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ABSTRACT OF THE THESIS 

 

Spin-orbit torque induced magnetization switching in tungsten/ thulium iron garnet 

bilayer 

by 

Peng Zhang 

Master of Science in Electrical & Computer Engineering  

University of California, Los Angeles, 2018  

Professor Kang Lung Wang, Chair 

 

Magnetization switching by current-induced spin-orbit torque (SOT) is of great interest for its 

potential application in ultralow-power non-volatile memory devices. The past research on SOT 

based MRAM heavily relies on the spin-dependent transport in ferromagnetic (FM) conductors. 

However, such system has additional energy dissipation due to the Joule heating in the metallic 

FM layer. Moreover, the propagation length of spin current is limited by the short spin-diffusion 

length and the strong magnetic damping in FM metals. Magnetic insulators (MIs), attract 

tremendous interest for ultralow-power spintronics and spin wave application recently due to low 

Gilbert damping and absence of Ohmic loss. In this thesis, we achieved magnetic switching of an 

insulating magnetic ferrite thulium iron garnet (TmIG) by current-induced SOT in the 

nonmagnetic metal (NM) tungsten (W) layer. The switching current density is as low as 7.5 × 1010 

A/m2 for the W (5 nm)/TmIG (15 nm). Further thickness dependent study shows the SOT 

efficiency increases with the thickness of TmIG, which is in consistence with the theoretical 

proposed Ms-effect. This finding shed light on the understanding of SOT in MIs and promote the 

development of MI-based low-power spintronics.  
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CHAPTER 1 

Introduction 

1.1. Spintronics Overview 

Moore's Law is the observation made by Intel co-founder Gordon Moore that the number of 

transistors on a chip doubles every year while the costs are halved. The industry indeed made so 

many innovations and kept following the prediction of Moore during the past half-decade. 

However, with the continuous scaling of MOSDET, modern electronics have approaching the 

dimension limit. Various short-channel effects arise including drain-induced barrier lowering 

(DIBL), gate induced drain leakage (GIDL), velocity saturation, and hot carrier effects, etc. 

[1][2][3]. These short-channel effects as well as electro-thermal heating problems, severely 

degrade the performance of modern electronic devices.  

Extensive effort has been done by researchers to search for alternative method to keep or even go 

beyond the Moore’s Law. These approaches include switch silicon to new materials such as III-V 

semiconductor and two-dimensional channel materials, and new structure design such as gate-all-

around nanowire FETs [4]. However, those approaches are very hard to become real applications, 

due to the difficulty and cost for high throughput fabrications. Spintronics, which makes use of the 

spin degree of freedom of electrons, turns out to be very promising to be next-generation 

electronics. Spintronics focuses on the research of spin-dependent transport in solid states 

materials and devices. 

With the coming of the big data era, there is increasing demand for data storage capability and 

computation ability, as well as lower energy cost. In traditional CMOS technology, memory devices 

include Static Random-Access Memory (SRAM), Dynamic Random-Access Memory (DRAM), and 

FLASH memory devices. SRAM has very high speed, but it has low integration density and high 

cost since each SRAM memory cell is comprised of 6 Transistors. DRAM has lower cost and high 



2  

integration density, but it needs extra power for continues refreshment because the information is 

stored by a capacitor. For Flash memory, although it is non-volatile, its writing speed is far behind 

SRAM and DRAM. Magnetic random-access memory (MRAM), as a non-volatile memory, which 

has the combined advantages of writing speed and writing energy, is becoming the most promising 

next generation memory devices.  

 

1.2. GMR and TMR 

The electrical read-out mechanism of a MRAM is based on magnetization dependent electrical 

transport properties. The most important and widely used phenomenon are giant 

magnetoresistance (GMR) and tunneling magnetoresistance (TMR). 

1.2.1 GMR and spin-valve 

Giant magnetoresistance (GMR) is a quantum mechanical magnetoresistance effect observed in 

multilayers composed of alternating ferromagnetic and non-magnetic conductive layers. The effect 

is observed as a significant change in the electrical resistance depending on whether the 

magnetization of adjacent ferromagnetic layers is in a parallel or an antiparallel alignment. The 

overall resistance is relatively low for parallel alignment and relatively high for antiparallel 

alignment. This phenomenon was first observed by Albert Fert and Peter Grünberg, and then they 

shared the 2007 Nobel Prize in Physics for the discovery of GMR [5].  

After that, magnetic multilayer stacks have progressively brought spintronics into real life 

applications, which is later called spin valves. The typical structure of a spin valve is shown in 

figure 1-1. The simplest spin valve structure consists of a conducting non-magnetic material, 

sandwiched between two conducting ferromagnetic materials. One of the ferromagnetic material 

has large coercivity field and pinned magnetization, which is called fixed layer. Another one has 

smaller coercivity thus the magnetization can be switched upon applying a magnetic field of 
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appropriate strength, which is called free layer. As a result, it has two distinct states: a parallel, 

low-resistance state, and an antiparallel, high-resistance state. Making use of GMR effect, spin 

valves are widely used in magnetic sensors for reading data from hard drives, biosensors, MEMS 

and other devices. It is also widely used in MRAM as a unit for storing one-bit information. 

