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ABSTRACT OF THE DISSERTATION

Nonlinear Mechanics of the

Bacterial Cell Wall

by

Jordan Kazuo Price

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2019

Professor Jeffrey D. Eldredge, Chair

Despite the relentless study of the Gram-negative bacterium Escherichia coli that began

many decades ago and has continued to the present, the understanding of its mechanics

remains weak. Technological advances in microfluidic devices and the use of atomic force

microscopy (AFM) as a tool to measure mechanical properties of nanometer scale objects

have pushed the field forward. However, in the latter case it remains difficult to translate

force-deflection curves acquired through AFM into meaningful properties when the material

is anisotropic, which is the case for the peptidoglycan (PG) cell wall in E. coli. The situation

is further complicated by the cell’s turgor pressure, which has not been reliable measured and

may frequently undergo changes on the order of several atmospheres. Nevertheless, these

difficulties provide opportunities for theoretical and computational mechanics researchers

to help close the gaps in understanding. In this thesis we start by developing analytical

and computational composite thin shell models that recognize the inner membrane as an

additional stress-bearing structure within the cell envelope. These models are also utilized

to investigate the anisotropic material properties of the cell wall. Next, an osmotic transport

model is constructed to search for reasons why cell lysis occurs on short time scales during

a rapid change in external osmolarity known as osmotic shock. Finally, we investigate the

active mechanics of a growing cell wall by developing a finite growth kinematics model. New

PG material is inserted into the cell wall in thin strips, which leads to a highly disordered

stress field littered with stress concentrations. We study the interactions of these defects in
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the cell wall and demonstrate how geometric and material nonlinearity affect them.
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CHAPTER 1

Introduction

Bacteria exhibit the extraordinary ability to withstand internal pressure changes of several

atmospheres when exposed large to external concentration gradients, all while growing to

double their size and dividing several times per hour. The techniques utilized to combat

osmotic shocks are predominantly mechanical and are associated with two structural layers

that lie within the cell envelope: the lipid bilayer inner membrane and the solid peptidoglycan

cell wall. The porous PG wall is the primary stress bearing structure, a key component in cell

growth, and the determining factor in maintaining cell shape. On the other hand, the fluid

membrane houses mechanosensitive ion channels, which respond to local forces by opening

pathways for solute and water flux, allowing the cell to regulate turgor pressure and return

to an equilibrium state with the surrounding medium. Cells inevitably fail at large osmotic

pressure gradients, but the manner in which they do so is surprising. Bacteria do not only

burst or explode as has been previously hypothesized, rather they display several death

phenotypes and commonly fail over time scales associated with cell growth. This indicates

that while an osmotic shock may put a cell on the path towards lysis, the story becomes

more complicated as bacterial death is frequently a slow transient process involving the active

mechanics of a growing cell wall.

Motivated by experiments on single-cells subjected to osmotic downshock (a sudden

decrease in external osmolarity), we investigate the causes of short and long timescale lysis

in shocked cells. Acquiring a further understanding of the mechanisms behind bacterial cell

death can potentially impact the development of novel antibiotics. Many antibiotics function

by attacking the cell wall, inhibiting synthesis of peptidoglycan material, and creating defects

in the peptidoglycan network that weakens the structure. Although we study the mechanics
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of growth towards the end of this work, we focus on the stress field evolution of the cell wall

in the presence of defects, which somewhat surprisingly appears to overlap with antibiotic

induced cell lysis.

In order to break down the topics covered in this thesis into manageable pieces, we provide

the following outline that includes specific goals at each step:

1. Cell envelope mechanical properties: Determine the elastic properties of the cell

wall and the significance of material anisotropy in the peptidoglycan layer.

(a) Construct a composite shell model that considers the mechanics of the inner

membrane and cell wall.

(b) Determine mechanical properties of the cell wall based on experimental results

and stability requirements.

(c) Derive key relationships between membrane tension, cell wall stresses, turgor

pressure, and volume change.

(d) Validate analytical calculations using a geometrically nonlinear finite element

analysis.

2. Transport: Develop a transport model to determine the mechanical response of the

cell to osmotic shock.

(a) Apply the Kedem-Katchalsky transport equations to an E. coli cell.

(b) Insert previously derived constitutive equations into the model.

(c) Analyze the cell response to osmotic downshock as different parameters including

shock magnitude, rate, and channel populations are varied.

(d) Investigate how cell lysis occurs on short timescales consistent with osmotic trans-

port.

3. Growth: Determine how evolution in the stress field during cell wall growth can affect

cell lysis.
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(a) Construct a mechanical growth model with finite kinematics and develop an evo-

lution equation for the MreB-directed insertion of material into the cell wall.

(b) Incorporate a system of differential equations into the model that govern activa-

tion and inactivation of the discrete growth machinery.

(c) Connect the motion of the growth machinery and spatial-dependence of the acti-

vation processes to a stress-dependent probability.

(d) Determine the effects that arise when geometric and material nonlinearity are

included in the model.

(e) Discuss methods to quantify cell lysis in terms of the growth model variables.

Following the outline above, Chapter 2 is devoted to the development and analysis of

the composite shell model. Different geometric idealizations are compared and the effects of

excess membrane area on estimates for cell wall material properties are studied. In Chapter

3 construction of the osmotic transport model is discussed, along with its coupling to the

analytical model from Chapter 2. Key relationships between membrane failure and the model

parameters are identified to measure cell survivability. Chapters 4 and 5 are dedicated to the

large deformation growth model of the cell wall. In Chapter 4, the important concepts within

the field of growing soft biological tissue mechanics are explained and illustrated through a

few simple numerical examples. This framework is then applied to the bacterial cell wall in

Chapter 5. Finally, Chapter 6 provides a summary of this work and includes a discussion of

future research directions on the mechanics of bacteria.
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CHAPTER 2

Composite Thin Shell Model of the Cell Envelope

The complex interaction between the inner membrane and cell wall is thought to strongly

influence key aspects of the bacterial life cycle, such as growth, division, and death. Internal

osmolyte concentrations establish turgor pressure, which presses the lipid bilayer up against

the peptidoglycan cell wall, resulting in a thin laminate framework that is responsible for

maintaining structural integrity by providing resistance to internal forces. Under ionic con-

centration gradients known as osmotic shock, the cell adapts by equilibrating the turgor

pressure with the external environment. Under large pressures imposed by osmotic shock,

failure of cells can occur via mechanisms such as blebbing (membrane bulging through a

hole in the porous cell wall), membrane rupture, and cell wall fracture. These phenomena

suggest that the mechanical properties of both layers are significant players in cell survivabil-

ity. To investigate this matter, a composite shell model is constructed that aims to emulate

experimentally observed deformation under pressure variations, determine the stress-bearing

contributions of both lamina, and gain a quantitative understanding of the anisotropic ma-

terial properties of the peptidoglycan cell wall.

Bacterial structure is predominantly influenced by the cell envelope, composed of the cell

wall, an inner membrane, and in the case of gram-negative bacteria an outer membrane. This

category of bacteria, which includes Escherichia coli, has a notably thin cell wall (∼ 5 nm)

relative to its gram-positive counterpart that resides between the two membranes in what is

known as the periplasmic space. E. coli cells assume a rod-like shape that can be thought

of as a central cylindrical section bonded to hemispherical caps at either end. The cell wall

is composed of peptidoglycan chains, with stiff glycan strands oriented circumferentially

and elastic peptide links aligned axially. This leads to a directionally dependent porous
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scaffold that exhibits anisotropic material properties. In fact, the cell wall displays a special

type of anisotropy due to its three planes of symmetry, known as orthotropy. It has been

observed that cell expansion occurs primarily in the axial direction, and it is hypothesized

that the relatively weak peptide chains are the reason behind this behavior. On the other

hand, the inner membrane acts as an isotropic fluid barrier to ions and other molecules

that can pass through the permeable wall, controlling their entry into the cell interior.

Although the lipid bilayer is largely impenetrable to most solutes, it displays the unique

ability to open ion channels allowing the cell to equilibrate pressure with its surroundings by

controlling osmolyte flow across the cell envelope. The analytic continuum mechanics model

contained within this work is the first to consider the inner membrane as a key contributor

in providing resistance to turgor pressure. The outer membrane does not appear to play a

significant structural role during downshock or under normal growth conditions [8], thus it is

disregarded in this work. In the sequel, “membrane” is used to refer to the inner membrane.

The life cycle of a bacterial cell is fundamentally dynamic, comprised of time-dependent

processes such as ionic flow across the cell envelope, peptidoglycan construction during

growth, DNA replication, and pressure variations. During growth, the cell wall exhibits

viscoelastic material behavior, or in other words, the state of stress is dependent on the rate

of deformation. Furthermore, when subject to hypoosmotic shock (causing increased turgor

pressure) the probability of cell failure depends on the shock rate [9]. MS channel gating

can return the cell to a state of pressure equilibrium with its surrounding environment, but

extreme shocks on short time scales do not provide adequate time for the cell to respond,

leading to low probabilities of survival. These dynamic processes become extremely com-

plex when combined, thus we analyze the simpler picture of mechanical deformation under

“small” turgor pressures that have negligible dependence on channel gating. While the ex-

act values of turgor pressure and critical gating tensions are not precisely known, they are

thought to lie in the ranges p = 0.1− 5 atm and 0.1− 2.0kBT/nm2, respectively.

Several recent works have examined the mechanical properties of the peptidoglycan sac-

culus in E. coli – in particular the stiffness known as the Young’s modulus, E – through

experimental measurements and theoretical analysis. The small cellular length scales in-
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herent to bacteria have made it difficult to accurately determine their material properties.

Advances in atomic force microscopy (AFM) help combat this issue, and several studies have

utilized this technique coupled with theoretical calculations to infer the elastic moduli from

measurements [2, 10, 1]. Similar empirical approaches and molecular dynamics simulations

have been used to investigate the mechanical characteristics of peptidoglycan networks in

bacterial cells [11, 12]. From these works, the reported values for the Young’s modulus vary

through a wide range, E ∼ 5 – 200 MPa. Additionally, many of these results rely on the as-

sumption that the cell wall is isotropic. However, the observed axially dominated nature of

deformation makes this highly improbable. Moreover, the stress-bearing contribution of the

membrane has previously been ignored, which necessarily requires that the turgor pressure

is resisted entirely by the cell wall. We postulate that both the material anisotropy of the

peptidogylcan cell wall and the ability of the membrane to sustain a state of isotropic ten-

sion play key roles in how bacteria resist turgor pressure and respond to osmotic challenge.

Therefore, the composite model derived herein incorporates both layers in order to provide

new insights into the mechanics of the cell envelope.

2.1 The Model

As our model scenario we consider a spherocylindrical bacterial cell subjected to an outward-

directed pressure representing the mechanical load due to a hypoosmotic shock — i.e., a

rapid reduction in osmolarity of the surrounding medium that drives water through the

semipermeable cell envelope, leading to an expansion of volume. We idealize the structure

of the cell envelope as a composite shell of two layers: The inner layer is a fluid membrane

of finite stiffness in bending and area stretch, representing a lipid bilayer membrane. The

outer layer is a thin solid shell, representing the peptidoglycan (PG) cell wall. For E. coli

and other Gram negative cells, the PG layer is thin (likely in the range of one to a few

molecules thick), and sandwiched between the inner lipid membrane and a second, outer

lipid membrane. However, this outer membrane is understood to have a more disordered

gel-like structure offering insignificant mechanical support. We neglect the outer membrane
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in our model.

2.1.1 Kinematics & Constitutive Response

We assume that the membrane and cell wall layers remain in contact throughout the defor-

mation. Furthermore, because both layers are thin (h ≈ 5 nm) relative to the dimensions of

the cell (R ≈ 1 µm) we neglect the distance between layers and describe the kinematics in

terms of a single surface ω, which we may think of as the mid surface between the layers.

2.1.1.1 Membrane

The inner lipid membrane is modeled as a fluid surface, insensitive to surface shears, but

resistant to bending and isotropic stretching. The surface bending elasticity is modeled by

the classic Helfrich-Canham-Evans energy [13, 14, 15],

Πm
b =

∫
ω

Kb
2

(2H − C0)2 +KGK da, (2.1)

where Kb and KG are defined as the bending and Gaussian moduli, and C0 is the spontaneous

curvature arising from asymmetries in the bilayer. Additionally, the mean curvature H =

aαβbαβ is the average of the two principal curvatures, and the Gaussian curvature K =

det(bαβ)/ det(aαβ) is their product.

The in-plane stretching elasticity is modeled by defining a relation between surface tension

τm and areal strain

εA =
da

dA
. (2.2)

Because membrane fluidity guarantees that the surface tension will be homogeneous, we can

also compute the areal strain as

εA =
∆A

A0

=
A[x]− A0

A0

, (2.3)

where A and A0 are the total areas of the deformed and reference configurations, respectively.

For small tensions, the corresponding change in area involves the “smoothing” or “flattening

out” of thermal undulations in the membrane, and results in an exponential area-tension
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constitutive relation. For larger tensions, such as those that trigger gating of mechanosensi-

tive channels, changes in area of the membrane actually involve changes in lipid density. In

this case, the tension is directly proportional to areal strain,

τm = KAεA. (2.4)

The stretching modulus, KA, for typical lipid bilayers takes values on the order of KA =

30–60kBT/nm2 [16, 17, 18]. The energy of elastic stretch can then be obtained by integration

of (2.4),

Πm
s =

∫
Ω

KA

2
ε2AdA =

KA

2

(A− A0)2

A0

, (2.5)

and the total membrane energy is the sum of bending and stretching contributions

Πm = Πm
b + Πm

s . (2.6)

2.1.1.2 Cell Wall

The bacterial cell wall is constructed of a disordered network of peptidoglycan, that is thought

to be one to several layers thick. As with the membrane, we write the elastic strain energy

of the peptidoglycan layer as a combination of stretching and bending terms, in this case

according to standard thin shell elasticity [19],

Πw = Πw
b + Πw

s , (2.7)

Πw
b =

∫
Ω

1

2
DαβγδραβργδdA, (2.8)

Πw
s =

∫
Ω

1

2
AαβγδEαβEγδdA. (2.9)

Fourth order tensors Aαβγδ and Dαβγδ contain the elastic and bending material constants,

respectively. The curvature change and elastic strain tensors are denoted by ραβ and Eαβ,

respectively.

For spherocylindrical bacteria like E. coli, the cell wall is a two-dimensional orthotropic

material, with stiffness along the axis of the cell that is softer than in the azimuthal (i.e.,

“hoop”) direction. We define a linear orthotropic stress-strain response in terms of a cylin-

drical polar coordinate system with axial coordinate z and azimuthal angle θ, with flexibility
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relation

ε =


εz

εθ

2εzθ

 =
1

h


1/Ez −νθz/Eθ 0

−νzθ/Ez 1/Eθ 0

0 0 1/Gzθ



τz

τθ

τzθ


= Sσ (2.10)

where Ez and Eθ are the Young’s moduli in the z and θ directions, νθz and νzθ are the

Poisson’s ratios, and Gzθ is the shear modulus. Here τ are two-dimensional stress resultants,

having units of force per length. The wall is sufficiently thin that we can assume the (three-

dimensional) stresses to be uniform through the thickness, such that the integrated stress

resultants (force per unit length along an edge of the surface) are obtained by multiplying by

the thickness h (τ = hσ). Thermodynamic reversibility demands that dg = τ Tdε = τ TSdτ

be a perfect differential. This requires that S be symmetric, that is

νθz
νzθ

=
Eθ
Ez
≡ α. (2.11)

We will take this ratio α, along with Ez and ν ≡ νzθ as the independent material parameters

in our model.

2.1.2 Loading and Equilibrium

The only load considered is the internal turgor pressure. A potential for the pressure load p

can be written as follows

V ext =

∫
p dv =

1

3

∫
p∇ · x dv =

1

3

∫
px · n da, (2.12)

allowing us to write the total potential energy as a sum of three terms:

Π = Πm + Πw + V ext. (2.13)

Mechanical equilibrium is attained by minimizing the total potential energy. For a general

spherocylindrical geometric model of the cell the resulting Euler-Lagrange equations are

not amenable to analytical solution. For this case we discretize the general problem with
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cubic axisymmetric finite elements. However, for simpler idealizations of cell shape the

equilibrium equations may be solved by hand. In the following section we work out solutions

for idealized spherical and cylindrical shapes and compare them to the numerically computed

spherocylindrical model. Specifically, expressions for membrane tension (τm) and volume

strain (εV ) are derived to facilitate comparison with experimental results.

2.2 Comparison of Different Geometric Idealizations

Sphere

We begin with the simplest idealization — a spherical shell of radius R with isotropic cell

wall properties (α ≡ Eθ/Ez = 1). This produces a uniform isotropic state of strain with no

bending effects to lowest order. The membrane and cell wall layers deform together with

equal strains (εz = εθ = εA/2). Summing the stress resultants (force per unit length) of the

membrane and wall gives

τ = τm + τw = (Km
A +Kw

A) εA, (2.14)

where Kw
A is the wall stretch modulus, defined as Kw

A = Eh/2(1−ν). The equilibrium equa-

tions here reduce to the well-known Laplace-Young equation, which balances the pressure

difference p = pin− pout across both lamina with stress resultants τ = pR/2. Combining the

stress resultants of both layers allows us to write the pressure in terms of the areal stretch,

p =
2

R
(Km

A +Kw
A) εA. (2.15)

Taking E → 0 in Eqn. (2.15) eliminates the load bearing contribution of the wall and we are

left with the area-stretch relationship for the membrane, shown in Eqn. (2.4). The linearized

volumetric strain can be written in terms of a bulk modulus KV and pressure,

εV =
1

KV

p =
3

2 (Km
A +Kw

A)

pR

2
. (2.16)
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pτm

τz

p
τm

τmτθ
τθ

Figure 2.1: Free body diagrams of a cylindrical composite shell composed of membrane and

peptidoglycan layers. Stress resultants τm, τθ and τz balance the internal pressure p. The

geometry of the pressurized cylinder leads to circumferential stresses (right) that are twice

as large as those aligned with the cylindrical axis (left).

Orthotropic Cylinder

In the simplified cylindrical model, we consider both the structural and mechanical or-

thotropy of the cell wall. For the pressurized cylinder, shear is zero, σzθ = 0 ⇒ εzθ = 0, so

that Hooke’s law for the stress resultants simplifies toεz
εθ


︸ ︷︷ ︸
ε

=
1

Ezh

 1 −ν

−ν 1/α


︸ ︷︷ ︸

S

τz
τθ


︸ ︷︷ ︸
τ

. (2.17)

To couple the membrane and peptidoglycan layers, and determine the stresses in a cylindrical

shell, we can use free body diagrams of sections defined by axial and longitudinal cuts. A

cut perpendicular to the axis (Fig. 2.1) allows us to compute the axial tension τz,

πR2p = 2πR(τz + τm). (2.18)

Notably, this is the same as the Laplace-Young relation (τ = pR/2) for a spherical shell with

a combined surface tension τz + τm. A cut parallel to and through the axis of the cylinder

gives the circumferential tension τθ,

2RLp = 2L(τθ + τm). (2.19)
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We can solve for the stress resultants in the PG layer as

τ =

τz
τθ

 =

pR/2− τm
pR− τm

 . (2.20)

Hooke’s law from Eqn. (2.17) can then be written as

ε =

εz
εθ

 = S

pR/2− τm
pR− τm

 . (2.21)

The membrane area-stretch relationship τm = KAεA = KA(εz + εθ) can be substituted into

Eqn. (2.20), leading to

ε =

I +KAS

1 1

1 1

−1

S

︸ ︷︷ ︸
Sc

1

2

 pR
2
. (2.22)

The membrane tension can then be written in terms of an effective area-stretch modulus

K∗A,

τm = KAεA

=
KA

K∗A

pR

2

=
2 + α(1− 3ν)

1 + α
(

1− 2ν + hEz
KA

) pR
2
.

(2.23)

Note that in the limit as Ez → 0, we also have ν → 0 for stability, which gives K∗A → KA

and τm → pR/2 as expected. The fractional volume change is

εV = εz + 2εθ,

=
[
1 2

]I +KAS

1 1

1 1

−1

S

1

2

 pR
2
,

=
1

KV

p,

(2.24)

where

KV =
2KA

R

1 + α(1− 2ν + hEz
KA

)

4 + α(1− 4ν) + KA
hEz

(1− αν2)
. (2.25)
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2.3 Analysis

2.3.1 Model Comparison

To gain a sense of how the models mechanically respond to hypoosmotic shock, we investigate

the effects of increased pressure on membrane tension and strains (Fig. 2.2). Values for the

material parameters used to calculate τm(p) and εV (p) are summarized in Table 2.1. Notably,

based on AFM measurements [1], we select Ez = 25 MPa and Eθ = 50 MPa for the cell wall

moduli, which gives α = 2. As material anisotropy is neglected in the spherical model, the

sole elastic modulus is set as the average of the two cylindrical moduli, i.e., Eiso = Ez(1+α)/2.

