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Radiative capture rates at deep defects from electronic structure calculations
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We present a methodology to calculate radiative carrier capture coefficients at deep defects in

semiconductors and insulators from first principles.

Electronic structure and lattice relaxations

are accurately described with hybrid density functional theory. Calculations of capture coefficients
provide an additional validation of the accuracy of these functionals in dealing with localized defect
states. We also discuss the validity of the Condon approximation, showing that even in the event of
large lattice relaxations the approximation is accurate. We test the method on GaAs:Vga-Teas and
GaN:Cy, for which reliable experiments are available, and demonstrate very good agreement with

measured capture coefficients.

PACS numbers: 78.47.jd,78.55.Cr,78.55.Et,71.55.-1

I. INTRODUCTION

Optical techniques such as absorption, photolumi-
nescence (PL), PL excitation spectroscopy, and time-
dependent PL are powerful tools for studying defects in
semiconductors and insulators.! However, an identifica-
tion of the microscopic nature of the defects that give
rise to specific optical signatures often requires quantum-
mechanical calculations that address the atomic and elec-
tronic structure at the microscopic level. Specifically,
predictive calculations of radiative capture rates can be
compared with rates determined from time-dependent
PL measurements®># to provide a microscopic identifi-
cation of the defects that give rise to optical transitions.

Radiative processes may also be involved in defect-
mediated Shockley-Read-Hall (SRH) recombination,®°
particularly in wide-band-gap materials. Ascertaining
whether radiative recombination channels can be detri-
mental to device performance requires a quantitative un-
derstanding of radiative capture rates at deep defects.

In the past, calculations of carrier capture coefficients
were based on analytical models.” !° Such models do not
account for the complexity of the electronic structure of
deep defects, which involves, e.g., strong lattice relax-
ations that often break the local symmetry.

In this paper we demonstrate a first-principles imple-
mentation for the calculation of radiative carrier capture
rates at defects in semiconductors and insulators. We will
use two well-characterized defects as case studies: a Ga
vacancy and Te donor complex in GaAs,? and a carbon
substitutional impurity on a nitrogen site in GaN,*!! to
show that calculations based on hybrid density function-
als are in excellent agreement with experimental capture
coefficients. We quantify the errors resulting from key ap-
proximations and perform comparisons with model calcu-
lations. First-principles calculations of radiative capture
at a carbon impurity in GaN were also reported by Zhang
et al.'? In our work we present a detailed derivation of

the carrier capture rate and point out differences with
the work of Ref. 12 that are important for quantitative
accuracy, as evidenced by comparison with experiment.

II. FORMALISM

A. Radiative capture in semiconductors and
insulators

Radiative capture in a material with band gap E, is
illustrated in Fig. 1(a). Let us consider a single acceptor
defect, A, with a level in the lower part of the band gap.
The optical process consists of the capture of an electron
from the conduction band: A° + e~ — A~. FEgzpy is
the zero-phonon line, given by the position of the (0/—)
charge-state transition level below the conduction-band
minimum (CBM). Let N3 be the concentration of ac-
ceptors in the neutral charge state, and n the density
of electrons. The rate of the radiative process (i.e., the
number of radiative events per unit time per unit volume)
is given by R, = C,,N9n, where C,, (units: cm3s™!) is
the radiative electron capture coefficient. A similar equa-
tions applies to radiative capture of holes, with a capture
coefficient C}. Determining C), and C), is the main goal
of the present paper. Instead of coefficients Cy,, ;,y, cap-
ture cross sections o are often used. The two are related
via C' = vo, where v is the characteristic carrier velocity;
for non-degenerate carriers v is the thermal velocity.!?

