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ABSTRACT OF DISSERTATION 

 

Statistical Models for Detecting Transgenerational Genetic Effects 

by 

Michelle Marie Clark 

Doctor of Philosophy in Biostatistics 

University of California, Los Angeles, 2016 

Professor Janet S. Sinsheimer, Chair 

 

Genome-wide association studies (GWAS) have successfully discovered a number of genes that 

control disease susceptibility and variation in quantitative traits. Despite the large number of 

genes found to be associated with human diseases and complex traits, a limited amount of the 

total heritability is explained by these discoveries. One hypothesis is that some of this missing 

heritability is due to transgenerational effects, effects of genetic factors in one generation that 

affect the phenotypes in a subsequent generation without Mendelian transmission of alleles.  

The ability to detect transgenerational effects in humans is mainly limited to maternal 

effects when using epidemiological data. Furthermore, currently available methodologies lack 

approaches to identify associations between maternal-fetal genotype (MFG) interactions and 

quantitative traits for arbitrary family structures. To address this issue, I present the Quantitative-

MFG (QMFG) test, a linear mixed effect model in which maternal and offspring genotypes are 

considered fixed effects and residual familial correlations are random effects. This approach 

handles pedigrees of virtually any size, common or unusual scenarios of MFG incompatibility, 

and additional covariates. Another attractive feature of the QMFG test is the ability to easily 
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extend the approach to multiple loci. With simulation studies, I demonstrate the statistical 

validity of the QMFG analysis method and show that if a standard model, which considers only 

offspring genotypes, is fit to data with an MFG effect, associations can be missed or 

misattributed. To allow other researchers to determine if there is evidence of MFG effects in 

their own data, I have developed and implemented subroutines as part of the software program 

Mendel, which is freely available. The QMFG test may provide another approach to uncovering 

sources of missing heritability in association studies. 
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Chapter 1  

Introduction to Transgenerational Effects and Quantitative Trait  

Association Methods 

 

Complex human diseases and traits are believed to result from a combination of genetic and 

environmental factors. Genome-wide association studies (GWAS) have revealed numerous loci 

associated with human diseases and complex traits, providing insights into their etiology 

(Lander, 2011, Hirschhorn, 2009). Despite these successes, previously reported findings explain 

a relatively small proportion of heritability, that is, a small fraction of the phenotype variability 

attributed to genetic variation (Maher, 2008, Manolio et al., 2009). This “missing heritability” 

has implications when it comes to prevention, diagnosis, and treatments of diseases and their 

associated quantitative traits. Since previous GWAS focus on common variants, researchers 

postulate that the missing heritability may be due the effects of rare variants that are poorly 

detected, the combination of multiple variants of smaller effect (polygenic effects), and/or 

epigenetics. Another possibility is that transgenerational genetic effects are involved and are not 

accounted for by standard GWAS analyses. Parent of origin effects are one example of 

transgenerational effects. Because transgenerational effects involve the effects of variants present 

in previous generations, a standard GWAS which takes into account only an individual’s own 

genotype, could fail to detect significant associations. 

Another transgenerational genetic effect involves interactions between mother and 

offspring genotypes that affect the offspring’s disease risk or phenotype. These interactions, also 

called maternal-fetal genotype (MFG) interactions, have been shown to be associated with 

complex diseases, even those that do not manifest until adulthood. The term MFG 
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incompatibility sometimes used in reference to these effects comes from the idea that depending 

on the combination of maternal and offspring genotypes, a maternal response against the fetus or 

a fetal response against the mother is possible. Such incompatibilities can alter the conditions in 

which the offspring develops during pregnancy and have the potential to impact both perinatal 

(Liang et al., 2010, Li et al., 2014, Lupo et al., 2014, Procopciuc et al., 2014, Li et al., 2016) and 

adult-onset offspring traits (Stubbs et al., 1985, Hollister et al., 1996, Dahlquist et al., 1999, 

Juul-Dam et al., 2001, Cannon et al., 2002, Palmer et al., 2002, Newton et al., 2004, Insel et al., 

2005, Palmer et al., 2008, Freedman et al., 2011). In principle, there could be paternal-offspring 

gene interactions (PFG incompatibility), although there is less biological support for these 

interactions than for maternal-offspring gene interactions.  

For binary traits, Sinsheimer et al. (2003) modified Weinberg’s log-linear method 

(Weinberg et al., 1998) for estimating maternal and offspring effects in case-parent trios to detect 

maternal-fetal genotype incompatibility at a candidate locus. Childs et al. (2010, 2011) further 

developed the extended maternal-fetal genotype incompatibility (EMFG) test, which examines 

both maternal and offspring genotypes as risk factors for disease and allows for arbitrary 

pedigree structures including those with multiple generations and multiple affected individuals. 

The EMFG test jointly models maternal genotype effects, offspring genotype effects, and 

maternal-offspring genotype interactions using a retrospective likelihood that incorporates the 

pedigree structure, in which the offspring’s genotype is the outcome and the phenotype is 

considered a predictor (for a detailed discussion see, for example, Kraft & Thomas, 2000). The 

EMFG test handles multi-allelic genes, including non-codominant genes and several tightly 

linked genes, and can also incorporate potential offspring or maternal-related confounders. Many 

traits, however, are naturally continuous or can’t easily be categorized into a binary affection 
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status. In such a scenario, a test using a quantitative trait as the outcome could be useful in 

identifying risk genes.  

Kistner et al. (2004, 2005, 2006) and Wheeler and Cordell (2007) developed methods of 

detecting quantitative trait association using a retrospective likelihood for case-parent trios. If !! 

is the offspring’s quantitative trait and !! ,!! ,!! are the offspring, mother, and father genotypes, 

respectively, then the retrospective likelihood proposed by Wheeler and Cordell for a single 

pedigree is 

! !! !! ,!!,!! = !(!!|!!)!(!!|!! ,!!)
!(!!|!!∗)!(!!∗|!! ,!!)!!∗∈!!!

 

where the summation of all possible offspring genotypes based on the observed parental 

genotypes is represented by .!!∗∈!!!  Wheeler and Cordell show that the contribution of a trio to 

the likelihood may be assumed to be of the form 

exp!(!!!!! + !!!!)
exp!(!!!∗!! + !!!!∗)!!∗∈!!!

 

where !!!!  represents genotype effects, !!!!!  are nuisance parameters for non-Mendelian effects 

and population stratification. In this case, the likelihood can be calculated using conditional 

logistic regression. This approach for testing quantitative trait association can further be 

extended for multi-locus haplotypes, parent-of-origin effects, maternal genotype and mother-

child interaction effects, and gene-environment interactions (Wheeler & Cordell, 2007). The 

likelihood presented by Kistner et al. is identical with the exception of distinguishing between 

possible heterozygote offspring genotypes (1/2 and 2/1) in the summation of the denominator 

when assuming parent-of-origin effects. Thus, the number and interpretation of nuisance 

parameters modeling non-Mendelian effects and population stratification vary between these two 

methods. Although these methods that can handle quantitative outcomes using a retrospective 
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likelihood when the data consist of case-parent trios, they cannot accommodate arbitrary family 

structures.  

As an alternative to a retrospective likelihood, using a prospective approach models the 

phenotype given the offspring genotype and assumes either that the quantitative trait is normally 

distributed or the central limit theorem is applicable. One way to conduct association testing with 

quantitative traits is with a measured genotype analysis (Lange, 2002), which is a form of 

quantitative trait association analysis that uses a linear mixed effects model. In this application, 

the linear mixed effects model takes into account familial correlations through partitioning the 

variance and hence is also called variance component modeling in the genetic literature. This 

model assumes that what is not the effect of a gene or genes (possibly many) acting in Mendelian 

fashion is typically environmentally induced. Classically, genetic effects are modeled as many 

genes acting approximately equally and independently (polygenes). The additive genetic 

variance captures the effect of alleles at these genes as if they were acting independently, 

deviation from allelic independence leads to dominance genetic variation. The genetic 

correlation between two relatives’ trait values depends on the expected distribution of genes 

shared identically by descent (IBD) among them. Two genes are identical by descent if they have 

the same ancestral origin. Environmental variation is postulated to come in two forms: shared 

and independent among the pedigree members. Shared (common) environmental variation 

captures the additional correlations among family members that remain unexplained by IBD 

sharing. Adopted relatives and other unrelated individuals living in the same household help to 

distinguish these correlations from genetic correlations as do relatives living in different 

environments (see Zhou et al., 2011). Independent environmental variation is any residual 
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variation in the trait values after accounting for genetic and shared environmental variations. It is 

always included because measurement errors make the model fit imperfect.  

A measured genotype analysis models the likelihood of a trait using the multivariate 

Gaussian distribution. For a pedigree with observed trait vector y and mean vector ! the 

loglikelihood is  

! = − 12 ln ! − 12 ! − ! !!!!(! − !) 

where the covariance matrix Σ is given by 

! = 2!!!! + !!!!!! + !!!! + !!!!!. 

When the effect of the offspring’s genotype is of interest, ! = ! + !!!, where !! denotes a 

vector of risk allele counts for each offspring’s genotype. The additive, dominance, household 

and environmental genetic variances summed over all genes are denoted by !!!,!!!,!!! and !!!, 

respectively. The global kinship coefficient matrix is given by Φ and is the probability that, at an 

arbitrary autosomal locus, two genes chosen at random one from ! and!! match IBD (Lange 

2002). The matrix of the probabilities that two individuals ! and!! share both genes IBD at an 

arbitrary autosomal locus is denoted by the condensed identity coefficient !! and captures 

deviation for strict additivity of the alleles. See Table 1 for examples of these coefficients for 

various familial relationships. Derivations of these quantities can be found in Lange (2002). The 

household indicator matrix H= (hij) has entries 0 or 1 depending on whether subjects ! and!! are 

in the same household. In theory multiple household matrices could be included, for example to 

define different household membership over time, although in most cases only one is included 

(Zhou et al., 2011). Environmental contributions and measurement errors are included with the 

identity matrix I.  
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Table 1. Examples of kinship and condensed identity coefficient !! 

Relationship Φ !! 
Parent-Offspring 1/4 0 

Half Siblings 1/8 0 
Full Siblings 1/4 1/4 
First Cousins 1/16 0 

Double First Cousins 1/8 1/16  
 

With measured genotype analyses, likelihood ratio tests (LRTs) can be used to determine 

the significance of estimated parameters. LRTs are able to handle complex null and alternative 

hypotheses but the necessity to iteratively maximize the likelihood under both the null and 

alternative models for each SNP can be computationally intensive unless when only a few 

candidate genes are tested and pedigrees are small. LRTs therefore, are not practical for genome-

wide gene discovery. As an alternative, score tests can be used for inference.  

Score tests lack multiple iterations and can handle various pedigree structures and sizes. 

In the case of GWAS mapping, Zhou et al. (2015) proposed the use of score testing to quickly 

screen SNPs and identify the most significant SNPs to test using the LRT to obtain parameter 

estimates. In general, the score statistic is given by  

! ! = !" ! !(!)!!∇! !  

where ∇! !  is the gradient of the loglikelihood with the parameter vector !, !" !  is the first 

differential of the loglikelihood, and ! !  is the expected information matrix. The expected 

information matrix is block diagonal, !!!!(!) denotes the second differential with respect to the 

vector of regression coefficients and !!!!(�) denotes the second differential with respect to the 

vector of variance parameters.  

! ! = ![−!!!! ! ] 0
0 ![−!!!!! ! ]  
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Under the null model, ∇!! ! = 0 so only the elements associated with the regression 

coefficients are needed and thus, the quantities necessary for calculating the score test are 

∇!!! !!
!!!  and ![−!!!! ! ]!

!!!  for n pedigrees. Let ! = !" denote the mean vector. The 

design matrix under the alternative hypothesis can be written as a combination of the shifted 

allele count vector for pedigree ! (!!) where each entry is -1, 0, or 1 and the design matrix under 

the null (!!), i.e. !! = (!! ,!!). It follows that  

∇!!! !
!

!!!
= ! !!!!!!!(!! − !!!)!

!!!
!!!!!!!(!! − !!!)!

!!!
 

![−!!!! ! ]
!

!!!
= !

!!!!!!!!!
!

!!!
!!!!!!!!!

!

!!!

!!!!!!!!!
!

!!!
!!!!!!!!!

!

!!!

 

Since !!!!!!!(!! − !!!)!
!!! = 0 under the null model, the score test statistic for each SNP 

becomes 

! = !! ! −!! !!!!!!!!!
!

!!!

!!

!
!!

! 

where  

! = !!!!!!!!!
!

!!!
,! = !!!!!!!(!! − !!!)

!

!!!
,! = !!!!!!!!!

!

!!!
 

Zhou et al. (2015) suggest precomputing !!!!,!!!!!!, and !!!!(! − !!!) for each pedigree and 

!!!!!!!!!!
!!!  at the maximum likelihood estimates under the null hypothesis to speed up 

computation.  
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This dissertation addresses the absence of methods and available software for testing for 

transgenerational effects, specifically MFG incompatibility, on quantitative traits using arbitrary 

family structures, including a number of large families. In Chapter 2, we provide thorough 

descriptions and common examples of transgenerational effects and provide a review of existing 

statistical methods for such effects (first published as Sinsheimer and Creek (2013)). In Chapter 

3, we present the Quantitative-MFG (QMFG) test, a linear mixed effect modeling approach to 

test for offspring genotype, maternal genotype, and interaction effects jointly, marginally, and 

conditionally on quantitative traits. This prospective method can handle pedigrees of virtually 

any size, simultaneously, and easily allows for the inclusion of additional covariates (Clark et al., 

2016). We apply both LRTs and score tests for inference and demonstrate that the QMFG test 

may provide the key to uncovering sources of missing heritability in association studies. The 

flexibility of the QMFG test to handle more complex MFG interactions involving multiple loci is 

presented in Chapter 4. These chapters are written as stand-alone articles for publication and 

hence, there is some overlap when reviewing MFG interactions and past methodology. Chapter 5 

proposes possible extensions to our approach and serves as a guideline for future research.  

 

 

 

 

 

 

 

 
 



9 

References 
 

Cannon, M., Jones, P.B. & Murray, R.M. (2002) Obstetric complications and schizophrenia: 

historical and meta-analytic review. Am. J. Psychiatry, 159, 1080-92. 

Childs, E.J., Palmer, C.G., Lange, K. & Sinsheimer, J.S. (2010) Modeling maternal-offspring 

gene-gene interactions: the extended-MFG test. Genet Epidemiol, 34, 512-21. 

Childs, E.J., Sobel, E.M., Palmer, C.G. & Sinsheimer, J.S. (2011) Detection of intergenerational 

genetic effects with application to HLA-B matching as a risk factor for schizophrenia. 

Hum Hered, 72, 161-72. 

Clark, M.M., Blangero, J., Dyer, T.D., Sobel, E.M. & Sinsheimer, J.S. (2016) The Quantitative-

MFG Test: A Linear Mixed Effect Model to Detect Maternal-Offspring Gene 

Interactions. Ann Hum Genet, 80, 63-80. 

Dahlquist, G.G., Patterson, C. & Soltesz, G. (1999) Perinatal risk factors for childhood type 1 

diabetes in Europe. The EURODIAB Substudy 2 Study Group. Diabetes Care, 22, 1698-

702. 

Freedman, D., Deicken, R., Kegeles, L.S., Vinogradov, S., Bao, Y. & Brown, A.S. (2011) 

Maternal-fetal blood incompatibility and neuromorphologic anomalies in schizophrenia: 

Preliminary findings. Prog. Neuropsychopharmacol. Biol. Psychiatry, 35, 1525-9. 

Hirschhorn, J.N. (2009) Genomewide association studies--illuminating biologic pathways. N 

Engl J Med, 360, 1699-701. 

Hollister, J.M., Laing, P. & Mednick, S.A. (1996) Rhesus incompatibility as a risk factor for 

schizophrenia in male adults. Arch. Gen. Psychiatry, 53, 19-24. 



10 

Insel, B.J., Brown, A.S., Bresnahan, M.A., Schaefer, C.A. & Susser, E.S. (2005) Maternal-fetal 

blood incompatibility and the risk of schizophrenia in offspring. Schizophr. Res., 80, 331-

42. 

Juul-Dam, N., Townsend, J. & Courchesne, E. (2001) Prenatal, perinatal, and neonatal factors in 

autism, pervasive developmental disorder-not otherwise specified, and the general 

population. Pediatrics, 107, E63. 

Kistner, E.O., Infante-Rivard, C. & Weinberg, C.R. (2006) A method for using incomplete triads 

to test maternally mediated genetic effects and parent-of-origin effects in relation to a 

quantitative trait. Am J Epidemiol, 163, 255-61. 

Kistner, E.O. & Weinberg, C.R. (2004) Method for using complete and incomplete trios to 

identify genes related to a quantitative trait. Genet. Epidemiol., 27, 33-42. 

Kistner, E.O. & Weinberg, C.R. (2005) A method for identifying genes related to a quantitative 

trait, incorporating multiple siblings and missing parents. Genet. Epidemiol., 29, 155-65. 

Kraft, P. & Thomas, D.C. (2000) Bias and efficiency in family-based gene-characterization 

studies: conditional, prospective, retrospective, and joint likelihoods. Am J Hum Genet, 

66, 1119-31. 

Lander, E.S. (2011) Initial impact of the sequencing of the human genome. Nature, 470, 187-97. 

Lange, K. (2002) Mathematical and statistical methods for genetic analysis. New York: 

Springer. 

Li, M., Erickson, S.W., Hobbs, C.A., Li, J., Tang, X., Nick, T.G., Macleod, S.L., Cleves, M.A. & 

National Birth Defect Prevention Study (2014) Detecting maternal-fetal genotype 

interactions associated with conotruncal heart defects: a haplotype-based analysis with 

penalized logistic regression. Genet. Epidemiol., 38, 198-208. 



11 

Li, M., Li, J., Wei, C., Lu, Q., Tang, X., Erickson, S.W., Macleod, S.L. & Hobbs, C.A. (2016) A 

Three-Way Interaction among Maternal and Fetal Variants Contributing to Congenital 

Heart Defects. Ann Hum Genet, 80, 20-31. 

Liang, M., Wang, X., Li, J., Yang, F., Fang, Z., Wang, L., Hu, Y. & Chen, D. (2010) Association 

of combined maternal-fetal TNF-alpha gene G308A genotypes with preterm delivery: a 

gene-gene interaction study. J. Biomed. Biotechnol., 2010, 396184. 

Lupo, P.J., Mitchell, L.E., Canfield, M.A., Shaw, G.M., Olshan, A.F., Finnell, R.H., Zhu, H. & 

National Birth Defects Prevention Study (2014) Maternal-fetal metabolic gene-gene 

interactions and risk of neural tube defects. Mol. Genet. Metab., 111, 46-51. 

Maher, B. (2008) Personal genomes: The case of the missing heritability. Nature, 456, 18-21. 

Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hindorff, L.A., Hunter, D.J., Mccarthy, 

M.I., Ramos, E.M., Cardon, L.R., Chakravarti, A., Cho, J.H., Guttmacher, A.E., Kong, 

A., Kruglyak, L., Mardis, E., Rotimi, C.N., Slatkin, M., Valle, D., Whittemore, A.S., 

Boehnke, M., Clark, A.G., Eichler, E.E., Gibson, G., Haines, J.L., Mackay, T.F., 

Mccarroll, S.A. & Visscher, P.M. (2009) Finding the missing heritability of complex 

diseases. Nature, 461, 747-53. 

Newton, J.L., Harney, S.M., Wordsworth, B.P. & Brown, M.A. (2004) A review of the MHC 

genetics of rheumatoid arthritis. Genes Immun., 5, 151-7. 

Palmer, C.G., Mallery, E., Turunen, J.A., Hsieh, H.J., Peltonen, L., Lonnqvist, J., Woodward, 

J.A. & Sinsheimer, J.S. (2008) Effect of Rhesus D incompatibility on schizophrenia 

depends on offspring sex. Schizophr. Res., 104, 135-45. 



12 

Palmer, C.G., Turunen, J.A., Sinsheimer, J.S., Minassian, S., Paunio, T., Lonnqvist, J., Peltonen, 

L. & Woodward, J.A. (2002) RHD maternal-fetal genotype incompatibility increases 

schizophrenia susceptibility. Am. J. Hum. Genet., 71, 1312-9. 

Procopciuc, L.M., Caracostea, G., Zaharie, G. & Stamatian, F. (2014) Maternal/newborn VEGF-

C936T interaction and its influence on the risk, severity and prognosis of preeclampsia, 

as well as on the maternal angiogenic profile. J. Matern. Fetal Neonatal Med., 27, 1754-

60. 

Sinsheimer, J.S. & Creek, M.M. (2013) Statistical Approaches for Detecting Transgenerational 

Genetic Effects in Humans. In: Epigenetics and Complex Traits A.K. Naumova & 

C.M.T. Greenwood (eds.) Epigenetics and Complex Traits. Springer New York. 

Sinsheimer, J.S., Palmer, C.G. & Woodward, J.A. (2003) Detecting genotype combinations that 

increase risk for disease: maternal-fetal genotype incompatibility test. Genet Epidemiol, 

24, 1-13. 

Stubbs, E.G., Ritvo, E.R. & Mason-Brothers, A. (1985) Autism and shared parental HLA 

antigens. J. Am. Acad. Child Psychiatry, 24, 182-5. 

Weinberg, C.R., Wilcox, A.J. & Lie, R.T. (1998) A log-linear approach to case-parent-triad data: 

assessing effects of disease genes that act either directly or through maternal effects and 

that may be subject to parental imprinting. Am J Hum Genet, 62, 969-78. 

Wheeler, E. & Cordell, H.J. (2007) Quantitative trait association in parent offspring trios: 

Extension of case/pseudocontrol method and comparison of prospective and retrospective 

approaches. Genet. Epidemiol., 31, 813-33. 

Zhou, H., Blangero, J., Dyer, T.D., Chan, K.K., Sobel, E. & Lange, K. (2015) Fast Genome-

Wide QTL Association Mapping on Pedigree and Population Data. arXiv:1407.8253v2. 



13 

Zhou, J.J., Pelka, S., Lange, K., Palmer, C.G. & Sinsheimer, J.S. (2011) Dissecting prenatal, 

postnatal, and inherited effects: ART and design. Genet Epidemiol, 35, 437-46. 

 

 



!

 14 

 
Chapter 2 

 
!
!
!
!
!
!
!

!
!

!
!

!
!
!
!
!
!
!
!
!

!
! !

Chapter 11
Statistical Approaches for Detecting
Transgenerational Genetic Effects
in Humans

Janet S. Sinsheimer and Michelle M. Creek

Abstract Transgenerational genetic effects occur when the genes of one
generation influence the phenotype of subsequent generations without Mendelian
transmission of alleles, possibly through inherited epigenetic effects. The evidence
for transgenerational genetic effects in humans comes predominantly from genetic
epidemiology studies, which thus presents a number of statistical challenges to their
analysis and interpretation. In this chapter, we outline some of the genetic epide-
miologic study designs and statistical analysis approaches that have been used to
detect these effects and discuss their strengths and weaknesses.

