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(March 18, 2011) 

Abstract 
Bus systems are naturally unstable. Without control, the slightest disturbance to bus motion can 
cause buses to bunch, reducing schedule reliability. Holding strategies can eliminate this 
instability. However, the conventional schedule-based holding method requires too much slack 
time, which slows buses. This delays on-board passengers and increases operating costs. This 
paper studies a family of dynamic holding strategies that use the current state of all buses, as well 
as a virtual schedule. The virtual schedule is introduced whether the system is run with a 
published schedule or not. We found that with this control method, which we term general control 
method, buses can both closely adhere to schedule and maintain regular headways without too 
much slack. Thus the general control idea is applicable to bus lines with both long and short 
headways. Although the optimal set of control parameters can be found numerically, a one-
parameter version of the control method can be optimized in closed form. This simple method 
was shown to be near-optimal. To put it in practice, one only needs the arrival times of the current 
bus and the preceding bus relative to the virtual schedule. This simple method was found to 
outperform alternative control methods (i.e., require less slack for the same headway variance). 
While the paper mostly focuses on recurrent small disturbances under quasi-deterministic demand, 
it also shows that the proposed control method can deal with large disturbances. 

Keywords: bus bunching, bus schedule reliability, headway variance, commercial speed, dynamic 
holding, control method. 

1 Introduction 
Bus schedule reliability is an essential attribute of a bus system, and is consistently ranked as 

one of the major concerns by passengers (Paine et al., 1967; Golob et al., 1972; Wallin et al., 
1974). Unfortunately, bus systems are naturally unstable, and buses tend to fall off schedule 
without intervention. This instability is due to the fact that the loading time of a bus at a station1 is 
a non-decreasing function of the headway between buses. As first explained by Newell & Potts 
(1964), early buses encounter and serve fewer passengers, and tend to catch up with the buses in 
front of them, while late buses tend to fall further behind. The tendencies result in the so-called 

                                                      
1 To avoid confusion, we use bus stations to mean locations where buses stop to pick up or drop off 
passengers. Stop is only used as a verb. 
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“bus bunching” phenomenon, which annuls the schedule and increases the average waiting time 
of passengers.  

Bus holding strategies may eliminate this problem. They are characterized by embedding 
slack time in the schedule, and holding buses at each control station for a period of time before 
their scheduled departure. A bus is generally held longer if it is ahead of schedule and shorter (or 
not even held) if it is behind schedule, so that the instability can be neutralized. The most 
common form of holding is the “schedule-based” method, in which drivers are instructed never to 
depart a control station ahead of a pre-published schedule.  

Among the literature that analytically addresses the bus bunching problem with holding 
methods, most of the studies (Osuna and Newell, 1972; Newell, 1974; Barnett, 1974; Hickman, 
2001; Eberlein et al, 2001; Zhao et al, 2006) try to minimize passenger time (either waiting time 
at the station only or both waiting at the station and riding time on board). Problems based on this 
objective are difficult, and most of these studies only discuss problems with one bus line, a single 
control station, and either one or two buses.2 Some use “rolling horizon” heuristics. Many more 
studies resort to simulations (Koffman, 1978; Turnquist & Bowman, 1980; Abkowitz et al., 1986; 
Vandebona & Richardson, 1986; Senevirante, 1990; Adamski & Turnau, 1998) due to the 
difficult nature of the problem. 

There is also a literature that uses control theory. Daganzo (2009b) approached the bus 
bunching problem from a different angle: instead of minimizing passenger waiting time, the paper 
proposed a headway-based dynamic holding strategy to reduce the amount of slack time in the 
schedule, subject to a headway variability constraint. The idea was to increase the commercial 
speed of buses3 while compensating for the effects of small disturbances (e.g., due to traffic). 
With this new objective, the paper analytically addressed a much broader range of problems: 
systems with many buses, many control stations, and stochastic cruising time. The article 
proposed a general form for this family of dynamic holding strategies by defining a convolution 
kernel. However, it only studied in depth a particular case: a headway-based control in which 
buses were held based only on the expected demand and their forward headway (the headway 
between the current bus and the bus in front) for systems where a schedule is not published. It 
was shown that headways could be regularized with less slack than required by the schedule-
based control method. Unfortunately, as explained in the reference, the method cannot always 
compensate for large disturbances, such as those due to bus breakdown. 

To alleviate this problem, Daganzo and Pilachowski (2009, 2011) and Daganzo (2009a) 
proposed a cooperative control method in which bus speed was regulated based on the expected 
demand and the spacings between the current bus and the preceding and following buses. This 
method was able to compensate for large disturbances.4 More recently, a holding method in 

                                                      
2 The exception is Eberlein et al (2001) which addresses an arbitrary number of buses. But the study does 
not model the cruising time between two stations stochastically. 
3 The commercial speed of buses is the total distance traveled divided by total time taken (including 
scheduled holding). 
4 The Eulerian version of the method in Daganzo and Pilachowski (2009, 2011) is used here, in which 
holding times would be based on the forward and backward headways (the headway between the current 
bus and the bus behind). 
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which the holding times are based only on the backward headway, independent of demand, has 
been proposed (Bartholdi, 2011). The method is appealing because it is very simple and it has 
been tested successfully with an experiment for a case with low demand. It is claimed that this 
approach can also compensate for large disturbances (Bartholdi, 2011). 

The results about to be described build on Daganzo (2009b). A general control method is 
proposed that uses both the arrival times of all buses at stations and a virtual schedule. As such, 
the method includes as special cases all three existing models in the control genre. The virtual 
schedule is different from the published schedule, and is used even if there is no published 
schedule, as occurs in bus lines with short headways. Unlike the existing methods, we found that 
with this general control method, buses can not only maintain regular headways but also stick to 
their schedule. This is important because the control method then can be applied to bus lines with 
both long and short headways.  