The radiative transition can also be represented via
a configuration coordinate diagram [Fig. 1(b)]. The two
charge states of the defect give rise to curves that are dis-
placed along the horizontal axis because generally they
have different atomic configurations (here projected on a
one-dimensional coordinate @). In the so-called Franck-
Condon approximation, the transition occurs for fixed
nuclear coordinates [see the green arrow in Fig. 1(b)]
with energy Fope. After the transition the defect is in
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FIG. 1. Illustration of radiative carrier capture in two differ-
ent representations: (a) band diagram and (b) configuration
coordinate diagram, for the case of a single acceptor defect A.

a vibrationally excited state. This state will decay to
the equilibrium state on the picosecond time scale via
phonon-phonon interactions, losing the relaxation energy
Erc = Ezpr, — Eqopt, called the Franck-Condon energy.

The strength of the electron-phonon coupling asso-
ciated with an optical transition can be expressed in
terms of the Huang-Rhys factor S,'* which quantifies
the number of phonons emitted during the transition. In
this work, we will consider defects with strong electron-
phonon coupling (S > 1). For such defects, E,p; corre-
sponds to the peak of the PL spectrum.'® The general
formalism to treat optical transitions in semiconductors
is presented in textbooks (e.g., Ch. 5 of Ref. 10 or Ch. 10
of Ref. 15). Here we will present a derivation of the cap-
ture coefficients specifically adapted to our implemen-
tation within first-principles electronic structure theory,
and focusing on the case of strong electron-phonon cou-
pling.

We will closely follow the reasoning previously applied
in deriving nonradiative capture coefficients'® [summa-
rized in the supplemental material (SM)!7 section S1],
where it was shown that, for defects in the dilute limit,
the capture coefficient can be expressed as

Cn,=Vr, (1)

where r is the capture rate of one electron by one impu-
rity in the volume V'; the task is to calculate 7.

B. Derivation of the capture coefficient

The wavefunctions describing the defect system are
functions of all electronic {z} and ionic {Q} degrees of
freedom; using the Born-Oppenheimer approximation,
they can be written in the form ¥({Q},{z})x({Q}),
where U({Q}, {z}) is the electronic wavefunction (which
depends parametrically on {Q}), and x({@}) is the ionic
wavefunction. Let the electronic wavefunction of the
initial (excited) state, which in the case of the accep-
tor in Fig. 1 is the neutral defect plus the electron in
the conduction band, be ¥;({Q}, {z}); the associated
ionic wavefunctions are y;m,({@}), where m denotes the
vibrational state. We will consider only transitions at

low temperature, and therefore initially the system is in
the ground vibrational state (m = 0). The correspond-
ing quantities for the final (ground) electronic state (the
negatively charged defect, Fig. 1) are U ;({Q}, {z}) and
Xfn({@}). The expressions can be easily generalized to
finite temperatures.'®

Optical transitions occur because of coupling to the
electric field, described by the momentum matrix element
Pir({Q}) = (W:({QD)IP|¥;({Q})); the momentum op-
erator is P = —ih ) . 0/0%;, where the sum runs over
all electrons j. We will use the Condon approximation
(CA),!® in which the dependence on {Q} is neglected
and the momentum matrix element is taken at a fixed
{@} (which we choose to be the equilibrium geometry of
the initial state); the validity of the CA will be discussed
below.

An additional approximation is that multi-electron
wavefunctions W, ;3 can be replaced with single-particle
Kohn-Sham orbitals 1); and vy, with corresponding mo-
mentum matrix element, p,¢. In the case of electron cap-
ture, v; is a perturbed conduction-band state, while 1)
is a defect state. At finite temperature, electrons occupy
a thermal distribution of states with different momenta;
in principle, one has to average over this distribution.
For non-degenerate semiconductors at room temperature
these states are very close to the CBM, and thus we will
approximate the initial state to be the CBM.