In Fig. 2.2, all three models exceed the critical lytic tension of τ rupture
m = 3.5 kBT/nm2

—corresponding to critical rupture stretch εrupture
A = τ rupture

m /KA = 5.83%—at less than one

atmosphere of pressure, suggesting that the membrane is bearing too much load. It may be

that MS channels, which gate at sub-lytic values, are able to prevent tension from reaching

the rupture limit by rapidly moving cytoplasmic contents out of the cell. Alternatively, it

is plausible that in living cells the membrane simply does not stretch this much. We also

observe that though the orthotropic cylindrical model neglects bending energy and geometric

nonlinearities induced by the hemispherical endcaps, membrane loads largely agree with

those in the spherocylindrical finite element analysis, implying that these contributions do

not significantly alter membrane tension.

Table 2.1: Cell wall and membrane material parameters used in Fig. 2.2 calculations [1, 2].

Parameter Symbol Value

Cell radius R 500 nm

Cell wall thickness h 5 nm

Membrane stretch modulus KA 60 kBT/nm2

Cell wall anisotropy α 2

Axial elastic modulus Ez 25 MPa

Isotropic elastic modulus Eiso 37.5 MPa

Poisson ratio ν 0.3

13



Figure 2.2: Dependence of membrane tension (left) and volumetric strain (right) on pressure

for each model. Left: tensions within the green region exceed the critical rupture tension

for a lipid bilayer (τ rupture
m & 3.5 kBT/nm2). The cylindrical and finite element model ex-

hibit similar behavior. Right: volumetric strain versus pressure. At 1 atm of pressure the

differences in normalized volume change are significant, with the spherocylindrical model

attaining a value twice that of the sphere.

Fractional changes in volume range between 10% and 20% at 1 atm, slightly exceeding

estimates of 8 to 12% based on AFM measurements [2]. Other reported values volumetric

strains fall between a few percent up to roughly 30%, though . While hyperosmotic shocks

leading to plasmolysis induce reductions in volume up to ≈ 50 %, hypoosmotic shocks lead

to smaller increases in volume, possibly hinting at cell stiffening. For the cylindrical model

we calculate strains εz ≈ −3% and εθ ≈ 11% at p = 1 atm. This result clearly conflicts

with the observed longitudinally dominated expansion of rod-shaped bacterial cells under

pressure, which warrants further investigation of the mechanical properties of the cell wall.

2.3.2 Calculating Bounds on α and ν

We first investigate thermodynamic stability, which requires that the determinant of the cell

wall compliance matrix in Eq. (2.17) is positive (det S > 0). From this we obtain

Ez > 0, α > 0,
1

α
− ν2 > 0. (2.26)
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Although the Poisson ratio has not been reliably measured, we can bound it for stability

|ν| < 1√
α
. (2.27)

We enforce the same requirement on the determinant of the composite compliance matrix Sc

in Eq. (2.22). For all values of ν, we recover the same condition determined for the isolated

cell wall in Eq. (2.27). Additionally, if both ν > 1/2 and KA > Ezh/(2ν − 1), the Poisson

ratio is also valid in a region defined by

ν >
1

2

(
1 +

1

α
+
Ezh

KA

)
. (2.28)

Next, we turn our attention to conditions on strain garnered from experimental research.

During an osmotic shock bacteria such as E. coli exhibit swelling, but largely maintain their

rod-like geometry. For this to occur, cells extend almost exclusively along their longitudinal

axis, while circumferential strains are near zero. Starting with the hoop strain, we set εθ ≈ 0

and solve for α in terms of ν,

α ≈
1 + 2Ezh

KA

ν
(
ν + Ezh

KA

) . (2.29)

We can also impose axially dominated deformation by assuming εz > εθ in Eq. (2.22), and

solve the inequality for α to get

α >
2
(

1 + Ezh
KA

)
2ν2 + Ezh

KA
(1− ν)

. (2.30)

The bounds of Eqns. (2.27)-(2.30) are combined and shown in Fig. 2.3. Thermodynamic

stability necessitates that valid (α, ν) pairs lie within the filled regions, while the checkered

area indicates that (α, ν) additionally satisfy the axially dominated strain condition, εz > εθ.

In the positive ν axis, the stability bound of Eq. (2.27) intersects the two strain conditions

at α = 4 and ν = 1/2. This intersection point corresponds to the case of zero deformation

(i.e., εz = εθ = 0), and is independent of the dimensionless parameter β ≡ Ezh/KA. The

yellow area defined by Eq. (2.28) lies far from the εθ = 0 curve, and selecting parameters

within this region leads to large hoop strains and negative axial strains, thus we neglect

further discussion of it. Hoop strains also exceed axial strains within the blue section, and
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Figure 2.3: Restrictions on cell wall anisotropy α ≡ Eθ/Ez and Poisson ratio ν. Thermody-

namic stability (solid lines) requires (α, ν) to fall into the filled regions, while the checker-

board section additionally satisfies axially dominated strains (εz > εθ). It is expected that

(α, ν) will lie near the εθ = 0 curve (purple dashed line) within the checkered area. Material

properties used in this figure are taken from Table 2.1: Ez = 25 MPa, KA = 60 kBT/ nm2,

and h = 5 nm.
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we disregard it as well. Within the checkerboard section (Fig. 2.3), we expect (α, ν) to lie

near the εθ = 0 curve. If we consider for the moment 0 < ν < 1/2 and β < 1, then we

must have α > 4. This finding indicates that for positive Poisson ratios, the circumferential

elastic modulus Eθ is at least 4 times larger than that in the axial direction Ez. In fact,

α can only approach the value of 4 when ν is very close to 1/2 (corresponding to the case

of zero deformation), thus we expect a larger value. For β > 1, the minimum limit on α

is marginally weakened, resulting in a shift of the εz = εθ curve to the left (see Figure in

appendix). However, based on experimental determined material properties we expect the

upper limit to be β ≈ 1.25, which leads to an insignificant change on the minimum value of

α.

Turning our attention to the negative ν axis, for α > 1 there exists a lower thermodynamic

bound that lies well above the εθ = 0 lower curve. As the Poisson ratio becomes increasingly

negative, it also distances itself from the upper εθ strain condition. While negative values of

ν cannot be immediately be disregarded, the fact that the zero hoop strain condition cannot

be approached makes them far less likely.

To further study the α-ν relationship, hoop-to-axial and volumetric strain contours are

displayed in Fig. 2.4, where ν ∈ [−1/2, 1/2]. As the strains from Eq. (2.22) are both

directly proportional to p, the ratio εθ/εz is independent of pressure and solely depends on

material properties α, ν, and β. A narrow band highlighted by stripes depicts (α, ν) that

satisfy εθ/εz = 0± 0.2, an approximation of where we expect εθ/εz to fall. Volumetric strain

contour lines partially correlate with εθ = 0, and the strains near this curve are reasonable for

pressures of one atm. Volumetric strains have been measured to be on the order of several

percent for “small” hypoosmotic shocks [20], up to ≈ 20% for larger changes in external

osmolarity [21]. Negative values of ν lead to larger changes in volume, which corresponds

to increases in membrane tension. With this additional evidence, we select new values of α

and ν to satisfy all of these conditions, and carry out stress and strain calculations.
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Figure 2.4: Left: Strain ratio εθ/εz contours plotted on α-ν axes using Table 2.1 parameters.

Solid red lines indicate thermodynamic stability bounds, and dashed black lines show im-

portant strain curves. Experimental evidence shows that axial strains dwarf circumferential

strains, the latter of which approaches a value near zero. Right: Volumetric strain εV at

pressure p = 1 atm. Small volumetric strains . 15% are expected. Yellow lines mark strain

conditions (εz = εθ, εθ = 0) and red lines define stability bounds.

2.3.3 Recalculating Stresses and Strains with Greater Anisotropy

We revisit calculations performed in Section 2.3.1, this time selecting α = 8 to satisfy

εz > εθ and εθ ≈ 0, based on restrictions determined in Section 2.3.2. The spherical modulus

is recalculated due to its dependence on α, while all other parameters remain the same as in

Table 2.1. The updated results are tabulated in Table 2.2.

For the cylindrical model, increasing α while holding all other parameters constant has

the simple effect of strengthening the cell wall hoop modulus, Eθ. Consequently, the wall

bears a larger portion of the pressure load, and alters deformation such that for α = 8,

the axial strain is roughly three times greater than the hoop strain. This shift to axially

dominated deformation causes a reduction in fractional volume change, as εθ has twice the

influence of εz on εV (2.24), and εθ is reduced by an order of magnitude for the chosen

parameters. Likewise the change in surface area is diminished, decreasing membrane tension

to sub-lytic values at p = 1 atm.

Although the spherical model provides reasonable results for membrane tension and vol-
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Table 2.2: Membrane tension, wall stresses, and strains at p = 1 atm. The elastic modulus

in the spherical model is Eiso = Ez(α+1)/2, with α = 8. Cylinder 1 uses α = 2 and Cylinder

2 used α = 8.

Sphere Cylinder 1 Cylinder 2

τm [kBT/nm2] 2.43 5.11 2.71

τw
z [kBT/nm2] 3.76 1.09 3.48

τw
θ [kBT/nm2] 3.76 7.28 9.67

εz [%] 2.03 −2.37 3.43

εθ [%] 2.03 10.9 1.10

εA [%] 4.05 8.51 4.52

εV [%] 6.08 19.4 5.62

ume change, the uniformity of the strains does not reproduce the characteristic axial swelling

under pressure exhibited by E. coli cells. Furthermore, it is difficult to map the anisotropic

material properties from the cylinder onto a sphere, and our method of averaging the elastic

moduli to determine Eiso is simply an estimate. Though these shortcomings prevent us from

using the spherical model to gain novel insights into the anisotropic cell wall properties, it

nonetheless remains a valuable tool in assessing the cylindrical model’s validity.

While the cylindrical strains shown in Table 2.2 are in general agreement with the lower

end of prior estimates, further cell swelling will push membrane tension to and past lytic

limits. It appears that the cell wall must still carry a greater portion of the pressure load,

and the membrane areal stretch must not increase. It may be that the membrane areal

stretch modulus resides on the low end of prior experimental results. We can also consider

that bacteria contain an excess of membrane, such that the cell wall bears all of the pressure

load up until a critical pressure is reached, and the membrane attaches to the cell wall.
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2.3.4 Excess Membrane Area

The areal strains predicted by the cylindrical model are seen to decrease as α (and overall

wall stiffness) increases, consequently lowering membrane tensions below those required for

rupture (Table 2.2). However, the calculated volumetric strain falls well beneath observed

estimates of 15 %. Simply reducing both cell wall elastic moduli (Ez and Eθ) by the same

factor can increase volumetric deformation, but this coincides with increasing areal stretch,

which places the membrane under greater stress. Using the linear areal stretch relationship

from Eq. (2.4), rupture tensions of 2.5–3.5 kBT/nm2 are consistent with areal strains of only

4–6 %. To allow for increased cell swelling while preventing large membrane stretches that

induce rupture we consider that under normal “turgor” pressure the membrane is tension

free, with some reservoir of “excess” area available such that small swelling of the cell pulls

from the reservoir without actually stretching the membrane. This residual area will allow

the cell to initially undergo expansion without stretching the inner membrane.

We can construct a simple model of excess membrane area by adjusting Hooke’s law to

include a “pre-strain” parameter ε0,

τm = KA(εA − ε0)+, (2.31)

where we use “Macaulay brackets” to denote the ramp function

(x)+ =


0, x < 0

x, x ≥ 0.

(2.32)

We make the assumption that the “pre-strain” is exhausted in both the z and θ directions

simultaneously. For a given amount of excess membrane area, we can write the critical

pressure at which the membrane attaches to the wall as

p∗ =
2αhEz

R(α + 2− 3αν)
ε0. (2.33)

An estimated membrane “pre-strain” of ε0 = 5 % corresponds to a critical pressure p∗ ≈

0.5 atm. As the excess membrane area is depleted the peptidoglycan layer becomes the
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Figure 2.5: (a) With a pre-strain of ε0 = 5%, cell lengthening becomes far more noticeable

and the axial strain εz is roughly an order of magnitude larger than the circumferential strain

εθ. Without excess membrane area, the cylinder deforms in a more uniform manner. (b)

Areal and volumetric strains are seen to increase in the pre-strain model, as the cell wall is

the sole stress-bearing layer until the areal strain reaches the pre-strain value. For p < p∗ we

have εA = εV , as the hoop strain εθ is identically zero. (c) The membrane tension remains at

zero until the membrane reservoir is exhausted, and then increases at the same rate as the

original model. Pressures of fractions of an atmosphere are required to “use up” the excess

area. (d) Parametric study of α and ν at p = 1 atm. Solid black lines indicate stability

bounds, and the various dashed curves show εθ = 0 (horizontal) and εz = εθ (vertical) for

different pre-strain values. As pre-strain increases, the lower bound on α in the positive ν

axis is reduced from 4 when ε0 = 0 to 2 when ε0 = ∞, and the range of suitable choices of

α and ν is increased.
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sole provider of resistance to internal pressure. This leads to a modified expression for the

effective area-stretch modulus K∗A that is obtained by taking KA → 0 in Eq. (2.23),

K∗A =
αhEz

2 + α (1− 3ν)
. (2.34)

Using properties from Table 2.1 and selecting ε0 = 5 %, the strains, tension, and α − ν

relationship are calculated and displayed in Fig. 2.5.

Figure 2.6: With ε0 = 5 %, the striped region indicating valid (α, ν) is expanded and shifted

downward. Compared to the zero prestrain case, the striped area for α < 10 is much larger.

The critical pressure at which the membrane becomes taut is p∗ ≈ 0.69 atm.

Figure 2.7: The case of infinite excess area is identical to having no membrane contribution

in the model. This case does not differ significantly from that of ε0 = 5 %.
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The most obvious consequence of excess membrane area is the reduction in membrane

tension as the cell is pressurized (Fig. 2.5). In the original model where the membrane

is taken to be attached to the cell wall, tensions approached those required for rupture

(τ rupture
m ≈ 3.5kBT/nm2) at pressures less than one atmosphere. When an additional supply

of membrane area is integrated into the model, the membrane remains in an un-stretched

state at zero tension until the area reservoir is depleted. Even at small “pre-strains” of only

a few percent, the tension is significantly reduced at p = 1 atm. At pressures less than that

required to use up the excess area, p∗, the cell wall is solely responsible for resisting the

internal pressure. The lack of a secondary stress-bearing lamina leads to increased areal and

volumetric strains when biologically relevant parameters are selected, as shown in Fig. 2.5.

While the overall area-stretch of the composite shell is seen to rise, the membrane stretch is

lessened by the “pre-strain” ε0.

Interestingly, excess membrane area alters the way in which the cell expands. As the

membrane can only sustain a state of isotropic tension it encourages uniform deformation,

a behavior that is opposed by the anisotropy of the peptidoglycan layer. When the bilayer

contribution is nullified under “pre-strain” conditions, the strongly anisotropic peptidoglycan

network encourages cell elongation.

When both lamina are connected and deform together, the conflicting deformation agen-

das of the membrane and wall require the cell wall anisotropy, α, to be especially large in

order to exhibit strong axial deformation. A membrane “pre-strain” diminishes the effect

of the membrane’s preference for isotropic deformation, lessening the lower bound on α. As

seen in Fig. 2.5 (d), a pre-strain of ε = 5 % shifts the strain curves (εz = εθ and εθ = 0), such

that a lower α can reproduce large axial strains. This less stringent requirement allows α to

take on a value that is in closer agreement with prior estimates [1]. However, if we consider

the limiting case where KA → 0 (cell wall alone bears the pressure load), and also make the

reasonable assumption that εz > 2εθ, we again recover the requirement that α > 4 for all

valid ν. This indicates that while excess membrane area or a smaller KA value allow the

cell to expand further without threatening membrane rupture, the requirement that α > 4

remains.
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2.4 Discussion

A composite thin shell model consisting of a lipid bilayer membrane and peptidoglycan cell

wall was constructed to investigate the mechanics of bacterial cells under internal turgor

pressure, and determine the elastic properties of the anisotropic cell wall. The mechanics of

the cell envelope in bacteria are hypothesized to play a vital role in failure mechanisms of

cells subjected to variations in pressure induced by osmotic shock. Prior bacterial mechanics

research depicts the cell wall as the exclusive stress-bearing structure, though it is known

that the inner membrane must take a portion of the load, as tension is required to gate MS

channels that act to release internal pressure. The continuum approach taken herein finds

that by coupling the mechanical deformation of the two layers, the fluid membrane makes

significant stress-bearing contributions, such that the cell wall is not exclusively responsible

for resisting structural loads. Furthermore, it is found that the peptidoglycan framework

composing the cell wall displays a circumferential Young’s modulus that is far greater than

that in the axial direction (Fig. 2.4). Experimental evidence has shown that extension and

contraction under pressure variations of bacteria such as E. coli occurs primarily in the axial

direction, believed to be a consequence of the relatively stiff glycan strands that form hoop-

like structures along the circumference of the cell. To emulate this behavior, the ratio of

elastic moduli Eθ/Ez must be larger than previous findings have shown (Fig. 2.4).

By introducing a membrane component into the mechanics model, we are able to in-

vestigate how membrane tension behaves as a function of pressure. This relationship is of

vital importance when studying how cells respond to osmotic shocks, as tension-dependent

channels located within the membrane regulate the transport of water and solute, allowing

the cell to survive large fluctuations in pressure. Previous research has focused primarily

on cell wall mechanics, and how the interaction between the membrane and wall influences

cell mechanics is largely unknown. Our results show that the membrane plays a significant

structural role, and future work utilizing composite models may lead to an understanding of

how failure mechanisms such as blebbing and rupture occur.

The model shows that the cell wall in rod-shaped bacteria has a circumferential elastic
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modulus that is several multiples larger than its axial modulus, specifically it must be at

least four times larger for the axial strain to exceed the hoop strain. Furthermore, our

study of the relationship between the elastic constants and Poisson ratios (Section 2.3.2) can

provide guidance to experimentalists looking to measure mechanical properties of the cell

wall. Bacteria unsurprisingly grow along their axis in a similar manner to how they expand

under pressure. An understanding the anisotropic material properties of the wall can further

endeavors in the field of how the disorded network is arranged, and how this relates to cell

growth.

We also consider that when a cell is under standard turgor pressure, there may be a small

amount of excess membrane area stored in folds, such that the membrane is not fixed to the

cell wall. This would allow the cell to expand without stretching the membrane until the

excess is depleted, at which point it would attach to the cell wall and the two layers would

deform together. Since the membrane does not bear any of the internal pressure load until

it attaches to the wall, a reduction in tension is seen, and tensions required for rupture are

not reached until the cell is under several atmospheres of pressure. Furthermore, areal and

volumetric strains are seen to increase when the membrane does not contribute to bearing

the initial pressure load, and the material properties of the extensible cell wall leads to more

prominent axial deformation. With a “pre-strain” parameter included in the model, not only

do the strains and stresses align more closely with experimental results, but the minimum

requirement on α is lowered, placing it closer to values previously determined by AFM and

molecular dynamics.

Axially directed peptide links are generally thought to exist in a disordered state. As a

cell is placed in a hypotonic solution and water is drawn into the cytoplasm, these strands are

hypothesized to align and stretch to their full potential, explaining the elastic nature of the

cell in the longitudinal direction. Moreover, the orthogonal glycan hoops appear to undergo

stress stiffening (requiring a non-linear material model), encouraging a pressurized cell to

expand longitudinally. Both layers form a composite material that exhibits time-dependent

viscoelastic characteristics. Future studies may explore the active mechanical properties of

the bacterial cell wall that are modified as the cell grows and undergoes changes induced by
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pressure, solute concentration, and damage.
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CHAPTER 3

Transport

Most cells live in a watery medium filled with the key ions that make life possible. However,

sometimes these cells are subjected to sudden changes in their osmotic environment that

can result in the damaging flow of water in or out of the cell, resulting in changes in volume

and mechanical stresses on the cell wall and bounding membranes. A class of channels

within the bacterial inner membrane known as mechanosensitive channels have been shown

to provide osmoprotection to cells subjected to these shocks, whereas cells that have been

deprived of their entire complement of mechanosensitive channels can die when subjected to

such shocks. In this section we explore a physical model of the osmotic shock response of

bacterial cells and examine the build up of tension after such a shock as a function of key

control parameters such as the number of channels of each type and the rate at which the

shock is prescribed. These results allow us to predict channel survivability as a function of

these key control parameters.