The optimal parameters of the general control method, i.e. those which provide the maximum 
commercial speed for a given schedule/headway reliability level are also identified. It turned out 
that a one-parameter version of the method, which only requires information on the current bus 
and its leading bus, is near-optimal and outperforms other existing control alternatives. While this 
paper focuses on small disturbances to the bus operation, the case of large disturbances is also 
addressed.  

The paper is organized as follows. Section 2 presents the assumptions and the bus motion 
laws under the general control method. Section 3 proves that with this method buses are able to 
adhere to their schedule with only minor random deviations. Section 4 demonstrates that a simple 
version of the general control method is near-optimal, and that it outperforms the other existing 
methods. Sections 5 and 6 discuss how to handle large disturbances and highly stochastic demand. 
Finally Section 7 summarizes the main findings. 

2 Assumptions and Bus Motion Formulation  

2.1 Assumptions 
The same assumptions are made as in Daganzo (2009b): (a) the number of bus dispatches and 

stations in the system can be as high as desired; (b) buses are always dispatched on time with 
equal headways from the first station; (c) the bus capacity for passengers is unlimited; (d) buses 
do not pass each other; (e) vehicle running times between adjacent stations are modeled as 
independent random variables; (f) demand is stochastic but its contribution to the variance of the 
running time between stations is assumed to be negligible compared with the variance due to 
traffic (we call this quasi-deterministic demand); (g) the bus loading time is dominantly affected 
by boarding passengers; (h) only those passengers arriving during the inter-arrival time will board 
the bus, and holding is then applied after the boarding process; (i) there exists enough slack to 
ensure that the holding time never runs short; (j) buses stop at all stations and holding is also 
applied at all stations. 

Assumption (a) makes the analysis comparable to a situation with a finite number of buses 
but enough layover time, so that buses are always dispatched on time. Assumptions (b) and (c) 
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are reasonable if the operational design problem for a bus line (i.e., to choose proper dispatching 
headways, fleet size, and vehicle size for a given route) has already been addressed. Assumption 
(d) is reasonable if the system is well managed. But even if passing is allowed, we can renumber 
the buses and results will not change much. Assumption (f) is relaxed in Section 6 to account for 
highly stochastic demand. Assumption (g) is appropriate for bus systems, where boardings and 
alightings occur simultaneously and the alighting time per passenger is much smaller than the 
boarding time per passenger. Assumption (h) greatly simplifies the formulation with only 
negligible effect, since the loading and holding times are much shorter compared with the inter-
arrival time. Assumption (i) makes the formulation linear and the problem tractable, as will soon 
be shown. Assumption (j) can be relaxed (see Appendix A). 

2.2 Bus Motion with a Control Law 
Let us use n (n = 0, 1, 2, …) to denote the bus number (the buses dispatched first have 

smaller numbers) and s (s = 0, 1, 2 …) to denote the station number (increasing s in the traveling 
direction). The notation follows Daganzo (2009b):  

• tn,s is the scheduled arrival time of bus n at station s. The tn,s’s form the virtual schedule 
for buses; they are not the published schedule to passengers. A published schedule can be 
obtained by shifting the virtual schedule earlier in time to ensure that buses never depart 
ahead of the published schedule. 

• an,s is the actual arrival time of bus n at station s. 
• εn,s = an,s – tn,s is the deviation from scheduled arrival time of bus n at station s. 
• hn,s = an,s – an-1,s is the time headway between bus n and its leading bus at station s. 
• H is the scheduled headway. 
• cs is the average cruising time from station s to s+1, which includes the time to accelerate 

and decelerate, but does not include the dwell time to serve passengers. 
• υn,s+1 is the random noise in the cruising time of bus n between station s to s+1, whose 

mean is zero and variance is σn,s+1
2. 

• Dn,s is the holding time applied to bus n at station s.5 
• ds is the amount of slack time in the virtual schedule at station s (i.e., the holding time if 

the bus arrives when expected). 
• βs is a dimensionless measure for the demand rate at station s, where the demand rate (in 

passengers/hour) is normalized by the passenger boarding rate (also in passengers/hour). 
This implies that the passenger loading time at station s increases by βs if headway 
increases by one unit of time. Typical values of βs range from 10-2 to 10-1. 

With the above notation, the scheduled arrival times can be formulated as: 

,,1, ssssnsn cdHtt +++=+ β  (1a)

,,1, Htt snsn += −  (1b)

                                                      
5 In reality, we recommend holding buses en-route by slowing them down shortly after departing the station 
and by providing drivers with adequate real-time information. This unnerves passengers less, and releases 
station capacity in those cases where the station is also used by other bus lines as well. 
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with sssn dHt ++ β,  being the scheduled departure times. The actual arrival times obey: 

.1,,,,1, ++ ++++= snssnsnssnsn cDhaa υβ  (2)

By combining equations (1) and (2), it is possible to express the motion of buses in terms of εn,s: 

).()( ,1,,1,,1, ssnsnsnsnssnsn dD −++−+= +−+ υεεβεε  (3)

It is assumed that Dn,s is a linear function of the arrival times of all buses at station s, ai,s, or 
equivalently as a function of the deviations from the schedule, the εi,s.6 It is convenient to write 
this function as: 

,])1[( ,,1,, ∑ −− +−+−=
i sinisnssnsssn fdD εεβεβ

 (4a)

because plugging (4a) into (3), yields the simple relation: 

.1,,1, +−+ +=∑ sni sinisn f υεε
 (4b)

To define a specific control method one needs to specify the slack times ds at each station and 
all the control coefficients {…, f-1, f0, f1, …}. All three holding strategies in the control genre 
mentioned in the introduction are special cases of this general control method. For example, if we 
set f0 = 1 + βs, f1 = – βs and fi = 0 ∀i∉{0, 1}, we obtain the case with no control, because then Dn,s 
= ds = 0. In this case, the bus motion is governed by  

  .)1( 1,,1,1, +−+ +−+= snsnssnssn υεβεβε  (no control) (5)