 

Figure 1-1. Spin valve structure: a conducting non-magnetic material sandwiched between two conducting 

ferromagnetic materials  

 

1.2.2 TMR and MTJ 

Very similar with GMR, the TMR is a magneto-resistive effect that occurs in a magnetic tunnel 

junction (MTJ), which is a component consisting of two ferromagnets separated by a thin insulator. 

The structure of a MTJ is similar with spin valve, except that the conducting nonmagnetic material 

(yellow region in figure 1-1) is replace by a nonmagnetic insulator. Since this process is forbidden 

in classical physics, the tunnel magnetoresistance is a strictly quantum mechanical phenomenon. 

TMR is discovered after GMR, and has much higher magnetoresistance ratio, so nowadays most 

magnetic reading sensors are made of MTJs. 

 

1.3. Spin-transfer torque and spin-orbit torque 

Having talked about the reading mechanisms in previous part, it is time to consider the writing 

mechanisms. The key to achieve low-power and high-speed operation of MRAMs is to have a fast 
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and energy-efficient magnetization switching of the free layer of the MTJs. In MTJs, the fixed layer 

is usually attached to an antiferromagnetic material, and the antiferromagnet could pin the 

magnetization state of an adjacent ferromagnetic layer through exchange bias. It can be 

understood as the effective coercivity is increased. So, if we apply a magnetic field weaker than the 

coercivity of fixed layer but stronger than the coercivity of free layer, the state of the MTJ can be 

effectively tuned.  

However, in real memory device, by no means an external magnetic field should be applied to 

make the device working. We need magnetization manipulation by electric properties, such as 

current and voltage. As a result, widely used writing mechanism now is by current induced Oersted 

field. However, magnetization manipulation by current-induced Oersted field is very energy 

consuming and hard for high-density integration. On the contrary, spintronics approaches offers 

new approaches for fast and efficient magnetization switching. 

1.3.1 Spin-orbit coupling (SOC) 

The spin angular momentum of electron can interact with its orbital angular momentum. This lead 

to splitting of different energy levels which can lead to different transition energies. This effect is 

known as spin orbit coupling. In the classic description, the electron is moving at high speed 

through the radial electric field of the nucleus. On the other hand, in the electron coordinate, the 

nucleus is also circling around the electron, and this motion create an effective magnetic field 

which gives the electron a Lorentz force in the direction perpendicular to its motion and Zeeman 

energy. In other words, this magnetic field interacts with the electron's magnetic dipole moment to 

produce the spin-orbit coupling. From this simple model, we can also have an intuitive 

understanding that heavy atoms further up the periodic table with larger charge on the nucleus, 

will usually have stronger spin-orbit effect.  

After taking the realistic modification to the classic model, it can be proved that the general 

Hamiltonian of spin-orbit coupling in non-inertial frame is given by [6] 
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2 2
ˆ ( )

4
SOH V

m c
=   p σ

h
                                                              (1.1) 

The spin-orbit coupling can be divided into two types in terms of symmetry dependence: one is 

symmetry-independent spin-orbit coupling, which stems from atomic orbitals and exists in all 

types of crystals [7]; while the other one is symmetry-dependent, which exists only in crystals 

without inversion symmetry [8]. In terms the origin of inversion asymmetry, the symmetry-

dependent spin-orbit coupling can be further divided into Dresselhaus coupling [9] and Bychkov-

Rashba coupling [10]. The Dresselhaus coupling is due to bulk inversion asymmetry (BIA) of the 

underlying crystal structure, while the Rashba coupling is related to structure inversion asymmetry 

(SIA) of the confining potential, such as hetero-structure, surface spin-orbit coupling, device with 

applying voltage and 2-D materials. 

As we know, in a periodic crystal, the spin degeneracy of the electron and hole states is the 

combined effect of inversion symmetry in space and time. Both symmetry operations change the 

wave vector k into −k, but time inversion also flips the spin, which can be expressed as below 

Time inversion symmetry:  (k) ( k)

Space inversion symmetry: (k) ( k)

E E

E E

= −


= −
 

                                         (1.2) 

Thus, combining both we have a two-fold degeneracy of the single particle energies, E+(k) = E−(k) 

[11]. In order to have spin polarized current, we must break the spin degeneracy of electron and 

hole states. As a result, either the time inversion symmetry (TIS) or the space inversion symmetry 

(SIS) should be broken. By applying magnetic field or introducing magnetism in the material, TIS 

can be broken, thus resulting spin polarized current. This is the physical origin of spin-transfer 

torque which will be discussed later. In SIS-broken materials, spin orbit coupling begins to play a 

role, and can produce a spin-orbit-torque (SOT) on adjacent ferromagnetic layer. 

