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Abstract 
 

Leveraging Students’ Intuitive Knowledge About the Formal Definition of a Limit 

by 

Aditya Prabhawa Adiredja 

Doctor of Philosophy in Science and Mathematics Education 

University of California, Berkeley 

Professor Alan H. Schoenfeld, Chair 

This dissertation explores the roles of students’ intuitive knowledge in learning formal 
mathematics. The formal definition of a limit, or the epsilon-delta definition, is a critical topic in 
calculus for mathematics majors’ development. It is typically the first occasion when students 
engage with rigorous, formal mathematics. Research has documented that the formal definition is 
a roadblock for most students in calculus, but has also de-emphasized the productive role of their 
prior knowledge and sense making processes. The temporal order of delta and epsilon has been 
suggested as a conceptual obstacle for students in understanding the structure of the formal 
definition. The dissertation investigates the nature of and the degree to which the temporal order 
of delta and epsilon is a difficulty for students. The fine-grained analysis of semi-structured 
interviews with elementary calculus students reveals a large repertoire of reasoning patterns 
about the temporal order. A microgenetic study of one student shows the diversity of knowledge 
resources and the complex process of reasoning. Knowledge in Pieces (diSessa, 1993) and 
Microgenetic Learning Analysis (Parnafes & diSessa, 2013, Schoenfeld, Smith & Arcavi, 1993) 
provide frameworks to explore the details of the structure of students’ prior knowledge and their 
role in learning the topic. The study offers and examines the impact of an instructional treatment 
called the Pancake Story, designed specifically to productively link to students’ intuitive 
knowledge. Leveraging the notion of quality control, the instructional treatment offers an 
alternative to the idea of functional dependence in reasoning about the temporal order of delta 
and epsilon. A detailed case study shows the process by which a student incorporates resources 
from the story into her existing knowledge about the temporal order. The findings in this 
dissertation support the claim that understanding the process of learning requires serious 
accounting for student’s prior knowledge.  
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CHAPTER 1: INTRODUCTION AND OVERVIEW 
 

In 2012, the President’s Council of Advisors on Science and Technology (PCAST) called for 
1 million additional college graduates in Science, Technology, Engineering, and Mathematics 
(STEM) fields based on economic forecasts (Executive Office of the President, PCAST, 2012). 
Within STEM, the number of mathematics graduates is very low. For example, UC Berkeley 
Common Data Set for 2012–2013 (University of California, Berkeley, 2012) reported that 
mathematics accounted for 3% of the degrees conferred, whereas engineering and the biological 
sciences accounted for 12% and 13% respectively.1  

Calculus is the first opportunity for students to engage with theoretical mathematics and to 
make the transition into advanced mathematical thinking. Calculus courses often act as a 
gatekeeper into mathematics and other STEM majors. However, exemplary mathematics 
programs use them as the primary source for recruiting mathematics majors (Tucker, 1996). 

The formal definition of a limit at a point, typically referred to as the epsilon-delta definition, 
is an essential topic in mathematics majors’ development, which is often introduced in calculus. I 
introduce it here briefly for reference. I explore the conceptual underpinnings and conjectured 
student’s learning trajectories for the formal definition in a later chapter. 

The epsilon-delta definition of a limit, hereafter the formal definition, says that the limit of a 
function f (x) as x approaches a is L—written as follows— 

€ 

lim
x→a

f (x) = L   
if and only if, for every number ε > 0, there exists a number δ > 0, such that all numbers x that 
are within δ of a (but not equal to a), yield f (x) values that are within ε of the limit L. This is 
often written as “for every number ε > 0, there exists a number δ > 0 such that if 0 <| x – a |< δ 
then | f (x) – L |< ε”.2 Informally, one might say, “If L is the limit, then for however close you want 
f (x) to be to L, I will be able to constrain the x-values so that it is.” I return to this intuitive idea 
shortly. 

The formal definition provides the technical tools for demonstrating how a limit works and 
introduces students to the rigor of calculus. Yet research shows that thoughtful efforts at 
instruction at most leave students—including intending and continuing mathematics majors— 
confused or with a procedural understanding about the formal definition (Cottrill, Dubinsky, 
Nichols, Schwingendorf, Thomas and Vidakovic, 1996; Oehrtman, 2008; Tall & Vinner, 1981).   

Although studies have documented that the formal definition is a roadblock for most 
students, little is known about how students actually attempt to make sense of the topic, or about 
the details of their difficulties. Most studies have not prioritized students’ sense making 
processes and the productive role of their prior knowledge (Davis & Vinner, 1986; Przenioslo, 
2004; Williams, 2001). This may explain the reported minimal success of their instructional 
approaches (Cottrill et al., 1996; Davis & Vinner, 1986; Tall & Vinner, 1981; Williams, 2001). 
Thus, understanding the difficulty in the teaching and learning of the formal definition warrants a 
closer look—with a focus on student cognition and with attention to students’ prior knowledge. 

                                                
1 Stanford University reported similar numbers with 3.35% for mathematics and 14.97% for 
engineering (Stanford University, 2012). 
2 For the complete definition and an example of an epsilon-delta proof, see Appendix A. 2 For the complete definition and an example of an epsilon-delta proof, see Appendix A. 
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It also calls for a theoretical and analytical framework that focuses on understanding the nature 
and role of students’ intuitive knowledge in the process of learning.  

Knowledge in Pieces (KiP) as a theoretical framework (diSessa, 1993; Smith et al., 1993) 
and a related analytical framework, Microgenetic Learning Analysis (MLA) (Parnafes & 
diSessa, 2013; Schoenfeld, Smith and Arcavi, 1993) share the focus of characterizing the nature 
and structure of students’ intuitive knowledge, and documenting moment-by-moment or micro 
changes in learning—a microgenesis analysis on knowledge and learning. Originally developed 
in the context of physics education, the framework has been proven useful to provide detailed 
accounts of student cognition in mathematics (Campbell, 2011; Wagner, 2006; Pratt & Noss, 
2002). This dissertation extends the application of KiP and MLA to the investigation of student 
cognition of the formal definition of limit.   

A small number of studies has begun to explore more specifically students’ understanding of 
the formal definition (Boester, 2008; Knapp and Oehrtman, 2005; Roh, 2009; Swinyard, 2011; 
Swinyard & Larsen, 2012). These studies suggest that students’ understanding of a crucial 
relationship between two quantities featured in the formal definition, epsilon (ε) and delta (δ), 
warrants further investigation. Davis and Vinner (1986) used the term temporal order to describe 
the relationship (p. 295). Davis and Vinner (1986) used the phrase temporal order to describe the 
relationship between 𝜀 and N in the formal definition of a limit of a sequence, but it also 
describes the relationship between ε and δ. For the rest of the dissertation I use the phrase the 
temporal order to refer to the temporal order of delta and epsilon, unless otherwise specified.  

Epsilon and delta in the formal definition follow the sequential order epsilon first, then delta. 
The authors find that students often neglect the important role of the temporal order. Swinyard 
(2011) posits that the relationship between the two quantities was one of the most challenging 
aspects of the formal definition for the students in his case study. Knapp and Oehrtman (2005) 
and Roh (2009) document this difficulty for advanced calculus students. This difficulty was also 
prevalent among the majority of calculus students who struggled with the formal definition in 
Boester (2008). While studies have shown the existence and prevalence of this difficulty, little is 
known about why this important relationship is difficult for students.  

The relationship between the quantities epsilon and delta in the definition can be described 
using the idea of quality control in manufacturing an item. The conceptual structure at issue can 
be described as follows: given a permissible error in the measurement of the output (ε), one 
determines a way to control the input to achieve that result. One does so by determining the 
permissible error in the measurement of the input (δ) based on the given parameter for the output 
(ε).3 In this way the error bounds follow the following sequential order, error bound for the 
output, then the error bound for the input. This is because the error bound for the output is given. 
In some ways, the error bound for the input could be seen as being dependent on the given error 
bound for the output. Epsilon can be seen as the error bound of the output whereas delta is the 
error bound for the input. Therefore, the epsilon and delta follow the order of epsilon first, and 
then delta; delta can thus be seen as depending on epsilon.  

A working hypothesis for this dissertation is that relevant and important intuitive knowledge 
resides in everyday understanding of quality control. Therefore, I have developed an 
instructional analogy called the Pancake Story, in which the idea of quality control is 

                                                
3 It is atypical to associate the term “error” to the input because errors usually occur in the 
output. However, I used the word error to describe deviations in the input and the output in order 
to conceptualize both epsilon and delta as error bounds.  
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exemplified in the context of pancake making (for the complete story, see Appendix B). The 
story was designed to access students’ intuitive knowledge and to assist students in making 
connections between their prior knowledge and the formal definition.  

This dissertation explores how calculus students make sense of the formal definition of limit 
in relation to their intuitive knowledge. Specifically, it investigates students’ understanding of 
the temporal order of delta and epsilon, an instrumental relationship that sets the structure of the 
formal definition. Through a fine-grained analysis of student interviews, this study addresses the 
following questions: 

1. How do students make sense of the temporal order of delta and epsilon? 
2. How does the Pancake Story influence students’ understanding of the temporal order?  

My hypothesis, consistent with the literature, is that many students would not conclude that 
epsilon came first. Students would have a large repertoire of ideas about the temporal order, and 
that many of these ideas suggest that delta came first. I anticipate that students would take up the 
intuitive ideas from the story. However, the process of aligning their prior knowledge with 
productive resources from the story would be complex (and interesting!).  

This study is one of the first microgenetic studies of a topic at the heart of formal 
mathematical thinking. It focuses on the detailed characterization of the accessible resources 
students can bring to the topic. A detailed understanding of the complexity of student cognition 
can assist in making this historically challenging topic more accessible for students. One can 
then develop instruction that is analogous to or even more productive than the current 
instructional treatment, but importantly, one that attends to students’ prior knowledge and allows 
them to make connections to the formal definition of a limit.   

Overview of Dissertation 
The dissertation was organized around two strands of analysis. The first strand of analysis 

aims to uncover the structure of knowledge and the process of sense making about the temporal 
order of delta and epsilon as a result of the students’ prior instruction. The second strand of the 
analysis focuses on the influence of the Pancake Story on students’ understanding. It seeks to 
elaborate on the process of incorporating productive ideas from the story and aligning them with 
prior knowledge. The first strand of analysis is mainly explored empirically in Chapter 5 and 6, 
and Chapter 7 and 8 undertake the second strand of analysis. Chapters prior to the analysis 
chapters motivate and set up the discussion; chapters coming afterward tie together the main 
findings and discuss their implications.    

Chapter 2 elaborates on Knowledge in Pieces as a theoretical framework of this dissertation. 
It discusses some of the theoretical assumptions that guide the interpretation of data in the 
analysis. This theoretical framework also provides lens through which I review the literature in 
Chapter 3. 

The literature review in Chapter 3 argues two main points. First, the review motivates 
students’ understanding of the temporal order of delta and epsilon as a topic of investigation. 
Second, it argues for the particular methodology used in this dissertation: a microgenetic study of 
students’ thinking focusing on students’ prior knowledge, including their intuitive knowledge.   

Chapter 4 specifies the source of data for the analysis. It discusses the population of students 
whose knowledge is discussed in this dissertation. The students’ gender, ethnic and racial 
background, and academic majors are highlighted to create a multidimensional representation of 
who the students were. This chapter also reviews the design and revisions of the interview 
protocol and the Pancake Story.   
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Chapter 5 takes a first look at students’ sense making by investigating their reasoning 
patterns about the temporal order. I define a reasoning pattern as a common way that a group of 
students form a justification for the topic at hand. The chapter includes the way that I identify 
reasoning patterns in the data. This chapter also includes documentation of the claims students 
make about the temporal order based on their prior instruction.   

In Chapter 6, I present a microgenetic study of a student’s sense making process of the 
temporal order. I describe the way that the student negotiated and navigated through different 
knowledge resources before settling with the claim that epsilon came first. I define a knowledge 
resource as an idea consisting of a single or a collection of interrelated knowledge elements with 
a utility in a particular context. Particular methodology in identifying knowledge resources is 
included in this chapter.   

In Chapter 7, I describe productive intuitive ideas from the story that students took up. I 
document (new) reasoning patterns that emerged after students engaged with the story. I also 
report the changes that I observed in students’ claim about the temporal order after engaging 
with the story.   

The last analysis chapter, Chapter 8, focuses on a (different) student aligning productive 
resources from the story with her prior knowledge to make sense of the temporal order. This 
chapter focuses on which knowledge resources the student took up, and how she negotiated them 
with some of her prior knowledge. It also discusses some of the affordances of the Pancake Story 
for the student’s sense making process.  

The dissertation closes with a summary and a discussion of the findings from the four 
analytic chapters in Chapter 9. The discussion places the findings in the context of the broader 
literature discussed in Chapter 3. Theoretical, methodological and practical implications for the 
study wrap up the presentation of this study.  
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CHAPTER 2: THEORETICAL AND ANALYTICAL FRAMEWORK 
 

This chapter explains the theoretical perspective I take in this dissertation. Knowledge in 
Pieces influenced the design of the study and the analysis. In this chapter I discuss the theoretical 
framework for the study, and some of the relevant theoretical assumptions about knowledge and 
learning. This chapter also elaborates on the construct knowledge resource, whose identification 
is one of the foci of the analysis in Chapter 6. Lastly, the theoretical perspective is also used as a 
lens through which I review the literature in the next chapter.  

Knowledge in Pieces (KiP) 
The Knowledge in Pieces (KiP) theoretical framework (diSessa, 1993; Smith et al., 1993) 

argues that knowledge can be modeled as a system of diverse elements and complex 
connections. The nature of the elements, their diversity and connections are typical interests for 
studies using this framework. Uncovering the fine-grained structure of knowledge is a major 
focus of investigation, and characterizing knowledge using generic ideas like “concept” or 
“theory”, or the commonly used idea of “misconceptions” is viewed as uninformative and 
unproductive (Smith et al., 1993).  