The conventional schedule-based control method is the case with fi = 0 ∀i. In this case, the 
drivers are instructed not to depart the control station before the scheduled departure time. If there 
is enough slack time in the schedule as per assumption (i), the buses can always depart the control 
station on schedule, i.e., sssnsnsnssn dHtDha ++=++ ββ ,,,, . Therefore, it follows that 

  )],([ ,1,,, snsnssnssn dD −−+−= εεβε  (sch. control) (6a)

and 

  .1,1, ++ = snsn υε  (sch. control) (6b)

The method in Daganzo (2009b), which is based on the forward headway is: 

  ).)(( ,, HhdD snsssn −+−= βα  
(forward 
headway) (7a)

This can be expressed as a function of the deviation from the schedule as: 

  ).)(( ,1,, snsnsssn dD −−+−= εεβα  
(forward 
headway) (7b)

                                                      
6 The arrival times of the current bus and the buses in front, ai,s’s for i ≤ n, are readily available when bus n 
arrives at station s. But the arrival times of the buses behind, ai,s’s for i > n, can only be predicted. For now, 
we will assume that we have perfect information, i.e., we know all ai,s’s. We will demonstrate later that this 
assumption is acceptable. 
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This is the special case of (4a) with f0 = 1 – α, f1 = α, fi = 0 ∀i∉{0, 1}, where 0 < α < 1, and (4b) 
becomes: 

  .)1( 1,,1,1, +−+ ++−= snsnsnsn υαεεαε  
(forward 
headway) (7c) 

Similarly, the Eulerian version7 of the (Lagrangian) method in Daganzo and Pilachowski 
(2009, 2011) and Daganzo (2009a) , which is based on both the forward and backward headways, 
is obtained by setting f-1 = f1 = α, f0 = 1 – 2α, fi = 0 ∀i∉{-1, 0, 1}, where 0 < α < 1/2. This yields: 

  ( ) ( )( ),,,1, HhHhdD snssnssn −+−−+= + βαα  
(two-way 
headway) (8a) 

  ( ) ( ) ,2 ,1,,1, snssnssnssn dD −+ +++−+= εαβεαβαε
 

(two-way 
headway) (8b) 

and 

  ( ) .21 1,,1,,1,1 +−++ ++−+= snsnsnsnsn υαεεααεε  
(two-way 
headway) (8c) 

Finally, a demand-independent method based on the backward headway alone (Bartholdi, 
2011) is obtained by setting f-1 = α, f0 = 1 + βs – α, f1 = – βs and fi = 0 ∀i∉{-1, 0, 1}. This results 
in: 

  ( ),,1,1, HhHhD snsnsn −+== ++ ααα  
(backward 
headway) (9a)

  ( ) ,,1,,,1, snsnssnsnsn dHD ++ +−=−+= αεαεεεα  
(backward 
headway) (9b)

and 

  ( ) .1 1,,1,,11, +−++ +−−++= snsnssnssnsn υεβεαβαεε  
(backward 
headway) (9c)

3 Stability Analysis 
This section shows that with the general control method, buses are able to adhere to their 

schedule with bounded deviations. Of course, this means that they can also maintain regular 
headways. As in Daganzo (2009b), we first express the summation term in (4b) as the 
convolution (denoted with *) of two vectors: the bus deviations from the schedule  εs = [… εn-1,s  
εn,s  εn+1,s …]T and the kernel of the convolution (the set of control coefficients) f = [… f-1  f0  
f1 …]T. The nth element of the convolution is: [ ] ∑ −=

k skknns f ,* εεf . If we also define sυ = [… 

                                                      
7  The control method introduced in Daganzo and Pilachowski (2009, 2011) and Daganzo (2009a) is 
consistent with a Lagrangian specification of the buses system, while the proposed general control in this 
paper is based on an Eulerian specification. Daganzo (2006) demonstrates the close connection between 
Lagrangian and Eulerian coordinates in the context of automobile motion.  
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υn-1,s  υn,s  υn+1,s …]T as the vector of disturbances, then the vector form of (4b) is 

11 * ++ += sss υεfε .  

Now apply the convolution iteratively, so that the .ε  terms can be expressed as a function of 
the control coefficients f  and the noise terms .υ . This yields: 

...***)*(** 111111 =++=++=+= −+−+++ sssssssss εffυfυεfυfυεfυε . 

Next define j|f  to be the jth self-convolution of f (i.e., 1|| * −= jj fff , where  0|f = [… 0  1  

0 …]T). Since assumption (b) states that buses are always dispatched from the first station on time 
( 0ε =0 ), the above expression becomes: 

,* 101 js
s

j js −+=+ ∑= υfε  (10a)

which expands to 

[ ] .*
0 1,0 11, ∑ ∑∑ = −+−= −++ == s

j i jsinji
s

j njsjsn f υε υf  (10b)

It is now possible to see that the following is true. 

Lemma: Define ∑=
i ifF , then j

i ji Ff ≤∑ | . 

Proof:  

( ) ∑∑ ∑∑∑∑ ∑∑ −−−−−−− ==≤=
k jkk i kijki k kijki k kijki ji fFfffffff 1|1|1|1||

 ....... 2|
2 j

k jk FfF ≤≤≤≤ ∑ −  □ 

Proposition: If ܨ ൏ 1 and Msn ≤+1,υ , then 1, +snε  is bounded above by ( )/ 1M F−  

Proof:  

∑ ∑∑ ∑ = −+−= −+−+ ≤= s

j i jsinji
s

j i jsinjisn ff
0 1,|0 1,|1, υυε

 

) (since        10 | MfM n,s
s

j i ji ≤≤ +=∑ ∑ υ  

Lemma)per  (as               
0∑ =

≤ s

j
jFM  

).1 (since
11

1 1

<
−

→
−

−=
+

F
F

M
F

FM
s

 □ 

Corollary: If 1, +snε  is bounded, then Hh sn −+1,  is also bounded. 

