i
mi

)
1mi .

Therefore, B =
[

1
γ̃2 +

∑n
i=1 λi

]−1
and Bb =

∑n
i=1 λiȳi

1
γ̃2 +

∑n
i=1 λi

. To solve p(δ2 | ys), split the posterior condi-

tional distribution of the superpopulation parameters; p(δ2, ν | ys) = IG(δ2 | a∗δ , b∗δ)×N(ν |Bb, δ2B),

where a∗δ = aδ + k
2 and b∗δ = bδ + 1

2 [y>s (Xs1X
>
s1 + Ṽ

(σ)
s )−1ys + b>Bb]. As p(µns | ys, ν, δ2) =

p(µns | ν, δ2), µns | ν, δ2 ∼ N(1N−nν, δ
2IN−n). To solve p(µs | ys, ν, δ2), note that p(µs | ys, ν, δ2) ∝

N(µs | 1nν, δ2In)×N(ys |Xs1µs, δ
2Ṽ

(σ)
s ) ∝ N(µs |B∗b∗, δ2B∗), where

b∗ = ν1n +X>s1(Ṽ (σ)
s )−1ys =

[
ν + δ2

σ2
1
m1ȳ1, · · · , ν + δ2

σ2
n
mnȳn

]>
,

B−1
∗ = In +X>s1(Ṽ (σ)

s )−1Xs1 =

[
⊕ni=1

σ2
i+δ2mi
σ2
i

]
; B∗ =

[
⊕ni=1

σ2
i

σ2
i+δ2mi

]
=

[
⊕ni=1(1− λi)

]
, and

B∗b∗ =

[
⊕ni=1(1− λi)

] [
ν + δ2

σ2
1
m1ȳ1, · · · , ν + δ2

σ2
n
mnȳn

]>
=

[
(1− λ1)ν + λ1ȳ1, · · · , (1− λn)ν + λnȳn

]>
.

To derive (3.12) and (3.13) define Ṽ −1
ν = 0 and Ṽs = Ω̃s = 1

δ2 Ωs + Ik, and Ṽµs = 1.

Note that p(µs | ys, δ2) ∝ N(µs | 0, δ2) × N(ys | 1kµs, δ2Ω̃s) ∝ N(µs |Bµsbµs , δ2Bµs), where Bµs =

(1 + 1>k Ω̃−1
s 1k)

−1 and bµs = 1>k Ω̃−1
s ys. Splitting the posterior conditional distribution of the super-

population parameters, p(δ2, µs | ys) = IG(δ2 | a∗∗,δ b∗∗δ ) × N(µs |Bµsbµs , δ2Bµs), where a∗∗δ = a + k
2

and b∗∗δ = b+ 1
2y
>
s

{
Ω̃−1
s − Ω̃−1

s 1k

(
1 + 1>k Ω̃−1

s 1k

)−1
1>k Ω̃−1

s

}
ys.

We now continue by deriving the general cases presented in Section 3.2. As β | ν ∼ N(Aν, Vβ)

and ν ∼ N(0, γ2), we have that β ∼ N(0, γ2AA> + Vβ). Note that p(β | ys) ∝ N(0, γ2AA> + Vβ)×

N(Xsβ, Vs) ∝ N(Vβ | ysX
>
s V
−1
s ys, Vβ | ys), where Vβ | ys = [(γ2AA>+Vβ)−1+X>s V

−1
s Xs]

−1. Defining
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BV = Vns,s + (Xns − Vns,sV −1
s Xs)Vβ | ysX

>
s and Q = Xns − Vns,sV −1

s Xs, we have that:

E[α>y | ys] = α>s ys + α>nsE[E[yns |β, ys] | ys]

= α>s ys + α>nsE[Xnsβ + Vns,sV
−1
s (ys −Xsβ) | ys]

= α>s ys + α>nsVns,sV
−1
s ys +QVβ | ysX

>
s V
−1
s ys

= {α>s + α>ns[Vns,s + α>nsQVβ | ysX
>
s ]V −1

s }ys ,

Var[E[α>y | ys]] = Var[(α>s + α>nsBV V
−1
s )ys]

= α>s Vsαs + 2α>nsBV αs + α>nsBV V
−1
s B>V αns , and

Var[E[α>y | ys]] = Var[α>nsyns | ys]

= Var[E[α>nsyns |β, ys] | ys] + E[Var[α>nsyns |β, ys] | ys]

= Var[α>nsQβ | ys] + E[α>ns(Vns − Vns,sV −1
s Vs,ns)αns | ys]

= α>ns(QVβ | ysQ
> + Vns − Vns,sV −1

s Vs,ns)αns .

To derive the estimate given in Example 1, note that p(µ | ys) ∝ N(µ | 0, ξ2)×N(ys | 1nµ, σ2In) ∝

N(µ |Bsrsbsrs, Bsrs), where Bsrs = ( 1
ξ2 + n

δ2 )−1, bsrs = 1
σ2 1>n ys, and Bsrsbsrs =

1
σ2 1>n ys
1
ξ2

+ n
σ2

=
∑n
i=1 yi
σ2

ξ2
+n

.

Fixing the variance components, the finite population estimate is

E[α>y | ys] = α>s ys + α>nsE[E[yns |µ, ys] | ys] = α>s ys + α>ns1(N−n)E[µ | ys]

=
n∑
i=1

αiyi +

∑N
i=n+1 αi
σ2

ξ2 + n

n∑
i=1

yi =
n∑
i=1

(
αi +

∑N
i=n+1 αi
σ2

ξ2 + n

)
yi .

To derive (3.3), it is helpful to first make a note regarding Xs1 vs Xs in the calculation of p(ν | ys)

and p(µ | ν, ys). Specifically, p(ν | ys) does not change, since Xs = [Xs1 : 0], b = 1>nX
>
s1(Xs1X

>
s1 +

Ṽ
(σ)
s )−1ys = 1>NX

>
s (XsX

>
s + Ṽ

(σ)
s )−1ys. Similarly, B−1 = 1

γ̃2 + 1>nX
>
s1(Xs1X

>
s1 + Ṽ

(σ)
s )−1Xs11n =

1
γ̃2 +1>NX

>
s (XsX

>
s +Ṽ

(σ)
s )−1Xs1N . However, while computing p(µs | ν, ys) using Xs1 is computation-

ally convenient for interpretation, employing Xs provides us the posterior distribution p(µ | ν, ys).

We have that p(µ | ys, ν) ∝ N(µ | ν1N , δ
2IN ) × N(ys |Xsµ, δ

2Ṽ
(σ)
s ) ∝ N(µ |B∗∗b∗∗, δ2B∗∗). Some

algebra simplifies the expressions for b∗∗ and B∗∗b∗∗ and matches the conclusions found by deriving

58



p(µs | ν, ys) and p(µns | ν, ys) separately:

b∗∗ = ν1N +X>s (Ṽ (σ)
s )−1ys =

[
ν + δ2

σ2
1
m1ȳ1, . . . , ν + δ2

σ2
n
mnȳn, ν1>(N−n)

]>
;

B−1
∗∗ = IN +X>s (Ṽ (σ)

s )−1Xs =

⊕ni=1
σ2
i+δ2mi
σ2
i

0

0 I(N−n)

 ; B∗∗ =

[
⊕Ni=1(1− λi)

]
; and

B∗∗b∗∗ =

[
(1− λ1)ν + λ1ȳ1, . . . , (1− λn)ν + λnȳn, ν1>(N−n)

]>
.

