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Graph-Signal-to-Graph Matching for Network
De-anonymization Attacks

Hang Liu, Member, IEEE, Anna Scaglione, Fellow, IEEE, and Sean Peisert, Senior Member, IEEE

Abstract—Graph matching over two given graphs is a well-
established method for re-identifying obscured node labels within
an anonymous graph by matching the corresponding nodes in a
reference graph. This paper studies a new application, termed
the graph-signal-to-graph matching (GS2GM) problem, where
the attacker observes a set of filtered graph signals originating
from a hidden graph. These signals are generated through an
unknown graph filter activated by certain input excitation signals.
Our goal is to match their components to a labeled reference
graph to reveal the labels of asymmetric nodes in this unknown
graph, where the excitations can be either known or unknown to
the attacker. To this end, we integrate the existing blind graph
matching algorithm with techniques of graph filter inference
and covariance-based eigenvector estimation. Furthermore, we
establish sufficient conditions for perfect node de-anonymization
through graph signals, showing that graph signals can leak
substantial private information on the concealed labels of the
underlying graph. Experimental results validate our theoretical
insights and demonstrate that the proposed attack effectively
reveals many of the hidden labels, particularly when the graph
signals are adequately uncorrelated and sampled.

Index terms— Graph matching, network de-anonymization,
network privacy attack, node identification, graph signal pro-
cessing.

I. INTRODUCTION

The emergence of expansive networks, such as social media,
infrastructure systems, and the Internet of Things, has led to
an era of immense data proliferation. This surge emphasizes
the critical need to protect the private information of network
users. Although data publishers often de-identify or randomize
names and other identifying details to safeguard personal
information, recent findings indicate that these conventional
methods are insufficient to avoid re-identification of individual
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records. Adversaries can potentially infer a target user’s iden-
tity or other sensitive labels from its local network connections
by leveraging auxiliary data or contextual information.

A. Related Work

One notable attack method within this framework is known
as graph de-anonymization or node re-identification. The aim
is to infer labels within an anonymized network by aligning
target nodes with a labeled reference graph sourced from pub-
lic datasets, topology snapshots, etc. This de-anonymization
strategy was first introduced by Narayanan and Shmatikov [2],
where IMDB data served as a reference to identify a suppos-
edly Netflix dataset. The same authors expanded this approach
to user de-anonymization in large social networks [3]. Another
pioneering work [4] also studied address anonymization for IP
networks.

Graph de-anonymization was initially explored in scenarios
involving ‘seeds’ [3], [5], where the labels of certain key nodes
in the target graph are assumed to be known and used to
infer other labels. In scenarios lacking prior seed information,
seedless graph de-anonymization comes into play, aiming to
identify arbitrary labels in the undisclosed graph without any
seed. Pedarsani and Grossglauser [6] framed this seedless de-
anonymization challenge as a graph matching problem, aiming
to align nodes of the target and reference graphs by minimizing
edge mismatches subject to a node permutation. Techniques
such as maximum-a-posterior (MAP) estimation have been
investigated for seedless social network de-anonymization,
especially in networks with community structures [7], [8].
Studies have also derived sufficient conditions for perfect node
de-anonymization in specific graph models, including Erdös-
Rényi (ER) random graphs [6] and stochastic block models [7].
Additionally, Miao et al. [9] introduced a metric to quantify the
number of potentially de-anonymizable nodes through graph
matching, termed graph de-anonymizability.

Current research relies on the full topology information of
the anonymous graph for effective graph de-anonymization or
matching. However, acquiring precise topological information
proves resource-intensive or unattainable in many real-world
applications [10]. More frequently, attackers might directly
observe interactions between nodes in an undisclosed graph,
known as graph signals [11]. These are evident in various
contexts, such as opinion exchanges in social networks or
nodal measurements in infrastructure systems and power grids.
Recent studies have demonstrated that graph signals carry a
plethora of information that can be leveraged for network
analysis [12]. Graph signal processing has gained widespread
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adoption in the fields of graph learning and graph neural
networks [13]–[16]. Particularly, studies [10], [17] have shown
the feasibility of inferring unknown graph topology and Lapla-
cian matrices from graph signals. A related challenge arises in
power grid networks, where the use of grid measurements to
estimate graph topology has been explored in several studies
[18]–[21]. Similarly, Wai et al. [22] explored the use of graph
signals for community detection, bypassing the need for direct
access to the graph topology. Studies [23]–[27] investigated
blind source separation using graph signals. Moreover, Liu et
al. [28] proposed a blind graph matching algorithm to match
nodes from two unknown graphs using their graph signals.

B. Our Contributions

Motivated by the aforementioned discussions, we focus
on privacy attacks in seedless graph de-anonymization using
graph signals instead of relying on graph topology information.
Our goal is to establish node matching from graph signals
originating from the undisclosed graph to a known reference
graph, a process we define as the graph-signal-to-graph match-
ing (GS2GM) problem. Successfully accomplishing this task
can reveal user identities in the hidden nodes by associating
them with the labels of the reference [6].

In this work, we consider a system where the observed graph
signals are produced by processing input excitation signals
through an unknown graph filter, which encapsulates the node
interactions within the network. Our study assumes that this
graph filter is a polynomial function of the graph Lapla-
cian matrix and maintains a known reshuffling order of the
Laplacian spectrum. We explore the GS2GM problem in both
contexts—where the excitation signals are either known or
unknown to the attacker. To tackle this challenge, we integrate
the blind graph matching algorithm from [28] with techniques
for graph filter inference and eigenvector estimation based
on sample covariance. Furthermore, we analyze sufficient
conditions for perfect de-anonymization and substantiate our
theoretical results with experimental results. The contributions
of this work are summarized as follows.

• We formulated the GS2GM problem as a task of comput-
ing node matches between a set of observed graph signals
and a reference graph. We show that symmetric structures
within the graph present challenges in evaluating node
identification performance. Consequently, we focus on
identifying all the asymmetric nodes of the undisclosed
graphs and present a metric to measure the accuracy
of graph de-anonymization by the success probability of
correctly matching asymmetric nodes.

• We developed a unified framework to solve the GS2GM
problem in various settings, including cases where the
excitation signals are known or unknown. The method
adapts the blind graph matching algorithm from [28] to
align the eigenmodes of the unknown graph Laplacian es-
timated from the graph signals with those of the reference
graph. Furthermore, we conducted a theoretical analysis
to quantify the successful matching probability in relation
to the eigenmode estimation accuracy. The analysis en-
ables direct comparison of various methodologies under

a consistent metric of matching error probability and
offers concise expressions to quantify the impact of key
system parameters on de-anonymization performance,
including the sample size, noise power, and spectral gaps
of the graph filter. Additionally, to facilitate numerical
assessment of de-anonymization performance, we present
a low-complexity mechanism for detecting symmetric
nodes using the reference graph.

• For settings with inaccessible excitation signals, we use
sample covariance matrices to estimate the empirical
eigenvectors in the GS2GM algorithm. Its performance
is then theoretically validated by establishing a bound
on the de-anonymization error probability. In contrast, in
situations where excitation signals are known, we present
an eigenmode estimation algorithm rooted in sparse graph
filter inference. Our findings highlight the benefits of
utilizing sparsity in filter inference.

We conducted experiments on synthetic datasets and real-
world applications to verify our theoretical findings. The
results demonstrate that our method achieves accurate node
de-anonymization with adequately sampled and uncorrelated
signals. Conversely, in many real-world scenarios where only
highly correlated signals are accessible, node identification
manages to accurately match only a limited subset of nodes.
This is particularly evident when the excitation signals remain
undisclosed, suggesting that these networks inherently offer a
higher degree of privacy protection for user identities.

C. Organization and Notations

The remainder of this paper is organized as follows. We
introduce the system model in Section II. In Section III, we
formulate the GS2GM problem and the evaluation metric. In
Section IV, we present the overall solution to the GS2GM
problem, while detailed approaches for different scenarios are
expanded in Sections V and VI. In Section VII, we present
experimental results to evaluate the proposed method. Finally,
this paper concludes in Section VIII.

Throughout, we use regular, bold small, and bold capital
letters to denote scalars, vectors, and matrices, respectively. We
use (X)t to denote the t-th power of matrix X, XT to denote
the transpose of X, XH to denote the conjugate transpose,
X to denote the matrix containing the absolute value of the
entries of X, tr(X) to denote the trace, and vec(X) to denote
the column-wise vectorization of X. We use xi to denote the i-
th entry of vector x, xij or [X]ij interchangeably to denote the
(i, j)-th entry of matrix X, and xj to denote the j-th column of
X. The real normal distribution with mean µ and covariance C
is denoted by N (µ,C), and the cardinality of set S is denoted
by |S|. We use ∥·∥p to denote the ℓp norm, ∥·∥F (resp. ∥·∥2)
to denote the Frobenius (resp. spectral) matrix norm, IN to
denote the N ×N identity matrix, 1 (or 0) to denote the all-
one (or all-zero) vector with an appropriate size, and diag(x)
to denote a diagonal matrix with the diagonal entries specified
by x. For any positive integer N , we denote the factorial of
N by N ! and define [N ] ≜ {1, 2, · · · , N}.