Proof: 1,11,1,11,1, +−++−++ +≤−=− snsnsnsnsn Hh εεεε .  □ 
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Any method with F < 1 will exhibit bounded deviations from a schedule, εn,s+1, and from the 
average headway, hn,s+1 – H. Bounded deviations from a schedule are important for systems with 
long headways in which passenger arrivals are not uniform in time, but adjust to the schedule. 
Bowman and Turnquist (1981) showed that if passengers choose their arrival times to minimize 
their wait, then their average waiting time is proportional to the buses’ average deviations from 
their schedule; see also Daganzo (1997a).  

Unfortunately, none of the headway-based methods, (7), (8) and (9), satisfy the condition F < 
1. It will be shown in Section 4 that the variances of their deviations from a schedule are 
unbounded. 

4 Optimal control 
It is proposed to choose the control coefficients f that minimize the slack time ds required to 

avoid negative holding times while guaranteeing a maximum standard deviation from the 
schedule: i.e., a given level of schedule reliability. This proposal is reasonable because slack is 
inversely related to commercial speed. 

Let us define ),,(2 snfεσ  as the function that returns )var( ,snε  given f, n and s. From 

equation (10), we have ∑ ∑−

= −−= 1

0 ,|,
s

j i jsinjisn f υε . If we assume that the noise terms are 

independent and identically distributed (i.i.d.) with variance 2σ , then 

.)()var( 1

0
2

|
2

, ∑ ∑−

=
= s

j i jisn fσε  (11a)

Since all the terms in this summation are non-negative, an upper bound to the variance of sn,ε  is: 

,)()var(lim)(),,(
0

2
|

2
,

22 ∑ ∑∞

=
∞→
∞→

=≡≤
j i jisn

s
n

fsn σεσσ εε ff  (11b)

which will be our measure of schedule reliability. 

Theorem: If 1=∑ −=

n

ni if  and 0=if  for all other i then the right-hand side of equation (11b) is 

unbounded. 

Proof:  

Let us first show that if 1=∑i if  then 

.,1 jf
i ji ∀=∑  (12a)

If we assume that 1=∑i if , the following is true:
 

.0,1|1|1|1|| >∀==== ∑∑∑ ∑∑ ∑∑ −−−−−− jfffffff
i jik jkk i kijki k jkkii ji  
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The first equality is the definition of convolution; the second is obtained by interchanging the 
order of the summation; the third follows from the assumption; and the fourth by relabeling the 

dummy subscript index. When j = 1, ∑∑ ≡
i ii ji ff |  by definition. Therefore 1| =∑i jif  if j = 

1. Thus by induction, jf
i ji ∀=∑ ,1| . 

Using this result, it is possible to show that ∑ ∑∞

=0
2

| )(
j i jif  is unbounded. Notice that the 

index of the nonzero terms of the nth convolution must be in the interval [–nj, nj]. Thus 

( ) ( )∑∑ −=
= nj

nji jii ji ff 22 , which consists of 2nj + 1 terms. A lower bound to ( )∑ −=

nj

nji jif 2  is 

obtained by choosing the fi|j values that minimize ( )∑ −=

nj

nji jif 2 , subject to 1=∑ −=

nj

nji jif  as per 

(12a). The minimum arises when all the terms in these summations are equal, i.e., when 
njinjnjf ji ≤≤−∀+= ,)12(1 . 

( ) ( )
( )

.
12

1
12
12

2
22

+
=

+
+≥=∑∑ −= njnj

njff nj

nji jii ji  (12b)

Since the sum ∑∞

= +0 12
1

j nj
 diverges because it is a special case of the general harmonic series, 

so does (11b).  □ 

Note that all the headway-based control methods discussed in this paper, (7), (8) and (9),  
satisfy the conditions of this theorem. Therefore as mentioned in Section 3, σε2(f) = ∞ and the 
methods cannot maintain a schedule. 

We also define ),,(2 snh fσ  as the function that returns the headway variance )var( ,snh  

given f, n and s. Because the headway hn,s can be expressed as snsnsn Hh ,1,, −−+= εε , we have 

.)(1

0 ,|1|, ∑ ∑−

= −−−−+= s

j i jsinjijisn ffHh υ  (13a)

The headway variance again can be expressed as a sum of non-negative terms, and is thus 
bounded above by the limiting case: 

.)()var(lim)(),,(
0

2
|1|

2
,

22 ∑ ∑∞

= −
∞→
∞→

−=≡≤
j i jijisn

s
nhh ffhsn σσσ ff  (13b)

Methods (7) and (8) have been shown to have a bounded headway variance (Daganzo, 2009a, 
2009b; Daganzo and Pilachowski, 2009, 2011). Numerical calculations of (13b) show that the 
demand-independent method (9) only produces bounded headway variances for low to medium 
demand levels, if the control coefficient is carefully chosen (α ≈ 0.5). However, these high values 
of α result in long slack times, and therefore low commercial speeds.8  

                                                      
8 Refer to (9a) and note that the slack time is αH. 
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To obtain the slack times ds that avoid negative holding times, we combine equations (4a) and 
(10), so that the holding time is expressed as a function of the control coefficients and noise terms: 

[ ] .)1(

])1[(
1

0 ,1||1|

,,1,,

∑ ∑
∑

−

= −−+−

−−

−−+−=

−−+−=
s

j i jsinjijisjiss

k sknksnssnsssn

fffd

fdD

υββ

εεβεβ
 (14a)

Under the assumption of i.i.d. noise, the variance of the holding time Dn,s is the sum of many 
independent random variables, which as before is bounded above by the limiting case; i.e.:  

[ ] .)1()var(lim),()var(
0

2
1||1|

2
,

2
, ∑ ∑∞

= +−
∞→
∞→

−−+=≡≤
j i jijisjissn

s
nsDsn fffDD ββσβσ f  (14b)

According to the central limit theorem, Dn,s is approximately normal. Therefore, to ensure 
that the holding time is rarely negative, i.e., 0}0Pr{ , ≈<snD , we shall choose  

),,(3),( sDssd βσβ ff =  (14c)

so that the assumption is true 99.87% of the time. 

