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Abstract

Solar cells are among the most promising green technologies for energy production that exist.
While currently solar energy production makes up only around 2% of the total energy production
in the United States, in order to maintain a livable planet, it will become a necessity for green
technologies like solar energy to displace fossil fuels in the coming years. Because our society
places great value in economic well-being as well, it is hard to sell the idea of solar cells over their
competitors unless the effective dollar per watt is comparable or better. To this end, it is imperative
to improve on this figure of merit in any way possible, to help the solar cell industry replace fossil
fuels with their much greener alternative. In this dissertation, I show the progress I’ve made on this
front from the standpoint of computational condensed matter physics. In the first several chapters,
I explore various physical phenomena that greatly affect the efficiency in nanoparticle solar cells,
and model various systems to try to better understand one of the great roadblocks for nanoparticle
solar technologies, their low carrier mobility, which leads to a low efficiency. In the final chapter, 1
shift focus to a more proven technology, Heterojunction with Intrinsic Thin layer (HIT) solar cells.
HIT solar cells exhibit faster degradation than their crystalline silicon counterparts, and as such,
have a higher averaged dollar per watt over their lifetime, despite their out-of-the-box world record
holding terrestrial efficiencies. This degradation is not fully understood at a fundamental level, and
so, in chapter 6 I show a hierarchical modelling technique that sheds some light on the degradation

of these record setting solar cells.
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CHAPTER 1

Introduction

The world is moving in a direction that will require that green energy be adopted by a large
percentage of the population. Traditional energy sources are simply not sustainable, so we need
as many green options as we can to bring the planet back from the brink. One of the leading
technologies in green energy is the photovoltaic cell. Currently photovoltaics are competitive in
many regions with traditional energy sources, but their market penetration is not nearly enough to
get us off the train towards self-destruction that we find ourselves on.

Generation I (currently highly marketable) photovoltaic technology appears to be nearing its
efficiency saturation point. While there are many ways towards improving the figure of merit for
marketability of photovoltaics, the dollar per Watt, I've decided to focus on just two of them: 1)
improving the efficiency of solar cells and 2) reducing the degradation rate of solar cells. In order to
do this, I have looked beyond generation I technology and ventured to better understand generation
IT and IIT (not yet highly marketable) technologies, the solar cells of tomorrow.

This broader thesis focuses primarily on two areas within improving solar cell efficiency. First,
I look at understanding carrier transport in nanoparticle solids. The end goal of this work is being
able to make statements about how to improve the electron mobility, and therefore the photovoltaic
efficiency of such materials. Second, I look at understanding degradation in the world champion
terrestrial solar cells, Heterojunction with Intrinsic Thin layer (HIT) cells. These cells already have
the highest efficiency among cells that could reasonably be deployed at the scale and price point
necessary for energy production on earth, however, they degrade twice as fast as generation I solar
cells. This degradation is not well understood, and if it can be remedied such that HIT cells degrade
only as fast as current generation I technologies, this would be roughly equivalent to improving
the efficiency of HIT cells by about 1%, a very large improvement. In solar technology, there are
several hierarchical levels that people frequently refer to when they talk about degradation and

efficiency, the cell level, which refers to individual solar cells, the module level, which refers to a
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collection of solar cells that are grouped together, these are the panels that you see on rooftops,
and the system level, which includes essentially everything that goes into getting the energy from
the sun to your home. This thesis is restricted to the cell level, though each level is extremely

important for improving solar technology.

1.1. Nanoparticle Solar Cells

Traditional solar cells have a limit to their efficiency, and while we are not yet at that limit,
we are coming closer and closer to that theoretical limit, and ideally, we’d like to find materials
that don’t fall prey to some of the loss mechanisms that go into the calculation of this theoretical
maximum. At a very basic level, light from the sun excites electrons from the valence band into
the conduction band, and with the help of a built in electric field, these electrons form a current.
These electrons, however, can only be excited to the conduction band if the photons are energetic
enough, any photons not energetic enough to cause this transition will not be absorbed by the
material, and can be treated as a loss. The other major loss mechanism is thermal relaxation,
where very high energy photons excite an electron deep into the conduction band, but the electron
quickly thermalizes to the conduction band edge, losing all of the excess energy to phonons. These
losses as a function of band gap are illustrated in figure 1.1. It turns out that some materials have
properties that allow them to mitigate some of these losses, which is why they are of such great
interest.

Colloidal semiconductor nanoparticles (NPs) are singularly promising nanoscale building blocks
for fabricating mesoscale materials that exhibit emergent collective properties. Nanoparticle mate-
rials have been shown to exhibit several phenomena that are eminently useful in maximizing solar
cell efficiency, particularly carrier multiplication, intermediate bands, and a tunable band gap [2,3].
First, I'd like to touch on the idea of a tunable band gap. Because of their small size, nanoparticles’
electronic energy levels are closely related to their size, the larger the particle, the smaller the gap
between states, this can be most easily seen by treating an electron of the nanoparticle as a particle
in a box. Thus, by changing the size of nanoparticles, one also changes the band gap of nanopar-
ticle solids. As shown in figure 1.1 there are different losses that dominate the cell for different

bandgaps, and so one can use this tunability to optimize the cell for efficiency, this problem was
2
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FiGure 1.1. Usable solar energy as a function of band gap for traditional solar
cells [1]. One can see that increasing the band gap reduces the relaxation losses but
increases losses due to sub gap photons.

analyzed for traditional solar cells by Shockley and Queisser [4], and the efficiency limit is known
as the Shockley-Queisser Limit. Next, I’d like to highlight some ways in which nanoparticle solar
cells can, in principle, surpass the Shockley-Queisser Limit.

The idea behind carrier multiplication is that one photon can potentially generate more than
one electron-hole pair, removing a significant portion of the thermal loss that comes from high
energy photons. This happens when a high energy conduction electron or valence hole collides
with a valence electron and promotes it to a conduction electron. This can only happen if the
high energy carrier had enough energy to both excite the electron to conduction and remain in
the conduction (or valence in the case of a hole) band. This is effectively the inverse process of
a kind of recombination known as Auger recombination, in which an electron and hole recombine
and rather than emitting a photon, as in band to band recombination, they give their energy to
another electron. It has been shown that nanoparticle solids have significantly improved quantum
efficiency relative to their bulk counterparts due to carrier multiplication, as can be seen in fig 1.2.

Intermediate bands are additional bands between the conduction and valence bands. These
intermediate bands allow for lower energy photons, that would normally pass right through the

material, to be absorbed by the material, allowing multiple low energy photons to excite an electron
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Carrier Multiplication (CM) in PbSe

B S B B B
hw/E,
FIGURE 1.2. Sketch of carrier multiplication (left) and quantum efficiency (number
of electron hole pairs per photon) vs. photon energy in units of the bandgap [5].

This mechanism allows for high energy photons to excite multiple carriers rather
than just one.

first into the intermediate band, and then into the conduction band. Intermediate band solar cells
have a much higher maximum theoretical efficiency (~47% under one sun [6]) than ”classical” solar
cells (~31% under one sun). We are primarily interested in one sun efficiency (to be contrasted
with the higher efficiency of concentrated photovoltaics, that are able to operate at a higher voltage
and current due to the higher illumination) because most photovoltaics currently operate without
concentrator technology, as concentrator technology is really best suited to areas with high normal
irradiance, and is generally on the decline in terms of deployment.

While the focus of my research is with respect to solar cells, for completeness, many of these
same properties are useful for other opto-electronic devices such as light emitting diodes [7], and
field effect transistors (FET) [8,9]. In fact, some of the research done in this thesis is done in the
context of FETs because much of the underlying physical insights are transferrable to solar cells.

One of the central challenges in all of these applications is to improve the transport in the films,
layers, and solids formed from nanoparticles. The value of hopping mobility in today’s weakly-
coupled insulating NP solids is typically low, 1072 — 10~!'cm?/Vs. Various groups attempted to
boost the mobility by boosting the inter-NP transition rate with a variety of methods, including:
ligand engineering [10,11,12], band-alignment engineering [13,14], chemical-doping [15,16], photo-

doping [17], metal-NP substitution [18], epitaxial attachment of NPs [19,20], and atomic layer
4
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FIGURE 1.3. Schematic band diagram of intermediate band solar cell [6]. The
intermediate band allows for sub gap photons to be absorbed that would normally
just pass through the cell.

deposition methods [21]. Encouragingly, these efforts recently translated into progress, as NP films
were reported to exhibit band-like, temperature-insensitive mobilities, with values approaching 10
cm?/Vs at room temperatures.

A complete theoretical picture of transport in nanoparticle solids is not currently available. ab
initio calculations cannot handle more than a few nanoparticles at once, so one needs to use higher
level techniques to simulate transport among larger numbers of nanoparticles. In early papers in
this field from the Zimanyi group, we used a hierarchical method culminating in a kinetic Monte
Carlo (KMC) simulation to simulate transport through hundreds of particles. This is a significant
step up from ab initio calculations, but it is still a far cry from the millions of nanoparticles present
in experimental samples. In a later paper, I add a new hierarchical layer to this code to effectively
simulate millions of nanoparticles. It should be noted, however, that the KMC-based simulations
that our group employed don’t include phase information, so the starting assumption is that the
solids will be in an insulating phase, where transport is mediated by phonon assisted hopping
from one nanoparticle to another. This means that even simulating millions of nanoparticles with
KMC, we can only walk up to the doorstep of a metal-insulator transition, but never truly claim
to describe metallic transport.

High conductivities require high mobilities and high carrier densities. However, introducing

charge carriers in the nanoparticle solids (NP solids) is challenging. Due to intrinsic difficulties of
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doping of NPs by impurity atoms [22], so far there have been only a limited number of experimental
works achieving successful bulk doping [23,24,25]. This difficulty in doping arises from the fact
that, unlike bulk materials, there is not actually a band that is spatially extended, but rather, there
is a spatially confined set of distinct states. When the particles get small enough, the confinement
energy exceeds the Coulomb energy which allows for dopant atoms, which are already able to ionize
easily, transition into the nanoparticle states. This is a problem because a charged nanoparticle like
this acts as a recombination center, and the carrier will be quickly absorbed and not participate in
conduction.

Introducing carriers by applying a gate voltage Vi in a field effect transistor (FET) architecture
is another promising approach. Several groups reported highly enhanced conductivities in FETSs
formed from Nanoparticle solids (NP-FETs). [21,23]. Because of this, many of the simulations I
performed on nanoparticle solids, were done on structures with one or both of a FET geometry
and a gate voltage. FETs are built such that while in operation, the current that is allowed to
flow through the device is essentially only allowed to flow in an extremely narrow spatial band.
Because of this, many of the simulations performed in this thesis on NP solids were done on quasi-
2D structures, containing only 1 or 2 layers of nanoparticles, in order to best match the conditions

of our experimental colleagues that perform mobility experiments on FET devices.

1.2. Heterojunction Solar Cells

Heterojunction (HJ) Si solar cells have world record efficiencies approaching 27%, due to the
excellent surface passivation by their hydrogenated amorphous Silicon (a-Si) layer that leads to
low surface recombination velocities and high open circuit voltages Voco. A side view of a generic
silicon HJ cell cell is shown in fig 1.4.

In spite of the impressive efficiency records, HJ Si cells have not yet been widely adopted by
the market because of the perceived challenge that HJ cells may exhibit accelerated performance
degradation, possibly related to their a-Si layer. Traditional crystalline Si (c-Si) modules typically
exhibit about a 0.5%/yr efficiency degradation, primarily via their short circuit current I, and
the fill factor FF, typically attributed to external factors, such as moisture ingress and increased

contact resistance. In contrast, in 2018 two papers reported studies of how much fielded Si HJ
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FIGURE 1.4. A cross section of a HIT solar cell [26]. The thin layer of amorphous
silicon on top of the cell allows for higher open circuit voltages than standard silicon
cells.

modules degraded over 5-10 years [27,28]. They reported degradation rates close to 1%/yr, about
twice the rate of traditional cells. These papers pointed to a new degradation channel, the decay of
Voc, at a rate of about 0.5%/yr. The decay of Vpoc suggests that the degradation is possibly due
to internal factors, increasing recombination either at the a-Si/c-Si interface, or in the a-Si layer.
Such increased recombination is typically caused by the increase of the electronic defect density.
These initial reports on fielded panels were followed up by in-laboratory analysis. The Bertoni
group has studied the surface recombination velocity (SRV) at the a-Si/c-Si interface in HJ stacks.
By applying a model for the recombination at the a-Si/c-Si interface to their temperature- and
injection-dependent SRV data, they analyzed the degradation of the carrier lifetime and were able
to attribute it to a loss of chemical passivation [29]. More recently, Holovsky et al. investigated
ultrathin layers of hydrogenated amorphous silicon (a-Si:H), passivating the surface of crystalline
silicon (c-Si) [30]. These authors applied highly sensitive attenuated total reflectance Fourier-
transform infrared spectroscopy, combined with carrier lifetime measurements. They manipulated
the a-Si/c-Si interface by applying different surface, annealing, and aging treatments. Electronic
interface properties were discussed from the perspective of hydrogen mono-layer passivation of the
¢-Si surface and from the perspective of a-Si:H bulk properties. They concluded that both models

have severe limitations and called for a better physical model of the interface [30].
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Understanding the degradation of the passivated c-Si surface is important not only for under-
standing a-Si/c-Si heterojunction solar cells. The PV industry roadmap shows that among newly
installed modules, the fraction of advanced Passivated Emitter /Rear Contact (PERC) modules will
rapidly rise above 50% in the next 3 years. One of the advanced features of these PERC cells is the
improved interface passivation with the application of elevated levels of hydrogen. However, the
increased efficiency was accompanied by notable levels of degradation [31,32,33]. By experiments
and by including all three charge states of hydrogen in their modeling, the authors speculated that
the PERC cell degradation both in the dark and under illumination could be explained by the
migration of and interaction between hydrogen ions in different charge states.

To summarize, the accelerated degradation of Voo slows the market acceptance of the world-
efficiency-record holder HJ Si modules, and impacts the introduction of the advanced PERC cells,
thereby impacting the entire PV industry roadmap. Therefore, analyzing and mitigating this

degradation process is of crucial importance.

1.3. Defects in Amorphous Si

Photoinduced degradation of a-Si under prolonged exposure to intense light was first studied,
measured and modeled by Staebler and Wronski [34]. They reported that the degradation is
characterized by a remarkably universal t'/3 power-law temporal growth of the defect density. This
behavior has become known as the Staebler-Wronski effect (SWE).

The SWE has been analyzed by several different methods. Some groups performed electron spin
resonance (ESR) measurement on a-Si (a-Si:H) to experimentally detect the increase of the density
of dangling bonds induced by light exposure [35,36,37]. Some of these papers also developed a
phenomenological model to predict the SW defect-increase as a function of exposure time and light
intensity. Other groups used the photocurrent method (PCM) to detect the change of defect density
of a-Si under light exposure. In agreement with ESR experiments, PCM also revealed the increase of
defect density under light exposure. While the ESR and PCM defect density measurements yielded
analogous results, it is recalled here that they capture different type of defect states [38,39]. ESR
detects all neutral defect states that only include dangling bonds (DBs), while PCM detects both

neutral and charged defect states that include DBs and other types of defect states. Therefore
8



PCM measurements revealed that the origin of defect states might be a result of different type of
general structural disorders beyond DBs. [40,41]

Recently, Wronski argued that three distinct defect states, A/B/C, are needed to account for
all the data, instead of the standard single “midgap dangling bond” defect [42]. The A/B states
are efficient electron recombination centers, while the C states recombine holes efficiently. Wronski
speculated that these states are differentiated by their different structures: dangling bonds, mono-
and divacancies, as also advocated by Smets. Other groups also analyzed their data in terms of
three distinct states [29,32]. However, they focused on the alternative picture that the defect states
may be the three charge states H+, HO, and H- of hydrogen. In addition to these experimental
works, recent theoretical and computational papers also analyzed the defect states in a-Si, and
they concluded that besides dangling bonds, highly strained bonds also contribute to midgap states
significantly [43,44].

On the theoretical front, there have been a few models that attempt to explain the SWE. The
hydrogen collision model suggests that mobile hydrogens in the amorphous silicon matrix ”collide”
and create metastable hydrogen complexes that leave behind additional dangling bonds [45] a
cartoon of this process is shown in figure 1.5. There has also been a model put forward by Stutzmann
et. al that suggests that recombination of electron hole pairs causes a restructuring of the amorphous
silicon matrix that leads to new dangling bonds being formed [36]. While neither model has been
completely corroborated by experiment, they do provide useful insights into possible channels for
degradation to occur. They are also both able to reproduce the SWE t5 defect density growth,
despite their shortcomings, and it is possible that they each tell a part of the story.

To summarize, while a fair amount of progress has been achieved in characterizing defect gener-
ation in a-Si, its underlying mechanism and connection to the different types of structural disorder
and defects is far from being settled and understood. The problem is still open to question, and in
chapter 5, I will try to bridge this gap in understanding, at least partially, leaving a more complete

bridging for future work.
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FIGURE 1.5. A cartoon of the hydrogen collision model mechanism [45]. Light
elevates two bound hydrogens to two mobile hydrogens that carry dangling bonds
with them. Eventually these mobile hydrogens collide, forming a higher energy
metastable state that effectively left behind two dangling bonds.
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CHAPTER 2

Commensuration Effects in Nanoparticle Solids

2.1. Introduction

Colloidal semiconductor nanoparticles (NPs) are singularly promising nanoscale building blocks
for fabricating mesoscale materials that exhibit emergent collective properties. There is a growing
interest to use NPs for numerous optoelectronic applications [46,47], including third generation
solar cells [2,3] light emitting diodes [7], and field effect transistors (FET) [8,9].

One of the central challenges in all of these applications is to improve the transport in the films,
layers, and solids formed from nanoparticles. The value of hopping mobility in today’s weakly-
coupled insulating NP solids is typically low, 1073 — 10~2cm?/Vs. Various groups attempted to
boost the mobility by boosting the inter-NP transition rate with a variety of methods, including:
ligand engineering [10,11,12], band-alignment engineering [13,14], chemical-doping [15,16], photo-
doping [17], metal-NP substitution [18], epitaxial attachment of NPs [19,20], and atomic layer
deposition methods [21]. Encouragingly, these efforts recently translated into progress, as NP films
were reported to exhibit band-like, temperature-insensitive mobilities, with values approaching 10
cm?/Vs at room temperatures.

High conductivities require high mobilities and high carrier densities. However, introducing
charge carriers in the nanoparticle solids (NP solids) is challenging. Due to intrinsic difficulties of
doping of NPs by impurity atoms [22], so far there have been only a limited number of experimental
works achieving successful bulk doping [23, 24, 25].

Introducing carriers by applying a gate voltage Vi in a field effect transistor (FET) architecture
is another promising approach. Several groups reported highly enhanced conductivities in FETs

formed from Nanoparticle solids (NP-FETSs). [21,23].
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In NP-FETs, a notable issue is the spatial, layer-to-layer distribution of the added carriers.
Mean-field analyses of the electron density and the conductivity of FETs [21,48], including Debye-
Huckel estimates, as well as detailed experiments on PbSe NP-FETs [49], all conclude that elec-
trons, introduced to the layered NP solid by the gate voltage Vi, occupy only the first couple layers
closest to the gate [50].

This strongly confined spatial distribution of the carriers has the potential to profoundly effect
the mobility and thus the conductivity. Most notably, it can lead to commensuration effects via the
Coulomb-blockade mechanism. Such commensuration effects have been observed experimentally in
CdSe NP solids [51], PbSe NP solids [52], and Si NP solids [53], among others.

Besides the obvious scientific interest in understanding the physics of commensuration, it is
imperative to get these effects under control for optimizing NP-FETSs for technical applications, as
Coulomb blockade effects can substantially reduce or even zero out transport.

Important early steps in this direction were reported in the recent work of the Shklovskii
group. [50,54] They analyzed the non-trivial evolution of the electron distributions in the first
and second layers, and the resulting low-temperature conductivity, as the overall electron filling
was varied. One of the key outcomes of this work was the theoretical demonstration of strong
commensuration effects emerging. They were driven by the complex interplay of the long range
Coulomb interaction and the other energy scales of the problem.

This important work was our motivation to explore the physics of commensuration in NP Solids.
We focused our analysis on two previously unexplored directions. First, experimental evidence
strongly suggests that the screening of Coulomb interactions is strikingly efficient in NP-FETs. [55]
In some cases, the screening by the embedded NPs can be represented by a dielectric constant e
of the order of 10 or higher. Therefore, at least classes of NP-FETs are probably more faithfully
modelled by concentrating on the short ranged, ”on-site” Coulomb charging energy FE., instead
of keeping the entire long range form. This position is supported by the observed temperature
dependence of the conductivities: at low temperatures, experiments often report Efros-Shklovskii
type variable range hopping, pointing to the importance of keeping the long range part of the
Coulomb interaction, whereas above T' ~ 50 — 80K, the Efros-Shklovskii temperature dependence

typically gives way to a simple activated form, suggesting that the long range portion of the Coulomb
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interaction ceases to be crucial. Obviously, for solar and optoelectronic applications this second,
higher temperature range is of primary interest.

Second, earlier papers did not concentrate on the mobility as a function of the electron filling
FF, an experimentally relevant parameter, potentially tunable by the gate voltage V7 in NP-FETs.
Instead, they studied the 1p® — 1s° energy splitting as the energy scale competing with Coulomb
phenomena. In some NP-FETS, such as PbSe NP-FETsS, this splitting can be as high as 200 meV,
and thus may not be activable at the temperatures of interest. For both of these reasons, we
expressly introduced the gate voltage Vi into our model, while dropping the representation of the
1p® energy levels.

In this chapter, we adapt our previously developed Hierarchical Nanoparticle Transport Simu-
lator (HINTS) code to model bilayer NP solids (BNSs). HiNTS integrates the ab initio characteri-
zation of single NPs with the phonon-assisted tunneling transition model of the NP-NP transitions
into a Kinetic Monte Carlo based simulation of the charge transport in NP solids.

Our main results include the following. (1) Starting with the model having an independent
inter-layer energy offset A, (1.1) we observed the emergence of commensuration effects when the
electron filling factors F'F' in both NP layers reached integer values. These commensuration effects
were profound and consequential as they reduced the mobility by orders of magnitude. This reduc-
tion is much more substantial than the mobility reductions observed in the long range interaction
case. (1.2) We showed the complexity of our model by demonstrating that different classes of
commensuration effects emerge in different parameter regions, defining distinct dynamical phases.
(1.3) We studied these commensuration effects in a five dimensional parameter space, as a function
of the on-site charging energy F¢, the energy offset A, the disorder D, the electron filling factor,
FF, and the temperature kgT. We explored the dynamical phases in this 5D parameter space that
were dominated by the different commensuration effects, and the phase boundaries between them.

(2) Second, we built on our independent energy offset model to describe NP-FETSs by recalling
that the Poisson equation relates the gate voltage Vi and thus the energy offset A to the electron
filling factor FF. We modeled NP-FETs by implementing this A-FF relation, in effect simulat-
ing the NP-FETSs as a reduced-dimensional subset of the independent A model. We found that

commensuration effects analogous to those previously observed in the independent A model also
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emerged in NP-FETs. This demonstrates the usefulness and paradigmatic nature of our findings in
the higher dimensional parameter space. A word on terminology. In granular metals, a Coulomb
blockade emerges during transport in neutral systems because when an electron leaves a neutral
grain, it leaves a hole behind, while it charges the originally neutral target grain. The sum of the
charging energies of the two grains combined with the electron-hole attraction blockades transport.
This Coulomb blockade is present at all densities and is not sensitive to commensuration phenom-
ena. [56,57,58]. However, this density-insensitive Coulomb blockade is not the subject of this
chapter.

In contrast, the filling-driven Coulomb blockade, studied here, reduces transport only at com-
mensurate fillings because all NPs the hopping electron intends to hop onto are already occupied
by another electron that repels it, making the hops energetically unfavorable. In other words: the
Coulomb blockade in neutral granular metals is driven by electron-hole attraction; whereas the
filling-driven Coulomb blockade in NP solids is driven by electron-electron repulsion. This chap-
ter focuses on studying this filling-driven Coulomb blockades. As mentioned above and demon-
strated below, multi-layer NP solids exhibit a filling-driven Coulomb blockade in some regions of
our five-dimensional parameter space, while in other regions the filling-driven Coulomb blockade is
conspicuously absent at nominally commensurate fillings. The emerging dynamical phase diagram
is therefore far from obvious and is thus worthy of study.

In some detail, in the simplest one-layer model, the suppression of transport by the filling-
driven Coulomb blockade is natural. However, in our more complex bilayer NP Solid model, (a)
the electrons can redistribute between the layers, thus de facto changing the fillings in each layer,
and (b) the disorder can help the electrons to overcome the Coulomb barriers, and inter-layer
offsets. In this more complex model, it is far from obvious where the blockaded regions will be

located in the five-dimensional model-parameter space.

2.2. Simulation Methods

Recently, we have developed HINTS, the Hierarchical Nanoparticle Transport Simulator, as a
multi-level Kinetic Monte Carlo computational platform, to study transport in nanoparticle solids.

Previously, we have used HINTS to study transport in NP-FETSs [59], the metal-insulator transition
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in NP solids [60], and binary NP solids systems [61]. For the present study, we have extended
HiNTS and introduced new features, in order to study the commensuration effect in NP solids, in
particular NP-FETs. The presentation and discussion of our results requires a brief description of
the hierarchical levels of HINTS. The details of our methods are provided in the Appendix.

(1) We adapted a k-p calculation of the energy levels of PbSe NPs in the diameter range of 5-7
nm. The theoretical results have been validated via comparison to optical experiments. [62] Our
model also included the electron-electron interaction on the level of on-site/self-charging energy.
This self-charging energy can be calculated by a variety of methods, including the semi-empirical
pseudopotential configuration interaction method of Zunger and coworkers [63,64] and the tight-
binding based many body perturbation theory method of Delerue [65]. In this chapter we report
results with the latter approach, because it represents the details of the dielectric screening more
realistically.

(2) On the next length scale of the order of 10 nm, we modelled the hopping transitions between
neighboring NPs that are separated by twice a ligand length parameter. We incorporated into our
model the Miller-Abrahams single phonon-assisted activated hoppings.

(3) On the hierarchically top length scale of hundreds to a few thousand nanometers, we gen-
erated an entire solid sample of the NPs, pair-wise coupled via the framework of step (2). We used
the event-driven Molecular Dynamics code PackLSD [66] to obtain close packed (jammed) NP
solids. Each sample contained several hundred NPs. We simulated the Bilayer NP Solids (BNS),
or NP-FETSs, by forming the NP solid in a simulation volume with a thickness of about two NP
diameter. We determined whether the NPs belonged to the first or the second layer by tracking the
z-coordinates of the NPs. To capture the naturally occurring randomness, the NP diameters were
picked from a Gaussian distribution. This disorder in the NP diameters translated into a disorder
of the NP energies with a width D.