Theoretical Assumptions About Knowledge 
Context specificity. One of the main principles of KiP is that knowledge is context specific 

(diSessa & Wagner, 2005, diSessa & Sherin, 1998, Smith et al., 1993). This means that the 
productivity of a piece of knowledge is highly dependent on the context in which it is used. In 
analysis, evidence for context-specificity of knowledge can be seen in the productivity of a piece 
of knowledge in one context but not in another. For example, the knowledge that “multiplication 
makes a number bigger” is productive in the context of multiplication with numbers larger than 
one. The knowledge is not productive in the context of multiplication with real numbers. Context 
variation can happen as a result of change in literal problem context, the passage of time or 
simply as knowledge is assessed more or less carefully.  

KiP assumes that each piece of prior knowledge in the students’ conceptual ecology (diSessa, 
2002) is productive in some context. In contrast to studies that focus on identifying students’ 
misconceptions, KiP focuses on building new knowledge on students’ prior knowledge, instead 
of focusing on efforts to “replace” students’ misconception (Smith et al., 1993). This means 
analysis focuses on ways that students build on their prior ideas while suspending judgment 
about their initial correctness.  

Productivity and diversity of intuitive knowledge. KiP also posits that students have a lot of 
intuitive ideas that can and should be leveraged in instruction. Given that KiP was developed in 
the context of physics, it is not surprising that KiP assumes that students have a lot of intuitive 
ideas about physics originating from their everyday experience. While KiP has been used in the 
context of mathematics education (Campbell, 2011; Pratt and Noss, 2002; Wagner, 2006), it is an 
empirical question the degree to which intuitive ideas are prevalent in the way that students think 
about mathematics. The cited studies provide some evidence that suggest that the assumption 
might also hold in mathematics. Detailed study of students’ use of intuitive knowledge in 
mathematics, especially its productive use of it, seems to be an excellent endeavor at this time. 

Activation and Stability of Knowledge  
Activation. KiP models the activation of knowledge elements in terms of priority. Knowledge 

elements are more likely to be activated if it had high cueing priority and/or reliability priority. 
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High cueing priority means that an element is more likely to be activated when other elements 
that are consistent with it are already activated. For example, the idea of functional dependence 
might have a high cueing priority when students are talking about functions and relationships 
between variables x and y. The opposite happens when other elements that contradict it are cued.  

High reliability priority means that a knowledge element is more likely to stay activated 
because it has been proven useful in the particular context in the past. For example, calculating a 
limit by evaluating the value of the function at the point of interest or near the point of interest 
can have a high reliability priority because the method has reliably led students to the correct 
answer about the limit in the homework.  

Stability. Context specificity also implies that contexts can also make the use of a piece of 
knowledge become unstable. diSessa (2004) considers this a dynamic aspect of contextuality. 
For example, a student might understand a particular idea in one context but a slight change in 
context might lead to a student thinking that the idea is no longer applicable.4 diSessa (2004) 
posits that instability can be driven by a change in the presentation, language or modality of 
subject’s expression (language, drawing or gesture).  

At the same time, a piece of knowledge can become stably used (in a particular context) over 
time for a variety of different reasons. One possibility is that the idea develops a high reliability 
priority with respect to the particular context at issue, or even in a range of similar contexts. For 
example, returning to the high reliability of function evaluation to calculate limit, perhaps over 
time this method proves productive in calculating limit in multiple contexts. Then the idea of 
functional evaluation to calculate limit might become stable in the sense that it is regularly used 
in a range of contexts, and comes to feel “necessary,” over time.  

In addition to persistent high reliability, the knowledge element can also become stable 
because it is a “part of conceptual systems that contain many useful elements whose breadth and 
utility are not immediately apparent [to the analyst].” (Smith et al., 1993, p. 152). The authors 
provide an alternative explanation to what many would call deeply entrenched misconceptions. 
The strength of a particular knowledge might come from its connections to useful elements that 
might not be clear to the researcher. Thus stability can also come from connections to other 
stable knowledge elements.    

Development of Knowledge 
With these assumptions about knowledge, studies using KiP investigates the development of 

knowledge as knowledge elements being refined, elaborated, or incorporated with others to 
become a new conception. This means that new elements might be generated as a result of new 
experiences or that their priorities within the network might change. That is, certain elements 
become more or less important based on feedback from activation in the contexts. Next I discuss 
the construct of reasoning patterns and knowledge resource as a grain size of knowledge element 
that I use in this dissertation.  

Reasoning Patterns and Knowledge Resources  

Reasoning Patterns 
Two of the four analysis chapters focus on the identification of reasoning patterns for the 

temporal order of delta and epsilon. I define a reasoning pattern as the essential common core of 

                                                
4 Many in the field would consider this an issue of transfer, but KiP views this as issues of 
contextuality. For a full discussion of this topic see diSessa and Wagner (2005).  
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reasoning found in a range of students concerning the justification for a particular claim. This 
means that a group of student argued for the same claim by attending to particular information 
and attaching similar meanings to the information. For example, many students argued that 
epsilon depended on delta by attending to the statement “if 0 <| x – a |< δ then | f (x) – L |< ε” and 
saying that the statement meant that delta implied epsilon. That is considered a “reasoning 
pattern” because a group of students attended to the same statement, attached the same meaning, 
to make the same conclusion.  

Reasoning patterns are context specific. That is, if a piece of knowledge is assessed in 
multiple ways, a reasoning pattern in specific to the way that it is being assessed in the current 
situation. This means that attending to the same information and attaching the same meaning in 
one context is not necessarily the same reasoning pattern in a different context.  

Since a reasoning pattern is a justification, then it is made up of several smaller knowledge 
elements. In this dissertation, the finer grain size of knowledge that I consider is what I call 
knowledge resources. Below, I include details about this construct, and elaborate on methods of 
identifying them in Chapter 6.  

Knowledge Resources 
I define knowledge resource as an idea consisting of a single or a small collection of 

interrelated knowledge elements with a particular utility in a particular context. A knowledge 
resource can be mathematical by nature, like a functional dependence, or something more 
informal or intuitive, like proportional variation (a small change in the independent variable 
leads to a small change in the dependent variable). In my analysis I aim to identify a particular 
type of knowledge resources. I focus on resources that describe the nature of, or roles in 
relationships between quantities. So for example, I would focus on resources like functional 
dependence, which explains the nature of a particular kind of relationship between two 
quantities, and de-emphasize the details of students’ understanding of numbers.  

KiP’s assumptions about knowledge apply to knowledge resources. I assume that knowledge 
resources by nature are not random and a student’s conceptual ecology includes ideas that are 
useful in various contexts. Knowledge resources are context specific. Their use and articulation 
might be different depending on the contexts in which they are cued.  

Knowledge resources are viewed neutrally in terms of correctness. While knowledge 
resources themselves are not correct or incorrect, their application, with other ideas in a 
particular context, might be. For example, functional dependence as an idea is neutral in terms of 
correctness. However, when it is applied in a particular way to describe the relationship between 
epsilon and delta (see later analysis) then that would become incorrect.  

A knowledge resource does not get “abandoned” arbitrarily. They might no longer be 
articulated, but a resource would not typically just disappear from a student’s conceptual 
ecology. Instead, resources can gradually decrease in their (cueing) priority. Sometimes some 
knowledge resources are taken to be obvious and understood, so there is no need for it to be 
articulated.  

A methodological orientation related to this theoretical assumption is that the analysis should 
aim to stay accountable to the dynamics of development of thinking and to the various contexts 
in which the knowledge resource is activated. That is, the analysis should optimally understand 
the activation of knowledge resources in various contexts by exploiting any relevant data that 
might inform the aim.  

Knowledge resources can interact with one another. The nature of this interaction can be 
supportive or competitive. Interaction between knowledge resources is defined as a simultaneous 
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activation of different knowledge resources, which influences the (cueing) priority (Kapon & 
diSessa, 2012; diSessa, 1993) of the relevant resources. For example, in a supportive interaction 
between a knowledge resource A and B, the activation of A increases the (cueing) priority of 
knowledge resource B. In a case when the two resources compete, the activation of A decreases 
the (cueing) priority of knowledge resource B.   

One well-documented example of a knowledge resource is phenomenological primitives (p-
prims) (diSessa, 1993). P-prims are small self-explanatory knowledge elements that describe and 
are established out of everyday experience. As described in diSessa (1993), p-prims are 
phenomenological in that the explanation are drawn from the behavior of things that people 
experience and observe.  They are primitives in that they are self-explanatory, and so they are, in 
that sense, atomic level knowledge structures. When people are asked about a particular p-prim, 
they usually respond, “That’s just the way things are.” For example, Ohm’s p-prim is the idea 
that more effort begets more result. It is the knowledge that allows a person to “know” that when 
s/he throws the ball harder, it would go further. 

Pratt and Noss (2002), inspired by KiP, posit p-prim-like resources, which they call naïve 
knowledge, to describe the notion of randomness in mathematics. They found children use four 
separable resources to describe randomness: unpredictability (one does not know what is going 
to come out), unsteerability (no external agent are acting to cause the phenomenon), irregularity 
(lack of regular pattern in the phenomenon) and fairness (all parts of the system have to be 
equally likely).     

I included the example of p-prims (diSessa) and naïve knowledge (Pratt and Noss) to 
exemplify well-documented knowledge resources. While some of the resources I identify in this 
dissertation might be p-prim like in size and function (or actual p-prims), the focus on knowledge 
resources is their utility in relating quantities.  
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CHAPTER 3: LITERATURE REVIEW 
 
As noted in the introduction, there are two main goals for this literature review. The first is to 

motivate students’ understanding of the temporal order of delta and epsilon as a topic of 
investigation. The second is to establish the importance of microgenetic studies to understand the 
structure of knowledge and the process of understanding the temporal order in the formal 
definition. In this review I also include the relationship of the Pancake Story to the literature 
about students’ understanding of the formal definition.  

Motivating Students’ Understanding of the Temporal Order of Delta and Epsilon  
 
Several education researchers and curriculum committees have concluded that carrying 
formal limit proofs forward throughout an introductory calculus sequence might be 
successful in preparing a small number of the most talented students for further studies in 
advanced mathematics, but it leaves the vast majority of students with little more than a 
procedural understanding and an impression of mathematics as personally incomprehensible 
(Oehrtman, 2008, p. 67). 
 
This quote, from Oehrtman’s report in the Mathematical Association of America’s Notes 

from 2008, summarizes the general opinion about the teaching of the formal definition in 
calculus. Teaching the formal definition is difficult and the resulting understanding is often 
limited. The research community continues to investigate the nature of this difficulty. Following 
are suggested sources of difficulty of learning the formal definition of a limit.  

Tension Between Dynamic and Static Conception of Limit 
Early work around students’ understanding of limit posits that students cannot move past 

their “dynamic” understanding of limit—limit is the number that the function approaches but 
never reaches (e.g., Cottrill et al., 1996; Williams, 1991). These studies argue that students lack 
an understanding of the more “static” conception of limit, which is more closely related to the 
formal definition.  

Many studies assert that students’ “dynamic conception” is problematic and would lead to 
other misconceptions (Parameswaran, 2006; Przenioslo, 2004; Williams, 2001; Tall and Vinner, 
1981). Thus, in many of these studies, any discussion about students’ understanding of the 
formal definition was mostly about it being the ideal conception that needed to replace the 
problematic “dynamic” conception. The following quote exemplifies the kinds of conclusions 
these studies make about students’ understanding of the formal definition: 

 
Students would not notice a contradiction between [the formal] definition and his or her 
other, more “private” conceptions, and worse, would not try to confront the two parts of his 
or her knowledge. More importantly still, for the majority of students the definition was not 
the most significant element of the image /…/ This could be a consequence of unsatisfactory 
understanding and inability to interpret the very formulation of the definition. Students 
appeared to lack a sense of the role of definitions in mathematics in general, and were 
convinced that their various associations determined the meaning of the concept." 
(Przenioslo, 2004, p. 129) 
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These studies provide little insights into ways of successfully assisting students with the formal 
definition.   

Other studies focus on ways to build the formal definition on students’ dynamic conception 
(Boester, 2008; Roh, 2008; Swinyard, 2011; Swinyard & Larsen, 2012). Cottrill et al., (1996) 
argued that the dynamic conception of limit is a necessary stage before students can understand 
the formal definition. The authors theorize stages of development of understanding the limit 
concept. They assert that understanding the concept of a limit of a function at a point involves 
the development of the dynamic processes of x approaching a and f (x) approaching b, 
coordinating the two process of “approaching,” encapsulating each into object and finally 
applying the (logical) quantification schema5 in order to be able to apply the formal definition to 
specific situations. The authors could not empirically validate the later stages of development 
they theorized in their study. Swinyard and Larsen (2012) provide an elaboration of ways 
students can go through the later stages of development and learn the formal definition from the 
dynamic conception. The study was done in the context of guided reinvention of the formal 
definition (Gravemeijer & Doorman, 1999). The authors offered one possible pathway of 
learning the formal definition.  

Boester (2008) and Roh (2008) both argue for the development of the formal definition 
alongside the dynamic conception. Boester (2008) found that students in his study developed the 
dynamic and static conceptions separately and over time merged the two conceptions. He found 
that some students make the static conception dynamic by allowing both epsilon and delta to 
decrease to zero. Roh (2008) found that some of the students in her study used dynamic language 
to describe a limit, but were able to identify the correct definition by attending to the uniqueness 
of the limit.6  

In sum, studies that build on students’ dynamic understanding show more progress with 
assisting students to understand the formal definition. From the Knowledge in Pieces 
perspective, this is not surprising. Learning happens as a result of building on students’ prior 
knowledge, and not replacing students’ misconceptions. The main principle behind 
constructivism is the presumed continuity between students’ new form of understanding and its 
precursor form. Ignoring students’ dynamic conception, or worse attempting to replace it with 
the formal definition proves unproductive in helping students’ make sense of the formal 
definition of a limit.    

Inequalities with Absolute Values 
Several studies have documented students’ struggle with the absolute value notation with 

inequalities in the formal definition (Boester, 2008; Fernández, 2004; Oehrtman, 2008). 
Fernández (2004) found that students in her study did not know how to interpret the inequalities 
algebraically or geometrically. Boester (2008) found that one of the challenges in learning the 
definition for students in his study was that many of them saw absolute value as an operation to 
make numbers positive instead of seeing it to signify a range of values. In fact, many students in 
the study simply ignored the use of the absolute value.  