The optimization problem with J control stations is then the following mathematical program, 
where sε is the guaranteed standard deviation from the schedule.  

.)(s.t.

),(min)MP1(
1

εεσ

β

s

dJ

s ss

≤
∑ =

f

f
f

 

The functions in (MP1) are given by (11b), (14b) and (14c), and can be calculated numerically.

 4.1 Homogeneous Case 
Note that in (MP1) the dimensionless demand rates, βs, at different stations (from 1 to J) can 

be different; and so can the slacks, ds. But for demonstration purposes, it is assumed here that the 
demand rate is uniform (βs = β) along the bus line. Now the slack time will also be the same (d1 = 
d2 = ...) at all the stations. Thus the subscript s is now dropped, and (MP1) becomes: 

.)(s.t.

),(min)MP2(

εεσ

β

s

d

≤f

f
f

 

Appendix A shows that it is sometimes better to introduce holding times at control points spaced 
every few stations, and how to choose such spacing. 

Figure 1 shows the contour lines of σε(f) = sε and d(f, β) = d, when β = 0.1 for two methods 
that have two nonzero control coefficients. In Figure 1a, all fi = 0 except for f0 and f1, and in 
Figure 1b, only f0 and f-1 are nonzero. The interior of the dashed squares in the figures are the 

regions where the condition 1<=∑i ifF  holds. We see that in either case, both σε(f) and d(f, 

β) are quasi-convex functions of f within the stability region 1<∑i if . Clearly the optimal 

control coefficient values for any sε are at the point where its σε = sε contour is tangent to a d-



 

11 
 

contour, with the two gradients pointing against each other. Figure 1 shows the loci of optimal 
control coefficients for different σε/σ levels by means of dark diamonds. 

Since contours are convex, the solutions were obtained with a local gradient search. See 
Appendix B for the derivation of the gradients. This method works well with up to 7 nonzero 
control coefficients, which we have tested. Note from Figure 1 that the schedule-based control 
method (with fi = 0 ∀i) is actually among the optimal solutions. Indeed, it provides the best 
possible schedule reliability (always departing on time), though it requires much slack (d/σ = 3.4).  

 

(a)      (b) 
Figure 1. The iso-σε/σ and iso-d/σ contours and the optimal control f* with two coefficients, β = 0.1. (a) All fi = 0 
except for f0 and f1; (b) all fi = 0 except for f0 and f-1. Dotted lines within the square are the contours with equal 
σε/σ-value and solid lines are the contours with equal d/σ-value. The dashed square is the stability region. 

We also observe that the optimal control coefficients in both cases are very close to the f0 axis. 
This indicates that the optimal f1

* and f-1
* are very small, and that the performance of a control 

method with a single nonzero coefficient (f0 ≠ 0) may be comparable with that with two or more 
nonzero coefficients. Table 1 confirms this guess. It shows the optimal slack time (in units of σ) 
for β = 0.1. Different demand rates yield similar results.  

Table 1. Effect of the number of nonzero control coefficients on d*/σ when β = 0.1. 

d* / σ σε / σ = 1 σε / σ = 1.2 σε / σ = 1.5 σε / σ = 2 
fi = 0 ∀i, except for f0 3.314 1.989 1.657 1.527 
fi = 0 ∀i, except for f-1, f0, f1 3.314 1.978 1.637 1.463 
fi = 0 ∀i, except for f-2, f-1, f0, f1, f2 3.314 1.978 1.637 1.463 

Figure 2 shows the optimal control coefficients f-2
*, f-1

*, f0
*, f1

*, and f2
* for different β and σε /σ. 

Note that the optimal control coefficients are almost insensitive to changes in the dimensionless 
demand rate, β. This is good news, because in reality we may not know the demand rate very well. 
Also note that the values of f-2

*, f-1
*, f1

* and f2
* are roughly negligible (absolute values less than 
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0.05 in Figure 2).9 We did not show the other control coefficients because they are even smaller. 
So, the performance of a control method with only one nonzero coefficient (f0 ≠ 0), which we call 
the “simple control” method, should be near-optimal. 

  

Figure 2. Optimal values of f-2
*, f-1

*, f0
*, f1

*, and f2
* with different demand rate and schedule reliability. 

This result is nice for both implementation and theoretical analysis. From the implementation 
point of view, only the arrival times of the current bus and its leading bus, as well as the virtual 
schedule, are needed to decide the holding time of the current bus at a given station. From an 
analysis point of view, the simple control method is helpful because formulas simplify and (MP1) 
can be solved in closed form.  

The control law, bus motion, and metrics of interest are re-derived below, with f0 being the 

only decision variable. For the system to be stable: 10 <= fF . Note that )()( 0| iff j
ji δ= , 

where )(iδ  is the discrete unit impulse function. In this case, the reader can verify that equations 
(4a), (4b), (11b), (13b), (14b), and (14c) reduce to: 

],)1[( ,1,0, snssnsssn fdD −−−+−= εβεβ  (15a)

,1,,01, ++ += snsnsn f υεε  (15b)

( ),1)( 2
0

2
0

2 ff −= σσε  
(15c)

( ),12)( 2
0

2
0

2 ffh −= σσ
 

(15d)

                                                      
9 With perfect information on future bus arrival times, the elements f-2

* and  f-1
* are already close to zero. In 

reality, information will be imperfect and transit agencies will probably rely less on the future bus arrival 
times, leading to the use of even smaller values for f-2

* and f-1
*. 
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[ ]
,

1
)1(

),( 2
0

22
0

2

0
2

f
f

fD −
+−+

=
ββσβσ

 (15e)

and 

).,(3),( 00 βσβ ffd D=
 (15f)

Note that σε2(f0) > σ2 if the system is stable (f0
2 < 1).  