Using these derivations, define λ = [λ1, . . . , λN ]> and ȳ = [ȳ1, . . . , ȳn, 0(N−n)]
>.Then fixing the

variance components, we have:

E[α>y | ys] = α>s ys + α>nsE[E[E[yns |µ, ν, ys] | ν, ys] | ys] = α>s ys + α>nsE[E[Xnsµ | ν, ys] | ys]

= α>s ys + α>nsXnsE[[(1− λ1)ν + λ1ȳ1, . . . , (1− λn)ν + λnȳn, ν1>(N−n)]
> | ys]

= α>s ys + α>nsXns[⊕Ni=1(1− λi)]1N
∑n

i=1 λiȳi
1/γ̃2 +

∑n
i=1 λi

+ α>nsXns[⊕Ni=1λi]ȳ

= α>s ys + [α1(1− λ1), . . . , αN (1− λN )]>1N

∑n
i=1 λiȳi

1/γ̃2 +
∑n

i=1 λi
+ [α1λ1, . . . , αNλN ]>ȳ

=
n∑
i=1

mi∑
j=1

αijyij +
{ N∑
i=1

αi(1− λi)
}∑n

i=1
λi
mi

∑mi
j=1 yij

1/γ̃2 +
∑n

i=1 λi
+

n∑
i=1

αi
λi
mi

mi∑
j=1

yij

=
n∑
i=1

mi∑
j=1

(
αij +

[
αi +

∑N
i=1 αi(1− λi)

1/γ̃2 +
∑n

i=1 λi

]
λi
mi

)
yij

Now consider the stratified case for estimating the population mean. Taking non-informative

priors for the group means, µ, is equivalent to letting δ2 → ∞ and γ2 → ∞. Therefore λi =

δ2

δ2+σ2
i /mi

→ 1, for all i = 1, . . . , N . Note αi =
∑Mi

j=mi+1
1
T = Mi−mi

T , i = 1, . . . , n. We have that:

lim
δ2,γ2→∞

E
[ 1

T
1>T y | ys

]
=

n∑
i=1

mi∑
j=1

(
1

T
+

[
Mi −mi

T
+ 0

]
1

mi

)
yij =

n∑
i=1

Mi

T
ȳi

To derive (3.5), note p(ν | ys, τ2,Ωs, V
(σ)
s ) ∝ N(ys |Xs1Nν, δ

2XsX
>
s +Ωs+V

(σ)
s )×N(ν | 0, γ2) ∝

N(ν |Bsp2bsp2, Bsp2), where Bsp2 = ( 1
γ2 + 1>NX

>
s (δ2XsX

>
s + Ωs + V

(σ)
s )−1Xs1N )−1 and bsp2 =
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1>NX
>
s (δ2XsX

>
s + Ωs + V

(σ)
s )−1ys. Consider the non-spatial case and define λ> = [λ1, . . . , λN ] =

1>NX
>
s (XsX

>
s + Ṽ

(σ)
s )−1Xs, then B =

[
1
γ̃2 + 1>NX

>
s (XsX

>
s + Ṽ

(σ)
s )−1Xs1N

]−1
=
[

1
γ̃2 + λ>1N

]−1
=[

1
γ̃2 +

∑n
i=1 λi

]−1
, which agrees with our previous findings.

Similarly, define λ∗> = [λ∗1, . . . , λ
∗
N ] = 1>NX

>
s (δ2XsX

>
s + Ωs + V

(σ)
s )−1Xs.

Then Bsp2 =
[

1
γ̃2 + λ∗>1N

]−1
=
[

1
γ̃2 +

∑n
i=1 λ

∗
i

]−1
.

Additionally, p(µ | ys, ν) ∝ N(µ | ν1N , δ
2IN )×N(ys |Xsµ,Ωs +V

(σ)
s ) ∝ N(µ |Bsp2∗bsp2∗, Bsp2∗).

Here Bsp2∗ = ( 1
δ2 IN +X>s (Ωs + V

(σ)
s )−1Xs)

−1 and bsp2∗ = 1
δ2 1Nν +X>s (Ωs + V

(σ)
s )−1ys.

Fixing the variance parameters, we have that:

E[α>y | ys] = α>s ys + α>nsE[E[E[yns |µ, ν, ys] | ν, ys] | ys]

= α>s ys + α>nsE[E[Xnsµ+ Ωns,s(Ωs + V (σ)
s )−1(ys −Xsµ) | ν, ys] | ys]

= α>s ys + α>nsΩns,s(Ωs + σ2V (σ)
s )−1ys + α>ns[Xns − Ωns,s(Ωs + V (σ)

s )−1Xs]×

E

[
( 1
δ2 IN +X>s (Ωs + V

(σ)
s )−1Xs)

−1( 1
δ2 1Nν +X>s (Ωs + V

(σ)
s )−1ys) | ys

]
= α>s ys + α>nsΩns,s(Ωs + σ2V (σ)

s )−1ys + α>ns[Xns − Ωns,s(Ωs + V (σ)
s )−1Xs]×(

1
δ2 IN +X>s (Ωs + V

(σ)
s )−1Xs

)−1

X>s (Ωs + V (σ)
s )−1ys+

α>ns[Xns − Ωns,s(Ωs + V (σ)
s )−1Xs]×(

1
δ2 IN +X>s (Ωs + V

(σ)
s )−1Xs

)−1 1

δ2
1N

1>NX
>
s (δ2XsX

>
s + Ωs + V

(σ)
s )−1ys

1
γ2 +

∑n
i=1 λ

∗
i

=

n∑
i=1

mi∑
j=1

(
αij + α>ns

{
Ωns,s(Ωs + V (σ)

s )+

[Xns − Ωns,s(Ωs + V (σ)
s )−1Xs]

(
1
δ2 IN +X>s (Ωs + V

(σ)
s )−1Xs

)−1

×[
X>s (Ωs + V (σ)

s )−1 +
1
δ2 1N1>NX

>
s (δ2XsX

>
s + Ωs + V

(σ)
s )−1

1
γ2 +

∑n
i=1 λ

∗
i

]}
qij

)
yij .
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Chapter 4

Finite Population Estimation of Food Expenditure in

the Presence of Spatially Correlated Data

4.1 Introduction

Income is associated with numerous health outcomes, including obesity (Pickett et al., 2005), mental

health (Wildman, 2003), self-rated health (Kennedy et al., 1998), and mortality (Lynch et al., 1998).

Specifically, in the realm of food purchasing, disparities by income exist in fruit and vegetable (FV)

consumption, (Grimm et al., 2012), nutrition (Casey et al., 2001), and overall food insecurity (Ribar

and Hamrick 2003 and Rose 1999). These problems are observed in “food swamps”, communities

with higher number of unhealthy establishment which serve fast-food or sell junk food (Rose et al.,

2009) than stores with healthy food options. Corner store interventions are one public health

strategy to change the food environment in the hope of improving eating behaviors at the individual

and community level (Langellier et al., 2013). Such interventions commonly increase the amount of

fresh FVs sold in a store (Langellier et al., 2013), and may provide refrigeration units (Paek et al.,

2014), a store remodeling, cooking demonstrations (Ortega et al., 2015), increased signage (Lawman

et al., 2015), and business consulting (Ortega et al., 2015). Among these studies, findings regarding

availability and sales of fruits, vegetables, and other healthy foods has been mixed (Thorndike et al.

2017; Albert et al. 2017; Paek et al. 2014; Lawman et al. 2015; and Song et al. 2009).

However, the focus of analysis in these interventions have been the patrons of these corner stores

while few studies have examined the effect of these interventions at the community level. Notably,

in such an intervention in two low-income, predominantly Hispanic communities in California, East

Los Angeles and Boyle Heights, Ortega et al. (2016) reported no significant improvements to FV

purchasing or consumption. However, one variable of interest, the percent of annual reported

income spent on fruits and vegetables, was unable to be examined due to a high rate of missing

data in reported income. As many of the intervention components targeted the community, it is
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important to assess if the intervention impacted the percent of annual reported income spent on

FV.

Non-response of household income is a common occurrence in survey research (Watson and

Starick 2011; Yan et al. 2010; and Schenker et al. 2006), but the imputation of income in these

communities provides two challenges. First, there is evidence that reported income is spatially

associated in neighborhoods (Chakravorty 1996 and Breau et al. 2018). Secondly, individuals with

lower incomes may be less likely to report their income and this should be accounted for. Similar

descriptions of this income response have been given in Greenlees et al. (1982) and Riphahn and

Serfling (2005), although both of these studies suggested individuals with higher incomes are less

likely to respond. As we suspect our outcome is spatially associated, however, we turn to the recent

literature regarding preferential sampling to better understand this problem. First described in

Diggle et al. (2010), preferential sampling is a technique in which the probability of selection on

a spatial domain increases as a function of intensity of the measurement. Diggle presents a joint

model in which the selection sites and the measured values arise from the same spatial process.

Pati et al. (2011) presents a model for preferential sampling in a fully Bayesian framework by

including a function of intensity as a predictor of the outcome to account for informative sampling.