Within the Born-Oppenheimer approximation and the
CA, the luminescence intensity (number of photons per
unit time, per unit energy, for a given photon energy hw)
is given by!®
e2n,wnsp

I(hw) =

" 3m2eqmc3h
<> | (xolx ) |* 0 (Bzpr — hwpp — hw) .

|pif | ?
(2)

n, is the index of refraction, iwyy, is the energy of the final
vibrational state (with respect to its ground state), and
Nsp is a factor which accounts for the spin selection rule
(nsp=1 for a transition from a spin-singlet to a doublet,
Nsp=0.5 for a transition from a doublet to a singlet or
from a triplet to a doublet). The total recombination
rate is the integral of I(fw) over energy fiw:

2
e“NyNsp

2

r
where (hw) = 3, [(xiolxn)|* (Bzpr — hwyy) is the av-
erage energy of emitted photons. In the case of strong
electron-phonon coupling, (hw) coincides with the energy
of the vertical transition E,p; [green arrow in Fig. 1(b)].
For defects studied in this work S > 8, so we will make
this approximation.

Combining Eq. (1) and Eq. (3) gives the capture co-
efficient if the quantities in Eq. (3) could be calculated
in a large volume V' corresponding to the dilute limit of
defects; in practice, calculations are performed in super-
cells with much smaller volumes V. The limited supercell



size is not an issue for describing capture at neutral de-
fects. However, in the case of charged defects the initial
electronic state is not properly described. This issue can
be accounted for by scaling Eq. (3) by the so-called Som-
merfeld factor f.16:19:20 In this work, only neutral centers
are considered, so f = 1.

The final expression for the capture coefficient is:

€2n

C, = fne,V—- —-
T 3m2egmedh2

|pif |2 Eopt

(4)

~ .12
= (5.77 x 10_17) (anrnspEopt |p£f| ) cm’s ™!
m

where in the second line we have evaluated the material-
independent parameters (assuming Eope and |p;f|*/2m

are expressed in eV, and V in A3) resulting in a sim-
ple formula that can be used to evaluate radiative cap-
ture coefficients based on quantities generated by density
functional theory calculations. Equation (4) agrees with
the expression used in Ref. 12, except for the fact that
the spin selection rules are neglected in that work (e.g.,
for carbon on the N site in GaN, this results in an extra
factor of two in Ref. 12).

III. RESULTS
A. Computational details

We have calculated Eope and p, ¢ necessary for Eq. (4)
using density functional theory with the hybrid func-
tional of Heyd, Scuseria, and Ernzerhof (HSE).?! The
mixing parameter was chosen to reproduce the experi-
mental band gaps: 0.30 for GaAs?? (giving a band gap
of 1.52 eV) and 0.31 for GaN (giving a band gap of 3.50
eV). Ga 3d electrons were treated as core states. Defect
calculations were performed on 216-atom zincblende su-
percells for GaAs, and 96-atom wurtzite supercells for
GaN. When optimizing the defect geometry the Bril-
louin zone was sampled with a single special k-point
(1/4,1/4,1/4).2 Since for non-degenerately doped GaN
and GaAs the electrons participating in capture origi-
nate from the CBM, momentum matrix elements were
evaluated at the I' point. Use of the I point also cor-
rectly captures the symmetries of the system. We used
the Vienna ab-initio Simulation Package (VASP)?* with
the projector augmented wave (PAW) method;2° for the
transition matrix elements, the methodology of Ref. 26
was used, (i.e., momentum matrix elements are correctly
calculated for the case of nonlocal potentials). Ther-
modynamic charge-state transition levels of the defects
(Ezpr, in Fig. 1) and E,p were calculated using the stan-
dard methodology described in Ref. 27, where we use the
scheme of Refs. 28 and 29 to correct for interactions be-
tween charged defects and their periodic images. We use
experimental indices of refraction (3.4 for GaAs3® and 2.4
for GaN,?! consistently chosen for energies Ept).

TABLE I. Calculated (Calc.) and experimentally measured
(Exp.) optical transition energies Ezpr, and Fop and electron
capture coefficients C), for the two defects in our case studies.