3

II. SYSTEM MODEL

Consider the de-anonymization attack, also known as node
re-identification, on an N -node undirected graph G1 =
(V1, E1), where V1 = [N ] and E1 represent the sets of nodes
and edges, respectively. The node labels of G1 are anonymous
to the attacker, whose objective is to identify these labels.
The adjacency matrix for G1 is represented as A(1) ∈ RN×N ,
where a

(1)
kl = a

(1)
lk > 0 if and only if an edge (k, l) exists in

E1. Consequently, the graph Laplacian matrix is denoted by
L(1) = diag(A(1)1)−A(1).

The attacker aims to identify the node labels of G1 with
the aid of a known reference graph with the same number
of nodes,1 denoted by G2 = (V2 = [N ], E2). The associated
Laplacian matrix of G2 is denoted by L(2). The goal is to
determine a permutation function σ(·) : [N ] → [N ], i.e.,
node matching, which maps the node set V2 (or its subset)
to V1 such that the permutation of G2 under σ(·) results in
a graph closely resembling G1 [6], [7]. For simplicity, the
node permutation is represented interchangeably by σ(·) and
its equivalent permutation matrix P ∈ {0, 1}N×N , where
pkl = 1 if σ(k) = l and pkl = 0 otherwise. As the nodes
of G2 have known labels, the attacker can leverage σ(·) to
deduce the labels of the target nodes in G1. Subsequently,
this identification may enable the attacker to infer private
information, such as user identities or associated attributes [6].

Most current research on graph de-anonymization assumes
a known Laplacian or adjacency matrix of G1 to the attacker.
Within this framework, the attacker determines the node
permutation σ(·) by aligning the two Laplacian matrices L(1)

and L(2). This assumption requires comprehensive knowledge
of the topology of the anonymous graph. In contrast, our
study explores a more challenging scenario where both the
adjacency and Laplacian matrices of G1 remain concealed.
In this situation, the attacker utilizes a set of graph signals
generated on G1 to de-anonymize its nodes.

A. Graph Signal Model
The matrices L(1) and L(2) admit the following eigende-

compositions:

L(i) = V(i)Γ(i)(V(i))T , i = 1, 2, (1)

where Γ(i) is a diagonal matrix containing eigenvalues ar-
ranged in the descending order: γ(i)

1 ≥ γ
(i)
2 ≥ · · · ≥ γ

(i)
n = 0,

and V(i) ∈ RN×N is an orthogonal matrix containing the
corresponding eigenvectors. Since L(1) is unknown, its eigen-
decomposition in (1) is subject to unknown permutations.

We observe a set of filtered graph signals, denoted by
{zm}Mm=1, generated over the nodes of G1 through an unknown
graph filter. This filter can be expressed as a specific matrix
polynomial of the Laplacian matrix L(1) as

H(L(1)) =

Tf−1∑
t=0

ht(L
(1))t = V(1)

Tf−1∑
t=0

ht(Γ
(1))t

 (V(1))T ,

(2)

1Here, it is assumed without loss of generality that the reference graph has
the same number of nodes as G1. This condition can be satisfied by adding
isolated dummy nodes to the graph with fewer nodes if necessary.

where Tf is the degree of the graph filter, and {ht} are the
filter coefficients. We assume that the filter has a finite spectral
norm, i.e., ∥H(L(1))∥2 ≤ ∞. With (2), each observed signal
vector zm ∈ RN×1,∀1 ≤ m ≤ M, is the output of H(L(1))
being excited by an input signal xm ∈ RN×1, as

zm = H(L(1))xm +wm, (3)

where wm represents the unknown measurement noise for the
m-th sample following the Gaussian distribution N (0, ν2In).
We assume that xm is independent and identically distributed
(i.i.d.) satisfying E[xm] = 0 and E[xmxT

m] = Cx with a
known covariance Cx [17], [28], [29].

The generative model in (3) is applicable to a variety of
real-world applications. Two illustrative examples follow.

Example 1 (Opinions over social networks). In a social
network, users’ opinions or beliefs of certain topics can
be modeled as filtered graph signals as described in (3).
Specifically, the dynamics of users’ opinions among their
neighbors are characterized through a graph filter that models
the propagation of opinions across the network. The opinion
of the stubborn agents on the m-th topic, where 1 ≤ m ≤ M ,
can be represented by the excitation signals xm, which are typ-
ically undisclosed. In contrast, the steady-state (equilibrium)
opinions, after long-term propagation, can be represented as
the filtered graph signals given by

zm = (IN + ζL(1))−1xm, (4)

where ζ > 0 is a parameter determined by individuals’ trust
toward others and susceptibility to external influences. For
more details on this graph signal model, we refer interested
readers to [12], [30], [31]. The expression in (4) corresponds to
that in (3) with the low-pass filter H(L(1)) = (IN+ζL(1))−1.

Example 2 (Phasor measurements in power grids). A power
grid system can be conceptualized as a weighted graph that
connects buses (nodes) with transmission lines (edges). By
defining the graph Laplacian matrix L(1) (also known as the
graph shift operator) as the effective system admittance matrix,
the relationship between current and voltage phasors can be
framed in terms of graph signals as in (3). Specifically, denote
the current and voltage phasor measurements at the m-th time
slot in an N -bus power system as im ∈ CN×1 and vm ∈
CN×1, respectively. According to Ohm’s law, the relationship
between these phasors is governed by:

im = Yvm +wm,m = 1, · · · ,M, (5)

where Y ∈ CN×N is the complex symmetric (not Hermitian)
system admittance matrix satisfying Y = YT , and wm is the
measurement noise. Within this framework, the current and
voltage phasors are interpreted as the filtered and excitation
signals, respectively, with the graph filter represented by
H(L(1)) = L(1). For further details on phasor measurement
modeling in this context, we refer to [32], [33].

While filtered graph signals are frequently observable across
graph nodes, the accessibility of excitation signals differs
across various applications. For instance, in Example 1, the
excitation signals are often unobtainable, whereas in Example
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2 the excitations can be measured using phasor measurement
units. The de-anonymization framework proposed in Section
III accommodates both scenarios, addressing cases where the
excitations are either known or unknown to the attacker.

Remark 1. Some graph signal processing models, like the one
in Example 2, operate within the complex domain, where both
the graph signals and the graph Laplacian are complex-valued.
Our analysis and algorithm are easily extendable to complex-
valued systems by substituting the eigendecomposition of real
matrices with that of complex symmetric matrices, as shown
in Section VII-C. However, for simplicity and clarity in our
exposition, we focus on real-valued signals unless specified
otherwise.

B. Order of Graph Frequency Responses
Combining (1) and (2), the eigenvalues of H(L(i)), often

referred to as the frequency responses, are given by

h̃k =

Tf−1∑
t=0

ht(γ
(1)
k )t, k ∈ [N ]. (6)

While {γ(1)
k }Kk=1 is aligned in descending order, the order

of the frequency responses {h̃k}Nk=1 depends on the filter
coefficients, which characterize the filter’s trends. For instance,
low-pass graph filters, like the opinion dynamic filter in
Example 1, typically emphasize frequency responses at lower
graph frequencies. Conversely, high-pass graph filters, such as
the one in Example 2, amplify higher graph frequencies. We
refer to [12] and [28, Sect. III-A] for more discussions on
these filters.

A notable observation is that the eigenvectors of H(L(1))
in (2) can be represented by the rearrangement of V(1) in (1)
given by

H(L(1)) = Ṽ(1)Λ(Ṽ(1))T , (7)

where Λ = diag([λ1, . . . , λN ]) aligns the eigenvalues in
descending magnitude, with λk representing the reshuffled
arrangement of h̃k, and Ṽ(1) includes the corresponding
reordered eigenvectors from V(1). Meanwhile, the eigende-
composition of the outer product of H(L(1)), denoted by CH ,
is given by

CH = H(L(1))
(
H(L(1))

)T
= Ṽ(1)(Λ)2(Ṽ(1))T , (8)

where (Λ)2 is the square of Λ.
Although the knowledge of L(1) is unavailable, it is possible

to utilize the observed graph signals to estimate the eigen-
modes of Ṽ(1) through (7) or (8). However, the reshuffling
between {λk}Nk=1 and {h̃k}Nk=1 prevents the direct use of the
estimated eigenmodes for matching V(1) and V(2), unless
the shuffling order of the frequency response is known. In
this work, we assume that the attacker knows the ordering
of the frequency responses, though not their exact values.
Specifically, the interchange between {λk}Nk=1 and {h̃k}Nk=1 is
determined by an index mapping function ord(·) : [N ] → [N ],
such that

λk = h̃ord(k),∀k. (9)

(a) (b) (c)

Fig. 1: Examples of symmetric graphs, where circles denote
nodes and lines denote edges. The nodes in green boxes
represent the symmetric nodes exhibiting identical inner and
outer structures.