The optimal solution of (MP1) is obtained by minimizing (15e) such that (15c) is bounded 
above by sε

2, where sε > σ. Clearly, (15c) must be binding. Thus in the optimal solution the actual 
variance σε

2 matches the target sε
2. Therefore, the optimal coefficient for the simple control 

method is: 

,   where,)/(1* 2222
0 σσσσ εε >−=f  

(15g)

and 

.)/(113* 2
2

22 βσσβσ εε +⎟
⎠
⎞⎜

⎝
⎛ −−+=d

 
(15h)

4.2 Comparison with Other Control Methods 
Figure 3 plots (15h); it shows how the simple control method performs for different values of 

β. Note that it requires much less slack time than the schedule-based control method, which is 
represented by the five points with σε /σ = 1. Curves like those shown in Figure 3 cannot be 
constructed for the headway-based control methods discussed in this paper, because as we have 
demonstrated, σε2(f) = ∞ in these cases; i.e., because their deviations from schedule εn,s grow 
unbounded as s grows.  

 
Figure 3. Slack time d vs. schedule reliability σε for the simple control method. Schedule-based control method is 
represented by the points with σε /σ = 1. 
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To further compare the simple control method with the headway-based methods, Figure 4 
plots d /σ vs. the dimensionless headway standard deviations σh /σ that are allowed. Figure 4 
shows that the simple control method behaves better than the forward-headway-based method 
given by (7), the two-way-headway-based method given by (8), and the backward-headway-
based method given by (9). In all three cases, the reduction in slack time is considerable. Note 
that the headway-based methods cannot achieve σh /σ below 1.5 for any slack whatsoever, while 
the simple control method can. The improved results should not be surprising given that 
headway-based methods are just special cases of the general control method, and that the simple 
method is near-optimal. 

 
(a)      (b) 

 
(c) 

Figure 4. Slack time d vs. headway reliability σh to compare the simple control method with headway-based 
control methods relying on: (a) forward headway only; (b) forward and backward headways; and (c) backward 
headway only. 

4.3 Balancing Schedule Reliability and Slack Time 
Previously, we have chosen to minimize slack time (maximize commercial speed) subject to 

a schedule reliability constraint. This was appealing because it did not require knowledge of the 
passenger origin-destination table. Here we assume that the average user trip length l is known 
and show how to balance the two metrics by minimizing the sum of the average passenger 
waiting and riding times. We will focus on bus lines operating with short headways and compare 
the five control methods (schedule-based, forward-headway-based, backward-headway-based, 
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two-way-headway-based and the simple method). For bus lines with long headways, headway-
based control methods are not applicable, and the performance comparison of the schedule-based 
and the simple control method would favor the latter even more. 

It is assumed that: (i) the average bus cruising speed is vc (i.e., including acceleration and 
deceleration due to the stops); (ii) station spacing S is uniform; (iii) demand β is uniform; (iv) 
passengers value their waiting time γ (γ > 1) times as much as their riding time; and (v) control is 

applied at all stations. The passenger waiting time is: )2(2 2 HH hσ+ . The passenger riding 

time is SldHvl c )( ++ β . The weighted sum of the two can be expressed as the sum of a 

fixed component T0 and a variable component ΔT that depends on the control method: 

,20 SlHvlHT c βγ ++=  (16a)

.)2(2 SldHT h +=Δ σγ
 

(16b)

Note T0 includes waiting, line-haul riding and loading time under ideal conditions. It is the 
minimal possible travel time, and is achievable only if the bus system had no disturbances. The 
added term ΔT includes the extra time penalty passengers suffer due to non-uniform headways 
and the slack time. The parameters σh

2 and d can be calculated as a function of their control 
coefficients with equations (13b), (14b) and (14c) for the four considered methods. For each 
method the control coefficients that minimize (16b) are obtained. 

Figure 5 shows the ratio ΔT/T0 for the optimized control methods, as a function of the 
demand rates β and the dimensionless trip lengths l/S. The following parameter values were used: 
S = 400 meters, H = 5 minutes, vc = 20 km/hr, γ = 2 and σ = 10 seconds. For low demand rates 
(0.01 < β < 0.05), all the headway-based methods and the simple method perform much better 
than the schedule-based method. The ΔT/T0 ratios in this situation are 4-11% for the backward-
headway-based method, 5-10% for the forward-headway-based method and only 3-7% for the 
two-way-headway-based method and the simple method. As demand increases, the backward-
headway-based method becomes unstable and the simple method also outperforms the rest of 
methods with a maximal ΔT/T0 ratio of 15% at β = 0.2 and l/S = 25. Finally, note that the two-
way-headway-based method and the simple method are practically indistinguishable. Both 
methods achieve such similar results because the optimization procedure leads to values of α (the 
two-way-headway-based control coefficient) which are practically zero.  
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Figure 5.  Ratio of variable travel time over fixed travel time (ΔT/T0) for different control methods with various 
demand rates β and dimensionless trip lengths l/S. 

4.4 Sensitivity to the Control Coefficients 
Numerical calculation shows that control coefficients that do not differ much from the 

optimal control coefficients do not increase the required slack time much. Figure 6 shows the 
ratio of d/d* when β = 0.1 and the general control method has two nonzero coefficients. In this 
figure, d is the slack time of the non-optimal control coefficients at the indicated point and d* is 
the optimal slack time with the same σε value. We see that within a small neighborhood around 
the optimal coefficients f*, the ratio is close to 1 but large deviations can result in inefficiency. 

 

(a)      (b) 
Figure 6. Sensitivity to control coefficients when β = 0.1. (a) All fi = 0 except for f0 and f1; (b) all fi = 0 except for 
f0 and f-1. The contour lines show the ratio of the non-optimal slack time d* over the optimal slack time d with the 
same σε value. 
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5 Robustness to Large Disturbances 
When the system is subject to a large disturbance, such as a bus breakdown, the holding times 

as in (4a) may become negative and buses may bunch if nothing is done. It is proposed in this 
case to abandon the published schedule (if one is provided) and to focus on regularizing 
headways. To do this, the virtual schedule is reformulated so it can absorb the effect of the 
disturbance. This will enable buses to recover from the effect of the large disruption and still 
provide service with regular headways. 