‘ Ezp1, (V) ‘ Eopt (eV) ‘Cn (10713 cm3s™1)

Calc. Exp.|Calc. Exp. |Calc. Exp.
GaAs:Vaa-Teas | 1.23 1.38%[1.02 1.18%] 3.5 6.5°
GaN:Cy 2.48 2.57°12.01 22°] 0.7 06—1.2°
2 Ref. 2
b Refs. 3, 4

B. Capture coefficients of test-case defects

We test the methodology on two defects for which ex-
tensive experimental information is available: the com-
plex between a Ga vacancy and a Te donor on a nearest-
neighbor As site in GaAs, GaAs:Vga.-Teas,? and a car-
bon substitutional impurity on a nitrogen site in GaN,
GaN:Cn?1 (see Secs. S2 and S3 of SM!7 for details of
the experimental identification). In both cases, we ex-
amine the rate of electron capture for the neutral charge
state.

We calculate the energy of the (0/—) thermodynamic
charge-state transition level,2” at which electron capture
occurs, to be 0.37 eV above the VBM for GaAs:Vga-Teas
and 1.02 eV for GaN:Cy. The calculated and experimen-
tal optical transition energies are given in Table I. A de-
tailed description of the electronic structure of GaN:Cy
and GaAs:Vga-Teas is provided in Sec. S4 of the SM.17

Our calculated capture coefficients using Eq. (4) are
given in Table I along with experimental values. The
calculated value for GaN:Cy of C,, = 0.7x 107 cm3s™1,
is in good agreement with measurements by Reshchikov
et al.>* that yield values (0.6—1.2) x 10~ cm3s~! for ra-
diative capture coefficients pertaining to yellow lumines-
cence in GaN (different values are for different samples).
Therefore, our calculations indicate that GaN:Cy is the
likely source of the yellow luminescence in the samples
studied by Reshchikov.?

Our value for C,, is about a factor of four smaller than
the one calculated in Ref. 12, which is mainly due to the
fact that 7y, is not included in that work. Additionally,
we find a slightly smaller value of [p;¢|* (0.03 versus 0.05
in Ref. 12), and a different value for the refractive index
may have been used. We note that inclusion of 7, (i.e.,
application of the spin selection rules) is important and
necessary to obtain agreement with experiment.

For GaAs:Vga-Teas, we find that C,, = 3.5 x 10713
em3s™!, five times larger than for GaN:Cy. Our calcu-
lated value is in satisfactory agreement with the value
determined experimentally by Glinchuk et al.? (C, =
6.5 x 10713 cm3®s71).

In order to test convergence with supercell size, we
determined C,, for the case of GaN:Cy using a matrix el-
ement p,;; calculated in supercells with various sizes. A
72-atom supercell results in C,, = 0.29 x 10" cm3s™!,
while a 300-atom supercell, gives C,, = 0.90 x 10'3
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FIG. 2. Dependence of the momentum matrix elements p; ¢ on
configuration coordinate @ for test-case defects (a) GaAs:Vga-
Teas and (b) GaN:Cn. The blue dashed line represents a
quadratic fit to the data. The gray vertical bar indicates the
spread of @ values that gives rise to 80 % of the spectral
weight (sw). The horizontal line indicates the Condon ap-
proximation (CA), in which the matrix element is taken to be
constant.

cm3s~!. This indicates that the results for the super-

cells used in this study are close to converged.

In Sec. S5 of the SM,'” we compare these HSE results
to those obtained using a generalized gradient functional,
demonstrating the necessity of hybrid functionals for such
quantitative accuracy.

IV. DISCUSSION
A. Accuracy of the Condon approximation

As mentioned above, the derivation of Eq. (4) relies
on the validity of the CA, which states that the tran-
sition matrix element does not change with configura-
tion coordinate. We now test this assumption for the
two case studies by calculating |p;f| for different @ val-
ues (Fig. 2). The generalized configuration coordinate
chosen is a linear interpolation of all atomic positions
between the ground-state structures of the neutral and
negatively charged defects. This choice of () has been
demonstrated to yield accurate PL lineshapes,'* indicat-
ing that it is a good approximation for the sum over all
vibrational degrees of freedom.