1.3.2 Magnetization dynamics 
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The Landau–Lifshitz–Gilbert (LLG) equation is a fundamental nonlinear evolution equation 

describing the precessional motion of magnetization M in a solid. However, to understand the 

current-induced magnetization dynamics in a single magnetic layer characterized by inversion 

asymmetry, the LLG equation should be modified by taking into consideration the spin-transfer 

torque (STT) terms and the spin-orbit interaction [12]. The modified equation, which is also 

known as the Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation can be written as 

eff
t t

 
 

= −  +  +
 

m m
m H m τ                                                             (1.3) 

where m is a unit vector along the magnetization direction, γ is the gyromagnetic ratio γ = gμB/ћ, 

where μB is the Bohr magneton and g is the Lande g-factor, Heff is an effective magnetic field 

determined by the external magnetic field as well as the exchange stiffness, dipole field and 

anisotropy field caused by the spin–orbit interaction, α is the Gilbert damping constant causing 

relaxation of the magnetization to its equilibrium orientation [13], and τ represents current-

induced torque, which is the focus of our discussion. The current-induced torque can be expressed 

as  

( )
||

ˆ ˆ

ˆ ˆ

x x

x x
⊥

  
= +

 

m m m
τ τ τ

m m                                                                  (1.4) 

where ||τ  and ⊥τ  are driving torques, and x̂  is the unit vector along the polarization of the current. 

Figure9 illustrates the magnetization dynamics described by LLGS equation. The first term on the 

right side of Eq. (1.4) is the field-like term leading to precession of the magnetization about the 

effective magnetic field direction. The second term leads to relaxation of the magnetization 

towards this field. The direction of the spin transfer torque is either parallel to the damping torque 

or antiparallel to it, depending on the sign of the current. 
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Figure1-2. Illustration of the LLGS dynamics (reprinted from [14]). The magnetization (m) precession about 

the effective field direction (Heff). The green arrow illustrates the dissipative (damping) torque that tends to 

move the magnetization toward the effective field direction. The red arrow is the spin-transfer torque and 

the light-blue arrow is the effective field torque with an electron spin polarization collinear with the effective 

field. 

 

1.3.3 Spin-transfer torque and STT-MRAM 

The discovery of the possibility to manipulate and induce switching of the magnetization by spin-

polarized currents via the spin transfer torque (STT) effect. Spin transfer torque is an effect in 

which the orientation of a magnetic layer in a magnetic tunnel junction or spin valve can be 

modified using a spin-polarized current. An electric current is generally unpolarized consisting of 

50% spin-up and 50% spin-down electrons, while a spin polarized current is one with more 

electrons of either spin. The spin polarization current can be generated by passing the current 

through the “fixed layer”. If the spin polarized current is then directed into the “free layer”, the 

angular momentum of the electrons can be transferred to this layer, changing its magnetization 

orientation [15]. 

In the absence of any spin transfer torque or damping, if m is instantaneously tilted away from z-

axis then it will precess in a circle, due to the torque from the applied magnetic field. If there is 
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damping but still no applied current, the torque due to damping will push m back toward the low-

energy configuration along z-axis. When a current is applied, the situations are shown in Figure1-3. 

For current below a critical current, m spirals back toward the low-energy direction due to 

magnetic damping. For current larger than the critical value, the spin transfer torque causes M 

spiral away from z-axis and finally stay in either stable steady-state precession at large precession 

angle or magnetic reversal [15]. 

 

Figure1-3. Illustration of spin-torque-driven dynamics for the magnetization vector. (a) Damped motion 

under low current, and either stable precession (b) or switching (c) under large current. (figure reprinted 

from [15]) 

 

As shown in the above, the spin transfer torque offers an effective way to manipulate the 

magnetization of ferromagnets, which is very important in memory and logic spintronic 

application. However, conventionally that is realized through transferring spin angular momentum 

between a ‘fixed’ and a ‘free’ ferromagnetic layer separated by a non-magnetic spacer, and the 

dependence on a polarizer ferromagnetic layer largely confined its application. 

The MRAM biased on STT writing mechanism is call STT-MRAM. Figure 1-4 (a) shows the typical 

structure of a 1 transistor—1 MTJ (1T-1R) STT-MRAM cell. The MTJ is composed of a bi-stable 

free layer and a pinned layer separated by a tunneling oxide. The read-out process is applying a 

smaller current and measure the voltage via the tunneling magnetoresistance (TMR) effect. The 

writing process is performed by passing a spin-polarized current, which transfers some of its 
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momentum to the “free layer”, inducing a torque that can result in switching depending on the 

direction of the current. When the current is from “fixed layer” to “free layer”, the transmitted spin 

polarized current writes the magnetization of “free layer” from antiparallel state to parallel state. 

When the current direction reverses, the spin polarized current reflected at the “fixed layer” write 

the “free layer” magnetization from parallel to antiparallel. The schematic of the STT writing 

process is shown in figure 1-4 (b) and (c). 

