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ing the unequal-variance, two-sample t-test instead of the
equal variance alternative, but in any more complex design
than this, the assumption of equal variance is fundamen-
tal. For example, in the next simplest case of comparing
more than two groups by one-way ANaYA, power is poor
and size is not maintained if variance inhomogeneities oc-
cur. The problem is even more intractable for two-way and
more complex designs.

When confronted with data that fail to conform to one
or more of the standard assumptions, we may choose to
address problems individually or to take a more global
approach. For example, statistical weighting may be used
to address the problem of nonconstant variance, but will
fail to correct any skewness in the data. A transformation-
based approach, on the other hand, can often correct
multiple problems. We will compare the performance
of a transformation intended to correct several problems
simultaneously with those of transformations aiming to
optimize a single criterion.

ABSTRA(~T
Motivation and Results: Durbin et al. (2002), Huber et
al. (2002) and Munson (2001) independently introduced
a family of transformations (the generalized-log family)
which stabilizes the variance of microarray data up to
the first order. We introduce a method for estimating the
transformation parameter in tandem with a linear model
based on the procedure outlined in Box and Cox (1964).
We also discuss means of finding transformations within
the generalized-log family which are optimal under other
criteria, such as minimum residual skewness and minimum
mean-variance dependency.
Availability: Rand Matlab code and test data are available
from the authors on request.
Contact: bpdurbin@ucdavis.edu

1.1 The generalized-log transformation
We will focus our attention on the family of generalized-
log transfonnations, motivated by the two-component
error model of Rocke and Durbin (2001). In this work it
was demonstrated that the relationship between the true
expression for an observation from a given gene and the
measured expression can be modeled as

y=a+.ue"(17)+£ (1)

where y is the measured expression for a single observa-
tion (either control or treatment in the case of a two-color
array) for a given gene on a rnicroarray. a is the mean ex-
pression background for the given array and sample. .u is
the true expression. and 1J and E are normally distributed
error terms. with variances 0"; and 0";. respectively. This
model also works well for Affymetrix GeneChip arrays
either applied to the PM-MM data or to individual probes.

Observations from the two-component model (I) have
variance

1 INTRODUCTION
Gene-expression microarrays, with their ability to mea-
sure the expression of thousands of genes simultaneously,
have the potential to revolutionize our understanding of
the connection between an organism's genetic makeup
and its phenotype. However, data from microarrays have
proven surprisingly resistant to analysis by standard
statistical techniques, which has somewhat slowed the
rate at which new information has been gleaned from
this technology. This is caused in part by the failure
of microarray data to conform to the key assumptions
on which many standard statistical techniques, such as
linear regression and analysis of variance, are based.
These techniques often require that one assume that data
come from a normal distribution (or at least a symmetric
distribution), that the data have a simple mean structure,
and that the data have a constant error variance which
does not depend on the mean of the data.

Violation of these assumptions can cause severe prob-
lems in statistical analysis of expression data. In the sim-
plest setting, in which a single gene is compared in exactly
two groups, much of the problem can be dealt with us-

Var(y) = 1L2S~ + 0";. (2).To whom correspondence should be addressed.
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parameter via maximum likelihood, as was done in Box
and Cox (1964). The linear model structure will allow
us to account for the different sources of variation in the
data, such as variation between arrays, between replicated
spots on the same array, and between colors on the same
array, in our estimation of the transformation parame-
ter. Furthermore, the linear model, fit to appropriately
transformed data, can itself be a useful analysis tool.
An example of such an analysis would be the ANaVA
normalization method for microarray data developed in
Kerr et ai. (2000).

where S~ = e«(1;)(e«(12) -1). In Durbin et al. (2002),
Huber et al. (2002) and Munson (2001) it was shown that
for a random variable z satisfying V(z) = a2 + b2JL2,
with E(y) = JL, there is a transformation that stabilizes
the variance to the first order. There are several equivalent
ways of writing this transformation, but we will use

I "r"j r-;;-:-:
I ?~'lll h),(z) = In(z +" z2 + A),

where A = a2jb2 = (1;jS~ and z = y -a or y -a.
We shall refer to this transfonnation as the generalized-
log transfonnation, as in Munson (2001), since the log
transfonnation is a special case of this family for A = O.