Additionally, preferential sampling are shown to give biased predictions (Gelfand et al. 2012 and

Lee et al. 2015) and parameter estimation (Antonelli et al. 2016). In our corner store scenario, we

consider “preferential” response, in which the probability of a spatially associated variable being

reported is dependent on the value of that variable. In the non-spatial case, such scenarios of missing

can be accounted for using “selection” models described in Little and Rubin (2002). Finally, as

we are interested in estimating average percentage of income spent on fruits and vegetables for

all individuals in a community, we examine the problem from a finite population perspective,

considering those who reported income to be the sampled or observed cases.

The rest of the chapter is as follows: Section 4.2 elaborates on data collected during the corner

store intervention alluded to above in Ortega et al. (2016) and provides an in depth explanation of

the income non-response by community, Section 4.3 presents a Bayesian framework that allows us to

account for preferential nonresponse, and Section 4.4 examines a simulation study of our framework.

Section 4.5 presents a data analysis to determine if there is a significant intervention effect on the
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percentage of income spent on fruits and vegetables and describes the finite population estimates

pre- and post-intervention. The chapter concludes with a brief discussion of our framework and

the data analysis in Sec 4.6.

4.2 Data

Researchers carefully identified 4 corner stores in East Los Angeles for conversion and 4 corner

stores in Boyle Heights to act as control sites. Corner store conversions included a reorganization

of store items to promote healthy food purchasing, an external transformation of the store, a social

marketing campaign and cooking demonstrations led by local youth, connections to local wholesale

markets, and refrigeration units. A full discussion of the study design and implementation is

described by Ortega et al. (2015). In order to assess the effect of this intervention, a survey was

given to residents within a five block radius of each of the eight corner stores. This community

survey sought to extensively catalog the food purchasing of residents, including where they shopped,

what types of food they bought, and who they were purchasing food for. As such, the survey was

limited to only adults who were the main food purchaser of the family. Many other items, such as

demographics, health problems, family history of residency, and food program participation (such

as food stamps or WIC), were also collected. This survey was conducted in each of the eight

communities surrounding the store before the conversion and then again roughly one year after the

conversion. There were 1,035 observations collected at baseline and 1,052 observations collected at

follow-up. Roughly 60% of the individuals surveyed at baseline were surveyed again at follow-up.

While there is a strong interest in describing the percentage of income spent on fruits and

vegetables in each community, the sample had high levels of missingness in income (one-third) at

both baseline and follow-up, which are presented in Table 4.1. Noticeably, this outcome is highest

at baseline in communities 1 and 7, 26.0% and 46.5%, respectively, which also observed lower levels

of response and income compared to the averages of the total. With high levels of non-response, it is

important to know if this value is being inflated due to the missing values of income. Additionally,

while the number of sampled units ranged from 114 to 143, the percentage of missingness ranged

widely from 5.90% to 66.62%. For this paper, we consider the sampled data to be the finite
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population of eight communities in East Los Angeles and Boyle Heights. This is a reasonable

assumption, as the response rate of 80% and 71% at baseline and follow-up suggest that a majority

of individuals in these communities are represented in this dataset. Amount spent on fruits and

vegetables was reported on weekly, bi-weekly, or monthly scale. These values were multiplied by 52,

26, and 12, respectively, to reflect the annual amount spent on fruits and vegetables in a household.

Reported yearly income is continuous and ranged from $0 to $300,000. Both of these values were

log-transformed to produce a more normal distribution of the outcome. Twenty-four individuals

reported a higher amount spent on fruits and vegetables than their income, so their income was

imputed to the value spent on food, so that the percent of income spent on fruits and vegetables

was bounded by 0 and 100. Data was restricted to observations which had no missing covariates

and reported the amount spent on fruits and vegetables. This resulted in a final dataset with 982

observations at baseline and 1033 at followup.

Table 4.1: Annual Income and FV Expenditures by Site and Time-point.

Site Time N
Income FV Expenditure

% Response M (SD) M (SD) % of Income M(SD)

1
B 117 54.70 24.79 (25.23) 2.10 (1.39) 26.0 (33.3)
F 124 49.19 37.57 (27.98) 2.62 (1.81) 11.2 (14.9)

2
B 137 72.99 33.04 (25.20) 2.25 (1.41) 11.4 (13.2)
F 134 78.36 32.64 (33.63) 2.58 (1.65) 13.6 (16.0)

3
B 122 59.84 25.77 (16.28) 2.37 (1.52) 16.8 (19.5)
F 130 88.46 26.17 (22.33) 2.40 (1.70) 13.6 (11.4)

4
B 131 58.02 24.68 (17.32) 2.19 (1.66) 13.6 (14.8)
F 128 34.38 29.90 (20.41) 2.29 (1.87) 11.4 (10.9)

5
B 117 70.94 39.82 (43.28) 2.26 (1.68) 10.6 (11.3)
F 143 95.10 35.95 (36.19) 2.36 (1.59) 10.9 (10.7)

6
B 114 64.04 28.67 (22.72) 1.95 (1.50) 9.2 (7.1)
F 129 72.09 29.77 (28.58) 1.80 (1.30) 10.5 (14.0)

7
B 125 61.60 17.52 (20.02) 2.18 (1.28) 46.5 (43.7)
F 122 52.46 31.68 (29.38) 2.28 (1.50) 15.6 (16.7)

8
B 119 54.62 39.39 (46.85) 2.23 (1.55) 15.2 (21.9)
F 123 52.85 34.12 (33.52) 2.31 (1.76) 11.3 (10.4)

Total
B 982 62.22 29.39 (29.70) 2.20 (1.50) 18.3 (25.7)
F 1033 66.12 32.13 (30.31) 2.33 (1.67) 12.3 (13.3)

Note: B corresponds to Baseline and F corresponds to Follow-up. Income and FV expenditure are
presented in units of $1000.
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Other individual-level variables that were hypothesized to affect the percent of annual income

spent on fruits and vegetables were age at time of interview, gender, household size, marital sta-

tus, and education level. Marital status was reported as one of six categories (single, married,

separated, divorced, widowed, and living with a partner in a marriage-like relationship), but this

was consolidated as to whether the respondent was in a marriage or marriage-like relationship or

not. A small number of don’t know/refused where placed in the non-marriage category. Education

reduced from twenty-seven distinct categories to two: less than a high school education and at least

a high school education. Similarly, a small number of non-responses were placed in the less than

high school category. Due to the homogeneity of ethnicity in the sample, identifying as Hispanic

was not considered in the analyses.

Individual locations (addresses) were provided and geographic coordinates were assigned to each

address. As there were multiple apartment complexes in these communities, individuals living in

different units of the same complex were assigned the same geographic coordinates. Thus among the

8 communities, there were 635 identified locations. At baseline, 518 of these locations were observed,

366 of these locations had a least one individual who reported their income, and on average 1.90

individuals shared the same location. At follow-up, 562 of these locations were observed, 472 of

these locations had a least one individual who reported their income, and on average 2.38 individuals

shared the same location. 555 locations had at least one reported income at either time-point.

Variograms of the outcome and log-income were constructed and both suggested evidence of

spatial association. To explore our primary outcome and determine if there is any evidence of

preferential response in income, a linear model was first fit using the previously described covariates,

as well as a indicators for time-point, intervention status, and the interaction of these two indicators

to detect an interaction effect, predicting the log-percent of income spent on fruits and vegetables.

For individuals who did not report income, predictions of this log-percent were made using the

results of the linear model. By dividing the reported amount spent on fruits and vegetables by

this percent, we have constructed a prediction of income for the non-respondents. Then, a logistic

regression model predicting the response of income was fit with an intercept term and income (either

the reported value for those that responded or the predicted value from the linear model for those

that did not respond). This model found income was a significantly associated with the probability
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of response. An observed coefficient estimate of 0.12 (SE = 0.05) suggests that individuals with

higher values of income are more likely to report income, and conversely, lower income in these

communities are more likely to be underreported. Further, a logistic regression model with random

intercepts for location was fit and the standard deviation corresponding to the random intercept

was 0.67.