(4) Finally, we simulated transport across the BNS/NP-FET by adapting and using our Ex-
tended Kinetic Monte Carlo (KMC) code that incorporated activated transitions [59,67] between
all neighboring NPs. We injected electrons into the NP-FET to reach a predetermined electrons/NP
density. Our central quantity of interest was the electron mobility. We always made sure that the

voltage was sufficiently small to keep our simulations in the linear I-V regime.
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The NP-NP separation (controlled by the ligand lengths), and the overall hopping attempt rate
prefactor was selected such that the simulated mobilities were consistent with the experimental
values, such as those from the Law group [21]. We systematically explored wide parameter re-
gions, including that of temperature, disorder, electron density, and Coulomb interaction. For each

parameter set, we simulated at least 40, typically several hundred samples.

2.3. Results and Discussion

To begin the exploration of the commensuration effects, we simulated a single-layer NP solid.
Fig. 1 shows the mobility as a function of the electron filling factor F'F', for two different, experi-
mentally typical NP diameters of d = 5.6 nm, and d = 6.5 nm. It was assumed that the diameter
d of each kind of NP had a Gaussian distribution around these mean values. Redoing the ab initio
calculations of the NP energy levels, this diameter disorder translated into an energy disorder of
width D. Visibly, the mobility shows a profound commensuration effect as the electron density per
NP (e/NP), or filling factor F'F', approaches integer values. Demonstrating the commensuration
effect at integer fillings F'F' in the single-layer NP solid establishes the reference frame for the rest
of our simulation work.

Figs. 2a-b illustrate the underlying physics of this commensuration-induced suppression of
the mobility, as the filling F'F' approaches 1 from below. Fig. 2a shows how the HiNTS code
evaluates the energetics of possible transitions for a selected electron (indicated by solid green),
when surrounded by NPs that are already occupied by electrons, shown with black. Transition
to any site already occupied comes at the additional energy cost of E¢, the charging, or on-site
Coulomb energy. At low temperatures such energies are not available by thermal assistance, and
the selected electron is blocked from executing this transition, as indicated by the red Xs. In the
specific case of F'F' — integer, just about all target NPs are already filled with electrons, thus
just about all NP-NP transitions are blocked. We refer to this phenomenon interchangeably as the
filling-driven Coulomb blockade or commensuration-induced mobility minima. Its primary feature
is the exponential suppression of the mobility at integer filling factors F'F’, as shown in Fig. 1, and

more compellingly in Fig. 5a.
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Ficure 2.1. Mobility in single layer NP solid, exhibiting a clear commensuration-
induced suppression. FE¢ = 120 meV, kgT = 80K, D(d = 5.6nm) = 55 meV,
D(d = 6.5nm) = 45 meV

Fig. 2b illustrates the limits of the commensuration induced by the filling-driven Coulomb-
blockade. As the disorder D increases, and becomes comparable to E¢x, even at commensurate
fillings there will be NP-NP transitions where the net energy cost of the transition, of the order
of (Ec — D), will become comparable to the thermal energy kpT, and thus more and more NP-
NP transitions become possible even at F'F' = 1. This distinction is the basis to define separate
dynamic phases of single-layer NP solids: for small disorder D/FE¢ < 1, the commensuration induces
a Coulomb blockade, separated by a marked transition into a non-blockaded dynamic phase as the
control parameter D/E¢ exceeds a critical value of the order of 1. We will illuminate this argument
with simulations in relation to Fig. 7 below.

With this preparation, we now move to the study of Bilayer Nanoparticle Solids (BNS). Fig.
3 illustrates a typical BNS sample. The sample was prepared by PackLSD, as described above in
step (3) of HINTS. The blue/red colors indicate whether a NP belongs to the lower or the upper

layer. From here on, the nanoparticles are all selected from a Gaussian distribution of diameters
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FiGure 2.2. The physical mechanism of the Coulomb blockade driving the
commensuration-induced suppression of the mobility.

with mean of d = 6.5nm and a width that translates to an energy disorder of D, typically chosen

to be D = 45meV.

Ficure 2.3. Hlustration of a simulated bilayer Nanoparticle solid.
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Fig. 4 shows the energy landscape in a BNS. In our model, there is an inter-layer energy offset
A, which can be caused by various effects, such as a bending of the energy of the conduction band
CB or a fixed transverse electric field. This energy offset A is a new competing energy scale in the

problem beyond E¢ and D.

T

Energy

>

Distance from substrate

FIGURE 2.4. Energy landscape of a BNS with an inter-layer energy offset A.

Fig. 5a illustrates the mobility of a BNS as a function of the nominal electron filling factor per
layer FF = e/(NP/layer), for different energy offsets A. As an example, a BNS in which each
layer has 200 NPs, will reach F'/F' = e/(NP/layer) = 1 when filled by 200 electrons.

Fig. 5a shows that the mobility exhibits profound commensuration-induced minima at F'F =1
for A = 100 meV and A = 500 meV, but not at A = 20 meV and A = 40 meV; while at F'F = 2
surprisingly, for A = 20 meV, A =40 meV, and A = 500 meV, but not at A = 100 meV. The log
scale shows convincingly that the mobility is exponentially suppressed by 2-3 orders of magnitude

relative to the mobilities at non-commensurate F'F's.
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A [meV] 20 | 40 | 100 | 500
FFypper 0.30 [ 0.20 | 0.02| O
FFEoper 0.70 | 0.80 | 0.98 | 1
Commensurate | No | No | Yes | Yes
a. FF =1
A [meV] 20 | 40 | 100 | 500
FFypper 0.99 1097 | 0.77| O
FFEioper 1.01]1.03|1.23| 2
Commensurate | Yes | Yes | No | Yes
b. FF =2
TABLE 2.1. Summary of commensuration effects at FF' =1 and FF = 2.

The intriguing complexity of the BNSs is evidenced by the remarkable fact that the commen-
suration effects emerge at different values of the energy offset A for FF =1 and for F'F' = 2. This
is the result of the multi-dimensional competition of the energy scales, as explained next.

To set the stage, Fig. 5b shows FF,pe,, the electron/NP Filling Factor specifically for the
upper layer of the BNS, as a function of F'F, the filling factor of the overall BNS. For F'F' <1, for
A =100 meV and A = 500 meV, F'Fypper = 0 up to F'IF' =1, i.e. all electrons remain in the lower
layer up to F'F = 1.

For FF > 1, FFypper rises for A = 100 meV, but stays put at F'Fypper = 0 for A = 500 meV.
Finally, for A = 20 meV and A = 40 meV, FF,,,e, does not show any commensuration effect at
FF =1, but evolves towards the commensurate value F'Fypper = 1, as F'F' approaches 2. These
filling commensuration phenomena are summarized in Table L.a.

Fig. 6 explains the observations above. Figs. 6a-b are relevant for F'/F' = 1, whereas Figs. 6¢-d
are relevant for F'/F' = 2. Fig. 6a shows that when the energy offset A is much larger than the
disorder D = 45 meV, for example A = 100 meV or A = 500 meV, then, as the electrons are filled
into the BNS, they all remain in the lower NP layer. For F'F' < 1, the electrons do not doubly
occupy the NPs, so the charging energy Eo does not enter into the competition of energy scales
yet. This explains why F'F,,,e- remains zero for F'F' < 1 for the higher energy offsets of A = 500
meV and A = 100 meV.

Since the competition of A and D confines all electrons into the lower layer, the charging
energy F¢ induces pronounced commensuration-induced mobility minima at F'/F' = 1 for these

high energy offsets, as shown by the blocked NP-NP transition, shown with a red X. Zooming in
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on the mobility values at the commensuration-induced minima at F'F' = 1, Fig. 5a shows that the
mobility minimum is lower for A = 500 meV than for A = 100 meV. This is because A = 500
meV confines the electrons to the lower layer more effectively, as documented by Table I.a as well.
Fig. 6b shows the complementary case of lower, 20 meV and 40 meV values of the energy offset A.
For these lower offsets, the 45 meV disorder D is capable of overcoming the energy offset A and
promoting the electrons from the solid green state on the blue, lower layer NPs to the shaded green
state on the red, upper layer NPs, as shown by the allowed NP-NP transition. The possibility of
freely transitioning between the lower and upper NP layers increases F'Fpper to non-zero values,
thus making the electron density non-integer in both NP layers. Since only integer Filling Factors
activate the Coulomb blockade, these non-integer filling factors wash out the commensuration-
driven mobility minima. This explains the disappearance of the commensuration effect in the blue
and green curves of the mobility at F'F' = 1.

Figs. 6¢-d are helpful to analyze how the physics of commensuration changes for F'F' = 2. For
these higher fillings, (blue) NPs in the lower layer are often doubly occupied, as shown. Typical
values of the charging energy E¢ for isolated NPs are about 120 meV, considerably greater than
the disorder. Therefore, the charging energy Ec ~ 120 meV replaces the disorder D ~ 45 meV, as
the primary energy scale competitor to the offset A.

Fig. 6¢ is most relevant for the large energy offset of A = 500 meV. Here, even an Ex = 120
meV is not capable of promoting electrons into the upper layer. Therefore, F'F,,., remains zero
even as F'F' grows from 1 to 2, as confirmed by Fig. 5b. By this mechanism, at FF = 2, the
filling factors for both layers reach integer values, F'F' = 2, and F'Fypper = 0, thus the Coulomb
blockade once again drives a commensuration-induced effect: an exponentially suppressed mobility
minimum.

Fig. 6d shows that the physics changes as the energy offset is reduced to A = 100 meV. At this
value, A is reduced to a level comparable to the charging energy E¢, thus freeing up the electrons
to transition between layers. Fig. 6d shows that the energy of a (green) electron, residing on a
(blue) NP in the lower layer, is lifted by the Coulomb repulsion from a (black) electron on the
same NP, making the green electron capable of reaching the shaded green electron state on a (red)

NP in the upper layer. Notably, since the energy offset and the charging energy are comparable,
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FIGURE 2.6. Energy diagrams to contextualize the various parameter regimes. (a.)
illustrates FF' = 1, A = 500 meV and A = 100 meV. (b.) illustrates FF = 1,
A = 40 meV and A = 20 meV. (c.) illustrates FF = 2, A = 500 meV. (d.)
illustrates FF = 2, A = 100 meV, A = 40 meV and A = 20 meV. In all cases
Ec =120 meV, kT =7 meV and D = 45 meV.

the spatial distribution of the electrons spreads out over the two layers. This is captured by the

FFypper assuming a non-integer, non-commensurate intermediate value in Table I. This explains

why the mobility does not exhibit a commensuration-induced minimum.
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Finally, for even lower energy offsets A = 20 meV and 40 meV, A is markedly smaller than
E¢. This not only makes it possible for the electrons to leak into the upper layer, much rather it
forces the electrons to do so. This is the driver of F'Fype, actually reaching 1 as F'F' approaches 2.
Since the filling factors of each layer reach integer values at F'F' = 2, the Coulomb blockades once
again drive commensuration-induced mobility minima, as shown in Fig. 5a.

We note, that the commensuration-induced physics is markedly different for the different cases.
For FF = 1, the upper layer does not play any role. For FIF' = 2 and A = 500 meV, the NPs in
the lower layer are doubly occupied, and the upper layer plays no role. Finally, for FF = 2 and
A = 20 meV and 40 meV, the upper and lower layer play a largely symmetric role. These regimes
are dominated by different physics, and therefore can be identified as different dynamical phases of
the BNS. The latter two, for example, are separated by a phase boundary around A ~ E¢, where
the competing energy scales are comparable. This washes out the commensuration effects, and
serves as an effective phase boundary between the dynamical phases, as long as both remain large
compared to D. The commensuration phenomena for the filling factor F'F' = 1 are summarized in
Table ILa.

The commensuration phenomena for the filling factor FF' = 2 are summarized in Table Lb.
The complexity of the model is on full display in that the commensuration effects at F'F = 1, as
shown in Table I.a, are reversed relative to F'F' = 2 for 3 of the 4 values of A, as shown in Table
I.b. The primary driver of these reversals is that the energy scale that is the primary competitor
of A switched from the disorder D at F'F' = 1, to the charging energy E¢ at FF' = 2.

Up to now the model was analyzed by scanning the energy offset A and the filling factor F'F,
while keeping the charging energy E¢ constant. An informative complementary parameter scan
is shown in Fig. 7, where the charging energy E¢ is scanned, while keeping the energy offset A
constant. In all curves shown, A = 500 meV. Therefore, all electrons are confined into the lower
NP layer, and the physics is determined by the competition of the charging energy E¢ and the
disorder D. The blue curve shows the mobility at Fc = 120 meV, the same as the lowest curve
in Fig. 5a. This parameter set was selected as it shows commensuration-induced mobility minima

bothat F'F' =1, and at F'F' = 2. The relevant energy diagram is illustrated in Fig. 2a, showing that
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FIGURE 2.7. Fixed A, different Ec: A = 500 meV, kgT = 7 meV, and D = 45 meV.

the competing energy scale of the disorder D can not help the electrons to overcome the Coulomb
blockade either at FF'F' =1 or at FIF = 2.

As the charging energy is reduced to Ec = 60 meV, the depth of the mobility minima at
FF =1and at FF = 2 are greatly reduced. Fig. 2b explains this as follows. At Fc = 60 meV, the
disorder D, more precisely, the disorder D, augmented by the thermal energy to D+ kgT', becomes
comparable to E¢, and thus capable of boosting the electrons to partially overcome the Coulomb
blockade within the first layer. Upon further reduction to Ec = 40 meV and 30 meV, the mobility
minima are completely smoothed out, as the disorder becomes the dominant energy scale, and the

charging energy is unable to hinder transport anymore.
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DCM | FF(lower) | FF (upper)
FF=1
FF =2

TABLE 2.2. Dynamic Commensuration Matrix DCM order parameter of the dy-
namical phases of the BNS model.

The above specific scans of the multidimensional parameter space demonstrate that the com-
petition of the main physical processes gives rise to distinct dynamical phases of the model. Next,
we create a comprehensive phase diagram of these dynamical phases in the D-A-FE¢ space by per-
forming a systematic 2 dimensional raster scan of the D/E¢ vs. A/E¢ space. At each point of this
raster scan we performed a scan with the filling factor F'F' and determined whether the BNS ex-
hibited a well-defined mobility minimum at the two potential locations of commensuration effects:
at FF =1, or at F'FF = 2, or both. We adopt a "Dynamic Commensuration Matrix” DCM order
parameter to characterize the dynamical phases through their filling factors as follows:

This DCM order parameter cross-references the nominal filling factor F'F with the actual filling
factor F'F'(upper) of the upper layer, and FF(lower), that of the lower layer at the two potential
locations of commensuration effects: at F'/F' = 1, and FF = 2. The top row of the DCM order
parameter represents F'F'(lower) and FF(upper) at FF = 1 nominal filling, the bottom row the
same fillings at F'F' = 2. Table II shows what the DCM looks like in matrix form. Since each
entry is determined by position in phase space, we have left the example blank, and we note the
maximum value of each entry is determined by the filling factor.

When the top row of the DCM contains the integers (1,0), then the nominal commensuration
at F'F' = 1 indeed induces commensuration in the top and bottom layers, and thus the BNS exhibits
commensuration-induced mobility minimum. In contrast, when the top row of the DCM contains
non-integers, shown in the diagram as (1-n, n), then the competing physical processes smooth out
the nominal commensuration, and the BNS does not exhibit mobility minima.

Analogously, when the bottom row of the DCM contains the integers (1,1) or (2,0), then
the nominal commensuration at F'F' = 2 indeed induces commensuration in the top and bottom
layers, and thus the BNS exhibits a commensuration-induced mobility minimum. In contrast, when

the bottom row of the DCM contains non-integers, shown in the diagram as (2-n, n), then the
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competing physical processes smooth out the nominal commensuration, and the BNS does not

exhibit mobility minima.
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Ficure 2.8. Dynamic phase diagram, capturing the dynamics of the BNS at the
two filling factors F'/F' = 1 and F'F' = 2 in terms of the Dynamic Commensuration
Matrix DCM.

The rich information coded in the DCM Dynamical Commensuration Matrix order parameter
can be condensed into a simpler Dynamical Commensuration Vector DCV. The upper element of
the DCV only indicates whether at F'F' = 1 the dynamical phase exhibits a mobility Minimum At
Commensuration: ”M”; or not: ”No-M”. The lower element of the DCV, only indicates whether
at F'F = 2 the dynamical phase exhibits a mobility Minimum At Commensuration: ”M”; or not:
”No-M”. With this convention, the five phases of Fig. 8 are the following:

(a) The left-most phase with the lowest A/FE¢, having a DCM = (1-n, n)/(1, 1), where the
lower row of the DCM matrix is shown after the ” /7, is described by a DCV = (NoM/M), the

lower DCV vector element also shown after a ”/” for consistency.
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DCM DCV
NoM
M

Lo o) O

M
(i)
M
2—n n NoM

10 M

2 0 M
TABLE 2.3. The Mapping of the DCM Dynamic Commensuration Matrix onto the
DCV Dynamic Commensuration Vector.

(b) The phase with higher A/FE¢x and higher D/E¢, having a DCM = (1-n, n)/(2-n, n), is
described by a DCV = (NoM/NoM).

(¢) The phase with similar A/FE¢ but lower D/E¢c (the small upward-pointing triangle based
on the A/Ec = 0.4 — 0.6 interval), having a DCM = (1, 0)/(1, 1), is described by a DCV =

(d) The phase with yet higher A/E¢, having a DCM = (1, 0)/(2-n, n), is described by a DCV
= (M/NoM).

(e) The phase with the highest A/E¢, having a DCM = (1, 0)/(2, 0), is described by a DCV

It is instructive to review the phase diagram from the complementary vantage point of the
phase boundaries.

(1) The blue boundary separates dynamic phases of the BNS that differ by the commensurative
behavior at F'F = 1, but not at F'F' = 2. Indeed, for low energy offset A/FE¢, the electron fillings
in the (lower, upper) layers are (1-n, n), thus the BNS is in a non-commensurate dynamic phase
that does not exhibit mobility minima at FFF' = 1. For high A/E¢, the electron fillings in the
(lower, upper) layers are (1, 0), thus the BNS is in a commensurate dynamic phase that does
exhibit mobility minima at F'F' = 1. Thus, crossing the blue phase boundary by increasing A/E¢

is a dynamic phase transition from a phase in which the BNS does not exhibit mobility minima
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at FFF = 1 to a phase in which it does. For completeness, across the blue phase boundary, the
commensurative behavior of the BNS does not change at F'F' = 2.

(2) The red boundary separates dynamic phases of the BNS that differ by the commensurative
behavior at F'F' = 2, but not at F'F' = 1. Indeed, for low energy offset A/E¢, the electron fillings
in the (lower, upper) layers are (1, 1), thus the BNS is in a commensurate dynamic phase that does
exhibit mobility minima at F'F' = 2. For medium A/FE¢, the electron fillings in the (lower, upper)
layers are (2-n, n), thus the BNS is in a dynamic phase that does not exhibit mobility minima at
FF = 2. Finally, for high A/FE¢, the electron fillings in the (lower, upper) layers are (2, 0), thus
the BNS is again in a dynamic phase that does exhibit mobility minima at F'F' = 2. Thus, crossing
the red phase boundary from low to medium A/FE¢ is a dynamic phase transition from a phase in
which the BNS does exhibit mobility minima at F'F' = 2 to a phase in which it does not. Further,
crossing the red phase boundary from medium to high A/E¢ is a dynamic phase transition from a
phase in which the BNS does not exhibit mobility minima at F'F' = 2 to a phase in which it does
again. This is an intriguing case of a reentrant phase diagram. Again for completeness, across the
red phase boundaries, the commensurative behavior of the BNS does not change at F'F = 1.

(3) Broadly speaking, for a given disorder, increasing the energy offset A/Ex at F/F' = 1 forces
more and more electrons into the lower layer, eventually cutting off their ability to escape the
Coulomb blockade. This tendency led to the formation of mobility minima at commensuration
(M), as it forced all electrons into the lower layer. For F'F' = 2, the filling of the lower and upper
layers evolved from the evenly distributed commensurate (F'F(lower), F'F (upper)) = (1,1) to the

moderately uneven and non-commensurate (F'F'(lower), FF(upper)) = (2-n,n), eventually to the

A
Ec

fully uneven, commensurate (F'F(lower), FF (upper)) = (2,0), as was increased.

(4) While we observed that increasing A/E¢ induced complex phase transition sequences, from
more commensurate to less commensurate, followed by again to more commensurate, the trends
with increasing disorder D/E¢c were straightforward: more disorder moved the BNS from more
commensurate towards less commensurate. Every time when either a blue or red phase boundary
was crossed with increasing D/FE¢ (vertically), commensuration was lost either at F'F' = 1, or
FF = 2. The physics behind this is natural: increasing disorder can smooth out the energy

differences driven by A or F¢, thus smoothing out the mobility minima as well.
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The independent energy offset model is a well defined statistical physical model, and thus
worthy of study. Our extensive exploration created a comprehensive description of the phase
diagram. Next, we turn our attention to the specific case of NP-based FETs, which have great
potential for applications. We start by recalling that the energy offset Apgr is not a free parameter
in NP-FETs, since it is induced by the transverse gate voltage, which also impacts the electron
filling factor, F'F' as the two are related via the Poisson equation.

We use Eq. (6) of Shklovskii’s 2014 paper [50] to represent this relationship. Broadly speaking,
in the interval of interest, we take Apgr to be proportional to F'F. Since additionally there are
several material parameters in this equation that can vary from FET to FET, we carried out a set
of simulations with varying proportionality constants.

Fig. 9 illustrates our results. We selected a set of proportionality constants between A and FF
such that Appr at F'F = 1 assumed those values which we used for our fixed-Agyg simulations
in Fig. 5a. This choice created the closest analogy and thus comparability between the two sets of
runs.

While the results in Fig. 9 and in Fig. 5a are not exactly the same, nevertheless they demon-
strate the same paradigm. While broadly speaking, the Coulomb blockade tends to suppress the
mobility at commensurate electron fillings, whether this suppression actually manifests itself de-
pends in a non-trivial and intricate manner on the various parameters of the model. For some
parameters, the NP-FET shows a suppression only at F'F’ = 1, for others only at F'F’ = 2, for some
at both fillings, and for some at none at all.

To establish a relationship between the phase diagram of the independent Appr BNS and the
NP-FETSs, we note that our BNS Dynamical Commensuration Vector DCV was defined by the
presence or absence of mobility minima at the two filling factors FFF' = 1 and F'/F = 2 at the
same Appns. In contrast, for NP-FETSs, the NP-FET Dynamical Commensuration Vector DCV
is defined by the presence or absence of mobility minima at the two filling factors F/F = 1 and
FF = 2 using their corresponding, different Apgrs. Thus, the two elements of the DCV have to
be determined from information in the BNS phase diagram at the two different As that correspond

to FF=1and FF = 2.
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FiGURE 2.9. Mobility as a function of the electron filling factor F'F'. The 4 curves
were generated by using 4 proportionality constants between the inter-layer energy
offset Appr and the filling factor F'F such that Appr was equal to the four Agyg
values used in Fig. 5a. at FF =1

2.4. Conclusions

In this chapter, we adapted the previously developed Hierarchical Nanoparticle Transport Sim-
ulator (HINTS) to simulate two models of interest: (1) Bilayer Nanoparticle Solids (BNSs) with
an independently variable inter-layer energy offset Apyg; and (2) Bilayer NP-FETSs, where the
inter-layer energy offset Apgr controlled the filling factor F'F. HiNTS combines ab initio single
NP modeling and NP-NP transition modeling into a Kinetic-Monte-Carlo-based simulation of the
transport in BNSs and NP-FETs. Our main results included the following.

(1) We observed the emergence of commensuration effects when the electron filling factors in
both NP layers reached integer values. These commensuration effects were profound as the on-

site Coulomb blockade reduced the mobility exponentially close to zero, often by 2-3 orders of
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magnitude. These observed reductions are to be contrasted with the limited mobility reductions
observed in models with long range interactions.

(2) We noted that different classes of commensuration effects emerged for different parameter
regions. The complexity of the physics was well-demonstrated by the fact that the commensuration
effects were markedly different at filling factors F'F' = 1 and F'F' = 2: in some regions the mobility
showed a minimum at F'/F' =1 but not at F'F' = 2, in some cases at F'F' = 2 but not at F'F' =1,

in some cases at both, and in some cases at neither.
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(3) We systematically swept a two dimensional subspace ( ) of the parameter space to
construct model’s dynamical phase diagram. We introduced two order parameters, the Dynamical
Commensuration Matrix DCM, and the Dynamical Commensuration Vector DCV to capture the
presence or absence of mobility minima at F'FF = 1 and FF = 2 as the electron filling F'F' was
swept.

We identified five separate dynamical phases of the model that demonstrate the richness of the
emergent physics, driven by the competition of the several energy scales of the model. We developed
an explanation for the presence or absence of mobility minima in each of these dynamic phases.
We developed further insights by discussing the critical behavior as the various phase boundaries
were crossed. Finally, we demonstrated the paradigmatic nature of our dynamical phase analysis
by reporting that the patterns of the mobility minima and the rich commensurate behavior of the
independently variable Apnygs BNS simulations were closely analogous to those of the NP-FET
simulations, where the Appr controlled the filling F'F.

In closing, it is important to understand the commensuration effects in bilayer NP solids as
in NP-FETSs electron transport is confined to the first few NP layers adjacent to the substrate.
In such confined spaces the Coulomb-blockade-induced commensuration effects tend to introduce
profound blockades against electron transport. Such transport blockades can greatly hinder the
usefulness and adoption of NP-FETSs for opto-electronic applications. Our work intended to serve

as a guide how to control, avoid and overcome transport blockades induced by the interplay of

commensuration and Coulomb effects in NP-FET's and in bilayer NP solids.
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2.5. HINTS

Here we describe some of the details of the Hierarchical Nanoparticle Transport Simulator,
or HINTS. HiNTS is, as the name suggests, a hierarchical code that starts at the atomic level and
works up to the level of hundreds of nanoparticles. The ab initio levels (1)-(3) have been described
in earlier publications in some detail [59,60], but will be briefly described as part of the fourth
hierarchical layer below.

Here we describe fourth hierarchical layer, the Kinetic Monte Carlo (KMC) modelling. We
introduced the KMC method to calculate mobilities of size- and lattice-disordered NP arrays. The
semi-classical KMC consists of tabulating possible events and then selecting and executing events
using a MC-like procedure. In particular, we decided to choose the BKL algorithm [67]. In the
BKL method, each time step requires drawing two uniformly distributed random numbers between
0 and 1: r; and 7.

The simulation is initialized and then the time-evolution starts by determining the rates I' of

possible events and then in each step we find the event j for which the below equation is satisfied.

7j—1 N
ZFi<r1FSum< Z I
=1

i=j+1

N

Fsum = Z F'L

=1

Then event j is executed and the time is advanced by drawing a second uniform random number:

Af — — ln(T'Q)

Fsum

Finally, all of the events that may have changed are recalculated. Simulation is stopped when
the measured physical observable reached a steady state value within a user-defined threshold.
We start the simulation by randomly placing charges on NPs with predefined density, and then

we switch on the KMC algorithm. The mobility is measured as:

harvested charges x L,

He = t x total number of carriers X Fyyt
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where L, is the length of the simulation box in the conducting direction. As stated above,
we stop the simulation once the mobility reaches steady state: typically millions of time steps
are needed to reach convergence. We used periodic boundary conditions in all three Cartesian
directions and the number of harvested charges were measured by counting the net number of
electrons crossing the z = L, plane.