11.1 Introduction

Genetic epidemiology concentrates on disease risks due to a subject’s own genes and
environment. Although we gain much etiological insight from these studies, many
genetic determinants of disease remain undiscovered. One possibility is that
transgenerational genetic effects play a role in their etiology. Transgenerational
genetic effects occur when the genes of one generation influence the phenotype of
subsequent generations without Mendelian transmission of alleles (Fig. 11.1), pos-
sibly through inherited epigenetic effects (Gluckman et al. 2007; Nadeau 2009).
Most commonly, these transgenerational genetic effects are parental genes having
an effect on their offspring’s phenotype, but more distant ancestors can have effects.
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Less commonly considered, an offspring’s genotype could also elicit a phenotype in
his/her mother. In this chapter, we explore statistical approaches for detecting
transgenerational genetic effects in humans with genetic epidemiological data.
With a few exceptions, these studies provide only indirect evidence consistent
with epigenetic phenomena and, in some of these cases, the underlying explanations
for transgenerational genetic effects will not involve modifications to DNA or
chromatin. However, we argue these studies provide an excellent starting point for
hypothesis generation and for further investigations leading to more direct tests
for epigenetic effects.

To clarify what we mean by transgenerational genetic effects, we first provide
descriptions of some common ones before going on to describe appropriate study
designs and analysis approaches to detect them. For notational convenience we
drop the “genetic” and from now on refer to them collectively as transgenerational
effects. Figure 11.1 illustrates some transgenerational effects discussed in this
chapter including maternal effects (M), paternal effects (P), parent of origin effects
(PoO), maternal–fetal genotype (MFG) incompatibility, paternal–fetal genotype
(PFG) incompatibility, and long-range transgenerational effects from the maternal
or paternal side (LRT-M or LRT-P).

Maternal genetic effects and paternal genetic effects. There are observations that
particular maternal genotypes are strongly associated with offspring phenotypes,
regardless of what alleles the offspring inherits (Kistner andWeinberg 2004;Wheeler
and Cordell 2007; Weinberg et al. 1998). Although discussed less often, paternal
genotypes are also associated with offspring phenotype. A possible mechanism for

Fig. 11.1 Schematic depiction of potentially detectable effects. Disease risk in the offspring
(denoted by the dark circle) can be due to maternal (M), paternal (P), offspring (Off), parent of
origin (PoO), long-range transgenerational (LRT-M maternal side, LRT-P paternal side),
maternal–fetal genotype incompatibility (MFG), or paternal–fetal genotype incompatibility
(PFG) effects. These effects are not mutually exclusive. The effects could be genetic or environ-
mental in origin. When genetic in origin, they have direct effects or are epigenetic or environmen-
tally mediated
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these effects includes parental genotype influences on the offspring’s environment.
This environmental effect could have no effect on the offspring’s DNA or chromatin
or it could induce epigenetic modifications. Alternatively, parental genotype could
directly affect the offspring’s epigenome or the effects could be due to maternally
derived mitochondrial DNA.

Parent of origin effects. PoO effects occur when the degree of association of an
allele with an offspring’s phenotype depends on the sex of the transmitting parent
(in Fig. 11.1, the effects of the paternally transmitted allele prevail). Although
silencing through methylation or histone modification, commonly referred to as
imprinting, is one form of PoO effects, other mechanisms can also lead to these
effects (Guilmatre and Sharp 2012). These mechanisms include mutational trans-
mission bias and oocyte RNAs or proteins.

MFG incompatibility. The effects of maternal genes on the offspring’s disease risk
may vary depending on the offspring’s genotype (Fig. 11.1). MFG incompatibilities
are gene interactions that produce adverse effects on the developing fetus. These
gene–gene interactions differ from typical ones because maternal genes interact
with offspring genes. MFG incompatibilities are involved in complex diseases,
even adult onset diseases where the effects may not evident until long after the
MFG incompatibility initiated event has occurred and subsided (Palmer et al. 2002,
2006; Sinsheimer et al. 2003). In principle, there could be paternal–offspring gene
interactions (PFG incompatibility), although there is less biological support for
these interactions than for MFG incompatibility.

Like PoO and maternal effects, the mechanisms by which MFG or PFG
incompatibilities occur could be methylation or chromatin modification but other
mechanisms are possible. The prototypical MFG incompatibility is RHD incom-
patibility, which can lead to erythroblastosis, liver damage, hypoxia, or death from
hemolytic disease of the newborn (HDN) (Guyton 1981). The biological mecha-
nism underlying RHD-induced HDN is well known (Stratchen and Reed 2003) and
we provide a simplified description. Alleles at the RHD locus are classified into two
types, D and d. The D allele codes for an antigen on the erythrocyte surface and the
d allele is a null allele. RHD-induced HDN occurs when a mother with a null allele
homozygous genotype (d/d) mounts an IgG alloimmune response to her d/D
offspring’s erythrocytes, damaging their ability to carry oxygen and releasing
bilirubin. Maternal–fetal ABO incompatibility leads to HDN by a similar mecha-
nism (Guyton 1981). RHD and ABO incompatibilities are implicated as risk factors
for complex diseases (Cannon et al. 2002; Dahlquist et al. 1999; Hollister
et al. 1996; Insel et al. 2005; Juul-Dam et al. 2001; Kraft et al. 2004; Palmer
et al. 2002; Stubbs et al. 1985). Although RHD incompatibility involves the same
locus in mother and offspring, MFG incompatibilities can also occur between one
locus in the mother and another locus in the offspring (Chen et al. 2009).

Long-range transgenerational (LRT) effects. It is difficult to distinguish epigenetic
effects from shared environment unless the transgenerational effect persists over
multiple generations but the environmental exposure does not. Environmental
exposures, even if they are short lived, can effect three generations without
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involving specific inherited epigenetic factors. If a pregnant woman is exposed to an
environmental stimulus, she, her fetus, her gametes, and her fetus’ gametes can be
directly affected without involving epigenetic modifications. Likewise environment
can affect two generations when a man is exposed because his gametes can be
affected. LRT genetic effects caused by inherited epigenetic effects are well
documented in model organisms (Nadeau 2009), and there is evidence of their role
in common diseases in humans (e.g., Benyshek et al. 2001; Klip et al. 2002).

11.2 Study Designs

In this section, we discuss epidemiological study designs used to detect
transgenerational effects. Most statistical approaches to study these effects have
been designed for bivariate, qualitative traits. Therefore, when we discuss specific
study designs and analyses, we concentrate on these bivariate traits and refer to cases
and controls.Whenmethods for continuous traits are commonplace we discuss them
in the analysis section along with the appropriate modifications to the study design.

Case-mother, control-mother (CMCM). The CMCM design allows detection of
offspring genetic effects, maternal genetic effects, and their interactions by com-
paring the genotype distributions of affected individuals and their mothers to the
genotype distributions of unaffected individuals and their mothers (Ainsworth
et al. 2011). This design is an extension of the popular case–control design of
genome-wide association and is subject to the same limitations, such as
confounding from population substructure.

Case-parent trios (CPTs). CPTs were first popularized in genetics to avoid the
problems of population substructure that originally plagued case–control genetic
analysis (e.g., Laird and Lange 2010). Although this advantage is largely eliminated
by methods that control for ancestry in case–control studies (e.g., Edwards and Gao
2012), CPTs are popular for detecting transgenerational effects associated with
disease (Cordell 2004; Cordell et al. 2004; Laird and Lange 2010). Using CPTs
expands the genetic models that can be considered over using CMCMs. For example
one can test for PoO and paternal effects. For a bi-allelic locus there are 15 possible
maternal–paternal–offspring genotype combinations. Case-mother and case-father
duos can be included alongwith the CPTs by treating the duos as trios with randomly
missing data (Sinsheimer et al. 2003; Weinberg et al. 1998). These models can be
modified to include control-mother duos or parents of unaffected offspring
(Vermeulen et al. 2009) but then population stratification comes back into play.

Nuclear families. The CPT design can be extended to include unaffected and affected
siblings of the case (Kraft et al. 2004). These extensions provide additional power and
increase the geneticmodels that can be considered butmay require additionalmodeling
assumptions or else be biased.Aswe discuss in the statistical analysis section, the study
design dictates the questions that can be posed as well as the assumptions imposed.
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General pedigree data. Intuitively, the ideal study design for detecting
transgenerational effects allows simultaneous analysis of unrelated individuals,
small pedigrees, and large pedigrees. The inclusion of large, multigenerational
pedigrees provides a way to study a variety of complex patterns and detect LRT
effects. Being able to analyze all family members is highly efficient. Breaking up
large pedigrees into subsets can introduce bias (Childs et al. 2010, 2011). Pedigrees
provide a way to model phenotype data in the absence of genotype data (see the
statistical analysis section). One disadvantage is that, depending on the research
question, using multigenerational families requires more restrictive modeling
assumptions to be computationally feasible.

11.3 Statistical Analysis Approaches for Detecting
Transgenerational Effects

We briefly outline some statistical analysis approaches. Because the approaches
depend on the available data, we group them by data type: (1) phenotype data only,
(2) phenotype and genotype data, and (3) phenotype, genotype, and epigenetic data.

11.3.1 Approaches Using Only Phenotype Data

Prior to the wide spread availability of genotype data, evidence supporting the
existence of transgenerational effects in humans came from the inference of
phenotypic inheritance patterns inconsistent with Mendelian inheritance. These
approaches generally require large pedigrees to be effective but, with marked
environmental exposures, following matrilineal or patrilineal lines provides evi-
dence of transgenerational effects (e.g., Gluckman et al. 2007).

Indirect evidence for transgenerational effects can, in principle, be obtained
from analyzing pedigrees with complex segregation analyses (e.g., Khoury
et al. 1993). These analyses use correlations among family members’ phenotypes
to infer the existence of major genes acting in a Mendelian manner, polygenes,
shared environment, and independent environment (residual effects). Generational
differences and birth order effects can be inferred. The number of effects inferred is
dependent on the variety of relationships and so, in general, large pedigrees are
needed to adequately explore transgenerational effects. The biggest difficulties with
this approach are the equivalence or near equivalence of sets of models and the
inability to prove any model to be true.

Variance component analysis (e.g., Lange 2002) and its related approach, path
analysis (e.g., Thomas 2004) have been used to separate genetic sources of pheno-
typic variation from other sources. In the absence of genetic marker data, what is
not the effect of a gene or genes (possibly many) acting in a Mendelian fashion is
typically assumed to be environmentally induced. These approaches postulate trait
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variation is partitioned. Classically, genetic effects are modeled as many genes
acting approximately equally and independently (polygenes). The additive genetic
variance captures the effect of alleles at these genes as if they were acting indepen-
dently, deviation from allelic independence leads to dominance genetic variation.
The genetic correlation between two relatives’ trait values depends on the expected
distribution of genes shared identically by descent (IBD) among them (Fig. 11.2).
Environmental variation is postulated to come in two forms: shared and indepen-
dent among the pedigree members. Shared environmental variation captures the
additional correlations among family members that remain unexplained by IBD
sharing. Adopted relatives and other unrelated individuals living in the same
household help to distinguish these correlations from genetic correlations. Indepen-
dent environmental variation is any residual variation in the trait values after
accounting for genetic and shared environmental variations. It is always included
because measurement errors make the model fit imperfect.

Although it is possible to use variance component models to test for
transgenerational effects with only phenotypes, this approach has not been pursued to
any appreciable extent. One reason is that shared environment and transgenerational
effects are often confounded, making inference of transgenerational effects difficult.
Parent of origin effects provide an exception (Gorlova et al. 2007; Zhou et al. 2011).
PoO effects lead to a difference in parent–offspring correlations depending on the
parent’s sex and thus are accommodated by partitioning the additive genetic variance
into two separate effects. When there are no shared environmental effects but there are
parent of origin effects, the variance covariance matrix for family phenotypes Y can be
written as:

VarðYÞ ¼ ðΔ$
9 þ Δ$

10Þσ
2
ma þ ðΔ$

9 þ Δ$
11Þσ

2
pa

þ ð2Δ$
12 þ Δ$

13 þ Δ$
14Þcovmpa þ Δ$

9σ
2
d þ Δ$

12covd þ Iσ2e ;
(11.1)

where σ2ma is the maternal additive genetic variance, σ2pa is the paternal additive

genetic variance, covmpa is the additive covariance of the maternal and paternal

alleles, σ2d is the dominance genetic variance, covd is the dominance covariance, I is
the identity matrix, σ2e is the independent environmental variance, and Δi is the
probability of IBD state i (Fig. 11.2).

Fig. 11.2 Detailed identity states used in the variance component analyses. Six detailed identity
states describe the IBD sharing between two non-inbred individuals i and j. Four circles in a block
represent the genes from i and j at a single locus. Individual i’s genes are on the top and j’s genes
are on the bottom. Maternally derived genes are on the left, paternally derived genes on the right.
Lines between genes represent genes that are identical by descent. The probability of observing
state k is denoted by Δk

*
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Testing for maternal genetic effects with variance component models presents a

problem, especially when attempting to dissect prenatal and postnatal effects from
maternally inherited effects. This dissection is important because if prenatal effects
are not properly modeled, heritability estimates are biased and may lead to false
inference of PoO effects (Zhou et al. 2011). In the absence of measured predictors
(e.g., genotypes), it is impossible to estimate all three effects in traditional nuclear
families because the mother providing the genetic material (genetic mother) is the
same person carrying the child (gestational mother) and the same person raising the
child (postnatal mother). Although animal experimentation provides opportunities
to dissect these effects by embryo transplantation and cross fostering (e.g., Nadeau
2009), in humans the options are limited. Adoption studies have been used to
separate out postnatal effects but prenatal and maternal inherited effects are still
confounded. Comparing the offspring of sisters to the offspring of brothers separates
maternal inheritance from prenatal and postnatal effects (Robson 1955). However,
recent advances in assisted reproductive technologies (ART) provide ways to
separate all these effects (Thapar et al. 2007; Zhou et al. 2011).

Because ART uses sperm donation, egg donation, or gestational surrogacy
depending on approach, children’s genetic parents can be different from their
prenatal or postnatal parents. By comparing phenotypes within and between these
families, it is possible to separate maternal genetic, prenatal, and postnatal effects
(Zhou et al. 2011). The key is to modify equation (11.1) by adding in a prenatal
household matrix Hpre, where offspring born to the same gestational mother are
indicated and a postnatal household matrix Hpost where members with common
environmental exposures are indicated.

VarðYÞ ¼ ðΔ$
9 þ Δ$

10Þσ
2
ma þ ðΔ$

9 þ Δ$
11Þσ

2
pa þ ð2Δ$

12 þ Δ$
13 þ Δ$

14Þcovmpa

þ Δ$
9σ

2
d þ Δ$

12covd þ Iσ2e þ Hpreσ
2
pre þ Hpostσ

2
post:

(11.2)

Phenotypes from all the parents and offspring in ART families can be used to
estimate these effects. Known risk factors are included as fixed covariates. Zhou
(Zhou et al. 2011) demonstrates this approach with nuclear families, and note that
variance component models can, in principle, use ART pedigrees of any complexity.

11.3.2 Approaches Using Phenotype and Genotype Data

When genotypes are available, the possibilities for detecting transgenerational
effects improve. Genotypes provide a causal anchor and allow dissection of genetic
effects from environmental effects. Tests of the association of parental genotypes
with offspring phenotype and interactions between parent and offspring genotypes
are possible. Direct evidence for the epigenetic mechanisms underlying these
transgenerational effects is not obtained from these studies; however, support for
persistent, shared environment can be reduced or eliminated.
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Before embarking on a discussion of the specific analysis approaches, we note
that most statistical approaches assume that the genotype is a SNP. Thus we will
also focus on a single bi-allelic locus. Readers should be aware however there are a
few methods that allow multi-allelic and multi-locus genotype data (e.g., Chen
et al. 2009; Childs et al. 2011; Hsieh et al. 2006a; Sinsheimer et al. 2003).

CMCM data can be summarized in a two factor contingency table and analyzed
as chi-square or using a Fisher exact test. Analysis of CMCM data can incorporate
covariates affecting disease susceptibility by using logistic regression. The
combinations of mother–offspring genotypes represent levels of one factor and
case–control status represents levels of a second factor. Thus these data can be used
to test models regarding maternal genotype main effects, offspring genotype main
effects, and their interactions. Under the null hypothesis of no effect of this locus on
disease susceptibility, the two factors are independent and the genotype frequencies
for cases should be the same as the genotype frequencies for controls.

The number of levels for the first factor depends on whether the maternal and
offspring SNPs are at the same locus or two distinct loci. When the maternal and
offspring loci are distinct, there are nine possible maternal–offspring combinations.
Chen et al. (2009) proposed a likelihood ratio test that allows the inclusion of
mother’s and offspring’s genotypes at both these loci and showed that including
both increases overall information and thus increases power. When considering the
same bi-allelic locus for mother and offspring, the number of maternal–offspring
genotype combinations is seven (Table 11.1). Assumptions regarding the
mechanisms by which these genotypes lead to disease or how the maternal and
offspring genotypes interact result in restrictions on the levels, further reducing the
number of independent parameters. If paternal–offspring interactions are suspected,

Table 11.1 Joint maternal–offspring genotype relative risks

Genotype Model

Mothera Offspring
Joint maternal—
offspringb

Main effects
and interactions

RHD
incompatibilityc NIMAd

2/2 2/2 δ22e S2R2
f 1 R2

2/2 1/2 δ21 S2R1 γ21 1 R1

1/2 2/2 δ12 S1R2 1 R2

1/2 1/2 δ11 S1R1 1 R1

1/2 1/1 δ10 S1 1 γ10
1/1 1/2 δ01 R1 γ01 γ01 R1

1/1 1/1 δ00 1 1 1
aThe first two columns denote genotypes of the mother and her offspring
bColumns 3 and 4 denote two different parameterizations of the most general model of
maternal–offspring genotype effects that can be used with a bi-allelic locus
cColumn 5 models RHD incompatibility
dColumn 6 models NIMA and offspring main effects
eδij is the joint effect of i maternal 2 alleles and j offspring 2 alleles
fSi is the main effect of imaternal 2 alleles Rj is the main effect of j offspring 2 alleles and γij is the
additional interaction effect
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the CMCM design can be changed to a case-father control-father (CFCF) design
and analyzed in the same manner.

Inference from CMCM studies is sensitive to population stratification. Although
this can be corrected by accounting for maternal population history, CMCM
designs are limited in the hypotheses that can be tested. One alternative is to use
case-parent trios. Several analysis approaches have been used to analyze trios
depending on the research questions under consideration.

Parent of origin effects can be detected using the transmission disequilibrium
test (TDT) (Spielman et al. 1993; Terwilliger and Ott 1992). The TDT is a form of
conditional logistic regression that uses a retrospective design where the genotype
of the offspring is the dependent variable (Sham and Curtis 1995; Sinsheimer
et al. 2000; Thomas 2004). The TDT is a test of linkage and association between
a genetic marker and a disease locus. When used with CPTs, the null hypothesis is
no linkage or no association and a heterozygous parent is equally likely to pass on
either of their alleles to their offspring. If there are linkage and association, one
allele will appear to be transmitted more often to an affected offspring than the
other. By comparing a model allowing for separate maternal and paternal
transmissions to the standard TDT where the maternal and paternal transmissions
are the same, the existence of PoO effects can be tested.

The TDT can be further modified to examine parent–offspring genotype
interactions. For example non-inherited maternal antigen (NIMA) effects, a form
of MFG incompatibility postulated to occur in rheumatoid arthritis (Harney
et al. 2003; Hsieh et al. 2006b), can be tested by comparing the proportion of
cases whose genotypes are incompatible with their mother’s genotype to the
proportion of cases whose genotypes are incompatible with their father’s genotype
(Harney et al. 2003). The assumption underlying this analysis is that NIMA is a
plausible risk factor for a complex disease, but non-inherited paternal antigens
(NIPA) are not. One major deficit of this design is that it is not possible to
simultaneously check for offspring genotype effects, and maternal genotype effects
are confounded with MFG incompatibility. The design also requires a substantial
number of fathers be genotyped to have reasonable power.

The TDT gains no information from parents with homozygous genotypes,
limiting power. Weinberg (Weinberg et al. 1998) proposed a log-linear model as
an alternative and tested for offspring genetic main effects, maternal genetic main
effects, and parent of origin effects. Sinsheimer (Sinsheimer et al. 2003) recognized
the log-linear model could be extended to allow for maternal–offspring gene
interaction at a single locus. Like the TDT, these log-linear models use cases and
their parents in a retrospective design in which the genotypes are the dependent
variables and no controls are necessary. Sinsheimer’s MFG test maximizes the
equivalent multinomial likelihood to the log-linear model in order to estimate
parameters, and thus easily accommodates maternal–offspring and
paternal–offspring dyads as incomplete trios.

The MFG (and equivalently the log-linear) test is very flexible, allowing many
inherited disease risk scenarios to be modeled (Ainsworth et al. 2011; Hsieh
et al. 2006a, b, 2007; Minassian et al. 2006). When using CPTs and a single
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bi-allelic locus, there are 15 possible offspring–maternal–paternal genotype
combinations. Under the null model of no genetic effects on the phenotype,
Mendelian transmission holds and the number of independent parameters reduces
to eight, one less than the number of maternal–paternal genotype combinations
(mating types). If one assumes the sex of the parent is irrelevant in determining the
probability of the mating types (the symmetric mating assumption), then the nine
combinations reduce to six. If random mating with regards to the locus holds, then
the mating types can be parameterized in terms of the three genotype frequencies
and leads to two independent parameters to estimate. The number of independent
parameters under the null further reduces to one if Hardy Weinberg Equilibrium is
assumed.

Maternal and offspring genotype effects are estimated as genotype relative risks
along with mating-type frequencies. Table 11.1 presents the same mother–offspring
combinations and genotype relative risks for a bi-allelic locus as can be modeled
with CMCM data. Columns 3 and 4 present two mathematically equivalent
parameterizations for the most general model of maternal-offspring effects with a
bi-allelic locus. Although column 3, the joint risk model, has seven parameters, the
maximum number of maternal–offspring parameters that can be estimated is six
because one of these joint risks is the referent with value one. Column 4 is
parameterized in terms of maternal main effects, offspring main effects, and two
MFG incompatibilities. We also present two examples of restrictions. The model in
column 5 represents RHD incompatibility without offspring or maternal main
effects. Column 6 represents NIMA effects along with offspring genotype effects
(Hsieh et al. 2007). All of these models are available for testing in the MFG option
of the Mendel Statistical Genetics Software Package (Lange et al. 2013).

The log-linear and equivalent multinomial approaches can also test for the
existence of PoO effects in the possible presence of maternal and offspring effects
(Ainsworth et al. 2011; Weinberg et al. 1998). These authors caution against over-
parameterization and discuss the problem of multiple interpretations.

Although CPTs have much to offer, many families have multiple-affected
offspring and including only one of these offspring is inefficient. In order to use
any number of affected siblings per family, Kraft et al. (2004) used a conditional
retrospective likelihood approach. This approach finds the likelihood of the
genotypes conditional on the affection status of the siblings and can estimate the
offspring, maternal (or paternal) genotype effects, and their interactions by includ-
ing these effects in the penetrance function. Families where one or both parents
have missing genotypes are included in the likelihood by summing over all possible
genotypes for the missing parents. Unaffected siblings are treated as phenotype
unknown. The genotypes of these unaffected or phenotype unknown offspring can
be included in the likelihood to help infer the possible genotypes for missing
parents without introducing any bias provided the disease is not too common
(Hsieh et al. 2006a). If the locus under study is causal, is unlinked to other causal
loci and there are no gene–environment interactions, then the penetrance functions
of the offspring are independent conditional on their own genotype and that of
their mothers. The maximum likelihood estimates of the relative risks and the
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mating-type frequencies are obtained by solving score equations of the sample log
likelihood and the standard errors of the estimates are derived through the observed
information matrix (Lange 2002). Null hypotheses are tested using likelihood ratio
test statistics.