4.3 A General Framework

Formally, define a spatial domain LLL ⊆ RRR2, where a finite population of size T is located in N

locations, LLL FP = {`1, . . . , `N}, T ≥ N . Suppose there are the Mi units at the ith location, then

T =
∑N

i=1Mi. Further, suppose that t, t ≤ T , units are sampled from the finite population and

thus n, n ≤ N , locations are represented in this sample. Taking the first n locations to be sampled,

define the sampled and nonsampled location sets as LLL s = {`1, . . . , `n} and LLL ns = {`n+1, . . . , `N},

respectively. Additionally, denoting mi the number of sampled units at the ith location, i =

0, . . . ,Mi, we have that t =
∑N

i=1mi =
∑n

i=1mi, as mi = 0 for i = n + 1, . . . , N . In the context

the data, we have that T = 2015, t = 1294, N = 635, and n = 555.We are interested in measuring

annual reported income on the natural log scale, y, which is a vector of sampled and nonsampled

measurements, e.g. y = [y>s ,y
>
ns]
>. Denoting yj(`i) as the annual income on the natural log scale

of the jth individual at the ith location, let ys = [y1(`1), . . . , ym1(`1), . . . , y1(`n), . . . , ymn(`n)]>

and yns = [ym1+1(`1), . . . , yM1(`1), . . . , ymN+1(`N ), . . . , yMN
(`N )]>. Additionally, let zj(`i) be the

reported amount spent on fruits and vegetables on the natural log scale corresponding to yj(`i).

This is measured for all members of the finite population and therefore vectors zs and zns, defined

in the same manner as ys and yns, denote reported values of FV expenditures corresponding to

individuals who reported and did not report income, respectively. We examine the log percent of

income spent on fruits and vegetables, which can be written as z−y, by modeling y with an offset

term of z. Assume that there is a Gaussian spatial process, ω(·), defined on LLL with covariance

function Kω(d), and that y is a partial realization of this process. Finally, define the inclusion

mechanism as a spatial process on LLL , which is dependent on y and another Gaussian spatial

process, υ(·), defined on the same domain with covariance function Kυ(d). A joint model defined
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in the form of our generic spatial paradigm (1.6) is:

[y(·) |ω(·)]× [I(·) | y(·), υ(·)]× [ω(·)]× [υ(·)] (4.1)

The first component of (4.1) is the conditional distribution of y, [y(·) |ω(·)]. Assuming y is an

T × 1 vector, this conditional distribution can be written as:

yj(`i) = zj(`i)− xj(`i)
>β + ω(`i) + εj(`i) ; εj(`i)

iid∼ N(0, σ2) . (4.2)

Here i = 1, . . . , 635, j = 1, . . . ,Mi, and ε ∼ N(0,Σε), where Σε = σ2I. Each εj(`i) corresponds to

yj(`i) and ε is defined in the same manner as y. Similarly, define the covariates corresponding to the

jth unit at the ith location as xj(`i). Here each 10× 1 vector xj(`i) is corresponds to the outcome

yj(`i). This vector of coefficients corresponds to the 10×1 vector β, β ∼ N(0,Σβ), and includes an

intercept term, gender, household size, relationship status, age, age2, timepoint, intervention status,

and an interaction between intervention status and timepoint. Following the notational convention

of ys and yns, define the 2015 × 10 matrix X = [X>s ,X
>
ns]
> as the collection of covariates from

sampled and nonsampled individuals, where Xs = [x1(`1), . . . ,xm1(`1), . . . ,x1(`n), . . . ,xmn(`n)]>

and Xns = [xm1+1(`1), . . . ,xM1(`1), . . . ,xmN+1(`N ), . . . ,xMN
(`N )]>. Additionally, note that as

the offset zj(`i) is placed on the right-hand side of this equation, we subtract the xj(`i)
>β term to

improve interpretation. In this way, a positive component in β corresponds to a positive increase

in z− y, our outcome of interest.

Spatial variation is accounted for with the 635×1 vector ω ∼ N(0,Σω), where Σω is a 635×635

matrix defined by the covariance function Kω(d). Finally, construct a 2015 × 635 site indicator

matrix A = [A>s ,A
>
ns]
>, where As = [⊕555

i=11mi : 0] and Ans = [⊕635
i=11Mi−mi ]. Thus the row in A

corresponding to measurement yj(`i) has value 1 in ith column and 0 elsewhere. We then have that

y ∼ N(z−Xβ + Aω,Σε).

The second component of (4.1), [I(·) | y(·), υ(·)] describes the response mechanism. Here the

T ×1 vector I has element Ij(`i) = 1 if the corresponding jth individual in the ith location reported

their income, e.g. yj(`i) is observed, and Ij(`i) = 0 if they did not report their income. This can
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be expressed as:

Ij(`i) ∼ Ber(πj(`i)) ; logit(πj(`i)) = yj(`i)ηy + qj(`i)
>η + υ(`i) . (4.3)

The probability of response for each individual in the finite population is permitted to vary by

its corresponding value of y, which is captured in the regression coefficient ηy, ηy ∼ N(0, σ2
ηy).

Similar to our modeling of the outcome, qj(`i) is a 2 × 1 vector composed of an intercept term

and age, which corresponds to a 2 × 1 vector of coefficients η, η ∼ N(0,Ση). Additional spatial

variability in the probability of inclusion is accounted for with υ, υ ∼ N(0,Συ), where Συ is a

635× 635 matrix and is defined by covariance function Kυ(d). If we wish to orthogonalize υ with

respect to y, define Z to be the 635 × 635 lower diagonal matrix that arises from the Cholesky

decomposition of Συ, such that Συ = ZZ>, and let u ∼ N(0, I651). Let π be defined analgously

to y and q to x, then Equation 4.3 can be rewritten as logit(π) = yηy + q>η+ AZu. Defining the

projection matrix py = y(y>y)−1y>, we can decompose AZu = pyAZu + (I − py)AZu. Thus,

logit(π) = yη∗y + q>η + (I− py)AZu, where η∗y = (y>y)−1y>AZu.

Additionally, we take the two processes, ω and υ, to be independent. Collecting additional

variance parameters in θ, the joint posterior distribution of (4.1) is proportional to:

p(ω,υ,θ,β,η, ηy,yns|ys, I)

∝ p(θ)×N(ω|0,Σω)×N(υ|0,Συ)×N(β|0,Σβ)×N(η|0,Ση)×N(ηy|0, σ2
ηy)

×
N∏
i=1

Mi∏
j=1

Ber(Ij(`i)|πj(`i))×
N∏
i=1

Mi∏
j=1

N(yj(`i)|zj(`i)− xj(`i)
>β + ω(`i), σ

2) ,

(4.4)

where

Ber(Ij(`i)|πj(`i)) =

(
exp[yj(`i)ηy + qj(`i)

>η + υ(`i)]

1 + exp[yj(`i)ηy + qj(`i)>η + υ(`i)]

)Ij(`i)
×
(

1

1 + exp[yj(`i)ηy + qj(`i)>η + υ(`i)]

)1−Ij(`i)
.

Markov chain Monte Carlo must be used to sample from (4.4). A Gibbs update can be employed
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to sample the posterior distributions for β and ω, which are

β|· ∼ N
(

(Σ−1
β + X>s Σ−1

ε Xs)
−1X>s Σ−1

ε (ys − zs −Asω), (Σ−1
β + X>s Σ−1

ε Xs)
−1
)

and

ω|· ∼ N
(

(Σ−1
ω + A>s Σ−1

ε As)
−1A>s Σ−1

ε (ys − zs + Xsβ), (Σ−1
ω + A>s Σ−1

ε As)
−1
)
,

respectively. The conditional distributions for the remaining parameters are not available in closed

form and must be sampled using a Metropolis-Hastings step. Specifically, we have:

yns|ys,ω,θ,β ∝ p(θ)×N(ω|0,Σω)×N(β|0,Σβ)×
N∏
i=1

Mi∏
j=1

Ber(Ij(`i)|πj(`i))

×
N∏
i=1

Mi∏
j=1

N(yj(`i)|zj(`i)− xj(`i)
>β + ω(`i), σ

2) ,

η|y,θ ∝ p(θ)×N(η|0,Ση)×
N∏
i=1

Mi∏
j=1

Ber(Ij(`i)|πj(`i)) ,

ηy|ys,θ ∝ p(θ)×N(ηy|0, σ2
ηy)×

N∏
i=1

Mi∏
j=1

Ber(Ij(`i)|πj(`i)) , and

υ|ys,θ ∝ p(θ)×N(υ|0,Συ)×
N∏
i=1

Mi∏
j=1

Ber(Ij(`i)|πj(`i)) .

The posterior samples of yns are then used to obtain posterior finite population estimates.