For the regular hopping, we use Miller-Abrahams (MA) thermally assisted nearest-neighbor
hopping or tunnelling. Other approaches include the Marcus theory of electron transfer [68], which
also takes into account nuclear relaxation effects after the hopping, and the model developed by
Nelson and Chandler that closely resembles Marcus theory. [69]

The validity and differences of these approaches have been analyzed in detail. [70,71]

I/ﬂij exp (‘lﬁf?‘j) if Ez‘ > Ej,
(2.1) iy =
vBij if B, < B
The attempt frequency v is assumed to be size and ligand independent and they set the time
scale of the simulations. We chose v in order to qualitatively match the order of magnitude mo-

bitilies measured by the Matt Law group. [21] AE;; is the energy difference between electron states

of the ith and jth NPs. § is tunnelling amplitude and we evaluate it in the WKB approximation:

2m* Evac — Etunnelling
(2.2) Bij(E) = exp <—2Aw\/ ( = )>

Here Az is the NP-NP surface-to-surface distance, which in practice is chosen to be twice
the ligand length. m* is the effective mass of the tunnelling medium, which also depends on the
effective mass of the barrier. Here we approximated m* with the effective masses of electrons and
holes in bulk PbSe. [72] An alternative approach is to use the Bardeen formula of tunnelling. [73]
Here we refer everything to the vacuum level Ey,. which is thus set to zero in all simulations. If
the NP solid was embedded in a matrix this would represent the conduction band minimum of the
embedding matrix. E®"melling ig the tunnelling energy. It is not immediately clear what energy

should be used for Etunnelling Tp the spirit of the thermally assisted hopping approach of Chandler
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and Nelson, F*P was defined as an average of the energies of initial and final states of the hopping;:
prunnelling — (EZP + E2P) /2, where E°P is the single particle energy.

The energy difference AFE,;, in Eq.2.1 is the barrier for hopping, which can be written as:

(2.3) AEy = AE® + AFL + AES,

where the first term on the RHS is the difference in single particle energies of the initial and

final states of the hopping:

(2.4) AE®™ = EP — B3P,

a

We used the energies from k - p perturbation theory as obtained by Kang and Wise [62]. We
then applied a rigid shift to align the infinite diameter limit of the conduction band edge to the

work function of bulk PbSe [74]. Figure 2.10 shows the energy levels as a function of NP diameter.
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FIGURE 2.10. PbSe energy levels via k - p compared to experiment [75]

The second term on RHS of Eq. 2.3 is the contribution from the external voltage V:
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v
(2.5) AE(I;, = qL—(zb — Za)s

and
(2.6) AEL = A

where L, is the length of the NP solid in the conducting direction and z; and z, are the z
position of the center of the NPs, and A is the energy difference associated with the transverse
field. Care is exercised to make sure simulations are always in linear I-V regime. In particular, we
set the external voltage so that |EL| = 0.1k7T(@30K). As mentioned in the main text, the disorder
of the NP energies did not exactly average to zero in our samples, and thus generated an internal
bias field. We eliminated this bias by always taking the pairwise average of the currents with a
forward and a backward applied voltage.

Finally, the last term is due to the on-site Coulomb interaction:

(2.7) AES =9+ (ny)Z — (20 + (ng — 1)%,)

where we introduced self energy, or the on-site charging energy: X° is the energy that needs to
be paid upon the load of the first charge onto the neutral NP, while X is the energy it takes to load
each additional charge. Both of them can be written in the form of X(dparticle) = q*/2C (dparticle),
where is C' is the self-capacitance of the NP. Some groups also include here the mutual capacitance of
the array further decreasing the self-energy. [76] The capacitance can be taken to be proportional
to the diameter d. This is the approach we followed in our previous work and X was chosen
according to the work of Zunger [77]. In this work, instead, we use Delerue’s model [65], which

provides a semi-analytic form for ¥ and for Xg:

(2.8) »Y

_ 'S ( I 1> 0.47¢>  enp — €solid
8megR \ €solia NP dmepenp R enp + €golid
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2
q 1 0.79
2.9 b
(2.9) 4meg R <€solid 6NP)

We used the Maxwell-Garnett (MG) effective medium approximation [78] to compute the
dielectric constant of the entire NP solid. According to MG, the dielectric constant of the solid can

be approximated as

enp(1+ Kf) — €ligand(Kf — K)
Eligand(ﬁ + f) + ENP(1 - f)

(2‘10) €solid = €ligand

where k is 2 for spherical NPs and f is the filling factor.

Determining the dielectric constant of NPs is a field on its own [63,79]. The high frequency
dielectric constant of bulk PbSe is 22.9 at room temperature, while the low frequency dielectric
constant is 210 at room temperature. [72] It is not immediately clear whether the dielectric constant
entering Eqgs. 2.8,2.9,2.10 should contain ionic relaxation effects or not. Furthermore, the dielectric
constant of a single NP is in principle one by definition. One can usually define an effective dielectric
constant if the NP is big enough [63,79] but it turns out that such models, e.g. Penn Model [80],
may not necessarily work for any kind of system. [81] In order to avoid making an uncontrolled
approximation we decided to use the high frequency bulk dielectric constant of PbSe in the entire
NP diameter range. [77]

Having defined the energetics of the NPs we can now discuss the transition, or hopping rates.

The probability of an electron transferring from the initial NP a to the NP b is:
(2.11) Tap = Tijgifi(na)g;(1 = fi(m))
ij

where i/j denote kinetic energy levels, g;/g; are their degeneracy and f;/f; is the Fermi occu-
pation function, n is the number of electrons on the respective nanoparticle.

Since we are assuming that the NP solid is weakly charged and the average charge per nanopar-
ticle is less than the band degeneracy, the Fermi occupation functions can be replaced by their zero

temperature limit and the sum over bands is limited to the first states:
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(2.12) Tav =Y Tijgig;
_i€occ
J€unocc

Following earlier works and assuming that our NP solid is not operating in the extremely
confined size regime, the degeneracy g of the band edge states comes from the valley-degeneracy of
bulk PbSe which is eight, including spin. Later work of Delerue showed that there is minor split of
these states due to intervalley coupling. [82]

In order to investigate more realistic lattice disordered NP solids we set up random closed
packed models by using an event-driven Molecular Dynamics code. [66,83] NP diameters (d) were

drawn from a Gaussian distribution with an average diameter p and standard deviation of o:

1 _(d=w?

(2.13) fld,p,0) =

oV 2T

In order to sufficiently capture disorder effects we averaged over one hundred different random

NP lattices. Error bars in our calculations represent the standard deviation of the mean.
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CHAPTER 3

TRIDENS: Transport in Defected Nanoparticle Solids

3.1. Introduction

Colloidal semiconductor nanoparticles (NPs) are singularly promising nanoscale building blocks
for fabricating mesoscale materials that exhibit emergent collective properties. There is a growing
interest to use NPs for numerous optoelectronic applications [46,47], including third generation
solar cells [2,3] light emitting diodes [7], and field effect transistors (FET) [8,9].

Electron wavefunctions are localized on the individual NPs. This ” quantum confinement” makes
the electronic parameters tunable with the NP size, and thus makes the NP solids a very versatile
platform for applications [84]. However, the very same quantum confinement also suppresses the
transport between NPs, and thus drives NP solids insulating. As a result, without the application of
specific transport-boosting fabrication steps, the electron mobility in NP solids is often in the range
of 1072—10"! cm?/Vs [16,85]. These mobilities are typically measured in FET arrangements. This
is orders of mangitude below the mobilities that would be acceptable for electronic applications.
Therefore, increasing the mobility and transport in NP solids is one of the central challenges on
the way to realize the promise of NP solids.

Various experimental groups managed to boost the mobility by enhancing the inter-NP tran-
sition rate with a variety of methods, including: ligand engineering [10,11,12], band-alignment
engineering [13, 14|, chemical-doping [15,16], photo-doping [17], metal-NP substitution [18], epi-
taxial attachment of NPs [19,20], and atomic layer deposition methods [21]. Encouragingly, these
efforts recently translated into notable progress, as NP solids were reported to exhibit band-like,
temperature-insensitive mobilities, with values exceeding 10 cm?/Vs at room temperatures [16,85].
It is important to note that some experiments reported data that can be interpreted as evidence
for band-like transport. One of these is the relative temperature independence of the observed mo-

bilities, in contrast to hopping insulators where an activated temperature dependence is expected.
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However, the absolute values of the mobilities remain relatively low compared to most metals, and
this makes conservative commentators stop short of identifying this transport as metallic [16, 85].

On the theoretical front, there have been efforts from several groups to understand electronic
transport in NP films and solids. Density functional theory (DFT)-based ab initio calculations of
the energy levels of a single NP alone are already limited to only hundreds of atoms for higher-
reliability methods, and a few thousands for more approximate methods by prohibitive CPU times.
These translate to diameters less than 2-3 nm, whereas experimental NP diameters often exceed 5-6
nm. Next, the accurate computation of the NP-NP transition rates would require the simulation of
two NPs. And even if this calculation is completed, it does not address that the NP-NP transport
is not metallic but insulating; the disorder of the parameters from NP to NP; and finally the
defects of the NP solids. In total, ab initio descriptions alone are very far from being capable
of describing transport in NP solids. Cleary, there is a pressing need for developing mesoscopic
transport simulations that somehow integrate ab initio calculations.

Shklovskii et al. have developed transport calculations for a NP array in a FET geometry,
where they focused on the effects of the Coulomb interaction [50]. The interplay of transport and
Coulomb interactions was studied in Refs. 86 and 69, albeit on very small samples. Over the
last few years, our group developed the Hierarchical Nanoparticle Transport Simulator (HINTS)
platform that starts with an ab initio calculation of the energetics of individual nanoparticles, then
forms a NP solid of several hundred NPs, and finally simulates transport across this NP solid by a
Kinetic Monte Carlo method [59,60]. HINTS can simulate 500-2,000 nanoparticles. A reassuring
validation of HINTS emerged from simulating the dependence of the mobility of PbSe NP layers as
a function of the NP diameter. The results in [59,60] closely tracked the experimental results of
Liu et al., who studied the electron mobility of PbSe layers in a FET geometry [76]. More recently,

we studied commensuration effects in bilayer NP solids [87].
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blue: grain boundary
yellow: twin plane
red: other defect

F1GuRE 3.1. Common planar defects in PbSe nanoparticle superlattices. (a) Grain
map of a typical region of an PbSe NP superlattice film showing the location of
several types of planar defects. Blue, yellow, and red lines denote wide-angle grain
boundaries, twin planes, and more complex, unclassified planar defects and defect
clusters, respectively. The image is a montage of fifteen low-magnification, high-
resolution SEM images. Voids, step edges, vacancies, and other types of non-planar
defects are also visible in the montage. (b) Higher-magnification secondary electron
image of a bicrystalline region of an epi-SL film with two (100)SL-oriented SL grains
meeting at a twin plane. (c¢) Image of another region of the same epi-SL film showing
multiple grain boundaries between (100)SL- and (011)SL-oriented grains, as well as
several other planar defects.
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However, these theoretical efforts only considered NP solids with homogeneous disorder: the
NPs were arranged either in a close-packed glassy /jammed structure, or on an ordered superlattice
(SL) with disorder only in the NP size. In contrast, representative scanning electron microscope
(SEM) images, like in Fig. 3.1, taken of NP solids with millions of NPs, conspicuously reveal that
typical NP solids are also characterized by disorder on much larger length scales. These defects,
often on the pym length scale, have sizes well beyond the capabilities of any published technique,
including HINTS. Therefore, there is a need for transport simulation methods that are capable of
capturing meso- and macro-scale defects and their effect on transport.

We performed one step in this direction previously by extending our HINTS method to include
percolative effects into homogeneously disordered NP solids [60]. This simulation captured physics
on the longer length scales of percolative clusters. Our main message was that a metal-insulator
transition (MIT) occurs when a percolating path of metallic-connected NPs develops across the
entire sample. We described this MIT as a Quantum Percolation Transition. However, this work

still did not incorporate planar defects.

3.2. Simulation Methods

To answer the above needs, in this chapter we report our work that boosted the capability of
our HINTS platform by introducing additional hierarchical layers to capture the effect of planar
defects on the transport in NP solids. First, we used HINTS to individually model a NP superlattice
(SL) with one planar defect that was either a generic grain boundary or a twin plane. Second, we
simulated transport across a large number of such single-defect SLs, and determined the distribution
of the mobilities of the single-grain-boundary NP SLs and that of the single twin-plane NP SLs.
We also determined the distribution of the mobilities of undefected NP SLs with only homogeneous
NP disorder. Third, to reach a simulation scale approaching the scale of the NP solids in the
experiments, we built a resistor network where the individual resistor values were taken from the
three mobility distributions with predetermined probabilities. Motivated by our previous work [60],
we determined the resistance of the entire resistor network by changing the fraction of undefected

NP SLs within the network. Finally, we analyzed our results by a finite size scaling method.
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We call this boosted HINTS platform the TRIDENS: the “TRansport In DEfected Nanoparticle
Solids” Simulator. With TRIDENS, we are capable of capturing the physics from atomistic length
scales up to the scale of NP solids in the experiments by integrating the simulations on several
hierarchical layers. The complete hierarchical structure of TRIDENS is presented below.

(1) The energy levels of individual PbSe NPs are determined by adapting a k - p calculation
within the NP diameter range of 5-7 nm. The valence band and conduction band values have been
validated via comparison to optical experiments [62]. Here we focus on PbSe NPs because they are
of considerable interest for solar applications due to their large Bohr exciton radius and small direct
bulk bandgap [88], and exhibit the possibly game-changing multiple-exciton generation (MEG) [89].
For these reasons, PbSe NPs are often thought to have strong promise for solar applications.

(2) The electron-electron interaction is included on the level of an on-site, or self-charging energy

expression, F¢, defined as:
—1
(3.1) Ec =n(2 + (”2)2)

where n is the number of electrons on the NP. XV is the self-charging energy of loading the first
electron onto a neutral NP. ¥ is the extra energy it takes to load each additional electron onto the
NP due to repulsive Coulomb interaction with the (n-1) electrons already on the NP, as well as the
interaction with the induced image charge.

This self-charging energy can be calculated by a variety of methods, including the semi-empirical
pseudopotential configuration interaction method of Zunger and coworkers [64] and the single NP
empirical-perturbative hybrid calculations of Delerue [90]. In this chapter we report results with

the latter approach. In this approach

2 2

q 1 1 q ENP — €solid
3.2 ¥ = — ) 4047 ,
(3:2) 8meg R " €solia ENP) dmegenp R " enp + €solid
and

2
q 1 1

3.3 = +0.79—).
(3:3) dmeg R €solia €NP)

For the dielectric constant inside the NP, we assume that it equals the bulk high frequency dielectric
constant of PbSe, taken to be 22.0. To model the dielectric constant of the medium surrounding the
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NP, we account for both the organic ligand shell of the NP as well as the presence of neighboring
NPs. We assume that the ligands themselves have a dielectric constant of 2.0. The dielectric
constant of the entire solid is then calculated using the Maxwell-Garnett (MG) effective medium
approximation:

ENP(]. + K/f) - 6ligand(ﬁf — /i)
fligand("f + f) + 6NP(1 - f)

(3.4) €solid = €ligand

where & is 2 for spherical NPs, and f is the filling factor.

We note that the long range part of the Coulomb interaction can be easily included into the
calculation. The long range interactions change the nature of transport from activated hopping
to Efros-Shklovski type variable range hopping. However, many experiments show that while this
Efros-Shklovskii hopping dominates at low temperatures, as the temperature is raised past 150-
200K, the transport becomes dominated by nearest neighbor hopping. [91] Since our work focuses
on temperature ranges around ambient room temperature, representing the Coulomb interactions
with the on-site term only is appropriate.

(3) We modelled the electron transitions between neighboring NPs via a Miller-Abrahams

phonon-assisted hopping mechanism:

AFE;; .
Vgi]ﬂijexp kaJ if AEij > 0

(3.5) i,y =
Vgijﬁij if AEU <=0

where v is an attempt frequency, chosen to be 102571, gij is the product of the initial density of

states on NP; and the final density of states on NP;, and 3;; is the tunneling amplitude. ;; is

calculated using the WKB approximation as:

(3.6) Bii = exp (—QAx\/zm*(E‘;:; — Ez))

Here Az is the NP-NP surface-surface separation distance. m™* is the effective mass of the electrons
in the tunneling medium, approximated as .05m,, the effective mass of electrons in bulk PbSe. It
is noted that m* was estimated to be 0.3m. in NPs [92]. Ey,. is the vacuum energy level, set to

be zero as all other energy levels are defined relative to the vacuum. E;; is the tunneling energy,
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FIGURE 3.2. Top down views of the three types of the simulated NP SLs: (a) An
undefected NP SL, characterized by the NPs having only size and location disorder;
(b) A NP SL, containing a twin plane, as denoted by the dashed line, also with NP
size and location disorder; and (c) An NP SL, containing a grain boundary, also with
NP size and location disorder. NP color corresponds to NP diameter, as indicated
in the colorbar on the left.

taken to be the average of the initial and final states of the hopping transition: E;; = (E; + Ej;)/2,
where E; is the energy level of NP;.

(4) To reach the length scale of hundreds of nanometers, we generated triclinic NP superlattices,
of PbSe NPs with a 20x20x2 geometry, inspired by the 2D channel geometries of FETs used in
transport experiments [93]. The triclinic unit cell was described with lattice constants a1 = as =
a3 = 6.9 nm and angles @« = § = v = 99°. The average NP diameter was 6.0 nm. Size and location
disorder were introduced by assigning the NPs a diameter and lattice displacement vector according
to Gaussian distributions of widths o(diameter) = 0.4 nm and o(location) = 0.3 nm respectively.
See Fig. 3.2a for an example of one of these SLs. In our undefected SLs, these parameters yield a
(Bij) ~ 0.015 =+ .02.

Layers (1)-(4) are the main constituents of our HINTS platform. HINTS is suitable for capturing
the effects of homogeneous disorder, i.e. disorder associated with the size and location of the NPs
that varies from site to site of the NP superlattice, but does not involve planar defects. Next, we
describe the additional layers of the TRIDENS that enable us to access length scales well beyond
the reach of HINTS.

(5) As a first step, we introduced a single planar defect into each generated NP superlattice (SL).
We carefully analyzed SEM images of NP solids with millions of NPs of the type of Fig.3.1, and

determined the predominant types of defects and their statistics, such as the lengths and densities
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of the planar defects. Based on the SEM image analysis, the most relevant and oft-occurring planar
defects were twin planes and grain boundaries.

(a) Twin planes: the NP superlattice is mirrored across a boundary plane, creating two crys-
tallites, or grains, which have reflected in-plane unit cells. Twinned grains can also be related by
a 180° rotation normal to the twin plane. The twin plane is always parallel to a possible crystal
face (but not any planes of complete symmetry, e.g. it is distinct from all space group symmetries),
and thus requires the two grains to share some NP lattice sites along the boundary plane. See
Fig. 3.1b and Fig. 3.2b. The high symmetry nature of twin planes makes them a low disorder
defect, compared to the more highly disordered grain boundaries discussed below. In our generated
samples the twin planes were created in a (100) in-plane oriented SL, and the orientation of the
twin plane itself was randomly selected on a sample-by-sample basis from all possible crystal planes
which would span the entire NP simulation SL in the x-direction (in order to bisect the SL). As an
example, one such boundary orientation is that of a (012)/(021) twin boundary, where (012) is the
orientiation of the boundary plane in grain 1, and (021) is the orientiation of the boundary plane
in the mirrored grain 2.

(b) Grain boundaries: the NP superlattice is again fractured by a boundary plane. However,
unlike with twin planes, the superlattice is not mirrored across the boundary plane. There are two
main types of grain boundaries. 1) Tilt grain boundaries, where the in-plane SL orientation is the
same in the two grains, but they are spatially rotated in-plane relative to each other. The angle
of rotation can be divided into “low angle” and “high angle” regimes, where the higher the angle
of rotation, the more disordered the grain boundary (with large areas of poor fit). 2) Twist grain
boundaries, where the in-plane superlattice orientations of the two grains are different (rotation
occurs along an axis perpendicular to the boundary plane). Such grain boundaries will result in
two crystallites/grains with different in-plane superlattice orientations (e.g. a boundary between a
(100)gr, in-plane orientation and a (101)sy, in-plane orientation).

In our generated samples, we simulated grain boundaries with a combination of tilt and twist
mismatching. Specifically, the boundary plane separated grains of (100)gr, in-plane orientation and
(011)sL, in-plane orientation respectively, with the relative in-plane spatial orientation of the two

grains depending on the angle of the boundary plane (chosen at random on a sample-by-sample
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basis). The boundary plane was always limited to angles which would span the entire NP simulation
SL in the x-direction (in order to bisect the SL). This results in grain boundaries which are much
more extensively disordered than twin planes, particularly when the boundary plane results in a
high-tilt grain boundary. See Fig. 3.1c and Fig. 3.2c. Hereafter, we will refer to our specific
combination of boundary mismatching as simply a “grain boundary”.

In total, we generated 30,000 NP superlattices, containing either one or two grains, where we
varied the disorder of the NP diameters (see color code in Fig. 2), the on-site NP location disorder,
and the orientation of the planar defects as viewed out-of-plane. Of these 30,000 NP SLs, 10,000
NP SLs had no planar defects, the next 10,000 NP SLs contained one twin plane, and the last
10,000 NP SLs contained a grain boundary.

Fig.3.1 shows other types of defects as well. We determined that point vacancies have minimal
effect on the mobilities in the insulating phase. One can also see tears/rips/voids/cracks in the
SEM image. NP superlattice fabrication technologies will be ready for technical application when
they can minimize or eliminate such disruptive tears. For these reasons, we did not model either
of these defects.

(6) Next, we determined the electron mobility across each of the 3x10,000 defected NP SLs.
To do this, each NP SL was populated with electrons, randomly placing them on NPs, using
the Mersenne Twister, until a predetermined electron density was reached. The chance of an
electron being placed on any particular NP was uniform, independent of electron occupation and
NP parameters. Data was only taken well after the system achieved equilibrium. A small voltage
was applied across the sample to induce transport in the linear I-V regime, with periodic boundary
conditions. Finally, the electron transport was simulated by evolving time via a kinetic Monte
Carlo (KMC) algorithm. The so-determined mobilities of the 3x10,000 NP SLs were used to create
the mobility distributions for the homogeneously disordered NP SLs, the twin-plane-supporting NP
SLs, and the grain-boundary-supporting NP SLs. The first class of NP SLs will also be referred to
as “undefected NP SLs”, the latter two classes as “defected NP SLs”.

(7) To simulate NP solids on mesoscopic length scales of the order of 10 um or longer, we
generated a classical resistor network, with resistors chosen at random from the distributions deter-

mined in step 6. Which distribution the resistors were chosen from was also randomly determined,
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according to a parameter that describes the fraction of defected resistors. Random numbers were
generated using standard numpy libraries. Each resistor represents an NP SL with an L = 20
length planar defect. One notes that in Fig.3.1 many of the planar defects are considerably longer
than L = 20. Representing planar defects with longer lengths is possible in TRIDENS by placing
defected NP SLs correlated along the lines of the network. Such longer range defect-correlations
were not pursued in the present work, but will be included in future work.

With these preparations, the mobility of the overall NP solid was determined by treating this
NP SL network as a resistor network. We used the Laplacian method of F. Y. Wu et al. to calculate
the overall resistance across the entire network [94]. The electrodes were modeled as equipotential
metallic strips spanning the entire length of the sample edge, thus making them equivalent to a
single node on a resistor network. These electrodes were coupled to the sample by contact resistors
that were chosen according to the same rules as the bulk resistors.

(8) Having determined the overall mobility of the network of defected NP SLs, we adapted
finite size scaling methods to analyze whether this resistor network model built from defected NP
SLs had a phase transition, or a crossover, and if so, what are the properties of this transition. To
this end, we repeated step (7) for resistor networks of various sizes, including 32x32, 64x64, and
128x128. As detailed below, our finite size scaling found a percolation transition that separates
a low mobility insulator from a high mobility insulator. We used finite size scaling to determine
the critical properties of this transition, including the critical point, the critical exponents and the

universal scaling function.

3.3. Experimental Methods

Materials: Lead oxide (PbO, 99.999%), oleic acid (OA, technical grade, 90%), diphenylphos-
phine (DPP, 98%), 1-octadecene (ODE, 90%), ethylene glycol (EG, 99.8%, anhydrous), acetonitrile
99.99%, anhydrous, hexanes >99%, anhydrous, toluene 99.8%, anhydrous, and 3-mercaptopropyl
trimethoxysilane (3-MPTMS, 95%) were purchased from Sigma Aldrich and used as received. Tri-
octylphosphine (TOP, technical grade, >90%) and selenium (99.99%) were acquired from Fluka

and mixed for 24 hours to form a 1 M TOP-Se stock solution. Ethylenediamine (EDA, >98.0%,
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anhydrous) was purchased from TCI and mixed with acetonitrile in a 1:1 volume ratio to make a
7.5 M EDA stock solution, this is a slight modification to a published procedure [93].

Quantum Dot Synthesis: In this experimental section we adopt the alternative terminology of

”quantum dots” to refer to the nanoparticles, to accommodate alternative terminologies preferred
by different communities. PbSe QDs were synthesized and purified air-free using a slight modifi-
cation of a published procedure [93]. Briefly, PbO (1.50 g), OA (5.00 g), and ODE (10.00 g) were
mixed and degassed in a three-neck round-bottom flask at room temperature. The mixture was
heated to 120 C under vacuum to form dissolved Pb(OA)2 and dry the solution. After 1 hour at
120 C, the Pb(OA)2 solution was heated to 180 C under argon flow and 9.5 mL of a 1 M solution
of TOP-Se containing 200 uL. of DPP was rapidly injected into this hot solution. An immediate
darkening of the solution was observed, and the QDs were grown for 105 seconds at ~160 C. The
reaction was quenched with a liquid nitrogen bath and injection of 10 mL of anhydrous hexanes.
QD purification and SL fabrication were performed in glove boxes with <0.5 ppm O2 content. The
QDs were purified by two rounds of precipitation/redispersion using acetonitrile/toluene and stored
as a powder in the glove box.

Substrate preparation: Following and slightly modifying the procedure seen in [93] a single-side

polished Si substrate was cleaned using 10 minutes of sonication in acetone, Millipore water, and
then isopropanol, followed by drying in a stream of flowing air. The cleaned substrate was immersed
in a 100 mM solution of 3-MTPMS in toluene for 1 hour to functionalize its native SiOx surface
for improved QD film adhesion, then rinsed with neat toluene and dried in flowing air.