Besides allowing more data to be used, an advantage of using nuclear families is
that prior exposure effects can be tested. In this case, the genotypes of unaffected or
phenotype unknown siblings fulfill an additional role of defining prior exposure.
Kraft et al. (2004) used nuclear families to test whether risk of schizophrenia
increased for offspring who were RHD incompatible when their older sibling was
also RHD incompatible and found support for this hypothesis.

This conditional retrospective likelihood approach can be extended for use with
large pedigrees. Like the nuclear family test, the extended MFG incompatibility
(EMFG) test examines both maternal and offspring genotypes as risk factors for
disease. The EMFG test jointly models maternal genotype effects, offspring geno-
type effects, and maternal–offspring genotype interactions using a retrospective
likelihood (see Fig. 11.3 for mathematical details). Childs et al. (2010, 2011)
developed this approach to allow any pedigree to be used including those with
multiple generations and multiple-affected individuals. To reduce the number of
nuisance parameters, the EMFG test replaces mating types with founder genotypes
and assumes random mating with respect genotypes among the founders. The
EMFG test handles multi-allelic loci, including non-codominant loci and several
tightly linked loci, and can also incorporate potential offspring-related confounders.
The EMFG test likelihood uses the classic formulation of the pedigree likelihood
(Ott 1974) and modifies it by (1) conditioning on the phenotypes and (2) using
penetrance functions that depend on both the offspring and maternal genotypes
(Fig. 11.3). Each pedigree has its own conditional likelihood and these conditional
likelihoods multiply. Unaffected family members are treated as phenotype
unknown. Although EMFG is an affected-only analysis, the genotypes of the

Fig. 11.3 The retrospective likelihood for a single, arbitrary pedigree. With multigenerational
pedigrees, the number of mating types becomes impractically large so founders’ genotypes are
used under an assumption of random mating. Founder j’s genotype frequency ¼ Prior(gj). These
frequencies are estimated along with the other parameters in the likelihood. With CPTs or two
generation nuclear families, Prior(gj)’s are replaced with mating-type frequencies MT(gr,gs). Pr
(Gi|gi) ¼ 1 if the proposed genotype for any pedigree member i, gi, is consistent with the observed
genotype Gi, and 0 otherwise. When Gi is missing, Pr(Gi|gi) ¼ 1. Pr(Dc|gc,gr) is the offspring c’s
disease probability dependent on both their and their mother’s genotype. For computational ease,
Pr(Dc|gc,gr), is calculated with Trans(gc|gr,gs), the transmission probability for offspring, mother,
and father triples (c,r,s). The denominator sums over all possible ordered (phased) genotypes for
the n family members. The likelihoods of independent pedigrees multiply. When there are only
CPTs, the denominator is constant and is not relevant to the inference. The likelihood of the study
samples is then proportional to a 15-mer multinomial

11 Statistical Approaches for Detecting Transgenerational Genetic Effects in Humans 257



!

 25 

! !
unaffected or phenotype unknown offspring are used when there are missing
parental genotypes.

The conditional likelihood used by Kraft et al. (2004) and Childs et al. (2010,
2011) has additional attractive features. Under relatively mild assumptions regard-
ing the conditional independence of environmental exposure and offspring
genotypes given parental genotypes, the effects of environmental covariates can
be incorporated into the models. Serotypes and other non-codominant markers can
be used by treating the genotypes underling these phenotypes as missing data
(Minassian et al. 2006). The conditional likelihood approach also has some
disadvantages. When the locus under study is not the causal locus but is linked to
the causal locus, the variance in the parameter estimates are underestimated, which
leads to false-positive results unless a robust variance estimator is used (Kraft
et al. 2005).

Although these single locus bi-allelic analyses provide insights, biological
inference is limited. For example, the models discussed in the previous paragraphs
assume that there are joint maternal–offspring genotype effects but no paternal
genotype effects. With the same data, we could have equally plausibly tested for
joint paternal–offspring genotype effects or main effects of maternal, paternal, and
offspring genotypes. In fact there can be multiple mathematically equivalent
parameterizations that have different biological interpretations. Although null
hypotheses may be rejected, the statistical analyses cannot provide insights into
which biological interpretation is the correct one. Thus it is important, when using
these models for gene discovery, not to take the results of any parameterization too
literally and recognize a number of alternative, equally plausible explanations may
exist (see Sinsheimer et al. 2003 and Ainsworth et al. 2011 for details).

11.3.3 Approaches Using Phenotype, Genetic,
and Epigenetic Data

Currently epigenetic data are scarce in epidemiological studies, particularly at the
genome-wide level. The most commonly available genome-wide epigenetic data
are DNA methylation profiles (Cortessis et al. 2012). Studies collecting these
methylation profiles are still small in scale, chiefly because of the expense. The
majority of studies use samples from unrelated individuals. Studies of relatives
have mainly consisted of twin studies (Bell and Spector 2012; Bocklandt
et al. 2011). The predominant use of twin studies is due to (1) the strong tradition
of using twins in heritability studies, which provides a wealth of readily available
analysis tools; (2) the expense of using full pedigree data; and (3) changes in DNA
methylation profile over the course of an individual’s lifetime making comparisons
of relatives across generations more complicated than using twins.

The data are often expressed as the fraction of a specific CpG site that is
methylated (see Laird 2010 for a review of technologies). In statistical analyses,
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this fraction, called the beta value, is sometimes treated as an outcome (the ultimate
phenotype of interest), and sometimes treated as an intermediate phenotype
associated with an outcome. When treating the beta value as an outcome, all the
existing quantitative trait analysis approaches, both for data from unrelated
individuals or related individuals, can be used including penalized regression
(Bocklandt et al. 2011). The heritability of beta values can be calculated by using
pedigrees as well as by using twins (Bjornsson et al. 2008). One potential compli-
cation with pedigree data is the strong age dependence of the beta values at many
DNA methylation sites (Bjornsson et al. 2008; Bocklandt et al. 2011); however in
analogy to age dependence for clinical outcomes age can be included as a covariate
(e.g., Watanabe et al. 1999; Kangas-Kontio et al. 2010).

A beta value can also be an intermediate phenotype (like a biomarker) of an
outcome. Again there are statistical genetic methods that can use unrelated or
related individuals and treat beta values as intermediate phenotypes in association
studies (Cortessis et al. 2012). One question following from these association
studies is: are these epigenetic changes causal or are they responses to the clinical
phenotype? Statistical approaches for inferring causality such as Mendelian ran-
domization (Thomas and Conti 2004), genetical genomics (Li et al. 2005), and
structural equation modeling (Morris et al. 2010) provide frameworks for answer-
ing this question. Using genetic loci associated with the beta values can anchor the
causal direction. These three statistical approaches are somewhat related and for
space considerations, we focus on Mendelian randomization as it has been used
most frequently for the epigenetic explorations.

In the epigenetic context, Mendelian randomization resolves the question of
directionality between beta value and an outcome by examining the effect of
introducing a genetic covariate, a proxy, into the analysis (Thomas and Conti
2004). The assumption is that this proxy is directly related to the beta value, but
it is only indirectly related to the outcome. Thus the magnitude of the true causal
effect of methylation at the CpG site on the outcome is the ratio of the magnitude of
effect of the genotype on the outcome divided by the magnitude of the effect of
genotype on the beta value.

Because other measured covariates such as age, sex, body mass index, or specific
biomarkers like lipid levels can be associated with both the beta value and outcome,
it may be hard to discern causality. For example, suppose there is an association of
age with the clinical phenotype, and there is an association of age with the beta
value at a specific CpG site. Is the age effect for the phenotype manifested through
DNA methylation? One promising approach to answering this question is two-step
Mendelian randomization (Relton and Davey Smith 2012). In this context, the
biomarkers, age, etc. constitute exposures. In the first step, a genetic proxy
associated with the exposure is used to determine the causality of the exposure
for the beta value. In the second step, a different genetic proxy, independent of the
first proxy and associated with the beta value, is used to determine the causality of
DNA methylation at the CpG site for the outcome.
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Of particular relevance to understanding transgenerational effects is that

Mendelian randomization can be applied to family data (e.g., Morris et al. 2009).
Two-step Mendelian randomization can also span generations. Relton and Davey
Smith (2012) discuss the example of maternal alcohol use during pregnancy as
the exposure, offspring methylation fraction at a particular CpG site as the interme-
diate phenotype and offspring cognition as the outcome. In this case, an appropriate
genetic proxy for alcohol consumption is the mother’s genotype at an associated
locus and an appropriate genetic proxy for the beta value is the offspring’s genotype
at another locus, unlinked and independent of the first locus.

11.4 Discussion

Epidemiological study designs and statistical genetic approaches make it possible
to detect transgenerational effects in humans. Table 11.2 summarizes the study
samples presented and the nature of transgenerational effects that can be deter-
mined using them. Determining the correct form of the transgenerational effects
using the epidemiological studies is difficult but the more genetic and epigenetic
information available, the better the chances of differentiating between the
possibilities. Researchers need to be mindful that even detailed epigenetic data
are of limited value if the study design is inadequate. The model complexity cannot
exceed what is possible given the study sample. For example, none of these
transgenerational effects can be tested if the study sample is limited to unrelated
cases and controls.

Table 11.2 Examples of study samples and research questions

Study sample

Genetic effect

Offspring Maternal Paternal

Parent
of
origin MFG

Long-range
transgenerational

Prenatal,
postnatal,
maternal
inherited

Case–control Yes No No No No No No

CMCM Yes Yes No No No No No

CFCF Yes No Yes No No No No

CPT Yes Yes Yes Yes Yes No No

Nuclear families Yes Yes Yes Yes Yes No No

Extended
Pedigrees

Yes Yes Yes Yes Yes Yes Yesa

Families using
ART

Yes Yes Yes Yes Yes Yes Yes

CMCM case-mother, control-mother study sample, CFCF case-father, control-father study sam-
ple, CPT case-parent trio study sample
aYes, if adopted offspring and offspring of sisters are included
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Researchers should remember when analyzing data under particular hypotheses

that more than one parameterization with different biological interpretations are
mathematically equivalent or nearly equivalent. They should also remember that
violation of the underlying (and sometime unstated) modeling assumptions may
lead to rejection of the null hypothesis without the alternative hypothesis actually
being true. For example, violation of the symmetric mating assumption will lead to
false inference of maternal effects when analyzing genotype data with CPTs
(Sinsheimer et al. 2003). When possible, these modeling assumptions should be
checked. Independent mechanistic data from functional studies, in vitro or using
model organisms, will be needed to move beyond these associations and resolve
these alternative explanations. Despite these caveats, epidemiological data still
provide us with strong evidence in support of the existence of transgenerational
genetic effects in humans and their roles in complex disease. Moreover they
generate hypotheses for further research into the mechanisms of these
transgenerational effects.
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SUMMARY

Maternal-offspring gene interactions, aka maternal-fetal genotype (MFG) incompatibilities, are neglected in complex
diseases and quantitative trait studies. They are implicated in birth to adult onset diseases but there are limited ways to
investigate their influence on quantitative traits. We present the quantitative-MFG (QMFG) test, a linear mixed model
where maternal and offspring genotypes are fixed effects and residual correlations between family members are random
effects. The QMFG handles families of any size, common or general scenarios of MFG incompatibility, and additional
covariates. We develop likelihood ratio tests (LRTs) and rapid score tests and show they provide correct inference. In
addition, the LRT’s alternative model provides unbiased parameter estimates. We show that testing the association of SNPs
by fitting a standard model, which only considers the offspring genotypes, has very low power or can lead to incorrect
conclusions. We also show that offspring genetic effects are missed if the MFG modeling assumptions are too restrictive.
With genome-wide association study data from the San Antonio Family Heart Study, we demonstrate that the QMFG
score test is an effective and rapid screening tool. The QMFG test therefore has important potential to identify pathways
of complex diseases for which the genetic etiology remains to be discovered.

Keywords: Maternal-fetal genotype incompatibility, gene–gene interaction, family-based association, score test, quan-
titative traits, variance components, measured genotype analysis, pedigree GWAS, intergenerational effects

Introduction

Maternal and offspring gene interaction, also termed
maternal-fetal genotype (MFG) incompatibility, occurs when
the effects of maternal genes on the offspring’s phenotype
vary depending on the offspring’s genotype. The possibility
of joint maternal and offspring effects needs to be studied,
especially when investigating genetic factors of developmen-
tal disorders and their associated quantitative traits. Previous
studies have found that MFG interactions are associated with
preterm birth, conotruncal heart defects, neural tube defects,
and preeclampsia (see as examples, Liang et al., 2010, Li et al.,
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2014, Lupo et al., 2014, Procopciuc et al., 2014). Additionally,
MFG incompatibilities have been implicated as risk factors in
complex adult onset diseases, such as schizophrenia, where the
effects are not evident until long after the MFG incompatibil-
ity initiated event has occurred and subsided (see as examples,
Stubbs et al., 1985, Hollister et al., 1996, Dahlquist et al.,
1999, Juul-Dam et al., 2001, Cannon et al., 2002, Palmer
et al., 2002, Newton et al., 2004, Insel et al., 2005, Palmer
et al., 2008, Freedman et al., 2011). To date, studies have not
looked at the role of MFG incompatibility on the quantitative
traits related to these adult onset diseases. Although there are
a number of methods for investigating MFG incompatibility
as a risk factor for disease (see Sinsheimer & Creek, 2013 for
a review of these methods), the proposed methods to investi-
gate the effects of maternal and offspring genes on quantitative
traits typically rely on retrospective likelihoods and are lim-
ited to case-parent trios (Kistner & Weinberg, 2004, Kistner
& Weinberg, 2005, Wheeler & Cordell, 2007). Moreover,
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the retrospective likelihood design is not easily generalized to
arbitrary family structures, multiple markers, or multivariate
traits (Kraft et al., 2004) and parameter interpretation can be
challenging.

One way to conduct association testing with quantitative
traits using pedigree data is in a measured genotype analy-
sis (Boerwinkle et al., 1986, Lange, 2002). This method of
testing uses a linear mixed model (LMM) in which the geno-
types are fixed effects and familial correlations are taken into
account through partitioning the variance. Hence, the LMM
is also called variance component modeling in the genetic lit-
erature. We have developed the quantitative-MFG (QMFG)
test, an extension to the LMM where the joint maternal and
offspring effects including MFG incompatibilities are fixed
effects, familial correlations are variance components, and the
outcome is a trait with residuals that are reasonably modeled
as normally distributed (Lange, 2002). This approach han-
dles pedigrees of virtually any size, both general and specific
scenarios of MFG incompatibility, multivariate traits, and co-
variates in a straightforward manner. Another advantage of
this approach is the ability to quickly test genome-wide as-
sociation study (GWAS) pedigree data for joint maternal and
offspring effects including MFG incompatibility via the use
of the score test.

Materials and Methods

The QMFG Test

Recall that, for a single pedigree, the general multivariate
normal loglikelihood for a LMM is

L = −1
2

ln |!| − 1
2

(y − ν)t!−1 (y − ν)

with observed trait vector y, mean vector ν, and covariance
matrix ! (see for example, Lange, 2002 for details regard-
ing the variance component model in classic genetic appli-
cations). We propose an extension to this model where the
maternal-offspring genotypes are fixed effects. In the QMFG
test, ν = Aβ, where A is the design matrix consisting of in-
dicator variables for the MFG combinations of interest and β

is the column vector of corresponding regression coefficients.
In our applications, ν always includes a grand mean µ so there
is one entry of β that equals µ and one column of A is all
ones. Consider the effects of a single SNP with a reference
allele and a variant allele. When modeling the joint effects of
maternal and offspring genotype effects, let βam a c denote the
difference in the offspring’s quantitative trait value from the
grand mean for a mother with am variant alleles and an off-
spring with a c variant alleles at a given SNP. Because there are
seven possible mother-offspring genotype combinations for a
biallelic locus (see Table 1), in the general MFG incompati-

Table 1 QMFG model parameterizations. GMat and GOff denote
the maternal and offspring genotypes, respectively.

General RHD NIMA and
GMat GOff QMFG model effects offspring effects

1/1 1/1 β00 β00 β00

1/1 1/2 β01 β00 β.1

1/2 1/1 β10 β00 β10

1/2 1/2 β11 β00 β.1

1/2 2/2 β12 β00 β.2

2/2 1/2 β21 β21 β.1

2/2 2/2 β22 β00 β.2

bility case for one SNP, the vector of regression coefficients is
β t = (µ, β00,β01,β10,β11,β12,β21,β22) and the additional
columns of the design matrix A are indicator variables cor-
responding to each of the seven possible MFG combinations.
Note that just as additional covariates such as age and sex can
be incorporated in the standard measured genotype analysis
(Boerwinkle et al., 1986), they can be included in the fixed
effect portion of the QMFG model as additional entries in
the β vector and additional columns of the A matrix. To
avoid nonidentifiability, one of the parameters for the MFG
effects should be made the reference state or, equivalently,
the sum of MFG parameters should be set to some constant.
In our analyses, parameter β00, denoting zero copies of the
variant allele in both mother’s and offspring’s genotypes, is
always set to zero and hence, at most six MFG parameters are
estimated along with the grand mean.

We continue to treat familial correlations as random effects
by partitioning the residual variance. Here, we define the par-
tition of the covariance matrix as ! =

∑k
i=1 σ 2

i %i , where k is
the number of variance components included in the model.
Often in genetic studies a very simple version of this ma-
trix with only two components is used, one representing the
additive genetic effects and one representing environmental
random effects. In this model, the familial correlations are
assumed to be due to small and approximately equal effects of
alleles at a number of genes each acting independently. The
additive genetic and environmental variances are denoted by
σ 2

a and σ 2
e , respectively. The design matrix %a corresponding

to σ 2
a is twice the global kinship coefficient matrix &. Each

element &i j is the probability that, at a randomly chosen au-
tosomal locus, an allele chosen at random from subject i and
an allele chosen at random from subject j match identically
by descent. When i equals j the alleles are chosen with re-
placement. The environmental contribution is multiplied by
the identity matrix I since the environment is assumed to af-
fect each subject independently. The environmental variance
σ 2

e is always included even when there are thought to be no
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environmental factors to insure that the matrix is positive
definite. Under this simple model, ! = 2σ 2

a # + σ 2
e I .

As in other LMM scenarios, likelihood ratio tests (LRTs)
can be used here to determine the significance of MFG
parameters. Asymptotically, the LRT statistic follows a
χ2 distribution with degrees of freedom equal to the dif-
ference in the number of parameters under the null and al-
ternative models. In addition to the LRT, we can use score
tests to rapidly screen markers (Chen & Abecasis, 2007). The
score statistic is given by

S (θ ) = dL (θ ) J (θ )−1∇L (θ ) ,

where ∇L(θ ) is the gradient of the loglikelihood with the pa-
rameter vector θ , dL(θ ) is the first differential of the loglike-
lihood, and J (θ ) is the expected information matrix. Zhou
et al. (2015) pre-compute and store key quantities for a fast
score test for individual SNPs. In particular, for family i
under the alternative hypothesis, the design matrix Ai can
be written as (a i , Ni ) where Ni is the design matrix under
the null. Additional covariates are included in the matrix Ni .
The array a i conveys the genotypes at the SNP of interest.
Let the residual for family i be r i = yi − Ni β̂, where β̂ are
the maximum likelihood estimates (MLEs) of the fixed effects
under the null (in which no SNPs are included in the model).
The score statistic for n families then reduces to

S = Rt

⎡

⎣Q − W t

(
n∑

i=1

N t
i !

−1
i Ni

)−1

W

⎤

⎦
−1

R,

where

Q =
n∑

i=1

a t
i !

−1
i a i , R =

n∑

i=1

a t
i !

−1
i r i , W =

n∑

i=1

N t
i !

−1
i a i .

Thus, the quantities !−1
i ,!−1

i r i , Nt
i !

−1
i , and∑n

i=1 N t
i !

−1
i Ni can be computed once under the null

model and then reused for the analysis of each SNP. This
makes the calculation of the score test statistic for each SNP
simple and rapid.

We extend this fast calculation of the score test to MFG
incompatibility by replacing a i , which previously was a vector
conveying the variant allele counts at the SNP of interest for
family i, with the matrix Xi . In its most general form, each
column of matrix Xi represents one of the possible MFG
combinations and is composed of zeros and ones, indicating
which MFG combination defines the joint mother-offspring
genotype for each offspring within the pedigree at a particular
SNP. For example, for the pedigree in Figure 1

Xi =
(

0 0 0
0 0 0

0 0 0
0 0 1

1
0

)

and for the pedigree in Figure 2

d/d

d/d

D/d

A B

Figure 1 Pedigree depiction of the Rhesus factor D (RHD)
scenario. The mother has two variant alleles (d/d). Offspring A
has two variant alleles (d/d). Offspring B has one variant allele
(D/d) and is therefore RHD incompatible with the mother.

Xi =
(

0 0 0
0 0 1

0 1 0
0 0 0

0
0

)
.

In these examples, the top row corresponds to offspring A
and the bottom row corresponds to offspring B and each col-
umn corresponds to the MFG combinations in Table 1. The
columns of Xi can be combined depending on the restric-
tions imposed on the parameters and therefore the number of
columns equals the number of parameters to be estimated. As
with the LRT, the score test statistic asymptotically follows a
χ2 distribution with degrees of freedom determined by the
difference between the number of parameters in the null and
alternative models.

There are advantages and disadvantages to both the LRT
and the fast score test. For example, dealing with complex
null and alternative hypotheses is better handled with the
LRT. However, to calculate the LRT iterative maximization
of the likelihood under both the null and alternative models is
required, which can be computationally intensive when using
large numbers of extended pedigrees and markers. We evalu-
ate the ability of both tests to make correct QMFG inferences.
Another advantage of the LRT is that in maximizing the like-
lihood we obtain parameter estimates. We also evaluate the
accuracy and precision of these estimates.
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SE+/SE+

SE+/SE-

SE-/SE-

A B

Figure 2 Pedigree depiction of the noninherited maternal
antigen (NIMA) scenario. The mother has one variant allele
encoding a shared epitope (SE+/SE−). Offspring A has two
variant alleles encoding a shared epitope (SE+/SE+). Offspring
B has no variant alleles encoding a shared epitope (SE−/SE−)
and therefore illustrates the NIMA scenario.

Examples of MFG Incompatibility

To better illustrate how the QMFG model works, we present
two well-known examples of MFG incompatibility. Although
these two examples are typically framed in terms of disease,
they could easily be imagined to be operating on associ-
ated quantitative traits. First, we consider the case where the
mother reacts to antigens created by the offspring. The pro-
totypical example is RHD incompatibility (Fig. 1), which
occurs if the mother is homozygous for the variant allele “d”
(RHD-negative) and the offspring is heterozygous (RHD-
positive). This can lead to hemolytic disease of the new-
born (Levine et al., 1941), which is associated with high
levels of bilirubin resulting from the breakdown of the fe-
tus’s red blood cells (Lee et al., 2009). In our simulation
study we estimate parameter β21, which denotes the ex-
pected change in the quantitative trait value of the offspring
when mother and offspring are RHD incompatible, and
the other six MFG parameters form the reference group,
i.e., β00 = β01 = β10 = β11 = β12 = β22 = 0 (Table 1,
column 4).