This assumption is considerably less stringent than knowing
the exact values of the responses. In practice, the order
of the filter frequency responses can be inferred from the
characteristics of the graph filter, like being low-pass or high-
pass, which is often known based on models for specific
applications. For instance, in the context of de-anonymizing
social networks using opinion measurements, as discussed
in Example 1, these opinions are generated through a low-
pass graph filter. Consequently, the index mapping is specified
as λk = h̃ord(k) = h̃N+1−k for all 1 ≤ k ≤ N . This
determination of the correct order stems directly from the
low-pass nature of the filter, eliminating the need to know
its precise value.

C. Impact of Graph Symmetry

Even with complete knowledge of the graph topology of G1,
attackers, in the absence of further information, are unable
to conclusively re-identify the true labels of its symmetric
nodes, i.e., nodes exhibiting identical inner structures and
outer connections [9], [34]. The definition of symmetric nodes
follows.

Definition 1 (cf. [35]). Two nodes i, j are considered sym-
metric (a.k.a. automorphically equivalent) if a node-swapping
function σ with σ(i) = j, σ(j) = i, and σ(k) = k, ∀k ̸= i, j,
is an automorphism of the graph that yields an isomorphic
(equivalent) graph.

Figure 1 shows examples of symmetric nodes. We use the
notation i ∼ j to indicate that nodes i and j are symmetric.
For a graph G with N nodes, we define the set of all symmetric
nodes as

S(G) ≜ {i ∈ [N ] : ∃j ∈ [N ], j ̸= i, i ∼ j}. (10)

In contrast, the set of asymmetric nodes is denoted by
AS(G) ≜ [N ] \ S(G), where \ represents the set difference
operation. A graph with symmetric nodes (often termed a
symmetric graph) exhibits at least one non-trivial graph au-
tomorphism, inherently introducing permutation ambiguities
in computing the node matching σ(·) for these nodes.

Existing research on graph de-anonymization and graph
matching have explored node matching by either tolerating
permutation ambiguities on symmetric nodes in matching
outputs [9] or by focusing solely on asymmetric graphs [28]. In
contrast, our work aims to achieve precise de-anonymization
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of all asymmetric nodes within a general graph, which might
include symmetric structures. However, we note that by ag-
gregating each set of equivalently symmetric nodes as a
singular, uniform entity, a symmetric graph can be converted
into an asymmetric subgraph. This transformation allows our
proposed method and analysis to extend seamlessly to sce-
narios where we also want to identify the equivalence set
of a symmetric node under the automorphism group in the
unknown graph.

III. PROBLEM STATEMENT

We study a general de-anonymization attack problem where
the attacker aims to infer the labels of all the asymmetric nodes
in AS(G1) using the M observed graph signals in (3). This
challenge essentially translates to matching the nodes of the
known graph G2 with the signals generated over the unknown
graph G1, namely the GS2GM problem.

Unless stated otherwise, we assume in our analysis that
G2 is a graph isomorphic to G1, i.e., G1 and G2 have an
identical Laplacian matrix subject to an unknown optimal
node permutation denoted by σ⋆(·) and its corresponding
permutation matrix by P⋆ ∈ {0, 1}N×N . The impact of graph
non-isomorphism will be numerically examined in Section
VII-B. Due to measurement noise and the limitations of finite
signal sampling, the graph matching derived from the graph
signals, denoted by σ̂(·) or P̂ ∈ {0, 1}N×N , typically deviates
from the true permutation, even with two isomorphic graphs.
Our aim is to find an accurate σ̂(·) under the following two
scenarios:

Problem 1. Compute σ̂(·) : [N ] → [N ] with the given
Laplacian matrix L(2) and only the filtered graph signal
{zm}Mm=1 in (3).

Problem 2. Find σ̂(·) given L(2) and both the filtered and
excitation graph signals {zm,xm}Mm=1.

While the GS2GM problem primarily focuses on de-
anonymizing the labels of asymmetric nodes, the solution
σ̂(·) invariably produces an N -node permutation that maps
all the nodes of G2 to G1. Nevertheless, the presence of non-
trivial automorphisms related to symmetric nodes renders the
accuracy assessment of their de-anonymization less meaning-
ful. Consequently, for the purpose of evaluating matching
accuracy, we will discuss a method to exclude symmetric
nodes in G2 when introducing our de-anonymization approach.
We emphasize that the process of detecting asymmetric nodes
does not impact the fundamental functioning of our de-
anonymization algorithm; it merely acts as an optional tool to
facilitate the numerical evaluation of matching performance.

As we shall demonstrate in Section IV, our approaches
for addressing the problems mentioned above differ in the
methodology for estimating the eigenmodes of L(1), utilizing
either the model in (7) or (8). We shall introduce a unified
GS2GM framework in Section IV and subsequently detail the
specific eigenmode estimation technique for each problem.

Remark 2. We highlight that most of the existing work
bases the de-anonymization analysis on specific probabilis-
tic graph models, such as ER random graphs [2], [6] and

Fig. 2: Schematic view of the GS2GM method.

stochastic block models [7], [8], [36]. As such models might
not adequately capture the complexities inherent in real-
world networks, our GS2GM framework is applicable to de-
anonymizing an arbitrarily fixed graph G1 without the need of
assuming its statistical model.

A. Matching Accuracy Measurement

Before delving into our methodology, we define the metric
for measuring the accuracy of the node matching as follows.

Definition 2 (Success probability and asymptotic perfect
de-anonymization). Given a set of graph signals and a fixed
L(2), the resultant permutation σ̂(·) successfully re-identifies
the asymmetric nodes of G1 if σ̂(n) = σ⋆(n) for ∀n ∈
AS(G2).

Moreover, for any given possible instance of the graph
signals in (3), the uniform recovery probability of GS2GM
is defined as

Pr(σ̂(n) = σ⋆(n),∀n ∈ AS(G2)). (11)

Furthermore, σ̂(·) is said to achieve asymptotic perfect de-
anonymization if

lim
M→∞

Pr(σ̂(n) = σ⋆(n),∀n ∈ AS(G2)) = 1, (12)

where M denotes the sampling size of the graph signals.

IV. GS2GM ALGORITHM

A. Overview

Our GS2GM approach is drawn inspiration from [28], [37].
In cases where both L(1) and L(2) are known, [37] computes
σ̂(·) by maximizing the inner product of the eigenvector
matrices V(1) and V(2) subject to a node permutation. This
technique is referred to as spectral graph matching. Building
upon this, [28] extends spectral graph matching to blind
matching of two sets of graph signals generated over two
unknown graphs, where the matching relies on empirical
eigenvectors estimated from sample covariance matrices.
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Although the GS2GM problem shares significant similar-
ities with blind graph matching as we described [28], there
are two notable distinctions: First, the blind method [28]
was initially tailored for matching two unknown asymmetric
graphs, presuming an absence of symmetric nodes. As we
expound in Section III, it is crucial to exclude symmetric
nodes for accurate de-anonymization assessment of asym-
metric nodes for general graphs. In alignment with our ob-
jective, we incorporate a symmetry detection process using
the reference graph G2 to facilitate numerical evaluation of
de-anonymization accuracy. Second, while [28] deals with
unknown and uncorrelated excitation signals, our problem
formulation broadens this scope to include scenarios with more
general excitations that may exhibit spatial correlation and
can be either known or unknown. Therefore, our strategies
for estimating the eigenmodes of L(1) are adapted based on
the specific information available about the graph signals.

In this section, we present a unified GS2GM approach that
identifies node matching using the estimated eigenvectors Ṽ(1)

by either (7) or (8). We outline the algorithmic framework in
Figure 2 and the key steps as follows, leaving the details on the
eigenmode estimation method for each problem to subsequent
sections.

• Eigenvector Estimation: The initial step involves comput-
ing Ṽ(1) as specified in (7) and (8) from the observed graph
signals. Specifically, for Problem 1, where only {zm}∀m are
observed, we estimate CH in (8) by using {zm}∀m and Cx,
and then determine its eigenmatrix by (8). In contrast, for
Problem 2, where both filtered and excitation graph signals
{zm,xm}Mm=1 are known, we first estimate H(L(1)) through
graph filter inference, followed by performing eigendecom-
position on it. We refer to Sections V and VI for more
details. In both scenarios, the estimate of Ṽ(1) is denoted
by U. The corresponding estimates of eigenvalues in Λ (or
(Λ)2) are represented as Λ̂ = diag(λ̂1, . . . , λ̂N ) (or (Λ̂)2 =
diag(λ̂2

1, . . . , λ̂
2
N )). Additionally, the eigenmatrix V(2) of

G2 is obtained from the eigendecomposition in (1). To align
the two eigenmatrices, we reorder the eigenvectors in V(2)

to match the order in U according to the reshuffling order
of the graph frequency responses as in (9). This reordered
eigenmatrix is denoted by Ṽ(2) = [v

(2)
ord(1), · · · ,v

(2)
ord(N)].