Interestingly, cells from all domains of life are equipped with a class of membrane proteins

known as mechanosensitive (MS) channels that are gated by tension in the surrounding

membrane. In E. coli alone, there are seven distinct MS channels [22], with the number

of copies of each type ranging from a few to well into the thousands [3, 23]. While the

“large” (MscL) and “small” (MscS) conductance channels are known to play the role of

emergency pressure release valves [24], the functions of other channel types, such as the

MscS homologs MscK and YbdG, are not well characterized. It has been hypothesized that

these other channels activate under certain environmental conditions to selectively release

specific ions, as is the case for the potassium channel MscK. Furthermore, a variety of

experiments demonstrate that in the absence of the full complement of these channels, cells
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subjected to osmotic shock do not survive [25, 26, 27, 9, 28, 21]. However, other experiments

have shown that overexpressing ybdG can provide a high level of osmoprotection, provided

the channels are present in large enough numbers, indicating an apparent redundancy in

function between different channel types.

Thus, the situation is complicated: the survival of a cell depends not only upon which

channels are present, but also on how fast the shock is applied and how many channels

decorate the cell’s inner membrane [9, 28, 21]. As a result, we were inspired to undertake

both experimental and theoretical studies that allow us to explore bacterial response as a

function of these key parameters. The results of our systematic experiments in which we

control both channel number and shock rate will be presented elsewhere, while here we focus

on a theoretical study to see if we can relate the number of channels, their conductivity,

and which ones are present, to volume change. Specifically, we use the volume change as

a window onto membrane tension and use the rupture tension as a way to assess bacterial

survival probability.

We begin in Section 3.1 with a description of the mechanics of water and solute flow

across the cell membrane and how these flows alter membrane mechanics and hence, the

channel open probability. With the model formulation in hand, we then turn in Section 3.2

to an analysis of the implications of the model for different choices of the knobs that control

the osmotic shock response of bacterial cells.

3.1 Model of Osmotic Transport

We study the variation of the volume enclosed within a complex membrane that may contain

water channels (e.g., aquaporins) and solute channels ( e.g., MscL), after an osmotic shock

has been performed by changing the medium outside the membrane-enclosed structure. In

the following, Cin (Cext) will be used for the concentration describing the inside (outside) of

the membrane-bound structure. The extracellular region with solute concentration Cext will

be thought of as a spatially uniform reservoir and dictated by experimental conditions (the

osmotic shock).
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In what follows, Pi and Πi denote the hydrostatic and osmotic pressure in compartment

i, respectively. We will use the ideal gas law for the osmotic pressure, namely, Πi = k
B
TCi,

where Ci is the solute concentration in compartment i, though nonlinear corrections might

be needed to treat concentrations found in some experiments. Inside the cell, Cin = N/V

is related to the number of solute molecules N(t) and the cell volume V (t). Generically, we

can compute the rate of change of the volume and solute number by using mass conservation

in the form of flux laws, namely,

V̇ = −JV , (3.1)

Ṅ = −JN , (3.2)

where the fluxes of volume JV (m3s−1) and of solute JN (s−1) are defined as positive when

material goes from in → ext. Note that contrary to some conventional notation, here the

quantities JV and JN are not reckoned on a per unit area basis and give us the total mass

flow across the entire membrane.

3.1.1 Kedem-Katchalsky (K-K) Equations

The fluxes of solute and solvent across a flat, rigid membrane are phenomenologically related

to gradients of osmotic and hydrostatic pressures by the K-K equations [29], which involve

three parameters: a permeability to water µ, a permeability to solute α, and a reflection

coefficient σ for the solute molecules contacting the membrane. In particular, these mass

transfer rates are given by

J
(i→j)
V = µ((Pi − Pj)− σ(Πi − Πj)). (3.3)

J
(i→j)
N = α(Πi − Πj) + (1− σ)CijJ

i→j
V (3.4)

In (3.4), Cij is the average of the concentrations Ci and Cj on either side of the membrane.

The meaning of the permeabilities (µ, α) is straightforward since they are simply mo-

bilities which relate flows to gradients of chemical potentials (in the linear response ap-

proximation). With these definitions, the units of these transport coefficients are given by

[µ] = m3 Pa−1 s−1 and [α] = Pa−1 s−1. The dimensionless reflection coefficient (σ), on the
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other hand, is more subtle. From a phenomenological point of view, it can be understood

by looking at particular limits [30]. When σ = 0, JV is directly proportional to ∆P , which

is the equivalent of Darcy’s law for the flow across a porous medium, with no osmotic effect.

This case thus corresponds to a membrane perfectly permeable to both water and solute (or

to no membrane at all). When there is no solvent flow (JV = 0), eqn. 3.3 and 3.4 gives

∆P = σ∆Π, which means that one needs to apply an osmotic pressure difference propor-

tional to the hydrostatic pressure difference in order to prevent water flow as a response

to an osmotic gradient. If σ = 1, it gives ∆P = ∆Π, which is the Van’t Hoff relation for

an ideal semi-permeable membrane (hence the name reflection coefficient). It is clear that

in this case, α = (no solvent flux), so α and σ are clearly related, but they can be varied

independently [31]. Intuitively, we see that when σ = 0, this means that solute molecules

are free to cross the membrane, going along for the ride with water molecules as is seen in

equation (3.3), even if there is no osmotic gradient. For the case in which σ = 1, even if

there is water flow, no solute molecules will be carried along by the water. Also, for this

case, as seen in equation (3.4), there will be a flow of water across the membrane whenever

there is a concentration gradient of solutes.

3.1.2 Separating membrane and channel fluxes

A difficulty arises when applying the K-K equations ((3.3) and (3.4)) to the mechanosensitive

(MS) bacterial interface. While the permeabilities and reflection coefficient remain fixed for

the inner membrane itself, they are tension-dependent for mechanosensitive channels. To

deal with this we can separate the fluxes through the membrane from those through the

channels by defining separate transport parameters for each case.

Lipid membranes such as the inner membrane found in bacterial cells, are to some extent

permeable to water, while they are largely impermeable to ions and proteins [32]. Accord-

ingly, we model the membrane as an ideal semi-permeable barrier, with constant water

permeability µm, solute permeability αm = 0, and reflection coefficient σm = 1. With these

choices the membrane contribution to solute flux vanishes in equation (3.4), while any dif-
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ference in hydrostatic and osmotic pressures between the inner and outer compartments will

lead to volume exchange through the membrane.

In contrast to the lipid bilayer, mechanosensitive channels permit the passage of both

water and osmolytes, and their permeabilities (µc and αc) and reflection coefficient (0 ≤

σc ≤ 1), depend upon membrane tension τ . Therefore, the solute flux is confined solely to

the channels, while the total water flux becomes a composition of membrane and channel

parts

J
(i→j),m
V = µm((Pi − Pj)− (Πi − Πj))

J
(i→j),c
V = µc((Pi − Pj)− σ(Πi − Πj))

J
(i→j),m
N = 0

J
(i→j),c
N = αc(Πi − Πj) + (1− σc)CijJ i→j,cV . (3.5)

The water permeability through the membrane µm describes the average properties of the

entire membrane. However, the channel parameters depend on the number and variety of

channels present in their opened state. For the situation where multiple types of channels

present, equation (3.5) will be modified such that each channel type has its own volume and

solute flux, and the total fluxes are their sum.

3.1.3 Mechanosensitivity of the Channel Parameters

For two-state models of ion-channel gating, the opening probability is generally of the form

Popen =
e−β(εopen−∆Gdriving)

e−β(εopen−∆Gdriving) + e−βεclosed
, (3.6)

where β = 1/kBT , εopen and εclosed are the energies of the open and closed states of the

channel, respectively, and ∆Gdriving is the free energy contribution coming from the driving

force (e.g. voltage, tension, ligand concentration) that tilts the free energy balance in favor

of the open state. For the tension-driven case considered here, this leads to

Popen(τ) =
e−β(εopen−τ∆A)

e−β(εopen−τ∆A) + e−βεclosed
, (3.7)

where ∆A = Aopen−Aclosed. The opening probability of MS channels described by equation

(3.7) and shown in Fig. 3.1 follows a sigmoidal curve with an open probability of zero at low
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membrane tension and unity at high membrane tension, characterized by a gating tension

τ ∗ = (εopen − εclosed)/∆A at which the probability is equal to one half, and a “sensitivity”

δτ = 1/(β∆A) as the tension scale over which the probability changes significantly. However,

the specific choice of gating function probably makes little difference since the essence of such

a function is simply the change in membrane permeability with tension. The key features of

this mechanosensitivity function are that it vanishes in the low tension limit, reaches one in

the high tension limit, and transitions between these two states over some relatively narrow

tension range.

Figure 3.1: The channel opening probability as a function of membrane tension, assuming a

thermodynamic equilibrium.

In the model, we consider the solute and water transport contributions from three vari-

eties of MS channels: MscL, MscS, and YbdG. Each of these channel types has a unique set

of transport properties that are dependent on their size, population, gating threshold. We

first define reference quantities µc
0, α

c
0, and σc

0 as the cell-wide properties of a single chan-

nel type in its fully opened state. These reference quantities are calculated using channel

flow equations and literature values of pore size, gating tension, and channel populations.

Membrane and MS channel parameters used herein are given in Table 3.3, while further dis-

cussion of the values is provided in the appendix. The permeability parameters of channel i
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as functions of membrane tension τm then satisfy

µc
i (τm) = µc

0,iPopen,i, αc
i (τm) = αc

0,iPopen,i, σc
i (τm) = 1− (1− σc

0,i)Popen,i. (3.8)

On a cell-wide basis, the channel permeabilities are obtained by summing contributions

from each type of channel (i.e., µc =
∑

i µ
c
i , etc.). In light of the various definitions and

assumptions laid out above, we can write the kinetic equations for water and solute flow as

V̇ = −

(
(µm +

∑
i

µc
i )∆P − (µm +

∑
i

µc
iσ

c
i )∆Π

)
, (3.9)

and

Ṅ =
∑
i

(−αc
i∆Π + (1− σc

i )Cijµ
c
i (σ

c
i∆Π−∆P )) . (3.10)

3.1.4 Constitutive Relationships

For the case of a hypoosmotic shock considered here, the water flow into the cell leads to

a surge in hydrostatic pressure that stretches the cell envelope and results in an increase in

membrane tension. This tension, in turn, is what drives channel gating and hence leads to

transient changes in the permeability of the membrane to solutes and water. As a result,

we need to describe the mechanical response of the membrane itself. Furthermore, the cell

wall provides additional structural support in sustaining the internal pressure load, and its

mechanics can be modeled using continuum elasticity theory. Then, to couple the mechanics

of the membrane and cell wall, we assume that the two layers form a composite shell and

remain in contact as they deform, such that the strains are equal in each lamina. In the

following we derive relationships between membrane tension, pressure, and cell volume that

can be inserted into equations (3.9) and (3.10) to provide a connection between osmotic

transport and the mechanical response of the cell.

Spherical Geometry

We begin by considering an idealized mechanical model with spherical geometry and isotropic

cell wall properties. As the cell expands the fractional increase in surface area to first order is
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∆A/Aref = 2∆R/Rref = 2ε, where ε ≡ ∆R/Rref. At high tensions & 0.1k
B
T/nm2 consistent

with MS channel gating, increases in membrane area are related to a reduction in lipid surface

density and are directly proportional to tension [18]. Therefore, we can write a Hookean re-

lationship between membrane tension and area, specifically, τm = Km
A (A− Aref)/Aref, where

Km
A is the area-stretch modulus, A is the area, and Aref is the reference area. Then, applying

the assumption that the PG cell wall behaves as an isotropic elastic solid yields a tension-

area relation akin to that of the membrane, τw = Kw
A∆A/Aref, where Kw

A ≡ Eh/2(1− ν) is

the wall stretch modulus, E is the elastic modulus, h is the thickness, and ν is the Pois-

son’s ratio. Adding the two tension-area constitutive expressions we obtain the tension in

the composite shell τ = τm + τw = (Km
A +Kw

A)∆A/Aref. By defining a normalized volume

v = V/Vref, the tensions in each layer can be expressed in terms of volume,

τm =
2

3
Km
A (v − 1), τw =

2

3
Kw
A(v − 1), (3.11)

and the fractional change in volume is ∆V/Vref = v − 1 = 3∆R/Rref.

In order to close the problem, we need a relationship between size (the volume) and

Laplace pressure, PL. To satisfy mechanical equilibrium the combined stresses in the mem-

brane and cell wall τ must balance the pressure difference between the cell and its surrounding

medium. We can then write the jump in hydrostatic pressure across the composite shell as

the Laplace pressure, namely, Pin−Pext = 2τ/R ≡ PL, with R the radius of curvature of the

cell envelope. Substituting the composite tension above into the Laplace pressure gives

PL =
2

3
K(v − 1), (3.12)

where K = 2(Km
A + Kw

A)/Rref. The membrane tension may also be written as the Laplace-

Young equation with a renormalized stiffness

K∗A = Km
A +Kw

A , → τm =
Km
A

K∗A

PLR

2
. (3.13)

Cylindrical Geometry

The spherical model neglects two important features, the effects of which we also wish to

assess. First, in contrast to spherical GUVs, bacterial cells such as E. coli are closer to sphe-

34



rocylindrical. Second, this morphological anisotropy is matched by a structural anisotropy :

the cell wall is more compliant when stretched along the long axis of the cell than perpen-

dicular to it.

A standard result from the engineering mechanics of cylindrical pressure vessels tells us

that the pressure jump across the composite shell gives rise to a tension fz = PLR/2 along

the axis, which is half of that in the perpendicular (hoop) direction fθ = PLR. These tensions

are balanced by the internal membrane tension τm and the cell wall tensions τz,θ,

fz =
PLR

2
= τm + τz, fθ = PLR = τm + τθ. (3.14)

These relations are a consequence simply of cylindrical geometry. For the composite cylin-

drical shell, we model the structurally anisotropic cell wall by assuming a general 2-D (or-

thotropic) Hookean relationship between the wall stress resultants (τz, τθ) and strains (εz, εθ),

along with the membrane isotropic response,εz
εθ

 =
1

Ezh

 1 −νθz

−νθz Ez/Eθ

τz
τθ

, τm = Km
A

∆A

Aref

, (3.15)

where Ez and Eθ are the Young’s moduli in the axial and perpendicular (hoop) directions,

νθz is a Poisson’s ratio, and h is the wall thickness. The cylindrical strains are

εz =
∆L

Lref

, εθ =
∆R

Rref

(3.16)

and can be related to the area and volume change as

∆A

Aref

= εz + εθ,
∆V

Vref

= εz + 2εθ. (3.17)

Equations (3.14)–(3.17) are solved to obtain a composite constitutive law for pressure, mem-

brane tension, and volume,

τm =
KA

K∗A

PLR

2
, K∗A = KA

1− 2ν + Ez
Eθ

(1 + hEθ
KA

)

1− 3ν + 2Ez
Eθ

(3.18)

v − 1 =
1

K
PL, K =

2KA

R

1 + Eθ
Ez

(1− 2νθz + hEz
KA

)

4 + Eθ
Ez

(1− 4νθz) + KA
hEz

(1− Eθ
Ez
ν2
θz)
. (3.19)
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Estimates

One remaining concern is whether it is reasonable to assume that the membrane and cell

wall are in contact as osmotic pressure rises and causes the cell to deform. Under favorable

environmental conditions that facilitate growth, a cell maintains turgor pressure that is set by

the solute concentration difference between the cell and its surrounding medium. Estimates

for turgor pressure vary over a wide range from 104 to 3 × 105 Pa [1], and if this pressure

is insufficient to press the membrane up against the cell wall then a gap between the two

layers may exist. In E. coli, the periplasmic space between the inner and outer membranes is

10–40 nm thick, with greater spacing at the poles than along the length of the cell [33]. The

cell wall resides within the periplasm approximately 5–10 nm from the outer membrane and

has thickness h ≈ 5 nm, thus the region between the inner membrane and cell wall cannot

exceed 15–20 nm in width. If this gap does exist, then any subsequent rise in pressure will

be solely sustained by the membrane until it stretches sufficiently to fill the vacant region

between both laminae. The tension associated with this in-plane stretch from a gap width

of 5 nm, assuming a spherical membrane of radius R0 = 1 µm and tension-area relationship

τm = KAεA = KA(R2/R2
0 − 1), is τm ≈ 0.5 k

B
T/nm2, exceeding the gating thresholds of

several classes of MS channels. Furthermore, the pressure change consistent with this tension

is on the order of 10−2 atm, which is 10 to 100 times less than turgor pressure, and even

smaller compared to the osmotic pressures encountered in standard downshock experiments.

As channel gating tensions should not be attained by such small fluctuations in pressure, we

can conclude that if any gap exists between the inner membrane and cell wall it must be less

than a few nanometers, and any subsequent increase in pressure will push the membrane in

contact with the cell wall, and the two layers will continue to deform together allowing the

cell wall to contribute to resisting the pressure load.

In light of the conclusion that the inner membrane and cell wall deform as a composite

shell with equal strains in both layers, naturally the next step is to investigate the stresses.

Of specific interest is the relative stress-bearing contribution of each layer, and whether one

layer plays a dominant role. One way to compare the stiffnesses of the two laminae is through
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their resistance to in-plane stretching, which is defined by their area-stretch moduli. If we

make the naive assumption that the cell wall is homogeneous, isotropic, and obeys Hooke’s

law, the area-stretch modulus can be written as Kw
A = Eh/2(1− ν). The elastic modulus E

of the peptidoglycan network constituting the cell wall has been inferred by means of AFM

and has an estimated value of ≈ 25–100 MPa [1, 2]. Though the Poisson ratio ν has not been

reliably measured, we can choose a typical value of 0.25, which along with thickness h = 5

nm leads to Kw
A ≈ 20− 100 k

B
T/nm2. Interestingly this result shows that Kw

A is comparable

in magnitude to Km
A , validating the use of a composite model that considers the cell wall

and inner membrane to determine the mechanical response of the cell under pressure.

Finally, the Laplace pressure PL dictates the stresses and strains in the cell envelope dur-

ing an osmotic shock, which ultimately determine whether or not a cell remains mechanically

viable. We can estimate the pressures associated with channel gating and membrane failure

by taking experimentally determined critical values of membrane tension and plugging them

into the modified composite Laplace-Young relation derived above (3.13). Experiments on

giant spheroplasts have shown that gating of the largest channel MscL requires a bilayer

tension of τ gate
m ≈ 2.5 k

B
T/nm2, just beneath the rupture limit of τ rupture

m ≈ 3.5 k
B
T/nm2.

Consequently, tensions between these two thresholds are expected during large, survivable

downshocks, and the corresponding pressures are within the range 0.3 to 2.5 atm, depending

on the specific choice of mechanical properties. Notably, this estimate demonstrates that

the pressures required for membrane rupture are relatively small, on the order of turgor

pressure, and roughly an order of magnitude lower than the osmotic pressure induced in

standard shock experiments. Thus, the bilayer’s limited extensional capacity prevents large

increases in hydrostatic pressure even if the osmotic pressure is large.

Nondimensionalization, Reference State, and Active Transport

In order to reduce the number of parameters, we normalize equations (3.9) and (3.10) by

writing various parameters in dimensionless form. This requires us to define a reference con-

figuration, which we choose to correspond with a state where the membrane is unstretched,
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and any further swelling will place the membrane under tension. Therefore, we begin nondi-

mensionalizing by defining the reference volume Vref as the cell volume where membrane

tension vanishes. All other volumes are then normalized by scaling them to Vref. Next, we

set the initial concentration of solute molecules within the cell as Cref, which allows us to

write a similar rescaling for the number of solute molecules, Nref ≡ VrefCref. The reference

pressure is defined through a rescaling of the reference concentration by kBT , Pref ≡ CrefkB
T .