The second example we investigate is the case where the
offspring’s immune system reacts to an antigen that has its

origins in the mother’s genotype. It is inspired by rheumatoid
arthritis (RA) and HLA-DRB1, where noninherited mater-
nal antigens (NIMA) have been implicated in offspring disease
susceptibility (van der Horst-Bruinsma et al., 1998, Harney
et al., 2003, Newton et al., 2004). As an example of an as-
sociated quantitative trait, anti-CCP antibodies are important
markers for diagnosis and prognosis in RA since they are
highly specific and sensitive (Visser et al., 2002, Silveira et al.,
2007) and therefore would be an interesting quantitative trait
to investigate using the QMFG test. A pedigree depiction of
NIMA is shown in Figure 2 and is characterized by a mother
that has one variant allele encoding a shared epitope (SE-
positive) and an offspring that has none (SE-negative). There
is strong evidence that there is an effect when the offspring has
one or more variant alleles regardless of the mother’s geno-
type (Gregersen et al., 1987, Jawaheer & Gregersen, 2002)
and thus offspring effects must be included in the model.
This model allows us to show how more complex restrictions
can be handled. As shown in Table 1, column 5, the effects of
interest are the NIMA effect (β10) and the offspring genotype
effects (β.1 = β01 = β11 = β21 and β.2 = β12 = β22).

Mendel Software

We implement the QMFG test by modifying the statistical
genetics software package Mendel (Lange et al., 2013). When
using SNPs, one allele is considered the reference allele and
the other is the derived, variant allele. In order to implement
the measured genotype analysis option for MFG incompat-
ibility, the Mendel code was updated to extract the variant
allele counts for mother and offspring from the genotypes
included in the pedigree files. The reference allele is by de-
fault the more frequent allele but this can be changed if the
user specifies in the Mendel control file. Once variant allele
counts are determined, the LRT option is run by internally
including a new covariate for each offspring that indicates
which of the seven possible maternal-fetal gene–gene combi-
nations describes the offspring’s and his mother’s genotypes.
This enables MFG incompatibility parameters to be estimated
and the likelihood to be calculated within the variance com-
ponent analysis option in Mendel. The user can place restric-
tions on parameter estimates thus allowing for specific forms
of MFG incompatibility such as offspring antigen–maternal
antibody (referred in this document by the prototypical ex-
ample RHD incompatibility) or maternal antigen–offspring
antibody (referred in this document by the prototypical ex-
ample NIMA). To program the QMFG score test, we used
much of the machinery in the existing ped-GWAS option
in Mendel that implements an LMM-based fast score test
for GWAS on pedigree data with quantitative traits (Zhou
et al., 2015). We forced the existing algorithm to include
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in its model the seven possible MFG combinations and any
user-specified restrictions on these combinations.

Simulation of Pedigrees

To evaluate the type I error or power of the QMFG tests
and, for the LRT implementation, parameter estimation, we
simulate data under ten specific scenarios (A-J) using the
parameters shown in Table 2. Simulation A data are under
the null of no genetic effects. Simulations B, E, and H in-
volve conditions consistent with the effects of RHD incom-
patibility. Simulations C, D, F, and I are consistent with the
effects of NIMA with and without the additional effects of
offspring alleles and maternal effects. Simulation G is another
possible scenario where each variant allele in the mother or
offspring has the same effect on the phenotype and the ef-
fects are additive and independent; it is a special case of a
scenario where there are both maternal and offspring main
effects but no interaction. We use Simulation G when we
want to evaluate the properties of fitting the general model.
Simulation J involves offspring effects only and is used to in-
vestigate model misspecification. For power analyses, we vary
selected parameters of particular interest in these simulation
scenarios. The simulation design consists of 2000 repetitions
of 1000 three-generational pedigrees (except when studying
the effect of family structure or sample size), a biallelic locus,
and a quantitative trait. Every three-generational pedigree is
comprised of a nuclear family with two offspring, each of
which have a partner and child of their own, and therefore
the extended family contains a total of four founders and four
offspring. Unless otherwise specified, the variant allele fre-
quency is 0.40. Genotypes are simulated using Mendel’s gene
dropping option. Additional effects include a grand mean (in-
tercept) µ = 40 and variance components σ 2

a = 1 and σ 2
e = 5

(residual heritability h2 = 0.167) unless otherwise specified.
A univariate quantitative trait is simulated for all offspring by
modifying the trait simulation option of Mendel (Lange et al.,
2013).

Assessing the Statistical Properties of the Tests

We use a variety of full and reduced models (Table 3, Models
1–9) to analyze the simulated data, the exact choice depending
on our alternative and null hypotheses. All models fit to the
data estimate a grand mean (µ) and both variance components
(σ 2

a and σ 2
e ). To quantify the degree of bias in type I error,

genomic control values (λ) are reported (Devlin & Roeder,
1999) and 95% confidence bounds are included on Q–Q
plots. Confidence bounds are based on the standard errors of
the order statistics of the comparison distribution (Fox, 2008).

Power is defined as the rejection rate, which is the propor-
tion of simulations in which the statistical test rejects the null

model in favor of the alternative. If not otherwise specified,
we used a per test significance level of 0.001 when determin-
ing power. Standard errors of power estimates are calculated

using SE =
√

p (1−p )
N where p is the proportion of rejected

tests and N is the number of repetitions. The proportion of
variation explained is calculated as the ratio of phenotypic
variation due to the effects of interest and the total pheno-
typic variation, and is based on the true parameter values and
allele frequencies with which the data are simulated.

The San Antonio Family Heart Study

To show the feasibility of using this approach on a real
pedigree-based GWAS dataset, we use data from the San
Antonio Family Heart Study (SAFHS). These data have de-
scribed elsewhere (Mitchell et al., 1996) but we briefly de-
scribe the subset of the data we use. The complete study
data consist of 3637 subjects in Mexican American families
of various sizes. High-density lipoprotein (HDL) levels were
measured at up to three time points. For the first time point,
1397 individuals were phenotyped (Table S1). Of the sub-
jects that were phenotyped, 1043 also have genotype data.
To reduce the computational time used to impute missing
genotypes for irrelevant members of the pedigree, we first
trim the data to include only subjects with a quantitative trait
measurement and their connecting relatives (Lange & Sin-
sheimer, 2004). Because the QMFG test is an offspring-only
analysis, we are interested in the subset of 855 offspring in
the data set that have both phenotype and genotype data. If
an offspring’s mother is completely ungenotyped before im-
putation, they were not used. Our analysis therefore involves
the 419 offspring from 43 families with phenotype, geno-
type, and maternal genotype information. In this subset of
data, the largest family has 176 members and five generations
while the smallest family has eight members and three gener-
ations. Next, we use Mendel’s imputation option to fill in all
missing genotypes for subjects who have some existing SNP
data (Ayers & Lange, 2008). Standard imputation programs,
which do not take pedigree data into account, inevitably pro-
duce impossible maternal-offspring genotype combinations.
We remove SNPs that have a maternal and offspring genotype
combination of either 2/2 and 1/1, respectively, or 1/1 and
2/2, respectively. Additionally, we filter out any SNPs that
have a minor allele count less than 10.

Results

RHD Incompatibility

We first compare type I error rates of the LRT and
score test for a simple example of maternal-fetal gene
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Table 2 Examples of QMFG data simulation scenarios.

Number of Simulation parameters
Simulation MFG parameters
scenario Constraints simulated β00 β01 β10 β11 β12 β21 β22

A No genetic
effects

βi j = 0 for all i = 0, 1, 2
and j = 0, 1, 2

0 0 0 0 0 0 0 0

B RHD effect βi j = 0 for all i, j unless
i = 2 & j = 1

1 0 0 0 0 0 0.55
∗

0

C NIMA &
offspring
effects

β00 = 0 β01 = β11 = β21

β12 = β22

3 0 0.18 0.60
∗

0.18 0.36 0.18 0.36

D NIMA,
offspring, &
maternal
effects

β00 = 0 6 0 0.18 0.60 0.36 0.54 0.54 0.72

E RHD effect βi j = 0 for all i, j unless
i = 2 & j = 1

1 0 0 0 0 0 1.75 0

F NIMA &
offspring
effects

β00 = 0 β01 = β11 = β21

β12 = β22

3 0 0.60 1.90 0.60 1.20 0.60 1.20

G Count model β00 = 0 6 0 0.17 0.17 0.34 0.51 0.51 0.68
H RHD effect βi j = 0 for all i, j unless

i = 2 & j = 1
1 0 0 0 0 0 0.70 0

I NIMA effect βi j = 0 for all i, j unless
i = 1 & j = 0

1 0 0 0.70
∗

0 0 0 0

J Offspring effects β00 = β10 = 0
β01 = β11 = β21

β12 = β22

2 0 0.27 0 0.27 0.54 0.27 0.54

∗Values varied for power analysis

Table 3 QMFG full and reduced models.

Number of MFG MFG parameters
Models parameters estimated estimated

1 No genetic effects model 0 None
2 RHD effect model 1 β21

3 NIMA and offspring effects model 3 β10, β01 = β11 = β21, β21 = β22

4 Offspring effects model 2 β01 = β11 = β21, β12 = β22

5 NIMA effect model 1 β10

6 NIMA and dominant offspring effects model 2 β10, β01 = β11 = β21 = β12 = β22

7 NIMA, offspring, and maternal effects model 5 β01, β10, β11, β12, β21, β22 = β12 + β21 − β11

8 General model 6 β01, β10, β11, β12, β21, β22

9 Additive offspring effect model 1 2β01 = 2β11 = 2β21 = β12 = β22

interactions that mimics RHD incompatibility. In this exam-
ple, heterozygous offspring whose mothers are homozygous
for the variant allele differ in their trait value from other off-
spring. Figure 3A shows the results when data are simulated
under the null hypothesis of no genetic effects (Simulation A)
and the parameter β21 is tested for significance. For the LRT,

Model 1 reflects the null hypothesis and Model 2 reflects the
alternative hypothesis, resulting in a one degree of freedom
(df) test. The QMFG score test provides almost identical re-
sults (Figure S1A). Based on the confidence bounds on the
Q-Q plot, we conclude there is little bias in the type I er-
ror for either test (genomic control value λ = 1.065). Next,
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Figure 3 Q-Q plots for LRT using Simulation A data. Genotypes and quantitative traits for each replication were simulated for 1000
pedigrees under the null of no MFG effects and were tested with the LRT for (A) RHD effects (df = 1, λ = 1.065), (B) NIMA or
offspring effects (df = 3, λ = 0.989), (C) NIMA effects in the presence of offspring genotype effects (df = 1, λ = 1.048), (D) offspring
effects in the presence of NIMA effects (df = 2, λ = 0.959), and (E) any MFG effects (df = 6, λ = 1.086).

data are simulated to provide a moderately small RHD effect
(Simulation B). In Simulation B, the only effect associated
with the offspring’s phenotype is an expected increase of 0.55
units when mother and offspring are incompatible, corre-
sponding to 0.0044 of the variance explained by the RHD
effect. Figure 4A provides boxplots of the parameter estimate
bias over 2000 replicates when the underlying MFG mech-
anism, RHD incompatibility, is suspected and consequently
the correct model, Model 2, is fit to the data. As desired,
the QMFG method produces unbiased parameter estimates.
Keeping all other simulation conditions the same, we then
varied the true RHD effect between 0 and 0.7, resulting in
the true proportion of variation explained by the MFG effect
ranging from 0 to 0.007. Figure 5A shows the LRT and score
test power curves corresponding to these variations for the
one degree of freedom test (solid lines) testing the signifi-

cance of the RHD parameter (β21). When the significance
level is 0.001, the curve illustrates that 80% power is achieved
when the proportion of variation explained by the RHD ef-
fect is approximately equal to 0.004 for both the LRT and
score test.

Noninherited Maternal Antigen (NIMA) Effects

The case of NIMA provides a more complex model under
which to investigate the properties of the QMFG test due to
the added offspring allelic effects. For this more complicated
case of MFG incompatibility, we start by comparing the LRT
and score test type I error rates. Model 1 corresponds to the
null hypothesis of no genetic effects and Model 3 corresponds
to the alternative hypothesis of offspring or NIMA effects. By
fitting Models 1 and 3 to data simulated with no genetic
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Figure 4 Parameter estimate bias. Genotypes and
quantitative traits for each replication were simulated
for 1000 pedigrees using (A) Simulation B data with
an RHD effect of 0.55 (µ = 40, β21 = 0.55,

σ 2
a = 1, σ 2

e = 5), (B) Simulation C data with a
NIMA effect of 0.60 and an additive offspring allelic
effect of 0.18 (µ = 40, β10 = 0.60, β.1 = 0.18,

β.2 = 0.36, σ 2
a = 1, σ 2

e = 5), and (c) Simulation G
data with a variant allele count effect of 0.17
(µ = 40, β01 = 0.17, β10 = 0.17, β11 = 0.34,

β12 = 0.51, β21 = 0.51, β22 = 0.68, σ 2
a = 1, σ 2

e =
5). Boxplots show bias of parameter estimates,
additive genetic variance, and environmental
variance over 2000 replications. A horizontal line is
drawn at zero bias.

effects (Simulation A), the three degrees of freedom LRT
results in the Q-Q plot in Figure 3B (λ = 0.989). Figure S1B
shows that the score test for the significance of the same three
parameters (β10,β.1,β.2) is a suitable substitute for the LRT
as it yields nearly identical P-values. As mentioned previously,
using the LRT we can test the significance of NIMA in the
presence of offspring effects or the offspring effect in the

presence of NIMA. Figure 3C is the Q-Q plot (λ = 1.048) of
the results of testing the significance of the NIMA parameter
while allowing for offspring genotype effects (Model 3 vs.
Model 4) and Figure 3D is the Q-Q plot (λ = 0.959) of
the results for offspring parameters in the presence of NIMA
effects (Model 3 vs. Model 5). Together these three Q-Q
plots (Fig. 3B–D) and confidence bounds demonstrate that
our type I error rates are correct.

In Simulation C, a quantitative trait is simulated for off-
spring with a NIMA effect of 0.6 and an additive offspring
allelic effect of 0.18 per allele, corresponding to 0.0058 of
the variance explained by the combination of MFG and off-
spring effects. Mimicking a situation where there is a priori
evidence for a particular model (in this case, NIMA and off-
spring effects), we fit Model 3 to the simulated data thus
estimating three parameters (β10,β.1,β.2) in addition to the
variance components when using the LRT. The bias of each
parameter estimate is shown in Figure 4B. As a valid method
should, the QMFG method generates bias centered at zero.
We further evaluate power over 2000 simulation replicates for
varying levels of proportion of variation explained for this
model (Model 3). The power curves in Figure 5B are the
results of jointly testing for NIMA or offspring effects (solid
lines) when the simulated NIMA effect sizes range from 0 to
0.7 and the offspring effects are β.1 = 0.18 and β.2 = 0.36.
These simulation parameters are consistent with proportion of
variation explained ranging from 0.002 to 0.008. The power
to detect NIMA or offspring effects (three degrees of freedom
test) is approximately 80% when proportion of variation ex-
plained reaches 0.0055 for both the LRT and the score test.
Figure S2 displays the power of the LRT for testing the sig-
nificance of the NIMA effect in the presence of offspring
genotype effects (one degree of freedom test) using the same
collection of data. Power is approximately 80% when the pro-
portion of variation explained by the NIMA effect reaches
0.002.

The NIMA analyses mentioned above are free of constraints
on the relationship between offspring allelic effect parameters
β.1 and β.2, that is, a genotypic model. Offspring effects may
act in an additive, recessive, or dominant manner. If there is
a priori evidence to suggest any of these models, it is possible
to impose restrictions on these parameters for the models that
are fit, therefore reducing the degrees of freedom and increas-
ing power. To demonstrate the ability of the QMFG LMM
to handle such a situation, we simulate data with a NIMA
effect varying from 0 to 0.6 and dominant offspring effects
equal to 0.1 and analyze the data estimating again the NIMA
and offspring effects, this time imposing the additional con-
straint β.1 = β.2. Figure S3 shows the power curves resulting
from testing for a NIMA or dominant offspring effect. For
the LRT, this involves using Model 1 corresponding to the
null hypothesis and Model 6 corresponding to the alternative
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Figure 5 RHD incompatibility and NIMA power curves. (A) Solid lines show power for the one degree of freedom test for
an RHD effect (β21) using the LRT and score test. Dotted lines show power when there is no specific MFG hypothesis (so
all six MFG parameters are tested) using the LRT and score test. RHD effect sizes range from 0 to 0.7. Error bars represent
approximate 95% confidence intervals. (B) Solid lines show power for the three degrees of freedom test for NIMA or
offspring effects (β10,β.1,β.2) using the LRT and score test. Dotted lines show power when there is no specific MFG
hypothesis (so all six MFG parameters are tested) using the LRT and score test. NIMA effect sizes β10 range from 0 to 0.7
and offspring effects are fixed (β.1 = 0.18, β.2 = 0.36). The power is not 0.001 and the proportion of variation explained is
not zero when β10 = 0 because β.1, β.2 are not zero. Error bars represent approximate 95% confidence intervals.

hypothesis, resulting in a two degrees of freedom test. The
power to detect these effects remains high. There is greater
than 80% power to detect NIMA or dominant offspring ef-
fects when the proportion of the variance explained by these
effects is 0.006.

Thus far, we have considered scenarios where just MFG
and offspring effects are present. It is possible that in addition
to these effects, there are maternal effects. To further demon-
strate the flexibility of the QMFG method, we simulate data
with both maternal and offspring main effects such that each
variant allele further increases the offspring’s trait by 0.18
(Simulation D). In this scenario, the proportion of variation
explained by the NIMA, offspring, and maternal effects is
0.009. For this specific scenario, we fit Model 1 correspond-
ing to the null of no genetic effects and Model 7 correspond-
ing to our alternative hypothesis. Model 7 is a five parameter
model that is mathematically equivalent to genotypic offspring
main effects, genotypic maternal main effects and a NIMA
effect. Parameterized through using the coefficients for seven
possible maternal-offspring genotype combinations, Model 7
requires an additional constraint β22 + β11 − β12 − β21 = 0
in addition to β00 = 0. In other words, one of the parame-
ters, β11,β12,β21,β22, is completely determined by the other
three and so when using a LRT, five MFG parameters are

tested (e.g. β01,β10,β11,β12,β21). Figure S4 shows that there
is no parameter estimate bias when we fit Model 7 to the data.
The power of the LRT for this five degrees of freedom test is
0.96 (SE = 0.004).

Effects of Allele Frequency and Variance
Parameters

In the previous sections, the variant allele had a frequency
of 0.4. For RHD incompatibility we consider “d” to be the
variant allele and for NIMA we consider the alleles encod-
ing a shared epitope (SE+) to be variant. To evaluate the
effect of allele frequency on our QMFG method, we com-
pare our power results for Simulations B and C while varying
the variant allele frequency from 0.1 to 0.9. Figures S5A and
S5B show the impact of changing the variant allele frequency
keeping the other simulation parameters the same for Simula-
tions B and C, respectively. The power is maximized when the
frequency of the “d” allele is 0.67 for data simulated under
RHD incompatibility. Under NIMA and offspring effects,
power is maximized when the SE+ allele frequency is 0.33.

We also investigate the performance of the QMFG test
when the values for additive genetic and environmental
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variance are changed, increasing the residual heritability. We
recreate the power curves for RHD incompatibility as well as
for NIMA and offspring effects, this time changing both the
additive genetic and environmental variance simulation values
to 3 (σ 2

a = 3, σ 2
e = 3, h2 = 0.50). Repeating the same one

degree of freedom test for an RHD effect with these new vari-
ance values, we see an increase in power (Fig. S6A) over our
previous results (Fig. 5A). Repeating the same three degrees
of freedom test for NIMA or offspring effects using data sim-
ulated with these new variance values, we also see an increase
in power (Fig. S6B) over our previous results (Fig. 5B).

Effects of Family Structure and Sample Size

To address the impact of family structure on our MFG tests,
we simulate 4000 trios, keeping the total number of off-
spring at 4000, with quantitative traits with the same simula-
tion parameters in Simulations B and C. With linear mixed
models the additive and environmental variances are con-
founded when using a single individual per pedigree so instead
of estimating σ 2

a and σ 2
e separately, we estimate their sum.

Figure S7A shows there is no parameter estimate bias when
fitting Model 2 to data simulated under RHD incompatibility
(Simulation B). Power for either the LRT or the score test to
detect an RHD effect (Model 2 vs. Model 1) is not signifi-
cantly altered. It is 0.81 (SE = 0.009) for three-generational
families and 0.79 (SE = 0.009) for trios. Parameter esti-
mates also remain unbiased (Fig. S7B) when using trios with
a quantitative trait simulated with NIMA and offspring ef-
fects (Simulation C) when fitting Model 3. Power with the
three degrees of freedom test for NIMA or offspring effects
(Model 3 vs. Model 1) is not significantly changed. It is 0.82
(SE = 0.009) for three-generational families and 0.85 (SE =
0.008) for parent-offspring trios.

It is important to also consider the effect of sample size
on the statistical properties of the tests. Here, we run sim-
ulations with a smaller sample of 400 offspring from 100
three-generational families. As shown in Figure S8, type
I error rates remain unaffected by a reduction in sample
size. To achieve equivalent power to 1000 families, we need
to increase the RHD effect to 1.75. Fitting Model 2 to
100 three-generational families simulated with quantitative
traits given Simulation E parameters, results in no bias for
grand mean, RHD, and environmental variance parameters
(Fig. 6). Additive variance is slightly underestimated. The
power to detect an RHD effect, which accounts for 0.042
of the trait variance in this scenario, is 0.78 (SE = 0.009).
To achieve equivalent power to 1000 families, we need to
increase effect sizes for NIMA and offspring effects (Model
3) to β01 = 1.90, β.1 = 0.60, β.2 = 1.20 when generating
data for 100 three-generational families (Simulation F). We
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Figure 6 Parameter estimate bias when data are simulated under
RHD incompatibility with a smaller sample size. Boxplots show
bias of parameter estimates for the grand mean, MFG effects,
additive genetic variance, and environmental variance using 100
three-generational families over 2000 replications using
parameters from Simulation E with an RHD effect of 1.75
(µ = 40, β21 = 1.75, σ 2

a = 1, σ 2
e = 5). A horizontal line is

drawn at zero bias.

again see no bias for grand mean, NIMA, offspring, and envi-
ronmental variance parameters (Fig. S9). Additive variance is
again slightly underestimated over the 2000 repetitions. The
proportion of variation explained by the NIMA and offspring
effects in this scenario is 0.056 and the power for the three
degrees of freedom test for NIMA or offspring effects is 0.82
(SE = 0.009).

Analysis When the MFG Mechanism Is
Unknown

Our QMFG analyses thus far assume that our outcome is
associated with two well-known mechanisms of MFG in-
compatibility. However, it may be that there is no a priori in-
formation about the underlying MFG model that influences
a trait’s value. Thus, we study the effects of using the general
model, which imposes no constraints on the MFG parame-
ters. First, we investigate the properties (type I error, power,
and parameter estimates) of fitting such a model. Figure 3E
shows the Q-Q plot for data simulated under the null hypoth-
esis of no genetic effects (Simulation A) where all six MFG
parameters β01,β10, β11,β12,β21,β22 are tested for signifi-
cance (λ = 1.086). This is a six degrees of freedom test where
the full model (Model 8) is compared to the null model in
which no MFG effects are estimated (Model 1) via the LRT.
All the points lie within the confidence bounds; there is no
bias in the type I error rate. The score test produces equivalent
P-values (not shown). Parameter estimate bias is examined
by simulating data given a count model (Simulation G). In
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Figure 7 Power using an offspring effect only test for data simulated under RHD incompatibility. RHD effect sizes range
from 0 to 0.7. Solid lines show the power for fitting the genotypic model, i.e., the two degrees of freedom test for offspring
effects (β.1, β.2). Dotted lines show the power for fitting the additive model, i.e., the one degree of freedom test with the added
constraint 2β.1 = β.2. Error bars represent approximate 95% confidence intervals. (A) Curves show power using the LRT and
score test at significance level α = 0.05. (B) Curves show power using the LRT and score test at significance level α = 0.001.