• Node matching: Following [28], we compute the node
permutation matrix P̂ by aligning the first K eigenvectors
in U and Ṽ(2). The hyper-parameter K can be chosen to
maximize the minimum spectral gap in the estimated eigen-
values as suggested in [28, Sect. IV-D], or tuned through
trial and error. Furthermore, to address the unknown sign
ambiguities inherent in eigendecompositions, we compute
the permutation by taking the absolute values of these
eigenvectors: (cf. [28, Eq. (14)])

P̂ = argmax
P∈PN

tr

(
UK(Ṽ

(2)

K )TP

)
, (13)

where PN is the set containing all the N ×N permutation

matrices, UK and Ṽ
(2)

K are the matrices containing the
absolute values of the first K columns of U and Ṽ(2),
respectively. The linear assignment problem in (13) can be

solved by off-the-shelf algorithms, such as the Hungarian
method [38] or the greedy approach in [28, Algorithm 2].

• Symmetry detection: Evaluating the accuracy of P̂ in (13)
according to (11) requires the knowledge of the asymmetric
node set AS(G2). However, for an N -node graph with as
many as N ! node permutations in PN , the exhaustive search
for symmetric nodes – a task known as the graph automor-
phism problem – becomes computationally infeasible for
large N . As an alternative, we propose a polynomial-time
method to identify a subset of S(G2) (or equivalently, a
superset of AS(G2)). For any node pair i, j, let P(i,j) be
the swapping matrix that swaps the i-th and j-th columns
of IN . Nodes i and j are symmetric if the following holds:

L(2) = (P(i,j))TL(2)P(i,j). (14)

We include nodes i and j in the estimated symmetric
node set S̃(G2) if (14) is satisfied. This involves evaluating
a total of N(N + 1)/2 node pairs. As (14) identifies
symmetric nodes subject to only a single swap, S̃(G2)
is a subset of S(G2). To refine this further, symmetric
nodes involved in multiple swaps can be iteratively detected
by checking the automorphism condition in (14) using
swapping matrices that swap three or more columns. Since
symmetry detection only serves the purpose of assessing
de-anonymization accuracy, one should strike a balance be-
tween computational complexity and accuracy in computing
S̃(G2). As we demonstrate in Section VII-A, in practice
most symmetric nodes in real-world social networks can be
effectively detected through the single-swap automorphism
check described in (14).

B. Success Probability Analysis

We analyze the success probability in (11) of the proposed
method by examining the impact of eigenmode estimation

error on the graph matching accuracy. To begin, we use Ṽ
(1)

K to
represent the matrix containing the absolute values of the left

K columns of Ṽ(1) in (7). Essentially, Ṽ
(1)

K is the error-free
equivalent of UK in (13) with perfect eigenvector estimation.

Let Xi,j be the (i, j)-th entry of Ṽ
(1)

K (Ṽ
(2)

K )T . Finally, we
define an auxiliary variable ρ as

ρ ≜ min
n∈AS(G2)

(
Xn,σ⋆(n) − max

ℓ ̸=σ⋆(n)
Xn,ℓ

)
. (16)

As we showed [28], ρ quantifies the cost in the objective value
of (13) with respect to the true node matching σ⋆(·) in the
absence of errors. The next theorem shows that the condition
on ρ > 0 offers a way to characterize the success matching
probability in relation to the eigenvector estimation error.

Theorem 1. Suppose ρ > 0 and all the eigenvalues {λk}Kk=1

in (7) are distinct. Consider the solution σ̂(·), or equivalently
P̂ in (13), which estimates the eigenvector by (8) for Problem
1, satisfies (15) shown on top of this page. Here, uk and ṽ

(1)
k

are the k-th columns of U and Ṽ(1), respectively, and δk is
the k-th spectral gap of the eigenvalues {λ2

k} defined as

δk = min{λ2
k − λ2

k+1, λ
2
k−1 − λ2

k},∀k ∈ [K]. (17)
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Pr (σ̂(n) = σ⋆(n),∀n ∈ AS(G2)) ≥
K∏

k=1

(
1− Pr

(
|λ̂2

k − λ2
k| ≥

δk
2

))
·

1− Pr

ρ ≤ 2

√√√√2

K∑
k=1

(1− (uT
k ṽ

(1)
k )2)

 .

(15)

For the proposed solution to Problem 2, the same bound in
(15) holds, except that λ2

k and λ̂2
k should be substituted with

λk and λ̂k, respectively.

Proof. See Appendix A.

As discussed in [28], [37], the distinctness of the eigen-
values {λk} is a prerequisite for the spectral graph matching
methods. Moreover, the condition ρ > 0 implies that the true
permutation σ⋆(·) uniquely maximizes the objective in (13)
when V(1) is known precisely. Prompted by this, we use ρ
as a metric for assessing the de-anonymizability of graphs in
the noiseless setting. The value of ρ is inherently linked to the
edge connectivity of the underlying graphs. For instance, [39]
examined a variant objective to (16) and found that a similar
metric to ρ is positive for large Gaussian models and large
ER graphs. Building on this insight, we conjecture that ρ in
(16) is also likely to be positive for large ER graphs and large
Gaussian models, as corroborated numerically in Section VII.
In a general case involving an arbitrary and unknown graph G1,
ρ can be approximately evaluated by substituting V(1) with the
noisy estimate U. This approximation offers a pragmatic way
to gauge the de-anonymization success probability, particularly
for large-scale systems.

Theorem 1 demonstrates that perfect matching is achievable
with our algorithm, provided the spectrum order is correctly
estimated and eigenvector perturbations are limited. This ro-
bustness against noise stems from two key factors: 1) the
approach requires only an accurate estimation of the order
of the eigenvalues to distinguish the spectral components, not
their exact values, and 2) it can tolerate certain levels of
perturbations in eigenvector estimation, where the threshold
for acceptable perturbations depends on the spectral gaps of
the graph filter. This advantage highlights the efficacy of
utilizing the spectral components of the graph filter to deduce
topological information for graph matching.

V. EIGENVECTOR ESTIMATION FOR PROBLEM 1
A. Covariance-Based Eigenvector Estimation

We study the eigenvector estimation problem under the sce-
narios lacking direct access to the excitation signals {xm}Mm=1

as delineated in Problem 1. We start by considering a situation
where the unknown excitation signals are uncorrelated and
unit-variance satisfying E[xmxT

m] = Cx = IN . In this case,
the sample covariance of the observed signals {zm}m and its
eigendecomposition can be computed by

Ĉz =
1

M

M∑
m=1

zm(zm)T − ν2IN = U(1)(Λ̂)2(U(1))T , (18)

where U is orthogonal containing the sample eigenvectors, and
(Λ̂)2 = diag([λ̂2

1, · · · , λ̂2
N ]) positions the sample eigenvalues

in descending order. In (18), we adjust the sample covariance
estimation by using the variance of the signal noise to ensure
Ĉz is an unbiased estimator of CH in (8), i.e., E[Cz] = CH .
Consequently, with a sufficiently large sampling size M , we
anticipate that Cz is close to CH and thereby U and {λ̂2

n}
provide an approximation close to Ṽ(1) and {λ2

n} in (8),
respectively. Finally, the sample eigenvector U is used for
computing the graph matching in (13).

The complexity of the associated matrix multiplication
in (18) scales with O(N2M). Additionally, the complexity
associated with the eigendecomposition and solving the linear
assignment problem in (13) is O(N3). Consequently, the
total computational complexity of the proposed method is
O(N3 +N2M).

B. Performance Analysis

Applying Theorem 1, we present the following proposition
to quantify the success probability of the de-anonymization
method using (18).

Proposition 1. Let the following conditions hold:
i. ρ > 0.

ii. The excitation signals {xm} follow an i.i.d. zero-mean
sub-Gaussian distribution and satisfy E[xmxT

m] = IN .
iii. The filtered graph signals {zm} are uniformly bounded

above almost surely, i.e., ∥zm∥2 ≤ Z for some Z < ∞.
Then, there exists a constant M0 such that for any M ≥ M0

we have

Pr (σ̂(n) = σ⋆(n),∀n ∈ AS(G2))

≥ 1− 4KZ4

Mδ2
− 2Ne

− Mρ2δ2

32C2(ν2+Z)KN , (19)

where ν2 is the signal noise variance, C is a constant given
in (40), and δ = mink∈[K] δk is the minimum spectral gap
defined in (17).

Proof. See Appendix B.