Superlattice fabrication, electron microscopy imaging: Quantum dot superlattice films were fab-

ricated and imaged using (modified) published procedures [93]. An oleate-capped superlattice was
prepared in a glovebox (<2 ppm O2) by drop casting 60 uL of 20 g/L dispersion of PbSe QDs in
hexanes onto 7 mL of ethylene glycol (EG) in a Teflon well (3.5 x 5 x 1 cm). After depositing the
QD solution, the well was immediately covered with a glass lid. The hexane evaporated over 30
minutes, resulting in a smooth, dry QD film floating on the EG surface. The glass lid was then
removed and 0.1 mL of a 7.5 M solution of EDA in acetonitrile was slowly injected (5-10 sec) into

the EG under the QD film using a 1 mL syringe. After 30 seconds of exposure to EDA, the resulting
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epi-SL film was stamp transferred to the Si substrate using a vacuum wand, rinsed vigorously with
acetonitrile, and dried under flowing N2.

Scanning electron microscopy (SEM) imaging was performed on an FEI Magellan 400 XHR
SEM operating at 10 kV. Grain maps were produced by stitching together fifteen 6,144 x 4,415
pixel images acquired at 50,000x magnification, providing the ability to resolve individual QDs in
the sample. Image stitching was performed in Adobe Photoshop. Grain boundaries, twin planes,
and other planar defects were then located by eye and drawn in manually.

Superlattice samples for TEM analysis were prepared by stamping QD films from the EG surface
onto holey carbon TEM grids without a carbon film coating. The use of TEM grids free of a carbon
film was critical for high-quality secondary electron imaging (SEI) in the TEM. SE imaging was
performed on a JEOL JEM-2800 TEM operating at 200 kV using a probe size of 1.0 nm.

3.4. Results and Discussion

TRIDENS simulations: We laid the foundation of our simulation by carrying out steps (1)-(4),

as done in a standard HINTS study. To carry out step (5), we generated 3x10,000 defected NP SLs
by starting with homogeneously disordered but undefected 20x20x2 NP SLs whose shape broadly
corresponded to FET geometries, and then inserted a twin plane planar defect into 10,000 NP SLs,
and a grain boundary planar defect into another 10,000 NP SLs. The latter sometimes involved
removing a few NPs to keep the shape of the NP SLs largely unchanged.

Next, we executed step (6) by determining the mobility distribution of the defected NP SLs. The
mobility distribution for the homogeneously-disordered, undefected NP SLs is shown in Fig.3.3a.
The mobility distribution of the twin-plane NP SLs is shown in Fig.3.3b. Finally, the mobility
distribution of the grain-boundary NP SLs is shown in Fig.3.3c. All three distributions were
approximately normal, and could be well characterized by a mean and a standard deviation. The
mobility of the undefected NP SLs was 0.42 4 0.1 cm?/Vs, the mobility of the NP SLs containing
twin planes was 0.16 £ 0.06 cm?/Vs, and the mobility of the NP SLs containing grain boundaries
was 0.09 £ 0.05 cm?/Vs, as shown.

We then performed step (7) by assembling a resistive network whose individual links had mo-

bilities selected from the above determined mobility distributions. To identify the paradigmatic
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FIGURE 3.3. Mobility distributions of the 3 types of NP SLs: (a) Undefected NP
SLs, the NPs having size and location disorder; (b) NP SLs, each containing a twin
plane, also with NP size and location disorder; (c¢) NP SLs, each containing a grain
boundary, also with NP size and location disorder. Displayed in each panel is the
average mobility and standard deviation of Gaussians fitted to the distributions. All
simulations were performed at a temperature of T'= 300K .

aspects of the behavior of the mobility of the NP solid, we selected the links from the highest

mobility undefected NP SL distribution with a probability p, and from the lowest mobility grain
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boundary NP SL distribution with a probability (1 — p). We used this p, the fraction of the high
mobility undefected NP SLs/links as the control parameter of our study. Initially we expected that
when the probability (1 —p) of the low mobility defected NP SLs becomes small, then the electrons
will be able to “flow around” the low mobility links through the high mobility links. Put differently,
the high mobility links will be able to approximately short out the low mobility links. Had this
expectation been true, then the mobility of the NP solid should have exhibited a saturation as p
approached 1.

Fig.3.4 shows the evolution of the mobility of NP solids with p. Visibly, our initial expectation
was not confirmed as the mobility did not show a saturation as the fraction p of the undefected NP
SLs approached 1.0. The high mobility links did not “short out” the low mobility links. A possible
explanation is that the mobilities of the different NP SLs were not different enough for such a short-
out. We checked the robustness of this result, and found the same characteristic non-saturating

shape in other 2D geometries, as well as in 3D bulk networks.
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FIGURE 3.4. Mobility of a 32x32 resistor network whose resistors/links are chosen
from two distributions, the low mobility grain boundary NP SLs mobility distribu-
tion and the high mobility undefected NP SLs mobility distribution. The fraction
p of the high mobility NP SLs sweeps the 0 to 1 region. The error bars are smaller
than the data points.
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Bimodal percolation transition: Next, we investigated whether there is a percolative critical

behavior as the p fraction of high mobility links is varied. The simple case of a resistor network,
where the links either have a finite (electronic) mobility p with probability p, or a non-conductive
zero mobility with probability (1 — p), has been extensively analyzed. The conductivity of such a
resistor network exhibits a critical behavior across the percolation critical point p. with a power law
dependence u o< (p — p.)t, where the critical exponent ¢ > 1 is universal, and p, is the percolation
threshold.

Remarkably, the closely related bimodal problem of the links of a network having a high con-
ductivity o(high) with probability p, or a low but finite conductivity o(low) with probability (1—p)
has been rarely analyzed. Efros and Shklovskii (ES) established the broad framework for the anal-
ysis, when they made the analogy between this bimodal distribution problem and the problem of
how the critical behavior of a spin system gets modified by the presence of a symmetry breaking
magnetic field [95]. They hypothesized a power law critical behavior for the network conductivity,
where the universal scaling function at the critical point p = p. is anchored by the ratio of the
high and low conductivities. However, they did not determine either the critical exponents, or the
universal scaling function.

Finite size scaling: Next, we attempt to adapt the ES bimodal framework to describe our

TRIDENS-simulated results. The finite size L of the simulated samples makes it necessary to
analyze the results by finite size scaling. Normally this is handled by the introduction of a scaling
function with a single variable: the ratio of the sample size L to the correlation length & = £ PV,
where P = ‘p;ifc‘ that smoothes over the non-analytic critical behavior.

However, for the present, bimodal mobility distribution problem ES argued that the ratio of
conductivities plays the role similar to an external magnetic field in a critical magnetic system:
;}i—jg“; = h, and already smoothes over the critical behavior. Therefore, the model needs to be

analyzed by a two variable finite size scaling form, where the ratio L/ is a second factor that

smoothes the critical behavior:

(3.7) (P, L,h) = P~*u(hP~%, LP)
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where u(x,y) is the universal finite size scaling function, and «, v and A are critical exponents.
The analysis is more tractable if the singular P dependence is absorbed by factoring out hP~3&

from p, leaving us with:

(3.8) p(P,L,h) = h=*/%4/(hP~2, LP")

Since p/(x,y) is a two-variable function, the full testing of the finite size scaling hypothesis
would require a quite extensive computational effort. Therefore, we narrowed our analysis of the
finite size scaling assumption to the first variable, hP~2, while keeping the second variable, LP",
constant. As the lattice sizes were varied from L = 32 to L = 128, keeping LP" constant required
the appropriate modification of P. We then chose the h values so that the critical regime on either

side of the critical point p. was well sampled.
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FIGURE 3.5. Scaled data of ph®/2 vs. h~'P2 for 3 different lattice sizes. The
product LPY is held constant.

Fig. 3.5 shows the scaled mobility h*/2 as a function of h~!P? for a fixed value of LP", for

three lattice sizes, varying from L = 32 to L = 128. Reassuringly, we were able to achieve very

good data collapse within the (—0.1,0.1) critical regime around the critical point at P = 0, which
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remained acceptable out to (—0.2,0.2). Using the literature values of v = % and p. = 0.5, the best
collapse was reached with exponents & = —0.99 + .02 and A = 2.02 +.02.

The success of the finite size scaling shows that the Efros Shklovskii analogy to critical spin
systems in an external magnetic field is indeed appropriate for this bimodal percolation problem:
as the fraction p of the high mobility undefected NP SLs increases, one can think of the evolution of
the overall mobility as a modified percolation transition, rounded by the finiteness of the mobility
of the low mobility NP SLs. As far as the authors know, this is the first report of the critical
exponents and the universal scaling function of the bimodal distribution resistor network problem.

The following points are worth making. Fig. 3.5 shows that the overall network electron
mobility, or conductivity, displays a marked transition from a low mobility insulator behavior when
the high mobility NP SLs do not percolate yet, to a high mobility insulator behavior once the
high mobility NP SLs percolated. Of course, both of these regimes are insulators, so while the
geometry of the NP solid undergoes a genuine percolation transition, the conductive properties
exhibit only a low mobility insulator-to-high mobility insulator transport crossover, not a genuine
phase transition.

We have studied a version of this problem recently on the level of our HINTS code [60], where
the NPs were connected with either low mobility activated insulating links, or high mobility, non-
activated metallic links. In that version of the problem, the underlying percolation transition
of the metallic links of the NP solid drove a genuine metal-insulator-transition (MIT), as the
percolation of the metallic links created a genuine metallic phase. We conceptualized that MIT as
a Quantum Percolation Transition, and adapted the ES bimodal mobility distribution percolation
model for its description, as at any fixed temperature that version of the problem also consisted
of a bimodal mobility distribution with low mobility links and high mobility links. Whether the
high mobility phase is a metal or a high mobility insulator can be identified from the temperature
dependence of its conductivity. In the absence of the present detailed finite-size scaling study, in
Ref. [60] we developed a simple, mean-field model form for the scaling function that described the
mobility’s evolution from the low mobility insulator to the high mobility metal. With the notation
of the present chapter, the mean field exponents were @« = —1 and A = 1. This enabled us to

create the dynamical phase diagram of the model on the electron filling — disorder plane, where
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the MIT separated the insulating phase with activated conductivity from the metallic phase with
non-activated conductivity.

The present bimodal TRIDENS study scales up our previous bimodal HINTS work to much
larger length scales. The key distinction is that the building blocks of the HINTS network were
the individual NPs, whereas in TRIDENS the building blocks are the NP SLs with around a
thousand NPs (in the present work, with 800 NPs). Further, in HINTS the origin of the bimodal
mobility distribution was the presence or absence of metallic links between individual NPs, whereas
here the origin of the bimodal mobility distribution is the presence or absence of an planar defect
across the individual NP SLs. Obviously, the HINTS transport modeling that tracks individual
electrons transitiong between individual NPs is more detailed than the resistor network of the
present TRIDENS work. Nevertheless, since the building blocks of both the bimodal HINTS and
the bimodal TRIDENS are low mobility links and high mobility links, we expected that the same
ES bimodal percolation model with the same universal scaling function and exponents will capture
the critical behavior of the bimodal TRIDENS results. The success of the data collapse with the
ES finite size scaling form validated this expectation. While, of course several different analytic
forms can be fitted to the universal scaling function that emerged in Fig. 3.5, nevertheless it was

reassuring that in particular the mean-field function of the bimodal HINTS study:

(3.9) p' (hP~2, LP" — c0) = 1/(1+ P/h)

was also consistent with it. Further, the a = —0.99 exponent of the TRIDENS scaling is approx-
imately equal to the &« = —1 mean field value within the margin of error. We noted that there was a
difference regarding the A exponent: TRIDENS gave a A = 2.02, whereas in the mean field theory
A = 1. However, such differences occur typically between mean-field and numerically determined
exponents. All in all, the substantial correspondence between our HINTS and TRIDENS works
demonstrated that the ES bimodal percolation model is a good, quantitative description of how the
underlying percolation transition of the NP solid drives a low-mobility insulator-to-high-mobility

insulator transport crossover.
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For completeness we mention that we implemented TRIDENS with randomly selecting high or
low mobility NP SLs for the links. This corresponds to planar defects with a length of tens of NPs.
However, the sample in Fig.3.1 has many defects that are much longer. Such long defects can be
modelled by selecting defected SLs along lines of links in TRIDENS, in a correlated manner. Such

correlated TRIDENS models will be pursued in a future work.

3.5. Conclusions

Transport in nanoparticle solids must be simulated on extremely large length scales, corre-
sponding to millions of NPs, because NP solids exhibit spatial structures on several length scales,
from the subtleties of individual NPs through the sensitive modeling of inter-NP transitions and
through transport across homogeneously disordered SLs all the way to transport in NP SLs with
large planar defects. Single-level computational methods are manifestly unable to span these length
scales. This is why in our previous work we developed the multi-level HINTS method that was ca-
pable of simulating transport across NP solids with up to a thousand NPs. However, even HINTS
is unable to capture the effect of planar defects on transport in NP solids of the size of tens of
microns.

In this chapter, we reported the development of the TRIDENS method that adds three further
hierarchial layers on top of the HINTS method. In TRIDENS, we first introduced planar defects
into individual NP SLs that comprised the order of about a thousand NPs. Then we used HINTS
to simulate the transport across these defected NP SLs. We performed these HINTS transport
simulations for tens of thousands of defected NP SLs, and constructed the distribution of the NP SL
mobilities with planar defects. Second, the defected NP SLs were assembled into a resistor network
with more than 10* NP SLs, thus representing about 107 individual NPs. This translated to length
scales of tens of microns, approaching the experimental scales for NP solids. Third, and finally, the
TRIDENS results were analyzed by finite size scaling to explore whether the percolation transition,
separating the phase where the low-mobility-defected NP SLs percolate from the phase where
the high-mobility-undefected NP SLs percolate, drives a low-mobility-insulator-to-high-mobility-

insulator transport crossover that can be extrapolated to genuinely macroscopic length scales.
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Our extensive TRIDENS analysis generated the following results. On the level of individual
NP SLs, we found that the average of the mobility for undefected NP SLs was 0.42 + 0.1 cm?/Vs,
for twin-plane-defected NP SLs 0.16 & 0.06 cm?/Vs, and for grain-boundary-defected NP SLs 0.09
+ 0.05 cm?/Vs. On average, grain boundary defects hinder transport about twice as much as
twin planes. This result makes sense, as grain boundaries are more disruptive to lattice periodicity
than twin planes, and transport across the grain boundaries involves longer hops between more
distant NPs, whereas transport across twin planes proceeds across many NPs shared by the grains
on the two sides of the twin plane, and thus it involves regular hop lengths. It is noteworthy that
the introduction of planar defects into NP SLs reduced their mobility by a factor of up to 5. On
one hand, this is a substantial suppression of the mobilities that drives a transport crossover, and
thus demonstrates the imperative of minimizing the density of planar defects in NP solids to help
their suitability for applications. On the other hand, this is not a qualitative, order-of-magnitude
suppression of the transport that indicate a Metal-Insulator-Transition: those are driven by the
loss of phase coherence.

On the highest, resistor network-level analysis of TRIDENS, we observed that the introduction
of the planar defects immediately started to reduce the network mobility. This finding suggests
that even small concentrations of planar defects are not shorted out in NP solids, and thus every
reduction of the density of planar defects will lead to further improvements of the transport in NP
solids. Among the planar defects, the elimination of grain boundaries pays more dividends than
that of twin planes.

For the theoretical description, we adapted the Efros-Shklovskii bimodal mobility distribution
percolation model. We performed a finite size scaling analysis of the TRIDENS network mobili-
ties. We demonstrated that increasing the density of the undefected NP SLs drives an underlying,
structural /geometric percolation transition in the NP solid, which in turn drives a low-mobility-
insulator-to-high-mobility-insulator transport crossover. We demonstrated that our adaptation of
the ES bimodal theory’s two-variable scaling function is an effective tool to quantitatively char-
acterize this low-mobility-insulator-to-high-mobility-insulator transport crossover. For context, we
discussed the analogies with the Quantum Percolation Transition we developed in our earlier, MIT-

focused work [60].
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CHAPTER 4

Disordered Mott-Hubbard Physics in Nanoparticle
Solids:Transitions Driven by Disorder, Interactions, and Their

Interplay

4.1. Introduction

Nanoparticle (NP) solids are aggregates of nanometer scale particles with interesting and po-
tentially useful emerging electronic functionalities. In NP solids, the wavefunctions are typically
”Quantum Confined” to the NPs, making their electronic properties tunable with the NP size. [47]
This tunability makes them attractive for a wide variety of opto-electronic applications, [46] in-
cluding photovoltaics, [2, 3] light-emitting diodes, [7] and field-effect transistors (FETs). [8, 9]
However, the same Quantum Confined localization also drives the NP solids insulating, hindering
charge transport and thus their utility. Therefore, driving NP solids from their insulating phase
across a Metal-Insulator Transition (MIT) into a conducting, metallic phase is a top priority to
boost their utility. Recent experimental attempts to cross the MIT included atomic layer deposi-
tion (ALD), [21] substitutional percolation, [18] chemical doping, [15,16] and photodoping. [17]
ALD infilling with metal oxides already enhanced mobilities above 7 cm?/Vs. [21] Whether these
enhanced-mobility NP solids support coherent metallic transport is still debated. Building on
these advances, NP solar cells were developed with impressive 13-16% power conversion efficien-
cies, [96,97,98].

There is a vast literature on the theory of the disorder-driven, ” Anderson”-type MIT of non-
interacting electrons. [99] The disorder of the site energies breaks up the site-to-site phase coherence
of the originally extended wavefunctions, thereby localizing the electrons. Introducing interactions
into Anderson localizaton makes the physical scenarios more complex, as revealed by scaling meth-

ods. [100,101,102] Implications for transport were studied, e.g., via the concept of the ”Coulomb
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blockade/gap”, the energy cost of the attraction between the moving electron and the hole it leaves
behind, thus suppressing transport at all fillings. [103] These ideas were adapted to NP solids e.g.
in Ref. 15. Transport has been described as nearest neighbor hopping at high T, [104,105] and
as Efros-Shklovskii (ES) variable range hopping at low T. [106]

Interactions are especially important at commensurate fillings. An electron already on an NP
blocks the transport of additional electrons through that same NP because of the Coulomb cost of
double occupancy. This was referred to as a Mott-gap, or Coulomb blockade. This blockade fully
blocks transport only at integer fillings. [69, 86, 87|

In recent years, the analysis of the interplay of disorder and interactions was re-energized
by adaptating the Dynamical Mean Field Theory (DMFT) for analogous Hubbard models. [107,
108,109] A surprising prediction of DMFT was that at n=1, at intermediate repulsion, increas-
ing disorder first dissolved the Mott-localized phase into a metal, which then transformed into
a Anderson-localized phase only at a higher disorder. Accordingly, the gap of the Mott-localized
phase did not persist into the Anderson-localized phase with increasing disorder. [108,109] Fillings
n # 1 were not yet investigated with DMFT.

Remarkably, despite all this progress, profound unmet needs remain. (1) In spite of inviting
analogies, the vast amount of knowledge developed for the disordered Mott-Hubbard physics has not
yet been adapted for NP solids, beyond some early suggestions. [110,111,112,113,114,115,116]
For example, even though the mobility of some NP solids exhibits maxima and minima as the
filling is tuned, these features were not attributed to Mott-Hubbard commensuration. [55] Adapting
Hubbard-based knowledge to nanomaterials could inspire new pathways to improve the transport
properties of NP solids. In reverse, articulating these connections could make nanoparticle solids a
rich and well-controlled testing ground for Hubbard-based research.

(2) We are not aware of a theory of the MIT that starts from the insulating phase either in
NP solids, or in the Mott-Hubbard field. Notably, both the scaling and the DMFT techniques
are built with extended wave functions, and thus indicate Anderson/disorder localization only as
the boundary where their applicability breaks down. Therefore, they are ill-suited to describe

the Disorder-localized phase itself. Thus, developing a theory of the MIT out of the insulating
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phase would complement the MIT theories from the metallic phase, thus creating a comprehensive
characterization of the MIT.

In response to these needs, here are the main messages of this chapter. (1) We advocate that
adapting disordered Mott-Hubbard ideas for NP solids, and viewing NP solids as well-controlled
experimental platforms for Mott-Hubbard models, provides extensive benefits for both fields. (2)
To start this adaptation, we developed a Hierarchical Nanoparticle Transport Simulator to reach
the MIT from the localized phase; and we analyzed a multi-orbital Hubbard model with DMFT
to reach the MIT from the delocalized phase. Using the combination of these complementary
methods we determined the comprehensive phase diagram of Nanoparticle solids that consists of two
distinct localized phases defining two distinct MITs, which can be crossed by tuning various control
parameters. (3) Tuning the filling n towards integer values drives a Disorder-localized—to—Mott-
localized transition. (4) For n=1 and large interactions, decreasing disorder drives a direct Disorder-
localized—to—Mott-localized transition without an intervening metallic phase, characterized by a
persistent gap. (5) For n # 1, decreasing disorder drives a Disorder-localized—to—Metal, Anderson-
like MIT. (6) The DMFT-determined filling-dependence of the mobility at low disorder shows

striking similarities to that at high disorder, demonstrating the internal consistence of our analysis.

4.2. Simulation Methods, Results, and Discussion

The HINTS method: Our Hlerarchical Nanoparticle Transport Simulator HINTS is a
Kinetic Monte Carlo transport simulator that is extended by an additional metallic transport
channel. This extension makes HINTS capable of reaching the MIT from the insulating phase. In
an introductory analysis at generic fillings, we reported reaching the MIT and interpreted it as
a Quantum Percolation Transition. [60] However, we did not connect this MIT to Mott-Hubbard
phenomena, did not consider its interplay with Anderson localization, and did not analyze the
model at commensurate fillings.

HINTS simulates NP solids by a multi-level hierarchical approach. We start with computing
the electronic energy levels by using a parameterized band structure of individual PbSe NPs with

diameters in the 3-8 nm range. [62] On the next level, we account for the Coulomb interaction via
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the on-site charging energy F.:

(n—-1)

(4.1) Ec=n(x + 5

).

Here, n is the number of electrons on the NP after the electron is added. X is the total electrostatic
energy cost of loading an electron onto a neutral NP, while ¥ is the energy cost of the Coulomb
repulsion with the (n-1) electrons already on the NP. We calculate E¢ with the hybrid empirical-
perturbative method of Ref.117.

We proceed by generating a superlattice of PbSe NPs with diameters selected from a Gaussian
distribution. We randomly fill this superlattice with electrons to reach the filling n electron/NP.
As described below, the electrons will move from these random initial NPs to the energetically
favorable NPs once their dynamics are simulated.

In our extended HINTS, the NP-NP transition rates are either Miller-Abrahams phonon-assisted
hoppings, or non-activated metallic transitions, depending on whether the energy difference between

the initial and final states was larger or smaller than a hybridization energy:

Vgij/Bij eXp( kaJ) if AEZ']' >= EH
Vgijﬂij if AEij < Fgy

The attempt frequency v is chosen to be 102 s™! to match experimental data, gij is the product

of the initial density of states on NP; and the final density of states on NP;, and 3;; is the WKB

tunneling amplitude. The hybridization energy E is determined by the overlap of the electron

wavefunctions of NPs ¢ and j. The energy difference between the initial and final configurations

AEZ']‘ is:

(4.3) AE;; = AEY + AEf; + AE]

where AEZP is the difference in single-particle band energies; AE% is the difference in charging

energies; and AEZ-I;- is the difference of the potential energy from the external electric field.
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Finally, we compute the mobility of the NP solid by an Extended Kinetic Monte Carlo (KMC)
algorithm with a sufficiently small voltage bias. In particular, we measure the mobility only after
the transients, driven by the initial conditions, have decayed and the flow of electrons reached a
steady state. See SI for the full details of the HINTS method. We move to presenting the results
of the HINTS simulations.
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F1GURE 4.1. Conductivity v. NP diameter. HINTS simulations of PbSe NPs over-
laid with exp. data. Volumetric electron density .0016 e/nm?, ligand length 0.5 nm,
T = 200K.

Disorder-localized—to—Mott-localized transition with a scan of the filling n: Experi-
mentally, the electron /NP filling n can be scanned by increasing the average NP diameter at a fixed
volumetric charge density. Two experimental groups measured the dependence of the mobility on
the NP diameter in NP-FETs, and reported an initial rise followed by a maximum. [55, 76|

We now use HINTS to compute the conductivity of PbSe NP solids as a function of NP diameter
d. Fig. 1 shows the HINTS-computed conductivities with increasing d for two representations of
the disorder: fixed diameter disorder of 0.3 nm, and variable diameter disorder of £5%. These
results are overlaid on the experimental data of Kang et al [55]. The HINTS conductivities and
the Kang et al. data exhibit remarkable agreement.

The broad rising trend of the mobility/conductivity is driven by two factors: (i) larger d

means that the electrons can traverse a fixed length by fewer hops; and (ii) since the electron
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energy-diameter relationship flattens with increasing d, the energy disorder induced by the diameter
disorder decreases with increasing d.

The Kang experiments and our simulations both display a non-monotonic pattern overlaid
on this broad rising trend. Conspicuously, the conductivity maximum at d=6 nm is observed to
be only the beginning of a maximum-minimum-resumed rise pattern, centered on n = 1. The
utility of adapting Mott-Hubbard ideas to analyze NP solids is compellingly demonstrated here
by recognizing that such a conductivity minimum also arises when n is scanned across n = 1 in
the repulsive Hubbard model, as the Coulomb repulsion opens a Mott gap at n = 1, and thus
suppresses transport through the occupied NPs.

For context, we mention that earlier experiments [76] reported only a mobility maximum/
plateau, which we reproduced by simulation. [59]. However, neither works observed the maximum-
minimum pattern, and correspondingly did not recognize that Mott-Hubbard commensuration
physics drives all these phenomena.

Changing d also varies site energies and hopping rates, and thus convolutes the transition into
the Mott-localized phase with other trends. Therefore, next we isolate the mobility’s dependence
on n in fized diameter NP solids. Experimentally this can be achieved by varying the FET gate

voltage applied to a NP solid.

7
§\
N\

6 L
—_— \\
)
>5f \\
~ \
NE -\

AY

4 \
S Y
> \
=3 “a
o) \
§2- \‘o

\ L0-%-o_
[} Vi ~
1 AN / ..
\.\ /, ‘\
0 AV ..
0.25 050 0.75 1.00 1.25 1.50 175 2.00
n (e ~/NP)

FiGURE 4.2. Electron mobility as a function of carrier filling in the disorder-
localized Phase of PbSe NPs with diameters of 6.6 + 0.3 nm. T = 80K. Average
charging energy E,. = 100meV, average hopping energy ¢t = TmeV.
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Fig. 2 shows the HINTS-simulated mobility of a PbSe NP solid as n is varied. Visibly, the
mobility exhibits minima at integer fillings, accompanied by maxima close to half-integer fillings,
just as with increasing d. These features are much more pronounced than in Fig. 1.

The temperature dependence of the mobility/conductivity is activated for all fillings in Figs. 1
and 2, having a smaller, disorder-induced gap away from n = 1, that is boosted by the Coulomb
blockade to a larger gap at n = 1. Thus, scanning with n through n = 1 crosses from a Disorder-
localized phase into a Mott-localized phase, and then back to a Disorder-localized phase for n > 1,
as expected from adapting the Hubbard model for these NP solids. And in reverse, the fact that
the experimental data and our simulations show such a remarkable correspondences is compelling
evidence that NP solids are well-controlled and tunable experimental realizations of the disordered
Hubbard model.