Simulation G, each variant allele in the mother or offspring
increases the offspring’s phenotype by 0.17 and the effects are
additive and independent. In this scenario, 0.007 of the vari-
ance is explained by the MFG effect. Figure 4C shows the
boxplots of the parameter estimate bias over 2000 replicates
when the general model is fit to the data. Again, unbiased
parameter estimates are produced.

It is also of interest to examine the degree to which param-
eter estimate precision is reduced and power is lost when the
underlying MFG model requires a less complex model, such
as RHD or NIMA, but agnostically, the general model is fit.
We consequently repeat the analysis of Simulations B and C,
this time fitting the general six-parameter model (Model 8).
As the boxplots displayed in Figures S10A and S10B illustrate,
parameter estimates remain unbiased. The effect on power
is visible in Figures 5A and 5B (dotted lines). As expected,
the power curves follow a similar pattern to those from less
complex models but are lower for both RHD incompati-
bility and NIMA examples. Under Simulation B conditions,
the power of the LRT when α = 0.001 reduces from 0.751
(SE = 0.010) to 0.467 (SE = 0.011) when the proportion
of variation explained is 0.0044. Under Simulation C con-
ditions, the power of the LRT at the same significance level
reduces from 0.823 (SE = 0.009) to 0.702 (SE = 0.010) when
the proportion of variation explained is 0.0058. These results
demonstrate that in terms of power, the QMFG test performs
well when there is no prior support for a restricted model,

thus avoiding possible model misspecification or misinterpre-
tation. However, when there is prior support for a specific
model (such as RHD incompatibility or NIMA), a restricted
model can provide a substantial increase in power.

Power to Detect MFG Incompatibility in a
Standard GWAS Analysis

Can a typical GWAS, which tests the effects of an offspring’s
genotype and ignores MFG interactions, be used as a first
screen for MFG incompatibility? We address this question
by using data simulated with RHD incompatibility effects
ranging from 0 to 0.70 and comparing the power shown in
Figure 5A with the power that results when testing for ei-
ther offspring genotypic or additive effects. Figure 7 shows
the two degrees of freedom test for an offspring genotypic
effect model and the one degree of freedom test for an
additive offspring allelic effect model with significance levels
α = 0.05 (Fig. 7A) and α = 0.001 (Fig. 7B). For the LRT,
the two degrees of freedom test involves fitting Models 1 and
4 and the one degree of freedom test involves fitting Models
1 and 9. Together these figures demonstrate that, compared
to the correct test for an RHD effect, power is drastically
reduced. In the case of a true underlying RHD effect of
0.70 (Simulation H), the parameters representing the effect of
one variant allele in the offspring genotype (β01,β11) are bi-
ased upward when fitting the offspring only genotypic model
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Figure 8 Power using an offspring effect only test for
data simulated under a NIMA effect. Curves show power
using the LRT and score test at significance level
α = 0.001. NIMA effect sizes range from 0 to 0.7. Solid
lines show the power for fitting the genotypic model, i.e.,
the two degrees of freedom test for offspring effects
(β.1, β.2). Dotted lines show the power for fitting the
additive model, i.e., the one degree of freedom test with
the added constraint 2β.1 = β.2. Error bars represent
approximate 95% confidence intervals.

(Fig. S11A). The parameter representing the effect of be-
ing homozygous for the variant allele remains unbiased. The
parameter for the offspring allelic effect is only slightly up-
wardly biased when fitting the additive model (Fig. S11B).
We repeat both the two degrees of freedom test for offspring
effects and one degree of freedom additive offspring effects
analyses in data simulated with a NIMA effect ranging from
0 to 0.7 and no offspring effect. Figure 8 shows the result-
ing power curves for α = 0.001. In this case, the power is
not as severely reduced. However, when fitting the genotypic
model to data with a true NIMA effect of 0.7 (Simulation I),
we see a downward bias of offspring genotype parameter esti-
mates (Fig. S12A). Figure S12B also shows there is parameter
estimate bias when the additive model is fit to Simulation I
data. Thus in the case of NIMA, a user may very well reject
the null hypothesis but mistakenly attribute the effect to the
offspring’s genotype.

Model Misspecification

We find that an RHD effect is unlikely to be detected if
an investigator uses a NIMA effect model. For instance, if
we take data with a true RHD effect of 0.7 (Simulation H),

power drops from 0.97 (SE = 0.004) when the correct RHD
effect model (Model 2) is fit to 0.008 (SE = 0.002) when an
incorrect NIMA effect model is fit (Model 5). Although the
parameter for a NIMA effect, β10, is estimated on average to
reduce the quantitative trait (Fig. S13A), the estimate would
not likely be found significant. Thus, in the event that the
model is misspecified, an RHD effect would not be misin-
terpreted as a NIMA effect but instead it would be missed.
Likewise, misspecifying the QMFG model as an RHD effect
model (Model 2) when data have a true underlying NIMA
effect of 0.7 (Simulation I) would result in a missed effect.
In this case, power drops from 0.999 (SE = 0.001) when the
correct NIMA model is fit (Model 5) to 0.004 (SE = 0.001)
when an incorrect RHD model is fit (Model 2). As shown
in Figure S13B, the RHD parameter (β21) is on average es-
timated to decrease the phenotype, though it would seldom
be found significant given similar sample and effect sizes and
therefore the NIMA effect would not be misinterpreted as
an RHD effect. In both cases, although the true MFG effect
would be missed, detecting false MFG effects is unlikely.

In Simulation J, a quantitative trait is simulated for offspring
with an additive offspring allelic effect of 0.27. Mimicking a
situation where the user incorrectly hypothesizes that there
is an RHD effect on the quantitative trait, we fit Model 2
to the simulated data thus estimating the RHD parameter
(β21). Under these conditions where we would have power
equal to 0.86 (SE = 0.008) if the correct model for offspring
effects (Model 4) was used, the rejection rate when testing
for an RHD effect is 0.002 (SE = 0.001). Figure 9A shows
the degree of parameter estimate bias that follows from mis-
specifying the model. Taken together, these results show that
it is possible that an offspring effect would be misinterpreted
as an RHD-like effect that reduces the trait value, but that
the null hypothesis of no RHD effect would rarely be re-
jected. If a user instead believes there may be a NIMA effect
on phenotype, he or she may fit Model 3 (NIMA and off-
spring effects model) or Model 5 (NIMA effect only model)
to the data. Because the NIMA and offspring effects model
includes parameters for offspring allelic effects, we expect that
the estimated parameters would not be biased although the
power would be reduced. These expectations are confirmed
by Figure 9B and the power for the three degrees of freedom
test for NIMA or offspring effects is 0.81 (SE = 0.009). On
the other hand, if the NIMA effect model (Model 5) is fit to
the same data, the power when testing for a NIMA effect is
0.16 (SE = 0.008). The potential to reject the null hypothesis
is higher than in the case of RHD, but a significant effect
would probably not be detected. In Figure 9C it can be seen
that if there was enough power, the offspring effect might be
misinterpreted as a NIMA effect that decreases the quantita-
tive phenotype. Finally, if the user has no a priori hypothesis
and fits the most general model (Model 8), there is zero bias
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Figure 9 Parameter estimate bias due to model misspecification. Genotypes and quantitative traits for
each replication were simulated for 1000 pedigrees using Simulation J data with an offspring allelic
effect of 0.27 (µ = 40, β.1 = 0.27, β.2 = 0.54, σ 2

a = 1, σ 2
e = 5). Boxplots show bias of parameter

estimates, additive variance, and environmental variance over 2000 replications when the model is
misspecified as (A) Model 2, the RHD effect model, (B) Model 3, the NIMA and offspring effects
model, (C) Model 5, the NIMA effect model, and (D) Model 8, the general model. A horizontal line
is drawn at zero bias.

(Fig. 9D) and the power to detect an effect is 0.69 (SE =
0.010). These results further demonstrate the advantage of us-
ing an MFG model that allows for offspring effects, which is a
generalization of the standard GWAS analysis, when screening
for MFG effects.

Effect of Missing Data on Type I Error

As is often the case with real data, missing data are an issue that
must be considered. Assuming genotypes are missing at ran-
dom, we compare type I error rates testing for various sets of
MFG parameters given 0%, 5%, 10%, and 20% missing geno-
types. Here, we use Simulation A data, randomly removing
a percentage of genotypes with each repetition, and estimate
type I error rates with a per test significance level of 0.05.
With all the models tested, missing data did not significantly
affect type I error rates (Table S2).

Screening for MFG Incompatibility Using
Pedigree-based GWAS Data

The ability to quickly screen markers is demonstrated by run-
ning the QMFG test on data from the SAFHS. Missing geno-

types for the 944,565 SNPs across the genome were imputed
using Mendel’s imputation option. We removed 14,008 SNPs
(1.48%) because there was at least one impossible maternal-
offspring genotype combination observed at each of these
SNPs in the imputation results. We omitted another 295,063
SNPs because they had minor allele counts less than 10 leav-
ing a total of 635,494 SNPs for the analysis. Because we
have no specific hypothesis regarding MFG interactions asso-
ciated with HDL measures but aim to demonstrate the fea-
sibility of using the QMFG test on pedigree-based GWAS
data, we use an alternative hypothesis of NIMA or off-
spring effects, a straightforward generalization of the stan-
dard GWAS analysis. This model takes into account offspring
effects, so in the case that there is an underlying offspring
genotypic effect but no NIMA effect, we lose power by in-
cluding the parameter for NIMA but avoid misspecifying the
model.

In these analyses we assume the minor allele of each SNP
is the variant allele and include sex and age as fixed effects.
Under the null hypothesis of no genetic effects, the estimate
of the grand mean was 48.030 (SE = 2.094). The age effect
estimate of 0.034 (SE = 0.069) was not significant. Women
had significantly higher HDL levels than males (4.222 units
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Table 4 Score test for NIMA or offspring effects on HDL from the San Antonio Family Heart Study.

Chromosome Nearby gene SNP Score test statistic P-value

13 USP12 rs1547189:G>A 35.1 1.16 × 10−7

5 – rs9293660:G>A 32.6 3.91 × 10−7

17 NGFR rs614455:T>C 31.9 5.49 × 10−7

1 FAM69A rs7521417:C>T 30.9 8.92 × 10−7

8 LOC102723729 rs11987150:G>A 30.6 1.03 × 10−6

19 ZNF888 rs10425203:G>A 30.5 1.08 × 10−6

8 GINS4 rs13265966:T>C 30.0 1.38 × 10−6

8 LOC102723729 rs11994079:G>T 29.6 1.68 × 10−6

16 – rs6564175:T>C 28.9 2.35 × 10−6

16 WWOX rs4267317:G>A 27.9 3.81 × 10−6
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Figure 10 Q-Q plot for score test of the SAFHS data. Results
from the three degrees of freedom test for NIMA or offspring
effects (β10, β.1, β.2) using the score test adjusting for age and sex
(λ = 1.012). Data from the SAFHS consist of 635,494 SNPs
from 419 offspring with HDL measurements in 43
multigenerational families.

higher, SE = 1.154). Figures 10 and 11 show the Q-Q plot
(λ = 1.012) and Manhattan plot resulting from the three de-
grees of freedom QMFG score test for the alternative hypoth-
esis of NIMA or offspring effects. The run time for Mendel
to read in and perform the score tests for the 635,494 SNPs
was 4 min and 28 s on a computer with 12 CPU cores (at 2.67
GHz). About 0.2% (1309) of sites fall outside the 95% con-
fidence limits of the Q-Q plot (Figure 10). The 10 markers
with the smallest P-values are shown in Table 4. Figure S14
shows the Q-Q plot of the same results with the top 10 hits
removed (λ = 1.012). The lowest P-value, found with SNP

Figure 11 Manhattan plot for score test of the SAFHS data.
Results from the three degrees of freedom test for NIMA or
offspring effects (β10,β.1, β.2) using the score test adjusting for
age and sex. Data from the SAFHS consists of 635,494 SNPs
from 419 offspring with HDL measurements in 43
multigenerational families. A dashed horizontal line is drawn at
the initial significance cutoff for an FDR of 10%.

rs1547189, corresponds to an FDR (Benjamini & Hochberg,
1995) of 7.5% (Table 5). The parameter estimates for this SNP
are shown in Table 6.

For rs1547189, we further refine our analysis. The two
degrees of freedom test for offspring genetic effects for SNP
rs1547189 on HDL has a P-value of 0.0007. For the one de-
gree of freedom test for additive offspring effects (2β.1 = β.2)
using the same SNP, the P-value is 0.18. We also test for
a NIMA effect in the presence of offspring effects adjusting
for sex and age using an LRT. The P-value of 2.98 × 10−6

suggests that even when accounting for offspring genotypic
effects, there may be an additional effect of NIMA. Taken
together, these results suggest that there may be both an un-
derlying recessive offspring effect and a NIMA effect on HDL
for SNP rs1547189.
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Table 5 False discovery rates for the San Antonio Family Heart
Study analysis.

Number of
FDR P-value threshold significant SNPs

5% 7.87 × 10−8 0
7.5% 1.18 × 10−7 1
10% 1.57 × 10−7 1
15% 1.89 × 10−6 8

Table 6 Parameter estimates for SNP rs1547189 from the SAFHS
data.

Effect Parameter Estimate Std Error

Grand mean µ 46.10 2.72
NIMA β10 8.51 2.15
A/G

∗
offspring β.1 −0.60 1.85

G/G offspring β.2 10.19 2.84
Female βfemale 4.32 0.55
Age βage 0.04 0.07
Additive variance σ 2

a 80.66 19.64
Environmental variance σ 2

e 63.60 14.60

∗G is the minor allele for SNP rs1547189

Discussion

Our simulation studies show that the LRT version of the
QMFG test leads to correct parameter estimates and infer-
ence and the score test version of the QMFG test provides
equivalent inference to the LRT under both specific and gen-
eral models of MFG incompatibility. The simulations under
an RHD incompatibility scenario illustrate the QMFG test
under a simple model, involving just one MFG parameter. We
show that our approach has correct type I error rates for the
LRT and score test, zero parameter estimation bias, and high
power even when the proportion of variation explained by
MFG incompatibility is small. The simulations under NIMA
provide a more complicated, but still biologically pertinent
scenario to evaluate the properties of the QMFG test, requir-
ing an MFG effect and offspring effects to be tested jointly. In
this setting, the effect on offspring with genotypes homozy-
gous for the reference allele depends on their mother’s geno-
type. With this scenario, we show the flexibility of the LRT to
test effects jointly, marginally, and conditionally. When testing
NIMA and offspring effects jointly and conditionally, again
the LRT version of the QMFG test produces appropriate type
I error rates, zero parameter estimation bias, and high power.
This model can be extended by allowing for maternal ge-
netic effects. We also demonstrate that it is possible to impose
parameter restrictions to test for other situations such as a
dominant offspring effects.

Additionally, we investigate MFG incompatibility testing
in the case that there is no a priori information about the
underlying MFG model. As expected, power is reduced when
applying this general model, which imposes no constraints
on the MFG parameters, to data simulated with a specific,
more restricted MFG incompatibility. Our results indicate
that even when the general model is fit to the data in place
of the correct, simpler model, the QMFG LRT still produces
unbiased parameter estimates. We also explore cases where the
model is misspecified such that a model with only offspring
effects is fit to data with true underlying MFG effects and find
that power is greatly reduced. This is especially true in the
case of testing for additive effects when the underlying MFG
effect is RHD incompatibility, where power drops down to
the type I error rate. This particularly low powered case with
the additive model results because we have a SNP that, when
viewed from the perspective of offspring effects, is displaying
a weak amount of overdominance in which only a fraction
of the offspring with heterozygous genotypes are expected to
have different phenotypic values from offspring with either of
the two homozygous genotypes. In the case of an underlying
NIMA effect, there is more power to detect a genotypic effect
when fitting a model with only offspring effects but in this
case, the NIMA would be misinterpreted as a weak dominant
effect on the quantitative trait. These results have implications
for GWAS, which typically use additive models or Armitage
trend tests, since, as we have shown, the genetic effects can be
detected but misinterpreted, determined with lower power,
or missed all together. The QMFG test is also subject to type I
or type II error when the model is misspecified. In particular,
when applying the NIMA effect model to data with an RHD
effect, applying the RHD effect model to data with a NIMA
effect, or applying an RHD or NIMA model to data with
offspring effects, the null hypothesis is rejected at very low
rates, indicating that in these cases the locus would be missed.
Because most effects are very likely to be offspring genotype
effects, we recommend using an MFG model that includes
offspring genetic effects when screening large numbers of
SNPs.

Unlike other methods that have been proposed to test for
an association between a quantitative trait and MFG incom-
patibility, the QMFG test can handle small and large pedigrees
simultaneously. With actual data from the SAFHS we verify
that the QMFG score test is an effective and rapid screen-
ing tool for genome wide association studies. In this data set,
family size varied greatly; the smallest family had eight mem-
bers and spanned three generations; the largest family had 176
members and spanned five generations. We chose to analyze
the data by jointly screening for NIMA and offspring geno-
typic effects using the score test. If the genetic effects only
come from the offspring as typically assumed, our analysis
would still be able to detect them, albeit with slightly lower
power than in the typical GWAS.
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Although none of the top 10 markers for NIMA or off-
spring effects have been previously shown to be associated
with HDL, the WWOX gene has been shown to be associ-
ated with HDL (Lee et al., 2008, Saez et al., 2010). Our result
with the smallest P-value is for SNP rs1547189, which is an
intron variant in the ubiquitin specific peptidase 12 (USP12)
gene, with an FDR of 7.5%. Because it is possible that this
marker’s effect could be exclusively due to offspring effects,
we use the LRT with the null hypothesis of only offspring
effects and the alternative hypothesis of NIMA and offspring
effects to test for NIMA effects in the possible presence of
offspring effects with SNP rs1547189. Combined, our results
are suggestive of a NIMA effect in the presence of offspring
effects. To determine whether this association is due to a pre-
viously undetected NIMA effect on HDL or, perhaps what
is more likely, is just a type I error, requires testing in other
cohorts. However, we have clearly demonstrated the potential
of the QMFG test to identify novel associations with quan-
titative traits that may not be detected in standard GWAS
analysis models because the standard GWAS only considers
offspring allelic effects. Additionally, our analysis demonstrates
that the LRT is a useful tool to refine results following the
rapid screening provided by the QMFG score test.

To date, no other studies have looked at the role of MFG
incompatibility on quantitative traits in families larger than
trios due to the lack of appropriate models and practical
software. The QPL method (Kistner & Weinberg, 2005) as
well as the QCPG method (Wheeler & Cordell, 2007) are
both retrospective approaches in which the offspring geno-
type is modeled as a function of the quantitative trait and
parental genotypes and are restricted to parent-offspring trios.
These methods can be easily modified to test for maternal-
offspring gene interactions (Wheeler & Cordell, 2007). How-
ever, Wheeler and Cordell’s simulation results suggest that,
compared to these two retrospective approaches to test for
quantitative trait association in trios, a prospective, linear re-
gression approach such as ours is likely to be more efficient
but more sensitive to departures from normality. From our
viewpoint, the main difficulty with retrospective approaches
such as the QPL and QCPG is in generalizing them to work
with a data set composed of dramatically different sized fam-
ilies. Another limitation is the interpretation of the estimated
effects as they are scaled by the unknown trait variance. Fur-
thermore, including covariates such as age and sex is not
straightforward. With the QMFG test we have demonstrated
the benefits of a prospective approach to rapidly test for MFG
incompatibility in families of any size. It is a highly flexible
and accurate method, which is also easy to execute with our
user-friendly software.

It should be noted that in general, LMMs used for quanti-
tative traits do not directly apply to binary phenotypes. This

limitation results from the fact that the phenotypic variance
of a dichotomous disease or trait depends on its incidence
in the population (Falconer, 1965). Thus, estimates must be
rescaled. Unlike with continuous traits, case–control studies
are additionally susceptible to ascertainment bias. As a result,
using LMMs on binary traits directly can result in loss of
power as sample size increases, likely due to the amplifica-
tion of inaccuracies caused by ascertainment bias (Yang et al.,
2014). Methods to improve power for qualitative outcomes
are based on a liability threshold principle, in which it is as-
sumed that binary traits can be represented by an underlying
normally distributed liability trait. If an individual’s liability
exceeds a threshold, then he or she has a phenotypic value of
1, otherwise 0, with the proportion of the normal distribu-
tion that exceeds the threshold being equal to trait incidence
(Dempster & Lerner, 1950, Falconer, 1965). An approach
by Hayeck et al. (2015) estimates the posterior mean liabil-
ity (PML) of each individual conditional on the case-control
status of all subjects, disease prevalence, and liability scale phe-
notypic covariance. The association between each SNP and
PML is then tested. Accordingly, if the QMFG test is applied
to dichotomous data, it is recommended that one adopt the
Hayeck et al. (2015) approach.

We have implemented the QMFG test by modifying the
statistical genetics software package Mendel. This option is
scheduled for release in an upcoming version of Mendel.
The validity of our method, together with the availability
of convenient software, make the QMFG test a powerful
tool for detecting undiscovered associations with complex
diseases.

Acknowledgments

Funding for this study was provided by an NIH Training
Grant in Genomic Analysis and Interpretation (HG002536),
two NIH research grants (GM053275 and HG006139) and
NSF research grant (DMS-1264153). We are also grate-
ful to the participants of the San Antonio Family Heart
Study.

References
Ayers, K. L. & Lange, K. (2008) Penalized estimation of haplotype

frequencies. Bioinformatics 24, 1596–1602.
Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery

rate: A practical and powerful approach to multiple testing. J R
Stat Soc Ser B 57, 289–300.

Boerwinkle, E., Chakraborty, R. & Sing, C. F. (1986) The use
of measured genotype information in the analysis of quantitative
phenotypes in man. I. Models and analytical methods. Ann Hum
Genet 50, 181–194.

78 Annals of Human Genetics (2016) 80,63–80 C⃝ 2015 John Wiley & Sons Ltd/University College London



 48 

! !

The QMFG Test

Cannon, M., Jones, P. B. & Murray, R. M. (2002) Obstetric com-
plications and schizophrenia: Historical and meta-analytic review.
Am J Psychiat 159, 1080–1092.

Chen, W. M. & Abecasis, G. R. (2007) Family-based association tests
for genomewide association scans. Am J Hum Genet 81, 913–926.

Dahlquist, G. G., Patterson, C. & Soltesz, G. (1999) Perinatal risk
factors for childhood type 1 diabetes in Europe. The EURODIAB
Substudy 2 Study Group. Diabetes Care 22, 1698–1702.

Dempster, E.R. & Lerner, I.M. (1950) Heritability of Threshold
Characters. Genetics 35, 212–236.

Devlin, B. & Roeder, K. (1999) Genomic control for association
studies. Biometrics 55, 997–1004.

Falconer, D. S. (1965) The inheritance of liability to certain diseases,
estimated from the incidence among relatives. Ann Hum Genet 29,
51–76.

Fox, J. (2008) Applied regression analysis and generalized linear models.
Los Angeles: Sage.

Freedman, D., Deicken, R., Kegeles, L. S., Vinogradov, S., Bao,
Y. & Brown, A. S. (2011) Maternal-fetal blood incompatibility
and neuromorphologic anomalies in schizophrenia: Preliminary
findings. Prog Neuropsychopharmacol Biol Psychiat 35, 1525–1529.

Gregersen, P. K., Silver, J. & Winchester, R. J. (1987) The shared
epitope hypothesis. An approach to understanding the molecular
genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum
30, 1205–12013.