In Fig. 2 the CA is indicated by the red horizontal line,
reflecting the |p;¢| values at Q=0 (the equilibrium geom-
etry of the initial state). In order to estimate the error
we make by using the CA, we must have some measure of
the importance that @ values other than Q=0 carry in a
full determination of the transition rate. Such a measure
is obtained by calculating the ground-state vibrational
wavefunction in the initial state [(A° 4+ e7) in Fig. 1(b)],
the square of which is roughly proportional to the spec-
tral weight of the optical transition at a given Q. We
then consider the variation of the matrix elements over
the region containing 80% of the spectral weight of the
transition (gray shaded region in Fig. 2). We see that
most of the spectral weight of the transition is concen-
trated near the vertical transition at (Q=0; this is gener-

ally true for defects with large Huang-Rhys factors, such
as the ones considered here. The matrix element |p;/|
varies by ~ 14% over the gray range for both defects
(Fig. 2), translating into an error in C,, of less than 14%,
which is acceptable and well within the experimental un-
certainty. It remains to be seen if the accuracy of the CA
holds for other deep defects.

B. Implications for Shockley-Read-Hall
recombination

The results in Table I provide important information
about the role of radiative capture in defect-assisted SRH
recombination processes. In Ref. 32, it was shown that
for defect densities of 10'® cm™3, capture coefficients
larger than 107!° cm3s™! are necessary to result in SRH
recombination rates that would compete with electron-
hole radiative recombination and significantly impact the
performance of light-emitting diodes. If we use this mag-
nitude as a threshold, we see that for the defects in Ta-
ble I the radiative electron capture rates are much too
slow (by three orders of magnitude) to give rise to detri-
mental SRH recombination. We suggest that this con-
clusion may be more general. Based on the character
of the wavefunctions, we expect the optical transition
matrix elements for our case-study defects to be fairly
strong, and hence it seems unlikely that [p;s|>/2m val-
ues for other defects (including in other hosts) would be
orders of magnitude larger. Furthermore, Eq. (4) shows
that C,, depends only linearly on E,p. Both observations
indicate that radiative capture coefficients are unlikely to
be high enough to give rise to strong defect-assisted SRH
recombination.

C. Comparison to model calculations

We now discuss how our methodology and implemen-
tation differ from previous attempts at theoretical de-
scriptions of optical transitions for defects in semiconduc-
tors. Previous methods relied on models for the defect
wavefunction in order to determine p, ;.10 An often-used
model for deep defects is the “quantum defect” (QD)
model,”® where the defect potential near the core is
treated as a square well, while the long-range part has
the form of a Coulomb potential. It can be shown (see
Sec. S6 of the SM!7) that, for capture of an electron at
a neutral acceptor, the QD model results in a form of
the capture coeflicient similar to Eq. (4), but with the
key difference that |p;¢|? is replaced by the momentum
matrix element between the bulk conduction and valence
bands |pe,|?. The matrix element is then scaled by an
“effective volume” describing the spatial extent of the
defect wavefunction. In addition, the QD model uses the
zero-phonon line energy (Ezpy,) of the defect instead of
Eopt; i.e., the Frank-Condon relaxation energy, resulting
from the coupling with the lattice, is neglected.



We now compare capture coefficients calculated with
the QD model with our full first-principles results. The
equations and parameters are included in Sec. S6 of the
SM.'7" We find that for GaN:Cy, CQP = 0.4 x 10713
cm?®s™!, which is smaller than our first-principles value
(Table I), and slightly below the experimental range. For
GaAs:Vga-Teps, COP = 10.2 x 10713, slightly larger than
the first-principles value and overestimating the experi-
mental value. While for these case studies the model
agrees reasonably well with first-principles results, it is
important to emphasize the limited predictive power of
models such as the QD model. First, they require en-
ergy levels taken either from experiment or from first-
principles calculations. Second, since |p;f| is replaced
with |pey |, specific information about the defect electronic
structure is lost, and assumptions about the character of
the defect wavefunction are required. In our case stud-
ies, the assumption that, as acceptors, the wavefunctions
have valence-band character turns out to be reasonable,
but this will not universally be the case.