 

Figure 1-4. (a) the structure of a 1 transistor—1 MTJ (1T-1R) STT-MRAM cell (reprinted with permission 

from [16]. (b) STT writing mechanism from “1” (antiparallel) to “0” (parallel). (c) STT writing mechanism 

from “0” (parallel) to “1” (antiparallel) 

 

1.3.4 Spin-orbit torque and SOT-MRAM 

Although STT-RAM has the advantage of non-volatility, low writing power, and high speed, some 

shortcomings are still limiting the reliability and endurance of STT-MRAMs. First, the current 

density required for writing is very large thus can causing the damage of the MTJ barriers, 

especially when the writing time reaches nanosecond scale for high frequency applications. Second, 

since the writing current and reading current share the same path through the MTJ, it becomes 

more challenging to fulfill a reliable reading without ever causing switching at advanced 

technology nodes [17]. Third, the dependence on a polarizer ferromagnetic layer largely confined 

its applications. researchers have recently discovered some other alternative methods to generate 
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spin torque without a polarizer ferromagnetic layer and with separate writing and reading path 

[18]. These methods includs the spin Hall effect, Rashba and Dresselhaus effect. In these effects, 

the non-equilibrium spin accumulation due to spin-orbit coupling, could give rise to a torque on 

the magnetization. This phenomenon is also known as spin-orbit torque (SOT). 

In materials with strong spin-orbit coupling, the spin degeneracy of electrons and holes is broken, 

so the conducting electrons of holes would experience an effective magnetic field from SOC. As a 

result, when the current is passing through, part of the conducting current would be converted into 

a net spin current in the transverse direction. The spin polarization direction, conducting current, 

and spin current direction are perpendicular with each other. In this phenomenon, a perpendicular 

spin current is generated through a conducting current, which is also called Spin Hall Effect (SHE). 

From the experimental perspectives, many experimentalists have been working to experimentally 

demonstrate and quantitatively measure the SHE in different materials, including semiconductors 

like GaAs [19] and ZnSe [20] and heavy metals like Ta, W, and Pt [21]. The SHE is especially 

pronounced in heavy metal materials, and many researchers have been working on the spintronic 

application of SHE on heavy metal recently. In materials with broken space inversion symmetry as 

discussed in SOC section, Edelstein-Rashba SOC would also result in the conduction current to 

spin current conversion, and thus producing SOT. In contrary to the bulk spin hall effect, Rashba 

SOT usually happens in the two-dimensional surface or interfaces. Recent years, the study of 

Rashba SOT is usually in the metal system, interface of complex oxide, 2D materials, topological 

insulators, and antiferromagnetic materials. 

The schematic of SOT induced perpendicular magnetization switching through an in-plane current 

is shown in figure 1-5. In the heterostructure of a ferromagnetic layer (FM) and nonmagnetic heavy 

metal layer (HM), the in-plane conducting longitudinal current would generates a perpendicular 

spin current, with the spin polarization along transverse direction. The spin-polarized current was 

injected into the FM layer and interacts (angular momentum exchange) with the local 

magnetization (usually the 3d or 4f electrons of the FM), thus producing an effective SOT field 
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onto the FM layer. The direction of the effective SOT field is along the cross product of spin 

polarization and magnetization ( m  ), which is indicated as the red dashed line in figure 1-5. If a 

small external magnetic field is applied to the FM layer with perpendicular anisotropy (PMA), the 

magnetization would be tilted by a small angle. As a result, the SOT effective field would have a 

perpendicular component. If the SOT field is strong enough, the magnetization could be switched. 

For a current with reverse direction, the switching direction would also be reversed. 

 

Figure 1-5. SOT writing mechanism of the HM/FM bi-layer. The yellow arrow indicated currents flow 

direction, and red dashed arrow show the direction of SOT effective field. 

 

The MRAM biased on SOT writing mechanism is call SOT-MRAM. Figure 1-6 (a) shows the 

typical three-terminal structure of a SOT-MRAM cell, whose read-out process is based on TMR 

and writing based on SOT. Compared to spin transfer torque, spin-orbit torque has several 

advantages regarding the switching efficiency, power consumption, switching speed and 

scalability. Spin-orbit torque-based devices have become the research hot spot in recent years, 

which has very promising application prospects in novel spintronic memory and logic devices. 

In 2011, Miron I. M. et al [22] demonstrated switching of a perpendicularly magnetized cobalt 

dot driven by in-plane current injection at room temperature, as shown in figure 1-6 (b).  
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Figure 1-6. (a) the structure of a SOT-MRAM. (b) Device schematic and current-induced switching [22]. 

 

1.4 Hall Resistance 

The Hall measurement is very important for quantitatively determining the transport properties of 

semiconductors, such as carrier density and Hall mobility. The schematic of a hall bar set-up is 

drawn in Figure 1-7. The current is along the ±y direction, and the direction of external magnetic 

field is described by two angles: polar angle 𝜃 and azimuthal angle 𝜑. Magnetoresistance and Hall 

resistance are measured using a four-probe technique.  