In the lesson that Fernández (2004) developed as part of a classroom instructional treatment, 
Fernández used an interval notation instead of absolute value notation to emphasize the 
                                                
5 I later return to this issue of logical quantification as a source of difficulty in learning the 
formal definition.  
6 Roh (2008) studies the limit of a sequence, not the limit of a function. I included it in the 
discussion because the two formal definitions share analogous structure.  
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connection between the algebraic and geometric interpretation of the intervals. In the lesson she 
and the students generalized the game of coming up with delta for any given epsilon into a 
version of the formal definition using the set notation to describe the intervals. What she calls 
version 1 of the definition says: 

 
Given 

€ 

lim
x→a

f (x) = L. 

To ensure we can get f (x) within a distance ε of L, we need  
to find a distance δ around a so that 

if x lands within δ of a, this implies f (x) lies within ε of L 
OR 

if x ∈ (a – δ, a + δ), then  f (x) ∈ (L – ε, L + ε). 
 

She found that afterwards it was easy to relate Version 1 and its interval notation to the usual 
definition and its absolute value notation. She reported that avoiding the version with the 
absolute value notation “proved a big step in raising students’ comfort level for studying this 
concept” (p. 50). The author had students’ answered some formal assessment items and allowed 
them to use either version of the formal definition. Forty of the 48 students preferred using 
Version 1, and the majority of her students was able to provide a correct solution to prove the 
limit of a linear function at a point at the end of the semester.  

Oehrtman (2008) and Fernández (2004) also discussed another issue with the inequalities in 
the definition. The absolute value of the difference between x and a is greater than zero  
(0 <| x – a |< δ), whereas the one for the difference between f (x) and L is not (| f (x) – L |< ε).7 
Fernández (2004) reported that students did not understand why that was true. Oehrtman (2008) 
argues that not recognizing the distinction between the way x approaches a and the way f (x) 
approaches L—as expressed by these inequalities—contributes to students’ misconceptions 
about limit. Fernández (2004) found that changing the definition by using set notation proved 
helpful in helping students understand the distinction. The students naturally got into a 
discussion about a function that was not defined at a, but whose limit existed at a, to discuss the 
importance of the 0 in the delta inequality. They also discussed the constant function to discuss 
why there was not 0 in the epsilon inequality.   

In sum, while students’ struggle with absolute values and inequalities is well documented, for 
now the change in notation and directed discussion using illustrative examples seem to help 
some group of students. As Boester (2008) asserted, more research needs to be done with 
students’ conception of absolute values in inequalities.  

Logical Quantification and the Meaning of Epsilon and Delta 
The literature on students’ understanding of the formal definition agrees that the use of 

quantifiers in the definition adds another layer of complexity to the formal definition (Boester, 
2008; Cottrill et al., 1996; Przenioslo, 2004; Roh, 2009; Swinyard, 2011; Swinyard & Larsen, 
2012, Tall & Vinner, 1981). Students have to make sense of the statement “for every number ε > 
0,” and the statement “for every number ε > 0, there exists a number δ > 0.” The first statement 
stipulates the desired arbitrary closeness between f (x) and L. The second statement sets the 
structure for the formal definition. “For every number ε > 0, there exists a number δ > 0” says 
                                                
7 | x – a | is larger than zero because of the stipulation that the value of the function when x= a is 
irrelevant for the limit.  
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that delta is determined by the given epsilon. The statement sets up the temporal order of delta 
and epsilon. Students need to grapple with both the use of quantifiers and the logic connecting 
them along with the different variables within the definition.   

“For every number ε > 0.” Davis and Vinner (1986) included the role of the word “any” or 
“every” in the definition as one of the reasons for why the theory of limit succeeds. Roh (2009) 
found that the arbitrariness of epsilon was difficult for students in her study to learn. Two of the 
four categories of students’ understanding she found did not account for the arbitrariness of 
epsilon. Przenioslo (2004) found that some students interpret the phrase “for any” or “an 
arbitrary epsilon” to mean “for one arbitrarily chosen epsilon.”  

Swinyard (2011) and Swinyard and Larsen (2012) also found that defining what it meant for 
the function to be “infinitely close” to the limit was one of the main cognitive challenges in 
reinventing the formal definition for their participants. In the definition this is accounted for by 
the arbitrariness of epsilon. In the teaching experiment, the authors asked students to define the 
meaning of a limit at infinity as a scaffold to gain what they call the “arbitrary closeness 
perspective.” This proved helpful for the two students in their case study to understand this idea 
in the formal definition. The nature of students’ understanding of this aspect of the definition 
warrants further investigation. However, there is another aspect of the definition that the 
literature seems to suggest to take precedence to the arbitrariness of epsilon: the temporal order 
of delta and epsilon.   

The temporal order of delta and epsilon. Studies that focus on the development of students’ 
understanding of the formal definition (Roh, 2009; Swinyard, 2011; Swinyard & Larsen, 2012) 
suggest that students understand the temporal order of delta and epsilon prior to tackling the 
arbitrariness of epsilon. In the analogous context of limit of a sequence, Roh (2009) found that 
students who focused on the arbitrariness of epsilon, prior to understanding the relationship 
between epsilon and N (the delta in the context of a sequence) had an understanding of the 
definition that diverged from the correct version of the formal definition. The students made 
epsilon arbitrarily small before determining the appropriate N. This seems consistent with 
Przenioslo’s (2004) finding about “one arbitrarily chosen epsilon.”  

In Swinyard (2011), the pair of students struggled with adopting “the y-first perspective” to 
account for the temporal order of delta and epsilon in reinventing the formal definition. They had 
to deal with this cognitive struggle before they dealt with the arbitrariness of epsilon. The author 
reported that given the students’ “inclination to reason from the x first perspective posed a 
significant challenge” to reinvent the formal definition. The author, through a series of questions 
and attempts to leverage the benefit of zooming along the y-axis—to analyze the local behavior 
of the function—was able to shift the students’ attention to the y-axis. The author finally 
introduced the context of limit at infinity to help the students to adopt the y-first perspective. In 
sum, a great deal of effort was made to have students adopt this perspective, and it happened 
before the students began to deal with the arbitrariness of epsilon.   

Davis and Vinner (1986) used the term temporal order to describe the sequential order of ε 
and N in the definition of a limit of a sequence. They included the temporal order of ε and N as 
one of the aspects of the definition that their participants often “neglected.” Knapp and Oehrtman 
(2005) provide an example of a group of students who neglected the temporal order of delta and 
epsilon and illustrate its implication to the students’ proof. Students in their study argued that 
“First we resolved δ then we go on to resolve ε.” I found similar accounts from students in the 
data in Boester (2008).  
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Boester (2008) posits that the logical quantification, including the temporal order is difficult 
for students. The study did not focus on students’ understanding of the temporal order. However, 
I found that 5 of the 8 students in the focus group struggled with the logical quantification. All 
five students (Lisa, Jason, Erica, Harriet and Daniel) who struggled with the logical 
quantification stated that epsilon depended on delta. For example, Erica on her second interview 
said, “As delta gets smaller, epsilon gets smaller, too” (line 14, p. 92).  

The different studies seem to suggest that the idea of functional dependence (y depends on x) 
might have been a dominant resource in the students’ knowledge structure. This was a common 
justification found in Adiredja and James (2013).8 The case study with seven students show that 
all five students who struggled with the temporal order argued that epsilon depended on delta 
because f (x) depended on x and delta was like x and epsilon was like y. The authors also found 
that many students used their interpretation of the statement “if 0 <| x – a |< δ then | f (x) – L |< ε” 
to conclude that the delta had to be satisfied first before epsilon. This finding is consistent with 
what the students said in Boester (2008) and Knapp and Oehrtman (2005).   

Przenioslo (2004) also argues for the dominance of functional dependence when she found 
that many students reversed the order of the quantifiers in the definition. That is, instead of 
evaluating the statement “for every number ε > 0, there exists a number δ > 0,” students 
considered the statement “there exists a number δ > 0 for every number ε > 0.” The second 
statement suggests that delta does not depend on epsilon at all, whereas the first one delta does 
depend on epsilon. Moreover, the second statement follows the usual order of functional 
dependence. Thus, while different studies have offered examples of students’ struggling with this 
aspect of the definition, we still know very little about the nature of this difficulty and how to 
assist students to make sense of it.  

The meaning of delta and epsilon. It is reasonable to argue that students’ understanding the 
meaning of epsilon and delta shapes their understanding of the temporal order. Fernández (2004) 
reported that many of the students in her study asked the question, “What are epsilon and delta?” 
The study documents that question as one of the issues students brought up in learning the formal 
definition. The study did not specifically discuss the impact of her lesson on students’ 
understanding of this aspect of the definition.  

The students in Boester (2008) and Knapp and Oehrtman (2005) who struggled with the 
temporal order of delta and epsilon might have treated delta and epsilon as errors (| x – a | and      
| f (x) – L |, respectively). Interpreting the two utterances in terms of error seem to reveal a 
particular understanding of the formal definition. “First we resolved δ then we go on to resolve 
ε” might mean that the students would first address the error in the input then continue on to 
address the error in the output. “As delta gets smaller, epsilon gets smaller, too” might mean as 
the error in the input gets smaller, then the error in the output also gets smaller. Without knowing 
the details of the utterance I can only speculate on the meaning of these utterances. However, it 
suggests that the meaning students’ attribute to the epsilon and delta should be considered in 
interpreting their understanding of the temporal order.   

Summary 
There is ample evidence in the literature to conclude that learning the formal definition of a 

limit is difficult. While students’ understanding of the formal definition can develop alongside 

                                                
8 Adiredja & James (2013) is a pilot study for this dissertation. The data from that study was 
reanalyzed and its findings are included in Chapter 5.  



 

 

14 

their dynamic conception of limit, it would not be productive, and even futile to attempt to 
replace students’ dynamic conception with the static conception.  

Recent research on students’ understanding of the formal definition suggests that the 
challenge lies in the logical quantification in the formal definition. The two main obstacles are 
the arbitrariness of epsilon and the temporal order of delta and epsilon. There is evidence to 
suggest that it is important for students to understand the temporal order of delta and epsilon 
prior to engaging with the arbitrariness of epsilon. 

Little is known about the nature of this difficulty. The latest findings seem to suggest 
potential resources to investigate. Specifically, the functional dependence relationship and the 
meaning students attribute to delta and epsilon seem to have impact on the way that students 
conceptualize the temporal order. This dissertation explores this hypothesis.  

Perspective on Students’ Prior Knowledge  
In this section, I aim to motivate the use of microgenetic methods to explore the development 

of students’ knowledge structure and the role of students’ intuitive knowledge in that 
development. Uncovering the structure of students’ knowledge requires a constructive 
perspective on students’ prior knowledge and a fine-grained method sensitive to subtle changes 
in understanding.   

Misconceptions vs. Resources 
Many studies of students’ understanding of limit focus on identifying students’ 

misconceptions about the topic and emphasize their negative role in learning (Bezuidenhout, 
2001; Davis & Vinner, 1986; Jordaan, 2005; Parameswaran, 2007; Szydlik, 2000). While part of 
this pattern is historical—early studies of students’ understanding of concepts focused on the 
identification of misconceptions—its presence in the last decade warrants a discussion.  

Smith, diSessa and Roschelle (1993), in their review the broader literature on student 
misconceptions, argue that learning necessitates the transformation of prior understanding. 
Focusing on students’ misconceptions as mistakes obscures the knowledge resources students 
have that might be productive for learning. They assert, “Learning difficult mathematical and 
scientific concepts will never be effortless, but neither will it be possible at all without the 
support, reuse and refinement of prior knowledge (p. 153). 

Misconceptions are often overgeneralizations of knowledge to an inappropriate context. This 
idea of context specificity is not new to the limit literature. Cornu (1991) incorporates the idea of 
context specificity in his use of Guy Brousseau’s definition of epistemological obstacles. 
Brousseau defines epistemological obstacles as “knowledge which functions well in a certain 
domain of activity and therefore becomes well-established, but then fails to work satisfactorily in 
another context where it malfunctions and leads to contradictions” (p. 159). From KiP’s 
perspective, a piece of knowledge that is reliable over time becomes well-established (high 
reliability priority), which explains why students would cue them in contexts where it seems 
applicable.  

Williams (1991) also noted the idea of context specificity, despite his unfavorable opinion of 
it. He wrote, “Students tended to accept as true many different statements of limits: some true, 
some false, and some incomplete. As an example, ST held five of the six questionnaire 
statements as being true throughout the study, and at the last session believed all six were true 
‘depending on to what function they were applied.’ Thus, it is not so much that she believed all 
six as that she thought their truth depended on the situation in which they were applied.” 
Knowledge is context specific! The author was hoping that the students in the study would “pick 
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a best statement or model of limit and to appreciate that such a statement would provide a 
maximally useful and correct set of implications” (p. 232). If students have not seen the utility of 
the formal definition in most the contexts in which they work with limits, then why would they 
have any reason to replace their “misconception?” 

Several studies in the recent years took on a much more favorable perspective of students’ 
prior knowledge. Roh’s (2009) epsilon strip activity attempts to assist students in understanding 
the formal definition of a limit of a sequence by leveraging students’ ability to reason with 
counting. As mentioned earlier, Roh also found ways that students can build knowledge about 
the formal definition on top of their dynamic conception of limit (by focusing on the uniqueness 
of limit). Swinyard (2011) and Swinyard and Larsen (2012) also focused on developing an 
understanding of the formal definition from the students’ prior knowledge. Their teaching 
experiment started with students generating examples of a limit of a function. 

Boester (2008) and Oehrtman (2009) specifically explore the role of intuitive knowledge in 
students’ understanding of a limit. Oehrtman (2009) explores dominant conceptual metaphors 
that students use in explaining different concepts in calculus. Oerhtman (2009) found that the 
approximation metaphor is the most common metaphor generated by students to make sense of 
the tasks in the study. 9 The resemblance of the approximation metaphor to the structure of the 
epsilon-delta definition leads the author to suggest its potential utility in instruction.  