As suggested by [28, Section IV-D], the value of K can
be chosen such that δ2/K remains constant. Consequently, it
follows from Proposition 1 that the error probability grows at
the rate of O(Ne−M/N ) for a large N . Accordingly, a sample
size M proportional to N logN suffices for achieving a small
de-anonymization error rate.

C. Extension to Cases with Correlated Excitations

The method in (18) is tailored for cases with uncorrelated
excitations. When graph signals exhibit significant spatial
correlations, the sample covariance Ĉz intertwines the graph
filter with the excitation covariance and thus fails to precisely
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estimate CH in (8). To see this, we represent the excitation
signal xm in (3) as

xm = C1/2
x x̃m, (20)

where C
1
2
x is the principal square root of Cx such that Cx =

C
1
2
xC

1
2
x , and x̃m denotes the whiten signal satisfying E[x̃m] =

0 and E[x̃mx̃T
m] = IN for ∀m. Then, we have

Cz = E[zmzTm] = H(L(1))CxH(L(1)). (21)

As a result, the eigendecomposition of Ĉz in (18) does not
lead to a precise estimate of the eigenmodes of L(1).

To tackle this challenge, we assume that Cx is known a
prior, e.g., from the statistical information on the excitations.
Following [29], we have

C
1
2
xCzC

1
2
x = C

1
2
xH(L(1))CxH(L(1))C

1
2
x = (C

1
2
xH(L(1))C

1
2
x )

2.
(22)

Note that our aim is to find the eigenvectors of H(L(1)) subject
to sign ambiguities in the eigendecomposition. When Cx is
non-singular, we propose to approximate Cz in (22) with Ĉz

in (18) and then estimate the eigenvectors of H(L(1)) by the
eigenvectors of

C
− 1

2
x

(
C

1
2
x ĈzC

1
2
x

) 1
2

C
− 1

2
x . (23)

When Cx is singular, it is impossible to find all the eigen-
components of H(L(1)) since the measurement signals are
observed through an ill-conditioned mapping. In this case, we
can replace C

− 1
2

x with the pseudo inverse of C
1
2
x in (23), and

thereby estimate a subset of the eigenvectors.
We emphasize that the approach in (23) is effective because

we only need the absolute values of the eigenvectors of the
graph filter in (13), rather than the precise values of the filter
matrix as explored previously in [29]. Consequently, there is
no necessity to determine the exact values of the eigenvalues
of the filter matrix, allowing us to disregard sign ambiguities
within eigendecompositions without impacting the accuracy of
our method.

VI. EIGENVECTOR ESTIMATION FOR PROBLEM 2

A. Sparse Graph Filter Inference

In this section, we investigate the eigenmode estimation
method for Problem 2, which deals with the scenario where
both the excitation and filtered graph signals {zm,xm}Mm=1 are
known. Problem 2 could technically be considered a subset of
Problem 1, with the approaches in Section V being applicable.
However, those methods primarily leverage statistical infor-
mation about the excitations rather than their explicit values,
necessitating a large number of signal samples to accurately
estimate covariance matrices. Alternatively, a heuristic method
is to first estimate the graph Laplacian from the graph signals,
known as graph topology inference [17], and then to derive the
graph filter using the expression of H(·). However, this two-
step method often requires strong conditions on the underlying
graph topology and can be susceptible to estimation error
propagation.

To address the limitations of the aforementioned methods,
we first estimate the graph filter matrix directly from the affine
model presented in (3), termed as graph filter inference, and
then compute its eigenvectors by (7). To proceed, we define
Z ≜ [z1, · · · , zM ] ∈ RN×M , X ≜ [X1, · · · ,XM ] ∈ RN×M ,
and z̃ ≜ vec(Z) ∈ RNM . The model in (3) can be recast as

z̃ = vec(H(L(1))X) + w̃

= (XT ⊗ IN )︸ ︷︷ ︸
≜B

vec(H(L(1))) + w̃, (24)

where w̃ = vec([w1, · · · ,wM ]) consists of entries following
the distribution of N (0, ν2), and ⊗ denotes the Kronecker
product. Consequently, H(L(1)) can be estimated from the
affine model in (24) given the known sensing matrix B.

Graph filter inference often exploits structural information
to enhance the accuracy of estimation [10], [17]. A frequently
leveraged property is the sparsity of H(L(1)), particularly
relevant when the graph Laplacian matrix L(1) is sparse and
the polynomial degree order Tf of the filter is small. For
example, graph filters like diffusion dynamic systems are
typically sparse due to the localized nature of many diffusion
processes in large-scale graphs. Inspired by this, we introduce
the following assumption about the sparsity of H(L(1)):

Assumption 1 (s-sparse graph filter). The graph filter H(L(1))
is s-sparse, i.e., ∥vec(H(L(1)))∥0 ≤ s for some s ≤ N2.

Under Assumption 1, inferring H(L(1)) in (24) essentially
becomes a sparse recovery problem. Its solution can be ob-
tained through quadratically constrained ℓ1-minimization:

Ĥ(L(1)) = argmin
H∈RN×N

∥vec(H)∥1 (25a)

subject to ∥z̃−Bvec(H)∥2 ≤ η, (25b)
H ∈ F , (25c)

where η > 0 is a tuning parameter ensuring ∥w̃∥2 ≤ η with
high probability, and F is the feasible set of the graph filter.
Here, F incorporates prior knowledge about the graph filter,
i.e., H(·) is some polynomial function of a Laplacian matrix.
Leveraging the properties of the Laplacian matrix, a typical
choice of F is (cf. [17, Eq. (25)])

F = {H = H(L) : LT = L,L ⪰ 0,L1 = 0}. (26)

Given that Laplacian matrices are symmetric, the optimization
variable of (25) effectively has a dimension of N(N + 1)/2.
Since in our problem the graph Laplacian is unknown, we can
replace F with a tractable convex approximation, such as

F ′ = {H ∈ RN×N : HT = H,H ⪰ 0,H1 = 0, tr(H) ≤ α},
(27)

where α > 0 is a pre-defined constant. The convex problem
with (27) can be solved by off-the-shelf solvers, such as
the interior point method [40]. After computing Ĥ(L(1)), its
eigenvectors are obtained by the eigendecomposition in (7).

Employing the interior point method to solve (25), which
involves O(N2) variables, results in a complexity of O(N7)
[40]. Moreover, the matrix multiplication, eigendecomposi-
tion, and the linear assignment problem collectively exhibit
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a complexity of O(N3 + N2M). Consequently, the total
complexity of the filter-inference-based method amounts to
O(N7 + N2M). This method demonstrates a higher com-
plexity compared to the covariance-based algorithm described
in Section IV, reflecting the tradeoff of enhanced matching
accuracy through the use of excitation information.

B. Performance Analysis

We analyze the performance of the solution in (25) within
the framework of compressed sensing [41]. To simplify the
analysis, we consider the computation of Ĥ(L(1)) by min-
imizing (25) but omitting the constraint (25c), leading to a
standard ℓ2-norm-constrained ℓ1-minimization problem. We
note that removing the constraint (25c) enlarges the optimiza-
tion dimension from N(N + 1)/2 to N2, and thus leads to a
generally sub-optimal solution, even when the solution is later
projected back onto F . Consequently, the following analysis
provides a sufficient condition for the proposed method to
achieve asymptotic perfect de-anonymization.

To proceed, we introduce the s-th restricted isometry con-
stant (RIC) of the sensing matrix B ∈ RN2×N2

, denoted
by ςs(B) ∈ [0, 1], as the smallest ς ≥ 0 that ensures
(1− ς)||u||22 ≤ ∥Bu∥22 ≤ (1+ ς)||u||22 for all s-sparse vectors
u ∈ RN2

. In situations where the context clearly refers to B,
we will omit the argument B and use ςs to represent its RIC.

Proposition 2. Suppose the following conditions hold:
i. ρ in (16) satisfies ρ > 0.

ii. Assumption 1 holds with ∥vec(H(L(1)))∥0 ≤ s. Further-
more, ∥vec(H(L(1)))∥1 ≤ B for some constant B < ∞,
i.e., the true graph filter has a finite objective value to the
problem in (25a).

iii. The RIC value ς2s(B) < 0.475.
iv. Let δ = argmink∈[K] min{λk − λk+1, λk−1 − λk} be

the minimum spectral gap of the first K eigenvalues of
H(L(1)). Define an auxiliary constant δ̄ as follows:

δ̄ ≜min

{
1

2
,

√
2ρ

8
√
K

}
(0.19−0.4ς2s)δ−

B(0.15ς2s+0.45)√
s

.