 

Figure 1-7. schematic of a Hall bar structure for electrical transport measurement. 

For magnetic materials, when the magnetic field is applied perpendicular to the film plane, the 

general expression is given by [23] 
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Hall OHE AHE O Z A zR R R R H R m= + = +                                                            (1.5) 

Where 𝑅OHE and 𝑅AHE are the ordinary Hall Effect (OHE) resistance and Anomalous Hall Effect 

(AHE) resistance, respectively. HZ is perpendicular magnetic field and mz is perpendicular 

component of magnetization. For a nonmagnetic material, mz is zero thus the 𝑅Hall – H curve 

shows a linear relationship. Form the VHall and VMR measurement, we can further obtain the carrier 

type, carrier density and its mobility. For ferromagnetic materials, the 𝑅Hall – H curve will develop 

a hysteresis loop due to the ferromagnetic phase. When the magnetic field applied has in-plane 

components, the Hall resistance will have a component originated from planar Hall Effect (PHE), 

which has the same origin with the anisotropic magnetoresistance (AMR). Typically, the planar 

Hall resistance can be expressed by 𝑅PHE = 𝑅P𝑚x𝑚y, where 𝑅P is the PHE coefficient, 𝑚x and 𝑚y are 

the magnetization component along x and y directions, respectively. As a result, the expression for 

Hall resistance should be modified as 

Hall OHE AHE AHE O Z A z P x yR R R R R H R m R m m= + + = + +                                             (1.6) 

 

1.5 Thesis Outline 

In chapter 2, we will discuss the spin transport properties of magnetic insulators (MI) thulium iron 

garnet (TmIG) and heavy metal (HM) tungsten (W) heterostructures, and further discuss the 

mechanism of the anomalous hall effect and spin-orbit torque in the HM/MI bilayer system. In 

chapter 3, we measured the SOT efficiency in TmIG/W bilayer, and achieved efficient magnetic 

switching of TmIG by current-induced SOT in tungsten (W) layer with very low critical current 

density. Further thickness dependent study shows the SOT efficiency increases with the thickness 

of TmIG, which is in consistence with the theoretical proposed Ms-effect. In chapter 4, we briefly 

summarize all important things discussed above and give a perspective of next steps in TmIG/W 

study. 
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CHAPTER 2 

Spin Transport of Magnetic Insulators and Heavy Metal 

Heterostructures 

The interplay between heavy metals (HMs) and magnetic insulators (MIs) in heavy 

metal/magnetic insulator (HM/MI) bilayer systems has attracted tremendous attention from both 

fundamental research and practical applications. Compared to the HM/FM bilayer system, where 

the FM is usually conducting materials, insulating magnetic materials has some special advantages. 

First, the HM/MI bilayer benefits from the low Gilbert damping in Mis, thus has wide applications 

in ultrafast spin dynamics. Second, different from magnetic metal cases, MIs only allow spin 

information to propagate through magnons, instead of itinerant electrons. The absence of Ohmic 

loss from the magnetic layer makes HM/MI bilayers more energy efficient than HM/magnetic 

metal cases. Interestingly, although conduction electrons in HM cannot pass across the interface 

into the MI layer, the spin current can still penetrate the interface via the s-d exchange interaction, 

which also gives rise to SOT. As a result, the HM/MI system offers wide opportunities for low-

power ultra-fast spintronics. 

2.1 Magnetic insulators 

2.1.1 Structure and properties of RIG 

Among a variety of magnetic insulator materials, rare earth iron garnet (RIG) family has attracted 

the most attention for their unique spin dynamic and magneto-optical properties since 1960s. 

Compared with other magnetic insulators, such as EuS and EuO, RIG family has a high Curie 

temperature (~550 K) and a large band gap. Figure 2-1 (a) shows the structure of rare earth iron 

garnets, which are cubic crystals with a chemical formula R3Fe2Fe3O12. It has two octahedral sites 
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and three tetrahedral sites occupied by Fe, and three dodecahedral sites occupied by Rear earth 

atoms [24].  

 

Figure 2-1. (a) structure of RIG. (b) and (c) magnetization configurations of two sublattice above and below 

magnetization compensation temperature a magnetic field. (figure reprinted from [24]) 

 

As shown in figure 2-1 (b), the two octahedral Fe (a site) and three tetrahedral Fe (d site) are 

antiferromagnetic coupled, and the magnetization of rear earth atom (c site) is antiferromagnetic 

coupled to the net magnetization of the iron atoms, namely antiparallel with the magnetization of 

tetrahedral Fe. It is obvious that RIG consists of two antiferromagnetic coupled sublattices, so it is 

a ferrimagnetic material. Usually there is a magnetization compensation temperature Tcomp where 

the magnetization of each sublattice canceled out with each other. Above Tcomp the Iron sublattice 

dominants, while below Tcomp the rear earth sublattice dominant. When emerged in a magnetic 

field, the total magnetization will be aligned with magnetic field, resulting two different 

magnetization configurations at high and low temperature, as shown in figure 2-1 (b) and (c). 