Specifically, we are interested in the mean income of finite population, exp[ 1
T

∑N
i=1

∑Mi
j=1 yj(`i)], and

the mean of the percent of income spent on fruits and vegetables, 1
T

∑N
i=1

∑Mi
j=1 exp[zj(`i)−yj(`i)].

These values are calculated overall, by site and by timepoint.

Four models are considered in the form of (4.1) and are described below. For these models,

regression parameters are considered independent, e.g. Σβ = σ2
βI10 and Ση = σ2

ηI2, and their

associated variance parameters, σ2
β and σ2

η, are fixed in both the simulation and data analysis.

Similarly, σηy is fixed. The spatial covariance functions are taken to be exponential, as described

in Sec 1.4.

Model 1. Non-Spatial in Outcome with Ignorable Response This model is a standard

linear regression model and therefore spatial effects (ω and υ) are fixed at 0. Inclusion parameters
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are also fixed at 0 so that the probability of inclusion is a fixed number. We take θ = σ2 and

p(θ) = IG(σ2|a, b).

Model 2. Non-Spatial Association in Outcome with Preferential Response Prefer-

ential response is now accounted for through ηy but spatial effects are again fixed at 0. Similar to

Model 1, θ = σ2 and p(θ) = IG(σ2|a, b).

Model 3. Spatial Association in Outcome with Preferential Response This model

accounts for spatial association in the outcome but fixes υ = 0. Therefore θ = [σ2, δ2
ω, φω]> and

p(θ) = IG(σ2|a, b)× IG(δ2
ω|aω, bω)× Unif(φω|cω, dω).

Model 4. Spatial Association in Outcome and Probability of Inclusion with Pref-

erential Response This model expands upon Model 3 by permitting spatial association in the

probability of response. We take θ = [σ2, δ2
ω, φω, δ

2
υ, φυ]> and p(θ) = IG(σ2|a, b)× IG(δ2

ω|aω, bω)×

Unif(φω|cω, dω)× IG(δ2
υ|aυ, bυ)× Unif(φυ|cυ, dυ).

4.3.1 Model Comparison and Assessment

Model fit was evaluated in two ways. In general, consider a sample of size t drawn from a population

of size T with outcome y = [y>s ,y
>
ns]
>. Without loss of generality, say yh ∈ ys if h = 1, . . . , t and

yh ∈ yns if h = t + 1, . . . , T . Replicated datasets, y
(l)
rep = [y

(l)
rep,1 . . . y

(l)
rep,t]

>, can be generated from

the pointwise posterior predictive distribution at each iteration l. These are used to formulate the

predictive model choice criteria,

D =

t∑
h=1

(yh − E[yrep,h |ys])2 +

t∑
h=1

var(yrep,h |ys)

described in Gelfand and Ghosh (1998), and the Gneiting-Raftery Score (Gneiting and Raftery,

2007),

GRS = −
t∑

h=1

(yh − E[yrep,h |ys])2

var(yrep,h |ys)
−

t∑
h=1

log var(yrep,h |ys) .

In this formulation, lower values of D and higher values of GRS are indicative of better model fit. For

L iterations, we approximate E[yrep,h |ys] ≈ 1
L

∑L
l=1 y

(l)
rep,h and var(yrep,h |ys) ≈ 1

L−1

∑L
l=1(y

(l)
rep,h−

1
L

∑L
l=1 y

(l)
rep,h)2. For simulated datasets, where yns is known, these measures can be extended to
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all observations, e.g. summing to T instead of t in each score.

4.4 Simulation

To examine the ability of the proposed models to capture various sampling schemes, a simplified

dataset was simulated and three response scenarios were implemented. For simplicity, in this

simulation study we predict income (on the log-scale) with only the covariates gender and household

size for a finite population of size 2,000, e.g. zj(`i) is fixed at 0 and −xj(`i) is replaced by xj(`i) for

all i and j in (4.2). For each unit of the population, gender was drawn from a bernoulli distribution

with the probability of female set to 0.8 and household size was drawn from a poisson distribution

with a mean of 4. To induce spatial correlation, a 5 x 5 square was created and 500 locations were

randomly assigned within the square and distance matrix was constructed from these locations. The

spatial process parameters were fixed at σ2 = 1, δ2
ω = 1, and φω = 0.5. Each unit of the population

was randomly assigned to a location, with the requirement that at least one unit was located at

each location. Regression parameters were fixed at β = [β0, βfem, βhhs]
> = [10,−0.2, 0.1]>, to

reflect an average income of exp(10) = $22,000 in the reference group, a small average reduction in

income for females, and a small average increase in income for larger household sizes. Log-income

values were generated from (4.2).

Three scenarios were considered to reflect possible response scenarios in which there is spatial

association in the outcome. In scenario 1, income is from a spatial process but there is no preferential

response. This arises from Model 3, fixing ηy = 0 and q = [1, . . . , 1]>. The probability of inclusion

was set at 0.5, which is equivalent to fixing η = 0. This resulted in a selection of 54% of the simulated

data. In the second scenario, income is from a spatial process which is reported preferentially, as

described in Model 3. Here, ηy was set to 0.5 and η = [η0, ηfem] = [−4,−1]>, to reflect higher

odds of response for larger values of income and lower odds of response for women. The choice of

these coefficients resulted in 54.15 % of the simulated data having income responses. The third

scenario considers income as coming from a spatial process whose response in preferential and whose

inclusion probability is dependent on another spatial process, which is described in Model 4. To

reflect this, we set φυ = 1.5 and δ2
υ = 1; this resulted in responses in 48.1% of the simulated data.
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All data generation and analyses were performed using R version 3.6.1 (R Core Team, 2018).

Linear interpolation plots from the full simulated data and the subset data from the three

scenarios are shown in Fig 4.1. As expected, scenario 1 (a simple random sample) is the most

similar to the full dataset. In the cases of preferential response (scenarios 2 and 3), the interpolated

plots have larger regions of high income than the true dataset. This is most apparent in the western

region of the graph, where values below 8 are rare in this instance. Comparing scenario 2 and 3,

there appears to be some smoothing, with fewer pockets of low income in the west and northeast of

the graph, which is due to the spatial association induced on the probability of response in scenario

3.

Models were run for 10,000 iterations with 1,000 burn-in, as examination of individual trace

plots suggested sufficient mixing and convergence of the non-spatial parameters. At each iteration

g, estimates of the nonsampled units were drawn and estimates for the population mean, ȳ(g) =

exp
[

1
T

(∑n
i=1

∑mi
j=1 yj(`i) +

∑N
i=1

∑Mi
j=mi+1 yj(`i)

(g)
)]

were calculated. The variance parameter

σ2
β was fixed at 1,000 to reflect an uninformative prior, while the σ2

η and σηy terms were fixed at

10 as a weakly informative prior restricting the range of the logistic regression coefficients. The

non-spatial, σ2, and spatial, δ2
ω and δυ, variance components were assigned prior distributions of

IG(2,10), to reflect a small point mass centered at 10. The spatial range parameters, φω and φυ,

were assigned prior distributions of Unif(0.1, 2), to reflect a spatial range of 1.5 (3/2) to 30 (3/0.1).

MCMC sampling was performed using the computer program JAGS (Plummer, 2017) in R.

The results of Scenario 1 are presented in Table 4.2. While the credible intervals for each model

contain the true value of regression coefficients for female and household size, as well as the true

finite population mean, the non-spatial models fail to contain the true intercept and the non-spatial

variance values in their credible intervals. As expected, both spatial models were able to correctly

capture the spatial parameters, φω, and δ2
ω, for the outcome. Additionally, the coefficients η0 and ηy

are small and have credible intervals containing 0 for Models 2 - 4, which suggests that these models

correctly demonstrate no evidence of preferential response. The response-level spatial parameters

in Model 4 also suggest no evidence of spatial variability, as the credible interval of φυ is nearly

the same range as the prior distribution given and the spatial variance, δ2
υ, is very close to 0.

Additionally, the fit of Model 4 is negligibly poorer than Model 3, as there is no spatial association
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Figure 4.1: Linear Interpolation Plots from Full Simulated Data and 3 Scenarios

in the probability of response.