(We will not specifically address background subtrac-
tion in this work; however, for proper application of the
transfonnation the data must first have been adjusted so
that E(z) = .u, that is, the expectation of the adjusted data
must be equal to the true expression level. In the cDNA
array example of Section 2.1 a global expression back-
ground was subtracted from each channel prior to appli-
cation of the transfonnation, .global' meaning that all ob-
servations from the same channel and chip are assumed
to share the same value of a following image processing.
Background subtraction, in principle, can be accomplished
as part of the transfonnation, with the caveat that the more
parameters one includes in the transfonnation, the more
difficult the estimation becomes, due to the increase in the
dimension of the search space. In light of this, more so-
phisticated nonnalization methods, such as print-tip nor-
malization, are best applied prior to data transfonnation.)

The generalized log transfonnation converges to In(z) +
In(2) for large z (equivalent to a log transfonnation, as
the additive constant does not affect the strength of the
transfonnation) , and is approximately linear at 0 (Durbin
et at., 2002). The inverse transfonnation is

2 MAXIMUM-LIKELIHOOD ESTIMATION
The maximum-likelihood estimation of the linear model
and uansformation parameters can be conducted essen-
tially as in Box and Cox (1964), with the key distinction
being that we shall search for an optimal uansformation
within the family of generalized log uansformations, as
in (1.1), rather than among the power uansformations. We
shall omit some of the details of the derivation; the inter-
ested reader may refer to Box and Cox (1964).

The procedure outlined in Box and Cox (1964) is as
follows: Suppose that there exists some A such that the
uansformed observations {hi.AI have independent normal
distributions with linear mean structure and constant
variance 0-2. That is, suppose there exists lambda such that

hA = (hl.A, ..., hn,A) T = X.B + e (3)

where n is the number of observations in the data set, X is
the design matrix from the linear model, .B is a fixed vector
of unknown linear model parameters. and e '"'"' N(O. 0-2l).

The likelihood of the unuansformed observations is
therefore a normal likelihood in terms of the uansformed
observations times the Jacobian of the uansformation
(which allows for the change in scale of the data due to
uansformation). For the generalized-log uansformation,
the Jacobian ish}:l(U) = (e" -Ae-")/2.

Both hA and its inverse are monotonic functions, defined
for all values of z and u, with derivatives of all orders.

When transforming data from two-color arrays or from
complex multi-array experiments, the closed form expres-
sion for the transformation parameter shown in (1.1) is
less useful than in the single color, single array case. Even
data from different colors on the same two-color array
might have different estimated values for the model pa-
rameters a; and a;, which makes it unclear exactly how
we should obtain the transformation parameter. Pooling of
data from different sources in order to estimate parameters
could work well for some designs, but is not very flexible.
An estimation method which specifically accounts for the
structure of the data would be useful in these situations.

One such approach is to fit a linear model to the
data while simultaneously estimating the transformation

1361

= tI 1//;f+1. (5)
;=1

Box and Cox (1964) then suggest that if one should
divide each transfonned observation by the nth root
of the Jacobian, the likelihood of the original data in
terms of the Jacobian-corrected transfonned data will be,
approximately, a norrnallikelihood, rather than a nonnal
likelihood times the Jacobian. (The 'approximate' nature
of the likelihood comes from the fact that we are ignoring
the variability of the nth root of the Jacobian, which will
be quite minimal given the size of most micro array data

sets).
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Therefore, we will model the Jacobian-corrected trans-
formed ~Jbservations w). as

outliers, which are disregarded by the robust estimation
procedure, and relies heavily on the assumption that
differentially expressed genes constitute only a small
fraction of the data.w'- = xp + Eo (6)

( n ) 1/n Wi,'- = hi,'-' n ~
,=1

and

hi,). = In ( Zi + f;r+-.) .