V. CONCLUSIONS

We have demonstrated a methodology for determining
capture coefficients from first principles. For the two case
studies considered, GaAs:Vg, — Teas and GaN:Cy, the
calculations give quantitative agreement with experimen-
tal measurements. We also confirmed the validity of the

Condon approximation, a result that can be generalized
to all defects with large values of the Huang-Rhys factor.
The procedure outlined in this work will provide a tool
for the identification and characterization of defects de-
tected by optical spectroscopy, and aid in identifying the
origins and mechanisms of Shockley-Read-Hall recombi-
nation.

ACKNOWLEDGMENTS

We thank D. Wickramaratne for advice on the first-
principles calculations, and M. A. Reshchikov (VCU) for
fruitful interactions and for bringing the studies of de-
fects in GaAs to our attention. Work by C.E.D. was sup-
ported by the US Department of Energy (DOE), Office
of Science, Basic Energy Sciences (BES) under Award
No. DE-SC0010689. Work by A.A. was supported the
European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 820394 (project
ASTERIQS). J.L.L. acknowledges support from the US
Office of Naval Research (ONR) through the core fund-
ing of the Naval Research Laboratory. Computational
resources were provided by the National Energy Research
Scientific Computing Center, which is supported by the
DOE Office of Science under Contract No. DE-AC02-
05CH11231. The Flatiron Institute is a division of the
Simons Foundation.

G. Davies, in Identification of Defects in Semiconductors,
edited by M. Stravola (Academic Press, New York, 1999)
Chap. 1: Optical Measurements of Point Defects.

2 K. D. Glinchuk, A. V. Prokhorovich, V. E. Rodionov, and

V. I. Vovnenko, Phys. Status Solidi A 41, 659 (1977).

3 M. A. Reshchikov, ATP Conf. Proc. 1583, 127 (2014).

4 M. Reshchikov, J. McNamara, M. Toporkov, V. Avrutin,

H. Morkog, A. Usikov, H. Helava, and Y. Makarov, Sci.

Rep. 6, 37511 (2016).

W. Shockley and W. T. Read, Phys. Rev. 87, 835 (1952).

R. N. Hall, Phys. Rev. 87, 387 (1952).

H. B. Bebb, Phys. Rev. 185, 1116 (1969).

H. B. Bebb and R. A. Chapman, in Proc. 8rd Photocon-

ductivity Conf., edited by E. M. Pell (Pergamon, Oxford,

1971) p. 245.

 @G. Lucovsky, Solid State Commun. 3, 299 (1965).

10 B. K. Ridley, Quantum Processes in Semiconductors (Ox-
ford University Press, 2013).

1 T. Ogino and M. Aoki, Jap. J. Appl. Phys. 19, 2395 (1980).

12 H.-S. Zhang, L. Shi, X.-B. Yang, Y.-J. Zhao, K. Xu, and
L.-W. Wang, Adv. Opt. Mater. 5, 1700404 (2017).

13 K. Huang and A. Rhys, in Proceedings of the Royal Soci-
ety of London A: Mathematical, Physical and Engineering
Sciences, Vol. 204 (The Royal Society, 1950) pp. 406-423.

14 A. Alkauskas, J. L. Lyons, D. Steiauf, and C. G. Van de

Walle, Phys. Rev. Lett. 109, 267401 (2012).

0w N 3«

15 A. M. Stoneham, Theory of Defects in Solids: Electronic
Structure of Defects in Insulators and Semiconductors
(Oxford University Press, 2001).