The results of Scenario 2 are given in Table 4.3 and examines a preferential response of a

spatially associated outcome. Importantly, unlike Scenario 1, the two non-spatial models fail to

capture the true finite population mean of 9.94 within their 95% credible intervals. This is also true

of the intercept term, β0, and non-spatial variance, σ2, although we expect σ2 to be larger, as it
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Table 4.2: Simulation Results of Scenario 1: Spatial Outcome, Random Response

Model 1 Model 2 Model 3 Model 4
Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI)

ȳ (9.94) 9.94 (9.88, 10.00) 9.90 (9.41, 10.14) 9.91 (9.86, 9.98) 9.90 (9.83, 9.97)
β0 (10) 9.55 (9.29, 9.82) 9.52 (9.06, 9.91) 9.49 (8.64, 10.32) 9.47 (8.54, 10.31)
βfem (-0.2) -0.21 (-0.42, 0.00) -0.2 (-0.42, 0.01) -0.17 (-0.32, -0.02) -0.17 (-0.33, -0.01)
βhhs (0.10) 0.14 (0.10, 0.19) 0.14 (0.10, 0.18) 0.12 (0.09, 0.15) 0.12 (0.09, 0.15)
σ2 (1) 2.04 (1.87, 2.22) 2.08 (1.89, 2.38) 1.01 (0.92, 1.11) 1.01 (0.92, 1.11)
η0 (0) -0.24 (-5.24, 2.11) -0.17 (-0.91, 0.72) -0.45 (-1.49, 0.70)
ηy (0) 0.04 (-0.19, 0.58) 0.03 (-0.06, 0.11) 0.06 (-0.05, 0.17)
φω (0.5) 0.79 (0.36, 1.29) 0.77 (0.30, 1.29)
δ2
ω (1) 0.87 (0.5, 1.59) 0.91 (0.52, 1.73)
φυ (0) 1.31 (0.33, 1.97)
δ2
υ (0) 0.05 (0.02, 0.13)

D 6799.8 6857.1 4163.0 4166.1
GRS -3474.1 -3460.6 -2041.2 -2042.3

absorbing the variability in the outcome attributed to spatial association. Model 1 also incorrectly

provides a positive estimative of βfem whose credible interval does not contain the true value of

−2. Moreover, while Model 2 - 4 provide similar estimates of ηfem, Model 2 fails to capture the

true values of η0 and ηy in its credible intervals, unlike the two spatial models. Possibly due to the

poor modeling of income, Model 2 spuriously concludes that there is no evidence of preferential

sampling. Finally, similar to Scenario 1, the spatial models correctly capture the spatial parameters

φω and δ2
ω and Model 4 suggests little evidence of spatial association in the probability of response.

The model fit statistics both slightly favor Model 3 to Model 4, due to the lack of response level

spatial association, and prefer the spatial to non-spatial models.

When incorporating spatial association into the probability of income response, seen in Ta-

ble 4.4, Model 4 outperforms the other three models in terms of model fit by correctly accounting

for this additional association in the logistic regression component of the model. As before, non-

spatial models have poorer model fit and larger estimates of the non-spatial variance term. Unlike

Models 2-4, Model 1 fails to include the true finite population mean in its credible interval, which

may be attributable to a disregard for the preferential response. However, the credible interval

provided by Model 3 does not contain the true finite population mean as well. We investigate this
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in the following paragraph. As in Scenario 2, Model 1 incorrectly provides a positive estimate of

βfem, and all models except Model 2 contain the true intercept in their credible intervals. Models

2 - 4 each correctly capture the logistic regression coefficients, η0, ηfem, and ηy. Additionally, the

spatial models provide reasonable estimates of φω and δ2
ω, and in the case of Model 4, φυ and δ2

υ.

Interestingly, in this third simulation, the credible intervals for the finite population mean given

by Models 2 and 4 are similar and contain the truth. One concern arises from the inclusion of two

spatial components in Equation 4.3, specifically y and υ. It is possible that the two components

result in spatial confounding (Hodges and Reich, 2010), which may influence inference on the finite

population mean. To address this, we orthogonalize these two components, so that spatial random

effect υ is restricted to the residual space of y, as described in Section 4.3. Figure 4.2 presents the

estimates of ηy (denoted standard), η∗y (denoted orthogonal), and the difference, ηy − η∗y . As the

difference is centered at zero and the posterior distribution of ηy and η∗y are similar, we conclude

there is no evidence that spatial confounding contributes to this result.

Table 4.3: Simulation Results of Scenario 2: Spatial Outcome, Preferential Sampling

Model 1 Model 2 Model 3 Model 4
Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI)

ȳ (9.94) 10.36 (10.31, 10.42) 10.17 (9.97, 10.41) 9.99 (9.92, 10.05) 10.00 (9.91, 10.08)
β0 (10) 9.87 (9.66, 10.09) 9.74 (9.47, 10.01) 9.56 (8.63, 10.4) 9.54 (8.64, 10.37)
βfem (-0.2) 0.08 (-0.10, 0.25) -0.01 (-0.20, 0.19) -0.14 (-0.28, 0.01) -0.13 (-0.28, 0.01)
βhhs (0.10) 0.11 (0.07, 0.15) 0.11 (0.07, 0.15) 0.11 (0.08, 0.14) 0.11 (0.07, 0.14)
σ2 (1) 1.71 (1.57, 1.86) 1.77 (1.61, 1.96) 0.99 (0.89, 1.09) 0.98 (0.89, 1.09)
η0 (-4) -1.56 (-3.93, 1.42) -3.50 (-4.52, -2.63) -3.34 (-4.86, -1.94)
ηfem (-1) -0.93 (-1.18, -0.69) -0.92 (-1.18, -0.67) -0.92 (-1.17, -0.68)
ηy (0.5) 0.25 (-0.05, 0.49) 0.44 (0.36, 0.55) 0.43 (0.29, 0.58)
φω (0.5) 0.75 (0.29, 1.32) 0.73 (0.27, 1.28)
δ2
ω (1) 0.84 (0.46, 1.66) 0.84 (0.46, 1.68)
φυ (0) 0.96 (0.11, 1.95)
δ2
υ (0) 0.04 (0.01, 0.11)

D 6928.4 6721.4 4141.9 4144.2
GRS -3829.3 -3609.0 -2048.3 -2055.0
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Figure 4.2: Comparison of Standard and Orthogonalized ηy Estimates from Simulation 3,
Model 4

4.5 Data Analysis

4.5.1 Implementation

Similar to our simulations, Models 1-4 were implemented using JAGS (Plummer, 2017) in R

and run for 10,000 iterations with 1,000 burn-in, as examination of individual trace plots sug-

gested sufficient mixing and convergence of the non-spatial parameters. At each iteration g,

the finite population mean income, ȳ(g) = exp
[

1
T

(∑n
i=1

∑mi
j=1 yj(`i) +

∑N
i=1

∑Mi
j=mi+1 yj(`i)

(g)
)]

,

and the finite population mean percentage of income spent on fruits and vegetables, ȳ(g) =

1
T

(∑n
i=1

∑mi
j=1 exp [zj(`i)− yj(`i)] +

∑N
i=1

∑Mi
j=mi+1 exp

[
zj(`i)− yj(`i)(g)

] )
, were calculated us-

ing estimates of the nonsampled units drawn at that iteration. The variance parameter σ2
β was

fixed at 1,000 to reflect an uninformative prior, while the σ2
η and σηy terms were fixed at 0.68 as

a weakly informative prior restricting the range of the exponentiated logistic regression coefficients

to 1
5 and 5. The non-spatial σ2, and spatial, δ2

ω, variance components were assigned prior distribu-
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tions of IG(2,10) and IG(2,2), respectively, to reflect small point masses centered at 10 and 2. The

prior for δυ was assigned to be uniform distribution ranging from 0 to 0.75, so that the standard

deviation reported in Section 4.2 is included in this range. This tight prior was found to improve

convergence in the other logistic regression parameters. The spatial range parameters, φω and φυ,

were assigned prior distributions of Unif(0.1, 2), to reflect a spatial range of 1.5 (3/2) to 30 (3/0.1).