As a result, we rescale all pressures including the composite stretching coefficient K by di-

viding by Pref. Lastly, channel permeabilities µc and αc, and time t are normalized by the

water permeability of the membrane µm. Rewriting all of these parameters in dimensionless

form, we have

v ≡ V

Vref

pi ≡
Pi
Pref

ci ≡
Ci
Cref

n ≡ N

Nref

k ≡ K

Pref

t̄ ≡ µmPref

Vref

t µ̄i ≡
µc
i

µm
ᾱi ≡

αc
i

µmCref

. (3.20)

This implies that the normalized equations with a sum i over each channel type can be

written as

v̇ = −

(
1 +

∑
i

µ̄i

)
pL +

(
1 +

∑
i

µ̄iσi

)(n
v
− cext

)
(3.21)

and

ṅ = −
(n
v
− cext

)∑
i

ᾱi +
1

2

(n
v

+ cext

)∑
i

(1− σi) v̇ch
i . (3.22)

In (3.22), the average of the internal and external concentrations cij is written as cij =

(n/v + cext)/2, pL is the normalized Laplace pressure, and the rate of flow through channel

i is

v̇ch
i = µ̄i

(
σi

(n
v
− cext

)
− pL

)
. (3.23)

The direction of solvent flow determines whether the cell shrinks or swells, and it is de-

pendent on the competition between the Laplace and osmotic pressures. This relationship

is complicated by the channel reflection coefficients, but can be simplified by defining the

effective osmotic pressure as

π∗ ≡ 1 +
∑

i µ̄iσi
1 +

∑
i µi

π, (3.24)
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where π = n/v− cext is the normalized osmotic pressure. Thus, shrinking and swelling of the

cell requires pL > π∗ and pL < π∗, respectively. As written, equations (3.21) and (3.22) do

not admit of intuitive analysis, but they have the virtue of being a highly simplified picture

of the essential features of the dynamics of our membrane bound system after an osmotic

shock.

To this point, we have assumed that the reference state is characterized by an unpressur-

ized cell with respect to its surroundings, and both the membrane and cell wall are stress free.

However, when E. coli cells are immersed in environments favorable to growth they maintain

a near constant turgor pressure if the solute concentration of the surrounding medium does

not undergo large fluctuations. Under these steady-state conditions, net flows of volume and

solute are negligible. If this equilibrium is disturbed and the internal pressure decreases (e.g.,

hyper-osmotic shock), cells must accumulate solute molecules that, in turn, draw water into

the cytoplasm and restore turgor. Therefore, cells must be equipped with some mechanism,

such as a set of transmembrane ion transporters or pumps, that drives solutes against the

concentration gradient into the cell. These “active” transporters require an energy source

such as ATP to move solutes in the “uphill” direction, and are typically selective in terms

of the ions that traverse them. While specific details of the mechanisms involved in active

transport in E. coli remain unclear, we can nonetheless include a simple active transport term

in (3.22), which will allow the model to maintain a small turgor pressure under steady-state

conditions.

3.1.5 Values of the Parameters

Equations (3.21) and (3.22) involve five dimensionless parameters; three related to membrane

transport: (µ̄, ᾱ, σ), one related to the interfacial mechanics: k, and one related to the

external perturbation: cext, which is the control parameter that dictates the cell’s response.

These normalized parameters are calculated using the reference quantities shown in Table

3.1.
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Table 3.1: Parameters used in transport calculations. For the cylindrical model, cell wall

properties are selected that lead to small hoop strains and much larger axial strains. For the

spherical model, the elastic modulus is set equal to the average of the two moduli used in

the cylindrical model.

Description Symbol Value

Radius R0 0.5 µm

Length L0 2 µm

Surface Area A0 6.28 µm2

Volume Vref 1.57 µm3

Concentration C0 1.0 M

Pressure P0 ∼ 25 atm

Membrane stretch modulus Km
A 50 kBT/nm2

Membrane thickness hm 3 nm

Cell wall axial modulus Ez 8 MPa

Cell wall hoop modulus Eθ 80 MPa

Cell wall isotropic modulus Eiso 80 MPa

Poisson ratio ν 0.25

Wall thickness h 6 nm

Membrane permeability µm 10−24 m3/Pa/s

Table 3.2: Protein counts in a single E. coli cell, adapted from [3]. Channel numbers are

deduced based on the number of proteins and their structure.

Gene MOPS 1 MOPS 2 MOPS 3 Structure Channels per cell

mscL 2802 2481 1804 Pentameric 500

mscS 4271 2927 2193 Heptameric 500

ybdG 357 91 127 Heptameric 50
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Table 3.3: MS channel parameters [4, 5, 6, 7].

Description Symbol MscL MscS MscM Units

Pore diameter (open) dop 3.0 1.2 0.5 nm

Area difference ∆A 7 5 4 nm2

Free energy difference ∆G 17.5 7.5 3 kBT

Gating tension τ1/2 2.5 1.5 0.75 kBT/nm2

Water permeability µc 6.6× 10−25 1.7× 10−26 5× 10−28 m3 Pa−1 s−1

Solute permeability αc 570 90 15 Pa−1 s−1

Reflection coefficient σ 0.01 0.05 0.5

Figure 3.2: Open probabilities and permeabilities of MS channels through their gating ten-

sion transitions. (A) The open probability of each channel type. (B) Cell-wide water per-

meabilities of the MS channels and membrane. The channel permeabilities are calculated at

the full cell level by multiplying a single channel permeability by its total population. (C)

Total solute permeability of each channel.
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3.2 Results

Response of the wild-type model cell to hypo-osmotic shock

In the simplest scenario a hypo-osmotic shock is applied to the model cell by starting from a

stationary state with a given Cext, and then abruptly reducing Cext by the shock magnitude

∆Cext at t = 0. In general, this is how osmotic shock unfolds experimentally, with typical

values for the drop in external concentration ∆Cext ranging from 0.1 – 1.0 M. We begin by

simulating a sudden downshock of 0.5 M on a wild-type cell containing native populations

of MscL, MscS, and YbdG (Figs. 3.3 & 3.4). Immediately after the shock is imposed at

t = 0, the change in osmotic potential (pL < π∗) generates an inward flow of water and

the cell begins to expand. This initial influx of water occurs almost entirely through the

lipid membrane with negligible transport via MS channels, and this behavior continues until

the bilayer tension reaches the lowest channel gating transition (τ ∗ − δτ/2). The opening

threshold of the smallest channel YbdG is reached first, followed by that of MscS, and fi-

nally MscL. As the gating probabilities increase and channels transition from their closed to

open states, solute molecules are released from the cell leading to a reduction in intracellular

concentration and osmotic pressure across the cell envelope. We note that it is not a require-

ment for any channel type to surpass its critical gating tension τ ∗ to release solute molecules,

especially in situations where the shock magnitude is small. Simultaneous volume influx and

solute efflux continue until the Laplace and effective osmotic pressures attain equilibrium

(pL = π∗), which coincides with peak values of cell volume, pressure, and membrane tension.

At this point the direction of water flow is reversed from inward to outward as the Laplace

pressure drives water out of the cell (pL > π∗). In contrast to the membrane dominated in-

flux of water, MS channels contribute significantly to the expulsion of water until the tension

drops to levels sufficient to return them to their closed states. Solute flux remains outward

throughout the hypo-osmotic shock response. As the cell continues to relax the outward flux

of water and solute slows, and the cell volume decreases and tends asymptotically toward

an equilibrium state where pL = π∗.

In the preceding paragraph, we have described the general evolution of cell volume, solute
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Figure 3.3: Evolution of cellular volume and solute in a downshocked cell containing full

complements of all three channel types (WT strain). The external concentration decreases

by 0.5 M at t = 0. (A) Normalized volume rapidly reaches its peak value, and then slowly

decreases towards unity. (B) The normalized number of solute molecules remains nearly

unchanged until channels open, at which point the solute concentration quickly decreases.

Once channels begin to close, solute molecules slowly leak out of the cell and the inter-

nal concentration asymptotically approaches the external concentration. (C) Flux of water

molecules through the membrane and MS channels. There is a short period of time where

water is carried out of the cell by channels while simultaneously entering the cell through

the membrane. This is a consequence of the channel reflection coefficients, and the ability

of channels to transport both water and solute. (D) Flux of solute molecules through MS

channels. YbdG contributes little to solute efflux due to its relatively small population and

narrow pore, while on the other hand MscS is responsible for releasing the largest quantity

of solutes.
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Figure 3.4: Temporal evolution of membrane tension (A), pressure (B), channel open proba-

bility (C), and solute concentration (D) of the WT model strain after a downshock of 0.5 M

at t = 0. (A) Membrane tension remains beneath the lytic limit and reaches a peak value

between the gating transitions of MscS and MscL. (B) Laplace pressure remains small rela-

tive to the osmotic pressure. (C) Open probabilities of each channel type. YbdG and MscS

pass through their gating transitions, while only a small fraction of MscL channels gate. (D)

The internal solute concentration rapidly decreases once channels open. When the majority

channels close, the concentration slowly approaches external concentration from above.
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concentration, pressure, and membrane tension in a hypo-osmotically shocked cell. Next, we

point out some of the less obvious details that have important relationships with cell sur-

vivability. The model cell responds on sub-second time scales to the 0.5 M downshock, with

the peak volume being attained within tens of milliseconds, in agreement with experimental

estimates of 30 to 50 ms [34]. Partial solute equilibrium occurs within 100 ms of shock onset,

slightly faster than previous estimates of ∼ 200 ms [34]. Fluctuations in cell volume remain

relatively small throughout the hypo-osmotic shock, with peak values of volumetric strain

barely exceeding 5 %, in line with prior research (references). Membrane tension reaches a

maximum just above 2 kBT/nm2, above gating thresholds of YbdG and MscS, but beneath

that of MscL. Furthermore, and of greater importance, membrane tension remains well be-

low the rupture strength of 3.5 kBT/nm2, suggesting that a 0.5 M downshock likely does not

lead to membrane failure in a WT cell with a full complement of channels.

One interesting feature, which should be conserved regardless of the details of the model,

is that there is a maximum volume (hence a maximum tension) at some point in time, since

volume increases after the shock and until channels open, and volume decreases (because of

solute leakage) after channels have opened. The maximum tension shown in Figure 3.4 lies

just beyond the channel opening transition region of membrane tension for MscS τ ∗−δτ/2→

τ ∗ + δτ/2, but other values of parameters can show a maximum tension far superior to

τ ∗ + δτ/2, namely much higher than the critical tension for rupture. The interesting thing

is that the value of this maximum tension (hence the likelihood of cell rupture) is not solely

determined by the shock level, but also on factors that can vary from cell to cell, such as the

level of initial stress, the number of channels, and shock rate.

What happens when the shock rate is varied?

Recent single-cell assays show that the rate of shock strongly influences cell viability, with

survival probabilities increasing linearly with decreasing shock rate [9]. We can model the

effects of rate dependence by imposing a linearly decreasing change in external concentration

(i.e., Cext(t) = −Ċextt + C0), with shock rate Ċext. A 0.5 M shock applied at a rate of 1/s
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Figure 3.5: Progression of normalized cellular volume v and solute n and their fluxes in

a cell subjected to a 0.5 M linearly varying downshock with shock rate 1/s. (A) Volume

increases at the start of the shock, then decreases by a small amount before remaining at

a near constant value for a period of time where pL = π∗. The cell volume decreases once

the shock ends. (B) Except for a brief period of time when the shock is initially applied,

the amount of solute present in the cell decays at a constant rate until the shock ends. (C)

During the period where the net exchange of volume is effectively zero the efflux of water

through MS channels is matched by an equivalent influx of water through the membrane.

(D) MscS has the largest contribution to discharge of solute molecules for this linear shock

and specific choice of parameters. Membrane tension does not reach sufficiently high levels

to gate a significant portion of MscL channels.
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Figure 3.6: Membrane tension (A), Laplace pressure (B), channel open probability (C), and

solute concentration (D) for a 0.5 M time-varying shock applied at a rate of 1/s.
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leads to the response shown in Figs. 3.5 and 3.6.

Figure 3.7: Progression of Laplace pressure PL and effective osmotic pressure Π∗ in a WT cell

during a 0.5 M downshock applied at a rate of 1/s. After the shock is initiated at t̄ = 0 and

a sufficient number of channels have gated, the cell reaches a state of pressure equilibrium

(PL = Π∗) that is maintained until the shock terminates at t̄ ≈ 8.

The most obvious difference in the shock rate-dependent response of the model cell is

the period of sustained pressure equilibrium where PL = Π∗, and the net exchange of water

between the cell and its surroundings is negligible (Fig 3.7). In other words, the intracellular

concentration “keeps up” with the shock rate. Although net volume flux is zero, transport

continues as membrane influx and channel efflux balance one another. Hydrostatic pressure,

membrane tension, and channel opening probabilities are effectively constant throughout this

stage. Another interesting feature is the small overshoot in volume, tension, and pressure

immediately prior to the extended dynamic equilibrium as the cell takes on more water

than necessary to equalize pressures across the cell envelope. This qualitative overshoot is

diminished when the shock rate is slow (� 0.1)).

3.2.1 Survivability

Numerical results of several mutant strains subjected to a 0.5 M instantaneous shock are

shown in this section. These mutants contain different combinations of the three channels
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Figure 3.8: Membrane tension as a function of dimensionless time for various downshock

magnitudes Cext. Larger shocks have higher peak values of tension. Interestingly, since a

larger shock imposed upon a cell leads to a greater abundance of gated channels, membrane

tension decreases more rapidly than relative to a smaller shock once the maximum value is

reached.

found in the model WT cell (MscL, MscS, and YbdG), with the requirement that at least

one channel type is deleted. The results that follow within this section use parameters from

Tables 3.1 and 3.3.

Mutants lacking both MscL and MscS are known to have difficulty surviving hypo-osmotic

shocks & 0.05 M [35, 36]. The simulated response of a double knockout model cell shows a

near 30 % increase in volume, membrane tension ∼ 4 times that required for rupture, and a

much slower overall response time that exceeds 1 s. The double mutant’s diminished solute

efflux abilities require the cell to take on significantly more water than the single mutants to

balance the concentration gradient. Although pressure equilibrium occurs within hundreds

of milliseconds, solute and solvent efflux remain poor leading to sustained levels of tension

above rupture.
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Figure 3.9: Variation of peak membrane tension with shock rate (A) and number of MscL

channels (B), for various downshock magnitudes ∆Cext. In both (A) and (B), the number of

MscS and YbdG channels is set to zero such that MscL is the only channel type present. (A)

The number of MscL channels is set to 300. For all shock magnitudes shown the maximum

tension plateaus at some fast shock rate, and this tension is consistent with the peak value

obtained during an instant shock. (B) The shock rate is set to 1/s. A cell requires fewer

than 10 MscL channels to keep the membrane tension from exceeding the rupture limit of

3.5 k
B
T/nm2.

Figure 3.10: Peak values of membrane tension with varying shock rate and number of MscL

channels. The downshock magnitude is 0.5 M and the populations of MscS and YdbG

channels are set to zero.
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Figure 3.11: ∆mscL ∆mscS ∆mscM : When no channels are present, solute cannot be

released and water is drawn into the cell until ∆P = ∆Π∗.

Over-expression of YbdG reduces membrane tension and response time

Experiments indicate that survivability depends only weakly on the number of MS channels

in a cell, unless both MscL and MscS are not present. As noted in Table 3.2, the number

of “mini” channels in a single cell is roughly an order of magnitude lower than MscL and

MscS, with some estimates falling as low as a few channels [25]. Here we further investigate

how double knockout cells respond to osmotic shock, and vary the number of channels to

simulate over-expression of ybdG. A previous study demonstrated that mutant cells lacking

MscL, MscS, and MscK lose the ability to survive all but the smallest of shocks (∼ 80%

survival under a shock of 0.05 M) [35]. As the shock magnitude is increased to 0.25 M,

survival probability dwindles to less than 10 %. However, over-expression of ybdG was shown

to increase survival probability to values & 90 %. We first simulate the effect of two different

shocks (0.05 M, 0.25 M) on a double mutant strain (∆mscL, ∆mscS) , and then investigate

the impact of over-expressing ybdG.

Under exposure to an instantaneous 0.05 M hypo-osmotic shock, the double mutant cell

model reaches a peak tension just greater than 1.0 kBT/nm2, which falls well below what is

required for membrane rupture (Fig. 3.12). The opening probability does not reach 100 %

before channels begin closing, indicating that the cell is equipped with more than enough

channels to regulate the shock. However, when the shock magnitude is raised to 0.25 M,
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Figure 3.12: [Left] Membrane tension and opening probability for three different combina-

tions of shock magnitude (∆Cext) and channel population (Nc).

the entire channel population gates almost immediately, and membrane tension increases to

nearly 7.0 kBT/nm2. Not only does tension exceed the critical rupture value, it remains above

this threshold for longer than one second. The model also predicts that YbdG channels are

in a fully opened state for over two seconds, far longer than observed activation times for

other channels such as MscS (≈ 150 ms).

To model the over-expression of YbdG, the number of channels Nc is increased ten-fold

from 50 to 500. By enhancing the cell’s ability to discharge intracellular contents, the results

show a significant reduction in both peak membrane tension and response time (< 1 s). While

YbdG alone osmoprotects against small fluctuations in external concentration that may not

even constitute a “shock”, over-expression or the presence of other channels is required to

keep membrane stress below the lytic limit for standard experimental shocks.

Membrane tension exceeds lytic limit in double mutants

Failure of biomembranes such as those found in bacterial cells have traditionally been defined

by a material constant known as the rupture strength. When membrane tension exceeds the

rupture strength, lipids within the bilayer are ripped apart leading to the rapid formation of
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a hole. While small defects can be repaired, large rupture events ultimately lead to cell lysis.

For E. coli, the critical rupture tension is τcr = 3.5 kBT/nm2. Though this constant value is

generally agreed upon, it has been shown that membrane rupture is in fact a kinetic process,

and that rupture strength is inherently a dynamic property [37]. Taking these kinetics into

account, the rupture strength depends on the loading rate and can be categorized into a fast

and slow loading regimes. Up to a two-fold increase in rupture strength is seen under fast

loading conditions (such as those featured during typical hypo-osmotic shocks), raising it to

3.5 kBT/nm2 . τcr . 7.0 kBT/nm2.

We look to connect dynamic rupture strength to the model by first investigating the

membrane loading rate during a shock. In all cell model strains, instantaneous 0.5M shocks

result in fast loading rates on the order of hundreds of mN/m/s. These can be classified in

the defect-limited (fast loading) regime defined by Evans et. al. [37], leading to increased

rupture strength up to 2τcr. However, when the same shock is applied over 1 s to WT and

double knockout (∆mscL∆mscS) cells, maximum loading rates reduce to 42 mN/m/s and

51 mN/m/s, respectively (units follow [37]). Further decreasing the shock rate to a “slow”

0.1 s−1 reduces loading rates to 5.7 mN/m/s and 5.9 mN/m/s for the same two mutants, such

that they fall near the transition between slow and fast loading regimes. We can treat the

constant τcr = 3.5kBT/nm2 as a lower bound for membrane failure, and 2τcr as an upper

limit for “fast” shocks.

Cells can survive spikes in tension to levels exceeding the static rupture strength, as long

as the load is relieved quickly. Loading rate is primarily a function of volume influx through

the membrane, thus it is weakly dependent on channels populations. The double knockout

cell reaches a tension in excess of 10 kBT/nm2 under “fast” loading, while it is reduced to

≈ 6 kBT/nm2 when the shock rate is 0.1 s−1.

3.3 Discussion

E. coli cells utilize MS channels to mediate changes in pressure and volume induced by

osmotic shock. In this work we have simulated the response of bacterial cells to osmotic
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Figure 3.13: Membrane tension showing failure criteria for slow [left] and fast [right] shocks.

Shock rates are 0.1 s−1 and 1.0 s−1 (left and right). Shock magnitude is 0.5 M.

Figure 3.14: Peak values for membrane tension and loading rate versus number of channels

(left) and membrane permeability µm (right). Peak tension values show weak and strong

dependence on channel populations for wild type and mutant strains, respectively. Same

behavior is seen for membrane permeability. Loading rate is effectively insensitive to channel

populations, while it is linearly dependent on membrane permeability.
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downshock by coupling transport equations with models of MS channels and cell envelope

mechanics. Our results show that bacteria survive sudden down-shifts in external osmolarity

by first absorbing water through the permeable inner membrane, and then discharging solute

molecules through tension-activated channels. Water transport occurs primarily via the lipid

membrane through pathways such as aquaporins, while solute efflux is dominated by MS

channels. In cells with native level channel populations, we find that cells adapt to shocks

on sub-second timescales, in agreement with previous research [34]. The cell wall and inner

membrane sustain the internal pressure load, keeping volume expansion small and membrane

tension below limits required for rupture. Together, these mechanisms protect bacterial cells

from large, sudden changes in external osmolarity.

Mechanosensitive channels are viewed as pressure release valves designed to discharge

intracellular contents and regulate osmotic pressure. Protein counts have shown that the two

major channel types (MscL and MscS) are far more abundant than their smaller relatives [3],

though channel distributions may exhibit high variability from cell-to-cell. We investigated

how different MS channels contribute to osmo-protection by incorporating three channel

types in our model, and varying their populations to simulate deletion and over-expression.