Experimentally, such filling-driven Disorder-localized—to—Mott-localized phase transitions have
been reported in Si quantum dot arrays, where the gate voltage was used to tune the filling, [112]
and in InAs quantum dot solids [118].

Mott-localized—to—Disorder-localized transition with a scan of disorder W at n=1:

Next, we explore the robustness of the Mott-localized phase as the disorder W/2t is varied at
fillings around n = 1. Here the Hubbard ¢ kinetic energy was determined by mapping our tunneling
probabilities to Fermi’s golden rule. W was determined from the sum of the disorder of the band
and charging energies. We conduct this study on PbSe NP solids with a mean diameter of 6.5 nm
by scanning the diameter dispersity up to 10%.

Fig. 3 shows the dependence of the activation energy/ gap A on the disorder W/2t at n=1 (scan
3a), and at n = 146 where § = 0.001 (scan 3b). At n=1 and small disorder the gap A is Mott-like,
as its value is set by the charging energy E.: A/E. ~ 1. This Mott gap suppresses transport,
and creates a Mott-localized phase. With increasing disorder, the gap A gets renormalized to a
lower value A(W). The physics of this lower gap region is clarified by scan 3b of A(W) at the
filling n = 1 4+ 0. The gap A(W) is the same for n = 1 and n = 1 + § above a critical value
We(Mott)/2t ~ 3.5. This insensitivity of the gap to the charging energy and to commensuration
identifies this phase as a Disorder-localized phase, into which the Mott-localized phase of n=1

transitions as W exceeds W.(Mott). Clearly, the transition at n = 1 across W.(Mott) is direct,
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in the sense of having a persistent gap across the transition and no intervening gapless metallic
phase. An analogous direct Mott-to-Anderson transition was reported by DMFT studies with a
disorder scan in the Hubbard model at n=1 at around W,.(Mott) = 3, in good agrement with our
result. Both studies worked in the U/t = 10 — 14 range. [108] It is noteworthy that the gap is
relatively insensive to W in the Disorder-localized phase. This is explained by the charging energy

E. screening the disorder W.
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F1GURE 4.3. The disorder dependent gap A (W) for PbSe NPs: (a) n = 1; (b)
n=140. We(Mott)/2t ~ 3.5; W.(MIT)/2t ~ 1.5.

Beyond the remarkable disorder driven Mott-localized—to—Disorder-localized transition at n=1,
scan 3b also reveals that as the disorder W is reduced at n = 1 + §, the gap shrinks to zero at
W.(MIT)/2t =~ 1.5. The vanishing of the gap indicates the disorder below which the wavefunctions
become delocalized again. In this regime, the phases of the wafunctions become important, and the
metallicity of transport is restored. HINTS does not track the phases of the electron wavefunctions,
and thus can describe the transport with decreasing disorder only down to W = W.(MIT), but
cannot enter the metallic phase itself. We identify W,.(MIT') as indicating a Disorder-localized—
to—Metal Transition, taking place at n # 1. This MIT at W.(MIT) at n = 1+ is disorder-driven,
and is therefore distinct from the interaction-driven Mott transition at W = W,(Mott) at n = 1.

For context, we comment on the expectation that all electronic states are localized in 2D.
This expectation, however, was demonstrated only in non-interacting systems. [99]. In interacting

systems, the complex interplay of interactions and disorder has been shown to drive Metal-Insulator
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delocalization transitions starting from the extended phase even in 2D. [102,119,120] Our results,
building from the insulating phase, are consistent with and complement these claims.

These results have direct experimental relevance for NP solids beyond just PbSe NPs. Ref. 16
developed strategies to cross the MIT and induce band-like transport with the high mobility of 27
cm?/Vs in CdSe NP FETs by increasing the kinetic energy ¢ and decreasing the disorder W. Ref.
16 increased the wavefunction overlap, and thus ¢, by switching to the compact ligand thiocynate,
and by annealing at the elevated temperatures of T=200C-250C. They eventually reached values
of t = 6 — 8meV. They also reduced W by doping the CdSe NP FETs with Indium that filled
up traps and thus reduced the trap-related disorder, eventually giving rise to an effective gap of
A=6-—TmeV.

Our simulations provide a firm foundation for these strategies. To establish a quantitative
correspondence, one would need to redo our PbSe simulation for CdSe NP solids to determine the
additional disorder from polydispersity. Without the benefit of this calculation, we only make the
qualitative observation that the /2t ratio where Ref. 16 reports an MIT is of the order 1, and
thus consistent with our W.(MIT)/2t = 1.5.

An additional strategy emerges from our simulations: the reduction of the charging energy F..
We showed that E. sets the Mott gap and screens the gap in the Disorder-localized phase, thus
reducing E. is yet another strategy to cross the MIT in NP solids.

Disordered-metal-to—Mott-localized transition as a function of n: We already es-
tablished that the physics of NP solids is analogous to a disordered Hubbard model whose sites
represent the individual NPs. We take into account the 8-fold degeneracy of the electronic states
of the PbSe NPs [121] by adopting a four orbital (labeled by a,b = 1,2, 3,4) Hubbard model with

diagonal disorder. [122] The Hamiltonian reads:

(4.4) H= Y tydl,diao+ D (Wi—miao+ Y Unagnay+ D Unaoliyr.
a

<7:,j>,04,0' 'i,[l,CT a;éb,a,o’

Here (i, j) label nearest neighbor sites, n;q, = dl

iva, oia,0 is the density of electrons of spin o

in orbital a on site ¢, p is the chemical potential, ¢;; is the nearest neighbor hopping, and U is
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the Coulomb repulsion. The disorder is introduced through the random site potential energy w;,
independent of orbital and spin index. For further details, see the SI.

The NP solid is on a regular lattice to start from a bona fide metallic state. We explore
the combined effect of Coulomb repulsion and site energy disorder. We simulate PbSe NPs by
associating the on-site Hubbard repulsion U with the NP charging energy by taking U = E. = 100
meV, and the kinetic term with the NP-NP hopping amplitude of ¢ = 7 meV, making U/2t = 7.
These parameters match those of Fig. 2, and thus our Hubbard model is to be viewed as a
quantitative modeling of the PbSe NP solid.

Since t/U << 1, the Hubbard model is in strong coupling. Therefore, we adopt the Dynamical
Mean Field Theory (DMFT), extended to include disorder effects. [107,108,109,123]

The DMFT approach maps the original lattice model onto an auxiliary quantum impurity
model supplemented with a self-consistency condition. The quantum impurity problem is then
tackled by numerical simulations that we performed using the continuous-time quantum Monte
Carlo (CTQMC) method, [124,125] described in Ref.126. That method samples a diagrammatic
expansion of the partition function in powers of the impurity-bath hybridization. For simplicity,
for the non-interacting electrons we adopt a semi-circular density of states (DOS) of bandwidth 4t¢,
since single-site DMFT is not sensitive to the shape of the non-interacting DOS. DMFT is exact in
infinite dimensions, and it has been shown to remain a good approximation for lower dimensional
systems whose physics is local, as is the case for the present Mott system. The disorder is introduced

through a random site energy with a uniform distribution in the interval [-W, W] (see SI for details).

Fig. 4 shows the electron mobility and the chemical potential p of this Hubbard model as a
function of the filling n for the clean and disordered cases, at T /t=0.02. In the clean case, p shows
a jump at n = 1: this indicates the emergence of a Mott gap that localizes the electrons. [122] This
is a remarkable result, as our DMFT technique finds this Mott-localized phase at the band filling
of 1/8, whereas band structure calculations for PbSe, or traditional Hubbard mean-field theories
would not find such a Mott insulator below the customary band filling of 1/2. So, our DMFT work

establishes PbSe as a Mott system, where correlation effects play out in 4-fold degenerate orbitals.
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FIGURE 4.4. Mobility and chemical potential y as filling scans from the Metallic
Phase through the Mott gap.

At finite temperatures, this Mott gap makes the mobility exhibit a minimum as the filling
crosses n=1. Clearly, DMFT established that the Mott gap/Coulomb blockade also suppresses the
mobility in the metallic phase when the filling is scanned across n = 1, just like in the insulating
phase (cf. Fig. 2).

A main result of the DMFT study is that the clean trends persist even for a substantial disorder
W/2t = 1. Indeed, the Mott gap (jump of ) at n = 1 only decreases by a small amount and remains
robust. This is reasonable since W/2t = 1 << W.(Mott)/2t = 3.5. At the same time, the mobility
away from n = 1 is reduced much more notably because the W /2t = 1 disorder is relatively closer
to the off-commensuration MIT at W,.(MIT)/2t = 1.5. Finally, Fig. 4 shows that the relative
reduction of the mobility by the disorder is strongest at small n. This makes physical sense, since
at small n the Fermi energy becomes comparable to the disorder, and thus the relative importance
of the disorder grows. To our knowledge, the present DMFT study is the first one done for a
multi-orbital model with disorder as a function of electron filling.

The here-used coherent potential CPA-DMFT method does not capture Anderson localization.
While “typical medium” DMFT theories were proposed to capture a Mott-Anderson transition,

this issue remains debated. [108,127,128,129,130,131,132,133]

4.3. Conclusions

: We now bring together all the scans of our complementary HINTS and DMFT work and

construct the phase diagram of PbSe NP solids on the filling—disorder plane, shown in Fig. 5.
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FIGURE 4.5. Qualitative phase diagram of NP solids in the (disorder W-filling n)

space, for U >> W. The red dashed lines report the scans in the correspondingly

labeled figures.
We distinguished a Disorder-driven MIT at n # 1, and an Interaction-driven MIT at n = 1. In
particular, at n = 1, HINTS showed that at large interactions the Mott-localized—to—Disorder-
localized transition occurs with a persistent gap. We complemented the studies building from the
localized phases with studies building from the extended phase. Reassuringly, the complementary
studies produced the same qualitative scenarios, as illustrated by the strikingly similar behavior of
the mobility in Figs. 2 and 4.

The totality of our studies demonstrated that adapting the vast body of knowledge developed

for the disordered Mott-Hubbard model for NP solids can and will produce many new insights into
the physics of NP solids, and thus can be used to develop strategies to improve their optoelectronic

properties.
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CHAPTER 5

Structural Characterization of a Polycrystalline Epitaxially-Fused

Colloidal Quantum Dot Superlattice by Electron Tomography

5.1. Introduction

Colloidal semiconductor quantum dots (QDs) exhibit intriguing photophysical properties rele-
vant to next-generation solar cells, [134,135,136,137] field-effect transistors, [138,139] photode-
tectors [140,141] and lasers. [142,143] While improvements in QD processing, electronic perfor-
mance and stability are ongoing, the use of QDs in many optoelectronic devices is limited by poor
charge transport relative to bulk semiconductors. Poor transport is in part caused by energetic dis-
order arising from variations in QD size, spacing and other types of spatial disorder. [20,91,144]
Epitaxially-fused PbX (X = Se, S) QD superlattices (epi-SLs) consist of PbX QDs that are ar-
ranged in a periodic lattice and epitaxially interconnected (necked or partially fused) to form a
porous single crystal of “confined-but-connected” QDs. Epi-SLs promise to combine the tunable
optical properties and processability of QDs with the high-efficiency band-like transport of bulk
semiconductors. [145] However, charge transport studies have so far failed to demonstrate band-like
transport in epi-SLs, probably because structural defects from the atomic scale to the mesoscale
disrupt the SL periodicity and localize charge carriers. [146,147]

Making PbX QD epi-SLs with larger lateral grain sizes is important for reducing the density of
inter-grain structural defects (e.g., grain boundaries, amorphous regions, and voids), but it is the
several types of intra-grain defects that conspire to degrade spatial order within the grains, destroy
mini-bands, and prevent the emergence of delocalized states. [20,91,146] Intra-grain defects include
variations in QD and neck size and shape, missing necks, missing QDs (vacancies), misaligned QDs
(edge dislocations, screws dislocations, and zig-zag jitter), larger-scale wave-like oscillations in QD

position that result from flow of the QD film on the liquid surface (meander), and variations
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in the surface coverage of ligands, ions, and traps, all of which will scatter carriers and disrupt
SL periodicity to some degree. Most of these defects have been observed in 2D epi-SLs (QD
monolayers), which are readily imaged by conventional transmission electron microscopy (TEM)
and scanning transmission electron microscopy (STEM). [20,147,148,149,150,151,152,153,154,
155,156,157,158| Transport measurements of 2D epi-SLs show that carriers are localized, and
several groups have proposed that missing necks are a primary cause of carrier localization in these
materials. [20,149] Furthermore, the electronic coupling of necked QDs is expected to be sensitive
to neck polydispersity (length, width, atomic coherence, and faceting) and the number of nearest
neighbor QDs. [20]

While 2D epi-SLs can be structurally characterized using traditional electron microscopy, imag-
ing the internal details of 3D epi-SLs is more challenging. [153,159,160,161] Neck connectivity
and projected neck size in 2D epi-SLs have been directly imaged by (S)TEM, [20,149,157] and the
three-dimensional structure of these necks was deduced from single images by high-angle annular
dark-field (HAADF) STEM atom counting reconstruction. [153] To date, structural characteriza-
tion of 3D epi-SLs has been almost exclusively limited to X-ray scattering and conventional elec-
tron microscopy imaging/diffraction methods, [147,161,162,163] neither of which can visualize
the intra-grain neck network or internal structural defects that are so important for understanding
carrier delocalization in these materials. Electron tomography (ET) is a suitable tool for the near-
atomistic structural characterization of 3D epi-SLs. The Vanmaekelbergh group has previously
used ET to establish the basic unit cell of non-fused 3D binary [164,165] and ternary [166] QD
SLs, 2D honeycomb epi-SLs, [151] and thin multilayer honeycomb epi-SLs. [167] Savitzky et al.
reported a tomogram of a fused 3D PbS QD SL made at high pressure, but no assessment of necks
or structural defects was presented. [168]

Here we present an in-depth and quantitative structural analysis of a 3D PbSe QD epi-SL
using electron tomography. We show that with a full-tilt HAADF ET reconstruction of a disc-
shaped epi-SL film (120 nm in diameter x 38 nm tall), we are able to achieve sufficient spatial
resolution (0.65 nm) to determine the position of all 1,846 QDs and the size and shape of all necks
in the sample. From the center-of-mass coordinates of the QDs, we find that the sample consists

of three SL grains and assign the unit cell and in-plane crystallographic orientation of each grain
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as well as the 3D structure of the grain boundaries. The epi-SL grains have a distorted simple
cubic structure with lattice parameters in agreement with our previous results. [162] Maps of the
neck locations and diameters reveal that the sample has an average of 3.7 necks per QD (giving
an overall network connectivity of 72%) and an average neck diameter of 4.1 nm (64% of the QD
diameter). The three grains show similar distributions of neck number (necks per QD) but very
different distributions of average neck diameter, reflecting significant inhomogeneity between the
adjacent grains. We discover a weak positive correlation between neck number and diameter and a
strong negative correlation between neck number and both the average and standard deviation of the
nearest neighbor QD distance, indicating that QDs with more necks tend to have more ordered local
environments. Kinetic Monte Carlo charge transport simulations show that the SL grain boundaries
have little impact on carrier mobility because the three grains are interconnected by many necked
QDs. The detailed and comprehensive understanding of various structural features gained from
our statistical analysis of this relatively disordered polycrystalline sample can potentially inspire
synthesis of 3D PbX QD epi-SLs of better structural perfection for realizing delocalized charge

transport.

5.2. Experimental

5.2.1. Materials. Lead oxide (PbO, 99,999%), Lead iodide (Pbly, 99.9985%, purchased from
Alfa Aesar), oleic acid (OA, technical grade, 90%), diphenylphosphine (DPP, 98%), 1-octadecene
(ODE, 90%), ethanol (99.5%, anhydrous), ethylene glycol (EG, 99.8%, anhydrous), acetonitrile
(99.99%, anhydrous), hexanes (>99%, anhydrous), toluene (99.8%, anhydrous), (3-mercaptopropyl)
trimethoxysilane (3-MPTMS, 95%), and N,N-dimethylformamide (DMF, 99.8%, anhydrous) were
purchased from Sigma Aldrich and used as received. Trioctylphosphine (TOP, technical grade,
>90%) and selenium (99.99%) were acquired from Fluka and mixed for 24 hours to form a 1 M
TOP-Se stock solution. Ethylenediamine (EDA, >98.0%, anhydrous) was purchased from TCI and

mixed with acetonitrile in a 1:1 volume ratio to make a 7.5 M EDA stock solution.

5.2.2. Quantum Dot Sythesis. PbSe QDs were synthesized and purified using standard
air-free techniques. PbO (1.50 g), OA (5.00 g), and ODE (10.00 g) were mixed and degassed in

a three-neck round-bottom flask at room temperature. The mixture was heated to 120 °C under
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FIGURE 5.1. Fabrication of the PbSe QD epi-superlattice tomography sample. (a)
Sample fabrication. (b) Plan-view and cross-section SEM images of a different region
of the epi-SL film. The film is a polycrystalline SL with SL grains of two different
in-plane orientations, previously assigned to the (100)sy, and (011)s, projections of
a distorted simple cubic SL. [162] Most of the SL grains in this image have a (100)sr,
orientation. The dashed yellow line encircles a (011)gp-oriented grain. Scale bars
are 100 nm. (c) HAADF-STEM image of the needle-shaped tomography sample
with disc-shaped epi-SL layer and all layers labeled. Scale bar is 50 nm.

vacuum to form dissolved Pb(OA)s and dry the solution. After 1 hour at 120 °C, the Pb(OA),
solution was heated to 180 °C under argon flow and 9.5 mL of a 1 M solution of TOP-Se containing
200 puL of DPP was rapidly injected into this hot solution. An immediate darkening of the solution
was observed, and the QDs were grown for 105 seconds at ~160 °C. The reaction was quenched
with a liquid nitrogen bath and injection of 10 mL of anhydrous hexanes. QD purification and SL
fabrication were performed in glove boxes with j0.5 ppm O2 content. The QDs were purified by
two rounds of precipitation/redispersion using ethanol/hexane and stored as a powder in the glove

box.
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5.2.3. Substrate preparation. A single-side polished Si substrate was cleaned using 10 min-
utes of sonication in acetone, Millipore water, and then isopropanol, followed by drying in a stream
of flowing air. The cleaned substrate was immersed in a 100 mM solution of 3-MTPMS in toluene
for 1 hour to functionalize its native SiO, surface for improved epi-SL adhesion, then rinsed with

neat toluene and dried in flowing air.

5.2.4. Superlattice fabrication. An oleate-capped superlattice was prepared in the glovebox
by drop casting 70 pL of a 4 g/L dispersion of PbSe QDs in hexanes onto 6 mL of ethylene glycol
(EG) in a Teflon well (3.5 x 5 x 1 cm). After depositing the QD solution, the well was immediately
covered with a glass slide. The hexane evaporated over 30 minutes, resulting in a smooth, dry QD
film floating on the EG surface. The glass slide was then removed and 0.1 mL of a 7.5 M solution of
ethylenediamine in acetonitrile was slowly injected (5-10 sec) into the EG under the QD film using
a 500 pL. Hamilton syringe. After 30 seconds of exposure to EDA, the resulting epi-SL film was
stamp transferred to the Si substrate using a vacuum wand, rinsed vigorously with acetonitrile and
dried under flowing Ny. The epi-SL film was then immediately immersed in a 10 mM solution of
Pbl; in DMF for 5 minutes, rinsed thoroughly with acetonitrile and dried under flowing Ns. This
procedure is nearly identical to the one used in our previous report [162] and yields epi-SL films
with similar SL unit cell, grain size, and homogeneity, including degree of QD necking, coverage
of the substrate, and density of cracks. However, the film for this tomography study is somewhat
thinner ( 40 nm wvs. 50-80 nm) and have a higher density of intra-grain extended defects (e.g.,
partial twins) because it was prepared in a glove box with a higher O concentration (5 ppm vs. j

0.1 ppm).

5.2.5. Basic characterization. Optical absorbance measurements of QDs dispersed in TCE
were performed with a PerkinElmer Lambda 950 spectrophotometer. Neat TCE served as the
background for the solution measurements. Scanning electron microscopy was performed on both
an FEI Magellan 400L. XHR SEM operating at 10 kV and 25-50 pA and a JEOL JEM-2800 TEM

(with a secondary electron detector) operated in STEM mode with a 1.0 nm probe size.

5.2.6. Grazing incidence small-angle X-ray scattering. GISAXS measurements were

performed on Beamline 7.3.3 of the Advanced Light source (ALS) at Lawrence Berkeley National
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Laboratory using 10 keV monochromatic X-rays (A = 1.24 A) with an energy bandwidth of 1%.
For GISAXS measurements, SL films were prepared on Si substrates and transported with the QD
suspensions to the ALS under nitrogen to minimize air exposure prior to measurement. However,
measurements were performed in air. A Dectris Pilatus 2M detector with a pixel size of 0.172 x
0.172 mm and 1475 x 1679 pixels was used to record the 2D scattering patterns. A silver behenate
standard was used to determine the sample-to-detector distance and beam center. Exposure times
ranged from 0.2 to 30 s. The grazing angle of incidence was varied from 0.2° to 0.3°. Manual
pattern fitting was performed using the IndexGIXS software package provided by Detlef Smilgies
of the Cornell High Energy Synchrotron Source. The critical angles of the films were fit empirically
(0.195° for the oleate-capped SLs and 0.21° for the epi-SLs) to capture the breadth of the Yoneda
band.

5.2.7. Tomography needle sample preparation. An area of the epi-SL film suitable for
FIB milling was located by SEM and tagged with a Pt fiducial marker deposited by electron-beam
induced deposition (EBID) in an FEI Quanta 3D FEG DualBeam microscope. The sample was
then coated with 50 nm of carbon using the pulse plasma mode of a Leica ACE200 evaporator and
returned to the DualBeam for FIB milling, lift-out, and final needle preparation. Prior to milling,
a ~200 nm Pt capping layer was deposited onto the carbon-coated sample by EBID, followed by
an additional ~2000 nm of Pt deposited by ion beam induced deposition (IBID). The carbon layer
serves primarily to enhance STEM imaging contrast by separating the epi-SL layer from the high-Z
protective Pt capping layer. The area of interest was then FIB milled into a wedge shape (10 pm
X 6 pm x 2 pm), lifted-out with an OmniProbe 400 nanomanipulator, ion welded to the tip of a
sample holder for needle tomography samples (Single Point Tip, Hummingbird Scientific), and FIB
milled again into a ~130 nm diameter needle (Fig. S2). Milling was performed in several stages.
The wedge was first milled into a pillar shape (1 um diameter) using a 0.3 nA ion beam at 30 keV
accelerating voltage, then thinned to a ~200 nm diameter needle using 50 pA at 16 keV. Finally,
a b minute ion beam shower (25 pA at 5 keV) was employed to sharpen the needle to ~130 nm
and remove surface damage. The finished needle contained a disc-shaped epi-SL layer (38 nm tall

x 128 nm in diameter) for tomographic analysis.
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5.2.8. HAADF-STEM Electron Tomography. The needle sample was mounted on the
rotation axis of a Hummingbird Scientific single-tilt tomography holder (1000 Series) and imaged
in a double aberration corrected JEOL JEM-ARM 300F TEM operated at 300 keV in STEM mode
(~25 mrad semi-convergence angle). Two series of images were acquired, with HAADF and bright-
field data recorded simultaneously (2k x 2k images) at each tilt angle. The first series consisted of
145 HAADF images spanning tilt angles over -78 to 67 degrees in 1 degree steps. The sample was
then removed from the microscope, manually rotated on the sample holder by 86 degrees, and re-
imaged from -68 to 78 degrees in 2 degree steps (resulting in 73 additional images). All 2D and 3D
image processing was conducted in MATLAB unless otherwise noted. The two tilt-series were then
merged using cross-correlation comparison (Fig. S4). The merged tilt-series include 181 images
covering tilt angles from 0° to 226°. The image stack was then aligned vertically (along the rotation
axis) by iteratively shifting the images to maximize the value of the 2D normalized cross-correlation
function between adjacent images in the stack. Pixels outside of the epi-SL film were excluded from
this cross-correlation calculation in order to maximize the quality of the vertical image alignment.
Horizontal alignment of the images (normal to the rotation axis) was accomplished by converting
each image to a 1D intensity profile and shifting the images to maximize the match between the
1D curves. The aligned image stack was then processed through two iterations of a Wiener image
filter to remove noise. Tomographic reconstruction was carried out on the aligned and de-noised
tilt-series using 200 iterations of the simultaneous iterative reconstruction technique (SIRT) in the
ASTRA toolbox. [169,170] The raw reconstructed volume consisted of 2048 x 2048 x 700 voxels
with edge lengths of 1 A. The spatial resolution of this reconstruction was evaluated by the Fourier
shell correlation (FSC) method to be 6.5 A (Fig. S5).

The raw reconstruction was processed in two different ways. For analysis of the QD necks, the
reconstruction was simply smoothed by a nonlinear anisotropic diffusion filter. Image processing
for analysis of the QD positions was more involved. The raw tomogram was first filtered with
a morphological 3D top-hat filter to minimize reconstruction intensity attenuation and enhance
contrast. A top-hat filter was used to retain edge contrast instead of the more common Fourier filter
[171] because Fourier filtering would erroneously remove necks between QDs and other important

structural features present in the raw tomogram. To better emphasize the QD positions, the filtered
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tomogram was convolved with a spherical 6.0 nm diameter QD kernel with a homogeneous intensity
profile to obtain a 3D map of normalized cross-correlation (NCC) coefficients indicating the center
of mass of each QD in the sample. Use of the 6.0 nm QD template is justified by the analysis of
the average QD size and polydispersity from conventional dark-field STEM images (pixel size of 0.2
nm) of a different area of the same sample (Fig. S6). Prior to data analysis, the outer 6 nm of the
cylinder-shaped tomogram was digitally removed to exclude QDs near the surface of the sample
that were potentially deformed by the FIB milling process. To automate the measurement of neck
dimensions, a script was written that defines a plane normal to each inter-QD axis and slides this
plane along the axis to locate the minimum neck area. The neck diameter was then determined as

the diameter of a circle of the same area.