(28)

The value of δ̄ is required to be bounded below by the
noise variance as

ν2 ≤ δ̄2

2N2
. (29)

Then, there exists some η > 0 such that the solution to (25)
satisfies that

Pr (σ̂(n) = σ⋆(n),∀n ∈ AS(G2)) ≥ (1− e−
δ̄2−2N2ν2

3ν2 )K+1.
(30)

Additionally, suppose the following conditions also hold:
v. z̃ in (24) is uniformly bounded above almost surely.

vi. M ≥ N .
vii. K is chosen such that K/δ2 remains constant.
Then, we further have

Pr (σ̂(n) = σ⋆(n),∀n ∈ AS(G2)) ≥ 1−Ne−Const·N2(1−ς2s),
(31)

Type Sparsity # of samples for a
diminishing error

Sparse filter s = O(N) M ∝ logN
Semi-sparse filter s = O(N logN) M ∝ (logN)2

Dense filter s = O(N2) M ∝ N

TABLE I: Comparison of the sufficient number of signal
samples for achieving a diminishing error probability for
different graph filters.

where Const denotes an absolute constant.

Proof. See Appendix C.

We note that the critical RIC value ς2s in (31) depends
on the excitation signal matrix X, and thus on the sampling
size M . To better understand the scaling order of the de-
anonymization error probability in relation to these factors,
we present the following result on ς2s.

Proposition 3. Suppose {xm}Mm=1 are i.i.d. sub-Gaussian
random vectors satisfying E[xm] = 0 and E[xmxT

m] = IN
for ∀m. For any s such that 2s is divisible by N , we have
ς2s(B) ≤ t holds with probability at least 1 − e−Mt2/(2C′),
provided that

t2 ≥ 4C ′s

MN
ln(eN2/(2s)). (32)

where C ′ is a constant defined in (55).

Proof. See Appendix D.

Proposition 3 requires i.i.d. excitation signals. In practice,
this condition can be approximately met by pre-whitening
the graph signals. This lemma shows that the value of ς2s
decreases with the sample size M with high probability, and
thus Conditions iii and iv in Proposition 2 can be met with a
large M .

C. Impacts of Graph Filter Sparsity

Building upon the above analysis, we examine how fil-
ter sparsity impacts the accuracy of graph filter inference,
which in turn affects the de-anonymization error probability.
In Table I, we explore various scenarios where the graph
filters—defining interactions among nodes—possess sparse,
semi-sparse, and dense structures. These configurations are
analogous to real-world network structures like trees, small-
world networks, and complete graphs, respectively. The re-
sults indicate that leveraging the sparsity of the filter matrix
enhances the accuracy of filter inference and consequently re-
duces the required signal sample size to achieve a diminishing
error probability. Moreover, it is observed that the sample size
required in these instances is considerably lower than that
needed for the covariance-based method discussed in Section
V, highlighting the advantage of incorporating knowledge of
excitation signal values.

On the other hand, it is crucial to emphasize that the
sparsity of the filter matrix and the sparsity of its eigenvectors
Ṽ(1) in (7) are related yet distinct concepts. A matrix with
sparse entries often leads to sparse principal eigenvector(s).



10

Moreover, it has been proved in [42] that the presence of sym-
metric nodes results in the existence of sparse eigenvectors in
Ṽ(1). We emphasize that while sparsity in the filter matrix, as
utilized in the filter inference (25), can improve the estimation
accuracy of its eigenmodes, eigenvector sparsity, especially
in principal eigenvectors of the graph filter, adversely affects
the accuracy of graph matching in the GS2GM problem (13).
This negative impact is observed even when the graph filter
and its eigenvectors are perfectly estimated. The reason is that
sparse eigenvectors imply weak edge connectivity and/or graph
symmetry and thus a small value of ρ. This, in turn, reduces the
de-anonymizability of the corresponding matching problem.

Remark 3. While blind graph matching and graph filter
inference have been explored separately in existing literature,
our work extends beyond simply merging these methodolo-
gies. Specifically, our analysis provides a unified analytical
framework that allows for a consistent comparison of different
GS2GM approaches under the same metric of matching error
probability. The results offer critical insights into: 1) the
impact of graph filter estimation errors on de-anonymization
accuracy, 2) the number of signal samples required to achieve
accurate de-anonymization, and 3) the impact of the graph
filter sparsity and spectral gaps on the de-anonymization
performance.

VII. EXPERIMENTAL RESULTS

In this section, we present experimental results to verify the
performance of the proposed approach.

A. Accuracy of Symmetry Detection

We begin by analyzing the symmetric node detection mech-
anism discussed in Section IV-A. We consider the Face-
book dataset from [43], which comprises ten real-world ego-
networks with a collective total of 4, 039 users and includes ten
principal users referred to as egos. In Table II, we recursively
execute symmetric detection by using (14) to pinpoint all
symmetric nodes subject to single or multiple swaps within
each ego-network. Owing to the inherent small-world charac-
teristic of these social networks, all symmetric nodes across
the examined graphs are efficiently identifiable via single-swap
permutations as articulated in (14).

B. Social Network De-anonymization

We explore the use of the proposed GS2GM method for
de-anonymizing social network users with the observed graph
signals, specifically under the conditions of Problem 1. Refer-
ring to Example 1, the diffused opinions in social networks
can be represented as filtered graph signals, with the initial
opinions (i.e., excitation signals) typically being unknown to
the attacker. Our performance evaluation focuses on graphs
derived from the following models:
• ER random graphs comprising N = 50 nodes and an edge

connection probability of 0.3. As shown by Tran and Ahn
[34], large ER graphs are asymmetric with high probability.

• The first ego network extracted from the Facebook dataset
[43], which includes 334 users and 2, 519 edges representing

# of nodes # of single-swap # of other
symmetric nodes symmetric nodes

334 45 0
1, 035 15 0
225 9 0
151 11 0
169 5 0
62 11 0
787 35 0
748 10 0
535 33 0
53 12 0

TABLE II: Symmetric nodes in the Facebook ego-networks.
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Fig. 3: De-anonymization accuracy versus the sample size M
for the ER graph with uncorrelated excitation signals.
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Fig. 4: De-anonymization of the Facebook ego-network with
uncorrelated excitations.

user friendships. As demonstrated in Table II, this graph
contains 45 symmetric nodes, and our de-anonymization
accuracy assessment focuses on the remaining 289 nodes.

The filtered graph signals are generated by (3) over the
unknown graph G1 by employing a low-pass opinion-dynamic
graph filter [12], as defined by H(L(1)) = (IN + 0.1L(1))−1.
The excitation signals are formulated as per (20), with their
covariance matrix Cx delineated later. We construct the ref-
erence graph G2 by randomly shuffling the nodes of G1. The
linear assignment problem in (13) is solved by the Hungarian
method [38].

We first consider the model with uncorrelated excitation
signals, where each signal xm is independently drawn from
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Fig. 5: De-anonymization accuracy versus edge sampling prob-
ability for graph matching with the non-isomorphic reference.
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Fig. 6: Network de-anonymization accuracy versus the mis-
match probability in the ordering of the filter frequency
responses.

a standard normal distribution N (0, IN ). Figures 3 and 4
display the proportion of accurately de-anonymized nodes,
within a range of [0, 1], for the proposed approach in (18),
applied to ER graphs and the Facebook ego-network. In these
figures, we adjust the variance of the measurement noise ν2

to demonstrate the impact of signal noise. An ideal baseline,
assuming complete knowledge of the graph Laplacian L(1) and
employing the graph matching algorithm from [37], is included
for comparison. This baseline delineates the optimal perfor-
mance achievable with our method under perfect eigenvector
estimation. The findings indicate that the error probability
declines exponentially with an increase in the signal sample
size M . Additionally, larger signal noise contributes to an
increased matching error, aligning with the analytical result
in Proposition 1. A critical insight from Figure 4 reveals
that perfect de-anonymization is unattainable in the Facebook
network, even with an error-free Laplacian matrix L(1). This
limitation arises due to the symmetric structures in the net-
work, which results in the de-anonymizability metric ρ in (16)
of approximately −0.45, thus not satisfying the condition of
ρ > 0 in Theorem 1. It shows that our proposed method
successfully de-anonymizes above 75% of the asymmetric
nodes even though this network exhibits symmetry.

Next, we investigate a more challenging scenario where
the reference graph G2 possesses only a subset of the in-
formation from G1, resulting in a non-isomorphic GS2GM
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Fig. 7: De-anonymization of the ER graph with correlated
excitations.
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Fig. 8: De-anonymization of the Facebook ego-network with
correlated excitations.

challenge. We constructed G1 as an ER random graph and G2

through independent edge sampling from G1. Figure 5 plots
the matching accuracy against the edge sampling probability,
with M = 5·104 and ν2 = 0.01. A pronounced decrease in de-
anonymization accuracy is observed as the reference graph G2

presents reduced edge information. This highlights the critical
impact of reference graph isomorphism on matching accuracy.