MS channels act primarily as solute transporters, though they do assist in water efflux when

hydrostatic pressure exceeds osmotic pressure. MS channels provide a negligible contribution

to volume influx, as activation tensions are not attained for several tens of milliseconds after

shock initiation, giving the cell adequate time to reduce osmotic pressure by absorbing water

through the membrane. Channel water flux is largely insensitive to osmosis.

The MscL and MscS families are the foremost contributors to shock regulation due to

their relative large pore sizes, transport capabilities, and overall abundance. MscL, viewed

as the last line of defense against hypo-osmotic shock activates in small numbers when

subjected to a 0.5 M downshock. This suggests that cells can withstand more extreme

osmotic changes in their surrounding environment. Our model provides evidence of this,

as membrane tension does not increase dramatically beyond the gating threshold of MscL

when the shock magnitude is increased. Once MscL reaches its gating transition, pressure is

rapidly reduced within tens of milliseconds preventing the cell from swelling further. MscL
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may exist in large numbers to provide extended protection in hazardous environments, while

MscS appears to be the main regulator of turgor pressure.

Standard shock assays have demonstrated that deletion of MscL, MscS, and MscK pro-

teins in E. coli leads to lysis upon severe downshock [36]. Small channels such as YbdG

can provide protection against small (. 0.05 M) osmotic challenge without the need for

larger channels to gate. Furthermore, mini channel types aid in reducing cell volume after

larger and more permeable channels have inactivated. These roles may be reason enough

for the existence of mini channels. Furthermore, neglecting ion channel selectivity, we have

shown that over-expression of YbdG provides adequate protection against moderate shocks

by increasing the cell’s capacity to efflux solutes, emulating previous experimental results

[35].

In order to survive hypo-osmotic challenge, bacterial cells must relieve high intracellular

pressure within a time period of roughly 1 s. Once gating tensions are reached, MS channels

activate within milliseconds, beating cell swelling and protecting cells from structural failure.

Evidence of the requirement to rapidly adjust to changes in external osmolarity lies within

one specific death phenotype, typically described as “bursting,” which occurs mere seconds

after the shock begins. “Bursters” suffer catastrophic failure of the structures constituting

the cell envelope. However, cell death can also occur over several minutes, inferred from

decaying fluorescence levels during shock experiments. This suggests a slow leak of intra-

cellular contents through nanometer scale perforations in the membrane. Mechanical failure

of the lipid bilayer is quantified by its rupture strength, which we use to relate membrane

tension to survival probability.

Membrane rupture is inherently a dynamic process and the critical value for failure

depends on the loading rate [37]. Rupture strength is categorized into “slow” and “fast”

loading regimes [37], and we find that moderate to large hypo-osmotic shocks fall into the

latter group, resulting in up to a two-fold increase in lytic tension values. The loading

rate is governed primarily by the membrane water permeability µm. Thus, the distribution

of channels is largely insignificant unless MscL and MscS are not present. Our results

demonstrate that E. coli cells containing full complements of either MscL or MscS respond
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similarly to downshock, characterized by minimal volume strains and membrane tensions that

remain below lytic thresholds. In contrast, we find that double mutants experience sustained

tension above static and rate-dependent limits, suggesting that membrane failure is one of

the mechanisms responsible for decreases in mutant cell viability observed in survival assays

[35, 27]. Large volumetric strains (& 25 %) accompany high tensions in double mutant cells,

which may increase interstrand spacing in the peptidoglycan cell wall and lead to localized

membrane protrusions called blebs. Under pressures of ∼ 1 atm experienced by the model,

these bulges may form if holes in the cell wall reach approximately 20 nm in diameter [38].

An understanding of cell wall failure is currently in its developmental stages, though we

can infer from our model that when the structural load is shared between the cell wall and

membrane, the stresses in each lamina are of the same order of magnitude. However, it is

unclear how the two structural layers interact under normal turgor pressure, specifically if

the membrane is pressed up against the wall. If a reservoir of excess membrane area exists,

the brunt of the pressure load will then be carried by the cell wall. With pre-strain ε0 ∼ 5 %,

membrane tension experiences a dramatic decrease in wild-type cells while volumetric strains

increase to levels in agreement with AFM predictions of approximately 12 % per atm [2].

It has been shown that cell survivability depends not only on the shock magnitude, but

also the rate of medium osmolarity change [9]. We examined how the response of a cell is

affected by a time-dependent ramp shock, finding that the response of double mutants is

highly rate-sensitive, with significant changes in volume and membrane tension as the shock

rate increases. These effects are far less pronounced in wild type cells (Fig. 3.5). Altering

the rate of medium exchange influences the rate at which water enters the cell, consequently

affecting membrane loading and the time needed to gate channels. During “moderate”

to “fast” shocks, double knockout cells continue to inflate after all channels have gated,

with membrane tensions exceeding lytic limits for sustained periods of 1 s or more. These

prolonged stretches of high tension may lead to inactivation of certain channel types, further

worsening the cell’s ability to alleviate pressure. It may also be that tension in the membrane

is spatially non-uniform, causing certain channels to remain inactive. Only “slow” shocks

can be regulated by double mutants without surpassing critical limits for membrane failure,
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implying that survival probabilities are both rate-dependent and strongly linked to stress in

the cell envelope. We hypothesize that molecular-scale defects form within the membrane as

its tension surpasses the lower bound for rupture. These small defects may leak intracellular

contents across the cell envelope at a very slow rate, providing a possible explanation for

long time-scale death. If the imposed shock causes the cell to continue expanding, small

defects then evolve into larger holes increasing leakage rate, which may explain the variation

in survival time after shock in cells that experience “rupture” type deaths. What remains

clear is that mutant cells missing populations of the two dominant channel types (MscL and

MscS) experience membrane tensions that not only exceed critical values for rupture, but

do so for significant periods of time.

In conclusion, we use models of mechanics and transport to quantitatively describe the

response of bacterial cells to hypo-osmotic shock. Although MscL channels are present in

high numbers, only small fractions are required to protect against typical levels of shock used

in experiments. On the other hand, smaller channels must be complemented by significant

populations of MscS and/or MscL, otherwise membrane tension will exceed lytic limits.
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CHAPTER 4

Finite Growth Mechanics

In this chapter we succinctly outline the theory of finite growth mechanics in biological

tissues. We begin with a brief introduction that covers the current state of the field and its

origins, followed by a discussion of the mathematical framework. Finally, we conclude the

chapter with several simple numerical examples that illustrate how various growth related

quantities evolve in time. In the final two examples we focus on the growth of the bacterial

cell wall.

4.1 Introduction

Biological structures have the ability to respond to environmental stimuli by growing larger,

smaller, or changing their density by modifying their microstructural makeup. They are

a form of active matter. The terms growth, remodeling, and morphogenesis have all been

used to describe growth-related processes in the mechanics community. Growth is defined

by the addition of mass to a living structure that is accompanied by either a change in

density or volume. Hard tissues such as bone grow primarily due to an increase in mass

density. On the other hand, soft tissues including skin, tumors, cell walls, and hearts grow by

maintaining near constant density while increasing their volume, which is sometimes referred

to as swelling. Atrophy is defined as the opposite process of growth where mass resorption

occurs and density or volume decreases. Remodeling of a biological tissue concerns changes

in its microstructural composition such as reorientation of collagen fibers in growing skin, and

the anisotropic growth of cardiac tissue in response to myocardial infarction. Morphogenesis

is characterized as a change in a structure’s shape or geometry, which typically involves
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growth, remodeling, or both. In this thesis we focus primarily on volumetric growth of soft

tissue at constant density, which we can reasonably assume is the case for an elongating

bacterial cell wall.

4.2 Theory

The following section is devoted to introducing the theoretical foundations of finite growth

mechanics discipline. We attempt to keep the discussion concise and only explain key topics

related cell wall growth in detail. For a more thorough read, see [39, 40, 41, 42].

4.2.1 Kinematics

To describe the finite kinematics of bacterial cell wall growth, we begin by writing the

deformation gradient as F = ∇Xϕ(X, t), where ϕ(X, t) maps positions X in the refer-

ence (material) configuration B0 onto positions x in the deformed (spatial) configuration

B (Fig. 4.1). We then utilize the multiplicative decomposition of the deformation gradient

F = F eF g, where the tensors F e and F g describe reversible elastic and irreversible growth

deformations, respectively. This approach was originally developed for finite crystal plastic-

ity [43], before being applied to growth of soft elastic tissues [44]. Volume elements in the

Figure 4.1: Multiplicative decomposition F = ∇Xϕ = F eF g.

reference, growth (intermediate), and current configurations are defined as dV 0, dV g, and

dV , respectively. From this we can define the Jacobian associated with each deformation
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gradient as follows

J = det(F ) = JeJg (4.1)

Jg = det (F g) =
dV g

dV 0
(4.2)

Je = det (F e) =
dV

dV g
=

J

Jg
. (4.3)

In (4.1)–(4.3), the three scalar Jacobians define the total, growth, or elastic changes in

volume of the body, which are all strictly greater than zero. Next we introduce two additional

measures of deformation, the total right and left Cauchy-Green deformation tensors:

C = F TF , b = FF T , (4.4)

and their elastic counterparts are

Ce = F eTF e, be = F eF eT . (4.5)

Using the definitions of C and Ce,the total and elastic Green-Lagrange strains tensors are

given as

E =
1

2
(C − I) , Ee =

1

2
(Ce − I) . (4.6)

The spatial velocity gradient is defined as

` = ∇Xv = Ḟ F−1, (4.7)

where the spatial velocity is v = ϕ̇. Decomposing the spatial velocity gradient into elastic

and growth parts

` = `e + `g (4.8)

leads to

`e = Ḟ eF e−1

, (4.9)

`g = F eḞ gF g−1

F e−1

. (4.10)

As we will see in the following, the growth velocity gradient Lg plays an important role in

the evolution of F g and is defined, along with the elastic velocity gradient Le, as follows:

Le = F e−1

`gF e = Ḟ gF g−1

, (4.11)

Le = F e−1

`eF e = F e−1

Ḟ e. (4.12)
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4.3 Balance Equations

In classical continuum mechanics the reference configuration B0 has fixed volume and mass

density ρ0. This condition must be relaxed in the theory of growth, which allows for changes

in density. Considering an open system with a rate of referential density change ρ̇0, mass

flux R, and mass source R0, the balance of mass can be written as

ρ̇0 = ∇X ·R+R0. (4.13)

Following [45], the volume specific form of the balance of linear momentum can be written

as

ρ̇0v + ρ0v̇ = ∇X · P + ρ0b0. (4.14)

If we assume a quasi-static state and also make the assumption that the speed of growth is

much smaller than v, (4.14) simplifies to

∇X · P + ρ0b0 = 0, (4.15)

where P is the first Piola-Kirchoff stress.

The Clausius-Duhem inequality ensures that dissipation remains non-negative. If we

consider an additional entropy S and assume temperature remains constant, the dissipation

inequality can be written as

ρ0D =
1

2
S : Ċ − ρ0ψ − θ∗ρ0S ≥ 0, (4.16)

where θ∗ is the temperature, S is the second Piola-Kirchoff stress, and ψ is an elastic strain

energy.

In the reference configuration, the mass of an infinitesimal element is dm0 = ρ0dV0, while

a grown mass element in Bg and Bt is dm = ρgdVg = ρdV . Considering a mass source per

unit volume R0 acting over time [t0, t], the grown mass element is the combination of the

initial reference mass and that produced by R0

dm = dm0 +

∫ t

t0

R0 dtdV. (4.17)
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The grown mass in the intermediate and reference configurations are ρg = ρJe, and ρ̄0 =

Jρt = Jgρg, respectively.

It is assumed that material is inserted into a stress-free incompatible configuration B̃, and

that within this intermediate configuration mass density ρg remains constant during growth.

The rate of change of the intermediate mass density is then ρ̇g = ρ0/J̇
g + ρ̇0/J

g = 0, which

allows us to write the time evolution of the referential mass density as R0 = ρ̇0 = ρ0tr (Lg),

where Lg is the growth velocity gradient.

4.4 Numerical examples

4.4.1 Example 1: Stress-dependent isotropic growth

The first example is used as a means of implementation validation. We consider an exam-

ple found in [46], namely, the uniaxial deformation of a compressible Neo-Hookean solid

undergoing stress-dependent growth. The strain energy function is given as

ψ =
λ

8
ln2 IC

e

3 +
µ

2

(
IC

e

1 − 3− ln IC
e

3

)
, (4.18)

where λ and µ are the Lame constants, IC
e

1 = trCe, and IC
e

3 = detCe. Isotropic growth is

considered in this case, with the growth deformation gradient taking the form

F g = ϑI, (4.19)

where ϑ is typically referred to as the growth multiplier or stretch ratio. The growth velocity

gradient follows as

Lg =
ϑ̇

ϑ
I. (4.20)

In this example, the stress-driven evolution of ϑ depends linearly on the trace of the Mandel

stress tensor M e = SeCe,

ϑ̇ = kϑ(ϑ) trM e. (4.21)
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Table 4.1: Parameters used in numerical examples 1 and 2.

Parameter Symbol Example 1 Example 2

Elastic modulus E 1.0 MPa 1.0 MPa

Poisson ratio ν 0.3 0.3

Growth coefficient k+
ϑ 2.0 0.5

Resorption coefficient k−ϑ 1.0 –

Growth limit ϑ+ 1.1 [1.10, 1.25, 1.50, 2.00]

Resorption limit ϑ− 0.5 –

Growth exponent m+
ϑ 1.0 2.0

Resorption exponent m−ϑ 4.0 –

Initial reference density ρ∗0 1000 kg/m3 1000 kg/m3

The growth coefficient kϑ was first defined by [40] and takes the form

kϑ(ϑ) = k+
ϑ

(
ϑ+ − ϑ
ϑ+ − 1

)m+
ϑ

for trM e > 0, (4.22)

kϑ(ϑ) = k−ϑ

(
ϑ− ϑ−

1− ϑ−

)m−
ϑ

for trM e < 0. (4.23)

In (4.22) and (4.23), ϑ+ and ϑ− are the maximum and minimum limits of the stretch ratio

ϑ, while k+
ϑ , k−ϑ ,m+

ϑ , and m−ϑ are material parameters that influence the rate of growth

(resorption) at a given stretch ratio. Values for the parameters can be found in Table 4.1.

In this example a uniaxial stretch F11 is applied that varies below and above the growth

limit ϑ+ to showcase the response at specific levels of stretch (Fig. 4.2). The applied stretch

smoothly varies between values every time increment ∆t = 80. When the stretch is below

the limit ϑ+, growth occurs until biological equilibrium—a stress free configuration attained

after growth has occurred—is eventually restored. If the stretch exceeds the growth limit

then elastic deformation occurs to balance forces. The true density in the spatial frame

evolves in time while the intermediate density remains constant.
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Figure 4.2: Evolution of stretch and density during growth of a body under uniaxial exten-

sion. A) The total applied stretch F11 (red) oscillates between 1.05 and 1.15, and the block

responds to the applied deformation by growing, shrinking, or deforming elastically. Except

for the time period 240 < t < 320, the growth stretch F g
11 = ϑ (blue) quickly attains a value

approaching that of the applied stretch. When F11 = 1.15 the growth limit ϑ+ = 1.1 is

exceeded and elastic deformation occurs (green). B) Evolution of the spatial ρ (blue) and

intermediate ρg (green) configuration densities. The actual density changes abruptly when

the total stretch is modified. If the growth limit is not exceeded, the spatial density returns

to its initial value. When elastic deformation occurs, the current density decreases. Density

in the intermediate or growth configuration ρg remains constant.
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4.4.2 Example 2: Stretch-driven isotropic growth

Next we investigate the stretch-driven growth of a block under triaxial deformation. We

again consider a block of Neo-Hookean material defined by the strain energy given in (4.18)

undergoing isotropic growth, F g = ϑI. A simple stretch-driven evolution of ϑ will depend

linearly on the trace of the right Cauchy-Green elastic deformation tensor,

ϑ̇ = kϑ(ϑ)(IC
e

1 − 3), (4.24)

where IC
e

1 = trCe, and IC
e

1 = 3 in the stress-free reference configuration. The growth

coefficient kϑ takes a similar form to (4.22) and (4.23) except that it is written in terms of

Ce,

kϑ(ϑ) = k+
ϑ

(
ϑ+ − ϑ
ϑ+ − 1

)m+
ϑ

for trCe > 3, (4.25)

kϑ(ϑ) = k−ϑ

(
ϑ− ϑ−

1− ϑ−

)m−
ϑ

for trCe < 3. (4.26)

For simplicity we consider a monotonically increasing applied triaxial stretch, and as a con-

sequence resorption defined by (4.26) does not occur. We investigate the effect of growth

limit parameter ϑ+ by setting its value equal to 1.1, 1.25, 1.5, and 2.0. The applied stretch

Fapp = F11 = F22 = F33 is modified every time increment of ∆t = 80, and other parameters

used in this example are given in Table 4.1.

Results for the stretches and densities are shown in Fig. 4.3. A stress-free biological

equilibrium is only realized if the applied stretch does not eclipse ϑ+. By t > 160, the

growth limits ϑ+ = 1.1 and ϑ+ = 1.25 have both been exceeded, leading to sustained elastic

deformation and a corresponding reduction in actual density of the compressible block. If the

block was made of a incompressible material, the spatial density should remains constant

under any combination of growth and elastic deformation. The evolution of the driving

stretch displays the same characteristics as the elastic deformation gradient F e (Fig. 4.4). For

example, IC
e

1 −3 vanishes when the growth multiplier ϑ matches the prescribed deformation,

consequently inhibiting further growth.

These elementary numerical examples illustrate how stress and stretch driven growth are

modeled in the mechanics community. The implementation of these models can be performed

66



0 100 200 300 400

time

1

1.1

1.2

1.3

1.4

1.5

s
tr

e
tc

h

A

0 100 200 300 400

time

0

200

400

600

800

1000

1200

d
e
n
s
it
y
 [
k
g
/m

3
]

B

Figure 4.3: Evolution of stretch and density during isotropic growth of a block under triaxial

extension. A) The total applied stretch Fapp increases from 1.1 to 1.5 in increments of 0.1

over the time period of t = 400. As the block is stretched, sustained elastic deformation

occurs in the cases ϑ+ = 1.10 and ϑ+ = 1.25 as their growth limits are surpassed. In the

other two cases (ϑ+ = 1.5 and ϑ+ = 2.0) there is no sustained elastic deformation, however,

biological equilibrium is attained much faster when the growth limit is higher due to the form

of (4.25). B) The evolution of spatial densities is shown for various values of ϑ+. Similar to

the behavior shown in Fig. 4.2, the spatial frame density ρ returns to its initial value ρ∗0 if

the growth limit is not exceeded.
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Figure 4.4: Evolution of the driving stretch in an isotropically growing block. The elastic

driving stretch IC
e

1 −3 recovers to the initial rest reference configuration value of zero unless

the total applied stretch exceeds the limiting growth value ϑ+.
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in commercial software such as COMSOL and ABAQUS, although writing custom code is

necessary for advanced models.

4.4.3 Example 3: Transversely-isotropic cell wall growth

Next we consider transversely-isotropic growth of a rod-shaped cell under internal pressure.

Biological tissues frequently grow in one or two directions defined aligned with their mi-

crostructural or fiber orientations. However, it is not a requirement that the (hyper-) elastic

material model exhibits the same degree of anisotropy as the growth model. For simplicity

we use the isotropic Saint-Venant Kirchhoff model in this example, which has a strain-energy

density function of the form

Ψ =
λ

2
tr (Ee)2 + µEe : Ee, (4.27)

where λ and µ are the linear elastic Lame constants. To capture growth in a single direction

we can write F g as

F g = I − (ϑg − 1)N ⊗N , (4.28)

where N is a unit vector pointing in the direction of growth. Here we assume that N is

aligned with the cylindrical axis of the cell, and that the spherical end-caps are inert and only

undergo elastic deformation (detF g = 1). Rather than being coupled with a mechanically

dependent field (stress, strain), we assume that the growth rate depends on the current

length of the cell L(t) as has been observed in single cell experiments [47], and that the

cylindrical section of the cell grows uniformly without any form of spatial-dependence. The

change in length of the cell can be written as

dL

dt
= αL(t), (4.29)

where α is a constant and the solution is of the form

L(t) = L0 exp(αt), (4.30)

where L0 is the initial cylindrical length. By setting the doubling time to be τdbl = 20 min =

1200 s, we obtain α = log 2/τdbl. Substituting the growth multiplier ϑg for the cell length in
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(4.29) then leads to

ϑ̇ = αϑ. (4.31)

Table 4.2: Parameters used in numerical example 3.