2.1.2 Magnetic characterization of TmIG 

To access SOT and realize current induced magnetization switching (CIMS), we prepare high-
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quality TmIG thin films with different thickness tTmIG and characterize their magnetic properties. 

The TmIG film is grown on Nd3Ga5O12 substrate by pulsed laser deposition. The sufficiently tensile 

strain induced by large lattice mismatch between TmIG and underlying substrate enables robust 

perpendicular magnetic anisotropy (PMA) for TmIG films [25]. Atomic force microscopy image 

(figure 2-2 a) shows that the TmIG thin films has an atomically flat surface with mean roughness 

as low as 0.1 nm, providing a sharp interface for efficient spin momentum transfer. Figure 2-2 (b) 

and (c) shows the magnetic moment as a function of an out-of-plane field measured by 

superconducting quantum interference device (SQUID) at room temperature, and the square 

shape hysteresis loop indicates the TmIG has perpendicular anisotropy. We measured total 

magnetic moment as a function of temperature for different TmIG thicknesses, and all these 

samples shows Curie temperature far above room temperature. 
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Figure 2-2. (a) Atomic force microscopy image of a 10 nm-thick TmIG film. (b) and (c) Magnetic moment as 

a function of an out-of-plane magnetic fields for TmIG thin films with different thicknesses at room 

temperature.  (d) Total magnetic moment as a function of temperature for different TmIG thicknesses. The 

solid lines are power-law fits to ( )0 1 / CM M T T


= − . The nominal thin film area is 5 × 5 mm2. 

 

We observe a significant reduction of MS with decreasing film thickness from a value close to the 

bulk MS at 9.6 nm. This thickness-dependent MS in TmIG thin films provides a unique platform to 

test the MS dependent SOT, which was theoretically predicted to increase with MS  [26]. 

 

Figure 2-3. Saturation magnetization as a function of TmIG thickness at room temperature 

 

2.2 Magneto-transport in TmIG/W bilayers 

After sputtering 5nm tungsten layer on top, we fabricate W(5nm)/TmIG(tTmIG) thin films into Hall 

bar devices (Figure 2-4a) for magneto-transport measurement. The anomalous Hall resistance 
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(AHR) in the W/TmIG is accurately determined by the sharp anomalous Hall hysteresis at low 

fields (Figure 2-4b). The transverse planar Hall resistance (PHR) is measured by rotating the 

magnetization in the xy-plane (Figure 2c). The spin Hall magnetoresistance (SMR) is measured 

with the increasing magnetic field along x direction. For the 9.6nm thick TmIG sample, it shows a 

RAHE = 18Ω, RPHE = 35Ωand RSMR = 90Ω. 

 

Figure 2-4 (a) Experimental setup for measuring resistance, spin torque and current-induced switching. (b) 

Hall resistance as a function of an out-of-plane magnetic field in the W(5 nm)/TmIG(9.6 nm). (c) Hall 

resistance as a function of a rotating in-plane constant magnetic field (5 kOe) for the W (5 nm)/TmIG(9.6 

nm), where SMR-induced PHE is observed.  (d) Longitudinal resistance as a function of an external 

magnetic field along the ±x direction in the W (5 nm)/TmIG (9.6 nm). 
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The popular explanation for observed AHE, PHE, and SMR in nonmagnetic metal and 

ferromagnetic insulator bilayer includes magnetization proximity effect, and spin current effect 

[27][28]. According to the SMR theory [28], the observation of sizeable AHR and PHR (SMR) 

indicates that there is a significant spin current being transmitted across the W/TmIG interface or 

a sizable spin mixing conductance. 
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CHAPTER 3 

Spin-orbit Torque induced Magnetization Switching 

3.1 Spin-orbit Torque Measurement 

3.1.1 Second-harmonic Method 

To examine the spin-orbit torque efficiency in W/TmIG bilayers, we quantify both damping-like 

torque efficiency 𝜉DL and field-like torque efficiency 𝜉FL by using the second-harmonic analysis of 

both anomalous and planar Hall. In second-harmonic measurement, we apply an AC current with 

frequency (ω) along longitudinal (y) direction, and measure the second harmonic (2ω) Hall voltage 

using lock-in technique. 