Boester (2008) designed an intervention that leverages students’ intuitive knowledge. He 
used the Bolt Problem as a grounding metaphor for the logical quantification in the formal 
definition (see Appendix C for the complete problem). The Bolt Problem presents a context in 
which students make four-inches bolts with different degree of accuracy. The problem asks 
students “How do we create bolts that we know will be of a length that falls within our target 
range?” The ideal response to this question is that “for any bolt length tolerance (or output range), 
there is a raw materials tolerance (or input range), and if the amount of raw materials we put into 
the machine falls within the raw materials tolerance, then we will get a bolt with a length that 
falls within our bolt length tolerance” (p. 50). He used this as both an assignment in his 
classroom study, as well as a problem to discuss during student interviews. While the focus of 
the study was not on the success of the Bolt Problem, Boester found that the context of bolt 
making was productive for students to learn the quantification. Students in his study was able to 
explain the Bolt Problem by the end of the study, even thought some students were not able to 
explain the formal definition completely.  

Both Boester (2008) and Oehrtman (2009) attend to students’ prior knowledge, in particular 
their intuitive knowledge. The intervention used in this dissertation is a combination of the 
approximation metaphor and the Bolt Problem. Like the Bolt Problem, the Pancake Story 
leverages students’ intuition about quality control. It embodies the approximation metaphor in 
that it explicitly talks about error and error bound and the refinement of errors over time. This 
dissertation explores the degree to which the intervention in this study assists students to make 
sense of the formal definition, and the temporal order more specifically.   

                                                
9 The spontaneous use of approximation ideas for limits entails an approximation of an unknown 
quantity. For each approximation there’s an error = |unknown quantity-approximation| and so the 
range for the actual value is approximation – bound < unknown quantity < approximation + 
bound. Accuracy is measured by size of error and a good approximation method allows for 
minimizing error. An approximation method is precise if there is not a significant difference 
among the approximations after a certain point of improving accuracy.  
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Structure of Knowledge: “Concepts” vs. Systems of Knowledge  
In this section I contrast studies that use Tall and Vinner’s (1981) framework of concept 

image and concept definition with studies that are consistent with the Knowledge in Pieces 
framework. I selected Tall and Vinner’s (1981) framework in particular because of its influence 
in the post-secondary mathematics education research and its similarity to other studies that 
characterize students’ knowledge using a general model of students’ understanding (e.g., 
Williams, 1991). 

Tall and Vinner’s (1981) framework de-emphasizes the specificity in the structure of 
students’ knowledge. It defines concept image as “the total cognitive structure that is associated 
with the concept, which includes all the mental pictures and associated properties and 
processes,” whereas concept definition is defined as “the form of words that the student uses for 
his own explanation of his (evoked) concept image” (p. 152). The dynamics of the structures 
(i.e., the way they change over time) are not the focus of the framework.  

Studies that use this framework typically focus on identifying different concept images that 
students have about limit (e.g., Jordaan, 2005; Roh 2009; Roh, 2008; Parameswaran, 2006; 
Przenioslo, 2004). Except for Roh (2008, 2009), most of the studies focus on documenting 
students’ concept images, highlighting their limitation and how little of a role the formal 
definition play in students’ concept image. Since the focus of most of these studies is in 
documenting students’ concept images, ways to refine these images or ways that students can 
begin to incorporate the formal definition into their concept image and definition are rarely 
discussed.  

Those studies stand in contrast with studies that use or consistent with the Knowledge in 
Pieces’ framework. Most of the studies that use KiP focus on characterizing moment-by-moment 
changes in the structure of knowledge as a result of learning (e.g., Campbell, 2011, Wagner, 
2006). Consistent with Knowledge in Pieces’s model of knowledge resource, Schoenfeld, Smith 
and Arcavi (1993) conceptualize student knowledge as a knowledge system with different 
components.10 The study focuses on micro-changes in a student’s knowledge structure about 
linear functions. The study is illustrative of the kinds of study of knowledge that investigate the 
details of students’ knowledge structure. Its focus on the details of the knowledge structure can 
reveal very useful information about the process of learning.  

The main finding of Schoenfeld et al. (1993) is that new knowledge elements cannot be 
learned unless they are consistent with the student’s fine-grained structure. The study illustrates 
this point with a case of a student learning properties of linear functions. What appeared to be a 
trivial error in reading the coordinate of points to calculate a slope, ended up being a symptom of 
a non-normative fine-grained structure of knowledge for thinking about the Cartesian plane and 
slope of a line. Not realizing the underlying issue at the time, the experimenter helped the 
participant to correct the coordinates. Although she was able to compute the correct slope, she 
kept returning to the same error in the following weeks. The issue was not resolved until after 
student and experimenter uncovered and refined the student’s understanding of the Cartesian 
plane. The findings from this study suggest that new knowledge from instruction can be fleeting 
unless it is reconciled with the fine-grained structure of the knowledge of the student. This is 
informative for any studies that consider a learning intervention.  

                                                
10 Schoenfeld et al. (1993) and the Knowledge in Pieces framework share core principles about 
knowledge, in addition to sharing similar methodology. For example, Schoenfeld et al. (1993) 
also focus on contextuality and cueing priority of knowledge elements. 
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In sum, we have reached the limit of usefulness of broadly identifying students’ general 
models of understanding about the formal definition and limit. There is a need for studies that 
focus on the process of learning, and investigate the underlying structure of students’ knowledge. 
In the next section I provide an illustrative example of a fine-grained study of a development of 
student knowledge structure from the literature. I emphasize the importance of the study’s 
perspective in recognizing the productivity of students’ prior knowledge.   

Why Perspective Matters 
Williams (2001) investigated the predication structure of students’ conception of limits. The 

predication structure of limit establishes the meaning of limit within the broader set of meanings. 
The study presented students with 10 different statements about limits and asked students to 
judge what was similar or different about pairs of statements. The idea was to elicit constructs 
that students used to think about limits thereby uncovering the structure of knowledge about 
limit. For example, a student predication structure might involve the notion of closeness and it 
might be associated in the predication structure with the notion of truth.11 Here the construct of 
closeness and truth were evoked in the student predication structure about limits. As a result the 
study would infer that the students conceptualize limit with the notion of closeness. The study 
presents two cases of a student and the development of their predication structure.   

Through the fine-grained analysis of the structure of students’ knowledge, the author shows 
refinements of students’ knowledge structure over time. For example, one student, Gerry, started 
with the conception that limit was the value that the function got close to, and to find the limit he 
would evaluate the function at the point of interest. By the fifth interview session, Gerry took up 
the sandwiching idea, that a limit was the value that the function approached from both sides of 
a. By the end the author shows, using the student’s predication structure, that Gerry focused 
more on the sandwiching idea and evaluating the function at a point was seen as appropriate only 
for continuous functions.  

A second student, Jacob also showed refinement in his understanding of a limit. Jacob started 
with the idea that a function never reached its limit and that he would find a limit by finding the 
value that the function grew toward or got close to. As the weeks progressed, Jacob began to de-
emphasize the idea of a reaching a limit and plugging in values that were far from the point of 
interest. By the end, he disassociated evaluating function at a point with computing limits, and 
prioritized thinking in terms of intervals (instead of plugging in points to find the limit). Thus the 
methodology used in this study was able to reveal refinements of knowledge elements in the 
structure.  

The conclusion that the author made about students’ understanding illustrates the importance 
of perspective in studying students’ understanding about a topic. I include one of the author’s 
final comments about the two students’ understanding.  

 
Moreover, even though the experimental sessions were specifically designed to create some 
cognitive discord with this notion, both Gerry and Jacob continued to believe in it and still 
claimed it was their fundamental way of understanding limits. In this, they were not alone; 
nine of the 10 subjects in the study also remained convinced that this dynamic view of a limit 
was essentially correct. The remaining student could see it as problematic but had no 
competing scheme with which to replace it. In general, absent the mental action of iteratively 

                                                
11 The details of the construction of this predication structure were omitted from the paper. So I 
took the idea of association or implication between these notions at face value.  
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choosing points and evaluating the function, students seem to have very little with which to 
frame a theory of limits! (emphasis added, Williams, 2001, p. 364). 
 

The fixation with the dynamic vs. static view of a limit, and the idea of “replacing” 
misconceptions inhibited the author’s ability to look at potential connections between the 
students’ understanding and the static conception of a limit. For example, the notion of 
sandwiching can be built upon to discuss the use of symmetric intervals in the formal definition. 
The preference of thinking in terms of interval is crucial in understanding the formal definition. 
Despite their not being the goal of the study, these are important future direction of research 
around students’ understanding of the formal definition.  

Williams’ (2001) study nicely summarizes the main points I am arguing in the second part of 
this chapter. It illustrates the utility of a fine-grained analysis of structure of students’ 
knowledge. The methodology employed in that study allowed the author to document the subtle 
refinements of knowledge over time. At the same time it highlights the importance of 
constructive perspective on students’ knowledge. The perspective the author took with respect to 
students’ prior knowledge being misconceptions that needed to be replaced prevented him from 
recognizing and discussing the potential productivity of the students’ knowledge in learning the 
formal definition of a limit.  

Summary  
The two parts of this literature review provide the broader context for this dissertation. The 

first part reviews open questions in the literature around the nature of the difficulty in learning 
the formal definition of a limit. Students’ understanding of both the arbitrariness of epsilon and 
the temporal order of delta and epsilon warrant further investigation. There is some evidence in 
the literature that suggest that attending to the temporal order of delta and epsilon prior to 
making sense of the arbitrariness of epsilon is productive. Thus this dissertation focuses on 
students’ understanding of the temporal order of delta and epsilon in the definition.  

The second part of the review focuses on constructive perspectives on students’ prior (and 
intuitive) knowledge in learning. Building off Boester’s (2008) Bolt Problem and Oehrtman’s 
(2009) approximation metaphor, this study uses an intervention that leverages students’ intuitive 
knowledge about quality control that embodies the notion of approximation. More importantly, 
this study investigates the development of the structure of students’ knowledge using a 
microgenetic method to detect subtle refinements of knowledge. Guided by the Knowledge in 
Pieces’s perspective, this study investigates productive roles that prior knowledge can play in the 
process of learning. 
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CHAPTER 4: METHODS 
 

This dissertation explores the roles of students’ prior knowledge in their understanding the 
temporal order of delta and epsilon in the definition of limit. The study investigates the nature of 
and the degree to which the temporal order is a difficulty for students. It focuses on uncovering 
the details of the structure of students’ knowledge about the temporal order of delta and epsilon.  

The goal of providing a detailed account of knowledge structures and learning processes 
influenced methodological decisions for this dissertation. I used a relatively small number of 
research subjects, given the depth and detail of analysis that I was to conduct. That goal also 
favored the use of videotaped individual interviews. Interviews provide an opportunity for 
students to give an account of their understanding. I used individual, and not paired or group 
interviews because I was interested in individual student sense-making. Video recordings helped 
reveal nuances in the students’ utterances by capturing gestures, gazes and body language.  

The study prioritized the use of semi-structured interviews over clinical interviews because it 
also aimed to investigate the effectiveness of an instructional treatment. The protocol was 
designed so that it was possible to compare responses from all the students. Both the Pancake 
Story and the interview protocol were revised as a result of multiple rounds of pilot study. The 
Pancake Story was designed to leverage students’ intuitive understanding of quality control as 
was said in Chapter 1. The details of the story are discussed in this chapter.  

The three sections of this chapter elaborate on the details of the methodology employed in 
this chapter. The first section explores the understanding of the formal definition of a limit, 
including important ideas involved in the definition. The second section includes what was 
involved in data collection, including the development of the protocol and the Pancake Story. I 
close the chapter with an overview of the analysis methods. The details of the analysis methods 
are discussed in each analysis chapter.  

Brief Analysis of the Mathematical Territory 

Conceptual Territory  
In the late 17th century, a limit was thought of as a bound that a number got close to but never 

reached. It was not until around the 18th century that the foundations of Calculus began to be 
developed, much through the instigation of Lagrange (Grabiner, 1983). Around this time 
Weierstrass and Cauchy introduced the rigorous treatment of a limit in analysis, via the formal 
definition of a limit (Klein, 1972; Grabiner, 1983; Pourciao, 2001). In 1817, Bernard Bolzano 
introduced the epsilon-delta definition. 

Changing attitudes toward rigor were influenced by a number of factors, including an 
increasing interest in the foundations of calculus and the recognition by many mathematicians 
that further mathematical progress required developing approaches beyond existing methods 
(Grabiner, 1983). It is worth mentioning that part of the reason for the increase in foundations 
was the need of teaching. Grabiner writes, “Because teaching forces one to ask basic questions 
about the nature of the most important concepts, the change in the economic circumstances of 
mathematicians—the need to teach—provided a catalyst for the crystallization of the foundations 
of the calculus out of the historical and mathematical background” (p. 189).  

The epsilon-delta definition of a limit, hereafter the formal definition, says that the limit of a 
function f (x) as x approaches a is L and we write, 

lim
x→a

f (x) = L  
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if and only if, for every number ε > 0, there exists a number δ > 0 such that all numbers x that are 
within δ of a yield f (x) values that are within ε of the limit L. This is often written as “for every 
number ε > 0, there exists a number δ > 0 such that if 0 <| x – a |< δ then | f (x) – L |< ε”.12 This 
means that the limit of the function f (x) as x approaches a is L, if and only if for however close 
one wants the values of f (x) to be to L, there is a way to control how close x has to be to a in 
order to guarantee the desired closeness. The previous sentence is not a common description of 
the formal definition seen in most calculus textbooks. I include a graphical representation in the 
case of a linear function, and for a particular epsilon because the majority of the students in this 
study discussed the formal definition in that context (see Figure 4.1).  

For students in calculus, the formal definition is typically used to either prove that the limit is 
some value L or that the limit does not exist. This involves knowing or at least having a 
conjecture for L. A more intuitive definition of a limit, where the limit L is the number that the 
function approaches as x approaches a, is embedded in the definition through 0 <| x – a |< δ then    
| f (x) – L |< ε, which says that keeping x close to a would make f (x) close to L. 

The definition of f (x) being continuous at x = a is  
lim
x→a

f (x) = f (a)  

This means that the limit of the function, L exists and it equals f (a), which is also defined. Thus 
in practice, the formal definition is often used to prove general properties of continuous functions 
as opposed to proving the value of the limit of a function at a particular point.13  
 

 
Figure 4.1. Graphical representation for the formal definition of a single ε of a linear 

function. 
                                                
12 For the remainder of the dissertation, I refer to the first part of the statement (for every number 
ε > 0, there exists a number 𝛿 > 0), as the “for-all” statement, and the later part (if 0 <| x – a |< δ 
then | f (x) – L |< ε), the “if-then” statement for brevity.  
13 In Real Analysis, many textbooks have students work with the formal definition of a limit of a 
sequence, first, before working with the epsilon-delta definition. The idea is to help students 
develop intuition for the structure of the formal definition from the simpler relationship between 
ε and N.   