If we, for the moment, regard the transformation pa-
rameter as fixed (but still unknown), it is a relatively sim-
ple matter to obtain closed-form maximum-likelihood es-
timates of the linear model parameters f3 and 0-2 in terms
of the unknown A. These formulas may then be plugged
into the log likelihood to obtain the partially-maximized
log likelihood

Imax(A) = -~ Inf12(A)
2
n

= --SSE(z. A)f n,
2

2.1 Examples
We illustrate this estimation method using two example
data sets, one from a two-color cDNA-array experiment
and one from an experiment conducted using Affymetrix
oligonucleotide arrays. The first example comes from
a toxicology experiment by Bartosiewicz et al. (2000)
in which male Swiss Webster mice were injected with
a toxin. We shall focus on a single slide from this
experiment. For this array. the treatment mouse was
injected with 0.15 mg/kg of ,B-napthoflavone dissolved in
10 mI/kg of com oil, and the control mouse was injected
with 10 mI/kg of com oil. mRNA from the livers of
these mice was reverse transcribed and fluor labelled, with
the treatment sample labelled with Cy5 and the control
sample labelled with Cy3. The samples were hybridized to
a spotted cDNA array on which each of the 138 genes was
replicated between six and 14 times, resulting in a total of
1008 spots.

For the mouse data, we will model the differences of the
transformed control and treatment observations rather than
the transformed observations themselves. The difference
of the transformed observations from replicate j of gene
i, ~hAij, can be modeled as

L\hAij = l.Li + Eij. (8)

where l.Li is a gene effect and Eij is a normally distributed
error term. Notice that (8) is a one-way ANaVA model.
(Also note that in the case of differences, the sample
size for the linear model will not be the total number of
observations, but the total number of differences).

Figure 1 shows the partially maximized log likelihood
for the mouse data as a function of the transformation
parameter, A. The likelihood is maximized at A = 1.13 x
109. Note that the median value of z is 4.6 x lQ4, which is

on the order of If, which is 3.7 x 104, suggesting that the
squared median of the data might be a plausible starting
value for of A for Newton's method or other algorithms.

An asymptotic 95% confidence interval for the MLE. ).,
consists of those values of A for which

n

SSE(Z, A) = L (Wi -Wi)2, (7)
i=1

and Wi is the predicted value for the ith observation under
the linear model fit to wA. The partially-maximized log
likelihood depends on the data only through SSE(z, A),
and is a monotone decreasing function of this quantity,
so we may find i, the MLE of A, simply by minimizing
SSE(z, A) (Box and Cox. 1964). A minimum value may
be found by plotting the error sum of squares as a
function of A, or via numerical optimization methods,
such as Newton's method (see Appendix for details).
Estimates of fJ and (12 on the scale of the transformed
data without the Jacobian correction may be obtained
by fitting the linear model again using the MLE, i, as
the transformation parameter or by multiplying .8 by
r/n(z. i) and multiplying 0-2 by p/n(z, i).

Referring to a procedure for estimation of a transfor-
mation as a 'maximum-likelihood' method might cause
some confusion with readers familiar with the maximum-
likelihood method presented in Huber et at. (2002). One
should bear in mind that 'maximum-likelihood' refers
to a very large class of estimation methods, which are
distinguished from one another primarily by the model
for which parameters are estimated. The method pre-
sented above models the residuals from the linear model
following transformation, whereas the method presented
in Huber et at. (2002) models the unexpressed genes.
Their method treats the differentially expressed genes as

A 1 2
lmax(A) -lmax(A) < 2Xl..O5'

where Xr..O5 is the upper 5% quantile of a xr distribution
(Box and Cox (1964)). This yields a confidence interval
for A of (8.67 x 108, 1.47 x 109).

Figure 2 shows a quantile-quantile plot of the residuals
from the linear model (8) fit to the transformed data versus
a standard normal distribution. The residuals appear to
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Fig. 1. Log likelihood by transformation parameter, mouse data.

Fig. 2. QQ plot of residuals versus standard normal, maximum-likelihood transformation, mouse data.
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Fig. 3. QQ plot of residuals versus standard normal. maximum-likelihood transformation. autism data.

For the autism data, we model the transformed perfect
match minus mismatch observation from gene j on array
i, hAjj, as

come from a distribution with heavier tails than a normal
distribution. Although the plot appears to exhibit some
skewness, this is entirely due to the four observations
in the lower left-hand comer. These observations appear
to be outliers resulting from phenomena such as dust
on the slide, since they all occur in genes which are
expressed near background in the control data, and feature
a single observation which differs so hugely from the other
replicates that it is unlikely to result from actual gene
expression. (These observations will be excluded from the
analysis of Section 3.) Examination of residuals from the
linear model appears to facilitate identification of outlying
observations, since these outliers were much more obvious
in the residuals than they would have been in the raw data.