Recall from (9) that our method requires to know the correct
order to align the eigenvectors corresponding to {λk}Nk=1

and {h̃k}Nk=1. Here, we examine the sensitivity of the de-
anonymization accuracy when the correct order is partially
known. We simulate a scenario where the frequency responses
may be incorrectly ordered among neighboring values. This
incorrect ordering could occur when we have only a general
understanding of the graph filter’s global tendency (e.g., low-
pass or high-pass), but local tendencies may not align. Specif-
ically, we assume that for any k = 1, 3, 5, · · · , each pair of the
adjacent index ordering values ord(k) and ord(k + 1) in (9)
has a probability of pm

2 of being swapped. Consequently, on
average, a fraction pm of the frequency response orders are
incorrect. Figure 6 illustrates the de-anonymization accuracy
of the proposed method as pm varies for the ER random
graphs. The other simulation parameters are the same as
those in Figure 5. The results indicate that achieving accurate
de-anonymization becomes challenging with significant order
mismatches, highlighting the critical role of knowing the
frequency response ordering.
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Fig. 9: Topology of the IEEE 22-bus system, where the
numbers represent the labels of the nodes and the pink circles
represent the symmetric nodes in the graph.

Finally, we study a model with correlated excitation signals
by following [29]. Here, the excitation covariance is generated
according to Cx = VxΛxV

T
x , where the eigenmatrix Vx

is uniformly drawn from the group of N × N orthogonal
matrices and the eigenvalues in Λx are set to the absolute
values of i.i.d. samples drawn from N (0, 1). Figures 7 and 8
show the de-anonymization accuracy of the proposed method
with the correlation adjustment in (23). For comparison, we
also present results from the method in (18), which treats the
excitations as uncorrelated signals. The comparison between
these two methodologies underscores the superior capability
of the proposed strategy in (23) to effectively address spatial
correlations within the signals.

C. Node Identification in Power Grids
In this section, we apply GS2GM for node label identifica-

tion in power grid networks, specifically addressing Problem
2. We consider the IEEE 22-bus radial distribution system
with N = 22 nodes depicted in Fig. 9. The current and
voltage phasors in the network are characterized in (5). By
employing the model in (3), we can conceptualize im and vm

as the filtered and excitation graph signals, respectively, with
Y acting as the associated high-pass graph filter; see (5). The
value of Y can be found in the Supplementary Material of
this paper. Here, we adopt two types of measurement data:

• Synthetic uncorrelated data: Each voltage phasor vm

is independently drawn from CN (0, IN ), and im is
generated by (5) with wm ∼ CN (0, ν2IN ) and ν2 = 0.2.

• Real-world demand data: Realistic demand profiles
sourced from New York State are used to calculate
voltage and current phasor measurements by Matpower
[44]. The resultant voltage measurements exhibit high
correlation both spatially and temporally.

For M voltage phasor measurements {vm ∈ CN×1}Mm=1,
we assess the strength of correlations using the average lag-1
auto-correlation. Denote the n-th entry of vm by vm[n]. The
auto-correlation is calculated as follows:

Ravg =
1

N

N∑
n=1

∣∣∣∣∣
∑M

m=2(vm[n]− v̄n)(vm−1[n]− v̄n)
⋆∑M

m=1 |vm[n]− v̄n|2

∣∣∣∣∣ ,
where (·)⋆ denotes the conjugate, and v̄n = 1

M

∑M
m=1 vm[n]

denotes the sample mean over the n-th dimension. This lag-1
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Fig. 10: Node de-anonymization accuracy in the power grid.

auto-correlation intuitively measures the extent to which each
sample correlates on average with its immediate predecessor.
A higher value of Ravg indicates a stronger correlation within
the dataset. For the real-world dataset, comprising a total of
1.7×104 samples, the corresponding average auto-correlation
equals to 0.7962. In contrast, the synthetic i.i.d. Gaussian data,
expectedly uncorrelated, shows an average auto-correlation of
0.0072.

Given the current and voltage measurements {im,vm}Mm=1

collected from the phasor measurement units, our goal is to
identify the node labels of the anonymous network with the
aid of a reference graph G2. Observing the sparsity of Y as
confirmed in Figure 9, we employ the filter estimation method
in (25) to determine Y as (cf. [33, Eqs. (47)-(49)])

min
Y∈CN×N

∥vec(Re(Y))∥1 + ∥vec(Im(Y))∥1 (33a)

subject to
M∑

m=1

∥im −Yvm∥22 ≤ η2, (33b)

YT = Y,Y1 = 0, (33c)
Re(tr(Y)) = αN, Im(tr(Y)) = βN, (33d)

where Re(Y) and Im(Y) are the real and imaginary parts
of Y, respectively, and η, α, and β are adjustable parameters.
Moreover, we examine the covariance-based GS2GM method
in (18), which predominantly relies on current phasor data for
node matching. Figure 10 plots the proportion of nodes cor-
rectly identified using these techniques. The filter-inference-
based method outperforms the method in (18) in terms of
de-anonymization accuracy, benefiting from the incorporation
of voltage measurements. This observation aligns with the
analysis in Section VI, showing that exploiting the knowledge
of excitations reduces the required number of signal samples.
Notably, under an equivalent number of signal samples, the
node identification accuracy with realistic demand data is sig-
nificantly lower compared to that of the synthetic uncorrelated
data, attributed to the high temporal correlation in the real-
world dataset that results in a reduced number of independent
signal samples.

VIII. CONCLUSIONS

This work studied network de-anonymization attacks by
matching asymmetric nodes from graph signals to a refer-
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ence graph. We developed a methodology to estimate the
eigenvectors of the graph filter using either the signal sample
covariance matrix or the inferred graph filter and subsequently
compute node matching by solving a linear assignment prob-
lem. We conducted theoretical analysis on both scenarios and
characterized the signal sample requisites to achieve perfect
de-anonymization. Empirical results validate our analysis and
demonstrate the efficiency of the proposed algorithm. The
analysis reveals that graph-signal-based de-anonymization can
significantly expose private information concerning node iden-
tities, given an adequate amount of signal samples. However,
when graph signals are highly correlated or available in limited
quantities, they afford a robust level of privacy, safeguarding
against de-anonymization attacks. Developing more sophisti-
cated methods to de-anonymize highly correlated graph signals
is a promising direction for future research.

APPENDIX A
PROOF OF THEOREM 1

For notational convenience, we define the following events:

A = [∃n ∈ AS(G2) s.t. σ̂(n) ̸= σ⋆(n)]; (34a)

B =

[
|λ̂2

k − λ2
k| <

δk
2

for ∀1 ≤ k ≤ K

]
; (34b)

Ck =

[
|λ̂2

k − λ2
k| ≥

δk
2

]
,∀1 ≤ k ≤ K. (34c)

It follows from the definitions of B and Ck that Pr(B) =∏K
k=1(1− Pr(Ck)). Applying the law of total probability, we

have

Pr (σ̂(n) = σ⋆(n),∀n ∈ AS(G2)) = 1− Pr(A)

= 1− Pr(A|B)Pr(B)− Pr(A|Bc)Pr(Bc)

(a)

≥ 1− Pr(A|B)Pr(B)− Pr(Bc)

= (1− Pr(A|B))
K∏

k=1

(1− Pr(Ck)). (35)

where Bc is the complementary event of B, and (a) follows
from Pr(A|Bc) ≤ 1. To prove Theorem 1, it suffices to bound
Pr(A|B). Following [28, Eqs. (35)-(39)], with ρ > 0 we
have Pr(A|B) ≤ Pr(∥E∥max ≥ ρ/2), where E = (UK −
Ṽ

(1)

K )(Ṽ
(2)

K )T represents the perturbation in the cost matrix
due to the eigenvector estimation error, and ∥·∥max is the max
norm. Applying the result in [28, Eq. (51)], we have

∥E∥max ≤ ∥(UK − Ṽ
(1)

K )(Ṽ
(2)

K )T ∥F ≤ ∥UK − Ṽ
(1)

K ∥F

=

√√√√2

K∑
k=1

(1− |uT
k ṽ

(1)
k |) ≤

√√√√2

K∑
k=1

(1− (uT
k ṽ

(1)
k )2),

(36)

where the last inequality follows from 0 ≤ |uT
k ṽ

(1)
k | ≤ 1.

Combining (35) and (36) completes the proof.