L + ε  f (x)
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There are several elements to understand about the formal definition. In addition to 
understanding the behavior a function f (x) at a particular point, students need to understand the 
meaning of the quantities epsilon and delta. Epsilon is the bound for the error between the 
function values and the limit, L, which is noted by the absolute value of the difference between       
f (x) and L. In this way, epsilon constrains the acceptable range of f (x) around L. Delta is the 
bound for the error between the input values x and the value a, which the function approaches. 
This is noted by the absolute value of the difference between x and a. In this way, delta is the 
constraint that controls the distance between x and a. If the limit exists, then choosing x values 
that are within the controlled distance to a would result in f (x) values that are within epsilon 
away from L.  

The statement “for every number ε > 0, there exists a number δ > 0,” or the “for-all” 
statement, sets the fundamental relationship between epsilon and delta and the structure of the 
formal definition. Logically “for every number ε > 0” means that one starts with the constraint 
epsilon. Then for that particular epsilon one must be able to determine the corresponding number 
delta. As I explain in Chapter 1, delta and epsilon follow the temporal order of epsilon then 
delta—epsilon comes first, and delta follows. In instruction, students are often told that delta 
depends on epsilon.14 This statement sets up the structure of the argument for the definition 
where the closeness between the function and the limit (ε) is controlled by the closeness between 
x the values and a (δ).  

According to the for-all statement, epsilon is an arbitrary number. The statement of the 
definition has to be true for every number epsilon. Sometimes “for every number” is written as 
“for any given number epsilon.” Epsilon is any given number because the limit is presumed to be 
L, and so our function would be arbitrarily close to the limit L. “For every number epsilon greater 
than zero” is a systematic way to make the function to be as close as possible to L. Instead of 
using any particular epsilon, stating for every number epsilon means that we can make epsilon as 
small as possible, thus making our function as close as possible to the limit. In order to be able to 
vary epsilon, it is important for students to differentiate epsilon from the quantity f (x) – L. 
Epsilon is a constraint for that value, and this constraint can vary.  

The last part of the definition, if 0 <| x – a |< δ then | f (x) – L |< ε, or the “if-then” statement, 
sets a condition for delta: all values of x that are within delta distance from a, will yield function 
values that are within epsilon distance from the limit. Embedded in this statement is another 
detail about limits. The inequality 0<| x – a | determines that the relevant values of x are those that 
are close to a, not a itself. That is, we are only concerned about the behavior of the function near 
a not at a.15 Absolute value is used to set a symmetric interval around a and L.  

Beginning Hypotheses About Early Stages of Understanding of Relevant Parts of the Formal 
Definition 

Most traditional instruction about the formal definition in calculus focuses on verifying that 
the limit exists, particularly with linear and quadratic functions. Students are often introduced to 
the idea of working backwards, by breaking down | f (x) – L |< ε to find the delta expression (see 
part 1 of the solution for the example in Appendix A). Studying and replicating arguments of this 
type often results in some procedural knowledge of writing proofs using the formal definition 

                                                
14 A discussion about the constant function and its relationship to the temporal order is included 
in the discussion of the interview protocol in this chapter.  
15 The value of f (a) affects the continuity of the function, not the existence of the limit at x = a. 
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(Oerhtman, 2008). I conjecture that the resulting students’ understanding of the meaning of the 
formal definition would be limited. Below I present a hypothesis of early stages of students’ 
learning trajectory based on the literature and my experience teaching this topic in calculus.   

I posit that students in the early stages of understanding the formal definition would treat 
delta and epsilon as the actual difference between x and a and f (x) and L, respectively. So 
instead of treating delta and epsilon as bounds (0 <| x – a |< δ and | f (x) – L |< ε), they would argue 
that | x – a |=δ and | f (x) – L |=ε.  

I also anticipate that most students would de-emphasize the importance of the statement “for 
every number ε > 0, there exists a number δ > 0.” Many would interpret that purpose of the 
statement was to setup delta and epsilon as quantities that were greater than zero, without 
imposing any relationship between them. Many of them would overlook the importance of the 
phrase “for every,” which said that epsilon was an arbitrarily given number (Swinyard, 2011).  

Missing these important elements, most students would then conclude that delta came first. 
Relying mostly on the symbols from if-then part, many students would mistakenly interpret this 
statement to mean that a statement about delta implied a statement about epsilon. Thus delta 
implied epsilon (Boester, 2008; Knapp & Oehrtman, 2005).  

Students in the early stages of learning the definition would often believe that the limit was 
not known when working with the formal definition. For this reason, many would use the 
intuitive notion of limit—the limit is the value that f (x) approaches as x approaches a—in 
interpreting the formal definition of a limit, and the temporal order.   

Data Collection 

Participants  
Participants in this study were undergraduate students at a large public research university. 

Twenty-five students participated in the study, 7 in a pilot version and 18 in the full study. I 
recruited participants from students enrolled in more advanced calculus courses. Each of these 
students has received some form of instruction on the formal definition during their first semester 
calculus course. The breakdown of the students’ racial and ethnic background and their academic 
majors are presented below (Table 4.1 & 4.2). This information was drawn from students’ 
background survey that was administered at the end of the interview (see Appendix D).  

 
Table 4.1  
Racial and Ethnic Demographics of Participants 
Race/Ethnicity  Number of students 
African American 1 
Asian/ Asian Americana  11 
Hispanic/ Latina/o 6 
Middle Eastern 0 
Native American or Alaska Native 0 
Native Hawaiian or Pacific Islander 1 
White (Non-Hispanic) 5 
Other 1 
Total 25 
Note. aIncludes Filipina/o. 
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Table 4.2  
Students’ Academic Majors 
Academic Major  Number of studentsa 

Architecture 1 
Business 2 
Computer Science 5 
Chicano Studies 1 
Economicsb  2 
Engineeringc  7 
Mathematicsd  4 
Molecular and Cell Biology 2 
Nutritional Science 1 
Political Science 1 
Undeclared 2 
Total 28 
Note. aSome students have two majors so the total number exceeds 25. 
bIncludes Political Economy 
cIncludes Mechanical, Energy, and Electrical Engineering and Computer Science 
dIncludes Applied Mathematics 
 

As the table shows, participants of the study were racially diverse. The student who chose the 
“other” category self-identified as North African. These students had a variety of different 
majors, ranging from different types of engineering to nutritional science. Many of these students 
were participants of a program at the university that focuses on supporting STEM majors. This 
explains the substantial representation of science and technical majors.  

I include Table 4.1 to also give a better representation of the students whose knowledge I 
discuss in this dissertation. Knowledge is influenced by language, and given that many of these 
students’ home languages are not English, accounting for students’ race and ethnic background 
allowed me to stay mindful of any other knowledge resources outside of past instruction that 
might be relevant (e.g., home language). Moreover, there is a presumption that when we talk 
about students in research, the “generic” student is male and White unless otherwise stated..  

Therefore, to challenge that assumption I made two deliberate choices in the presentation of 
data. First, I chose pseudonyms for students that were similar in gender and had similar origin to 
their actual name. If a non-European student had a European name, I did not change it to reflect 
their race. Similarly, a gender-neutral name was replaced by another gender-neutral name. In the 
presentation of data, I include the students’ pseudonyms to help provide a better representation 
of the student. Simon was African American. Sheila, Silvia, Jane, Julia, Ryan, Patricia, Chen, 
Aruna, Erin, David, and Jacob were Asian. Katrina, Jose, Roberto, Guillermo, Sophia, and 
Adriana were Hispanic/Latina/o.  Spencer was Native Hawaiian or Pacific Islander. Brian, Milo, 
Veronica, Dean and Adam were White. Lastly, Anwar was the North African student.   

Second, I include a more elaborate description of the students that I used as case studies in 
Chapter 6 and 8. Chapter 6 discusses a case of a White male student, Adam. Chapter 8 discusses 
a case of a Chicana (Hispanic female) student, Adriana. I discuss the comparison of the two 
students and its implications in the discussion chapter. Thus, while this dissertation does not 
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focus on issues of power and race, I aim to be mindful of students’ race and background when I 
discuss their knowledge.   

Study Procedure 
The eighteen students for the latest iteration of the study were randomly split into two 

groups, 12 students in the Pancake Story group and 6 in the comparison group. The Pancake 
Story group was introduced to and engaged with the Pancake Story as an instructional 
intervention. Details about the story and its development are discussed after the next section. 

The comparison group read a page about the formal definition that was adapted from 
Stewart’s Calculus, 7th edition (see Appendix I). Re-reading the textbook seemed like a 
reasonable representation of what many students would do when they were confused about a 
topic. The selected text also included a discussion about the relationship between epsilon and 
delta.    

The comparison group was used to make sure that changes that occurred after the pancake 
story were not a result of students’ simply being re-asked the questions. Showing the 
effectiveness of the pancake story over re-reading the textbook is not the main goal of this study. 
Instead this study focuses on explaining the how and the why the pancake story works.  

Audio and Video Recordings 
I collected video and audio recordings of these interviews using one video camera and an 

audio recorder. The camera was pointed at an angle that faced the interviewee and captured the 
side or the back of the interviewer. The positioning of the camera maintained the focus on the 
student but was still able to capture gestures and gazes between the interviewer and the student. 
This provided additional information about the student utterances (Parnafes & diSessa, 2013; 
Jordan and Henderson, 1995). Even though the interaction (cf. Jordan and Henderson, 1995) was 
not the focus of investigation, I stayed mindful of the subtle ways that the interaction contributed 
to the conversation that occurred. 

Attention was placed on the artifacts produced during the interview (e.g., drawing or 
writing). To maintain continuity between the written artifacts and the video, the camera zoomed 
in when a student was producing the artifact (Hall, 2007). This was only possible when a 
research assistant was available. Otherwise the camera maintained the broader frame capturing 
the student and the interviewer. 

Transcripts and Segmenting of Episodes 
I used Ochs (1979) for guidelines in transcriptions. Transcripts were organized by turns, 

marked by pauses and/or changes in speaker. They included non-verbal behaviors, including 
relevant gazes, laughter and gestures, which were placed immediately after the utterance. Any 
actions involving written artifacts were described in words, and the artifacts would be presented 
along with the transcript. The transcripts were presented in columns where the columns were the 
turn number, the speaker and the utterance. I used modified orthography (e.g., yah-see? wanna, 
gonna, cus) instead of pure orthography to stay close to the actual utterance of the students.  

For the two case study chapters (Chapter 6 and 8), the transcript for the relevant episode was 
segmented according to the student’s claim about the temporal order. The goal of segmenting the 
episode was to break down the larger data set into smaller chunks to help explore the relevant 
resources the student might have cued. A segment started with a student’s response about the 
temporal order, e.g., epsilon depended on delta. The segment ended when the student indicated 
that the explanation or justification for the relationship was done. It could also end when the 
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discussion is interrupted by a discussion of an unrelated topic or when the interviewer asked an 
unrelated question.  

Materials 
Interview protocol. The main source of data for this study was individual student interviews, 

each lasting approximately 2 hours. Studies of student cognition have historically relied on data 
from student interviews as it provides opportunity for students to give a detailed account of their 
understanding (diSessa, 1993; Wagner, 2006). The protocol that I used in the study went through 
two iterations. It was originally developed following the recommendations of diSessa (2007) and 
Ginsburg (1997). Since then it has been revised to better elicit student understanding of the topic 
of interest. The protocol used in the latest iteration of the study can be found in Appendix E.16 
The interview started with six (moderately easy) tasks adapted from Szydlik (2000) to help 
students refresh their memory about limits, and to provide context for the discussion about the 
formal definition (see Appendix H).  

The protocol began with a series of questions exploring students’ knowledge about limits 
more generally and about the formal definition specifically. While the focus of this dissertation is 
to explore student understanding of the relationship between delta and epsilon within the formal 
definition, the theoretical framework prioritizes students’ prior knowledge and their role in 
learning. Thus, the first two parts of the interview protocol explored students’ knowledge about 
limit and the formal definition more generally. For example, students’ conception of delta and 
epsilon, as well as different parts of the definition were informative of their understanding of the 
main topic of the dissertation: the temporal order of delta and epsilon. 

Students were presented with the formal definition in Appendix A without the example. I 
used the version of the formal definition in Appendix A because it is a commonly used definition 
for limit. I did not, for example, use Version 1 from Fernández (2004), despite its utility in 
helping students understand the formal definition. The focus of the study is to understand how 
students make sense of the formal definition using a commonly used definition.   

The analysis chapters focus on students’ responses to the questions about the temporal order 
(questions 15, 17-19 and 38, 40-42). Questions 15, 17, 18 and 19 were dedicated to exploring 
students’ understanding of the temporal order. Questions 38, 40, 41 and 42 explored students’ 
understanding of the temporal order after engaging with the Pancake Story (or reading the text).  

From the KiP perspective, knowledge is context specific and the degree of alignment of 
students’ conceptions across different contexts is diagnostic of the state of their conceptions 
(diSessa & Sherin, 1998). The different ways of asking about the same relationship serve as 
different contexts to explore the students’ understanding of the temporal order. It also assessed 
the stability of the student’s understanding.  

I asked about the temporal order of delta and epsilon in four contexts: dependence, sequential 
order, set-ness and the order of ε, δ, x and f (x). The following were the actual questions from the 
protocol: 

15. In the definition, with epsilon and delta, what depends on what, if anything you think? 
Delta depends on epsilon? Epsilon depends on delta? They depend on each other? Or 
they do not depend on each other? And why? 

17. In the definition, between epsilon and delta, which one do you think comes first and 
which one do you figure out as a result? And why? 

                                                
16 The protocol used in the pilot studies can be found in Appendix F and G for comparison. 
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18. In the definition, between epsilon and delta, which one do you think is set? Epsilon? 
Delta? Both? Or neither? And why?  