When the maximum-likelihood estimation is conducted
again after removal of the 4 outliers, 5:. = 9.67 x 108, with
a 95% confidence interval of (7.67 x 108, 1.22 x 109).

The second example comes from an experiment using
four Affymetrix HG U95 arrays, which is described in
Geller et at. (2003). In this experiment, a lymphoblastoid
cell line from a single autistic child was grown up in four
separate flasks. RNA extraction, cDNA synthesis, and in-
vitro labelling were conducted separately on each of the
four samples, and each of the samples was hybridized to a

separate array.

h).ij=.ui+lIj+Eij, (9)

where .ui is a fixed array effect, 11 j is a fixed gene effect,
and Eij is a normally distributed error term. Notice that
our model is a two-factor ANaVA model without an
interaction term. (We cannot fit the interaction term due to
the absence of replicated genes, but we would not expect
a gene-array interaction effect anyway.)

For the autism data, the likelihood is maximized at ).. =
3870, and a 95% confidence interval for.i: is (3750, 4000).
For these data .i: lies in between the squared median of the
data, which is 900, and the squared mean, which is 32400.
Figure 3 shows a quantile-quantile plot of the residuals
from the linear model (9). The residuals, again, appear to
come from a symmetric distribution with tails heavier than
a normal distribution.

3 OTHER METHODS OF ESTIMATING THE
TRANSFORMATION PARAMETER

Maximum-likelihood estimation of the transformation
parameter in the manner described above in essence
simultaneously optimizes constancy of variance, the fit of
the transformed residuals to a normal distribution, and the

--
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interval for the t-minimizing transformation consists of
those values of). for which the t-statistic is not significant
at the 5% level. For 136 degrees of freedom (since we
have 138 genes and lose 2 degrees of freedom from fitting
the regression parameters) the cutoff for significance of
the t-statistic is :%:1.9776, which yields the confidence
interval (2.02 x 109,8.09 X 109). This confidence interval
excludes the maximum-likelihood transformation, where
..i. = 9.67 x 108.

However, examination of Figure 4, showing the replicate
mean and standard deviation for the maximum-likelihood
transformation and the t-minimizing transformation (in
the lower left-hand and upper-right-hand panels, respec-
tively) indicates that both of these transformations provide
reasonable variance stabilization. For comparison, the
lower-right-hand panel shows log ratios of the same data,
which shows dramatic mean-variance dependency.

It is perhaps surprising that the maximum-likelihood
transformation provides good variance-stabilization and
symmetrization in light of the fact that the normal
likelihood is almost certainly the 'wrong' likelihood
for the transformed data, given the apparent heavy-
tailed distribution of the transformed residuals. However,
the data appear (anecdotally speaking) to be somewhat
insensitive to which member of the generalized-log family
is used.

Robust statistical methods could certainly be used to
address the heavy-tailedness of the residual distribution.
However, robust methodologies tend to be much more
computation ally expensive and hence slower to run than
the methods presented here. Given that the normal-theory
approach gives reasonable results, the additional effort
of using robust methods may not be worthwhile for the
researcher interested in obtaining a quick answer.

4 CONCLUSIONS
The generalized-log transformation of Durbin el al.
(2002), Huber el al. (2002) and Munson (2001) with
parameter A = a2 / b2 stabilizes the variance of data
where Var(z) = a2 + b2E2(Z). Maximum-likelihood
estimation in the manner of Box and Cox (1964) can
be used to estimate a transformation parameter for data
where observations have different values of a and b.
This procedure estimates the transformation parameter
while simultaneously fitting a linear model to the data,
allowing for easy and quick estimation of the transforma-
tion parameter (by minimizing the error sum of squares
of the linear model fit to the transformed data) while
accounting for the experimental structure of the data.
Transformations minimizing residual skewness, mean-
variance dependency, and other criteria may be found
by minimizing the appropriate statistic. The maximum
likelihood estimate appears to perform well compared to

fit to the linear model. In some applications, some of these
criteria may be more important than others. For example,
for many traditional statistical techniques data that are
symmetric are almost as good as data that are normally
distributed, and by trying to force the transformed data to
fit all of the moments of a normal distribution we may
inadvertently compromise those characteristics in which
we are most interested. In such cases, we may search
within the family of generalized-log transformations for a
transformation optimizing the quantity of interest, simply
by minimizing the appropriate statistic.