Parameter Symbol Example 1

Elastic modulus E 50.0 MPa

Poisson ratio ν 0.3

Doubling time τdbl 20 min

Growth coefficient α 3.466× 10−2 min−1

Initial radius R0 500 nm

Initial length L0 1.0 µm

Thickness h 6 nm

Pressure p 30 kPa

We plot the normalized cell length and average stresses (Fig. 4.5) over the doubling

period of twenty minutes using parameters from Table 4.2. The evolution of the cell length

matches the exact solution from (4.30), and the average stresses remain roughly constant

as the cell grows. The linear elastic solution for the stresses in a pressurized thin cylinder

show that the hoop stress is twice the axial stress. Additionally, the axial stress of the

cylinder is equal to the spherical pressure vessel stress of the same thickness and radius.

In the geometrically nonlinear FEM solution the circumferential stress in the cylinder must

decrease by roughly a factor of two as the spherical end-caps are approached. As the cell

wall elongates, this transition zone decreases in size relative to the cell length, which explains

the slight increase in circumferential stress σθθ over time. The cell wall is loaded with a

relatively small turgor pressure p = 30 kPa that results in only small volumetric swelling. As

a consequence, the stresses remain close to those calculated using the linear elastic solution.

Mises stress contours at four points in time are shown in Fig. 4.6. Any changes in the stress

field away from the poles during growth are difficult if not impossible to perceive. At the
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Figure 4.5: Length and stress evolution of a uniformly growing transversely-isotropic cell

wall. Left: Normalized cell length for theoretical and finite element solutions. The two

solutions are in agreement and the cylindrical section of the cell wall doubles in length

over the time period of twenty minutes. Right: Average circumferential and axial stresses

in the cylindrical section of the cell wall. The hoop and axial stresses (red and green)

remain nearly constant during growth, exhibiting a very small increase as a result of the

spherocylindrical geometry. The linear elastic solutions for cylindrical pressure vessels are

displayed for reference
(
σlinear
θθ = pR0

h
, σlinear

zz = pR0

2h

)
.
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Figure 4.6: Mises stress contours displayed on the deformed shape of a uniformly growing

cell wall. The stresses in the wall remain approximately constant as the cell extends to twice

its initial length.
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sphere-cylinder interface the transition zone becomes slightly larger. Only one-eighth of the

spherocylinder was used in the FEM calculation along with symmetry boundary conditions,

and since the growth is uniform the problem can be solved using an axisymmetric model.

4.4.4 Example 4: Spatially-dependent transversely-isotropic cell wall growth

The final example in this chapter is aimed at explaining a simplified version of the pep-

tidoglycan strand extension model that is utilized in the full cell wall growth framework

discussed in the following chapter. An E. coli cell grows axially by extending a pre-existing

circumferentially aligned (on average) glycan strand or by inserting a brand new glycan

chain into the peptidoglycan network. To define F g, we assume that these two processes are

identical and can be idealized as the addition of a partial strip of circumferentially oriented

material that only contributes to the axial component of the growth deformation gradient,

F g
zZ , which in turn, lengthens the cell. Furthermore, the incomplete strip should lead to the

formation of a stress concentration at each of its two ends. Ideally, the growth-induced stress

field should resemble that of an edge dislocation on an infinite thin cylinder with a Burger’s

vector oriented axially, as in [48, 49, 50].

To start, we introduce cylindrical coordinates in the reference (R,Θ, Z) and current

(r, θ, z) configurations, respectively. The cell wall thickness is much smaller than the initial

radius (h� R0), thus we make the assumption that volume growth occurs uniformly through

the thickness allowing F g
zZ to be independent of the radial coordinate r(R, t). To facilitate

growth we need to track the positions of active MreB proteins as they traverse the cell wall. In

the reference configuration we can express the position of an arbitrary growth site or motor

as Xmtr
i = (Θmtr

i , Zmtr
i ), and similarly as xmtr

i = (θmtr
i , zmtr

i ) in the current configuration.

Without delving into the biological details that regulate the growth of the cell wall (see Ch.

6), we approximate the addition of volume by writing it as a flux through the thickness.

This has the same effect as modeling a source embedded within the cell wall that adds mass

that is constant in the thickness direction at the growth site locations.

Next we can write down a growth law that will add a small amount of material at the
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position of an active motor xmtr
i . To emulate a dislocation without a singular core, we model

the LgzZ as a two-dimensional Gaussian blob that is a function of (θmtr
i , zmtr

i ),

ϑ̇i = ϑ0 exp
[
−
(
cθ(θ − θi)2 + cz(z − zi)2

)]
, (4.32)

where ϑ0 is a constant representing the amount of material addition, and the parameters cθ

and cz control the dimensions of the blob in the θ and z directions, respectively.

We are now ready to consider motion of an active motor and its effect on the growth

law given in (4.32). For the sake of simplicity we can assume that the insertion machinery

only moves in the θ direction, thus zi remains constant. During a given increment in time,

each active growth site either makes a small circumferential move and deposits material into

the cell wall or it remains stationary without adding material. The discrete steps taken by

the growth machinery lead to lack of accuracy in the simulations unless the time increment

is very small. In full growth simulations that require tens of active motors and hundreds

of inactive sites the stress field in the cell wall quickly becomes highly disordered, and as a

result the error incurred by the discrete motion of the motors has a negligible effect on the

solution. Additionally, if the turgor pressure is sufficiently large the corresponding stresses

can be many orders of magnitude larger than the stresses induced by the defects, ultimately

masking the error. In situations such as the insertion of a complete hoop of material into a

mostly ordered cylindrical cell wall, small time increments are necessary.

It may be beneficial to write the growth law in a different form that allows for larger

time steps. To implement this alternative method we draw upon the previous examples in

this chapter. Instead of using (4.32) directly, we can write the motor’s position assuming

constant velocity as θi(t) = θi0 + v0t, where θi0 is the initial θ position of the motor and v0 is

a velocity. Then, integrating the expression with respect to time we obtain

ϑi ∼ exp
[
A0 exp

(
−cz(z − zi)2

) (
erf
[√
cθ
(
θiB − θ

)]
− erf

[√
cθ
(
θiA − θ

)])]
, (4.33)

where A0 is a constant and we have replaced θi and θi0 with θiA and θiB, which denote the

circumferential coordinates of the two ends of the strip of new material. Rather than using

(4.33) to directly prescribe F g, we can use the expression to define an upper limit on ϑ as
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was performed in the previous examples. Rearranging (4.33) we can define upper growth

limit at an arbitrary point considering contributions from all motors as

ϑmax = exp

[∑
i

A0 exp
(
−cz(z − zi)2

) (
erf
[√
cθ
(
θiB − θ

)]
− erf

[√
cθ
(
θiA − θ

)])]
. (4.34)

Finally, the evolution equation is

ϑ̇ =
1

τϑ
〈ϑmax − ϑ〉, (4.35)

where τϑ is a time constant that regulates how quickly ϑmax is attained.
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CHAPTER 5

Growth of the Bacterial Cell Wall

It is well known that rod-shaped bacterial cell walls—a thin shell made of a disordered

peptidoglycan network—grow rapidly in length. This speed allows cells to divide several

times per hour. However, fast growth requires the cell to rapidly add material to a highly

pressurized (osmotically) shell without bursting. The basic mechanism for growth is actively

driven dislocations plowing through the shell in the circumferential direction. These motor-

driven defects introduce new material (MreB filaments) into the shell but generate stress

concentrations surrounding the moving defects. Motivated by the large deformations inher-

ent in bacterial growth, we develop a nonlinear continuum mechanics model with actively

driven dislocations to describe the growth of the cell wall. Using numerical simulations, we

study the interaction of stress fields that arise as these filaments are added to the existing

peptidoglycan mesh. Furthermore, we investigate how the growth mechanics are affected by

fluctuations in turgor pressure, and the presence of heterogeneities and defects in the cell

wall that can form during an osmotic shock or antibiotic treatment.

5.1 Finite Growth

Rod-shaped bacterial cells rapidly grow and divide, while simultaneously maintaining their

spherocylindrical geometry. The cell wall, constructed from a disordered network of pep-

tidoglycan chains that form a porous barrier between the cytoplasmic contents of the cell

and its surroundings, plays a prominent role in both growth and shape maintenance [51]. In

gram-negative negative E. coli cells, the cell wall is at most a few layers of peptidoglycan in

thickness, and is materially anisotropic, with relatively stiff glycan strands oriented around
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the circumference of the cell that are cross-linked by flexible peptides [11]. This nanometer

scale thin network resists the mechanical stress induced by osmotic pressure, which may

be upwards of several atmospheres. For the cell wall to expand, it must incorporate newly

synthesized material into its existing structure. However, the mechanisms responsible for

coordinating this procedure are not fully understood. While the growth of other cellular

organisms such as plant cells are driven by internal pressure alone, there are multiple mecha-

nisms that govern bacterial growth. Furthermore, how cells remodel and repair defects in the

cell wall is a remaining question. Recent experimental and theoretical works have highlighted

the importance of the actin-like protein MreB in the growth of the cell wall, which guides

the insertion of new material along tracks primarily oriented in the circumferential direction

[52]. A more detailed understanding of the mechanics involved in cell wall remodeling and

growth in the presence of defects could lead to novel methods for antibiotics to attack and

break down the cell wall, aiding in the significant problem of antibiotic resistance.

The morphology of bacteria is remarkably robust. E. coli cells grow almost exclusively

along their cylindrical axis, and exhibit little to no change in diameter. Interestingly, colonies

of bacteria living in the same environment have vastly different lengths (depending on where

they are in the division cycle), but nearly identical widths. This behavior is thought to be

a result of curvature sensing MreB filaments that orient themselves primarily in the circum-

ferential direction. MreB filaments (patches) travel in this preferred orientation around the

periphery of the cell aided by biomolecular motors, and insert new cell wall material [53].

Rather than forming complete rings, MreB inserts material in strips that span a fraction

of the cell circumference. The filaments can become dislodged from their tracks if they en-

counter another defect (static or active), and may then hop onto another track and continue

the process, provided synthesized material is readily available.

In contrast with typical engineering materials with properties that remain constant, the

peptidoglycan cell wall undergoes significant changes as it elongates. These permanent or

irreversible modifications are initiated when covalent bonds holding the cell wall network

together are broken to accommodate glycan strand extension or growth site nucleation.

Furthermore, the two-fold change in length of an E. coli cell is far greater than the small
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Figure 5.1: Depiction of the peptidoglycan network that makes up the cell wall. Stiff glycan

strands (green) are linked together by relatively flexible peptides.

displacements required by linear elasticity theory. For these reasons, we utilize a nonlinear

continuum mechanics framework coupled with finite growth kinematics to model cell wall

elongation and morphogenesis. In the following we develop a nonlinear cell wall growth

model, which encompasses the localization of active growth sites, finite processivity of the

machinery that coordinates growth, and a mechanical description of the material insertion

process. Further details of the kinematics and nonlinear mechanics are included in the SI.

Recent experiments have uncovered that E. coli cells bend when placed in confining

environments, and robustly recover their characteristic rod-like geometry when they are

removed [54]. Similarly, cells under external hydrodynamic drag forces grow in a curved

manner, and straighten once the applied load is extinguished [55, 56]. For cells to exhibit

shape recovery in these forms, active growth sites must preferentially localize in regions

that induce straightening of the cell wall. While it remains unclear which mechanisms are

responsible for this, two prevailing theories have emerged to address: (1) MreB and other

molecules related to peptidoglycan strand extension localize to regions of negative Gaussian

curvature [57, 58]; (2) Insertion of new material is dependent on mechanical stress, with

regions of high tensile stress being favored. We adapt the latter theory herein, with both

nucleation and strand extension depending on the local state of stress within the cell wall.
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The membrane-bound protein MreB forms filaments (or patches) that are responsible for

spatially coordinating the insertion of glycan strands into the cell wall. These filaments—

driven by biomolecular motors—navigate around the circumference of the cell and insert

material along the way, allowing the cell to maintain its rod-like shape. However, what de-

termines the regions in the cell wall where these filaments localize remains in question. One

possible theory is that MreB localizes in regions of negative Gaussian curvature, introducing

new material in these locations that ultimately leads to cell straightening [59, 52, 57, 58].

This theory of geometry-based growth, however, cannot explain the experimental observa-

tions of filamentous E. coli exposed to hydrodynamic drag forces that cause cell to adopt

curved geometries [55, 56]. From the results of these experiments, it is suggested that MreB

establishes PG growth sites in regions of high areal strains [60]. Recent work has hypothe-

sized that cell elongation is dependent on areal strain, with molecular mechanisms sensing

changes in pore sizes residing in the cell wall [60]. It is proposed that the insertion of glycan

strands is decomposed into strain-dependent and strain-independent parts, with the former

working towards straightening the cell while the latter drives cell elongation. We take an

approach that is complementary to the latter mechanically-based growth theory, and hy-

pothesize that the stress concentrations that form at the tips of glycan strands as they are

introduced in the PG network govern the locations of new growth.

5.1.1 Kinematics of Transversely Isotropic Growth

The kinematics of growth are described in Chapter 4. Here we focus on the cell wall which

we assume only grows in the direction aligned with its cylindrical axis.

For the specific case of rod-shaped cell walls with transversely isotropic material proper-

ties, we define the structural vector A along the more flexible axial direction in the reference

configuration. Assuming growth occurs exclusively in the direction of A, the growth velocity

gradient takes the form

Lg =
ρ̇0

ρ0

A⊗A. (5.1)

We are then able to update F g in time using the relation Ḟ g = LgF g, with F g = I at t = 0.
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Evidently only one component of F g varies in time, such that F g can be written in terms

of a growth multiplier ϑg,

F g = I + (ϑg − 1)A⊗A. (5.2)

Physically, the scalar ϑg can be interpreted as the stretch in the direction of A attributed

to growth. It follows that

Lg = Ḟ g−1F g =
ϑ̇g

ϑg
A⊗A, (5.3)

and the scaling of A due to growth is Ag = F gA = (ϑg − 1)A.

5.1.2 Constitutive Equations

To describe the material anisotropy of the peptidoglycan cell wall, we consider a transversely

isotropic St. Venant Kirchhoff constitutive model that can be expressed as the sum of

isotropic and anisotropic free energies written in terms of invariants of the Green-Lagrange

strain tensor Ee = 1
2

(Ce − I),

ψ = ψiso + ψaniso (5.4)

=
λ

2
IE1 + µT

[(
IE1
)2 − 2IE2

]
+ αIE1 I

E
4 + 2 (µL − µT ) IE5 +

β

2

(
IE4
)2
. (5.5)

This is simply the linear elastic free energy extended to the finite deformation regime, where

Ee is substituted for the small strain tensor εe, and the give independent material parameters

(λ, µT , µL, α, β) can be written in terms of the transversely isotropic elastic moduli and

Poisson’s ratios (details in appendix). The anisotropic term is expressed as a function of the

pseudo-invariants of Ee defined as

Ie4 = A ·EeA, Ie5 = A · (Ee)2A, (5.6)

where A is a vector oriented in the axial direction in the reference configuration. The elastic

second Piola-Kirchhoff symmetric stress tensor in the intermediate configuration is defined as

Se = 2 ∂ψ
∂Ce

. Through a pull back operation we can obtain the total second Piola-Kirchhoff

stress in the reference configuration, S = F g−1SeF g−T . Pushing forward to the current

configuration provides the Cauchy or true stress σ = 1
J
FSF T . Finally, the Mandel stress
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in the intermediate configuration is M e = SeCe. This generally non-symmetric tensor is

work-conjugate to the growth (or plastic) velocity gradient Lg, and is a commonly used

stress measure in plasticity and growth mechanics [41].

5.2 Evolution of Growth

To complete the set of growth equations presented above we need to describe the evolution

of the growth multiplier ϑg via (5.3). As the cell wall thickness h is small relative to its

radius R, we assume that growth is constant through the thickness. Therefore, the mass

source can be written as R0 = j/h, where j is a normal flux. The addition of new material

is spatially heterogeneous, occurring exclusively at active growth sites in a process organized

by filaments of the membrane-bound protein MreB. This actively driven growth process dif-

fers from that found in most biological materials. Powered by biomolecular motors, these

filaments traverse the cell wall circumference at near constant velocity, extending circumfer-

entially oriented glycan strands along the way. To model this growth process, we make a

few simplifying assumptions. First, we assume that the motors travel in a plane perpendic-

ular to the cylindrical axis in the reference configuration, such that upon completing a full

revolution, a defect will encounter its other end. We also assume that when a filament is in

motion it moves through an angle ∆θ at each step. These simplifications are reasonable if

the cell wall remains approximately cylindrical in shape as it grows. In an ad-hoc approach

we write the contribution to ϑ̇ from a single active growth site ϑi with position r(θi, zi) in

spatial cylinder coordinates as a two-dimensional Gaussian function

ϑ̇i = ϑ0 exp
[
−
(
cθ(θ − θi)2 + cz(z − zi)2

)]
, (5.7)

where ϑ0 is a constant describing the rate of material addition, θi and zi are the circumferen-

tial and axial positions of the moving growth site, and cθ and cz are constants related to the

interstrand spacing of glycan chains and peptide links within the cell wall. In E. coli cells,

several tens of active sites simultaneously move and add material to the cell wall. Summing
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the contributions of N growth sites we obtain

ϑ̇ =
N∑
i

ϑ̇i = ϑ0

N∑
i

exp
[
−
(
cθ(θ − θi)2 + cz(z − zi)2

)]
. (5.8)

5.2.1 MreB Dynamics

The positions of the MreB growth machinery are modeled as points embedded within the

cylindrical section of the cell wall, and it is at these locations that material is inserted leading

to growth (we neglect growth in the hemispherical endcaps). We hypothesize that the local

axial stress is a significant driving mechanism behind cell wall growth. As a new strip of

material is inserted into the existing wall, tensile stress concentrations arise at the ends of

the strip, creating a stress field that resembles that of an edge dislocation. These regions

of high tension then encourage the insertion of new material to prevent tearing or fracture.

We can quantify this by writing a probability of insertion described by the Boltzmann factor

exp(−∆G/kBT ), where ∆G is the free energy of activation. Considering mechanical stress

contributions to this energy barrier, we can rewrite the activation energy as

∆G = ∆G0 − SeIJΩIJ , (5.9)

where ∆G0 is the free energy at zero stress, SeIJ are the components of the elastic second

Piola-Kirchoff stress tensor, and ΩIJ are the components of the activation volume tensor,

which is proportional to the amount of material inserted. Analogous to dislocation theory,

the rate at which this energy barrier is overcome is ∼ ν exp(−∆G/kBT ), where ν is an

attempted insertion frequency. Using (5.9), we write the probability of an active dislocation

inserting material and moving a step in a given time increment as

P = exp

(
−∆G0 − S : Ω

kBT

)
, (5.10)

where we have absorbed the coefficient ν into P .

The stress based probability allows filaments to continue moving at roughly constant

velocity until they encounter a region of low tensile stress (or compressive stress), or they

reach their processive limit of a few hundred nanometers. The former situation is realized
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when two active pieces of machinery moving in opposite directions collide, a motor runs into

the back of another insertion strip or defect in the wall, or the head of a motor forms a

complete loop and runs into its tail end. In all of the cases described above, the tensile stress

concentration vanishes when two defects collide.

In Eq. (5.10) the values of ∆G0 and ΩIJ are unknown, but we can estimate them

by assuming only the axial component of S contributes to Eq. (5.9), and by reducing

Ω to a scalar. Starting with the activation volume, we consider a small volume element

of material with length proportional to the average glycan unit length ` ∼ 1 nm, width

of the glycan interstrand spacing w ∼ 3 nm, and height equal to the cell wall thickness

h ∼ 5 nm . Multiplying these three values, we obtain an estimated scalar activation volume

Vac ≈ 1 to 5 nm3. For ∆G0, we note that under standard turgor pressures the cell wall rapidly

grows, indicating that this activation threshold must be low enough to allow for growth. If

we express ∆G0 as the product of a critical axial stress and the activation volume, and then

substitute the axial stress of a cylindrical pressure vessel we obtain ∆G0 ≈ p0R/2hVac, where

p0 is the turgor pressure. Finally, plugging in a turgor pressure on the lower end of estimates

p0 = 0.3 atm leads to ∆G0 ≈ 10kBT .

5.2.2 Growth Site Activation and Inactivation

To express the elongation machinery dynamics of a growing bacterial cell wall, we follow a

recent study that describes the growth mechanics using dislocation dynamics [48]. These

dislocations are classified into active and inactive categories, with the former being both

mobile and responsible for adding new material to the cell wall. The number of active and

inactive growth sites are denoted by Nac and Nin.