19. How would you put the four variables, epsilon, delta, x and f (x) in order, in terms of 
which comes first in the definition? And why?  

To reflect the normative temporal order of delta and epsilon, a student would answer the 
questions in the following way. The student would say that delta depended on epsilon, epsilon 
came first, and epsilon was set first, and provide an order where epsilon came before delta in the 
sequence of four “variables.”  

Delta’s depending on epsilon is usually the way the relationship between the two variables is 
described in introductory calculus classes. Most of the examples’ using linear and quadratic 
functions allows for an explicit description of delta in terms of epsilon, e.g., for any linear 
function, delta equals epsilon divided by the slope of the line.17 Epsilon and delta also follow the 
sequential order of epsilon first then delta. This is the way Davis and Vinner (1986) described 
the temporal order in their study. Question 19 was inspired by a student’s putting the four 
variables in order without being prompted during the pilot study. It was another way of asking 
the sequential order of the two variables.   

Some students interpreted two questions about the temporal order differently than the 
question originally intended. The first one was question 18, which asked which of the two 
variables is set. This question came from the pilot study. Adam, who ended up being the case 
study of Chapter 6, claimed that delta depended on epsilon if epsilon was set. He ended up 
spending some time discussing which of epsilon and delta was set first. I used this as another 
context for students to discuss the temporal order. The question in the protocol was written as 
“set” instead of “set first.” Four of the 25 students interpreted the question to ask if epsilon or 
delta was a set number, not to ask which was set first. This was a reasonable interpretation. I still 
analyzed the students’ responses and I discuss the implication of this differing interpretation on 
the findings at the end of Chapter 5.  

Question 16 was also a question about the temporal order. It asked students about which 
between x and f (x) they were trying to control. The question was designed to explore if students 
would recognize the goal of controlling the x values using delta, for a given constraint in the 
output (epsilon). The responses varied greatly across students. A lot of students ended up 
confused with the idea of controlling x or f (x). I let the student answer the question according to 
what they thought it was asking and received incomparable responses.18 I decided not to analyze 
students’ responses to this question in the analysis chapter.   

Instructional intervention: The Pancake Story. The story and the questions following the 
story were designed to assist students in making sense of the formal definition. The Pancake 
Story (see below) was partly inspired by the Bolt Problem (Boester, 2008, see Appendix C). In 
the summer of 2010, I was planning to videotape my lesson on the formal definition as part of a 

                                                
17 One might argue that a constant function f (x) = k serves as a counterexample to the assertion 
that delta is always dependent on epsilon. For that function, for every number epsilon, any 
number delta would satisfy the definition. While any number delta would satisfy the definition, it 
does not change the fact that the goal is still to find a number delta based on a number epsilon, 
with which one would start. In this way delta depends on epsilon. 
18 I found that students had different ideas about control regardless of how the question was 
asked. Different version of the protocols aimed at getting at this issue but three revisions did not 
end with a good version of the question.  
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research project. I met with Andy diSessa to discuss the possibility of using the Bolt Problem in 
my lesson. He suggested using pancake making as a more accessible context. He argued that the 
process of creating bolts using machines would make the process less transparent for students. I 
explained the context of the Bolt Problem as a way to help students make sense of the formal 
definition. Some students understood the idea behind the analogy.  

It was not until I brought up the context of pancakes that the majority of the class had an “A-
ha” moment. Students from that class explained that the context resonated with their experience 
in making pancakes. It is also worth noting that different cultures have their own version of a 
“pancake.” Since then I created a story that illustrates the key elements in the formal definition 
using the context of pancake making. Just like the protocol, the story went through several 
revisions as a result of multiple rounds of pilot study (for comparison see the Pancake Story in 
previous versions of the protocol in Appendix F and G). This is the version used in this study. 

 
The Pancake Story 

You work at a famous pancake house that's known to make pancakes with 5” diameter. 
To make the perfect 5” pancake you would use exactly 1 cup of batter. On your first day of 
work your boss told you that it is practically impossible for you to be able to use exactly one 
cup to make the perfect 5 inches given how many and how fast you will be making these 
pancakes. So for now, since you’re new, as long as your pancakes are anywhere within ½” 
from the 5”, he won’t fire you. Your job is then to figure out the maximum you can be off 
from the 1 cup to still make pancakes that meet your boss’ standard. Specifically, given that 
your boss gave you the ½ an inch error bound for the size, you need to figure out the error 
bound for the batter so that your pancakes won’t be off more than the given error bound. 

According to the work manual, there are two steps to do this. Based on the error bound 
for the size, you first need to guess an error bound for the amount of batter. THEN, you have 
to check to see if using any amount of batter that is within the error bound from the 1 cup 
would make pancakes that are within the given error bound from the 5”. 

For example, suppose based on the ½ inch error bound, you guessed ⅙ of a cup error 
bound for the amount of batter. Then you check to see if using any amount of batter that is 
within ⅙ of a cup from the 1 cup, so between ⅚ and 1⅙ of a cup would make pancakes with 
size somewhere between 4½” and 5½”, that is within the ½” error bound from 5”.   

Over time, your boss expects you to be even more precise. So instead of ½” error bound 
from 5”, he says he wants you to make pancakes that are within some ridiculously small error 
bound from 5”, but you don’t know what it’s going to be. This means while he started by 
asking you to be within ½,” later he might want ¼” or 1/1000” from 5”.  Your job then 
becomes for however close your boss wants the pancake to 5”, you need to figure out the 
maximum you can be off from 1 cup of batter such that if you use any amount of batter that 
is within that error bound from the 1 cup then your actual pancakes will still be within 
whatever error bound your boss gives you from the 5”.  

Now, you don’t want to spend time each morning to recalculate everything. So you will 
try to come up with a way to calculate an error bound for the batter based on whatever the 
given error bound for the size. 
 

The design of the story focused on assisting students to make sense of the temporal order as 
one of the underlying structures of the formal definition. To do so involved opening up the space 
to discuss many of the issues mentioned above in the conceptual trajectory. First, the story was 
broadly designed to help students to describe relationships within the formal definition by 



 

 

28 

providing an accessible language for students to use, by tapping into students’ familiar 
experiences. In addition to using the context of pancake making, the story also taps into the 
experience of working for a boss and creating something with specifications—the idea of quality 
control. Thus, the story provides access into ideas within the formal definition by using 
accessible language.   

The story was specifically designed to assist students to clarify the meaning of delta and 
epsilon by differentiating error from error bound. Pilot studies documented the prevalent use of 
the functional dependence between f (x) and x to determine the dependence between epsilon and 
delta (Adiredja & James, 2013). The story offers the language of error and error bound to help 
students differentiate between ε and | f (x) – L | and δ and | x – a |, and their respective relationships.  

Error in the output would depend on the error in the input, but the boss in the story gives the 
error bound in the size to be used to find the error bound in the amount of batter. In this way, the 
story also highlights the fact that epsilon is a given quantity. The boss gives the acceptable error 
bound for the pancake size. For many students in the pilot, this idea proved helpful in discussing 
the issue of the temporal order, if not to introduce a conflict for the claim that delta came first. 
The decreasing error bounds illustrate the arbitrariness of epsilon.19  

The story also focuses on the logic behind the statement “for every number “ε > 0, there 
exists a number δ > 0,” and more importantly differentiating it from the statement “if 0 <| x – a |< δ 
then | f (x) – L |< ε.” Differentiating the error from error bound and recognizing the givenness of 
epsilon would support this delineation by attaching meaning and actions to the words in those 
sentences. More specifically, the story treats the two statements as two separate steps in the 
worker’s manual. First, the employee is given the specification to find the error bound in the 
input. Second, the employee is to check whether using any amount of batter within the 
discovered bound, would make pancakes within the boss’ specification. The story also includes 
an example of the whole process with a particular error bound. The hope was that this would 
ultimately assist students to recognize the appropriate relationship between delta and epsilon as a 
structure underlying the formal definition.    

An important disclaimer about the story: the story was not designed to be solved 
mathematically. Attempting to construct an epsilon-delta proof for the story would be 
challenging, particularly given that there was no constraint on the thickness of the pancakes. The 
numbers used in the story was specifically selected to connect with the limit of a linear function,  
f (x) = 3x + 2 at x = 1, fully understanding that a function that describes the relationship between 
the amount of batter and the diameter of the pancake is not linear.20 The goal of the story is not 
to teach students how to construct an epsilon-delta proof, but to provide them with productive 
intuition to understand the meaning of the formal definition, and the temporal order more 
specifically.  

Overview of Analysis Methods 
This dissertation explores the roles of prior knowledge in understanding the temporal order 

of delta and epsilon. The next four chapters present the empirical analysis investigating the issue. 

                                                
19 Alan Schoenfeld made the suggestion of including a number of decreasing epsilons to 
illustrate the arbitrariness of epsilon.  
20 One might also argue that 1-cup of batter would make an extremely thick 5 inch pancakes. 
While typical pancake recipes would call for ½-cup of batter, I decided to use 1-cup for 
simplicity. 
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Chapter 5 explores students’ claim about the temporal order before the story, and their reasoning 
patterns. Chapter 6 presents a microgenetic study of Adam in making sense of the temporal order 
without the story. Chapter 7 focuses on students’ reasoning patterns after the engaging with the 
story, and their responses to the temporal order questions. Chapter 8 presents another 
microgenetic study of Adriana in changing her claim about the temporal order by using the story.  

The analysis methods in Chapter 5 and 7 are similar. The focus of the analysis is on students’ 
responses to the four temporal order of delta and epsilon questions. I place them into categories 
of delta first, epsilon first or no order. I assigned a score to each response (0, 2, 1, respectively). 
Then I counted the number of questions each student answered with epsilon first to give a broad 
characterization of the group performance on the questions. Lastly, each of these chapter 
documents justifications that students provided in answering the temporal order questions. 
Chapter 7 discusses improvements in students’ understanding of the temporal order after 
engaging with the story.  

Chapter 6 and 8 are both a detailed case study of one student moment-by-moment decision-
making (microgenetic) in learning. The analysis is a fine-grained analysis of a learning episode 
with a focus on theory, with consideration of any relevant data to explore claims about the 
process of learning (Microgenetic Learning Analysis, Parnafes & diSessa, 2013). Competitive 
argumentation (Schoenfeld, Smith and Arcavi, 1993, VanLehn, Brown and Greeno, 1984) 
guides the interpretation of students’ utterances in both chapters. However, the two chapters have 
different goals and that influenced the analysis methods for each chapter.   

Chapter 6 seeks to document Adam’s process of reasoning using his prior knowledge. I 
identified knowledge resources that Adam used to construct his argument. Competitive 
argumentation was used to identify these resources and to finalize the model of his argument in 
each segment of the transcript. Counter-models were used as an explicit illustration of 
competitive argumentation in finalizing the model for Adam’s argument.   

Chapter 8 explores the influence of the story on Adriana’s reasoning about the temporal 
order. While I documented uses of knowledge resources in this chapter, it was not the main goal 
of the analysis. This chapter explores some of the influential ideas that Adriana took up from the 
story. The chapter focuses on explaining the process by which she developed her claim about the 
temporal order. In particular I pay particular attention to the interaction between the productive 
resources from the story and Adriana’s existing prior knowledge.  
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CHAPTER 5: STUDENTS’ CONCEPTION OF THE TEMPORAL ORDER OF DELTA 
AND EPSILON 

 
This analysis chapter explores the claim from the literature that students struggle to 

understand the temporal order of delta and epsilon within the formal definition. In this chapter I 
focus on the first research question for the dissertation. Specifically, this chapter explores the 
following questions:   

1. What claims do students make about the temporal order of delta and epsilon?  
2. How do students reason about the temporal order of delta and epsilon? 

The findings in this chapter are enriched and elaborated by the findings in the next chapter, 
which offers a detailed case study of the ways a student reasons about the temporal order of delta 
and epsilon.  

Analysis Methods 
The first part of the analysis categorized students’ response to each question about the 

temporal order. The three categories were: epsilon first, delta first or no order. Students 
responded to four questions related to the temporal order. I asked about the temporal order of 
delta and epsilon in four contexts: dependence, sequential order, set-ness and the order of ε, δ, x 
and f (x). The following were the actual questions: 

1. In the definition, with epsilon and delta, what depends on what, if anything you think? 
Delta depends on epsilon? Epsilon depends on delta? They depend on each other? Or 
they do not depend on each other? And why? 

2. In the definition, between epsilon and delta, which one do you think comes first and 
which one do you figure out as a result? And why? 

3. In the definition, between epsilon and delta, which one do you think is set? Epsilon? 
Delta? Both? Or neither? And why?  

4. How would you put the four variables, epsilon, delta, x and f (x) in order, in terms of 
which comes first in the definition? And why? 

Each way of asking the question was considered a context. The response to each question was 
given a score from 0 to 2 (delta first=0, no order=1, epsilon first=2). No order received a score of 
1 to recognize that the student is a step closer to recognizing that epsilon could come first 
compared to students who believed that delta came first. For example, in the context of 
dependence, epsilon and delta depending on each other counts as a no order response.   

The sum of the scores ranged from 0 to 8 and students’ total scores placed them along a 
continuum between the claim of delta first and epsilon first. For students from the pilot study, 
scoring 2 on all the questions that were asked would lead to a total score of 8. In the first round 
of pilot study, students were asked only one question about the temporal order (question 1, 
above). In the second round of pilot study, students were asked three of the four questions 
(questions 1, 2 and 4). In those cases, the total would be normalized to 8 based on the number of 
available questions.  

The second part of the analysis identified reasoning patterns from students’ justifications for 
the temporal order. I define a reasoning pattern as the essential common core of reasoning found 
in a range of students concerning the justification for a particular claim. To identify reasoning 
patterns, I started by recording students’ justification for each of the temporal order question. A 
justification included details about what the student attended to and the meaning they attached to 
it. I first sorted justifications according to the temporal order they supported: epsilon first, no 
order or delta first. At times a student started with one claim for the temporal order, but changed 
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their mind afterwards. In this case, the justification for each claim was recorded as two different 
justifications and was sorted accordingly. Some students provided contradicting justifications to 
support the claim that there was no order. In this case, I treated the two justifications as one 
reasoning pattern.  