Harney, S., Newton, J., Milicic, A., Brown, M. A. & Wordsworth,
B. P. (2003) Non-inherited maternal HLA alleles are associ-
ated with rheumatoid arthritis. Rheumatology (Oxford) 42, 171–
174.

Hayeck, T. J., Zaitlen, N. A., Loh, P. R., Vilhjalmsson, B., Pollack, S.,
Gusev, A., Yang, J., Chen, G. B., Goddard, M. E., Visscher, P. M.,
Patterson, N. & Price, A. L. (2015) Mixed model with correction
for case-control ascertainment increases association power. Am J
Hum Genet 96, 720–730.

Hollister, J. M., Laing, P. & Mednick, S. A. (1996) Rhesus incom-
patibility as a risk factor for schizophrenia in male adults. Arch Gen
Psychiat 53, 19–24.

Insel, B. J., Brown, A. S., Bresnahan, M. A., Schaefer, C. A. &
Susser, E. S. (2005) Maternal-fetal blood incompatibility and the
risk of schizophrenia in offspring. Schizophr Res 80, 331–342.

Jawaheer, D. & Gregersen, P. K. (2002) Rheumatoid arthritis. The
genetic components. Rheum Dis Clin North A., 28, 1–15, v.

Juul-Dam, N., Townsend, J. & Courchesne, E. (2001) Prenatal, peri-
natal, and neonatal factors in autism, pervasive developmental
disorder-not otherwise specified, and the general population. Pe-
diatrics 107, E63.

Kistner, E. O. & Weinberg, C. R. (2004) Method for using complete
and incomplete trios to identify genes related to a quantitative trait.
Genet Epidemiol 27, 33–42.

Kistner, E. O. & Weinberg, C. R. (2005) A method for identifying
genes related to a quantitative trait, incorporating multiple siblings
and missing parents. Genet Epidemiol 29, 155–165.

Kraft, P., Palmer, C. G., Woodward, A. J., Turunen, J. A., Minassian,
S., Paunio, T., Lonnqvist, J., Peltonen, L. & Sinsheimer, J. S. (2004)
RHD maternal-fetal genotype incompatibility and schizophrenia:
Extending the MFG test to include multiple siblings and birth or-
der. Eur J Hum Genet 12, 192–198.

Lange, K. (2002) Mathematical and statistical methods for genetic analysis.
New York: Springer.

Lange, K., Papp, J. C., Sinsheimer, J. S., Sripracha, R., Zhou, H.
& Sobel, E. M. (2013) Mendel: The Swiss army knife of genetic
analysis programs. Bioinformatics 29, 1568–1570.

Lange, K. & Sinsheimer, J. S. (2004) The pedigree trimming prob-
lem. Hum Hered 58, 108–111.

Lee, J. C., Weissglas-Volkov, D., Kyttälä, M., Dastani, Z., Cantor, R.
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Chapter 4 

Human Birth Weight and Reproductive Immunology: Testing for Interactions 

between Maternal and Offspring Genes. 

 

Introduction 

Complex familial disorders result from interactions between environmental and genetic factors. 

One such interaction, which can contribute to disease susceptibility and variation in quantitative 

traits, occurs when the fetal environment is modified by the interaction of proteins expressed 

from maternal and offspring genes. During pregnancy, the maternal and fetal semiallogenic cells 

come into direct contact, resulting in an intricate connection between the two individuals. 

Depending on the combination of maternal and offspring genotypes, maternal immune 

recognition of fetal cells is one possible form of maternal-fetal genotype (MFG) interaction. 

MFG interactions can alter the conditions in which the fetus develops and have the potential to 

impact offspring traits. MFG interactions have been shown to be involved in perinatal diseases 

[1-5] as well as those that do not manifest until later in life [6-15]. 

One example of an MFG interaction involves genes that are thought to regulate human 

birth weight [16-18]. Besides variation in birth weight being of intrinsic interest in human 

evolution, extremes in birth weight are strongly associated with obstetric complications and 

perinatal mortality. For instance, whereas high birth weight causes obstructed labor [19], pre-

eclampsia and low birth weight are two consequences of poor placentation in early pregnancy 

[20]. Trophoblast invasion and spiral artery transformation are important processes that affect the 

maternal blood supply to the placenta and therefore impact fetal growth. Uterine NK (uNK) 

cells, a specific type of lymphocyte population produced by the maternal immune system, 
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accumulate around the invasive trophoblast cells. Human maternal uNK receptors, which are 

encoded by the killer immunoglobulin-like receptor (KIR) gene family, can bind to HLA 

molecules expressed by fetal trophoblasts thus forming an interaction between maternal and fetal 

cells [21]. This interaction between uNK KIR and trophoblast HLA can influence the balance 

between restricted and amplified fetal placental cell invasion, transformation of spiral arteries, 

and, in turn, fetal development.  

Trophoblast cells express three HLA class I molecules: two non-classical (HLA-G and 

HLA-E) and one classical (HLA-C) [22]. Of these three, only HLA-C is polymorphic. Although 

there are 2,902 known HLA-C alleles, they can be placed into two groups, C1 and C2, when 

considering their effect on birth weight [23]. Allotypic recognition of C1 or C2 epitopes varies 

by KIR gene. It is important to note that beyond the influence of the offspring HLA-C genotype, 

the maternal HLA-C genotype may also play an important role in placental development. It is 

hypothesized that, during uNK cell development, the maternal KIR interacts with her own HLA-

C molecules, thus “educating” or “licensing” her uNK cells and changing the way they interact 

with her offspring’s HLA-C molecules during placentation [17,18,24,25]. This education 

hypothesis is supported by evidence that maternal MHC (major histocompatibility complex) 

class I antigens educate the uNK cells in murine models [26]. 

Fifteen KIR genes have been identified, mapping to chromosome 19q13.4 within the 1 

Mb leukocyte receptor complex (LRC) [27]. As described in Marsh et al. [27], KIR genes are 

denoted by the number of extracellular immunoglobulin domains (2D or 3D) and the length of 

the cytoplasmic tail (L for long and S for short). There are two basic KIR haplotypes (‘A’ and 

‘B’) that consist of a variable number of genes encoding activating and inhibitory receptors. ‘A’ 

haplotypes have a smaller number of genes that, with one exception, encode for inhibitory KIRs 



!52 

whereas the ‘B’ haplotypes have additional KIR genes, most of which are activating [27]. Unique 

to the telomeric region of haplotype ‘B’ is KIR2DS1, which encodes a KIR that binds to HLA-

C2 allotypes thus acting as an activating KIR for HLA-C [28].  

Combinations of maternal and fetal KIR and HLA-C variants are associated with both 

birth weight extremes. Models involving KIR genes in both the telomeric and centromeric 

regions together with HLA-C have been found to be essential in explaining associations with 

pregnancy disorders including pre-eclampsia, fetal growth restriction, and recurrent miscarriage 

[17,29,30]. However Hiby et al. [16] found that a parsimonious model, which models the 

presence or absence of KIR2DS1 in the maternal KIR telomeric region, was sufficient for 

modeling the interaction of KIR and HLA-C as a predictor of birth weight in normal pregnancies 

using subjects from the United Kingdom and Norway. Because effectively all Europeans with 

the KIR telomeric ‘B’ haplotype have a copy of the KIR2DS1 gene, in this article treating the 

maternal KIR telomeric region as though it were a single gene with two alleles is comparable to 

modeling the presence or absence of KIR2DS1. Thus, we limit our modeling to two KIR 

telomeric haplotypes (which we refer to as KIR-tA, KIR-tB) in the mother, two maternal HLA-C 

allele groups (which we refer to as HLA-C1, HLA-C2), and the same two offspring HLA-C 

groups when considering normal variation in birth weight.  

Until recently, association testing for MFG interactions with quantitative traits was 

limited to retrospective likelihood designs [31-33] as direct extensions of association testing for 

MFG interactions with qualitative traits [34,35]. In addition to potential difficulties in parameter 

interpretation, such approaches have typically been limited to case-parent trios and cannot easily 

account for the main effects of other covariates [36,37]. To address these modeling limitations, 

the Quantitative-MFG (QMFG) test was developed [37]. This linear mixed effects modeling 
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approach can test for various scenarios of joint maternal and offspring effects quickly and 

accurately and can handle pedigrees of any size. The QMFG test was originally developed to 

address interactions that occur at a single locus, but we extend the model to multiple loci in this 

article. Of course there are practical issues for the increased number of possible effects; with 

more than two loci with two alleles each, the sample sizes needed for accurate inference become 

large. Alternatively, constraints can be placed on the models a priori to decrease the number of 

parameters estimated, which reduces the required sample size. In this article, we demonstrate 

how the QMFG test can be extended for practical use with two loci and show that its statistical 

properties remain sound. The KIR-HLA-C interaction as a predictor of birth weight serves as an 

interesting and important example where our extension to the QMFG test can provide new 

insights. We apply the QMFG test to the United Kingdom cohort [16,17,29,30] used by Hiby et 

al. [16] to extend their findings and test the hypothesis of a KIR-HLA-C MFG interaction effect 

on human birth weight.  

 

Methods 

The Quantitative-MFG Test for Multiple Loci 

For a single pedigree, the loglikelihood for the QMFG test is 

L = − 12 ln Ω − 12 y− ν !Ω!!(y− ν) 

with mean vector ν, covariance matrix Ω, and observed quantitative trait vector y. Maternal-

offspring genotypes are treated as fixed effects and are consequently included in ν = A!, where 

A is the QMFG design matrix and ! is the column vector of regression coefficients. When 

modeling the joint effects of maternal and offspring genotypes, each QMFG parameter denotes a 

change in phenotype for the maternal-offspring genotype combinations of interest compared to 
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the grand mean. Both gene main effects and interactions can be modeled with this linear mixed 

model. The first column of the design matrix A consists of all ones (to allow the estimation of the 

grand mean) and the additional columns are indicator variables corresponding to each of the 

possible MFG combinations, the number depending on the number of maternal loci and alleles, 

the number of offspring loci and alleles, and the number of loci that are common between these 

two sets. Additional non-genetic covariates and their interactions can easily be incorporated as 

desired, for example in the case of birth weight, gestational age and sex can be included.  

 As mentioned previously for the example of birth weight, the model can be represented 

by one telomeric KIR locus with two haplotypes (KIR-tA, KIR-tB) and one HLA-C locus with 

two alleles (HLA-C1, HLA-C2). We include only the effects of the maternal haplotypes for the 

KIR telomeric region whereas we include the effects of both the maternal and offspring 

genotypes at the HLA-C locus to capture the association with birth weight [16] (Table 1). The 

vector of QMFG regression coefficients for these two loci therefore consists of parameters of the 

form !!"# where ! denotes the number of maternal KIR-tB haplotypes, ! denotes the number of 

maternal HLA-C2 alleles, and ! denotes the number of offspring HLA-C2 alleles. As with the 

single-SNP version of the QMFG test, one of the parameters for the MFG effects should be made 

the reference state or, equivalently, the sum of QMFG parameters should be set to some constant 

(typically zero) to avoid non-identifiability. In our analyses, parameter !!!! is always set to zero, 

which denotes zero copies of the variant alleles (in this case, KIR-tB and HLA-C2) in the 

maternal and offspring genotypes. The general model therefore has 20 parameters to be 

estimated. As mentioned before, to make estimation practical we impose constraints on the 

QMFG parameters based on prior understanding of underlying immune response to reduce the 

number of parameters estimated and consequently reduce the degrees of freedom.  
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Familial correlations are treated as random effects by partitioning the residual variance. 

Often in genetic studies only two variance components are used to avoid over parameterization, 

one representing the additive genetic effects (σ!!) and one representing environmental random 

effects (σ!!) such that Ω = 2σ!!!+ σ!!! [38]. Each element !!" of the global kinship coefficient 

matrix ! is the probability that, at a randomly chosen autosomal locus, an allele chosen at 

random from subject ! and an allele chosen at random from subject ! match identically by 

descent. When ! equals ! the alleles are chosen with replacement. Because the environment is 

assumed to affect each subject independently, the environmental variance σ!! is multiplied by the 

identity matrix !. The environmental variance is always included even when there are thought to 

be no environmental factors to insure that the matrix Ω is positive definite. This model can be 

extended to include other variance components if desired [38].  

 

Simulation Studies 

To examine type I error, power, and parameter estimate accuracy for the QMFG test for multiple 

loci, we conduct simulation studies with 300 three-generation families, each having the structure 

shown in figure 1. Each family has five offspring for a total of 1500 phenotyped individuals. 

Haplotype frequencies for the KIR telomeric region and allele frequencies for HLA-C were 

simulated based on frequencies observed in white British populations [16]. Unless otherwise 

specified, the KIR-tB haplotype frequency is 20% and the HLA-C2 allele frequency is 30%. Each 

simulation run consists of 2000 repetitions in which birth weight is simulated with a grand mean 

! (3.5 kg) and a sex effect (!!"# = -0.2 kg if female). Variance components are simulated to 

allow for a high heritability of birth weight as found by Demerath and colleagues [39] (σ!! = 

0.2025 kg2 and σ!! = 0.0475 kg2; residual heritability ℎ! = 0.81). For the purpose of examining 
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the type I error of the QMFG test when using multiple loci, Scenario I data are simulated under 

the null of no genetic effects. To investigate power and parameter estimate accuracy, we simulate 

data with genetic effects inspired by the example of KIR and HLA-C. Scenario II data are 

simulated under conditions consistent with the effect observed by Hiby et al. [16], that is, there is 

a change in birth weight only when an offspring has more HLA-C2 than his or her mother and the 

mother has at least one copy of KIR-tB. Scenario III involves the same interaction effect in 

Scenario II as well as a separate effect for the maternal KIR-tB that is independent of HLA-C and 

a separate effect for more HLA-C2 in the offspring than in the mother that is independent of KIR. 

These simulation scenarios are summarized in Table 2.  

Genomic control values (!) are reported as an assessment of type I error accuracy [40]. 

The significance level used to estimate power is 0.001. Given that ! is the proportion of rejected 

tests and ! is the number of simulation repetitions, the standard errors for the power estimates 

are calculated as !" = ! !!!
! . Proportion of variation explained is estimated empirically by 

dividing the difference in phenotypic variance under the null and alternative models by the 

phenotypic variance under the null. All simulations and analyses are conducted using the 

statistical genetics software package Mendel [41]. 

 

Model Descriptions 

A variety of full and reduced models (Models 0-9) are fit to the simulated data (Table 3) 

depending on the null and alternative hypotheses to be compared. In addition to genetic effects, 

all models estimate parameters for a grand mean (!), sex effect (!!"#), and variance components 

(σ!! and σ!!). As described above, the most general QMFG model has 20 parameters of the form 

!!"# where ! denotes the maternal KIR-tB count, ! denotes the maternal HLA-C2 count, and ! 
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denotes the offspring HLA-C2 count. Because we have an a priori hypothesis about how KIR and 

HLA-C affect birth weight, our most general KIR-HLA-C model, Model 4, reduces the 20 

possible QMFG parameters to three parameters (Table 1). In this model, there is an effect for the 

maternal KIR telomeric region, modeled as a KIR-tB dominant effect, denoted by !!"# !and there 

is an effect for those offspring with more HLA-C2 than their mother, denoted by !!"#$. Also in 

this model, there is a KIR-HLA-C interaction !!"#, an additional effect when the mother has at 

least one KIR-tB allele and the offspring has more HLA-C2 alleles than his/her mother. Thus 

!!!" = !!"# = !!"#$, !!!! = !!!" = !!!! = !!!" = !!"# for!! = 1,2, and !!!" = !!!" = !!"#$ +

!!"# + !!"#!for ! = 1,2. Otherwise, !!"# = 0. As shown in Table 3, Models 1-3 & 5 include 

additional constraints on the parameters in Model 4.  

Because GWAS studies typically include only the genotypes of affected individuals 

(offspring-only), Models 6-9 are used to explore the effects of misspecification when an 

offspring-only model is incorrectly applied to data generated under an MFG interaction scenario. 

For Models 6 and 7, offspring HLA-C effects are denoted by parameters !!!/!! and !!!/!!. 

Estimating an additive offspring HLA-C effect requires the additional constraint, 2!!!/!! =

!!!/!! (Model 7). For Models 8 and 9, offspring KIR-tB effects are denoted by parameters !!"/!" 

and !!"/!". Estimating an additive offspring KIR-tB effect requires the additional constraint, 

2!!"/!" = !!"/!" (Model 9). 

 

United Kingdom Cohort  

Details of the participants from the United Kingdom cohort study [16,17,29,30] were previously 

published. The previous analysis of mother-offspring pairs from the United Kingdom and 

Norway [16] found a significant association between the maternal KIR telomeric gene KIR2DS1 
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and increased offspring birth weight, especially in the presence of more HLA-C2 in offspring 

than their mothers but did not explicitly test for an interaction between these loci or determine if 

there were additional independent effects of the loci. We use the mother-offspring pairs, KIR 

telomeric haplotypes, and HLA-C genotypes from the United Kingdom cohort (one of the two 

cohorts used by Hiby et al. [16]) in order to investigate MFG interactions using the QMFG test 

in an effort to allow comparison to their analyses and to refine the characterization of the effects. 

A detailed description of the genotyping are described elsewhere [17,30]. Both mothers and 

offspring were genotyped for HLA-C and mothers’ KIR haplotypes were determined. As 

described previously, ethical approval was obtained from the Cambridge Research Ethics 

Committee (reference nos. 01/197 and 05/Q0108/367; Cambridgeshire, U.K.). All subjects 

provided informed written consent. 

Pregnancies with pre-eclampsia or fetal growth restriction as well as normal pregnancies 

were included in this cohort. Small babies (< 5th centile) were heavily oversampled and large 

babies (≥ 90th centile) were slightly oversampled. As in Hiby et al. [16], we run our analyses only 

on the offspring that had birth weight data > 5th centile, were firstborn singletons from full-term 

births (38-42 weeks), and whose mothers were over the age of 18 and had no medical conditions 

including gestational diabetes, hypertension, renal disease, and auto-immune disease. Of the 404 

pregnancies that fit these criteria, one pregnancy was dropped due to a missing offspring HLA-C 

genotype. These birth weights were approximately normally distributed.  

 

Results 

Modeling a Two-Locus Interaction Effect 

To examine type I error for this extended QMFG test, data are simulated under the null of no 
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genetic effects (Scenario I). Based on the work of Hiby et al. [16], we examine the statistical 

properties of a model that requires that the mother have at least one copy of KIR-tB and the 

offspring have more HLA-C2 alleles than his/her mother (Model 5) to affect a difference in birth 

weight. Using the a likelihood ratio test (LRT) to compare the null model of no genetic effects 

(Model 0) to the alternative model estimating a KIR-HLA-C interaction (Model 5) results in the 

Q-Q plot in figure 2A. All the points fall between the confidence bounds, showing that there is 

no bias in the type I error for the QMFG test in this scenario (! = 1.055).  

Under Scenario II, data are simulated with KIR-HLA-C interaction effects (!!"#) ranging 

from 0.05 to 0.35 kg in increments of 0.02 kg. Fitting the same null (Model 0) and alternative 

(Model 5) models, the power to detect a KIR-HLA-C interaction effect is shown in figure 3A. 

When the significance level is 0.001, 80% power is reached when the KIR-HLA-C interaction 

effect is approximately 0.19 kg, that is, when the proportion of variation explained by the KIR-

HLA-C interaction effect is approximately 0.011. Figure 4A shows the parameter estimate bias 

over 2000 simulation replicates when Model 5 is fit to data simulated with a KIR-HLA-C 

interaction effect of 0.19 kg. The parameter estimate biases are centered at zero. Together the 

type I error, power, and estimate bias demonstrate that the QMFG test has good statistical 

properties. 

 

Modeling Two-Locus Main and Interaction Effects  

Next, we check for bias in type I error rates for our most complex two-locus model using data 

simulated under the null of no genetic effects (Scenario I). Model 4, corresponding to our 

alternative hypothesis, estimates parameters for an effect of the dominant maternal KIR-tB 

haplotype (!!"#), an effect of an offspring having more HLA-C2 (!!"#$), and an effect of their 
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interaction (!!"#). The LRT comparing Model 4 to the null model (Model 0), results in a three 

degrees of freedom test for main or interaction effects. Figure 2B together with the genomic 

control value, ! = 0.991, show there is no bias in the type I error rate. If instead Model 3 is used 

as the null model, the LRT tests for a KIR-HLA-C interaction effect (!!"#) in the presence of their 

main effects (!!"# ,!!"#$). The Q-Q plot in figure 2C has the genomic control value ! = 0.997, 

again indicating that there is no bias in the type I error rate when using the QMFG test for this 

analysis.  

We also conduct simulations under a scenario that involves a KIR-HLA-C interaction and 

main effects of a dominant-acting maternal KIR-tB haplotype and more HLA-C2 in the offspring. 

To estimate power, birth weight data are simulated given a dominant acting maternal KIR-tB 

effect (!!"#) of 0.05 kg, a more-HLA-C2 effect (!!"#$) of -0.1 kg, and a KIR-HLA-C interaction 

effect (!!"#) ranging from 0.05 to 0.35 kg (Scenario III). The power to detect either single-locus 

or interaction effects by comparing Model 4 to the null model (Model 0) is shown in figure 3B. 

The power to detect main or interaction effects is approximately 80% when the proportion of 

variation explained by the total of the three effects reaches 0.016, that is, when the effect size of 

the interaction is 0.19 kg. In this scenario, because there are effects of KIR and HLA-C even 

when there is no KIR-HLA-C interaction, the proportion of variation explained is not zero when 

the interaction effect size is zero. Note that as the interaction effect ranges from 0.05 to 0.09 kg 

(proportion of variation explained ~ 0.010), there is a small but reproducible discontinuity on the 

power curve. This is because the interaction effect size is similar in magnitude to the maternal-

offspring HLA-C effect but in the opposite direction. It is therefore difficult to distinguish Model 

4 from a model with only two effects (!!!" = !!!" for all!!, ! and !!!" = !!"#; all other QMFG 

parameters are zero, !!"! = !!"" = !!"# = !!"" = 0) for this set of values.  
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All parameter estimates for these data are unbiased as shown by the boxplots of estimate 

bias in figure 4B. On average, the grand mean parameter is slightly underestimated, but the bias 

is not significantly different from zero. The power curve in figure 3C is the result of testing for a 

KIR-HLA-C interaction effect in the presence of main effects (Model 4 vs. Model 3). As 

expected, power for this one degree of freedom test increases as the effect of the interaction 

increases. When the interaction effect is 0.25 kg (proportion of variation explained equals 0.010), 

there is approximately 80% power to detect an interaction effect accounting for main effects.  