APPENDIX B
PROOF OF PROPOSITION 1

According to [28, Propositon 1], under the condition of
bounded and i.i.d. filtered graph signals {zm}, it follows that

Pr

(
|λ̂2

k − λ2
k| ≥

δk
2

)
≤ 4κk

Mδ2k
(37)

where δk is the k-th spectral gap with respect to the square
of the k-th eigenvalue λ2

k, and κk is a constant given by
Ezm

[∥zmzTmv
(1)
k ∥22]. Applying the Cauchy–Schwarz inequality

and the boundedness of ∥zm∥2, we have κk ≤ Ezm
[∥zm∥42] ≤

Z4. Therefore, it follows that
K∏

k=1

(
1−Pr

(
|λ̂2

k−λ2
k|≥

δk
2

))
≥

K∏
k=1

(1− 4Z4

Mδ2k
) ≥ 1− 4KZ4

Mδ2
,

(38)

where δ = minKk=1 δk denotes the minimum spectral gap.
Next, applying the Davis-Khan theorem [45], we have

1− (uT
k ṽ

(1)
k )2 ≤ 4∥Ĉz −Cz∥22

δ2k
. (39)

According to [28, Lemma 2], it follows with probability at
least 1− 2t for sufficiently large M and any t > 0 that

∥Ĉz −Cz∥2 ≤ C(ν2 + Z)

√
N ln(N/t)

Mδ2
, (40)

where C is an absolute constant. Equivalently, for any t′ > 0,

we have Pr(∥Ĉz − Cz∥2 ≥ t′) ≤ 2Ne
− M(t′)2

C2N(ν2+Z) . Setting
t′ = δρ

4
√
2K

, we have

Pr

ρ ≤ 2

√√√√2

K∑
k=1

(1− (uT
k ṽ

(1)
k )2)


≤ Pr

(
δρ

4
√
2K

≤ ∥Ĉz −Cz∥2
)

≤ 2Ne
− Mρ2δ2

32C2(ν2+Z)KN .

(41)

Substituting (38) and (41) to (15) leads to (19).

APPENDIX C
PROOF OF PROPOSITION 2

We extend the recovery error bound from the compressed
sensing literature by calculating an upper bound that scales
linearly with the RIC value ς2s. The coefficient of this bound is
computed numerically to ensure the tightest fit, leading directly
to the precise formulas presented in Conditions iii and iv of
Proposition 2. We first state the following two lemmas.

Lemma 1. Let the conditions in Proposition 2 hold. We have

∥Ĥ(L(1))−H(L(1))∥F ≤ BC1√
s

+ C2η, (42)

where the constant B is defined in Condition ii of Proposition
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2, and C1 and C2 are given by

C1 =
4

1− C0

√
2(2− ς2s)

(1− ς2s)(32− 25ς2s)
, (43)

C2 =
2√

1− ς2s

(
1 +

C1√
2

)
, (44)

with C0 = 2
√

1+5ς2s−4ς22s
(1−ς2s)(32−25ς2s)

< 1.

Proof. When ς2s < 0.4931, (42) follows from a simple
combination of the results in [41, Theorem 6.11] and [46,
Theorem 4.6], and [41, Proposition 2.3].

Lemma 2. For the parameters C1 and C2 defined in (43) and
(44) and any ς2s ∈ (0, 0.475), it holds that

C1

C2
≤ 0.15ς2s + 0.45, − 1

C2
≤ 0.4ς2s − 0.19.

Proof: To prove the result, it is equivalent to verify
the functions f(ς2s) = C1

C2
− 0.15ς2s − 0.45 and g(ς2s) =

− 1
C2

− 0.4ς2s + 0.19 are non-positive in the domain of
ς2s ∈ (0, 0.475). To find the maximum values of these
one-dimensional functions f and g, we adopt the numerical
optimization method in [47], implemented by the fminbnd
function in MATLAB. As a result, we have maxς2s f(ς2s) =
f(0.2445) ≈ −0.015 < 0 and maxς2s g(ς2s) ≤ g(0) ≈
−0.006 < 0 for ς2s ∈ (0, 0.5). This completes the proof.
Note that the result holds with the following condition:

0.4ς2s − 0.19 < 0 ⇔ ς2s < 0.475. (45)

We are ready to prove Proposition 2 using the above results.
In particular, we pick η = ∥ỹ − Bvec(H(L(1)))∥2 = ∥w̃∥22
in the following proof. By the Bauer-Fike theorem [48], it
follows that

Pr

(
|λ̂k − λk| ≥

δk
2

)
≤ Pr

(
∥Ĥ(L(1))−H(L(1))∥2 ≥ δk

2

)
Lemma 1
≤ Pr

(
BC1√

s
+ C2η ≥ δk

2

)
Lemma 2
≤ Pr

(
η ≥ 0.19− 0.4ς2s

2
δ − B(0.15ς2s + 0.45)√

s

)
(28)
≤ Pr

(
η ≥ δ̄

)
= Pr

(
∥w̃∥22
ν2

≥ δ̄2

ν2

)
. (46)

Next, applying the Davis-Khan theorem [45], we have

1− (uT
k ṽ

(1)
k )2 ≤ 4

∥Ĥ(L(1))−H(L(1))∥2F
δ2k

. (47)

Therefore,

Pr

ρ ≤ 2

√√√√2

K∑
k=1

(1− (uT
k ṽ

(1)
k )2)


(47)
≤ Pr

ρ ≤ 4

√
2
∑
k

1/δ2k · ∥Ĥ(L(1))−H(L(1))∥F


Lemma 1
≤ Pr

(
BC1√

s
+ C2η ≥

√
2ρδ

8
√
K

)
Lemma 2
≤ Pr

(
η ≥ 0.19− 0.4ς2s

2

√
2ρδ

8
√
K

− B(0.15ς2s + 0.45)√
s

)
(28)
≤ Pr

(
η ≥ δ̄

)
= Pr

(
∥w̃∥22
ν2

≥ δ̄2

ν2

)
. (48)

Substituting (46) and (48) into (15), we have

Pr (σ̂(n) = σ⋆(n),∀n) ≤
(
1− Pr

(
∥w̃∥22
ν2

≥ δ̄2

ν2

))K+1

.

(49)

The final step is to bound the chi-squared random variable
∥w̃∥22. To this end, we apply the following concentration
bound.

Lemma 3. Let Q be a chi-squared random variable with d
degrees of freedom. For any t ≥ 2d, we have Pr(Q ≥ t) ≤
e−

t−2d
3 .

Proof. The result in [49, Eq. (4.3)] shows that, for any x > 0,
Pr(Q ≥ d+2

√
dx+2x) ≤ e−x. Note that d+2

√
dx+2x ≤

2d+ 3x. Setting t = 2d+ 3x leads to the result.

Applying Lemma 3, when ν2 ≤ δ̄2

2N2 , we have

Pr

(
∥w̃∥22
ν2

≥ δ̄2

ν2

)
≤ e−

δ̄2/ν2−2N2

3 . (50)

Substituting (50) to (49) results in (30). Finally, when z̃ in
(24) has a bounded ℓ2 norm, it follows from (24) that ν2 =
O(1/(MN)). When K is chosen such that δ/

√
K remains

constant, δ̄ in (28) becomes a linearly decreasing function of
ς2s. Substituting the above results to (50) as well as taking
into account K ≤ N and (29), a simple calculation yields

1− (1− e−
δ̄2/ν2−2N2

3 )K+1 ≤ Ne−N2(c1−c2ς2s), (51)

where c1 and c2 are some constants. This completes the proof.

APPENDIX D
PROOF OF PROPOSITION 3

We first consider the RIC value ςr(B) for any r that is
divisible by N . Consider an arbitrary r-sparse vector u in
RN2

. It can be verified that u can be partitioned into N sub-
vectors in RN , each of sparsity r′ = r/N ∈ Z. We denote
each sub-vector as ui, 1 ≤ i ≤ N, with ui ∈ RN and ∥ui∥0 =
r′. We note that the r′-th RIC of XT , denoted by ςr′(X

T ),
satisfies that

(1− ςr′(X
T ))∥ui∥2 ≤ ∥XTui∥2 ≤ (1 + ςr′(X

T ))∥ui∥2,∀i.
(52)
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Summing up all the N inequalities, we have

(1−ςr′(X
T ))
∑
i

∥ui∥2≤
∑
i

∥XTui∥2≤(1+ςr′(X
T ))
∑
i

∥ui∥2

⇔ (1− ςr′(X
T ))∥u∥2 ≤ ∥Bu∥2 ≤ (1 + ςr′(X

T ))∥u∥2.
(53)

From the definition of the RIC, we know that ςr(B) is the
smallest value satisfies that

(1− ςr(B))∥u∥2 ≤ ∥Bu∥2 ≤ (1 + ςr(B))∥u∥2.

Consequently, it follows from (53) that

ςNr′(B) ≤ ςr′(X
T ),∀r′ ∈ Z. (54)

According to [41, Theorem 9.2], when X (and thus XT )
is an i.i.d. zero-mean unit-variance sub-Gaussian matrix,
ςr(X

T ) ≤ t holds for any r′, t > 0 with probability at least
1− e−t2M/(2C′), provided that

M ≥ 2C ′

t2
r′ ln(eN/r′), (55)

where C ′ is a constant depending on the distribution of X.
Substituting (55) to (54) with r′ = 2s/N , we have

Pr(ς2s(B) ≤ t) ≥ 1− e−t2M/(2C′), (56)

provided that (32) holds.
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