To demonstrate the idea, we next show how to modify the virtual schedule in two situations: 
(i) when a bus is so far behind schedule that it cannot catch up by itself and (ii) when a bus in the 
system goes out of service unexpectedly. Other situations can be handled similarly. Only the 
simple control method is studied. 

5.1 Bus Far Behind Schedule 
According to assumption (i), the holding time Dn,s as in (15a) will almost always be non-

negative. But when there is an unexpected large disturbance, the assumption can be violated, and 
Dn,s as calculated from (15a) may turn out to be negative. A negative Dn,s means that the control, 
instead of holding the bus back, would want to push it forward. This is an indication that the bus 
cannot keep up with the schedule by itself. 

To remedy this situation, the current virtual schedule can be shifted forward in time by the 
smallest possible Δt, so that the critical bus n0 at s0 (and therefore all other buses) will be able to 
keep up with the new schedule by themselves. If we use primes to denote variables under the new 
virtual schedule, the changes are: 

,,,' ,, snttt snsn ∀Δ+=  (17a)

,,,'' ,,,, sntta snsnsnsn ∀Δ−=−= εε  (17b)

.,,)1(]'')1[(' 0,,1,0, sntfDfdD snsnssnsssn ∀Δ−+=−−+−= −εβεβ  (17c)

However, adding too much slack time decreases the commercial speed. Therefore, only the 
necessary amount of Δt would be added in order to keep the holding time of the critical bus 

00 ,' snD  close to but greater than zero, i.e.: 

),1/()( 0, 00
fDt sn −−=Δ  (17d)

where 
00 ,snD  is given by (15a). In reality, (17d) can be modified to include an extra buffer time 

δ > 0: δ+−−=Δ )1/()( 0, 00
fDt sn . Doing this ensures that the procedure does not have to be 

repeated too often, but delays all the buses a bit more. Note, this process ensures that the system 
returns to stability and that the process is repeatable, i.e., whenever we find the holding time Dn,s 
for a bus as in (15a) to be negative, the virtual schedule can be shifted forward again using the 
same method.  
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5.2 Bus Breakdown 
Now imagine there are N buses running on a loop and one bus suddenly breaks down. We 

will define a new virtual schedule so that the remaining N-1 buses can adhere to it and maintain 
regular headways, while keeping their commercial speed as fast as possible.  

As shown in Figure 7, we number the buses in a way that bus N breaks down, with bus 1 
behind it. The headway in the original schedule is H, and the original schedule satisfies tn+1,s = tn,s 
+ H (for ∀s, n = 1 to N-2). Under the new schedule, the loss of one bus results in a slightly larger 
equilibrium headway H’ ≈ NH/(N-1).10 Thus the new schedule satisfies t’n+1,s = t’n,s + H’ (for ∀s, 
n = 1 to N-2). We assume that the schedule of bus 1 is shifted backward by a time Δt to be found 
(Δt < 0 if shifted forward), i.e., t’1,s = t1,s – Δt. The schedules of the other buses are shifted to 
maintain the new headway H’:  

,1  to1,,
1
1)')(1(' ,,, −=∀

−
−+Δ−=−−+Δ−= NnsH

N
nttHHnttt snsnsn  (18a)

, , , ,
1' ' , 1 to 1.
1n s n s n s n s

na t t H s n N
N

ε ε −= − = + Δ − ∀ = −
−  (18b)

 

Figure 7. Illustration of virtual schedule change when bus N is suddenly out of service. 

We assume that at the time of bus breakdown, the current (or closest upstream) station of bus 
n is s(n). Under the new virtual schedule, the holding times for the given Δt would be: 
                                                      
10 This approximation is good if the cycle time of buses does not change much after the breakdown. The 
exact expression for the new headway is [ ] [ ]HNdcNdcHH β−−++= )1)(()(' , where c is the 
average cruising time between stations, d is the slack time per station, and β is the dimensionless demand 
rate, in the homogeneous case. 
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As in the last subsection, negative holding times indicate that the corresponding buses cannot 
keep up with the schedule. Thus Δt is found by solving: 

{ }
1.  to10)('   s.t.

)('minminarg(MP3)

)(,

)(,

−=∀≥Δ

Δ=Δ

NntD

tDt

nsn

nsnn
 

Note that each non-negativity constraint imposes an upper bound on Δt, and the solution for 
Δt is the minimum of these upper bounds. Thus the solution always exists. In reality, the transit 
agency may add a little buffer δ to Δt to ensure that the remaining N-1 buses do not experience 
frequent disturbances. The system can then be run with the simple control method, and the 
process in Section 5.1 can be used to account for other disturbances. 

6 Control Law with Real-Time Information on Demand 
So far, we have assumed that demand is quasi-deterministic and known, but this may not 

always be realistic. In this section, we discuss how to relax our assumption on quasi-deterministic 
demand by exploiting real-time information on passenger boarding.  

We assume that the arrival of passengers follows a Poisson process, with the average demand 
at station s, βs, known. We also assume that the actual number of passengers to board bus n at 
station s, Xn,s, is stochastic. Thus if the headway is given,  

,/]|[ ,,, bsnssnsn thhXE β=  (20a)

,/)|var( ,,, bsnssnsn thhX β=  (20b)

where tb is the average time needed to board a passenger. 

Although Xn,s is a random variable, we assume that its realization is observable when bus n 
finishes boarding at station s.11 We will show that with this real-time information, the control law 
can be slightly modified to achieve similar performance as in the quasi-deterministic case.  

                                                      
11 This is possible because the number of boarding passengers can be measured either by a person at the 
station, or by an automatic passenger counter system. 
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The scheduled arrival times satisfy the same equation (1a). Average demand βs is used for the 
schedule, since real demand is unknown yet. 