 

Figure 3-1 Illustrations of the magnetization vector under the AC current (ω) induced in-plane (a) and 

out-of-plane (b) spin-orbit effective fields 

 

The Hall resistance without ordinary Hall effect is given by 

2

Hall AHE AHE A Pcos sin sin cosR R R R R   = + = +                                     (3.1) 

where  and   are the polar and azimuthal angles for the magnetization. When the magnetization 

is dragged into the film plane ( 90   ) by a large magnetic field, and in the meantime a small AC 
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current is applied, the magnetization direction will deviate and oscillates around the equilibrium 

position. The deviation amplitude under the (field-like) in-plane SOT field is  , and under the 

(damping-like) out-of-plane SOT field is   as shown in Figure 3-1.  

ext K

sin
(

s
)

inDLH t
t

H H

 
 ⊥ =

−
 ,   

FL

ext

sin sin
( )

H t
t

H

 
 =                                           (3.2) 

where Hext is the external magnetic field, HK is the out-of-plane anisotropy field, HDL⊥ sinφ comes 

from the cross product of magnetization and spin polarization, and HFL|| sinφ represents the 

component of the HFL|| that is perpendicular to magnetization. Finally, the second-harmonic Hall 

resistance (RH
2ω) in a single domain subjected to an in-plane magnetic field can be written as [29] 

2 2 2 FL AHE DL
H FL DL PHE

ext ext K

cos2 sin sin cos2 sin sin
2

H R H
R R R R

H H H

       = + = +
−             (3.3) 

By applying a large constant in-plane magnetic field along different directions, we measure the 

second harmonic Hall signal. Then by fitting the RH
2ω with the above equation, we can get separate 

the PHE component and AHE component (figure 3-2 a). Then we change the magnitude of the 

magnetic field and repeat the rotation angle measurement and fitting. Finally, by fitting the AHE 

component obtained at various magnetic field to 1/|Hext-HK|, we can finally get the damping-like 

SOT effective field (figure 3-2 b). Similarly, by fitting the PHE component to 1/|Hext|, we can get 

the field-like SOT effective field. The damping like SOT field, which has large out of plan 

component, is the key for current induced magnetization switching. In the following measurement, 

our discussion is mainly focused on the damping like SOT efficiency. The damping like SOT 

efficiency 𝜉DL can be calculated from 𝜉DL =
2𝑒𝑀s𝑡TmIG𝐻DL

ℏ𝐽ac
  [30], where 𝑒 is the electron charge, ℏ is 

the reduced Planck constant and 𝐽ac is the applied current density. We observe a characteristic 

increase of 𝜉DL as tTmIG increases with a saturation length around 10 nm (see Figure 3-2c). Similarly, 

previous experiments have revealed that saturation magnetization increases and the saturated 
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around TmIG=10nm.  

 

Figure 3-2. (a) Second-harmonic Hall resistance as a function of in-plane azimuthal angle for the external 

magnetic field 2500 Oe for the W (5 nm)/TmIG (3.2 nm), where the black curve is the fit to Eq. (1). Both 

cos2φsinφ (blue curve) and sinφ (red curve) angle dependencies are revealed. (b) Extracted damping-like 

torque contribution as a function of the inverse of external magnetic field subtracting the anisotropy field. 

The large intercepts are the spin Seebeck resistance. (c) Damping-like spin-orbit torque efficiency as a 

function of TmIG thickness. (d) Theoretical understanding of role of thermal fluctuation on the DL  as a 

function of TmIG MS. 

 

Here, we discuss the mechanism for the TmIG thickness dependence of 𝜉DL. We plot 𝜉DL as a 
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function of saturated magnetization, and it shows that  𝜉DL strongly depends on MS, which we 

referred as MS-effect. This MS-effect has been theatrically proposed but has not been 

experimentally reported yet. In the perturbative treatment, the spin current absorbed by the 

ferromagnet can be obtained up to second order in the exchange interaction to yield the damping-

like spin-orbit torque with 𝜉DL
2  ~ 𝑚S

2 [31]. As shown in figure 3-2d, when the MS is small, 
DL  is 

proportional to the MS squared. Insets show two cases: in the left inset, the magnetic moment 

density is small and thus the number of spin channels is small, resulting in a small spin current 

injection; in the right inset, the magnetic moment density is large and thus the number of spin 

channels is large, resulting in a large spin current injection. 

3.1.2 Loop-shift Method 

To further support the observation of MS-dependent 𝜉𝐷𝐿 , we perform the current-induced 

hysteresis loop shift measurement to independently determine 𝜉𝐷𝐿  [32]. In this method, we 

characterize the out of plan damping like SOT effective field by measure the perpendicular 

magnetic hysteresis loop shift, rather than through second harmonic Hall measurement. The 

mechanism is illustrated in figure 3-3. When applied a longitudinal DC current, there would 

emerge a perpendicular damping-like SOT field. Then swipe a smaller perpendicular magnetic 

field, we could expect the SOT field would either assist or block the perpendicular field induced 

magnetization switching. As a result, by applying DC current along opposite direction, we would 

expect the hysteresis loop shift in the opposite direction. 

        

Figure 3-3 schematic of the loop-shift method for damping like SOT field measurement. 
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The results are shown in figure 3-2. We can see that the loop shift method qualitatively reproduces 

the results from the second-harmonic measurement as shown in figure 3-2. The consistency 

strongly suggests the existence of the MS-effect on 𝜉𝐷𝐿. 