16 A. Alkauskas, Q. Yan, and C. G. Van de Walle, Phys. Rev.

B 90, 075202 (2014).

See supplemental material [URL to be inserted by pub-

lisher] for derivation and experimental determination of

the radiative capture coefficient, description of the exper-
imental identification and electronic structure of the de-
fects, a comparison between functionals, and details about
the quantum defect model calculations, which includes

Refs. 33-45.

'8 M. Lax, J. Chem. Phys. 20, 1752 (1952).

19 V. L. Bonch-Bruevich, Fiz. Tverd. Tella, Sbornik IT , 182
(1959).

20 R. Pissler, Phys. Status Solidi B 76, 647 (1976).

21 J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys.

124, 219906 (2006).

To account for the effect of spin-orbit coupling in GaAs,

the value of 0.30 for the mixing parameter is chosen to

overestimate the band gap by 0.1 eV. Then we rigidly shift
the VBM up in energy by 0.1 eV.

23 H. Monkhorst and J. Pack, Phys. Rev. B 13, 5188 (1976).

24 G. Kresse and J. Furthmiiller, Phys. Rev. B 54, 11169
(1996).

25 P, E. Blochl, Phys. Rev. B 50, 17953 (1994).

17

22



27

M. Gajdos, K. Hummer, G. Kresse, J. Furthmiiller, and
F. Bechstedt, Phys. Rev. B 73, 045112 (2006).

C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer,
G. Kresse, A. Janotti, and C. G. Van de Walle, Rev. Mod.
Phys. 86, 253 (2014).

C. Freysoldt, J. Neugebauer, and C. G. Van de Walle,
Phys. Rev. Lett. 102, 016402 (2009).

C. Freysoldt, J. Neugebauer, and C. G. Van de Walle,
Phys. Status Solidi B 248, 1067 (2011).

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet,
O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Ger-
ard, L. Becouarn, and E. Lallier, J. Appl. Phys. 94, 6447
(2003).

T. Kawashima, H. Yoshikawa, S. Adachi, S. Fuke,
K. Ohtsuka, J. Appl. Phys. 82, 3528 (1997).

C. E. Dreyer, A. Alkauskas, J. L. Lyons, J. S. Speck, and
C. G. Van de Walle, Appl. Phys. Lett. 108, 141101 (2016).
K. Wuyts, G. Langouche, M. Van Rossum, and R. Silver-
ans, Phys. Rev. B 45, 6297 (1992).

J. Gebauer, E. Weber, N. Jdger, K. Urban, and P. Ebert,
Appl. Phys. Lett. 82, 2059 (2003).

G. Baraff and M. Schliiter, Phys. Rev. Lett. 55, 1327
(1985).

and

36

37

38

39

40

41

42

43

44

45

J. L. Lyons, A. Janotti, and C. G. Van de Walle, Appl.
Phys. Lett. 97, 152108 (2010).

C. Seager, D. Tallant, J. Yu, and W. G6tz, J. Lumin. 106,
115 (2004).

J. L. Lyons, A. Janotti, and C. G. Van de Walle, Phys.
Rev. B 89, 035204 (2014).

A. Gutkin, M. Reshchikov, and V. Sedov, Semiconductors
31, 908 (1997).

J. P. Perdew, K. Burke,
Lett. 77, 3865 (1996).
C. E. Dreyer, A. Janotti, and C. G. Van de Walle, Appl.
Phys. Lett. 102, 142105 (2013).

Q. Yan, E. Kioupakis, D. Jena, and C. G. Van de Walle,
Phys. Rev. B 90, 121201 (2014).

J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys.
105, 9982 (1996).

C. Adamo and V. Barone, J. Chem. Phys. 110, 6158
(1999).

O. Madelung, Semiconductors: Data handbook (Springer
Science & Business Media, 2012).

and M. Ernzerhof, Phys. Rev.