For example, to find a transformation minimizing the
skewness of residuals from the linear model, we would
look for a transformation for which the skewness coeffi-
cient of the residuals is equal to O. To find a transforma-
tion for which the fixed effects in an ANaVA model are
the most linear, we would look for a transformation mini-
mizing the F -statistic for the interaction term in the model.
(Notice that the two estimation procedures just mentioned
both incorporate the linear model structure used in the
maximum-likelihood estimation.) To find a transformation
minimizing the dependency of the replicate mean on the
replicate variance, we would regress the replicate standard
deviation of the transformed data on the replicate mean
and look for the transformation minimizing the absolute
value of the t-statistic for the significance of the slope
parameter. These other optimal transformations also pro-
vide a means of assessing the quality of the maximum-
likelihood estimate of the transformation parameter. If the
MLE differs too greatly from the optimal transformation
parameter under another criterion, this might be cause for

concern.
We illustrate the skewness-minimizing transformation

and the transformation minimizing dependt~ncy of the
replicate mean and variance using the mou!;e data. For
these data, the skewness coefficient is non-mlonotonic in
the transformation parameter, so there are two values
of A for which the skewness coefficient is equal to 0,
which are 2.31 x 107 and 2.27 x loB. A asymptotic
95% confidence interval for the skewness-minimizing
transformation consists of those values of A for which the
absolute skewness coefficient is not signifiCaJlt at the 5%
level. For a sample of size 1004 the absolulte skewness
is not statistically significant if it is less tItan 0.1515,
which yields the confidence interval (2.71 x 106,2.00 x
109). This interval includes the maximuml likelihood
transformation, (A = 9.67 x 108 following removal of
the outliers), implying the the MLE does provi,de sufficient

symmetry.
A transformation minimizing mean-variance depen-

dency may be found by minimizing the t-statistic of
the regression of the replicate standard deviation on the
replicate mean. For the mouse data, the t-statistic is equal
to 0 at A = 4.03 x 109. An asymptotic 95Ok confidence
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I-Minimizing Transformation
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Fig. 4. Replicate mean and standard deviation of differences of transformed observations. three different transformations.

transformations specifically minimizing residual skew-
ness and mean-variance dependency, especially in light of
the fact that the normal likelihood is a first approximation
to the 'true' distribution of the transformed data and was
chosen primarily for computational convenience.
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APPENDIX: NUMERICAL OPTIMIZATION VIA
NEWTON'S METHOD
Newton's method provides a means of finding a root
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numerical minimization of the error sum of squares by
finding a root of the first derivative of SSE(A). Plots of the
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indeed constitute a global maximum. Denote ASSE(A) by

SSE'(A) and ~SSE(A) by SSE"(A). A new estimate of A.
A(n+I). may be obtained from the previous estimate. A(n)
using

The second derivative of the error sum of squares is

n
II ~ I A' )2SSE ().) = 2 L..,(WJ.; -WJ.;

;=1
n " A"

+ 2L(WJ.; -WJ.;)(WJ.; -WJ.;)'
;=1

where

SSE'(A(n»A(n+l) = A(n) -SSE"(A(n». (10)

Convergence is achieved when ISSE'(A)I is less than the
predetennined application tolerance.

For the generalized log transformation with parameter
A,

n
I """"' I A'

SSE (J..) = 2 L.,(W),i -W)'i)(W)'i -W),i)'

i=l
(II)

II a2
WAj = 3>:2WAj

= _~J-I/n(A)(Zj + M+A)-t {zr + A}-i

_~J-t/n(A)(Zj + M+A)-2{zr + A}-twhere
A T A
W).j = Xj fJ(A),

xi is the ith row of the design matrix,

and

I a
WAj = "iji"WAj

= [2(zj + j;r+.}j;r+.]-l J-1/n(A)

+In(Zj + r;r:;:-,:)!!.-J-l/n(A),v Zj -r II. aA

where

andand

~/I a2
W>.i = "ijI2W>.i

=xi (XTX)-IXT W~,=xT (XTX)-IXT W~,
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