In the simple case of an elongating cylindrical cell with constant radius R, the rate of

change in cell length L can be expressed in terms of the number of active growth sites

dL

dt
=

vw

2πR
Nac, (5.11)

where v is the average motor velocity and w is roughly the width of a single glycan chain,

which we take to be the inter-strand spacing. By rewriting (5.11) in terms of an active motor
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Table 5.1: Values of the parameters used in the growth simulations.

Parameter Name Symbol Value Reference

Number of active MreB motors Nac ∼ 30 [48]

Glycan interstrand spacing λg 1 nm to 4 nm [61]

MreB processivity `MreB ∼100 nm to 500 nm [62]

MreB speed vm 5 to 25 nm/s [63]

Elastic modulus (θ-direction) Eθ 50 MPa [1]

Elastic modulus (z-direction) Ez 25 MPa [1]

Cell wall thickness h 5 nm –

Cell radius R 500 nm –

Cell length (cylindrical region) L 1 µm –

Free energy at zero stress ∆G0 10 kBT –

On-rate of growth sites (nucleation) Ron 1.3× 105 s−1m−1 –

Off-rate of growth sites (finite processivity) Roff ∼ 0.005 to 0.01s−1 –

Inactive-to-active rate Rin 2.5× 10−4 s−1 –
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density nac(t) = Nac/L we obtain

dL

dt
=

vw

2πR
nacL. (5.12)

Assuming the active motor density remains constant throughout growth, the steady-state

lengthening of the cell is

L(t) = L0 exp
( vw

2πR
nact

)
. (5.13)

To supplement (5.11), we need to describe the rates of activation and inactivation of

growth sites. We assume that sufficient nutrients are available to the cell in its surrounding

environment, and that the density per unit length of both active and inactive sites remain

approximately constant as the cell grows. The first process we consider is the insertion of

a new strip of material into the cell wall, with one end activating while the other remains

inactive. Each of these nucleation events is analogous to the creation of a dislocation pair,

and it is assumed that they occur at a rate proportional to the cell length, with rate constant

Ron.

Another pathway for material insertion is via the activation of inactive sites. In this

process, biomolecular motors hop onto a vacant end of any partial glycan strand and continue

its extension around the cell periphery. The rate of this activation process depends on the

number of unoccupied sites Nin, and is denoted by Rin.

Finally, growth site activation is complemented by an inactivation process arising from

the finite processivity of MreB that guides growth machinery. The extensional machinery

falls off the tracks assembled by MreB once it reaches its limit of a few hundred nanometers,

resulting in strips of new material that typically cover only a fraction of the circumference.

Inactivation, with rate constant Roff, is proportional to the number of active growth sites.

From the nucleation, activation, and inactivation processes described above, the time

evolution of active and inactive growth sites can be written as

dNac

dt
= RonL+RinNin −RoffNac (5.14)

and
dNin

dt
= RonL−RinNin +RoffNac. (5.15)
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Combining the above with (5.11) and substituting the densities nac = Nac/L and nin =

Nin/L, we obtain the following relationships for the steady-state densities

dnac

dt
= 0 = Ron −Roffnin −

vw

2πR
n2

ac +Rinnin, (5.16)

dnin

dt
= 0 = Ron −Rinnin + nac

(
Roff −

vw

2πR
nin

)
. (5.17)

We now have a set of equations for the growth site dynamics, where biological processes

govern the on and off rates. However, it is plausible that the nucleation and activation

processes are also spatially dependent, with new growth sites targeting regions of high stress

that may include damage. Thus, for both the activation of an inactive site and a nucleation

event, the probability in (5.10) governs the location of activation. In the simulations the

rates of activation and inactivation are modeled as Poisson processes.

5.3 Results

5.3.1 Elongation Rate of the Cell

The model reproduces the exponential growth rate observed experimentally with a doubling

time of 20 minutes, assuming the activation threshold governed by ∆G0 is set low enough

to allow growth sites to freely move around the cell wall at constant velocity (Fig. 5.2).

Further decreasing ∆G0 has no effect on the model since each defect is limited to either

move a constant distance or remain stationary in a given time step. When ∆G0 is set high

enough to prevent continuous motion of MreB filaments, the activation volume Vac acts as

a sensitivity parameter determining how rapidly the probability falls off. It appears likely

that defects are able to overcome this energy barrier relatively easily based on experiments

showing that the average speed of MreB remains largely unaffected by moderate osmotic

shocks, and recovers rapidly after more extreme variations in pressure. It may be that by

regulating turgor pressure the cell can maintain a high growth rate, a rate that only decreases

when the pressure drops to levels that approaching those associated with plasmolysis.

During a typical growth cycle of 20 minutes, the average axial and circumferential stresses

remain nearly constant (Fig. 5.4). However, the maximum stresses show a rapid increase
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Figure 5.2: Evolution of normalized defect concentrations and cell length over a time period

of 20 minutes. The threshold ∆G0 is set very low, such that the motors move continuously.

The blue lines show the results from a single representative simulation, and the black dashed

line shows the theoretical value obtained by solving the set of equations above. Parameters

are chosen that lead to the cell length doubling in approximately 20 minutes. A) Normal-

ized number of active defects. Large fluctuations are observed in the active growth site

concentration, though this behavior does not carry over to the cell lengthening rate. B)

The normalized number of inactive defects increases more steadily than the active defect

concentration, which is a consequence of Nin � Nac. C) The cell length steadily increases to

roughly twice its initial value after 20 minutes, with a slight kink between 10 and 15 minutes

corresponding to the rapid drop and subsequent spike in active defects. The cell length is

calculated as the average difference between the two surfaces on the ends of the cylinder.
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Figure 5.3: Evolution of growth multiplier ϑ (top) and axial stress σ33 (bottom). Top:

Stochastic insertion of new material leads to an increasingly nonuniform cell wall as it elon-

gates. Bottom: Starting from a stress free initial state, the peak stress values increase as

the motion of active growth sites results in the formation of stress concentrations around

the cell. Once the cell wall has reached a significantly disordered state, the increase in stress

slows drastically allowing the cell to continue to elongate.

over the first few minutes accompanied by large fluctuations. The increase in peak stress

values stems from the initial state being defect free, while the rapid fluctuations result from

the interaction of defects as the move past one another. As the cell continues to grow the

maximum stresses appear to approach a plateau, remaining within a small region.

5.3.2 Comparison with Linear Elastic Theory

To explore the effects of the nonlinear growth model we evaluate the axial and hoop Cauchy

stress distributions over the cylindrical section of the cell (Fig. 5.5). The stresses are com-

puted at the element quadrature points at a few time increments over the growth cycle of

the cell. In the case of the compressible isotropic St. Venant Kirchhoff material model, the

stresses generally increase with growth at a slow rate and their distributions widen. While

the latter behavior is reproduced by the linear elastic theory, the rise in average stress values–

corresponding to a shift in the distribution to the right–is a characteristic of the nonlinear

model. This relatively slow increase in stress is a product of non-uniform or differential
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Figure 5.4: Evolution of axial and circumferential Cauchy stress (σzz and σθθ). The average

stress over the cell domain remains approximately constant during growth, while peak stress

values generally increase with large transient fluctuations. As more material is added to the

cell wall the disorder in the stress field increases, resulting in higher stresses. Interestingly,

peak values of the axial and hoop stress are comparable in magnitude. On average, the hoop

stress is a factor of two larger than the axial stress as expected.

growth, where the addition of a partial band of material produces a pair of stress concen-

trations, located at either end of the strip. While additional growth in the surrounding

region can alleviate these stress concentrations, the stochastic nature of the model coupled

with the fixed size of each piece of inserted material renders this unlikely. As a consequence

the cell wall remains in a state of disorder characterized by an inhomogeneous stress field,

augmenting the typical residual stresses associated with finite growth mechanics. Geometric

nonlinearities are responsible for the initial shift of the distributions to the right prior to the

onset of growth but after the cell has been loaded by an internal pressure. In Fig. 5.6 the

axial and circumferential stress distributions are shown for an incompressible transversely

isotropic St. Venant Kirchhoff material (Je = 1). The response is markedly different from

that of the compressible model, with drastic increases in stress and the formation of multiple

peaks in the distributions. Defect interactions play a stronger role when incompressibility is

enforced at the material level.
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Figure 5.5: Axial (left) and hoop (right) stress distributions for an isotropic cell with 500

inactive defects. The midpoints of the nonlinear distributions are shifted slightly to the right

as a consequence of large displacement theory. Furthermore, the tail at the higher end of

the axial distributions increases in size with the number of defects.
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Figure 5.6: Axial (left) and hoop (right) stress distributions using a transversely isotropic

incompressible material model.
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Figure 5.7: Effects of defect interactions and internal pressure on the axial (left) and circum-

ferential (right) Cauchy stress (σzz and σθθ). At low pressure the stresses appear directly

proportional to the number of interactions, while the relationship becomes nonlinear at

higher pressure.

5.3.3 Parametric Analysis

In the parametric study that follows we analyze a cell with a strip of new material that has

nearly completed a full revolution. As a result of the small gap between the ends of the

strip, a region of relatively large tensile stresses forms. Additional layers of material are

then repeatedly added on top of the incomplete strip and the axial and hoop stresses are

calculated while varying the pressure, wall thickness, and defect geometry. Herein we present

and discuss the nonlinear effects of pressure on the stresses and include the remainder of the

parametric studies in the Appendix.

Typical turgor pressures in E. coli cells range between approximately 0.3 atm and 3 atm.

Towards the low end of this pressure range the maximum axial and hoop stresses increase

almost linearly with the number of interacting defects (Fig. 5.7). However, at higher pres-

sures the relationship is clearly nonlinear, as the peak stresses begin to increase rapidly with

only a small number of interactions.
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5.4 Discussion

In this work we developed a mechanical growth model with finite kinematics to study a grow-

ing rod-shaped bacterium. In addition to the nonlinear mechanics model, we set up a system

of differential equations to regulate the positions of the MreB growth machinery and control

their state (active/inactive). Furthermore, the motion and activation of the PG insertion

machinery are governed by a stress dependent probability, with regions of high tensile stress

encouraging greater motion of active defects and activation of inactive defect. By selecting

reasonable parameters, using the steady-state solutions of the rate equations as initial condi-

tions and setting a low barrier to motion, the model readily reproduces exponential growth

as expected.

As seen in Fig. 5.4, the stresses on average remain roughly constant as the cell grows.

Therefore, the probability that an arbitrary active growth site will make a move during a

given time step stays at nearly the same value as the cell elongates. The situation is different

though in the case of hyperelastic or incompressible materials. For these materials the

average stresses do in fact increase significantly, leading to a situation where growth promotes

faster growth. This is another example of the St. Venant Kirchoff material producing

a different result than other materials models. While biological materials are typically not

modeled well by the SVK material, the current mechanical understanding of the PG network

makes it difficult to justify the use of a more complicated hyperelastic model.

By analyzing how the cell wall stresses evolve throughout the growth cycle we demon-

strated the important nonlinear effects that are recovered by the finite deformation model,

and showed how modulating various parameters including the density of active and inactive

growth sites, turgor pressure, and mechanical properties influences growth. Perhaps most

intriguing is the significant rise in stress as defect density increases for a turgor pressure

p = 150 kPa, as shown in Fig. 5.7. This is a relatively low density, thus, it may be a reason-

able assumption that normal turgor pressures are 1 atm or lower, in agreement with recent

consensus.

It is clear that the large deformations inherent in bacterial growth necessitate the use of

91



finite kinematics to accurately capture the mechanical behavior of the cell wall. In future

studies, consideration of a more intricate hyperelastic material model may provide insight

into the predicted stress-stiffening behavior of the cell wall. Alternatively, incorporating a

continuum damage mechanics model into the existing framework may provide an additional

way to investigate cell lysis caused by a defective cell wall. Finally, the inner and outer

membranes support isotropic tensions and likely grow isotropically as well. A differential

growth model may lead to a better understanding of the stress-states of the inner and outer

membranes under normal growth conditions, and provides clues as to how the membrane

bound protein MreB can aid in growing the cell wall while being attached to an adjacent

layer.
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CHAPTER 6

Conclusions and Future Directions

6.1 Conclusion

In this thesis, three different directions were taken to investigate the mechanics of bacte-

ria. First, a thin shell model was developed to gain insight into the material properties of

peptidoglycan cell wall. The mechanical contributions of the lipid inner membrane were in-

corporated into this model, which has not previously been considered. The inner membrane

is capable of sustaining a state of isotropic tension, which provides a signal to membrane

dwelling mechanosensitive channels to regulate turgor pressure. Two separate approaches

were taken to build a mechanical model for the bacterial cell envelope. An analytical com-

posite shell model was constructed using linear elastic pressure vessel mechanics, and bounds

on the mechanical properties of the cell wall were determined through the use of material

stability requirements and experimentally observed strains. It was found that rod-shaped

bacteria such as E. coli have highly anisotropic cell walls, with a circumferential elastic

modulus that is at least four-fold greater than the axial direction stiffness. Furthermore,

the inner membrane was determined to bear a substantial portion of the turgor pressure

load that can be on the same order of magnitude as the cell wall. By providing significant

structural support, the inner membrane encourages even greater levels of cell wall anisotropy

in order for the bacterium to maintain its spherocylindrical geometry. Additionally, key re-

lationships between pressure, volume, and membrane tension were derived. To validate the

analytical work, an axissymmetric thin shell finite element model accounting for geometric

nonlinearity was implemented. The computational model considers stretching and bending

of both lamina, and the mechanical behavior under internal pressure loading generally agrees
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with those calculated by the analytical model, indicating that bending effects are negligible.

The composite shell model brings new insights into the mechanical properties of the cell wall

that have proven difficult to ascertain experimentally, and acts as stepping stone into the

study of cellular transport.

Next the remarkable ability of bacteria withstand large, sudden changes in external os-

molarity known as osmotic shock was investigated using the previously discussed mechanical

model and the Kedem-Katchalsky transport framework. Specifically, simulations of osmotic

downshock are carried out by rapidly decreasing the external solution concentration and then

monitoring the evolution of various quantities until equilibrium is restored. The mechanics

are coupled to the transport dynamics via the pressure-volume relationship derived for the

composite shell model. Furthermore, three non-specific types of mechanosensitive channels

of varying sizes with tension dependent gating are integrated into the model, allowing for

the release of intracellular solute and augmenting the water transport of the semipermeable

inner membrane. Following osmotic shock experiments, a variety of shock magnitudes and

rates are numerically simulated. The model cell’s response to a linearly varying shock is

drastically different than the response to instantaneous downshock, with the cell exhibiting

the ability to withstand the change in environmental conditions by opening only the number

of channels required to effectively match the shock rate. The peak value of membrane tension

and the rate at which it is loaded largely determine cell survivability on short time scales,

and the model predicts an increase in survivability as the shock rate decreases, providing

quantitative evidence for experimental observations. A detailed analysis of the permeability

parameters and the effect of channel populations on survival is carried out, and it is deter-

mined that only a handful of large channels are necessary to withstand all but the largest

of osmotic shocks, aligning with experimental work. Overall, the model provides evidence

that cell lysis on short time scales induced by osmotic is governed by transport dynamics,

with failure of the inner membrane being a likely cause. Although geometry and anisotropic

constitutive laws qualitatively affect the shape of the cell during swelling, they do not greatly

affect the likelihood of survival on short time scales. However, cell lysis on the time scales

of growth cannot be fully explained by transport alone, which leads into the final study on
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cell wall growth.

To further understand how lysis occurs tens of minutes following an osmotic shock, we

implement a nonlinear finite growth model of the cell wall to determine if defects in the

peptidoglycan network can result in the cell growing itself to death. While most mechanical

growth laws for biological tissues are uniform throughout the material, a spatially-dependent

growth constitutive equation is constructed to accurately capture the strip-like insertion and

extension of circumferentially aligned glycan strands. Furthermore, the motion of active

growth sites regulated by the protein MreB is governed by a stress-dependent probabil-

ity, as are the dynamics that control where the activation of new growth sites occurs, and

which previously inactive sites receive growth machinery and become active. Starting from

a stress-free reference configuration with spherocylindrical geometry, the non-uniform ad-

dition of peptidoglycan into the cell wall leads to an increasingly disordered cell wall and

a corresponding increase in stress. The model cell wall typically grows relatively straight

while stresses in the cell wall can exhibit transient spikes when the stress fields generated by

growing strips interact with one another. Further analysis of the stresses and their depen-

dence on the density of defects shows that on long time scales a damaged cell can worsen

its situation by adding material in disadvantageous positions. It is also clear that a non-

linear model is necessary to capture the large displacements that accompany finite growth

and the large strains that form adjacent to freshly inserted strips. Finally, it is shown that

hyperelastic and incompressible materials, which are common in biology, show increasingly

nonlinear behavior when defects interact.

6.2 Future Work

Currently, one of the biggest questions in bacterial mechanics is: What is the driving force

behind cell wall growth? Many studies have given conflicting results and two main theories

have endured. Curvature-driven growth is one of these theories, which stems from exper-

iments that provide evidence of MreB proteins localizing to regions of negative Gaussian

curvature. This geometry based theory is supported by its ability to maintain cell shape,
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and keep growth away from the poles. However, experiments that induce cell wall bending

appear to show the opposite behavior. As the bending forces are removed, curvature driven

growth should lead to a snap-back type response, but this does not occur. Both of these

theories can be investigated computationally using shell finite elements, which will reduce

the computational cost and allow for a simple calculation of the curvature. A straightforward

test would be to initialize the cell in the reference configuration with an irregular geometry

and simulate its response. Experiments have shown that cells grow back into their normal

rod-shaped geometry after being placed in confining environments.

Another question that is still not fully understood is: Why is there such a variety in

mechanosensitive channels and what is the reason for their large populations? Recent work

on this topic including the work in this thesis lacks a full explanation to this question. The

general consensus is that the extra channels provide additional protection in case environ-

mental conditions worsen. Surprisingly, recent protein counts have indicated that channel

numbers may be an order of magnitude higher than previously thought. If this is so, it

indicates that the channel flow models are drastically overestimating the amount of solute

and water that can flow through them. Furthermore, the inner membrane may be better

modeled by a set of aquaporin channels rather than a continuous semi-permeable layer.

Finally, a very important topic that can be addressed by the mechanics community is that

of antibiotic resistance. As a large class of antibiotics act by attacking the cell wall, coupling a

continuum damage model with finite growth mechanics may lead to a further understanding

of how damage progresses and evolves in a cell, and what type of initial defects are required

to lead to specific death phenotypes. A microstructural model may also be of benefit here,

where the glycan chains and peptides can be modeled individually as rods with bending and

stretching stiffness. Binding and unbinding rules can easily be implemented in a rod-based

model, which can then be used to study how damaged can sometimes repair themselves, or

to simulate antibiotic induced lysis via insertion of defective material that is coupled with

model for its evolution.
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APPENDIX A

Axisymmetric Composite Finite Element Model

A displacement based finite element analysis is utilized in this work to validate the cylin-

drical composite shell model derived in Section 2.1. Kirchhoff shell theory is applied and

axisymmetric elements are used to construct a laminate model that fully accounts for the

nonlinearities intrinsic to the spherocylindrical geometry of a bacterial cell. Deformation

of both layers is coupled, such that only one set of nodes and elements is necessary to de-

scribe equilibrium configurations under internal pressure loads. The shell surface geometry

and kinematics are briefly outlined before details of the energy models are discussed. A

variational approach is taken in deriving the governing equations, leading to a weak form

minimization problem that is approximated using the finite element method [64].

A.1 Geometry and Kinematics

The spherocylindrical shell geometry can be described using axisymmetry by first noting the

revolution symmetry about the longitudinal z-axis. Reflection symmetry about the z = 0

plane leads to the simple curved geometry shown in Fig. A.1. As the displacement analysis

of the shell is performed exclusively along the meridional line, 1-D finite elements are used

to approximate the deformed shape.