 

Model Misspecification  

We imagine that in some cases an MFG interaction may be poorly understood, so we examine 

how power is altered when fitting a model with more parameters than needed. Consider the 

situation where the true underlying effect is a KIR-HLA-C interaction effect with no main effects 

(Scenario II) and the user fits a model with parameters for KIR and HLA-C main effects in 

addition to the interaction (Model 4). Power to detect KIR, HLA-C, or two-locus interaction 

effects by fitting Model 4 to Scenario II data is shown in figure 1S. As expected, this three 

degrees of freedom test results in reduced power compared to the more appropriate one degree of 

freedom test shown in figure 3A. When the KIR-HLA-C interaction effect is equal to 0.19 kg, 

power drops from 0.82 to 0.62 when Model 4 is used as the alternative model rather than Model 

5. The parameter estimate bias boxplots remain approximately centered at zero (fig. 2S). Thus as 

expected, when the model is misspecified to include main effects in addition to the true 

underlying interaction effect, power is decreased but parameter estimates are unbiased.  
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Effects of Using a Standard Offspring Model 

An additional question of interest is whether a standard GWAS that uses only offspring 

genotypes at a single locus would be able to find evidence for an association to either of the two 

loci that make up the MFG interaction. For simulations in which an interaction between the 

maternal KIR telomeric region and maternal-offspring HLA-C provides the only genetic effect on 

birth weight (Scenario II), we investigate whether an offspring only analysis would detect an 

association at HLA-C. When data simulated under Scenario II (!!"# = {0.05, 0.07,… , 0.35}) are 

tested using an offspring HLA-C genotype model (Model 6, Table 3), power is drastically 

reduced (fig. 5A, solid line) compared to a QMFG model that includes an interaction effect 

(Models 4 or 5, Table 3). Here, Model 6 reflects the alternative hypothesis and Model 0 reflects 

the null hypothesis. The parameter estimate bias and boxplots for Model 6 analyses are displayed 

in figure 4C corresponding to data simulated with an interaction effect size of 0.35 kg (Scenario 

II). Over the 2000 simulations, the grand mean is slightly underestimated and the variance 

components are overestimated. Figure 5B (solid line) shows the power when testing Scenario II 

generated data using an additive offspring HLA-C model (Model 7 vs. Model 0). Power is 

slightly higher than for the offspring genotypic test, likely due to the reduced degrees of 

freedom, but remains severely attenuated compared to an analysis using Model 4 or 5.  

Analogously, the offspring model might be used to test for an association of the KIR 

telomeric region with the trait. When using the data simulated under Scenario II and an offspring 

genotypic (Model 8) or additive (Model 9) model to detect an effect at the KIR locus, power is 

again drastically reduced (fig. 3SA and 3SB, respectively). When the KIR-HLA-C interaction 

effect size equals 0.19 kg (an effect large enough to yield 0.82 power when the correct model, 

Model 5, is used), the power to detect an offspring genotypic effect is ~0.001 when the 
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significance level is 0.001 and 0.0495 when the significance level is 0.05. These results are 

equivalent to the size of the test and are consistent with no genetic effect. Figure 4S shows the 

grand mean and genotypic parameters estimates are biased upwards for the genotypic model. 

Taken together, these results demonstrate that MFG multi-locus interactions would often be 

missed in standard GWAS analyses.  

 

Effect of Population Frequency on the Standard Offspring Model 

In the previous sections, KIR-tB had a frequency of 0.2 based on what has been observed in the 

white British population. It has previously been reported that in representative African 

populations, the frequency of the KIR2DS1 gene is 0.07 [42]. Knowing that haplotype 

frequencies differ between populations, we evaluate how haplotype frequency for an intricate 

interaction such as this might change power when using standard offspring-effect models. We 

simulate samples with KIR-tB frequencies equal to 0.07, 0.2, 0.6, and 1.0 and use KIR-HLA-C 

interaction effect sizes ranging from 0.05 to 0.35 kg (Scenario II). As the KIR-tB frequency 

increases, power also increases for both the offspring HLA-C genotypic and additive models (fig. 

5A and 5B, respectively). For the specific case where the KIR-HLA-C interaction effect size is 

0.25 kg (fig. 5A, triangles), the estimated power to detect a genotypic offspring HLA-C effect 

ranges from 0.0035 (SE = 0.0013) when P(KIR-tB) = 0.07 to 0.78 (SE = 0.009) when P(KIR-tB) 

= 1.0. When testing for an additive offspring HLA-C effect the power ranges from 0.0035 (SE = 

0.0013) when P(KIR-tB) = 0.07 to 0.86 (SE = 0.008) when P(KIR-tB) = 1.0 (fig. 5B, triangles). 

Thus, when using a standard offspring-only analysis, conclusions about the importance of 

variation in the HLA-C on the birth weight depend on the KIR-tB haplotype frequency in the 

mothers.  
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Effect of Population Frequency on the Single-Locus QMFG Test 

Given the strong influence of the KIR-tB frequency on the standard offspring-only analysis, we 

next consider the effect of KIR-tB frequency when the HLA-C maternal-offspring effect is 

modeled properly but the effect of the maternal KIR is ignored. In other words, we are testing the 

more-offspring-HLA-C2 effect using the single-locus QMFG test when a multi-locus QMFG test 

is appropriate. Setting KIR-tB frequencies equal to 0.07, 0.2, 0.6, and 1.0, we simulate data with 

a KIR-HLA-C interaction effect (Scenario II) and test for an effect of more offspring HLA-C2. 

Here Model 2 corresponds to our alternative hypothesis and Model 0 corresponds to the null. As 

shown in figure 6, power to detect the HLA-C effect increases greatly as the KIR-tB frequency 

increases. When the KIR-HLA-C interaction effect size is 0.13 kg (proportion of variation 

explained ~0.006), power to detect a more-offspring-HLA-C2 effect jumps from 0.0065 (SE = 

0.0018) when P(KIR-tB) = 0.07 to 0.85 (SE = 0.008) when P(KIR-tB) = 1.0 (fig. 6, triangles). 

When using a single locus MFG test that explicitly models the HLA-C effects, the ability to find 

a significant effect of HLA-C on the trait depends on the population frequency of the KIR-tB 

haplotype.  

 

Effect of Family Structure 

Although one of the benefits of the QMFG test is the ability to use large families, genotyping 

extended families is not always feasible. To investigate the impact of family structure, we 

consider the minimal design that can be used and simulate 1500 mother-offspring pairs (750 

female offspring and 750 male offspring). Note that when using mother-offspring pairs (or 

equivalently parent-offspring trios), the additive and environmental variances cannot be 

partitioned, so instead of estimating them separately, we estimate their sum (residual variance). 
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We consider how power and parameter estimates are affected when using mother-offspring pairs 

for data simulated under Scenario III. The three degrees of freedom LRT for KIR, HLA-C, or 

interaction effects (Model 4 vs Model 0) results in the power curve shown in figure 5S. Power 

decreases slightly compared to the power estimates for three-generation families (fig. 3B). For 

simulations with the KIR-HLA-C interaction effect equal to 0.19 kg, power drops from 0.793 

when using three-generation families to 0.759 when mother-offspring pairs are used. As shown 

in figure 6S, parameter estimate bias is approximately centered at zero for the 2000 repetitions.  

 

Application of the QMFG Test to UK Cohort Birth Weight Data 

Previously published association analyses for birth weight using KIR and HLA-C looked at the 

effects of maternal KIR telomeric haplotypes in subgroups of offspring based on their maternal-

fetal HLA-C genotypes [16]. These analyses did not test whether there were differences in the 

maternal KIR effect sizes between these subgroups. Using the QMFG test, we can extend these 

previous analyses by building a hierarchical model of KIR, HLA-C, and birth weight. With this 

linear model, we can directly determine if the effect of maternal KIR-tB on the offspring’s birth 

weight varies depending on whether the offspring has more HLA-C2 by testing the statistical 

significance of the KIR-HLA-C interaction parameter.  

As shown in our simulation results, interactions between maternal and offspring loci can 

easily and accurately be modeled and tested using the QMFG analysis method. Using the same 

UK mother-offspring pairs as Hiby et al. [16], we fit various models (Models 1-5) that include 

single-locus and two-locus interaction effects between the KIR telomeric region and HLA-C 

genotypes for mothers and their offspring as well as the null model (Model 0). To compare how 

well each model fits these data, we use the Akaike Information Criterion (AIC). From the 
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candidate models, we can then select the model that minimizes the AIC as our best model. Table 

4 shows the log-likelihoods and AIC values for each of our candidate models. For these data, the 

minimum AIC is provided by Model 4, which includes effects for the maternal KIR-tB haplotype 

and for more offspring HLA-C2 than maternal HLA-C2, in addition to the KIR-HLA-C 

interaction. 

The effect estimates for Model 4 are shown in Table 5 (second column). For this model, 

the reference group consists of offspring that have less or equal HLA-C2 alleles than their mother 

and also have mothers with a tA/tA genotype at KIR. According to our analysis, offspring with 

more HLA-C2 who also have mothers with KIR genotype tA/tA are born on average 0.1863 kg 

smaller compared to the reference group adjusting for sex (p = 0.005). Offspring with less or 

equal HLA-C2 than their mother who also have a mother with at least one copy of the KIR-tB 

haplotype are estimated to be 0.0537 kg larger at birth compared to the reference group (p = 

0.28). The interaction effect estimate indicates that having both more offspring HLA-C2 and a 

mother with at least one KIR-tB confers the smallest change in birth weight compared to the 

reference group, increasing birth weight by 0.0119 kg adjusting for sex (p = 0.14). Examining 

Tables 4 and 5 and using likelihood ratio tests, we find little support for an MFG interaction, 

with (p = 0.14) or without (p = 0.75) accounting for the single locus effects.  However there 

appear to be independent effects of KIR-tB and HLA-C2 (p = 0.006). Hiby and colleagues [16] 

do not adjust for gestational age in the subgroup analyses of their combined UK and Norwegian 

cohorts since they find that the effect of KIR2DS1 on birth weight for is independent of 

gestational age. Since we are using only one of these cohorts, we also fit Model 4 adjusting for 

gestational age as a sensitivity analysis and discover that the effect estimates (Table 5, third 

column) and their p-values do not differ greatly.  
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Discussion 

The link between maternal uNK cells and offspring trophoblast cells within the placenta presents 

 a plausible setting for MFG interactions that affect fetal development. Motivated by a previous 

study that found a significant effect of the maternal KIR2DS1 gene on human birth weight for 

offspring with more HLA-C2 than their mother [16], we extend the QMFG analysis method to 

multiple loci and test the hypothesis of a KIR-HLA-C interaction effect on birth weight. In this 

article, we model the effect of having more HLA-C2 present in the offspring’s genotype than the 

mother’s and a maternal dominant KIR-tB effect to allow a comparison to the analyses of Hiby et 

al. [16]. As discussed by these researchers [16], this model is a surrogate for a model that 

captures the effects of the maternal immune response to the fetus having an HLA-C antigen that 

is foreign to her antigens. That antigen would have to originate from the paternally derived gene. 

Although other models for the effects of the KIR-tB and HLA-C alleles are possible, we chose 

not to explore them in this article because of the limited sample size and constraints in the study 

design. In particular, Hiby’s study design resulted in no fathers’ HLA-C genotypes and therefore 

comparing the fit of the models presented in this article to a paternal parent of origin effect, a 

very plausible alternative model, is not possible (refer to Appendix C for further discussion).  

 Our simulation studies show the statistical validity of the QMFG test when extended to 

interactions between the maternal KIR telomeric haplotype, maternal HLA-C genotype, and 

offspring HLA-C genotype. In situations in which the model assumptions are consistent with the 

simulation scenario, the QMFG test has valid type I error rates, parameter estimate bias centered 

around zero, and high power even when the proportion of variation explained is low. To verify 

that these features are not greatly altered by family structure, we simulate data for mother-
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offspring pairs, and find that parameter estimates remain unbiased and power is only slightly 

diminished.  

 We also investigate scenarios in which the true underlying MFG interaction is partially or 

entirely misspecified. As expected, power is reduced but parameter estimates are unbiased when 

a more general model is used in a case where a restricted model is sufficient. We also show that 

if a standard model, which considers only offspring genotypes, is fit to data generated under an 

underlying KIR-HLA-C interaction scenario, associations can be missed or identified incorrectly. 

The ability to detect an association at a locus involved in an MFG interaction using only 

offspring genotypes depends on the underlying nature of the MFG interaction, but in general 

power to detect the locus is greatly diminished. Similarly, if a single-locus QMFG test is used 

when two or more polymorphic loci are involved in the MFG interaction, power will likely be 

reduced. In particular using the offspring-only or single-locus QMFG analyses, if a researcher is 

unaware of the existence of the second polymorphic locus (KIR), then they might find that an 

HLA-C effect in a population where the KIR-tB haplotype is frequent, but fail to replicate the 

effect in a second population where the KIR-tB haplotype is infrequent even when HLA-C allele 

frequencies are the same in these two populations. The researcher would then be inclined to 

dismiss the first result as a false positive. Thus, like the case of offspring gene-gene interactions, 

models that incompletely capture the MFG inter-locus effects can easily lead to incorrect 

conclusions.  

To date, no other study has directly looked for an association between KIR-HLA-C 

interactions and birth weight. We use a linear mixed modeling approach to analyze data from the 

United Kingdom cohort. Using minimum AIC to compare models, the model with effects for 

maternal KIR-tB and more HLA-C2 alleles in the offspring’s genotype than the mother’s, and 
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their interaction, is determined to provide the best fit, however a model with just the independent 

locus effects (maternal KIR-tB and more HLA-C2 alleles in offspring’s genotype than the 

mother’s) fits the data nearly as well. In the model with both loci and interaction effects (Model 

4), KIR and HLA-C explain 3.0% of the phenotypic variation in human birth weight.  

Using subgroup analyses, Hiby and colleagues [16] found that the effect of maternal KIR 

on birth weight was significant in offspring with more HLA-C2 than their mothers and that this 

maternal effect was not significant in offspring with less or equal HLA-C2 when they used 

mothers and offspring from both Norway [43] and the United Kingdom. From their analyses, it is 

difficult to determine whether the effect is exclusively an KIR-HLA-C interaction effect or 

whether than are also main effects of maternal KIR and more HLA-C2 in the offspring’s 

genotype than the mother’s genotype. An advantage of using the QMFG test instead of 

conducting subgroup analyses is the ability to determine parameter estimates for maternal KIR-

tB, more offspring HLA-C2, and KIR-HLA-C interaction effects. Furthermore, we can explicitly 

test whether the effect of more HLA-C2 alleles in the presence of maternal KIR-tB (that is, the 

interaction) is statistically significant after accounting for the effects of the two loci acting 

independently (main effects). Using only the United Kingdom cohort we find that, in the 

presence of main effects, there is not a significant KIR-HLA-C interaction. There is a strong main 

effect of more offspring HLA-C2, whereas a KIR effect conditional on a HLA-C effect is less 

certain. Rather than speculate on differences in the previous study’s modeling approaches to ours 

with regard to power and assumptions, we plan to analyze the same combined Norway [43] and 

United Kingdom cohort data as Hiby et al. [16] in the future. This reanalysis will provide a direct 

comparison of the two approaches and therefore will be more meaningful.  

When the data consist of only mother-offspring pairs, general statistical packages that 
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include linear mixed model options can be used. However, for studies that have collected data 

from families of varying sizes, specialized software is needed. To perform our analyses, we 

extended the QMFG test to handle multiple loci in the statistical genetics software package 

Mendel. These extensions will be available in the next version of the freely available Mendel 

package. The power of our method to detect significant MFG interactions and our flexible 

software make the QMFG test an effective tool to consider when studying genetic factors 

associated with complex traits.  
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Table 1. Maternal-offspring genotype combinations and model parameters for the KIR telomeric 
region and HLA-C.  
 

 
Table 2. Simulation scenarios.  
 

Scenario Genetic effects Simulated values* 

I None !!"# = !!"#$ = !!"# = 0 

II Interaction !!"# = !!"#$ = 0 
!!"# = 0.05,0.07,… ,0.35  

III 
Maternal KIR-tB 
More HLA-C2  
Interaction 

!!"# = 0.05 
!!"#$ = −0.1! 

!!"# = {0.05,0.07,… ,0.35} 
*All models additionally simulate a grand mean μ (3.5 kg),  
sex effect (!!"# = -0.2 kg if female), and variance components  
(σ!! = 0.2025 kg2 and σ!! = 0.0475 kg2).  

Maternal 
KIR 

telomeric 
region 

Maternal 
HLA-C  

Offspring 
HLA-C  

General 
QMFG 
model 

Model 4: Maternal 
KIR, more offspring 

HLA-C2, and 
interaction effects 

Model 6: 
HLA-C 

offspring 
effects  

Model 8: 
KIR 

offspring 
effects  

tA/tA C1/C1 C1/C1 0 0 0 0 
tA/tA C1/C1 C1/C2 !!!" !!"#$ !!!/!! 0 
tA/tA C1/C2 C1/C1 !!"! 0 0 0 
tA/tA C1/C2 C1/C2 !!"" 0 !!!/!! 0 
tA/tA C1/C2 C2/C2 !!"# !!"#$ !!!/!! 0 
tA/tA C2/C2 C1/C2 !!"# 0 !!!/!! 0 
tA/tA C2/C2 C2/C2 !!"" 0 !!!/!! 0 
tA/tB C1/C1 C1/C1 !!"" !!"# 0 !!"/!" 
tA/tB C1/C1 C1/C2 !!"! !!"# + !!"#$ + !!"# !!!/!! !!"/!" 
tA/tB C1/C2 C1/C1 !!!" !!"# 0 !!"/!" 
tA/tB C1/C2 C1/C2 !!!! !!"# !!!/!! !!"/!" 
tA/tB C1/C2 C2/C2 !!!" !!"# + !!"#$ + !!"# !!!/!! !!"/!" 
tA/tB C2/C2 C1/C2 !!"! !!"# !!!/!! !!"/!" 
tA/tB C2/C2 C2/C2 !!"" !!"# !!!/!! !!"/!" 
tB/tB C1/C1 C1/C1 !!"" !!"# 0 !!"/!" 
tB/tB C1/C1 C1/C2 !!"# !!"# + !!"#$ + !!"# !!!/!! !!"/!" 
tB/tB C1/C2 C1/C1 !!"# !!"# 0 !!"/!" 
tB/tB C1/C2 C1/C2 !!"" !!"# !!!/!! !!"/!" 
tB/tB C1/C2 C2/C2 !!"! !!"# + !!"#$ + !!"# !!!/!! !!"/!" 
tB/tB C2/C2 C1/C2 !!!" !!"# !!!/!! !!"/!" 
tB/tB C2/C2 C2/C2 !!!! !!"# !!!/!! !!"/!" 
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Table 3. Model descriptions. 
 

Type Model Genetic effects 
modeled Additional Constraints 

Genetic 
parameters 
estimated* 

Null 
model1 0 None 

!!"# = !!"#$ = !!"# = 0 or 
!!!/!! = !!!/!! = 0 or 
!!"/!" = !!"/!" = 0 

0 

QMFG 
models2 

1 Maternal KIR-tB !!"#$ = !!"# = 0 !!"# 
2 More HLA-C2 !!"# = !!"# = 0 !!"#$ 

3 Maternal KIR-tB 
More HLA-C2 !!"# = 0 !!"# 

!!"#$ 

4 
Maternal KIR-tB 
More HLA-C2 
Interaction 

None 
!!"# 
!!"#$ 
!!"# 

5 Interaction !!"# = !!"#$ = 0 !!"# 

Standard 
offspring 
models3 

6 Genotypic offspring 
HLA-C effect None 

!!!/!! 
!!!/!! 

7 Additive offspring 
HLA-C effect 2!!!/!! = !!!/!! !!!/!! 

8 Genotypic offspring 
KIR effect None !!"/!" 

!!"/!" 

9 Additive offspring 
KIR effect 2!!"/!" = !!"/!" !!"/!" 

*All models additionally estimate a grand mean (!), sex effect (!!"#), and variance components 
(σ!! and σ!!).  
1Model 0 is a sub-model of all other models 1-9 
2Models 1-3 & 5 are sub-models of Model 4 (parameterization shown in Table 1) 
3Model 7 is a sub-model of Model 6 and Model 9 is a sub-model of Model 8 (parameterization of 
Models 6 and 8 shown in Table 1) 
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Table 4. Comparison of KIR-HLA-C models for real data (n = 403). 
 

Model Genetic effects  No. genetic 
parameters1 

Log-
likelihood 

Proportion 
of 

variation 
explained2 

AIC ΔAIC from 
 best model 

0 None 0 137.45 N/A -272.89 6.33 
1 Maternal KIR-tB 1 139.46 0.010 -274.92 4.30 
2 More HLA-C2 1 140.32 0.015 -276.64 2.58 

3 Maternal KIR-tB  
More HLA-C2 2 142.53 0.025 -279.06 0.15 

4 
Maternal KIR-tB  
More HLA-C2 
Interaction 

3 143.61 0.030 -279.22 0 

5 Interaction 1 137.50 0.0005 -270.99 8.23 
1All models additionally adjusted for sex  
2Proportion of residual variation explained by KIR and HLA-C effects compared to Model 0.  
 
 
Table 5. Effect estimates for Model 4 with and without adjusting for gestational age. 
 

Covariates Sex of fetus Sex of fetus and 
gestational age 

Number of subjects 403 403 
Mean effect of maternal KIR-tB (SE) 0.0537 kg (0.0495) 0.0671 kg (0.0454) 
Mean effect of more HLA-C2 (SE) -0.1863 kg (0.0656) -0.1708 kg (0.0598) 
Mean effect of interaction 0.1445 kg (0.0983) 0.1119 kg (0.0901) 
Residual variance (SE) 0.1804 kg2 (0.0127) 0.1494 kg2 (0.0106) 
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Fig. 5. Power to detect HLA-C offspring effects. Error bars represent approximate 95% 
confidence intervals. Data simulated under Scenario II (KIR-HLA-C interaction only) and the 
model is misspecified such that it tests for (A) genotypic offspring HLA effects (df = 2) and (B) 
additive offspring HLA effects (df = 1). Simulations in which the KIR-HLA-C interaction effect 
is 0.25 kg (the effect size when power is close to 80% for the genotypic model when P(KIR-tB) = 
1.0) are represented with triangles.  
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Fig. 6. Effect of KIR-tB frequency on the single-locus QMFG test. Data simulated under 
Scenario II (KIR-HLA-C interaction only) and the model is misspecified such that it tests for an 
effect of more offspring HLA-C2 (df = 1). Simulations in which the KIR-HLA-C interaction 
effect is 0.13 kg (the effect size when power is 85% when P(KIR-tB) = 1.0) are represented with 
triangles. Error bars represent approximate 95% confidence intervals. 
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Chapter 5 

Future Work in Statistical Methods for Transgenerational Effects 

 

This dissertation has addressed the absence of methods for testing for a specific type of 

transgenerational effect, MFG interactions, on quantitative traits using arbitrary family 

structures. I have demonstrated that the QMFG analysis method is a powerful and accurate 

approach when investigating the effect of offspring and maternal genotypes jointly for a single 

locus or multiple bi-allelic loci. Here I outline possible extensions to the QMFG test and other 

methods for detecting transgenerational effects.  

 

QMFG Extension for Missing Data 

Often with real data, lack of complete phenotype and genotype data is an issue that must be 

considered. As discussed in Chapter 3, one way to handle missing genotypes is to use a standard 

genotype imputation program (Marchini & Howie, 2010) that requires dense genotyping and 

ignores family structure, inevitably producing impossible maternal-offspring genotype 

combinations. In such situations, either the entire SNP would have to be discarded from the 

QMFG analysis or the erroneous genotypes would have to be replaced with the most probable 

genotype. To address this issue with standard genotyping imputation programs, Wasiolek et al. 