 

Figure 3-4. Determination of damping-like torque efficiency using the current-induced hysteresis loop shift 

method at room temperature. (a) Out-of-plane Hall hysteresis loops of W/TmIG(3.2nm) at Idc = + 2.5 mA 

and -2.5 mA with an in-plane external field Hy = -130 Oe applied. (b) Switching fields as a function of Idc 

with Hy = -130 Oe. (c) Out-of-plane hysteresis loop shift per mA as a function of the in-plane external 

magnetic field along the ± y direction. (d) Determined damping-like torque efficiency as a function of MS. 

The results from the second-harmonic method are shown as a comparison. 
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3.2 SOT Switching 

After quantifying the spin torque efficiency, we perform the current-induced magnetization 

switching experiments for W/TmIG bilayers with different tTmIG. Obviously, the ultimate goal of 

enhancing SOT efficiency through material and structure optimization, is to realize energy-

efficient high-speed magnetization switching. The switching experiment is carried out with an 

external field along the current direction, and the switching is done by applying a 5 ms pulse with 

varying current amplitude, while the readout of magnetization status is through AHE. 

The switching curve with the assistance of an in-plane magnetic field is shown in figure 3-5a, and 

the whole switching phase diagram is obtained by mapping the switching curve measured under 

various in-plane field (figure 3-5b). The switching direction is consistent with the sign of spin Hall 

angle of W and is opposite to the Pt/TmIG case [33]. We notice that the switching current is as low 

as ~3.5 × 1010 A/m2 in the W(5 nm)/TmIG(6 nm) with the assistance of an in-plane magnetic field 

of only 135 Oe. This switching current is five times smaller than the Pt(5 nm)/TmIG(8 nm) case 

[33]. 

 

Figure 3-5 (a) Current-induced magnetization switching in W/TmIG with tTmIG=6nm, where the external 
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field is along the current direction. (b) Switching phase diagram. 

 

The switching is achieved in all W/TmIG sample with TmIG thicknesses ranging from 3.2nm up to 

15nm (figure 3-6). The switching phase diagrams are also measured for all these samples, shown in 

figure 3-7. It is shown that even for the 15nm thick TmIG, the switching current is as low as 7.5 × 

1010 A/m2, which is still two times smaller than the Pt(5 nm)/TmIG(8 nm) case reported in [33]. 

This can be partially understood from a larger damping-like torque efficiency 𝜉DL (~ 0.02) in the 

W/TmIG compared with the value (~ 0.01) in Pt/TmIG. This suggests that the large spin Hall 

angle in W enables more energy efficient magnetization switching. 

  

Figure 3-6 Current-induced magnetization switching in W/TmIG with tTmIG ranging from 3.2 nm to 15 nm 
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Figure 3-7 Switching phase diagram of W/TmIG with tTmIG ranging from 3.2 nm to 15 nm 

 

Figure 3-8 TmIG thickness dependent current switching efficiency, which is estimated from the 

depinning (coercive) field over switching current density in the zero-external field limit. 
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quantitatively compare the switching efficiency of W/TmIG devices with different tTmIG, we define 

an effective switching efficiency as 𝜂 =
2𝑒𝑀s𝑡TmIG𝐻P

ℏ𝐽sw(𝐻y→0)
  [34], where 𝐻P is the domain wall depinning 

field estimated from the coercive field and 𝐽sw(𝐻y → 0) is the zero-field limit of current density in 

the switching phase diagram.  This formula is applied when the CIMS is achieved through domain 

nucleation and domain wall motion in the Hall bar devices, and indeed the switching process is 

through domain wall nucleation and motion due to the large scale of our Hall bar devices. As 

shown in figure 3-7, the switching efficiency 𝜂 increases with tTmIG, and then saturated around 

10nm. This result agrees well with the result in figure 3-2, which is self-consistent that that a larger 

SOT efficiency 𝜉𝐷𝐿 results in a larger switching efficiency 𝜂. 
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CHAPTER 5 

CONCLUSION 

1.1. Summary 

In this thesis, based on the magneto transport measurement, we studied the thickness dependent 

SOT efficiency of the thulium iron garnet (TmIG)/ tungsten (W) bilayer structure, using both 

second harmonic method and loop-shift method. We further achieved SOT magnetic switching the 

TmIG/W bilayer with different TmIG thickness. The switching current density is as low as 7.5 × 

1010 A/m2 for the W (5 nm)/TmIG (15 nm).  It is revealed that, both SOT efficiency and switching 

efficiency increase with the saturation magnetic momentum, which is is in consistence with the 

theoretical proposed MS-effect. We also developed an atomic spin model to numerically simulate 

the fast domain wall motion in ferrimagnetic material near its angular compensation temperature, 

aiming to discuss the possibility for high speed magnetization switching is TmIG/W bilayer. This 

finding shed light on the understanding of SOT in MIs and promote the development of MI-based 

low-power high-speed spintronics 

 

1.2. Future Work 

The future work would be finishing the simulation of fast domain wall motion in ferrimagnet near 

angular momentum compensation point, and then carry out new experiment to study the ultra-fast 

pulse switching of TmIG/W bilayers. 
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