The catalogue of reasoning patterns was developed through an iterative process of open 
coding (Glaser & Strauss, 1967). In this part of the study, I did not try to delve deeply into the 
reasons behind student statements. I relied as much as possible on the particular thing the student 
said and attended to. For example, if a student were to say that epsilon depended on delta 
because he or she used delta to find epsilon, I recorded it as a reasoning pattern without 
investigating where the student could have gotten that idea. The student might have gotten the 
idea from the if-then statement, but unless the student explicitly attended to it, I did not include it 
as part of the reasoning pattern. The goal of the analysis was to show the diversity in 
justifications for the temporal order, and not to come up with an exhaustive list of justifications 
for any student in calculus.  

I. Students’ Responses About the Temporal Order of Delta and Epsilon 
The table below shows how each student in the study answered each question about the 

temporal order. The table is split into two. The top half includes students from the current study 
and the bottom half are students from the pilot study (Adiredja & James, 2013).21 Red shading 
denotes delta first response. Yellow denotes no order response. Green denotes epsilon first 
response. Blue denotes questions that were not asked. The use of color was meant to help the 
reader get an overall sense of students’ responses across the different questions.  

 
Table 5.1.  
Students’ Responses to Each Question About the Temporal Order  

Student Dependence Sequential Set Order Total 
Chen 0 0 0 0 0 
Sheila 0 0 0 0 0 

Spencer 0 0 0 0 0 
Veronica 0 0 0 0 0 
Patricia 0 0 0 0 0 

Julia 0 0 1 0 1 
Aruna 0 0 1 0 1 
Jane 1 0 1 0 2 
Milo 0 0 2 0 2 
Jose 1 2 0 0 3 

Katrina 0 2 1 0 3 
Simon 1 0 2 0 3 
Ryan 0 2 2 0 4 

Guillermo 2 0 0 2 4 
Silvia 1 2 1 0 4 
Bryan 0 1 2 2 5 

Roberto 2 2 1 2 7 
(Table continues) 

                                                
21 The data from Adiredja & James (2013) was re-analyzed using the methods used in this 
chapter. 
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Table 5.1. (continued) 
Students’ Responses to Each Question About the Temporal Order 

Student Dependence Sequential Set Order Total 
Erin 2 2 2 2 8 

David 0 N/A N/A N/A 0 
Jacob 0 N/A N/A N/A 0 
Anwar 0 0 N/A 0 0 
Sophia  0 0 N/A 0 0 
Adriana 0 0 N/A 2 3 
Adam 2 2 2 N/A 8 
Dean 2 N/A N/A N/A 8 

Note: The table is sorted from the lowest to highest total. It is grouped by current study and pilot study. 
 
Whereas in the pilot study (see bottom 7 rows) I mostly found consistency of responses across 
the contexts, the latest iteration of the study shows that students’ conception of the temporal 
order was more unstable across contexts. Some students were consistent across all questions. But 
the majority of students answered with epsilon first in some context, but answered with delta first 
in others. For example, Katrina claimed that epsilon came first by recalling an epsilon-delta 
proof. However, when she was asked to order x, f (x), ε and δ, she put delta first because “the 
definition says that if you have delta then you have epsilon.”  

During the pilot study, I did not ask the students all of the questions. Adam and Dean scored 
an 8 without answering the other three questions because they normatively answered the 
questions that were asked, and was able to explain the formal definition accurately. To assist in 
parsing the table above, I charted the number of questions that students answered with epsilon 
first (score=2).  
 

 
Figure 5.1. The distribution of students in answering the four temporal order of delta and epsilon 

questions with epsilon first. 
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Forty eight percent (48%) of students (12/25) answered none of the questions with epsilon first, 
while only 12% of students (3/25) answered with epsilon first on all the questions. The 
percentages of the rest are as follows: 1 question-24%, 2 questions-12% and 3-questions-4%. 
This chart shows that the majority of students in the study struggled with the temporal order of 
delta and epsilon. 

II. Reasoning Patterns for the Temporal Order 
The table below shows the different reasoning patterns that emerged from the data. As noted, 

each reasoning pattern is a type of justification students provided to support their claim about the 
temporal order. The table is organized by the temporal order claim for which the students used 
the justification. I include the number of students who used each reasoning pattern. The total 
number of student counts exceeds 25 because some students included more than one justification 
per question.  
 
Table 5.2.  
Students’ Reasoning Patterns About the Temporal Order Questions. 
The temporal 
order 

Reasoning pattern 
Number of 
students 

 
 
 
 
 
 
 
 

Delta comes 
first, or ε 

depends on δ, or 
δ is set first 

1) Because the statement, "for every ε >0, there exists δ >0" 
means that there needs to be a delta (greater than zero) for the 
epsilon to exist.  4 
2) Because of a procedural understanding of a limit. That is, 
find x values close to a and check the f (x) values.  6 
3) Because the if-then statement suggests that delta needs to be 
satisfied first then epsilon.  
Note: students might be reading the first-part of the definition, 
but their focus is on satisfying the delta inequality to satisfy 
epsilon 
Variation: the if then statement says if delta then epsilon          11 
4) Because we use delta to find epsilon. 3 
5) Because delta is related to x and epsilon is related to f (x) and 
since f (x) depends on x epsilon depends on delta.  
Variation 1: Epsilon depends on delta because f (x) depends on 
epsilon and x depends on delta and f (x) depends on x.  
Variation 2: Epsilon depends on delta because output depends 
on input, and delta constrains our input and epsilon constrains 
our output.  11 
6) Epsilon is not set because epsilon is arbitrary. So delta is set 
first. 4 
7) Because x and a are known, but not L. So we can use the 
delta inequality but not the epsilon inequality.  7 

(Table continues) 
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Table 5.2. (continued) 
Students’ Reasoning Patterns About the Temporal Order Questions. 
The temporal 
order 

Reasoning pattern 
Number of 
students 

Delta comes 
first, or ε 
depends on δ, or 
δ is set first 

8) Because the definition follows the order x then get delta then   
f (x) and then epsilon. Notes: This is different from focusing on 
the if-then because students do not interpret the if-then question 
but just follow the location of each variable. 

6 
Note: Students may look at the if-then statement but focus on 
the order of the quantities. 
9) Because of recall from the epsilon-delta proof procedure, the 
answer is epsilon over some number. 2 
10) Because of recall from epsilon-delta proof procedure, we 
start with the delta inequality and it will come out in the epsilon 
inequality.  2 

 
 
 
 
No order, or ε 
and δ are 
dependent on 
each other 

11) Because we have to find both of them.  
Variation 1: We are not given both epsilon and delta. 
Variation 2: If one is set, the other one is also set 7 
12) Because the for-all statement says delta depends on epsilon 
and the if-then statement says epsilon depends on delta 2 
13) Because the if-then statement suggests that they depend on 
each other. 3 
14) Because if the limit exists then as delta gets smaller epsilon 
gets smaller and if the limit doesn’t exist then delta getting 
smaller has no effect on epsilon 1 
15) Because of recall from the epsilon-delta proof procedure, of 
getting a number times delta is less than epsilon 1 

Epsilon comes 
first, or δ 
depends on ε, or 
ε is set first 

16) Because the definition reads for every number ε, there 
exists a number δ, such that if 0 <| x – a |< δ then | f (x) – L |< ε,  (a 
normative reading of the statement). 1 
17) Because of the spatial location of the variables, starting 
with for all. 1 
18) Epsilon is given.  
Variation: Epsilon comes first and then you find delta. 4 
19) Because of the statement for all epsilon there exists a delta 2 
20) Because of recall from the epsilon-delta proof procedure, 
we break down the epsilon inequality to get it to look like the 
delta inequality or the answer is epsilon over some number. 5 

(Table continues) 
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Table 5.2. (continued) 
Students’ Reasoning Patterns About the Temporal Order Questions. 
The temporal 
order 

Reasoning pattern 
Number of 

students 

Epsilon comes 
first, or δ 
depends on ε, or 
ε is set first 

21) Since you know a and f (x) you can find L, then you can set 
epsilon, and find delta 1 
22) Because of a counterexample where the limit does not exist 
and thus for a given epsilon there is no delta. 1 
23) Epsilon is set and that constrains the output which then 
constrains the input.  
Variation: Because we want epsilon to be really small because 
we want f (x) to be very close to L we would want delta to be 
really small because we want x to be close to a. 2 
24) Because epsilon no longer depends on delta since the if-
then statement is about x and f (x) 1 

Themes in the types of reasoning patterns 
I found quite a large number of reasoning patterns for the temporal order across the four 

contexts. This shows the diversity of ways of reasoning about the temporal order. Quite a 
number of reasoning patterns (8/24) relied on an interpretation of different parts of the statement 
of the formal definition (e.g., Reasoning Pattern 1, 13, 16). Almost as common was those that 
involved a recall of the proof procedure from instruction (Reasoning Pattern 9, 10, 15, 20). 
Notice that even though students attended to the same procedure, sometimes they concluded a 
different temporal order of delta and epsilon. Some reasoning patterns relied on a more intuitive 
understanding of a limit, where one would select values of x close to a to determine the limit 
(e.g., Reasoning Pattern 2, 7). Some students justified their claim using physical location of the 
different variables in the statement of the definition (e.g., Reasoning Pattern 8, 17). Thus, while 
many of these reasoning patterns might have originated from instruction, others were students’ 
interpretation of the formal definition during the interview.  

Common reasoning patterns in different contexts 
One of the most common reasoning patterns, with 11 students using it as a part of their 

reasoning was the same justification found in Adiredja and James (2013): epsilon depends on 
delta because delta is related to x and epsilon is related to f (x) and since f (x) depends on x 
epsilon depends on delta (Reasoning Pattern 5). Bryan provided a very clear example of this 
reasoning pattern. He argued, “[Epsilon depends on delta] because delta is the independent 
variable which would be x in the f of x equals y [f (x) = y] relationship /…/ that spits out y, which 
is our epsilon [dependent variable] /…/ because delta is like x and epsilon is y.” Bryan was 
drawing on his knowledge of functional relationships and applying that to the delta epsilon 
relationship. And like most students who used the functional dependence idea, Bryan treated 
delta like x and epsilon like y.  

Another reasoning pattern that was equally as common (11 students) relies on an 
interpretation of the if-then statement. Reasoning pattern 3 says that the if-then statement 
suggests that delta needs to be satisfied first before epsilon can be satisfied. So delta comes first. 
For example, Ryan said, “For every number epsilon there is a number delta such that if the delta 
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thing is satisfied then the epsilon is satisfied /…/ the delta has to happen for the epsilon to be 
satisfied. Because it goes, if this, then the epsilon is satisfied. Delta needs to be satisfied before 
the epsilon can be.” Ryan was reading the whole statement of the definition, but he clearly 
focused on the if-then part of the statement. He then concluded that delta came first in the 
temporal order. This reasoning pattern is an example of one that relied on an interpretation of 
part of the statement of the definition. Next I explore another common reasoning pattern, which 
relied on students’ intuitive understanding of a limit.   

Seven of the 25 students argued that since the x and a were known then they could use those 
to find delta, whereas the limit was unknown so they could not find epsilon (Reasoning Pattern 
7). Veronica argued, “Um, I would say delta [is set first] because the delta equation includes a 
whereas the components of the epsilon equation include L and you may or may not know what 
the limit is yet because you might be solving for the limit. But they give you a so I would assume 
that would be a better tool to use to solve.” Veronica treated the delta and epsilon inequalities    
(0 <| x – a |< δ then | f (x) – L |< ε) as equations (| x – a | = δ then | f (x) – L | = ε). This was quite 
common among the students I interviewed. Doing so led her to conclude that with x and a 
known, she could find the delta, whereas the existence of the limit was in question. So far I have 
explored common reasoning patterns that support the claim that delta comes first. I explore a 
common one students used to argue that there was no order for epsilon and delta. 

Seven students focused on the fact that they needed to find both epsilon and delta to conclude 
that neither was set, so there was no order (Reasoning Pattern 11). For example, Roberto argued 
that neither epsilon nor delta were set because “you have to sort of find them or figure them out.” 
Silvia expressed a similar opinion, “neither set because you have to solve for both of them.” 
These students attended to whether epsilon and delta could be set, instead of which of the two 
was set first. I return to his subtlety in the discussion.  

It is worth noting most students who concluded that epsilon came first recalled parts of the 
proof procedure (Reasoning Pattern 20). They were able to infer the temporal order appropriately 
from the proof. The question then becomes, what was it about the proof procedure that allowed 
many students to the correctly infer the order?  

Ten students recalled, without prompting, parts of the epsilon-delta proof from prior 
instruction. Five of them concluded the appropriate temporal order of delta and epsilon, but the 
other five did not. In fact, many of them recalled the same procedure, attended to the same 
information and concluded a different temporal order of delta and epsilon. For example, both 
Veronica and Katrina recalled that the “delta” would “come out” from the epsilon inequality. But 
Veronica concluded that delta came first, while Katrina concluded epsilon came first!  

Veronica said, “I'm thinking delta [comes first] because for some reason I feel like because 
these [0 <| x – 1 |< δ then 3| x – 1 |< ε] look kinda similar, like you can take /…/ this equation with 
delta and plug it in for the epsilon equation. So I'm thinking maybe you should check out delta 
first possibly.” Katrina explained, “Oh, the one that comes first is epsilon and you figure out 
delta because you're gonna take this f of x minus L [| f (x) – L |] is less than epsilon and you're 
gonna manipulate it, and then you'll get it to look like x minus a [| x – a |] and depending on that, 
you know what delta is.“ The two students were both examining the two inequalities and trying 
to manipulate one to look like the other. This is something that is commonly talked about in 
calculus classes, and students spontaneously produced during the interview. However, Veronica 
concluded that delta came first while Katrina concluded that epsilon came first.  

The goal of this comparison is not to compare the students’ ability, but to make the point that 
the difference in interpretations by the two students warrants a deeper analysis to explore what 
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was truly underlying these conclusions, and the ways in which these justifications arose. The 
next analysis chapter goes into the details of the way one student used the proof procedure as a 
resource to think about the temporal order. The student attended to the same information but 
changed his mind about the temporal order several times during the interview.  