(2015) have proposed an imputation approach informed by pedigree relationships. Utilizing the 

Majorize-Minimize (MM) algorithm, they reduce the number of Mendelian inconsistencies that 

result from genotype imputation. Though this method is an improvement, it still relies on dense 

genotype data and produces some impossible mother-offspring genotype combinations.  
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The most ideal solution would be an approach that imputes genotypes conditional on both 

the family genotype and phenotype data. Such an approach would require the use of MCMC 

methods that may be computationally intensive, especially when imputing many genotypes in 

data consisting of large families with hundreds of thousands or millions of SNPs. A more 

feasible approach to address the issue of generating Mendelian inconsistencies while 

simultaneously requiring less computational power would fill in genotypes conditional on family 

genotype data only. Given the dependence of maternal and offspring genotypes, I propose using 

joint maternal and offspring genotype probabilities calculated based on family structure. Because 

maternal and offspring genotypes depend on one another, probabilities for each maternal-fetal 

genotype combination could be estimated given the other genotypes in the pedigree. By 

including these estimated probabilities within the QMFG design matrix in the place of missing 

data and fitting a mixture of normal distributions, I expect that QMFG parameters could be 

accurately estimated. Though this approach imputes genotypes under the null, it would be a 

worthwhile starting point for future work handling missing data. Once methods to allow for the 

inclusion of incompletely genotyped pedigrees have been developed, the Mendel software’s 

current implementation of the QMFG test can be modified accordingly. Further simulations 

should be performed to determine error rates, power, and the effects of model misspecification. 

Given that the statistical properties are sound, this extension for missing data will be valuable for 

researchers who have incomplete family genotypes and want to use the QMFG test on their data.  

 

 

QMFG Score Test Extension for Multiple Loci 

The aim of genome-wide association studies (GWAS) is to analyze DNA variants across the 



 87 

human genome to identify genetic factors associated with common diseases and traits. As 

mentioned previously, GWAS have revealed numerous loci associated with human diseases and 

complex traits (Lander, 2011, Hirschhorn, 2009) and have the potential to shift traditional 

medical practices to personalized medicine (Katsios & Roukos, 2010). With the decreasing cost 

and increasing efficiency of genome-wide scans, it is more important than ever for statistical 

methods that can handle thousands or millions of markers quickly. I have shown that the QMFG 

score test is just such an effective and rapid screening tool when testing MFG interactions for 

one SNP at a time. A straightforward addition to the methods proposed in this dissertation would 

be to extend the QMFG score test to handle multiple loci (as I’ve done for the LRT in Chapter 

3). This would require modifying the Mendel QMFG score test option for a single locus to allow 

users to specify multiple loci of interest and validating the extension via simulations studies.  

 

The QMFG Test for Non-Normally Distributed Traits 

The QMFG test is a linear mixed modeling approach used to study associations between MFG 

interactions and continuous traits assuming either that the trait is normally distributed or the 

central limit theorem is applicable. A useful extension to the QMFG test would be an option that 

allows for response variables from non-Gaussian distributions (binomial, Poisson, etc.). 

Generalized linear mixed models (GLMM) provide the framework to handle data from the 

exponential family of distributions (Tempelman, 1998) and accordingly, packages and 

procedures have been developed for various statistical programs to apply GLMM to family data 

in genetic association studies (Vazquez et al., 2010, Wang et al., 2015). Generalizing the QMFG 

test to fit GLMM to test for MFG interaction effects on non-normal traits is a viable area of 

future research.  
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One challenge of programing such a method involves the estimation of parameters. For 

linear mixed models, the likelihood has a closed form so maximum likelihood estimation can be 

directly performed. In most cases, the GLMM likelihood cannot be evaluated in closed form due 

to multi-dimensional integration and therefore must be approximated (Wang et al., 2015). 

Methods for numerical integral approximation include Laplace approximation (Wolfinger, 

1993), Monte Carlo integration (Pan & Thompson, 2007), and Bayesian methods via Markov 

chain Monte Carlo (Zeger & Karim, 1991). An alternative to approximation methods is 

linearization of the regression model via Taylor expansion (Wolfinger & Oconnell, 1993). The 

computational advantages and disadvantages of each method must be carefully considered prior 

to updating the Mendel software to fit GLMM. Once again, simulation studies would be essential 

in determining the statistical properties of this generalized-QMFG test.  

In the case of many SNPs, it may be more practical to use the QMFG LMM to quickly 

screen markers prior to running a more computationally intensive GLMM. By using a loose 

threshold, the most significant SNPs could be selected and then results could be refined using a 

GLMM appropriate for the trait distribution. It has been shown that the LMM is robust when fit 

to data with a non-Gaussian or heteroscedastic error distribution (Jacqmin-Gadda et al., 2007) 

suggesting it may function as an acceptable screening tool. An additional goal of this aim would 

be to investigate if and how error rates would be affected by misspecifying the model as linear 

when the trait truly comes from a non-normal distribution.  

 

Methods to Assess Transgenerational Epigenetic Effects  

Another field of genetics in which there is a need for statistical methods to study 

transgenerational effects is the area of epigenetics. Epigenetic effects are heritable factors that 
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determine expression of genes without altering the DNA sequence itself and are potential 

facilitators of transgenerational effects. The most studied epigenetic effect is the process of DNA 

methylation, in which a methyl group is added to DNA nucleotides and can affect the 

transcription of genes (Cortessis et al., 2012). Methyl groups can be added to cytosine or adenine 

nucleotides and thus regions where cytosine and guanine nucleotides are found in high frequency 

(CpG sites) are targets for methylation. When these CpG sites are found within the promoters of 

genes, their methylation can lead to gene silencing. One interesting area of research would 

involve determining whether transgenerational effects, such as MFG interactions, act through 

methylation.  

DNA methylation data are often expressed as the fraction of a specific CpG site that is 

methylated. In statistical analyses this fraction is called the beta value. One promising approach 

to investigating the role of methylation level as an intermediate phenotype for transgenerational 

effects is two-step Mendelian randomization (Relton & Davey Smith, 2012). Their strategy is to 

interrogate the role of epigenetic mediators of environmental exposures on disease risk. In the 

first step, a genetic proxy associated with the exposure is used to test for the conditional 

independence of the exposure and the beta value. In the second step, a different genetic proxy, 

independent of the first proxy and associated with the beta value, is used to test for the 

conditional independence of DNA methylation and the outcome or disease. 

Of particular relevance to understanding transgenerational effects is that two-step 

Mendelian randomization can span generations. Relton and Davey Smith (2012) discuss the 

example of maternal alcohol use during pregnancy as the exposure, offspring methylation 

fraction at a particular CpG site as the intermediate phenotype and offspring cognition as the 

outcome. In this instance, an appropriate genetic proxy for alcohol consumption is the mother’s 
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genotype at an associated locus and an appropriate genetic proxy for the beta value is the 

offspring’s genotype at another locus, unlinked and independent of the first locus. One option 

may be to extend the two-step epigenetic Mendelian randomization method proposed by Relton 

and Davey Smith (2012) to allow for gene-gene interactions between generations and determine 

whether transgenerational effects influence offspring phenotypes by way of methylation.  
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Appendix A 

Supplemental Material for Chapter 3 

Table S1 San Antonio Family Heart Study subject counts. 

 Count 
Total subjects 3637 
Subjects with phenotype 1397 
Subjects with phenotype 
and genotypes 

1043 

Offspring with phenotype 
and genotypes 

855 

Offspring with phenotype, 
genotypes, and genotyped 
mother 

419 
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Table S2 Estimated type I error rates when a proportion of genotypes are missing. 
 
 Percent missing 
Effects tested 0% 5% 10% 20% 
RHD effect 0.053 0.045 0.054 0.046 
NIMA or offspring effects 0.045 0.053 0.061 0.045 
NIMA effects in the 
presence of offspring effects 0.050 0.053 0.060 0.049 

Offspring effects in the 
presence of NIMA effects 0.042 0.052 0.055 0.044 

Any MFG effects 0.048 0.048 0.048 0.048 
Standard errors for all estimated type I error rates are approximately 0.005 
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Figure S1 Comparison of LRT and score test p-values for Simulation A data. P-values resulting 

from the LRT are compared to p-values resulting from a score test for the same data when testing 

for (a) RHD effects (df = 1) and (b) NIMA or offspring effects (df = 3). 
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Figure S2 Power to detect a NIMA effect in the presence of offspring effects. Curves show power 

for the one degree of freedom test for a NIMA effect (!!") using the LRT. NIMA effect sizes 

range from 0 to 0.7 and offspring effects are fixed (!.! = 0.18,!.! = 0.36). Error bars represent 

approximate 95% confidence intervals. 
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Figure S3 Power to jointly detect NIMA and dominant offspring effects. Curves show power for 

the two degrees of freedom test for a NIMA or dominant offspring effect (!!",!.! = !.!) using 

the LRT and score test for a dominant offspring effect of 0.1 (!.! = !.! = 0.1,! = 0.001). 

NIMA effect sizes range from 0 to 0.6. Error bars represent approximate 95% confidence 

intervals. 
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Figure S4 Parameter estimate bias for data simulated with NIMA, offspring, and maternal 

effects. Genotypes and quantitative traits for each replication were simulated for 1,000 three-

generational pedigrees using Simulation D data with NIMA, offspring, and maternal effects 

(! = 40, β!" = 0.18, β!" = 0.60, β!! = 0.36, β!" = 0.54, β!" = 0.54, β!! = 0.72,σ!! = 1,σ!! =

5). Boxplot shows bias of parameter estimates and environmental variance over 2,000 

replications. A horizontal line is drawn at zero bias. 
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Figure S5 Effect of allele frequency on power. Variant allele frequency ranges from 0.1 to 0.9. 

Error bars represent approximate 95% confidence intervals. (a) Curves show power for the one 

degree of freedom test for an RHD effect (!!") using Simulation B data for the LRT and score 

test. (b) Curves show power for the three degrees of freedom test for a NIMA or offspring effect 

(!!",!.!,!.!) using Simulation D data for the LRT and score test.  
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Figure S6 Effect of additive genetic and environmental variance on power. Solid lines show 

power when !!! = 1 and !!! = 5, while dotted lines show power when additive genetic and 

environmental variance simulation values are changed to !!! = 3, !!! = 3. Error bars represent 

approximate 95% confidence intervals. (a) Curves show power for the one degree of freedom 

test for an RHD effect (!!") using the LRT and score test. RHD effect sizes range from 0 to 0.7. 

(b) Curves show power for the three degrees of freedom test for NIMA or offspring effects 

(!!",!.!,!.!) using the LRT and score test. NIMA effect sizes range from 0 to 0.7 and offspring 

effects are fixed (!.! = 0.18,!.! = 0.36).  
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Figure S7 Parameter estimate bias when data are simulated for parent-offspring trios. Boxplots 

show bias of parameter estimates for the grand mean, MFG effects, additive genetic variance, 

and environmental variance using 1,000 parent-offspring trios over 2,000 replications using 

parameters from (a) Simulation B with an RHD effect of 0.55 (! = 40,!!" = 0.55,!!" = !!" =

!!! = !!" = !!! = 0,!!! = 1,!!! = 5), and (b) Simulation C with a NIMA effect of 0.60 and an 

additive offspring allelic effect of 0.18 (! = 40,!!" = 0.60,!!" = !!! = !!" = 0.18,!!" =

!!! = 0.36,!!! = 1,!!! = 5). A horizontal line is drawn at zero bias. 
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Figure S8 Q-Q plot for LRT when data are simulated with a smaller sample size. Genotypes and 

quantitative traits for each replication were simulated for 100 pedigrees under the null of no 

MFG effects and were tested with the LRT for (a) RHD effects (df = 1, λ = 1.094), (b) NIMA or 

offspring effects (df = 3, λ =1.000), (c) NIMA effects in the presence of offspring genotype 

effects (df = 1, λ = 0.972), (d) offspring effects in the presence of NIMA effects (df = 2, λ = 

1.047), and (e) any MFG effects (df = 6, λ = 1.086). 
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Figure S9 Parameter estimate bias when data are simulated under NIMA and offspring effects 

with a smaller sample size. Boxplots show bias of parameter estimates for the grand mean, MFG 

effects, additive genetic variance, and environmental variance using 100 three-generational 

families over 2,000 replications using parameters from Simulation F with a NIMA effect of 1.90 

and an additive offspring allelic effect of 0.60 (! = 40,!!" = 1.90,!.! = 0.60,!.! = 1.20,!!! =

1,!!! = 5). A horizontal line is drawn at zero bias. 
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Figure S10 Parameter estimate bias when the general model is fit. Boxplots show bias of 

parameter estimates for the grand mean, MFG effects, additive genetic variance, and 

environmental variance over 2,000 replications when the general model is fit to (a) Simulation B 

data with an RHD effect of 0.55 (! = 40,!!" = 0.55,!!" = !!" = !!! = !!" = !!! = 0,!!! =

1,!!! = 5) and (b) Simulation D data with a NIMA effect of 0.60 and an additive offspring 

allelic effect of 0.18 (! = 40,!!" = 0.60,!!" = !!! = !!" = 0.18,!!" = !!! = 0.36,!!! =

1,!!! = 5). A horizontal line is drawn at zero bias. 
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Figure S11 Parameter estimate bias when a misspecified model is fit using Simulation H data. 

Boxplots show bias of parameter estimates for the grand mean, offspring effects, additive genetic 

variance, and environmental variance over 2,000 replications of data with a true underlying RHD 

effect of 0.70 (! = 40,!!" = 0.70,!!" = !!" = !!! = !!" = !!! = 0,!!! = 1,!!! = 5) when 

fitting (a) a genotypic model and (b) an additive model with the constraint 2!.! = !.!. A 

horizontal line is drawn at zero bias. 
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Figure S12 Parameter estimate bias when a misspecified model is fit using Simulation I data. 

Boxplots show bias of parameter estimates for the grand mean, offspring effects, additive genetic 

variance, and environmental variance over 2,000 replications of data with a true underlying 

NIMA effect of 0.70 (! = 40,!!" = 0.70,!!" = !!! = !!" = !!" = !!! = 0,!!! = 1,!!! = 5) 

when fitting (a) a genotypic model and (b) an additive model with the constraint 2!.! = !.!. A 

horizontal line is drawn at zero bias. 
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Figure S13 Parameter estimate bias due to model misspecification. Genotypes and quantitative 

traits for each replication were simulated for 1,000 pedigrees fitting (a) Model 5 (NIMA effect 

model) to Simulation B data with an RHD effect of 0.55 (! = 40,!!" = 0.55,!!" = !!" =

!!! = !!" = !!! = 0,!!! = 1,!!! = 5), and (b) Model 2 (RHD effect model) to Simulation I 

with a NIMA effect of 0.70 (! = 40,!!" = 0.70,!!" = !!! = !!" = !!" = !!! = 0,!!! =

1,!!! = 5). A horizontal line is drawn at zero bias. 
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Figure S14 Q-Q plot for score test of the SAFHS data when top 10 hits are removed. Results 

from the 3 degrees of freedom test for NIMA or offspring effects (!!",!.!,!.!) using the score 

test adjusting for age and sex with the top 10 hits removed (! = 1.012). Data from the SAFHS 

consist of 635,494 SNPs from 419 offspring with HDL measurements in 43 multi-generational 

families. 
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Appendix B 

Supplemental Material for Chapter 4 

 

 

Fig. 1S. Power to detect a KIR, HLA-C, or KIR-HLA-C interaction effect when the model is 

misspecified as Model 4. Data simulated under the Scenario II (KIR-HLA-C interaction only) 

conditions and Model 4 is fit (maternal KIR, more HLA-C2 in offspring, and KIR-HLA-C 

interaction). QMFG compared Model 4 to Model 0 (no genetic effects), thus testing for KIR, 

HLA-C, or KIR-HLA-C interaction effects (df = 3). Error bars represent approximate 95% 

confidence intervals.  

 

0.00 0.01 0.02 0.03

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportion Variation Explained by
 KIR−HLA−C Interaction

Po
w

er



 110 

 

 

Fig. 2S. Parameter estimate bias when the model is misspecified as Model 4. Data simulated 

under the Scenario II (KIR-HLA-C interaction only) conditions and Model 4 is fit (maternal KIR, 

more HLA-C2 in offspring, and KIR-HLA-C interaction). Birth weight phenotypes were 

simulated with a KIR-HLA-C interaction effect of 0.19 kg (! = 3.5 kg, β!"# = 0 kg, β!"#$ = 0 kg, 

β!"# = 0.19 kg, β!"# = -0.2 kg, σ!! = 0.2025 kg2, σ!! = 0.0475 kg2). 
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Fig. 3S. Power for KIR offspring effects. Significance level used to determine power is 0.05. 

Data simulated under Scenario II (KIR-HLA-C interaction only) conditions and the model is 

misspecified such that it tests for (A) genotypic offspring KIR effects (Model 8 vs. Model 0; df = 

2) and (B) additive offspring KIR effects (Model 9 vs. Model 0; df = 1). Error bars represent 

approximate 95% confidence intervals. 
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Fig. 4S. Parameter estimate bias when the model estimates offspring KIR effects. Model is 

misspecified as Model 8 (genotypic offspring KIR) and is fit to Scenario II (KIR-HLA-C 

interaction) data. Birth weight phenotypes were simulated with a KIR-HLA-C interaction effect 

of 0.35 kg (! = 3.5 kg, β!"# = 0.35 kg, β!"# = -0.2 kg, σ!! = 0.2025 kg2, σ!! = 0.0475 kg2). 
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Fig. 5S. Power to detect KIR, HLA-C, or two-locus interaction effects in mother-offspring pairs. 

Data simulated under the Scenario III (maternal KIR, more HLA-C2 in offspring, and KIR-HLA-

C interaction) conditions. QMFG compared Model 4 (maternal KIR, more HLA-C2 in offspring, 

and KIR-HLA-C interaction) to Model 0 (no genetic effects), thus testing for either a maternal 

KIR-tB, more HLA-C2, or KIR-HLA-C interaction effect (df = 3). Error bars represent 

approximate 95% confidence intervals. Note that, in this scenario because there are effects of 

KIR and HLA-C even when there is no KIR-HLA-C interaction, the proportion of variation 

explained is not zero when the interaction effect size is zero.  
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Fig. 6S. Parameter estimate bias for mother-offspring pairs. Model 4 (maternal KIR, more HLA-

C2 in offspring, and KIR-HLA-C interaction) is fit to data for mother-offspring pairs simulated 

under Scenario III (maternal KIR, more HLA-C2 in offspring, and KIR-HLA-C interaction). Birth 

weight phenotypes were simulated with a KIR-HLA-C interaction effect of 0.19 kg (! = 3.5 kg, 

β!"# = 0.05 kg, β!"#$ = -0.1 kg, β!"# = 0.19 kg, β!"# = -0.2 kg, σ!! + σ!! = 0.25 kg2). 
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Appendix C 

Alternative KIR and HLA-C Models 

 

In Chapter 4, we model an effect of having more HLA-C2 present in the offspring’s genotype 

than the mother’s and an effect of the maternal KIR-tB haplotype. Modeling the effect of HLA-C 

in this way is a proxy for modeling the effects of a maternal immune response to a fetus that has 

an HLA-C antigen that is foreign to her own. That antigen would have to originate from the 

paternally inherited gene. As discussed by Hiby and colleagues (2014), such a model limits the 

ability to determine whether the impact of HLA-C is due to the extra dose of C2 in the offspring 

compared to his/her mother or a paternal parent of origin effect. No fathers were genotyped for 

HLA-C in Hiby’s United Kingdom cohort and thus testing for a parent of origin effect directly is 

not possible. Here we explore a variety of alternative models (Table 1) in an attempt to elucidate 

the mechanism by which the interaction between maternal and offspring HLA-C genotypes 

impacts birth weight. 

  The first alternative model we consider mimics the prototypical RHD example of MFG 

incompatibility (refer to Chapters 3 and 4 for more detailed descriptions). This scenario is 

motivated by evidence that the mother’s KIR may be educated by her own HLA-C genotype. One 

possibility is that a mother who has at least one HLA-C2 allele in her genotype may be 

completely desensitized to her offspring’s HLA-C2 alleles. Thus, we estimate an HLA-C effect 

on birth weight only for C1/C2 offspring with C1/C1 mothers (Model C). We evaluate the fit of 

this model compared to the null model of maternal KIR effects only (Model A) and to the more-

offspring-HLA-C2 model (Model B). Comparing the AIC for Model C (-278.21) to Model B (-

279.06), we find no evidence that estimating the effect of HLA-C in this way provides a better fit 
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than the more-offspring-HLA-C2 effect used in Chapter 4 and by Hiby and researchers (2014), 

but the fit of Model C is statistically significant compared to the maternal-KIR-only model 

(Model C versus Model A, p = 0.021) and we can’t rule this model out as being a reasonable 

possibility.  

Another hypothesis is that both mothers who don't have any HLA-C2 alleles and mothers 

who do have HLA-C2 in their genotypes react to the extra dose of offspring HLA-C2 from the 

father (likely due to different C2 allele type), but by varying degrees. Considering this 

possibility, the next model we fit (Model D) estimates separate parameters for 1) C1/C2 

offspring with C1/C1 mothers and 2) C2/C2 offspring with C1/C2 mothers. This model is 

statistically significant compared to Model A (p = 0.038), but there is no evidence for a more 

nuanced effect of C2 (comparing Model D to Model B, p = 0.517).  

Next, we explore whether alternative models of a HLA-C paternal parent of origin effect 

provide an improvement in fit compared to the more-offspring-HLA-C2 effect in Model B. The 

United Kingdom birth weight cohort doesn’t include genotyped fathers. To model a paternal 

parent of origin effect therefore requires estimating an effect for maternal-offspring genotype 

combinations in which the offspring must have inherited an HLA-C2 allele from the father 

(C1/C2 offspring with C1/C1 mothers, C2/C2 offspring with C2/C1 mothers, C2/C2 offspring 

with C2/C2 mothers). Note that in the case of a heterozygous offspring with a heterozygous 

mother, it is unclear which offspring allele has paternal origin without phased genotypes. Model 

E groups these C1/C2 offspring with C1/C2 mothers together with offspring who clearly have a 

paternally inherited HLA-C2 allele. In contrast, Model F estimates separate parameters for 1) 

offspring with a paternally inherited HLA-C2 and who have a mother that is not educated by 

HLA-C2 alleles in her own genotype (C1/C2 offspring with C1/C1 mothers), 2) heterozygous 
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offspring with a heterozygous mother, and 3) offspring with a paternally inherited HLA-C2 and 

who have a mother that is educated by the HLA-C2 alleles in her own genotype (C1/C2 offspring 

with C2/C2 mothers or C2/C2 offspring with C2/C2 mothers). Neither Model E nor Model F is 

statistically significant compared to Model A (Model E versus Model A, p = 0.610; Model F 

versus Model A, p = 0.115). The AICs for these models are substantially larger than the AIC of 

Model B allowing us to dismiss these models.  

Finally, we investigate the possibility that the HLA-C effect on birth weight is instead due 

to an offspring immune response to a foreign antigen in the mother. This maternal antigen-

offspring antibody hypothesis is comparable to the NIMA effect described in Chapters 3 and 4. 

In Model G, we model an effect for offspring with a C2/C2 genotype reacting to the C1 allele in 

the genotype of their heterozygous mothers (C2/C2 offspring with C1/C2 mothers). The AIC for 

this model (-274.86) does not offer evidence that this model is greatly better than our original 

model (Model B). Moreover this model does not provide a significantly better fit to the data than 

the maternal-KIR-only model (Model G versus Model A. p = 0.585)  

Through this exploration of alternative models, we cannot conclusively determine the 

mechanism by which the interaction between maternal and offspring HLA-C genotypes impacts 

birth weight. Of the seven models we can explore here, the model used in Chapter 4 and by Hiby 

and colleagues (2014) has the lowest AIC and thus can be considered the best model for this UK 

cohort, however Model C, which limits the immune effect to those mothers who are naïve with 

regards to the C2 allele, fits nearly as well as Model B. To better dissect out the separate 

contributions of the inherited maternal and paternal HLA-C alleles in the future we would need 

the father’s HLA genotypes.  
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