5.2.9. Mobility Simulation. Mobility simulations were performed utilizing the Hierarchical
Nanoparticle Transport Simulator (HiNTS) kinetic Monte Carlo code, developed by some of us
previously. [60,172] HiNTS simulates transport by developing several modeling layers and then
integrating them into a hierarchical scheme. After the energetics of the individual QDs is computed
by ab initio methods, the QD-to-QD transitions of the charges are described by the following two
mechanisms:

(1) Miller-Abrahams single phonon-assisted hopping between nearest neighbor QDs:

AFE;; .
vgi; Bij exp ( kaJ) if AE; >0,

v gij Bij if AE; <0

(5.1) Ti; =

where v is an attempt frequency, chosen to be 1012571, gij is the product of the initial density of

states on QD; and the final density of states on QD;, and 3;; is the tunneling amplitude evaluated

. . . * Evac*Ei‘ . o .
using the WKB approximation as 3;; = exp (—QA:C 2m(h2j)) Here Az is the minimal

surface separation of the QDs. m* is the effective mass of electrons in the tunneling medium,

approximated as .05m,, the effective mass of electrons in bulk PbSe. E.,. is the vacuum energy level
that is set to be zero as all other energy levels are defined relative to the vacuum. Ej; is the tunneling

energy, taken to be the average of the initial and final states of the tunneling transition: Ej; = Ei;EJ ,

where E; and E; are the energy levels of QD; and QD;. AE}; is the total energy difference associated
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with an electron transitioning from QD; to QD;: ALy = AES“”d + AEithMgmg + AESOlmge, where
AEg‘md is calculated using the one-electron band energies of the QDs determined by ab initio
methods, [173] AEghargmg is calculated using the charging energies of the QDs as determined by
a hybrid empirical-perturbative method, [174] and AESOlmge is the energy difference due to the
applied voltage. In general, the QD-QD hopping can be nearest neighbor or variable range hopping.
Either hopping process can involve an elastic reorganization of the QD atoms, or processes other
than Miller-Abrahams, such as that described by Marcus theory. Finally, the long-range part of
the Coulomb interaction may or may not be included. Of the eight possible combinations, for
example, [175] we investigated the intriguing process of variable range hopping with long-range
Coulomb interactions and the Marcus reorganization process. HINTS is capable of accommodating
any of these eight combinations. We chose the simplest Miller-Abrahams process because both
variable range hopping and Marcus processes have been shown to become important only at low
temperatures, whereas our experiments were performed at room temperature. Indeed, experiments
on QD lattices regularly report the standard activated, Miller-Abrahams temperature dependence
around room temperature. [104]

(2) Tunneling through the neck of epitaxially-fused QDs:

—AE; .
2%|t|291j exXp ( kaJ) if AEij > OE,

(5.2) Ly =
21412 g if AE; <OF
where |t| is the QD-QD tunneling matrix element, and OF is an overlap energy. This transition
channel represents that when a neck is formed between two QDs, their electronic states overlap and
therefore hybridize. This hybridization induces a perturbation of the energy levels of the individual
QDs, which we model by an overlap energy OF that is proportional to the neck diameter. The
electronic states of those pairs of QDs whose energy level difference is less than OEF: AE; < OF,
hybridize to such a degree that they support a metallic QD;-to-QD; transition instead of a hopping
one, paving the way toward the formation of a mini-band. The tunneling matrix element [¢|

depends on the wavefunction overlap between the necked QDs. For its calculation, we adopt the
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approximation of Fu et al.: [176]

9n%np?
5.3 t| =
(53) ==

where n is the average electron volume density of the two quantum dots, p is the neck radius, m*
is the effective electron mass, and d is the average QD diamter. HINTS simulates nearest neighbor
transitions and interactions; it does not include transitions to and interaction with farther neighbors.

On the next HINTS modeling layer, a QD epi-SL, is constructed. Simulations were performed
on three types of epi-SL samples. First, the replica of the tomography sample was generated using
the experimentally determined center-of-mass coordinates, QD diameters, and neck map of all three
SL grains. Since the circular shape and uneven periphery of the tomography sample would make
it harder to set up controlled transport simulations, QDs at the periphery of the sample were
removed to reduce the simulation volume to the well-defined central cuboid of the tomography
sample. To develop a comparative analysis of the transport of this tomography sample, we next
generated two ensembles of over a thousand samples each to form a comparison basis. The first
ensemble consisted of monocrystalline epi-SLs with the lattice parameters and neck statistics of
grain I of the tomogram. The second ensemble consisted of bicrystalline epi-SLs with the same
lattice parameters and neck statistics of grain I, but bisected by a plane of missing necks normal
to the transport direction to create a necking grain boundary. The QDs in the latter two types of
samples were assigned a diameter and lattice displacement vector according to the experimentally-
determined Gaussian distributions.

Electron transport was simulated by first randomly placing electrons on QDs to fill the samples
with a predetermined density of electrons. Based on our previous work, we chose the electron
density to be 0.5 electrons per QD, remaining far from commensuration to avoid Coulomb blockade
effects. [172] A small voltage of 1 mV was then applied across electrical contacts on opposite sides
of each sample to induce electron transport. Periodic boundary conditions were used. Throughout
the simulation, we checked and ensured that the current-voltage characteristic stayed in the linear

regime. Finally, the mobility was determined according to the following equation:

electrons collected at drain electrode x [

5.4 =
(5-4) H total number of electrons X t x F
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TABLE 5.1. Lattice constants of SL grains I and II as determined from statistical
analysis of the tomogram. GISAXS data is from refrence 31.

Grain a/nm b/nm c¢/nm o Iv] v
I 6.4+0.6 6.4£0.6 5.940.7 102£8° 95+7° 96£7°
IT 6.3£0.6 6.5£0.6 6.2+0.7 103£9° 107£5° 97£T7°
GISAXS 6.6 £ 0.2 99 + 2°

where [ is the length of simulation box normal to the electrodes, ¢ is the simulation time, and FE is

the applied electric field. The transport across every sample in both ensembles was simulated.

5.3. Results and Discussion

5.3.1. SL Unit Cell and Disorder. Oleate-capped PbSe QDs with a diameter of 6.4 + 0.3
nm were used to fabricate a 3D polycrystalline epi-SL film via self-assembly and ligand exchange
on a liquid ethylene glycol substrate (Fig. 5.1a and Methods). [147,148,177,178] After triggering
epitaxial fusion of the QDs with EDA, the epi-SL film was stamped onto a silicon substrate,
immersed in a solution of Pbls to remove additional oleate ligands, and milled by focused ion beam
(FIB) into a 128 nm diameter disc embedded in a nanoscale needle for full-tilt electron tomography
studies (Fig. la). Scanning electron microscopy (SEM) images of the epi-SL film and the finished
tomography needle are presented in Fig. 1b and lc, respectively. An optical extinction spectrum
of the QDs in solution and additional details about the preparation of the tomography sample are
provided in the Supporting Information (Figs. S1-S2).

We acquired a £113° single-axis tilt-series of 181 images of the sample using high-angle annular
dark-field scanning transmission electron microscopy (HAADF-STEM) in a double aberration-
corrected microscope (see Methods and Figs. S3-S4). Tomographic reconstruction of the sample
was accomplished using the SIRT algorithm after careful image alignment and noise filtering. The
final tomogram (Fig. 5.2a and Movie S1) has a spatial resolution of 6.5 A (~1 unit cell of PbSe) as
determined by the Fourier shell correlation (FSC) method (Fig. S5). This resolution is sufficient
to unambiguously identify the center of mass (CoM) coordinates of all 1,846 QDs in the sample

volume, as illustrated in Fig. 5.2e and f.
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FIGURE 5.2. The epi-SL tomogram and QD positions. (a) Top, (b) bottom, (c)
cross-section, and (d) perspective views of the tomogram of the epi-SL film. The
color scale denotes the normalized electron density in units of e~ /nm?®. Dashed lines
represent grain boundaries between the three SL grains (labeled grain I, IT, and III).
The scale bar is 40 nm. (e) Perspective image of the center of mass coordinates of
all QDs in the sample. Each QD is represented by a sphere with a diameter of 1 nm
(for ease of viewing). The QDs are color coded according to their location in grain
I (blue), grain II (green), or grain III (red). The scale bar is 20 nm. (f) Exploded
view of the seven QD layers of the sample to illustrate the internal structure of the
epi-SL film. Each QD is represented by a 6 nm diameter sphere (Fig. S6). Layer 1
(L1) is the top layer of the originally floating film (at the QD/gas interface), while
layer 7 (L7) is the bottom layer of the film (at the liquid/QD interface). The QDs
are color coded according to panel e. (f-g) Representative monolayers in grain I
seperated along direction x and y, representing SL lattice planes of (f)(100)gr, and

(8)(010)st.

The CoM data were used to determine the size, shape, crystallographic orientation, and lattice
parameters of the constituent SL grains as well as the presence of inter-grain defects (grain bound-

aries, amorphous domains, voids) and intra-grain defects. Visual inspection of Fig. 5.2 shows that
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FIGURE 5.3. Analysis of the QD necks. (a) A slice of the tomogram through the
middle of L4, showing in-plane necks between the QDs. (b) Heat map of the total
number of necks for each QD in L4. The color scale is labeled. (c¢) Heat map of the
average neck diamer for each QD in L4, including both in-plane and out-of-plane
necks. The color scale is labeled. (d) Magnified isosurface views of two regions of the
sample to illustrate typical neck polydispersity (narrow, wide, and missing necks)
and a highly-fused pair of QDs (inset). The green dots denote the CoM of each
QD. (e) Histograms of neck number for all QDs in grain I, IT and III (inclusive of
L1-7, not just L4). The solid curves are fitted beta distributions. (f) Corresponding
histograms of average neck diameter. Fitting beta distributions are shown as solid
curves. See Fig. S15 for histograms of the diameter of every neck in each grain.

the sample is seven QD layers thick and consists of three cylindrical sector-shaped (pie slice) SL
grains that meet at a grain boundary triple junction near the center of the tomogram (dashed lines
in Fig. 5.2a-d). While it is possible to assign the SL grain crystallography a priori from the CoM
coordinates, we utilized the known unit cell of similarly-prepared PbSe QD epi-SLs [162] (distorted
simple cubic with a = 6.6 + 0.2 nm and o = 99 + 2°; Fig. S7) to help interpret the tomogram.
Grain I has a square-like lattice of QDs in each QD layer parallel to the substrate, so it is assigned
as a (100)gg-oriented SL grain, which is the most common grain orientation in this sample (see

Fig. 1b). Grains II and IIT have 1D chains of QDs in each layer parallel to the substrate, with
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F1GURE 5.4. Correlation of neck number with nearest neighbor QD positional dis-
order. (a) Histograms of NN distance (dyn) at each neck number for all of the
QDs in grains I and II. Overlaid red curves are Gaussian fits. (b) Plot of the av-
erage NN distance (dnn) versus neck number. (c) Plot of the standard deviation
of the NN distance (04) and the normalized standard deviation of the NN distance
(64 = 0q/dxN) versus neck number. &4 is a measure of the local disorder that is
independent of differences in unit cell size.

an average QD spacing of a along the chains and approximately v/2a between the chains. This
arrangement is consistent with the (011)sy, projection of the distorted simple cubic SL unit cell,

so grains IT and III are assigned as (011)gp-oriented SL grains (again, see Fig. 5.1b). Grains II
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and IIT intersect at a planar coherent twin boundary indexed as 39°[001],(010) (most easily seen in
Fig. 5.2a-b). Between grains I and II, it is harder to define a grain boundary inferface as we observe
in Fig. 5.2c a relatively smooth change in the [001]gy, lattice vector from grain IT on the left side to
grain I on the right side. A possible mechanism for such an inter-grain orientational transition is
proposed in Fig. S8 involving a small rotation and a subsequent glide of the (100)gy, plane. Grains
I and III meet at a highly-corrugated boundary. All three grain boundaries are normal or nearly
normal to the substrate and span the entire thickness of the QD film. SEM images of similar grain
boundaries are presented in Fig. S9. In Fig. 5.2g and h, we show representative separated layers
in grain I along two other SL lattice vectors showing QD vacancies from different perspectives.
The randomness in the QD positional order is shown to occur in all directions. We also note that
there is no significant difference in the vacancy rate for layers normal to different lattice vectors.
Several slice views of the tomogram taken at different angles are shown in Fig. S10 emphasizing
the orientational differences between SL unit cells of grain I and II and also how the lateral and
vertical monolayers are connected through necks. See Movies S2 and S3 for additional continuous
slices of this sample.

We determined the lattice parameters of grains I and II by compiling nearest-neighbor QD
distances and bond angles from the CoM data (see Fig. S11 for labeling conventions). Grain III
was excluded from this analysis due to its poor spatial order. Histograms of the QD distances and
angles (Figs. S12-S13) show Gaussian distributions with average and standard deviation values
summarized in Table 1. The lattice constants of grains I and II are in good agreement with the
unit cell parameters of similar epi-SL films derived from ensemble GISAXS measurements, [162]
so we conclude that these epi-SLs have essentially the same crystal structure, validating the recent
GISAXS results. However, grains I and II also exhibit broad distributions of distances and angles
indicative of a relatively large amount of positional disorder, as is apparent from Fig. 5.2. The
spatial order of this sample is likely limited by the structural disorder of the original oleate-capped
SL, the presence of several nearby grain boundaries, variability in QD neck number and diameter
(vide infra), and (possibly) mechanical strain caused by sample preparation. Two additional aspects
of the data are noteworthy. First, while grains I and II have very similar triclinic unit cells, they

differ slightly in their 5 angle (Table 1). Such grain-to-grain variability is expected in polycrystalline
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SLs due to local differences in grain nucleation and growth, especially when the SL grains are small
and experience non-uniform stress. Electron tomography is one of the few techniques capable
of detecting such minute structural differences between individual QD SL grains. Second, grain
I is slightly compressed along the film normal with a smaller average lattice spacing in the ¢
direction shown in Table 1. This is commonly seen for nanocrystal films prepared by solvent

evaporation. [179,180,181,182]

5.3.2. Characterization of Neck Disorder. In addition to the positions of the QDs, the
tomogram provides rich information about the crystalline connections (necks) between the QDs.
Previous TEM studies have shown that the QDs in these SLs are epitaxially fused across their {100}
facets. [153,158,161,163,183,184] The epitaxial necks likely dictate the strength and uniformity
of electronic coupling within the epi-SLs, [144] so mapping the location and size of the necks is
essential for understanding and optimizing the electronic properties of these materials. Electron
tomography can directly visualize the necks and map the 3D neck network inside each SL grain.
Fig. 5.3a shows a slice of the tomogram through the middle of L4 with the necks between the
QDs clearly visible. We implemented an automated program to measure the cross-sectional area
of every neck in the sample and assign each an effective diameter (Fig. S14). In our approach,
any connection with an area smaller than the tomogram spatial resolution (0.43 nm?, or about one
PbSe unit cell) was considered to be absent (a “missing neck”). An example of a missing neck is
shown in Fig. 5.3d.

Heat maps of the average neck diameter and the total number of necks for each QD in L4 are
presented in Fig. 5.3b-c. Maps for all seven layers of the sample are compiled in Figs. S16 and S17.
The 1,846 QDs in the sample have a maximum of 4,865 possible epitaxial necks (considering the six
{100} facets of each QD and sample edge effects, vacancies, and voids). We observe a total of 3,471
necks, giving an overall network connectivity of 72%, well above the bond percolation threshold (pc)
of 25% for simple cubic lattices. [185] This estimate of neck connectivity is conservative because,
as mentioned above, any neck smaller than the tomogram resolution (<3 Pb atoms wide) is not
counted by our algorithm. Overall, the average number of necks per QD is 3.7 and the average
neck diameter is 4.1 nm (64% of the QD diameter). Table 2 summarizes the neck statistics for the

sample.
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Figs. 5.3e and f show histograms of neck number and diameter for the three epi-SL grains in
this sample. The neck number for all three grains follows a beta distribution (solid curves) with a
peak at 3.5-4 necks per QD. Grain I has the largest fraction of QDs with high connectivity (five
and six necks), while grain IT has the largest fraction of QDs with intermediate connectivity (four
necks) and the smallest fraction of QDs with low connectivity (three or fewer necks). Overall,
grains I and II are quite similar with respect to neck number. In contrast, grain III has much
poorer neck connectivity than grains I and II, with the smallest fraction of high-connectivity QDs
and the largest fraction of low-connectivity QDs. Grain III is also dominated by QDs with very
large neck diameters (see the J-shaped distribution in Fig. 5.3f). The low neck number and large
fraction of heavily-fused QDs contribute to the poor spatial order of grain III. The average neck
diameters of grains I and II also follow a beta distribution and are similarly polydisperse. These
two beta distributions (grain I: o = 2.90, g = 2.25; grain II: @ = 2.10, 8 = 3.18) are approximately
mirror images of each other (Fig. 5.3f). Grain I has a larger fraction of thicker necks (;4 nm) while
grain IT has a larger fraction of thinner necks (j4 nm). The reason for these differences in neck
diameter and number in adjacent epi-SL grains is unclear, but probably related to variability in
the spatial order of the parent oleate-capped SL and the kinetics of the epi-SL phase transition.
We attempted to determine a correlation between neck number and diameter to measure whether
the number of necks on each QD determined the neck thickness. Supporting Information Fig. S18a
shows this correlation for the full sample and for each of the grains, indicating little correlation
between the number of necks and the neck thickness for each QD, but also clearly showing that
the average neck thickness is consistent throughout the grain regardless of the number of necks.
Understanding the origin of such differences between grains will require systematic study of many
tomograms to establish statistical relationships.

We also investigated whether there are trends in the necking that depend on the position of the
layer within the SL. Fig. S18b-c plot the average neck number and diameter for each of the seven
QD layers of the film. We find that the neck number is essentially constant in the middle five QD
layers of grains I and II, while the neck number is significantly lower in grain III. However, there
is a reduced neck number in L1 (the top of the film) for grains I-III and L7 (the bottom of the

film) for grain IT and III, despite taking into account edge effects. We conclude that the top and
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TABLE 5.2. Neck statistics.

Parameter Grain I Grain II  Grain III Total
number of QDs 903 389 554 1846
QD number density (x10'® em™3) 3.9 3.7 3.5 3.7(3.5%)
space filling fraction 0.53 0.51 0.48 0.51
possible necks 2343 1028 1494 4865
observed necks 1760 774 959 3493
connectivity 75% 75% 64% 72%
average number of necks 3.8 4.0 3.4 3.7
average neck diameter(nm) 4.0 3.5 5.0 4.1

* from reference 31.

bottom monolayers of the epi-SL tend to have fewer necks per QD. For all three grains, the neck
diameter is smaller in L1 and L7 and increases in the middle of the film(Fig. 5.4c). Interestingly,
while neck number and neck thickness are not in general correlated, the number and thickness of
necks is lower at the QD /liquid and QD/gas interfaces, which suggests that out-of-plane forces from
adjacent layers are important for necking formation and order. One might also expect to observe a
monotonic decrease in neck number and diameter along the film normal due to ligand (glycoxide and
oleate) concentration gradients since the ligands diffuse into the SL from the QD/liquid interface.
Our neck diameter profile suggests that no such concentration gradients exist in this sample, in
agreement with recent infrared spectroscopy measurements showing homogeneous ligand exchange
in films of similar thickness. [162]

We also explored the relationship between neck number and the local spatial order of the epi-SL.
In the ideal averaged epi-SL unit cell (Fig. S7), each QD is necked to six nearest neighbors (NNs)
located at a common center-to-center distance and fixed lattice angles. In contrast, QDs in real
epi-SLs have distributions of neck number, NN distance, and lattice angles. These distributions
provide a measure of the local (nanoscale) spatial disorder of the QD array. We reasoned that the
distribution of NN distances and lattice angles should depend strongly on neck number because
necks can form over only a narrow range of QD positions. Thus, QDs with high (low) connectivity
should have more (less) ordered local environments. To assess the impact of neck number on local
spatial order, we compiled histograms of the nearest neighbor distance (dnn) as a function of neck

number for all of the QDs in grains I and IT (Fig. 5.4a). Grain I was again excluded from analysis
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FIGURE 5.5. Transport simulation results. (a-c) Perspective views of the three
types of simulated samples. (a) The tomography sample (trimmed from a disc into
a cuboid). Grains I, II, and III are labeled. (b) A monocrystalline epi-SL. (¢) A
bicrystalline epi-SL. The monocrystalline and bicrystalline epi-SLs were generated
using the lattice parameters, QD size distribution, QD positional disorder and neck
statistics of grain I. The bicrystalline samples are bisected by a plane of missing
necks (a necking grain boundary), which limits transport across this plane to hop-
ping. Virtual electrical contacts are placed at the left and right sides of each sample.
All simulation boxes are approximately 92x92x39 nm. (d) Comparison of the calcu-
lated electron mobility of the tomography sample (dashed red line), monocrystalline
epi-SLs (blue bars) and bicrystalline epi-SLs (gray bars). The horizontal error bar
represents the error in the mobility estimate for the tomography sample. Overlaid
black curves are Gaussian fits of the histograms. The mobility for the monocrys-
talline and bicrystalline samples is 4.25 £+ 1.25 cm?/Vs and 3.28 + 0.8 cm?/Vs,
respectively.

due to its poor order. We find that as neck number increases, the average NN distance (dxy) and
standard deviation of the distance (oq) decrease in a linear fashion. As Fig. 5.4b and c¢ shows,
dnn decreases from ~7.2 nm for QDs with one neck to ~6.0 nm for QDs with six necks, while
o4 decreases from 1.1 nm to 0.5 nm (a 55% reduction). Although this simple metric is limited
to NNs and neglects the propagation of disorder across longer length scales, [161] it demonstrates

the importance of neck connectivity to the structural order of QD epi-SLs: high neck number is
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associated with high local spatial order. Future tomograms of more perfect monocrystalline samples
will be used to map, understand, and ultimately minimize the multiscale spatial disorder of these

QD solids.

5.3.3. Charge Transport Simulation. Charge transport in the epi-SL tomography sample
was simulated with the HINTS code. As described in the Methods section, the simulated tomog-
raphy sample was generated using the QD CoM coordinates and neck network of the experimental
tomogram and trimmed into a cuboid shape with electrodes on opposite faces (Fig. 5.5a). In this
geometry, electrons must cross the grain boundary between grains I and II, or I and III, to traverse
the sample. The tomogram shows that grains I, II, and III are connected by many necks across
these grain boundaries. The mobility of the tomography sample was found to be ~4.6 cm?/Vs
(Fig. 5.5d).

To probe the relative importance of the necking versus the conventional SL grain boundaries,
and the disorder for the electron transport across the tomography sample, mobility simulations
were also performed on the two ensembles of its monocrystalline and bicrystalline analogues. First,
we compared the mobility of the tomography sample to that of the ensemble of monocrystalline
(single-grain) epi-SLs with the same lattice parameters and neck statistics as grain I (Fig. 5.5b).
Relative to the monocrystalline samples, the tomography sample has three grains separated by SL
grain boundaries, but these grain boundaries are bridged by a large number of inter-QD necks. In
spite of these differences, the mobility of the tomography sample remains typical of the mobility
distribution of the ensemble of monocrystalline epi-SLs, as shown in the upper panel of Fig. 5.5d.
Next, we also calculated the carrier mobilities of the ensemble of bicrystalline (double-grain) epi-
SLs, generated by removing a bisecting plane of necks from the monocrystalline samples (Fig. 5.5¢).
Electrons can move across this “necking grain boundary” only by hopping, which is significantly
slower than direct tunneling through necks. We find that the computed average mobility decreases
by ~25% as a consequence of splitting the neck network in two (lower panel of Fig. 5.5d). The
introduction of the necking grain boundary makes the mobility of the tomography sample largely
inconsistent with the bicrystalline mobility distribution.

The most natural explanation of these results is that the mobility in these strongly disordered

epi-SLs is primarily determined by transport across the inter-QD neck network, while SL grain
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boundaries impact the mobility only to a limited degree as long as inter-QD necks continue to con-
nect the SL grains across the SL grain boundary with a reasonable density. The tomography sample
falls into this category: this explains why its mobity is consistent with the mobility distribution of
the monocrystalline samples. In contrast, when a sample is bisected with a neck grain boundary,
so that the two grains cease to be connected by inter-QD necks, electrons are forced to thermally
hop across no-neck boundaries rather than tunnel through necks, thereby reducing the mobility
by a substantial amount. Our analysis suggests that the formation of necks between QDs across
conventional SL grain boundaries is an efficient way to substantially increase carrier transport
across those grain boundaries. Strategies to enhance the mobility in SLs were already discussed
in earlier works, wherein the importance of reducing the disorder of SLs to form mini-bands was
emphasized. [21] A key message of the present chapter is that the mobility of QD SLs can also be
substantially improved by forming sample-spanning neck networks. In a single-grain sample, charge
transport should be improved by regulating intra-grain necking conditions such as decreasing neck
size dispersity and increasing connectivity. This is particularly true for QD SL based photovoltaics,
where the charge carriers are collected along the through-plane (film normal) direction of the mul-
tilayer instead of in-plane direction. We did observe a higher through-plane connectivity of QDs
in Grain I that might suggest anisotropic necking conditions in a 3D epi-SL film. However, further
investigations should be conducted to look into the effect of the degree of anisotropy of connectivity
on the mobility, and will more rely on structural statistics from single-grain tomography samples,

which is beyond the scope of this chapter.

5.4. Conclusion

We analyzed a full-tilt electron tomographic reconstruction of a disc-shaped region of a 3D
epitaxially-connected PbSe QD SL film. This tomogram provides (i) sufficiently high spatial reso-
lution (0.65 nm) to accurately determine the position and size/shape of the QDs and their necks
and (ii) sufficiently large volume (4.3 x 10° nm?) to enable meaningful statistical analysis of struc-
tural disorder in the sample. We showed that the sample consists of three SL grains and assigned
the unit cell and in-plane crystallographic orientation of each grain as well as the structure of the

three grain boundaries. Maps of the neck locations and diameters revealed that the sample has an
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average of 3.7 necks per QD (overall network connectivity of 72%) and an average neck diameter
of 4.1 nm (64% of the QD diameter). In testing correlations between neck number, neck diameter,
inter-QD distance, and QD location in the film, we discovered a strong association between neck
number and both the average and standard deviation of the nearest neighbor QD distance, demon-
strating that QDs with more necks tend to have more ordered local environments. Achieving more
complete, uniform necking will require fabrication of more perfect oleate-capped SLs and greater
control of the kinetics of the phase transition from the oleate-capped SL to the epi-SL.

We also simulated the combined nearest-neighbor hopping/tunneling transport in this SL film.
Simulations of monocrystalline and bicrystalline analogues showed that SL grain boundaries have
limited impact on the electron mobility as long as the grains remain interconnected by necked QDs
that form percolating neck networks. An encouraging message of this result is that high mobilities
can still be achieved in QD SLs even if they have a high density of grain boundaries, and thus small
grain sizes, by increasing the QD attachment density, or neck connectivity, across the SL grain
boundaries. To complete the picture, it is natural to expect that once the neck networks connect
most of the QDs of the epi-SL to the point that carriers delocalize into mini-bands, further mobility
enhancements can be achieved by reducing the density of conventional SL grain boundaries as well.

Our study sets a baseline for the quantitative structural characterization of 3D QD epi-SLs.
Looking forward, electron tomography will likely be an important tool for elucidating process-
ing/structure/property relationships and guiding the fabrication of increasingly perfect 3D epi-SLs.
Higher-quality epi-SLs will in turn encourage more in-depth analysis of the tomograms, particularly
with regard to disorder across length scales longer than those emphasized in this chapter. [161]
Finally, we note that improving the tomogram resolution by a factor of two would allow visual-
ization of QD facets and atomic-scale defects such as edge dislocations, [186] thereby providing a

comprehensive near-atomistic picture of the 3D structure of these mesoscale QD films.
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CHAPTER 6

SolDeg: Solar Degradation in Silicon Heterojunctions

6.1. Introduction

6.1.1. Solar Cell Degradation. Heterojunction (HJ) Si solar cells have world record efficien-
cies approaching 27%, due to the excellent surface passivation by their amorphous Silicon (a-Si)
layer that leads to low surface recombination velocities and high open circuit voltages Vpc. In spite
of the impressive efficiency records, HJ Si cells have not yet been widely adopted by the market
because of the perceived challenge that HJ cells may exhibit accelerated performance degradation,
possibly related to their a-Si layer. Traditional crystalline Si (c-Si) modules typically exhibit about
a 0.5%/yr efficiency degradation, primarily via their short circuit current I, and the fill factor FF,
typically attributed to external factors, such as moisture ingress and increased contact resistance.
In contrast, in 2018 two papers reported studies of the degradation of fielded Si HJ modules over
5-10 years [27,28]. They reported degradation rates close to 1%/yr, about twice the rate of tra-
ditional cells. These papers pointed to a new degradation channel, the decay of Vp¢, at a rate of
about 0.5%/yr. The decay of Voo suggests that the degradation is possibly due to internal fac-
tors, increasing recombination either at the a-Si/c-Si interface, or in the a-Si layer. Such increased
recombination is typically caused by the increase of the electronic defect density.