4.5.2 Results

The results of this analysis are presented in Table 4.5. Notably, there is no evidence of an inter-

vention effect on the percent of income spent on fruits and vegetable in any of the models, denoted

by the coefficient βtreat∗follow being small and all credible intervals containing 0. Evidence of a

significant intervention effect would have seen a larger positive coefficient. This finding supports

previous findings of no community-level changes as reported in Ortega et al. (2016). The four mod-

els have similar agreement on all β regression coefficients, so the following interpretations are based

on Model 4. All else equal, males spent 58% (exp(-0.54)) of the outcome spent by women. Larger

reported households were associated with higher amounts of household income spent on fruits and

vegetables, with the outcome multiplicatively increasing by 15% for every additional household

member. Food purchasers who reported having less than a high school education spent 1.8 times of

the outcome of those with a high school diploma or more. There was a small negative linear effect

of age on the outcome, as well as a small positive quadratic term. The percent of income spent

on fruits and vegetables was also lower at follow-up, which is consistent with the raw percentages

presented in Table 4.1. There were no differences were detected for partner status.

Confirming the preliminary analyses discussed in Section 4.2, all three models that account for

preferential response conclude that larger incomes are more likely to provide their income. Models

2-4 agree that age is not associated with the probability of response. Accounting for association in

the probability of response appears to also best fits the data, as evidenced by the lowest value of

D and highest GRS value. Interestingly, the model fit for Model 2 is poorest (on the GRS scale),

suggesting that accounting for preferential sampling while not accounting for spatial association

(either at the outcome or response levels) leads to poorer fit. Also, Model 3 fits poorer than Model
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1 (and Model 2 on the D scale), which suggests that spatial association at the outcome level may

have been accounted for with the inclusion of additional covariates.

However, our estimation of the finite population mean of the percent of income spent on fruits

and vegetables is very model specific. Most importantly, it is evident that in ignoring the presence

of preferential sampling, Model 1 spuriously underestimates this percentage. The reason for this

is clearly explained by examining each corresponding model’s finite population estimate of income.

As Model 1 does not account for the fact that individuals with lower incomes are less likely to report

their income, there is much less variability in the average income of the community. This leads to

a spurious estimate almost $10,000 and 30% larger than the next closest estimate of $29,364.66,

given by Model 2. It is important to note that Model 1’s estimates are also much larger than

the averages presented in Table 4.1, while Models 2-4 present credible intervals that contain these

values. While it is true that the additional variability from accounting for preferential sampling

leads to larger posterior credible intervals, we note that no part of Model 1’s credible interval is

contained in any of the other models. Despite this apparent disagreement, Model 4’s incorporation

of spatial association in the response mechanism results in a compromise between Model 1 and 3.

This trend is also observed in the finite population mean fraction, where higher estimated incomes

in Model 1 correspond to much lower estimated fractions than the other models. Based on model

fit statistics, we conclude that Model 4 provides the best estimate of the finite population fraction

mean, which is 26%.

Additionally, as posterior samples are drawn for all individuals with non-response, finite pop-

ulation estimates can be constructed for each community at both timepoints, which are presented

for each model in Table 4.6. Bolded estimates represent instances where the 95% credible intervals

do not include the raw average reported in Table 4.1. Interpolated maps corresponding to these

finite population estimates are presented in the supplemental material. Importantly, these results

emphasize the importance of imputation. Models 2-4 show remarkable similarity in these estimates

and conclude that raw data of 6 of the 8 sites underestimates the percentage of income spent on

fruits and vegetables at baseline and all but 1 of the 8 underestimate at follow-up. Model 3 addi-

tionally identifies site 1 at baseline, but this is not supported by the rest of the models. Even in the

case of Model 1, at baseline 3 were found to underestimate the percentage and 1 suggested overes-

78



timation, and at follow-up, 2 communities were found to underestimate as well. Encouragingly, in

all but one case (site 7 at baseline) of the disagreements with the raw data that Model 1 identified,

Models 2-4 also identified these cases. Additionally, Models 2-4 suggest that the baseline total is

underestimating the true average and all models agree that the follow-up total is underestimated.

4.6 Discussion

This paper presents a new framework to account for data whose outcome is spatially associated

and whose probability of response is assumed to be associated with the value of the outcome.

We examine the implications of this data on finite population quantities and demonstrate how

to perform bayesian estimation on these values. This works builds on an existing literature in

spatial statistics, bayesian finite population estimation, and missing data and has a wide range of

applications in health, economics, and environmental work.

Specifically, in our presented data analysis, we find that accounting for spatial association

at both the outcome and probability levels provides the best model fit. By accounting for such

associations and preferential responses in income, we are more confident in concluding that there

was no effect on the percent of income spent on fruits and vegetables at the community level

attributable to the corner store intervention. We were however, able to more accurately describe

the individual communities by estimating finite population means at each site level. In fact, the

finite population estimates of income that stem from the modeling ignoring both spatial association

and preferential response are substantially larger than the other models and are less believable, given

the community. This directly contributed to lower estimates of the percent of income spent on fruits

and vegetables in these communities, compared to the other models. The public health importance

of such estimation work is two-fold. In future projects in these regions, interventions that focus

on FV access and knowledge could target areas with high estimated percentages. Additionally,

future work can examine ways in which income information can be solicited from lower income

neighborhoods and what factors may be driving this non-response (besides the level of income).

The literature of bayesian finite population estimation in the presence of spatial association is
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small and future extensions to the work presented in this paper are numerous. While this model

draws inspiration from the preferential sampling described by Diggle et al. (2010), we examined

a missing data case that had similar evidence of preferential response. However, a data analysis

implementing this technique on a dataset with preferential sampling from a finite population would

be a strong addition to the literature. The authors view the framework discussed in Section 4.3 to

be flexible enough to allow for other, more complicated sampling schemes as well, although more

simulation work would be needed to fully understand the implications of these on finite population

quantities, especially if spatial association is assumed.

Additionally, while the sample size presented in the data analysis of this paper was small, this

framework can be extended to account for massive sample sizes. The problem of spatial modeling

for big data stems from the inversion of dense covariance matrices, but modern work in covariance

approximation has made this feasible. Such techniques include low-rank models, sparsity-inducing

processes, and map reducing approaches. An excellent review of these techniques is given by Heaton

et al. (2018).
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Table 4.4: Simulation Results of Scenario 3: Spatial Outcome, Preferential Sampling, Spatial
Inclusion

Model 1 Model 2 Model 3 Model 4
Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI)

ȳ (9.94) 10.38 (10.32, 10.44) 9.91 (9.73, 10.07) 9.84 (9.74, 9.93) 9.99 (9.84, 10.13)
β0(10) 9.97 (9.73, 10.20) 9.58 (9.33, 9.85) 9.50 (8.54, 10.39) 9.60 (8.65, 10.54)
βfem (-0.2) 0.06 (-0.13, 0.26) -0.12 (-0.33, 0.09) -0.14 (-0.3, 0.01) -0.09 (-0.25, 0.07)
βhhs (0.1) 0.09 (0.05, 0.13) 0.11 (0.07, 0.15) 0.10 (0.07, 0.14) 0.10 (0.07, 0.13)
σ2 (1) 1.81 (1.66, 1.98) 2.04 (1.81, 2.29) 1.14 (1.02, 1.27) 1.07 (0.96, 1.19)
η0 (-4) -4.48 (-6.25, -2.87) -5.04 (-6.15, -3.79) -3.52 (-6.09, -1.07)
ηfem (-1) -0.85 (-1.11, -0.61) -0.84 (-1.1, -0.60) -0.97 (-1.25, -0.70)
ηy (0.5) 0.52 (0.35, 0.72) 0.58 (0.46, 0.70) 0.44 (0.21, 0.70)
φω (0.5) 0.67 (0.26, 1.20) 0.64 (0.22, 1.17)
δ2
ω (1) 0.84 (0.45, 1.73) 0.82 (0.40, 1.83)
φυ (1.5) 1.53 (0.58, 1.98)
δ2
υ (1) 0.91 (0.48, 1.82)

D 7035.3 6798.4 4397.1 4295.4
GRS -3819.5 -3466.9 -2153.9 -2119.1

Table 4.5: Results of regression models predicting percentage of income spent on fruits and
vegetables (log-scale)