.,1, ssssnsn cdHtt +++=+ β  (21a)

The actual motion of buses is affected by the real demand: 

.1,,,,1, ++ ++++= snssnsnbsnsn cDXtaa υ  (21b)

Then, the deviations from schedule can be obtained by subtracting the previous two equations, 
(21a) from (21b):  

.)( 1,,,,1, ++ +−+−+= snssnssnbsnsn dDHXt υβεε  (22a)

Real-time demand information is used to decide the holding time. This is feasible because 
boarding occurs before holding, and the realization of Xn,s is known when holding time is 
calculated. We propose the following instead of (4a): 

( ), , , , .n s s b n s s n s i n i si
D d t X H fβ ε ε −= − − + −∑  (22b)

Now if we combine (22a) and (22b), the evolution equation for the deviations from schedule as 
shown in (23) is the same as equation (4b): 

, 1 , , 1.n s i n i s n si
fε ε υ+ − += +∑  

(23)

Thus with real-time demand information, the motion of buses under the new control law will 
not change. The stability analysis and the expression for σε and σh still hold. Only the expression 
for the slack time ds is slightly different, and is derived in Appendix C. The final result is that:

 
.3 2 Htd bsDs βσ +=  

(24)

where σD
2 is calculated using (14b). Figure 8 compares the slack time required vs. schedule 

reliability under various demand rates, with parameters H = 5 minutes, tb = 4 seconds, and σ = 10 
seconds. Slack times under quasi-deterministic and stochastic situations are calculated by (14c) 
and (24) respectively. Clearly, the slack time has to be increased, but only significantly if βstbH is 
large compared with σD

2. 

Therefore, the only changes needed to rigorously account for random demand fluctuations are 
to use (22b) instead of (4a) for the holding time, and (24) instead of (14c) for the slack time ds. 
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Figure 8. Comparison of slack time d vs. schedule reliability σε under various quasi-deterministic and stochastic 
demand rates for the simple control method. 

7 Conclusion 
In this paper, we studied a general control method, which is a family of dynamic holding 

strategies, to improve bus schedule reliability while providing the service with the fastest possible 
commercial speed. We have four main findings:  

• First, the general control method allows buses not only to maintain regular headways but also 
to adhere to their schedule. None of the existing adaptive methods can achieve this feat. Thus 
the proposed method is applicable to bus lines with both long and short headways. 

• Second, a simple control method, which is a one-parameter version of the general control 
method, is found to be near-optimal. It outperforms alternative control methods, but only 
requires information of the current bus and its leading bus.   

• Third, in case of large disturbances, buses can still maintain regular headways, by adapting 
the virtual schedule. This schedule adaptation method guarantees the robustness of the control 
method under any circumstance. 

• Finally, highly stochastic demand can be taken into account by slightly modifying the 
proposed general control method to incorporate real-time demand information. 
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Appendix A: A Method for Locating Control Stations  
We have assumed during the analysis that the proposed control method is applied at each 

station, but this is not always desirable. As shown in Daganzo (1997b, 2009), it is often beneficial 
to space out the control points more widely. In this spirit, it is assumed here that control stations 
are located every N stations, and N is treated as a decision variable. The demand rate β is assumed 
to be uniform throughout the bus line and such that β << 1.  

We will first transform the equations of bus motion from station to station into similar 
equations describing the bus motion from control station to control station, as if there were no 
intermediate stations. It will be shown that when β << 1, one may simply replace β and σ with β’ 

= Nβ and βσσ )1(' −+= NNN  to model the bus motion in this manner.  

The variance of the noise between control stations (σ’)2 is simply given by (11a) using the 
{fi|j} of the uncontrolled case and replacing s by N. Recall that for the uncontrolled situation, 

[ ]T
LL ,,1, ββ −+=f . It can be seen from the binomial formulas that 

.)()1(|
mjm

jm m
j

f −−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ββ

 (A1)

Thus,  



 

24 
 

[ ] .,0,,1,

,)()1(
2

),()1(,)1(, 221
|

T

T

jjj
j

jj

j
j

LL

LL

ββ

βββββ

−+≈

⎥
⎦

⎤
⎢
⎣

⎡
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−++= −−f

 
(A2)

The last approximation works because β << 1 and thus we can neglect terms of order 2β  and 
higher. Equation (A2) can now be inserted in (11a) to yield: 
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(A3)

It should also be clear from (A2) that when j = N and β << 1, the dimensionless demand between 
control stations is β’ = Nβ.  

By setting β’ = Nβ and βσσ )1(' −+= NNN , we can treat the bus motion as if there 

were only stations at the control stations and apply (MP2) with these new parameters. The 
number of stations between control stations, N, is however, a decision variable in the new version 
of (MP2). Consideration of (11b) and (14b) reveals that this new mathematical program is: 

.)1('
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This MP can be solved numerically as in Section 4.1, or analytically if we adopt the simple 
control method.  

Appendix B: Derivation of the Gradients for Greedy Search 
In developing Figure 1, we solved the following optimization problem, which is equivalent to 

(MP2): 

.)(s.t.

),(min(MP5)
22

2

εεσ

βσ

s

D

≤f

f
f  

From equations (11b) and (14b), we find the following expressions for σε
2(f) and σD

2(f, β), 
whose gradients we seek: 
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Using generating functions, one can find the following expression for fi|j: 
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Since 

,1|| −−=∂∂ jrirji jfff
 

(B2)

The partial derivatives of σε
2(f) and σD

2(f, β) with respect to fr can be expressed as: 
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and 
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Appendix C: Derivation of the Slack Time Formula for the Control Law 
with Real-Time Demand Information  

Recall that it is assumed that 0}0Pr{ , ≈<snD , i.e., 

.)var(3][ ,, snsn DDE =  (C1)

It is first shown that the expectation of Dn,s is ds: 
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 (C2)

Now, consider the law of total variance: 
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where 
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(C5)

Thus it follows that ,.,.])|[(var.,.)]|(var[)var( 2
,,, HtDEDED bsDsnXsnXsn βσυυ

υυ
+=+=  where 

σD
2 is calculated using (14b). Now according to (C1): 

.3 2 Htd bsDs βσ +=  
(C6)
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