These initial reports on fielded panels were followed up by in-laboratory analysis. The Bertoni
group has studied the surface recombination velocity (SRV) at the a-Si/c-Si interface in HJ stacks.
By applying a model for the recombination at the a-Si/c-Si interface to their temperature- and
injection-dependent SRV data, they analyzed the degradation of the carrier lifetime and were able
to attribute it to a loss of chemical passivation [29]. More recently, Holovsky et al. investigated
ultrathin layers of hydrogenated amorphous silicon (a-Si:H), passivating the surface of crystalline
silicon (c-Si) [30]. These authors applied highly sensitive attenuated total reflectance Fourier-

transform infrared spectroscopy, combined with carrier lifetime measurements. They manipulated
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the a-Si/c-Si interface by applying different surface, annealing, and aging treatments. Electronic
interface properties were discussed from the perspective of hydrogen mono-layer passivation of the
c-Si surface and from the perspective of a-Si:H bulk properties. They concluded that both models
have severe limitations and called for a better physical model of the interface [30].

Understanding the degradation of the passivated c-Si surface is important not only for under-
standing a-Si/c-Si heterojunction solar cells. The PV industry roadmap shows that among newly
installed modules, the fraction of advanced Passivated Emitter/Rear Contact (PERC) modules will
rapidly rise above 50% in the next 3 years. One of the advanced features of these PERC cells is the
improved interface passivation with the application of elevated levels of hydrogen. However, the
increased efficiency was accompanied by notable levels of degradation [31,32,33]. By experiments
and by including all three charge states of hydrogen in their modeling, the authors speculated that
the PERC cell degradation both in the dark and under illumination could be explained by the
migration of and interaction between hydrogen ions in different charge states.

To summarize, the accelerated degradation of V¢ slows the market acceptance of the world-
efficiency-record holder HJ Si modules, and impacts the introduction of the advanced PERC cells,
thereby impacting the entire PV industry roadmap. Therefore, analyzing and mitigating this

degradation process is of crucial importance.

6.1.2. Defects in Amorphous Si. Photoinduced degradation of a-Si under prolonged expo-
sure to intense light was first studied, measured and modeled by Staebler and Wronski [34]. They
reported that the degradation is characterized by a remarkably universal t1/3 power-law tempo-
ral growth of the defect density. This behavior has become known as the Staebler-Wronski effect
(SWE).

The SWE was analyzed by different methods. Some groups performed electron spin resonance
(ESR) measurement on a-Si (a-Si:H) to experimentally detect the increase of the density of dangling
bonds induced by light exposure [35,36,37]. Some of these papers also developed a phenomeno-
logical model to predict the SW defect-increase as a function of exposure time and light intensity.
Other groups used the photocurrent method (PCM) to detect the change of defect density of a-Si
under light exposure. In agreement with ESR experiments, PCM also revealed the increase of

defect density under light exposure. While the ESR and PCM defect density measurements yielded
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analogous results, it is recalled here that they capture different type of defect states [38,39]. ESR
detects all neutral defect states that only include dangling bonds (DBs), while PCM detects both
neutral and charged defect states that include DBs and other types of defect states. Therefore
PCM measurements revealed that the origin of defect states might be a result of different type of
general structural disorders beyond DBs. [40,41]

Recently, Wronski argued that three distinct defect states, A/B/C, are needed to account for
all the data, instead of the standard single “midgap dangling bond” defect [42]. The A/B states
are efficient electron recombination centers, while the C states recombine holes efficiently. Wronski
speculated that these states are differentiated by their different structures: dangling bonds, mono-
and divacancies, as also advocated by Smets. Other groups also analyzed their data in terms of
three distinct states [29,32]. However, they focused on the alternative picture that the defect states
may be the three charge states H+, HO, and H- of hydrogen. In addition to these experimental
works, recent theoretical and computational papers also analyzed the defect states in a-Si, and
they concluded that besides dangling bonds, highly strained bonds also contribute to midgap states
significantly [43,44].

To summarize, while a fair amount of progress has been achieved in characterizing defect gener-
ation in a-Si, its underlying mechanism and connection to the different types of structural disorder
and defects is far from being settled and understood. The problem is still open to question. For this
reason, in this chapter we analyze the above problem of defect generation in a-Si/c-Si heterojunction

solar cells, with a possible relevance for PERC cell passivation.

6.2. Methods and Results

6.2.1. The SolDeg Platform. To address the above-described Solar cell Degradation, we
have developed the SolDeg platform to model electronic defect generation in a-Si/c-Si heterojunc-
tions, which consists of the following hierarchical stages. (1) Creating a-Si/c-Si stacks. (2) Gen-
erating shocked clusters as likely hosts of electronic defects. (3) Identifying shocked clusters that

actually host electronic defects. (4) Determining the energy barriers that control the generation of
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these electronic defects; and determining their distribution. (5) Determining the temporal evolu-
tion of the defect density from the energy barrier distribution. This SolDeg platform is described

next in detail.

6.2.2. Creating the Amorphous/Crystalline Si Stacks: Machine-Learning Driven
Molecular Dynamics. The SolDeg platform starts with creating a-Si/c-Si heterojunction struc-
tures, or stacks. We first created pure a-Si structures, which were carefully optimized in order to
match lab-grown a-Si as closely as possible. Second, we placed these optimized a-Si structures on
top of slabs of c-Si, and then annealed the interface region. This approach was chosen in order to
create the most realistic a-Si atomic structures possible, while still yielding a reasonable aSi/cSi
interface region. The details of this approach are as follows.

To create pure amorphous Si structures, one performs melt-quench molecular dynamics (MD)
simulations. In a melt-quench MD simulation, a crystalline Si structure is heated past its melting
point to generate liquid Si, which is then quenched down to low temperatures at an appropriate
rate. This method is widely used for generating amorphous Si networks. It is known that the
choice of the interatomic potential used for these MD simulations has a substantial effect on the
results. Classical parametric interatomic potentials, such as the Tersoff [187] and Stillinger-Weber
(SW) [188] potentials, have a limited number of parameters/descriptors, and are typically fitted
against experimental structural data under a specific set of conditions such as a particular mate-
rial composition and temperature range. As such, their accuracy in reproducing a wider variety
of structural properties of the specific material, or in simulating different temperature ranges or
material structures than they were fitted to, often limits the precision of the results.

For example, the excess energy (energy compared to diamond-type Si) of the a-Si resulting from
melt-quench simulations performed with these interatomic potentials is typically > 0.20 eV /atom,
falling outside of the lab-grown a-Si excess energy range of 0.07 — 0.15 eV /atom [189,190,191].
The defect densities, e.g. the density of dangling and floating bonds, also differ from typical lab-
grown a-Si data. MD simulations with these interatomic potentials are also unable to reach DFT-
level accuracy in determining elastic constants and defect formation energies. For all the above

reasons, the MD-created a-Si systems need to be further optimized by Density Functional Theory
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(DFT) [44]. However, the need to use DFT slows down the computational time substantially, and
thus limits the accessible system sizes substantially.

To improve the accuracy of our MD simulations in all aspects compared to using these standard
interatomic potentials, we instead adopted a Machine-Learning driven general-purpose interatomic
potential which has been created for Si [192]. This machine-learning driven approach uses the
framework of the Gaussian approximation potential (GAP) with a smooth overlap of atomic posi-
tions (SOAP) kernel, and has been specifically developed so that GAP-based MD simulations yield
DFT-level accuracy, even though they are 10x more efficient, thus enabling the faster simulation
of larger systems [193,194|. Hereafter, we will refer to this potential simply as the Si GAP. It has
been shown that the Si GAP captures more than a dozen experimentally measured quantities sig-
nificantly better than any of the other available interatomic potentials [192]. We show below that
adopting the Si GAP for our MD simulations yield superior a-Si structures after only a minimum
level of DFT optimization. Now we proceed with the technical simulation details.

We generated the a-Si/c-Si stacks by MD simulations, carried out using the LAMMPS software
package [195]. The simulation time step was 1 fs. Our melt-quench simulations started with crys-
talline Si cubic supercells containing 216 Si atoms, with three dimensional (3D) periodic boundary
conditions. The lattice constant ag was chosen to be 5.43 A, and the dimensions of the supercell
a =b = c = 3ag. This lattice constant was chosen to ensure that the mass density of the resulting
a-Si structures was 1-3% lower than the mass density of corresponding c¢-Si structures, consistent
with the mass density measured by experiments on a-Si/c-Si stacks.

The crystalline Si was first heated to 1800K to yield liquid Si. The liquid Si was subsequently
re-solidified by cooling down to 1500K at a rate of 10" K/s before being equilibrated at 1500K
for 100 ps. This solid Si was quenched further down to 500K at a rate of 10'2K/s, following
previous studies [192,196,197,198]. The first quench was performed in the constant-volume
and variable-pressure (NVT) ensemble, while the second quench was performed in the variable-
volume and constant-pressure (NPT) ensemble with fixed x and y cell-dimensions (to match the
dimensions of the c-Si unit cell in the later steps), both using a Nosé-Hoover thermostat and
barostat. We minimized the structural energy using a GAP-driven Hessian-free truncated Newton

(HFTN) algorithm to relax all atomic positions into their local minima.
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These relaxed a-Si structures were further optimized with DFT, specifically making use of the
Quantum Espresso 6.2.1 software package [199,200]. We used the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) quasi-newton algorithm, based on the trust radius procedure, as the optimization
algorithm.

The Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional [201] was used in both
the ionic relaxation and the electronic structure calculations using periodic boundary conditions.
The core and valence electron interactions were described by the Norm-Conserving Pseudopotential
function. Unless otherwise stated, an energy cutoff of 12 Ry was employed for the plane-wave basis
set and a 2x2x2 k-point mesh was used with the Monkhorst-Pack grid method for the Brillouin-
zone sampling in all the calculations. Methfessel-Paxton smearing [202] of width 0.05Ry was

applied to determine the band occupations and electronic density of states.
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FIGURE 6.1. Radial distribution function g(r) characterizing a typical melt-quench
MD a-Si structure, plotted against the experimental values of ref. 203
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Motivated by Pedersen et al., we use the excess energy, the bond angle distribution, and the
radial distribution function (RDF), as the most compelling criteria to validate our generated a-Si
structures against a-Si experiments [204]. In our structures the typical excess energies were around
0.13—0.14 eV /atom, well within the experimentally acceptable range of 0.07—0.15 eV /atom. These
remarkably low excess energies strongly validate the superiority of the Si GAP over traditional
potentials, which yield excess energies above 0.20 eV/atom. The bond-angle distribution was
centered at 109.1° with a width of 10.5°. These values are also consistent with typical experimental
values [205]. The average Si-Si bond length was 2.38 A +.04 A. Assuming a Si-Si bond-length
cutoff of 2.58 A, slightly less than 10% longer than the average bond-length, the average number
of dangling bonds in each supercell was 2.2, and the average number of floating bonds was 0.8.
Dangling (floating) bonds are missing (extra) bonds of a Si atom relative to the standard number
of 4. Finally, the structures were further validated by calculating the radial distribution function
(RDF). The RDF measures the probability of finding the center of an atom at a given distance
from the center of another atom as a function of their radial separation. For a-Si, the typical RDF
exhibits a strong peak centered at 2.3 A, and two weak peaks centered around 3.8 A and 5.4 A (the
next-nearest and next-next-nearest neighbor distances in c-Si). As shown in Fig. 1, the RDFs

calculated from our GAP-MD generated structures track the experimental data compellingly.
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FIGURE 6.2. Rendering of a simulated Si-heterojunction structure. Periodic bound-
ary conditions result in the presence of two distinct interface regions.

We created the Si-heterojunction structures by placing the DFT-optimized a-Si on top of c¢-Si
slabs (of the same dimensions and number of atoms as the a-Si structures). See Fig. 6.2. Note that
requiring periodic boundary conditions for the a-Si/c-Si stacks forces two a-Si/c-Si interfaces into

the structure, as shown. At both interfaces, the a-Si was placed 1.36 A (ag/4) away from the edge
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of the ¢-Si slab. This distance was chosen by calculating the total energy of a series of structures
where this distance was systematically varied, and choosing the distance which yielded the lowest
total energy.

The resulting a-Si/c-Si interfaces are highly strained. For this reason, we relax each interface
via thermal annealing. To avoid altering the structure of the carefully optimized a-Si layers, we
only annealed a strip of width ag centered symmetrically at each a-Si/c-Si interface. The annealing
was performed at 450K for 25 ps, and was followed by cooling down to 270K at a rate of 10'3 K/s.
Both steps were performed in the NVT ensemble with a timestep of 1 fs. In total, we created 50

a-Si/c-Si structures.

6.2.3. Defect Generation: Shocked Cluster Generation by the Cluster Blaster. Our
overarching theory is that the HJ cell performance degradation is driven by the generation of
electronic defects that act as recombination centers. We further posit that most of the electronic
defects are generated by a small group of Si atoms in the a-Si transitioning from their moderately
disordered cluster into a highly disordered cluster by thermal activation over an energy barrier.
The transition into this highly disordered cluster can strain or break the Si bonds, thereby creating
electronic defects, such as strained or dangling bonds.

We decided to create highly disordered, ”shocked” clusters by heating the cluster very quickly
to excessive temperatures, followed by a comparably quick cooling: a procedure we refer to as
the ”cluster blaster”. Using LAMMPS [195] and the ML-based Silicon Gaussian Approximation
Potential (GAP) [192], described in the previous section, we blasted clusters of 5 atoms in our a-
Si/c-Si stack, centered at the crystalline/amorphous interface to a temperature of 7' = 5000K while
keeping the rest of the structure frozen. We chose T' = 5000K, because we found that temperatures
significantly below this value were not efficient at generating electronic defects in our systems, to be
described below. We allowed the shocked clusters to evolve at this elevated temperature for 20 ns
so that they could explore their configuration space extensively. After 20 ns, the shocked clusters
were quenched quickly, so that they could not escape whichever highly disordered metastable con-
figuration they were nearest to. We then performed a Hessian-free truncated Newton optimization

of the quenched shocked clusters, again using the Si GAP. This cluster blaster process was repeated
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at the interfaces of all of our 50 a-Si/c-Si stacks at about 30 different locations each, eventually

creating about 1,500 shocked clusters with the cluster blaster.

6.2.4. Defect Generation: Analysis of the Shocked Clusters for Electronic Defects.
The cluster blaster does not always induce electronic defects in the shocked clusters. To identify
which cluster blasting induced electronic defects as well, the next stage of SolDeg is to measure the
orbital localization of the electronic states in the a-Si/c-Si stacks with shocked clusters.

We determined the localization of the Kohn-Sham electronic orbitals in the a-Si/c-Si structures
before and after the cluster blasting by using the inverse participation ratio (IPR) method. The

IPR for an eigenstate ¥, is given as:
(6.1) IPR, = ——=1"ni_

where ay,; is the coefficient of i*" basis set orbital in n*” Kohn-Sham orbital ¥,, (v, = Eleamqﬁi)
and [ is the total number of basis set orbitals used in the DFT calculation. The higher the IPR,
the higher the degree of localization. The IPR for a state extended equally over all atoms is close
to zero ( O(1/N)), and for a state completely localized state on only one atom is one.

Fig. 6.3(a) shows the IPRs, calculated for all Kohn-Sham orbitals obtained by DFT as a function
of their energy for a typical a-Si/c-Si stack. Visibly, the majority of the electronic states are localized
in the energy region of 5.5-7 eV, lying between the conduction band and the valence band. This
region can be identified as a mobility gap because the electronic states are localized within. In
contrast, the majority of the states are delocalized inside the conduction and valence bands. It is
recalled that the mobility gap often differs somewhat from the density of states (DOS) gap, since
the electronic states in the tails of the conduction and valence bands can be localized, separated

from the delocalized continuum of band states by a ”"mobility edge”.
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FIGURE 6.3. (a) IPR and (b) IPRy, of typical a-Si/c-Si structures.

In order to determine the localization of the electronic orbitals more we rearrange Eq. 6.1 as

follows:
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(6.2) IPR(V,) =

where a,; is the coefficient of 4t atomic orbital belonging to the k" atom in the n* Kohn-
Sham orbital. J is the total number of atomic orbitals used in DFT calculations, which belong
only to the k" atom in the supercell, and K is the total number of atoms inside the supercell. We
introduced the concept of Eq. 6.2 because it is capable of identifying not only that an electronic
state is localized, but the location of the atom where it is localized as well by defining a quantity

IPR,}; as follows: [44]

4
ank:j

(6.3) IPRy,; =
’ (Eszlz}leaikj)Q

Here I PR,,;; is the contribution of the k" atom through its j** atomic orbital in the localization
of the n'* Khon-Sham orbital. One notes that the denominator of Eq. 6.3 is the same for the all
IPR,; for a given n. Thus, the number of IPR,; values for a given k atom for each Kohn-Sham
orbital is J. Denoting the number of Kohn-Sham orbitals as N, each atom in the supercell has NJ
IPR,; values. In order to assign only one IPR value to each atom k, we choose the maximal

IPR,; from among the NJ IPR,; values for a fixed k. We name this maximal value I PRy:

(6.4) IPR, = MAX), {IPRy;}

Fig. 6.3(b) shows PRy, for a typical a-Si/c-Si structure, as a function of the atom number
k, approximately translating into the z-coordinate of the atoms. As expected, almost all of the
localized states are located at the interfaces. There are no localized states in the c¢-Si, and only
one localized state in the a-Si. This localized state distribution is reasonable given the high degree
of strain at the interface, in contrast to the low strain in the a-Si, and minimal strain in the c-Si.

We identify electronic states as genuine electronic defects as long as they are mostly localized on
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a single atom, This is captured by their I PRy value exceeding a threshold which we take as 0.5.
With this threshold convention, visibly there is only one defect at each interface in Fig. 6.3(b).
Once the IPR calculations have been completed, we can determine whether electronic defects
have been successfully created in the shocked clusters by the cluster blaster. As somewhat of a
surprise, we found that quite often the cluster blasting in fact did the opposite: it annealed out
an already existing electronic defect instead of creating one. Therefore, we broadened the scope of
our search to identify pairs of initial and final states of the cluster blasting in which the number
of electronic defects differed by precisely one. This protocol picked up both the creation and the
annihilation of electronic defects in the shocked clusters. We chose to only track initial-final state
pairs that differed by a single defect to avoid the need of tracking defect-defect interactions that

may affect our results.

6.2.5. Determining Energy Barriers and Their Distribution with the Nudged Elas-
tic Band Method. In the next stage of SolDeg, we determined the energy barriers that control
the creation and annihilation of the identified electronic defects because thermal activation across
these barriers controls the temporal increase of the overall electronic defect density in a-Si/c-Si
stacks, aged in the dark. We will return to light-induced defect generation in future work.

Once pairs of initial and final states have been identified where a single electronic defect was
either created or annihilated, we employed the nudged elastic band (NEB) method [206,207,208,
209] to determine the energy barrier heights between these initial and final states. The nudged
elastic band method connects two different local energy minima with several intermediate replica
states, each connected to its nearest state neighbor with a ”spring” that is nudged perpendicular
to the path through state space to allow the "band” to find a saddle point. The NEB method is
a standard tool for determining minimum energy paths between states in some fields, but to our
knowledge, the NEB method has not been used in the solar field yet, so we will describe the method
in some detail here.

NEB starts with an initial guess of a sequence of intermediate "replica” states between an initial
and a final state. NEB then postulates an abstract ”spring” between the adjacent replica states,
to generate a tendency for sequence of replica states to evolve towards a compact, possibly lower

energy path between the initial and final state.
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The NEB method uses two force components to cause the replica sequence to evolve toward
the sought-after minimum energy path (MEP). One of these, the longitudinal component of spring

force that connects adjacent replica states is given by:

(6.5) FY = [k(Riz1 — Rq) — k(Ri — Ri_1)] - 77

)

where R; represents the position of the " replica in the energy landscape, k is the spring
constant, and 7 is the "longitudinal” unit vector, parallel with the "spring” at replica 1.

The other, lateral force component is perpendicular to the ”spring”, exerted by the gradient
of the energy surface. As such, this force component nudges the spring towards the MEP. In our

SolDeg platform, the energy surface was computed with the Si GAP.

(6.6) FY = —-VV(R;) + VV(Ry) - 77

where V is the potential energy landscape. The advantage of the NEB method over a standard
elastic band method is that artifacts involved with the band cutting corners off the MEP are not
a problem for the NEB method.

Our NEB simulations were performed in LAMMPS using the Si GAP [192]. We used 32 replicas
for each simulation. In our simulations we kept the non-heated atoms fixed: only the heated atoms
were allowed to move replica-by-replica. The energy stopping tolerance was 10~% (unitless), and
the force stopping tolerance was 1076 eV/ A. The simulation timestep was 10 fs. We used the fire

minimization algorithm, a damped dynamics method with a variable time step [210].
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FIGURE 6.4. Energy barrier distributions for: (a) defect creation; and (b) de-
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The results of our NEB calculation are shown in Fig. 6.4. The distribution of the barriers for
the defect creation processes is shown in panel (a), while the distribution of the barriers for defect
annihilation processes (a reverse transition across the defect creation barrier) is shown in panel (b).
Because of the similarity of the two distributions, both the creation and the annihilation processes

will impact the time evolution of the defect density. Importantly, Fig. 6.4 reveals an extremely
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broad distribution of barriers, from meV to 4 eV. Such an extremely broad barrier distribution is
the hallmark of glassy phenomena, and is the driving force behind the defect density growing not

only on microscopic time scales but also on the time scale of years.

6.2.6. Determining the Temporal Evolution of the Defect Density N(t) From the
Barrier Distribution. In the last stage of the SolDeg platform, we determined the temporal
evolution of the defect density from microscopic times scales to 20 years, the standard length of
solar cell performance guarantees.

In order to determine the defect density as a function of time, we turned to kinetic Monte
Carlo methods. We begun by creating samples with 20,000 individual two-state ”clusters” that
each could transition from a non-defected state to a defected state by overcoming a defect creation
energy barrier, and transition from a defected state to a non-defected state by overcoming a defect
annihilation energy barrier. For each cluster transition, the energies for these creation and annihi-
lation processes were drawn from the two barrier distributions determined in the previous section.
We eliminated artificial fluctuations induced by the discrete binning of the barriers by representing
the distributions with their smooth fitted forms, as shown in Fig. 6.4. The clusters transition over

the barriers by thermal activation, with an associated rate of

(6.7) [ = Dye#r,

where 'y is a characteristic attempt frequency of the cluster to overcome its energy barrier,
taken here to be 10'Y s™!. These rates are calculated for each cluster and summed to determine

the "total rate”, I'y,s. Next, an event is randomly selected from the possible pool of events, with

the probability of selecting event i being equal to P(i) = FI;;. The time is then moved forward

according to At = _lﬂ?o(f), where r is a random number. This is equivalent to sampling a Poisson

waiting time distribution.

The above described method becomes computationally prohibitive when the phenomena of
interest are rare events, with rates of occurrence that are several orders of magnitude smaller than
typical events. Not only are these rare events exceptionally unlikely to be chosen by the KMC

algorithm, but the number of simulation steps needed to evolve the simulation time far enough
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to see the rare events will be impossibly large. Using our base kinetic Monte Carlo algorithm,
without any acceleration efforts, a million simulation steps only evolve the simulation time by one-
hundredth of a second. This is completely inadequate to determine degradation that occurs on the
scales of months or years.

Our solution to this problem was to implement the ”accelerated super-basin kinetic Monte
Carlo” (AS-KMC) algorithm [211]. The AS-KMC method adds the extra algorithmic step of
checking whether any of the events that are part of a ”super-basin” have been executed a pre-
specified number of times. For such events, the AS-KMC increases the barrier height, thereby
lowering their rate of occurrence. In conventional terms, a super-basin consists of clusters which
are linked to each other by high-frequency events but are separated from the surrounding energy
landscape by one or more high barriers, making the frequency of the escape from the basin dra-
matically lower. AS-KMC avoids getting stuck in a single super basin by boosting the probability
of the system overcoming these high barriers. In our implementation, as the clusters are indepen-
dent from each other, a superbasin is the set of fast transitions over the low energy sector of the
barrier distribution for each cluster. The AS-KMC method increasing the barrier height in the low
energy sector can be thought of as integrating out the fast degrees of freedoms in a renormalization
group sense, thereby mapping the problem to a scaled problem where the slower transitions over
the higher energy barriers are the typical processes. The formalism of our implementation of the
AS-KMC method is as follows. Every N times that an event occurs, the transition rate I' of that

event is reduced by a factor «, such that I'' = T'/a. Here « is taken as:

(6.8) a =1+ (N3)/|In(s)|.

where ¢ is the magnitude of the relative error in the new probability of escaping the superbasin
once the internal activation barrier has been raised. We chose N = 10 and § = 0.25. As is clear from
the above description of the KMC method of forwarding the time at each executed transition by the
inverse of the executed rate, the scaling of the I rates scales the time itself. The integrating out of

the fast degrees of freedom and the rescaling of time together map the model to a ”slower transitions
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only” model. As this integrating out and rescaling is repeated many times over, transitions over

all time scales are properly accounted for by this AS-KMC method.
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FIGURE 6.5. Defect density N(t) as a function of time. Defect saturation den-
sity was chosen as Ny = 1210° cm™2. Orange: defect generation by AS-KMC
at T=300K. Red: accelerated defect generation by AS-KMC at T=350K. Blue
and green: Stretched exponential fits to AS-KMC results with stretching exponent
B(300K) = 0.019, and B(350K) = 0.022.

We reduced the noise by simulating the AS-KMC dynamics for 64 samples of 20,000 clusters
each, and finally by averaging the results. Fig. 6.5 shows the time dependent defect density N(t),
determined by this method. The minimal fluctuations of N (t) are representative of the effective er-
ror bars and thus show that the above approach averaged out the fluctuations very efficiently. The
AS-KMC dynamics was performed for samples with temperature at 7=300K (red), and T=350K
(orange), in order to simulate defect generation at ambient temperatures and with standard accel-

erated testing protocols at elevated temperatures, as described below in detail.
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In order to develop an analytic model and understanding for these simulation results, we recall
that systems that exhibit very slow dynamics are often thought of as glassy systems with a broad
distribution of energy barriers P(FE) [212]. In general, the distribution of energy barriers P(E) can
be translated into a distribution of ”barrier crossing times” P(7), and then coupled rate equations
can be written down for defect creation and defect annihilation. The expectation value of cluster
transition rates at time ¢ can be determined by integrating over the barrier crossing time distribution
P(7) up to t which turns out to be time dependent instead of the usual constant rates, typical for
well defined transition energies. [213,214| This rate equation for the defect density with time
dependent rates can then be solved for N ().