Model 1 Model 2 Model 3 Model 4
FP Avg. % 0.17 (0.16, 0.19) 0.26 (0.22, 0.31) 0.35 (0.28, 0.43) 0.26 (0.22, 0.32)
FP Avg. Inc. 40.85 (37.19, 45.86) 29.36 (26.66, 32.58) 25.58 (24.14, 27.71) 28.72 (26.18, 31.83)
β0 -2.81 (-3.41, -2.21) -2.22 (-2.86, -1.58) -2.25 (-3.24, -1.35) -2.42 (-3.31, -1.65)
βmale -0.5 (-0.67, -0.34) -0.53 (-0.7, -0.36) -0.55 (-0.72, -0.37) -0.54 (-0.71, -0.37)
βpartner -0.11 (-0.25, 0.03) -0.07 (-0.22, 0.07) -0.02 (-0.17, 0.13) -0.04 (-0.19, 0.1)
βhhs 0.13 (0.09, 0.17) 0.14 (0.1, 0.18) 0.14 (0.1, 0.18) 0.14 (0.1, 0.18)
βtreatment -0.01 (-0.21, 0.18) -0.07 (-0.27, 0.12) -0.02 (-0.9, 0.8) 0.06 (-0.74, 1.3)
βfollowup -0.25 (-0.45, -0.05) -0.25 (-0.45, -0.06) -0.2 (-0.4, 0) -0.24 (-0.44, -0.04)
βtreat∗follow 0.1 (-0.17, 0.37) 0.05 (-0.22, 0.32) 0.06 (-0.22, 0.33) 0.1 (-0.17, 0.37)
β<HS 0.59 (0.44, 0.73) 0.63 (0.48, 0.78) 0.6 (0.45, 0.76) 0.6 (0.45, 0.74)
βage -0.012 (-0.036, 0.012) -0.028 (-0.055, -0.002) -0.0267 (-0.050, 0.003) -0.025 (-0.048, -0.003)
βage2 1e-04 (-1e-04, 4e-04) 3e-04 (1e-04, 6e-04) 3e-04 (0, 5e-04) 3e-04 (1e-04, 5e-04)
σ2 1.5 (1.39, 1.63) 1.64 (1.49, 1.81) 1.7 (1.52, 1.89) 1.53 (1.39, 1.7)
η0 -4.19 (-5.63, -2.91) -6.6 (-7.8, -5.04) -3.57 (-5.01, -2.18)
ηage 0 (-0.01, 0.01) 0 (-0.01, 0.01) 0 (-0.01, 0.01)
ηy 0.5 (0.37, 0.65) 0.76 (0.6, 0.89) 0.54 (0.38, 0.71)
φω 1.31 (0.21, 1.98) 1.38 (0.25, 1.98)
δ2
ω 0.36 (0.15, 1.09) 0.31 (0.12, 0.77)
φυ 0.79 (0.24, 1.87)
δ2
υ 0.67 (0.52, 0.75)

D 3527.8 3692.2 3701.2 3482
GRS -1841.2 -1903.6 -1863 -1767.8

Note: The finite population mean income is presented in units of $ 10,000.
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Table 4.6: Finite Population Estimates and 95% CI of Percentage of Income Spent on Fruits
and Vegetables by Community and Timepoint.

Site Time Data Model 1 Model 2 Model 3 Model 4

1
B 26.0 23.2 (19.6, 29.5) 34.2 (25.5, 49.4) 45.9 (31.9, 70.0) 33.3 (24.8, 48.3)
F 11.2 13.6 (10.4, 18.8) 24.4 (16.0, 38.8) 38.2 (23.7, 63.5) 23.9 (15.9, 37.4)

2
B 11.4 14.8 (11.8, 20.5) 21.9 (15.2, 34.5) 23.5 (16.0, 37.4) 20.4 (14.4, 31.5)
F 13.6 14.7 (12.8, 18.4) 19.0 (14.7, 26.9) 21.0 (15.8, 30.6) 18.9 (14.7, 26.8)

3
B 16.8 19.6 (15.6, 26.6) 30.9 (21.7, 46.5) 35.5 (24.3, 54.4) 30.5 (21.5, 45.8)
F 13.6 14.3 (13.0, 17.2) 17.1 (14.0, 23.9) 18.1 (14.5, 25.6) 16.7 (13.9, 22.3)

4
B 13.6 17.4 (13.6, 23.7) 29.2 (19.9, 45.5) 42.1 (26.8, 68.4) 27.4 (18.6, 42.9)
F 11.4 17.0 (12.3, 24.4) 33.4 (21.6, 53.2) 55.5 (33.5, 90.8) 31.8 (20.1, 50.7)

5
B 10.6 15.3 (11.6, 22.2) 23.8 (15.7, 38.8) 22.6 (15.2, 36.0) 20.5 (14.1, 32.3)
F 10.9 11.1 (10.6, 12.7) 12.0 (10.8, 15.3) 12.1 (10.8, 15.5) 11.8 (10.7, 14.6)

6
B 9.2 12.9 (9.8, 18.5) 21.5 (14.3, 34.6) 24.2 (15.6, 39.1) 19.4 (13.2, 30.3)
F 10.5 11.7 (9.8, 15.2) 17.2 (12.4, 26) 20.0 (14.0, 31.3) 16.3 (12.0, 24.1)

7
B 46.5 38.0 (34.0, 45.2) 48.1 (39.2, 64.2) 69.8 (50.7, 100.00) 57.5 (44.0, 81.8)
F 15.6 17.5 (13.8, 23.9) 26.7 (18.8, 40.4) 54.0 (33.8, 90.6) 41.1 (26.3, 66.6)

8
B 15.2 19.1 (14.7, 26.6) 31.0 (20.9, 48.3) 43.1 (27.5, 69.0) 30.8 (20.6, 47.9)
F 11.3 15.4 (11.6, 21.6) 24.7 (16.8, 38.5) 37.8 (23.9, 61.8) 26.5 (17.3, 42.4)

Total
B 18.3 20.1 (18.2, 22.6) 30.1 (24.9, 37.6) 38.4 (30.7, 48.5) 30.0 (24.7, 37.4)
F 12.3 14.4 (13.1, 16.1) 21.6 (17.7, 27.1) 31.5 (24.7, 40.9) 23.0 (18.8, 29.2)

Note: Models whose 95% credible intervals do not contain the raw mean average are bolded.
One percentage has been capped at 100.0.
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Chapter 5

Conclusion

This dissertation is the first work to examine finite population sampling in the presence of spa-

tial association using Bayesian modeling techniques. The general Bayesian framework presented

in Chapter 3 considers an ignorable sampling design and allows for posterior estimates of finite

population quantities to be collected while correctly accounting for spatial correlation in both sam-

pled and nonsampled units. Two-stage sampling was explored first with a simulation study and

then a data analysis of the nitrate content California groundwater obtained through well samples.

Both works concluded that a model which both correctly accounted for study design and spatial

association had the best model fit and improved finite population estimates.

Survey data obtained from a corner store intervention was first analyzed in Chapter 2 using a

more standard spatial analysis approach and then in Chapter 4, where we fully develop the general

framework of Chapter 3 to allow for preferentially missing data. Importantly, Chapter 2 presents

the coregionalization model as a technique to allow for two, possibly correlated, spatial random

effects. While point-referenced data is common in food environment studies, analyses investigate

and test for spatial association are rare. The dissemination of the analyses presented here can offer

modeling advice to data where each observation is not only point-referenced, but is identified by a

pair of locations. Further, this analysis provided another example of finite population estimation

for ignorable missing data. The Bayesian framework presented in Chapter 4 is more flexible by

accounting for nonignorability designs (or missingness) through a logistic regression. Additionally,

we permit spatial association in both the outcome and sampling levels, which improved the model

fit and lead to more reasonable finite population estimates in the real data analysis. “Preferential”

sampling is permitted by incorporating the spatially associated outcome variable in the modeling

of the sampling mechanism.

This dissertation combines themes found in the Bayesian statistics, spatial statistics, bayesian

finite population estimation, and missing data literatures and many extensions to this work should
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be researched. For instance, a spatiotemporal model would be able to incorporate the entire

groundwater data discussed in Chapter 3, rather than be restricted to a single value at each well as

presented in our analysis, and would finite population estimates at multiple time points. Further,

this work has only considered a Gaussian Process to describe the outcome variable but our process

based approach could be modified to allow various other processes, such as mixtures of Gaussian

Processes, a generalized Gaussian Process, or a spatial Dirichlet Process. Such work would greatly

improve the flexibility of such models to allow for more sophisticated associations. In continuing to

develop this framework, our goal is to improve the quality and accuracy of the estimation of these

finite population quantities, particularly in the context of Public Health.
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