The reference surface Ω is parametrized by introducing two curvilinear coordinates {s1, s2}

that tangentially follow the shell surface. Current positions on the deformed surface ω are

given by vector x ∈ R3, defined by the mapping x = x(s1, s2), with tangent basis vectors

aα =
∂x

∂θα
≡ x,α. (A.1)

Note that the standard summation convention applies here with Greek indices indicating
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Figure A.1: Axisymmetric spherocylindrical geometry showing curvilinear coordinates θ1

and θ2, which are aligned with the z and θ directions within the cylindrical section. Tangent

basis vectors aα are calculated by taking the partial derivative of position vector x with

respect to the coordinates θα. Normalized basis vectors n̂1 and n̂2 are used to transform

elastic moduli into the curvilinear frame.
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values of 1 and 2. The covariant and contravariant metric tensors are

aαβ = aα · aβ (A.2)

aαβ = aα · aβ, (A.3)

where the definition aα · aβ = δαβ has been used. To account for the effects of curvature,

the director and curvature tensor of the surface are required. Kirchhoff shell theory assumes

that the cross-sectional rotations remain orthogonal to the mid-surface. Thus, the director

d is defined as the unit normal to the surface,

d ≡ a3 =
a1 × a2

‖a1 × a2‖
=
a1 × a2√

a
, (A.4)

where a is the determinant of the covariant metric, a = det(aαβ). The covariant components

of the curvature tensor B are defined by

bαβ ≡ −d,α · aβ = d · aα,β. (A.5)

A.2 Membrane

Bending of the lipid bilayer is modeled using the classic energy equation attributed to Helfrich

[13], which takes the form

Πm
b [x] =

∫
Kb
2

(2H − C0)2 +KGK dA. (A.6)

In (A.6), Kb and KG are the bending modulus and Gaussian modulus respectively, and C0

represents the spontaneous curvature, induced by asymmetries in the bilayer. As a result of

the Gauss-Bonnet theorem, the Gaussian curvature term is neglected. The mean curvature

H is the average of the two principal curvatures, which is written as half the trace of B

H =
1

2
tr(B) =

1

2
bαα. (A.7)

The Gaussian curvature K is the determinant of the curvature tensor

K = det(B) = det(bαβ). (A.8)
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The spontaneous curvature has a minimal effect on deformation, thus we set C0 = 0 in

the simulations. The bending has units of energy and is set to Kb = 20 kBT .

Taking the first variation of Πm
b leads to

δΠm
b =

∫
nα · δaα +mα · δd,α dA, (A.9)

with stress resultant

nα = Kb(2H − C0)aαβd,β +
Kb
2

(2H − C0)2aα (A.10)

and moment resultant

mα = −Kb(2H − C0)aα. (A.11)

Stretching of the inner membrane gives rise to a tension that is proportional to the areal

strain,

τm = KAεA, (A.12)

where KA is the stretching modulus (KA = 60 kBT/nm
2). Integrating the tension over the

reference area gives rise to the elastic stretching energy

Πm
s =

∫
KA

2
ε2A dA =

KA

2

(
A− A0

A0

)2

A0. (A.13)

where A and A0 are the deformed and reference areas, respectively. The stretching energy

penalty is enforced at the global level.

A.3 Cell Wall

The peptidoglycan cell wall is implemented using a Saint Venant-Kirchhoff material model,

which is an extension of the linear elastic Hooke’s law to finite deformation. The strain

energy density W is composed of both mid-surface stretching (Ws) and bending (Wb) terms,

W =
1

2
EαβA

αβγδEγδ︸ ︷︷ ︸
Ws

+
1

2
ραβD

αβγδργδ︸ ︷︷ ︸
Wb

, (A.14)

where Eαβ is the Green-Lagrange strain

Eαβ =
1

2
(aαβ − Aαβ), (A.15)
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ραβ is the curvature difference between deformed and undeformed configurations

ραβ = bαβ −Bαβ, (A.16)

and Aαβγδ and Dαβγδ are fourth-order tensors containing the elastic and bending material

constants, respectively.

In cylindrical polar coordinates {z, θ} → {1, 2}, the elastic and bending moduli compo-

nents are

Āαβγδ =
Kαβh

1− ν12ν21

(
ν12A

αβAγδ +
1− ν12

2

(
AαγAβγ + AαδAβγ

))
, (A.17)

D̄αβγδ =
h2

12
Aαβγδ, (A.18)

where the standard summation convention is ignored for the stiffness Kαβ. Due to vanishing

shear terms, the only non-zero components of Kαβ are,

K11 =
E1

1− ν12ν21

, (A.19)

K22 =
E2

1− ν12ν21

. (A.20)

The components Āαβγδ and D̄αβγδ are transformed into the axi-symmetric curvilinear frame

from the elastic properties in the z and θ directions (Ez, Eθ, νzθ, νθz). To carry out the basis

transformation, we first define two unit vectors (see Fig. A.1) along the reference surface in

the circumferential and tangential directions,

N1 =
A1

|A1|
=

A1√
A11

(A.21)

N2 =
A2

|A2|
=

A2√
A22

. (A.22)

The transformation tensor T is then defined as

T βα = Nα ·Aβ. (A.23)

In the {z, θ} frame, these components are written as Āαβγδ and D̄αβγδ, and by using T βα we

write the material constants in the curvilinear frame using the relationship

Aαβγδ = Tαη T
β
κ T

γ
µT

δ
ν Āηκµν , (A.24)

Dαβγδ = Tαη T
β
κ T

γ
µT

δ
ν D̄ηκµν . (A.25)
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Following the computation of Aαβγδ and Dαβγδ in the curvilinear frame, the stress and

bending resultants are determined by

nαwall =
∂W

∂aα
= nαβaβ (A.26)

and

mα
wall =

∂W

∂d,α
= mαβaβ, (A.27)

where nαβ = AαβγδEγδ and mαβ = Dαβγδργδ.
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APPENDIX B

Transport

B.1 Estimating Parameters

B.1.1 Water Permeability of the Membrane – µm

Water permeability of the inner membrane strongly influences the post-shock evolution of

the cell, and is defined by the constant parameter µm. Cells initially respond to downshock

by passively drawing water inward as a result of the imposed concentration gradient, and

the rate at which water is accumulated is governed by µm. If µm is “large,” then during

these initial moments water will rapidly pass through the membrane and into the cytoplasm,

increasing membrane tension and consequently gating a relatively large number of channels.

Once these channels have opened, the cell can quickly expel osmolytes to reduce the pressure.

On the other hand, when µm is “small” water accumulation takes place over a longer time

scale, and tension slowly approaches gating thresholds. As a result, a smaller portion of

channels are gated, thus decreasing solute efflux and lengthening the overall response time.

Therefore, the membrane permeability µm directly controls the rate at which water enters

the cell when channels are closed, and also dictates the time scale of the cell’s response to

downshock.

One parameter that is closely related to µm is the membrane permeation coefficient Pf ,

which is estimated to be in the range Pf ≈ 15−60 µm/s [32, 65]. We can obtain a relationship

between Pf and µm by assuming purely diffusive transport and then using a modified version

of Fick’s law,
dVm
dt

= PfAmVw∆C, (B.1)
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where Vm is the volume enclosed by the membrane surface area Am, Vw is the molar volume

of water, and ∆C is the concentration difference between the cell and its surroundings.

Assuming an ideal solution, we can divide equation (B.1) by the osmotic pressure difference

(∆Π = kBT∆C) and solve for µm,

µm =
PfAmVw
NAkBT

. (B.2)

A spherocylindrical E. coli cell of radius R = 500 nm and L = 1 µm has surface area Am =

6.3 µm2. The molar volume of water is Vw = 18 ml/mol. Taking Pf = 50 µm/s we can then

evaluate µm

µm =
(50 µm/s)(6.3 µm2)(18× 1012 µm3/mol)

(6.022× 1023 1/mol)(1.38× 10−23 J/K)(300 K)
= 2.27× 10−24 m3/Pa/s. (B.3)

Due to the heterogeneity of cell sizes, the surface area available for diffusion, and uncertainty

in Pf , we expect µm to be within the range

µm ≈ 10−25 − 10−23 m3/Pa/s. (B.4)

To validate our calculation we look towards hyper-osmotic shock experiments, which estimate

that cells lose 30 % of their normal volume in approximately 1 s. This corresponds to a rate

of roughly 1010 water molecules per second. To convert µm to similar units we divide by Vw

and multiply by NA

µm
NA

Vw
≈ 3.3× 109 − 3.3× 1010 molecules/atm/s, (B.5)

which yields the rate of water flow on a per atm basis. Noting that pressure variations during

osmotic shock are believed to be around 1 atm, our calculation agrees with the literature

values.

B.1.2 Channel Water Permeability – µc

The amount of water flow through a mechanosensitive ion channel is largely governed by

its size, or pore radius. We can think of an MS channel as a cylindrical tube of radius rc

and length hm (equal to the membrane thickness), oriented perpendicular to the membrane
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surface. The Hagen-Poiseuille equation describing pipe flow for a given pressure difference

can then be used to determine the permeability coefficient µc. This relationship states that

a pressure drop ∆P drives a volumetric flow Q across the membrane, based on the equation

∆P =
8hmηQ

πr4
c

, (B.6)

where η is the viscosity of the solvent (water). Rewriting Eqn. (B.6) in terms of µc leads to

µc =
Q

∆P
=

πr4
c

8hmη
. (B.7)

It is obvious that µc is strongly dependent on the pore radius rc, from which we can conclude

that smaller channel types such as MscS and MscM will have substantially lower water

permeabilities. Evaluating the expression in Eqn. (B.7) for MscL using the parameters in

Table 3.3, we get

µMscL
c =

π(1.5 nm)4

8(3 nm)(10−3 N · s/m2)
= 6.6× 10−25 m3/Pa/s. (B.8)

When we consider that a single cell has several hundred MscL channels, the total water per-

meability of MscL (µMscL
c ×NMscL

c ∼ 10−22 m3/Pa/s) will exceed the membrane permeability

µm if all channels are in their opened state.

B.1.3 Channel Solute Permeability – αc

To estimate the channel permeability to solute molecules, we make the assumption that

transport is governed solely by diffusion. The channel can be idealized as a cylindrical pore

of radius r and length hm (equivalent to the membrane thickness), with its axis oriented in

the z-direction. The axisymmetric geometry dictates that the concentration field C along

the channel exclusively depends on z. By considering steady-state diffusion, we can then

write the diffusion equation as

DCzz = 0, (B.9)

where D is the diffusion coefficient. Internal and external concentrations are defined as

C(0) = Cin and C(h) = Cout. (B.10)
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To solve for the concentration field C(z), we integrate Eqn. (B.9) and apply the boundary

conditions from Eqn. (B.10) to get

C(z) =
(

1− z

h

)
Cin +

(z
h

)
Cout. (B.11)

Since the solution in Eqn. (B.11) is linear the concentration gradient is simply ∆C/hm, and

we can write the flux through a single channel as

Jch = AcD∆C/hm, (B.12)

where ∆C = Cout − Cin. Assuming an ideal solution (∆Π = kBT∆C), the channel flux can

be related to pressure through

Jch = αc∆Π = αckBT∆C ⇒ αc = D
Ac

kBThm
. (B.13)

The parameter αc describes the rate of solute flow through a channel per unit of pressure,

and has units of 1/Pa/s. The diffusion constant D for various ions in water such as Na+ and

K+ is ∼ 10−3 µm2/s. Taking values from Table 3.3, and D = 10−3 µm2/s, we evaluate Eqn.

(B.13) for MscL

αMscL
c = D

Ac
kBThm

= (10−3 µm2/s)
π(1.5 nm)2

kBT (3.0 nm)
≈ 600 1/Pa/s. (B.14)

As αc ∼ r2, the channel permeability to solute has a strong dependence on the pore ra-

dius, indicating that MscL is far more effective at transporting ions than its siblings. A

smaller pore radius indicative of channels such as MscS and MscM, say r = 1 nm, will give

αc ≈ 300 1/Pa/s. This indicates that if diffusion is the only phenomenon in play here, dif-

ferent channel types (with unique properties) will have αc values that differ by an order of

magnitude, or more.

B.1.4 Channel Reflection Coefficient – σ

The amount of solute efflux permitted through a mechanosensitive channel is primarily lim-

ited by the pore size. The reflection coefficient describes how much solute is disallowed from

traversing the channels due to the simultaneously flow of solvent. A simple mechanical model
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for determining σ assumes that solute molecules are spherical, channels are cylindrical, and

that there is no interaction amongst solutes with themselves [66]. The reflection coefficient

can then be calculated using the equation

σ =
[
1− (1− λ)2]2 , (B.15)

where λ ≡ rsolute/rpore is the ratio of solute-to-pore radius.

Figure B.1: Reflection coefficient σ for YbdG, MscS, and MscL calculated using Eqn. (B.15).

Potassium is by far the most abundant ion present in the E. coli cytosol, with intra-

cellular concentrations ranging from 200 to 700 mM depending on external medium solute

concentrations. With a hydrated radius of approximately 0.3 nm, the potassium ion is much

smaller than the pores of MscL and MscS. However, K+ is similar in size to YbdG channels,

and some portion of these ions may be “reflected” by smaller channels based on their size

alone. Interestingly, the potassium specific channel MscK preferentially transports K+ over

Na+ even though the sodium anion is smaller in size. For this reason, the simple model uti-

lized here may not be the best way to depict reflection through small or selective channels,

though for non-selective large pores it appears to be adequate. In reality each solute-channel

should have a unique reflection coefficient, but we have chosen to approximate all solute

molecules as K+.

Fig. B.1 shows the relationship in Eqn. (B.15) along with σ values for MscL, MscS, and

YbdG indicated by red dots based on the hydrated radius of K+. Smaller channels have

greater reflection coefficients as they prevent the passage of solute molecules that exceed
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the channel radius. More complicated models describing σ based on pore size show similar

results. We expect σMscL . 0.1, σMscS . 0.25, and 0.25 . σYbdG ≤ 1.0

Figure B.2: Maximum values of membrane tension, volume influx, and solute efflux while

varying σ. Channel opening probability and normalized volume are shown versus time for

five specific values of σ. The model cell contains only a full complement of MscS channels

and is subjected to a 0.5 M downshock.

B.1.5 Channel Osmosensitivity is Controlled by the Reflection Coefficient

Mechanosensitive channels are capable of transporting both water and solute molecules (σ 6=

1), and the amount of interaction between these fluxes is characterized by the reflection

coefficient. The lower limit of σ = 0 represents maximum interaction of solute and solvent

within channels. By setting σ = 0, the dimensionless kinetic equations are reduced to

v̇ = − (1 + µ̄Popen) ∆p+ ∆π, (B.16)

ṅ = −Popen (ᾱ∆π + c̄µ̄∆p) , (B.17)

and

v̇ch = −µ̄Popen∆p. (B.18)

We note that in this situation of maximum interaction channel volume flux is insensitive to

the osmotic chemical potential, is driven entirely by the hydrostatic pressure difference ∆p,

and remains outward (negative) throughout a hypo-osmotic shock.

For all nonzero values of σ, volume flow is influenced by the difference in osmotic pres-

sure ∆π, with increasing sensitivity as σ increases. Since ∆π is much larger than ∆p during
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the initial stages of downshock, transport of solvent and solute occurs is opposing direc-

tions. Water is drawn into the cell through channels (and the membrane) while solute is

simultaneously jettisoned out of the cell. If σ is “large enough” (& 0.25), v̇ch is positive

(inward) causing rapid increases in hydrostatic pressure and membrane tension. This effect

is strongest with MscL due to its large pore size and greater water permeability µch.

Figure B.3: Effect of the reflection coefficient on transport. When σ = 0, channel volume

flux is solely dependent on the hydrostatic pressure difference ∆P . When σ 6= 0, channel

volume flux depends on both ∆P and ∆Π. In the latter case, channel volume flux is inward

and solute efflux is outward shortly after shock initiation.

Interestingly, solute flux (ṅ) can actually increase with σ even though more solute

molecules are “reflected” or turned away from passage through channels. The amount of

solute flux at a given moment in time is determined by many factors including the pressure

differences, opening probabilities, and permeability coefficients. Increasing the reflection co-

efficient keeps more solute inside the cell, but this in turn draws additional water into the cell

increasing membrane tension. In situations where some channels have not gated (Popen < 1),

solute flux can increase. If all channels are already in their opened state, solute flux will

decrease. However, solute flux is dominated by the first term in the equation (ᾱPopen∆Π),

which is independent of σ. In other words, the amount of solute molecules “reflected” is over-

whelmed by the term containing ᾱ. Ultimately, while the value of the reflection coefficient

has a dramatic effect on volume flux, it has little bearing on solute flux ṅ.
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Figure B.4: Peak membrane tension plotted against varying MscL population and reflection

coefficient (these quantities are held constant for MscS and YbdG) in a wild type cell. Shock

magnitude is 0.5 M. Peak tension increases with the number of channels when σ & 0.25.

B.2 Active Transport

E. coli cells maintain a near constant turgor pressure when the solute concentration of

their surrounding environment does not undergo large fluctuations. Under these steady-

state conditions, net flows of volume and solute are negligible. However, when this balance

is disturbed and the internal pressure decreases (as in the case of hyper-osmotic shock),

cells must accumulate solute molecules that, in turn, draw water into the cytoplasm and

restore turgor. Therefore, cells must be equipped with some mechanism, such as a set of

transmembrane ion transporters or pumps, that drives solutes against the concentration

gradient into the cell. These “active” transporters require an energy source such as ATP to

move solutes in the “uphill” direction, and are typically selective in terms of the ions that

traverse them. While specific details of the mechanisms involved in active transport in E.

coli remain unclear, we can nonetheless create a simple model to describe and understand

their effects.

To incorporate active transport into the model we can add a constant flux term ṅact

to the equation for solute flux, which vanishes when the cell volume exceeds the reference

volume, Vref . The modified kinetic equation for solute is then

ṅ = −
(n
v
− cext

) Nc∑
i

ᾱi +
1

2

(n
v

+ cext

) Nc∑
i

(1− σi) v̇ch + 〈ṅact〉 , (B.19)
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Figure B.5: Comparison of active and passive transport models.

where the angle brackets 〈·〉 indicate that the enclosed term makes no contribution when

V > Vref. Here, we assume that the reference volume corresponds to a tension free state

in the membrane, and that at volumes less than Vref the cell wall alone absorbs the stress

induced by the steady-state turgor pressure. As the opening probabilities of each channel

type are very small but positive at zero tension, a small number of channels will always

remain open, slowly leaking solutes and water. We set the active rate of solute accumulation

to match this leak, such that ṅ = v̇ = 0. Therefore, under steady-state conditions the cell

will actively accumulate solutes.

To understand the effects of turgor pressure and active transport on an osmotically

shocked cell, we compare the response of the model with and without active transport (Fig.

B.5). The model cells use the parameters in Table 3.1, and undergo a 0.8 M instantaneous

downshock. Notably, in the response of the active model we observe a reduction in peak

volume and membrane tension, and a faster recovery back to the reference volume. Addi-

tionally, MS channels remain open for a shorter period of time as a consequence of reduced

membrane tension. This behavior can be attributed to the initial turgor, which reduces the

rise in pressure required to attain osmotic equilibrium, and reverse the direction of volume

change from swelling to shrinking. We also observe an overshoot in volume as the active

model recovers, with the volume decreasing beneath the reference volume. This is not seen in

the passive model, where the volume asymptotically approaches the initial reference volume

from above. The overshoot feature is a product of the initial turgor pressure. When volume

dips beneath the reference volume, the pump is switched on, and the cell slowly recovers

back to its reference volume on the order of minutes.
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The overshoot feature is the most interesting qualitative result here, as the minor differ-

ences seen in tension/opening probability are influenced more significantly by other aspects,

such as the transport parameters. Nonetheless, the modified model provides a more complete

picture of how bacterial cells adapt to osmotic shock.
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APPENDIX C

Parametric Study of Growth

Thickness

Estimates for the cell wall thickness range from 3 to 6 nm. Nonlinearities in the stress-defect

density relationship are stronger for thinner walls (Fig. C.1).

Defect shape

The shape of each strip of grown material is governed by the parameters cθ and cz in equation

(5.8). We can define these constants in terms of the standard deviations sθ and sz (i.e.,

cθ ≡ 1/2s2
θ and cz ≡ 1/2s2

z), which control width of the defect in the θ and z directions. The

width sz can be calculated from interstrand spacing estimates (1 to 4 nm). To appropriately

model a continuum approximation of a point-like defect such as a dislocation, we assume

that the value of sθ is small such that the Gaussian blob falls off rapidly in the θ direction.

Smaller values of sθ lead to higher axial stress, while the hoop stress does not exhibit any

significant change (Fig. C.2).
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Figure C.1: Effects of defect interactions and cell wall thickness on the axial (left) and

circumferential (right) Cauchy stress (σzz and σθθ). As the cell wall thickness decreases, the

stress-defect density relationship becomes increasingly nonlinear.
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Figure C.2: Influence of defect shape on the cell wall stress. The parameter sθ controls

how abruptly the endpoint of a strip of new material falls off in the hoop direction, and the

effects of varying sθ on the axial (left) and circumferential (right) stresses are shown above.

A smaller standard deviation (more rapid fall off) in the θ direction of the two-dimensional

Gaussian causes larger tensile stresses in the region surrounding the strip ends. The value

of sθ has a negligible effect on the circumferential stress, which is controlled by sz.
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