The specific time dependence of N(t) depends on the functional form of the energy barrier
distribution P(E). As seen in Figs. 6.4a-b, our P(E) distributions can be well-fitted with an
exponential, P(E) = (1/E*)exp(—E/E*), with E* = 1.42 eV for barrier creation and E* = 1.44
eV for barrier annihilation. Following the above steps for an exponential energy barrier distribution

yields a stretched exponential time dependence [215,216,217]:

(6.9) N(t) = Noa (1= exp [~ (t/70)°] ).

where 8 = kT /E*, and 79 is a short time cutoff. It is important to emphasize that here 5 was
not a fitting parameter. Once we determined E* from the P(E) we computed earlier (Figs. 6.4a-b),
this fixed the value of 3. 3 being fixed makes it all the more remarkable that we were able to fit
N(t,300K) over ten orders of magnitude with S(300K) = 0.019 = kp * 300K/E* since E* = 1.43
eV, the average of the defect creation and defect annihilation energy scales; and analogously, fit
N (t,350K) with 3(350K) = 0.022.

For completeness we note that we obtained very good fits setting 79 with 1/Tg, but our fits
improved by using shorter 7y cutoff values. Developing a physical interpretation for the best 7y is
left for future work. Further, forcing power law or near-flat fits on P(FE) predicted power law and
logarithmic time dependencies. Such forms can achieve reasonable fits for N(t) over 2-4 orders of
magnitude in time, but as the fitting range was extended, the stretched exponential fit produced

the singularly best fit, and thus we conclude that the exponential for for P(F) is the natural choice.
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A stretched exponential time dependence was reported for the recombination lifetime at a-
Si:H/c-Si interfaces [218] before. The measurement ”annealing” temperature was T=450K, and
the B exponent assumed values in the 0.29-0.71 range. Accordingly, the characteristic energy scale
E* of the barrier distribution that controlled this time dependence was in the range of E* = 50—125
meV, an order of magnitude smaller than the Si defect energies that control the time evolution in
this chapter. We agree with the conclusion of the authors of Ref. 218: their time dependence was
probably controlled by hydrogen diffusion, not considered in our model.

The main messages of Figs. 6.4a-b and Fig. 6.5 are as follows.

(1) It has been customary to think about degradation processes in Si solar cells as being
controlled by chemical bonds with well-defined energies, at most with a narrow distribution. But
our simulations of realistic a-Si/c-Si stack interfaces show that the bond energies of a large fraction
of the Si atoms, especially those close to the interface, are weakened by stretching and twisting,
many to the point of being broken. Therefore, the defect generation is controlled by a broad
distribution of energy barriers instead of a narrow one. One is led to the conclusion that the solar
cell degradation needs to be described in terms of such wide energy barrier distributions.

(2) We developed the SolDeg platform to answer the above need. SolDeg is capable of connecting
the fast atomic motions that control defect structures and play out on the femtosecond time scale,
with the slow, glassy transitions controlled by the wide distribution of energy barriers that take
place over time scales up to gigaseconds, the order of 20 years. The ability of the SolDeg platform to
bridge these 24 orders of magnitude in time makes it a uniquely powerful tool for a comprehensive
study of defect generation in a-Si/c-Si stacks.

(3) We have shown that a simple, stretched exponential analytical form can successfully describe
defect generation over an unparalleled range of ten orders of magnitude in time. This analytical
form may turn out to be quite useful for the analysis of experimental degradation studies.

(4) As far as numerical values are concerned, the defect generation rate in the first month
(starting from 10° seconds, about one day) is ~ 1.5%/month that slows to 4%/year for the first
year. This defect generation rate will be used to connect our theoretical work to experimental data

as follows. The published NREL measurements capture degradation of fielded HJ a-Si/c-Si solar
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cells in terms of V;, the open circuit voltage, with the result of 0.5%/year in relative terms [27].

The well-known relation connecting V. to the defect density reads:

kT J
(610) Voc =—1In <L>a

here Jy is the dark saturation current, proportional to the defect density N(t), and Jp, is the
light current. One expects that the primary driver of the performance degradation is the defect

density, N(t), thus, we can capture the degradation in natural, relative terms as

1 dVoe -1 14N
Voe dt  In(J/Jo) N dt

(6.11)

Using relevant values for Jp and Jy reveals that ln(%) is realistically around 20, thus the
4% /year relative defect density growth rate gives a relative degradation rate for V. of about
0.2%/year. On one hand, it is a reassuring validation of the quantitative reliability of the SolDeg
platform that our V. degradation rate came out to be comparable to the 0.5%/year change observed
in fielded HJ modules [27]. On the other hand, the fact that our calculated degradation rate is
notably lower than the observed value is consistent with the physical expectation that in commercial
HJ cells the silicon is hydrogenated, and hydrogen migration is expected to be a primary driver
of the defect generation. Further, exposure to illumination also enhances defect generation. The
fact that our work has not included hydrogen or illumination yet comfortably accounts for the
computed degradation rate being lower than the observed one. Finally, it is noted that while some
published experiments report the above steady degradation rate of 0.5%/year over 7 years [27],
other, shorter time studies report a strongly slowing degradation [218]. Our results are consistent
with the latter, and thus we think that comparison with experiments should be done in terms of a
full time dependence of N(t) or V.. At any rate, the natural next step for the development of the
SolDeg platform is to include hydrogen and illumination. This demanding work is already ongoing

and will be reported soon.

113



1095 A
8

10 AA

107 4 A
6

10 AA
5 ]

10 AA

4 ]
10 AA

Normal time [s]

102 A

102 4

101 T T T LR | T T T T T LR | T LU | T T
100 10! 102 103 104 10° 106

Accelerated time [s]

FI1GURE 6.6. Time Correspondence Curve, translating accelerated degradation time
to degradation time at standard temperature.

(5) The power of SolDeg can be further demonstrated by developing a quantitative guide to
calibrate the widely used accelerated testing protocols of solar cells. Fig. 6.5 also shows the ac-
celerated growth of the defect density in a HJ stack at the elevated temperature of T=350K. The
two simulations were started with the same defect density at t=0: N(7T=300K, t=0)=N (T'=350K,
t=0). Visibly, the T=300K and T=350K curves largely track each other: the difference is that
N(T=350K, t) reaches the same defect densities as N(T=300K, ¢) at shorter times. This is why
week-long accelerated testing can capture year-long defect generation under ambient/fielded con-
ditions.

To turn this general observation into a quantitatively useful calibration tool, we created the
Time Correspondence Curve (TCC). The TCC connects the times of accelerated testing with

those times of normal, ambient degradation that produce the same defect density. In formula:
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TCC plots the taccelerated — tnormal Pairs for which N(T'=350K, taccelerated) = N (T=300K, t1ormal)-
Fig. 6.6 shows the resulting TCC. For example, the TCC shows that tacceleratea=10° seconds of
accelerated testing approximately generates the same density of defects as t,orma=10% seconds or
normal degradation. In general, the TCC was created by taking horizontal slices across the two
curves of Fig. 6.5 to find the corresponding pairs of times that generated the same defect density.

Even a cursory observation reveals that the TCC grows linearly on the log-log plot, i.e. as a

power law over an extended, experimentally relevant time period:

(6 1 2) taccelerated X trylormal

where v = 0.85 £ 0.05, an unexpected scaling relation with an unexpected precision. Just like
in Fig. 6.5, this scaling relation is observed over the most remarkable ten orders of magnitude in
time. Establishing such simple and practical correspondence relations can be a very helpful product
of the SolDeg platform that can be widely used for calibrating accelerated testing protocols. Re-
markably, the above-developed description in terms of an exponential P(FE) that led to an stretched
exponential N(¢) that explained the results over ten orders of magnitude, also gives a straightfor-
ward explanation for this scaling relation. Direct observation of the stretched exponential formula

reveals that N(T=350K t300/350

’ “normal

) = N(T=300K, tnormal), i-e. the stretched exponential form not

only explains the existence of the scaling form of TCC, but makes a prediction for v:

(6‘13) V= Tnormal/Taccelerated = 300/350 = 0.85,

which is exactly the exponent what the direct analysis of the TCC determined. These consider-

ations provide a remarkably self-consistent and powerful tool set to analyze degradation processes.
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FIGURE 6.7. (a) Interface defect density and effective surface recombination velocity
data reported in the literature for a-Si:H/c-Si interface at the time of deposition or
after annealing. (b) Interface defect density measured in our a-Si:H/c-Si stacks,
stored in the dark under standard ambient condition.

6.3. Experimental Studies of Degradation of a-Si:H/c-Si stacks

In this section, we explore the correspondence between our simulations and experiments on
a-Si:H/c-Si heterojunction structures. Fig. 6.7(a) shows that for the interface defect density, a
wide range of values have been reported in the literature [219,220,221,222]. This unusually wide
range is caused by many different factors, such as the different methods and protocols employed
for depositing a-Si, the level of cleanliness of c-Si wafer before deposition, substrate morphology,
orientation of c¢-Si, microstructure of the a-Si film, hydrogen content, bonding in a-Si, and storing
conditions of samples [223,224,225,226]|. However, there are not many studies available correlating
the impact of such differences to long-term stability of a-Si/c-Si interface. For completeness, in
Fig. 6.7(a) we also summarize the corresponding surface recombination velocities (SRV) from the
cited papers. Disappointingly, very few of these papers have analyzed the time dependence of the
interface defect density and that of the SRV. Therefore, it is difficult to draw lessons from these
papers for the long term performance degradation of heterojunction structures.

Driven by these considerations, we have set out to fabricate our own a-Si:H/c-Si heterojunction
structures to measure the long time evolution of the defect density and SRV. In order to exper-

imentally isolate the processes associated with the time evolution of interface defect density and
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SRV from the processes occurring in other layers, and to be able to access these quantities with
direct measurements, we created test structures that were simpler than Si HJ solar cells. This is to
isolate the changes happening at the interface and in the film over time from the influence of other
layers present in the cell.

These simpler structures, or stacks, were comprised of ¢-Si of varying thickness (160-260 pm),
passivated on both sides with hydrogenated intrinsic a-Si (a-Si:H(i)). We used double-side polished
float zone (FZ) quality n-type c-Si wafers with (100) crystal orientation, 2.5 Qcm resistivity and
initial thickness of ~275 pm. These wafers went through rigorous surface cleaning before deposition
of 50 nm of a-Si:H(i) on both sides. Complete details about cleaning protocol and deposition
conditions are found in [227]. After deposition, these samples were annealed at 280 °C for 30 mins
in air in a muffle furnace. Then we measured injection-dependent effective minority carrier lifetime
(Terf) on these samples at temperatures between 30 and 230 °C using the WCT-120TS tool from
Sinton Instruments. Data was collected in transient mode due to the long lifetime of the samples.
We performed linear fits for 1/7.5¢ vs 1/ W data at each injection level to obtain temperature- and
injection-dependent SRVs from their slopes. Here W is thickness of the c-Si. As a final step we
extracted the interface defect density by fitting the amphoteric defect model proposed by Olibet et
al. to the SRV vs temperature data at different injection levels. The input parameters, along with
their best-fit values to the model, were the interface charge density (Q = —1.3 x 10! cm™2), the
neutral electron-to-hole capture cross-section ratio (% = %), and the charged-to-neutral capture
cross-section ratio (% = % = 500) with 09 =107 cm ™2

The resulting interface defect density values over time for the samples stored in dark and ambient
conditions are shown in Fig. 6.7(b). We found that the magnitude of the fitted interface charge
density remained the same over time, indicating no change in field effect passivation [218]. However,
the interface defect density increased with time at the rate of dN/dt= 5.6 x 10"cm~2 /month. This
translates to a rate of increase of (1/N) dN/dt = 68%/month in relative terms for the first 3.5
months. Similar results have been reported previously by Bernardini et al., where the defect density
increased from (6.540.5) x 10°cm~2 to (5.541.5) x 107em ™2 over a period of 28 months for samples
stored in dark, ambient conditions [29]. This translates to a rate of 17%/month in relative terms.

While our study found a higher rate in the initial 3.5 months, we expect the defect generation rate
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to slow down considerably as time progresses, and converge to the results of Ref. [29]. The fact
that the defect generation slows down was clearly established by our simulations as well, as shown
in Fig. 6.5, where we found that the rate of change in the early months is about 1.5%/month,
slowing to an overall rate of 4% /year for the first year.

We note that the initial defect density in our samples was lower than those reported for as-
deposited films in Fig. 6.7(a) by at least an order of magnitude. This could be due to the difference
of the deposited a-Si:H film in terms of the crystallinity, hydrogen content, hydrogen bonding
configuration and void fraction [228]. Whatever the reason may be, the notably low defect density
is a compelling indicator for the high quality of our a-Si deposition protocol.

It is noted, of course, that the degradation rate observed in our test structures shown in
Fig. 6.7(b) is not expected to directly correspond to the degradation rate observed in complete
Si HJ cells. This is due to the additional layers present in Si HJ cells on top of a-Si:H(i) which
may efficiently suppress the migration of hydrogen away from the a-Si:H/c-Si interface, as well as

prevent oxidation of the a-Si:H(i) layer.

6.4. Conclusions

In this chapter we reported the development of the SolDeg platform for the study of hetero-
junction solar cell degradation. SolDeg layers several techniques on top of each other, in order to
determine the dynamics of electronic defect generation on very long time scales. The first layer of
SolDeg was to adapt LAMMPS Molecular Dynamics simulations to create a-Si/c-Si stacks. Our
simulations used femtosecond time-steps. For the interatomic potential, we used the machine-
learning-based Gaussian approximation potential (GAP). Next, we optimized these stacks with
density functional theory calculations. In SolDeg’s next layer we created about 1,500 shocked clus-
ters in the stacks by cluster blasting. We then analyzed the just-generated shocked clusters by
the inverse participation ratio (IPR) method to conclude that cluster blasting generated electronic
defects in about 500 of the 1,500 shocked clusters. Next, we adapted the nudged elastic band
(NEB) method to determine the energy barriers that control the creation and annihilation of these
electronic defects. We performed the NEB method for about 500 shocked clusters on our way to

determine the distribution of these energy barriers. A simple exponential form gave a good fit for

118



P(E). Finally, we developed an accelerated super-basin kinetic Monte Carlo (AS-KMC) approach
to determine the time dependence of the electronic defect generation.

Our main conclusions were as follows. (1) The degradation of a-Si/c-Si heterojunction solar cells
via defect generation is controlled by a very broad distribution of energy barriers, extending from the
scale of meV to 4 eV. (2) We developed the SolDeg platform that can track the microscopic dynamics
of defect generation N(t) from femtoseconds to gigaseconds, over 24 orders of magnitude in time.
This makes SolDeg a uniquely powerful tool for a comprehensive study of defect generation in a-Si/c-
Si stacks and solar cells. (3) We have shown that a simple, stretched exponential analytical form
can successfully describe the defect generation N (t) over ten orders of magnitude in time. (4) We
found that in relative terms V. degrades at a rate of 0.2% /year over the first year. It is a reassuring
validation of the quantitative reliability of the SolDeg platform that our V. degradation rate came
out to be comparable to the 0.5%/year change observed in fielded HJ modules [27]. The difference
is most likely attributable to the SolDeg platform not yet including hydrogen and illumination.
The project to include both has already started and will be reported in a later publication. (5)
Further, we developed the Time Correspondence Curve to calibrate and validate accelerated testing
of solar cells. This TCC connects the times of accelerated testing with those times of normal, fielded
degradation that produce the same defect density. Intriguingly, we found a compellingly simple
scaling relationship between accelerated and normal times t(accelerated) oc ¢(normal)’®®, which
can be used to calibrate accelerated testing protocols, making it a more quantitative assessment
tool. (6) We ourselves also carried out experimental work on defect generation in a-Si/c-Si HJ
stacks. We found that the degradation rate was high on the short, initial time scales, but slowed
considerably at longer time scales. A possible explanation is that our samples had unusually low
initial defect densities, in which case hydrogen diffusion may generate defects more efficiently.

We plan to continue this project by incorporating hydrogen and illumination into the SolDeg
platform and determine the dynamics of the defect generation anew. We will validate and calibrate
the improved SolDeg platform by a rigorous comparison to our experimental data. Once the driving
forces of defect generation and degradation are reliably captured and characterized by the SolDeg
platform and by our experiments, we plan to develop strategies to mitigate these degradation

processes.
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CHAPTER 7

Conclusions and Future Work

7.1. Summary

In chapter 2, we looked at commensuration effects in nanoparticle solids, and introduced one of
the primary tools used in this work, the Hierarchical Nanoparticle Transport Simulator (HiNTS).
We found that when the number of electrons per nanoparticle is near integer, transport can be
greatly hindered. However, in two layer systems, the story becomes more complicated. Whether or
not transport is suppressed by the Coulomb blockade. We developed a phase diagram to describe
how different parameters, specifically the disorder and the transverse electric field, affect the trans-
port when a full Coulomb blockade is possible. The three competing energy scales (charging energy,
the energy difference between layers due to a transverse electric field, and the energy variation in
the nanoparticle energy levels due to disorder) make it so that some fillings that are nominally
commensurate experience a Coulomb blockade, while others do not. We identified five distinct
dynamical phases within our model to describe these phenomena, and how the phases change as a
boundary is crossed.

While most of the work was done in the context of a simple, two layer system, where the
transverse field and the filling were independent of one another, additional work was done in
the context of a FET, in which, the filling is dependent on the transverse field (gate voltage).
The description of the phases discovered in the two-layer model were consistent with the results
discovered in the case of the FET simulations, the key difference being that rather than having one
transverse field associated with two fillings, each filling would have its own associated transverse
field.

Understanding how these various parameters affect whether or not Coulomb blockades occur is

important because it allows those who would create NP thin films to know which parameter regimes
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to stay away from (or tune towards, as the case may be), depending on what kind of transport they
want in their system.

In chapter 3, we added two key features to the HINTS hierarchy. We developed the ability to
simulate extended defects within HINTS itself, as well as a new layer, a classical resistor network
on top, to create the Transport in Defected Nanoparticle Solids (TRIDENS) simulator.

We used the underlying HINTS method to determine mobility distributions for different types
of defects (no defects, point defects, twin planes, and grain boundaries). These distributions were
fed into random resistor networks of varying sizes to determine how the material behaved on length
scales much larger than those that could be accessed with HiNTS alone (millions of nanoparticles,
or a square of side length about 15 microns). We found that as we increased the number of defects,
there was a transition from a low to high mobility insulator, whose transition followed a multiple
parameter finite size scaling theory. We determined the critical exponents for this transition. One
limitation of this method is that the defects placed into the resistor networks are uncorrelated,
while looking at experimenal nanoparticle solids, the defects are usually quite extended (which
means, in the context of our random resistor network, highly correlated), so in order to compare
with experiment, there needs to be significant work done to decrease the size of the large scale
defects in nanoparticle solids.

In Chapter 4, we introduced the idea that nanoparticle solids could be a realization of Mott-
Hubbard physics. Specifically, we came to the MIT from the insulating side using HINTS and from
the metallic side using dynamical mean field theory. While the MIT has, in previous papers, been
described using scaling theory and DMFT, this is, to our knowledge, the first time it has been
approached from the insulating regime.

We found an interaction driven MIT when the number of electrons was commensurate with
the number of nanoparticles, and a disorder driven MIT away from commensuration. We also
identified a Mott-localized to disorder-localized transition at commensuration. Our results also led
to identifying several strategies for inducing and MIT in real materials.

In chapter 5, we applied HiNTS to data obtained by electron tomography, that is, to a real
experimental sample. Further, we implemented non-activated hopping through necks within HINTS

to identify the relative importance of necking and grain boundaries. We found that within our
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model, it is likely that the enhanced transport from necking is a larger influence than the negative
impact that normal grain boundaries have on transport. As an aside, these ideas have inspired
other work not shown in this thesis, specifically, identifying how necked transport leads to an MIT
from the metallic side using the transfer matrix method and finite size scaling, to be discussed in
the next section.

In chapter 6 we developed a platform for simulating degradation of heterojunction solar cells
over long time scales. We used the machine learning potential known as the Gaussian Approxima-
tion Potential (GAP) to generate density-functional-theory-accurate amorphous silicon structures
and then place them atop crystalline silicon structures, followed by an anneal to create amorphous-
crystalline silicon stacks. These stacks were analyzed using an inverse participation ratio (IPR)
calculation to identify any electronic defects. Then, we shocked a small region near the interface
by subjecting it to a very high temperature. These shocked structures were quickly frozen and
minimized, then once again analyzed using IPR to identify any electronic defects.

Once we analyzed all of the initial and post-shock structures, we identified the initial and final
states that differed by exactly one defect. These initial-final state pairs represent the creation
or annihilation of a defect. We then used the nudged elastic band calculation to determine the
minimum energy barriers between these initial and final states, which we interpret as the creation
or annihilation energy of a defect. These energies were then fit with exponential distributions for
creation and annihilation.

Next, we fed these distributions into an accelerated super basin kinetic Monte Carlo algorithm
to determine the long time defect dynamics of a structure with those barrier distributions at two
different temperatures, and, notably, in the dark. We determined that the resulting N(t) plot was
fit remarkably well over 10 orders of magnitude in time by a stretched exponential function. We
also developed the notion of the time correspondence curve, which relates the number of defects
generated at accelerated testing temperatures to the number of defects generated at room temper-
ature. We observed that the time correspondence curve was consistent with a power law relating
the two times, and were able to match that power law exponent to the analytical result one gets if

one assumes that the temperatures follow the stretched exponential function.
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7.2. Future Work

7.2.1. Nanoparticles. In the space of nanoparticles, my future work involves identifying the
MIT from the metallic side as a function of necking. We plan to use a modified Anderson Hamil-

tonian.

(7.1) H= Zﬁz‘ i) G+ Yt i) (4]

<ij>

Where ¢; is drawn from a uniform distribution and ¢;; is randomly chosen to be either ;4
(necked transport) or iy, (non-necked transport) such that P(tnign) + P(tiow) = 1. We plan to
choose the width of the on site energy distribution, t4ign, and ¢4, such that as we increase P(thign)
from 0 to 1, we guarantee that we start at an insulator and end at a metal, with he goal of identifying
the critical behavior of the metal-insulator transition. In order to do this, we will use something
known as the transfer matrix method alongside finite size scaling.

The transfer matrix method [229] essentially involves taking a single strip (1D) or bar (2D),
solving the Hamiltonian within that bar, and propagating the strip or bar into the 2nd or 3rd
dimension respectively, a very large number of times, solving the Hamiltonian as you go.

In some more detail, we start with the recursive Schroedinger Equation [230]:

(7.2) thtm¥ntim = (B = enm)¥nm = trmir¥rmit — trm¥nm-t = thm¥ntm

This can be reformulated into the transfer matrix formalism as

3 I G R e N e

Un, 1 0 Yn—1 Yn—1

Where ¢, is the diagonal matrix whose entries are the site energies of the sites within the nth
bar or strip, t‘,‘t is the diagonal matrix whose entries are the hopping elements that connect strip or
bar n with strip or bar n-1, and H is the hopping Hamiltonian within the nth strip or bar. The

resulting matrix, 77, is known as the transfer matrix.
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At the end of the day, we are interested in the localization length of electrons within this
system. This can be done by calculating the smallest Lyapunov exponent of the system. While in
principle, this can be accomplished using something called Oseledec’s theorem, discussed in many
transfer matrix papers, in practice, due to numerical instability, one must use a different method
to calculate the Lyapunov exponents. The method we use is to periodically (every 10 or so strips

or bars) orthonormalize the product matrix using QR decomposition.

Lgr

(7.4) QR = H T,
n=1

Where Q is a matrix with orthogonal columns and R is an upper triangular matrix with positive
elements on the diagonal, and Lgg is the number of strips or bars between decompositions. The

elements of R correspond to the Lyapunov exponents of the system, the relation is:

1
(7‘5) TYmin = lnRN,N
Lor

Where Ry n is the smallest eigenvalue (diagonal element of R). In principle, the entire spectrum
of Lyapunov exponents can be computed, but our interest lies only in the smallest one. This process
is repeated many times, saving the smallest exponent each time, and continued until the standard
deviation of the mean reaches a threshold, usually .01%. The exponents are then averaged, and

the localization length is then given as

1

(7.6) A=

Vmin
Once we have the transfer matrix, we turn to finite size scaling in order to determine the
critical behavior of our system. The idea of finite size scaling is that when the correlation length &
is comparable to the finite size of the system, then deviations from the infinite system will occur.
As we approach criticality, the correlation length of the system diverges, and thus, the finite size of

the system becomes the length scale of relevance. The results, derived from renormalization group,
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are used here, though the derivation will not be not shown. Following the method of Sandvik [231],

we write

(7.7) Ap,L) = LV f(pL¥)

_ (P(thigh)—P(thigh)erit)
Where p = gp(thigh)crft t

exponent v determines the divergence of the correlation length, and in this case, x determines

, the distance from criticality in our scaling parameter. The

the divergance of our quantity of interest, the localization length. From physical considerations,
and confirmed with numerical simulation and fitting, it is found that x = v [229]. This equation
suggests to us, that if we plot the results of our simulation such that y, = A\/L and xp = pL%,
that our data should collapse onto eachother if we choose the right values for both P(tsigh)erie and
v. Since neither is known beforehand, we need to search parameter space in order to find where
the curves collapse. In order to do this, we created a loss function that, when minimized, should

correspond to a strong curve collapse that can then be checked by eye.

v (Yigik — Yik)°
5 EZ: ; ; b= Wik + Yjk)?

Where N is the number of curves, X is the number of X data for curve j, y;; is the y value
corresponding to the kth x value of curve j, and y; ;. is the value of y corresponding to the linear
interpolation of y; r and y; 141 at the kth x value of curve j, such that the kth x value of curve j
lies between the k’th and (k’+1)th x values of curve i.

Using the transfer matrix method alongside this method of finite size scaling has allowed us to
determine the critical exponent in the case of purely diagonal disorder (only having disorder in ),

and our methods give values consistent with the literature. We are working on determining the

exponents for the modified Anderson Hamiltonian described at the beginning of this section.

7.2.2. HIT Cells. In the space of HIT cells, my future work involves doing work similar to
what was done in our initial foray into the SolDeg platform, but this time, including hydrogen.

At the time of writing of the SolDeg paper, there did not exist a strong interatomic potential
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for simulating Silicon and Hydrogen together in molecular dynamics. Inaccurate potentials for
simulating them together did exist, but they were not widely accepted by the community, and their
range of accuracy is not enough for our needs. Since then, Davis Unruh and Reza Vatan, alongside
Gabor Csanyi, developed a silicon hydrogen GAP for use in a subsequent SolDeg paper. This
new potential is much more accurate than previous silicon hydrogen interatomic potentials and
will allow us to repeat a slightly modified SolDeg process on hydrogenated crystalline-amorphous

silicon heterojunction stacks in order to find out how hydrogenation affects the degradation rate.
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