Discussion 
I found that students struggled with the temporal order of delta and epsilon within the formal 

definition. Twelve of the 25 students in this study were not able to answer one question about the 
temporal order correctly. The methods that I employed in this chapter reveal the variability of 
student conceptualization of and reasoning about the temporal order. Ten students received a 
total score of 0 across the four different contexts and three students scored 8, but the majority of 
students were somewhere in between. The fact that some students scored 2 in one context but 1 
or 0 in others shows that student knowledge about the temporal order was not quite stable across 
the different contexts. This highlights the importance of assessing student knowledge in multiple 
contexts in research and practice.    

With respect to students’ justifications, “functional dependence between x and f (x),” and 
“delta is with x; epsilon is with y” remain the most common reasoning patterns for the temporal 
order in the latest iteration of the study. I discussed the nature of that reasoning and its 
implication in Adiredja and James (2013). However, the current study also found another 
common reasoning pattern that relied on an interpretation of the if-then statement in the 
definition. In Adiredja and James (2013) we found that most of what we called “knowledge 
resources” were mathematical in nature; we hypothesized that either this indicated lack of access 
into the formal definition using intuitive knowledge or it was a product of using too large of a 
grain size to find intuitive knowledge resources. The findings from this study suggest that it 
might be both.  

The findings from this chapter confirm that students use their interpretation of mathematical 
statements and previous experiences with mathematics to make sense of the temporal order. For 
example, many of the reasoning patterns I found relied on students’ interpretation of the if-then 
statement in the definition. At the same time, a microgenetic case study of Adam in the next 
chapter reveals that most of what Adiredja and James called “knowledge resource” was 
reasoning patterns. I show in the next chapter that a reasoning pattern is a result of the use of 
various knowledge resources, thus a reasoning pattern is larger in grain size. However, these 
reasoning patterns are useful to identify knowledge resources. For example, the case study 
explores the way that the student, Adam interpreted the inequality 3| x – 1 |< ε from an epsilon-
delta proof he recalled. Sometimes Adam read the inequality to say that epsilon must be greater 
than three times the interval around 1. Other times he read it as saying three times the interval 
around 1 must be smaller than epsilon. And depending on his reading, he drew different 
conclusions about the temporal order. The next chapter looks into the underlying knowledge 
resources that influence the way he read the inequality. The findings in Chapter 6 can also 
illuminate what happened with Veronica and Katrina earlier.   

I note one potential limitation of the current study. Four of the 19 students (Jane, Katrina, 
Roberto and Silvia) who were asked the set question did not interpret the question as I intended. 
Instead of focusing on which of the two quantities had to be set first, they were focused on 
whether epsilon and delta could be set. I recognize that this was a reasonable interpretation. I still 
coded them as “no order” for consistency instead of creating a new category for them. One 
option that I could have done, but did not do, was to not code their response at all, and normalize 
their scores much like I did with the students in the pilot study who was not asked the question. I 
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did not do so, because I do believe that ultimately this would not dramatically change the general 
finding in this chapter: that a lot of students struggled with the temporal order and they used a 
very diverse set of their reasoning patterns to justify their claim.  
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CHAPTER 6: REVISIONS OF THE TEMPORAL ORDER CLAIM BEFORE THE 
PANCAKE STORY 

 
This analysis chapter focuses on a case of a student, Adam, who used a diverse set of 

knowledge resources to make sense of the temporal order of delta and epsilon. Adam was 
selected for the case study because despite being a high-performing student and being able to 
recall the procedure of an epsilon-delta proof from memory, he was unsure about the temporal 
order of delta and epsilon. Adam self-identified as a White, Non-Hispanic student. He was an 
intended mathematics major who took first-semester calculus in high school and received a five 
on his AP Calculus AB and BC. In the span of 17 minutes, Adam changed his claim 7 times and 
ultimately arrived at the correct conclusion about the temporal order before discussing the 
Pancake Story. Adam was one the few students who revised his claim about the temporal order 
without discussing the story. Adam was very articulate in the way that he reasoned about the 
temporal order. Adam’s ways of reasoning can illuminate his selection of resources and the 
interaction between these knowledge resources. 

Goals and Foci for Analysis 
The main goal for this chapter is to understand the process by which Adam made sense of the 

temporal order of delta and epsilon. More specifically, this chapter has a number of specific 
goals related to the content of the formal definition: 

1. This chapter aims to uncover formal mathematical resources and intuitive knowledge 
resources and their interaction in the development of Adam’s claim.22 

2. This chapter aims to investigate the details of the knowledge resource, functional 
dependence and its influence in making sense of the temporal order. 

3. This chapter also aims to investigate the richness of the formal definition of a limit in 
terms of the amount of resources students might bring to it, and how the richness might have 
influenced Adam’s sense making.   

The analysis focuses on Adam’s response to the temporal order questions (questions 15 to 19 
in the protocol). Hence it focuses on the episode that starts with Adam’s response to question 15 
and continues to his last words about question 19 (turns 286–415, see Appendix J for half of the 
full transcript). I broke down the episode into segments based on the changes in his claims about 
the temporal order. Each segment was categorized based on Adam’s current claim about the 
temporal order. Adam answered the temporal order question of delta and epsilon with respect to 
dependence (which depended one which?), sequential order (which came first?), and which one 
was set first. He discussed the temporal order in those three contexts, but he opted not to respond 
to the last context where he needed to order the four variables. His discussion of the contexts was 
not linear. For example, he discussed the dependence between epsilon and delta, but in the 
middle of that discussion he would explore which one was set first. In this way, the analysis is 
not organized by the type of question for the temporal order, but by the temporal order claim that 
Adam made.    

There are two parts of the analysis. The first part documents the changes of Adam’s claim 
across the nine segments during the 17-minute episode. This gives the overall picture of Adam’s 
sense making process. The second part of the analysis is a microgenetic learning analysis 
(Parnafes & diSessa, 2012) of Adam’s sense making in four of the ten segments (Segments 3(a), 
                                                
22 Adam’s claim about the temporal order changes over the 17-minute episode, but I treat them 
as intermediate states of Adam’s overall claim about the temporal order.  
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3(b), 4 and 5). It focuses on moment-by-moment (micro) changes in the deployment of Adam’s 
knowledge during the learning episode. Not coincidentally, a diverse set of knowledge resources 
was involved in these segments. The first part of the analysis provides context for the second part 
of the analysis, which explores the details of Adam’s transitional claim in each segment. It 
documents the relevant knowledge resources and their interaction that might have led to the 
overall change of Adam’s claim.  

I. Overall Change in Claim 
Adam’s claim about the relationship between delta and epsilon changed several times during 

the interview. Initially he argued that epsilon depended on delta (delta first) because “delta is 
giving you an interval for x, and then, /…/ epsilon is evaluating x and subtracting the limit” 
(turns 288–290). By the end he argued that delta depended on epsilon (or epsilon first) 23 because 
“epsilon’s [set] first and you break down epsilon… and you find delta” (turns 393–411).  

Figure 6.1 shows the changes in Adam’s claim about the temporal order in between those 
two segments. Each box represents a segment, and the shade characterizes the overall nature of 
the argument about the temporal order. Pink is for delta first. Yellow is for no order. Green is for 
epsilon first. Despite the color code, Adam was not sure about his claim at each segment. In fact, 
Adam often used hedging language like “kind of,” “sort of”, “I think” to qualify his statements.  
 

 
Figure 6.1. Adam’s progression of claims about the temporal order of delta and epsilon 

during the 17-minute episode. 
 

As documented in Figure 6.1, Adam went back and forth on his claim about the temporal order. 
Adam spent the majority of the time discussing the dependence between epsilon and delta 
(segments 1-6). The question about the sequential order was discussed in Segment 7 and 8, and 
he discussed which of epsilon and delta was set first in Segment 5 and 9.  

Adam started with the claim that epsilon depended on delta by focusing on the idea of 
functional dependence. By Segment 3, he changed to epsilon and delta’s being dependent on 
each other. He explained why epsilon depended on delta in 3(a), and why delta depended on 
                                                
23 I used the phrase “comes first” to indicate the temporal order. In the data, most of the 
discussion was about the issue of dependence between delta and epsilon and Adam did not use 
the phrase “epsilon comes first,” until I specifically asked him about the sequential order in  
Segment 7 and 8. 

Delta first           No order

Epsilon first

Delta first             

Segment 2
(turns 292-299)

Segment 1
(turns 286-291)

Segment 3(a)
(turns 300-324)

Segment 3(b)
(turns 325-333)

Segment 4
(turns 334-335)

Segment 5
(turns 336-342)

Segment 6
(turns 343-354)

Segment 7
(turns 390-391)

Segment 8
(turns 392-407)

Epsilon first

Segment 9
(turns 408-415)

Delta firstNo order

No order Delta firstNo order



 

 

41 

epsilon in 3(b). In this segment he began to recall parts of an epsilon delta proof. He used the 
inequality 3δ<ε to help him determine the temporal order. I separated the segment into two 
because there were a lot of ideas embedded in each of the segments. In Segment 4, he abandoned 
the claim that epsilon had an influence on delta, only to return to it in Segment 5.  

At the end of Segment 5, Adam said that epsilon would depend on delta provided that epsilon 
was set (turn 340), but he concluded that the two were dependent on each other. When asked if 
epsilon was set, he said that both variables were “sort of” set independently but their relationship 
was that they were dependent on each other (turn 354 in Segment 6). When we returned to the 
topic in Segment 7, Adam focused on his recall of the procedural steps of an epsilon-delta proof. 
The procedure started with setting up the delta inequality, then simplifying the epsilon inequality 
to find the “delta expression,” which Adam called “breaking down” the epsilon inequality. In the 
next turn, Adam changed his mind and said that epsilon came first because he would break down 
the epsilon inequality first (Segment 8). Adam described in Segment 9, that the process was like, 
“fine tuning” the size of the output using epsilon (turn 410), and that’s why epsilon was set first.  

Having documented the changes in Adam’s claim about the temporal order, in the second 
part of the analysis, I explore reasons behind some of the changes that occurred. It starts with an 
analysis of Segment 3(a) and 3(b) and ends with an analysis of Segment 5 (turns 300–341). As I 
said, Segment 3(a) and 3(b) were rich with ideas and justifications for why epsilon and delta 
depended on each other. There was a change in claim in Segment 4. In Segment 5, Adam settled 
back with the claim that the two depended on each other after re-establishing epsilon’s influence 
on delta. Adam’s claim was still not stable as Adam returned to delta first in Segment 7. We 
begin to see stability of Adam’s claim in Segment 8 and 9. Thus, part II of the analysis focuses 
on the beginning of the change (Segment 3(a) to 5) and investigate Adam’s selection of 
resources and the interaction between these knowledge resources in those segments. 

II. Adam’s Transitional Claims and Knowledge Resources 
 Adam cued a variety of knowledge resources in Segment 3(a) and (b), including some that 

were also cued in the first two segments. In 3(a) and 3(b) Adam also recalled several potentially 
productive resources from instruction, but they competed with Adam’s existing resources. 
Segment 4 and 5 show that Adam struggled with the claim that epsilon could influence delta. At 
the end of Segment 5, Adam sorted out the competing resources using the inequality 3δ < ε that 
he generated from his recall of the proof procedure. He concluded that epsilon influenced delta 
because delta had to “conform” to the size of epsilon, provided that epsilon was set.  

The analysis in this section aims to explore some of the issues for Adam and investigate ways 
that he resolved them. Before I start a discussion about the data, I describe the structure of this 
section and the details of the methodology I used in this chapter. 

Analysis Methods 
For each segment, I present the relevant turns in the transcript. In the presentation of the 

transcript, partial repeats, “like,” “ums,” and “uh-huhs” were removed and replaced by an ellipsis 
(/…/). When it was helpful to maintain the student’s flow of argument, I combined multiple turns 
that would be otherwise be broken by the “ums” and “uh-huhs.” When the interviewer 
interjected a clarifying question or a different idea, I presented the multiple turns as they were. I 
included hedges like, “sort of” or “kind of” because it was informative of Adam’s certainty of 
the claim he made.  

Below the transcript, I present a summary of Adam’s argument with minimal analysis of the 
correctness of Adam’s argument. This is to assist the reader in making sense of the mathematics 
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behind his utterance. Then I present my analysis of the argument. The analysis focuses on 
uncovering the meaning behind different parts of Adam’s argument and the way that Adam 
constructed his argument. The final product is a model of Adam’s argument. I close the section 
with a list of counter-models, and an argument for why each counter-model was less likely to be 
a valid interpretation of the data. Figure 6.2 below shows the structure for the analysis for each 
segment of data. 
 

 
Figure 6.2. The structure for each segment of the analysis. 

 
I employed “competitive argumentation” (Schoenfeld, Smith and Arcavi, 1993, VanLehn, 

Brown and Greeno, 1984) as the main methodology to analyze the data in this section. 
Competitive argumentation holds an interpretation of data accountable to empirical evidence, 
theory and existing literature. In this section competitive argumentation was used in two ways. 
First, I used it to identify knowledge resources. As a reminder, a knowledge resource is an idea 
consisting of a single or a collection of interrelated knowledge elements with a utility in a 
particular context. I specifically identified knowledge resources that related quantities, like 
functional dependence (see Table 6.1 below for a glossary for all the relevant resources for the 
analysis). In this chapter knowledge resources are bolded in the text.  
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Table 6.1.  
Glossary of Knowledge Resources 
Knowledge resource Description 
Absolute condition  It refers to an antecedent to a consequence that is necessary and 

sufficient. In mathematics, the P in the statement, P if and only if 
Q is as an absolute condition.  
 

This resource is commonly misapplied to a one-way conditional 
statement, if P then Q. Students often assume that with a 
conditional statement, the inverse of the conditional statement are 
also true for the statement.  
 

It may have stemmed from experiences with statements like “If 
you finish your homework, then you can play videogames,” which 
usually means, “If you haven’t finished your homework, then you 
cannot play videogames.” 
 

Determining If A determines B, then A uniquely establishes B. While 
determining is more specific than constraining, when A 
determines B, A also constrains B.  
 

This resource stipulates that determining involves a determiner 
and a determined. When A determines B then A is the determiner 
and B is the determined. A can be a determiner of other quantities, 
in addition to B. For example, epsilon can determine delta, but it 
can also determine the range of acceptable output values.  
 

Indicators of this resource include the phrase “must be,” and the 
idea of constraining. For example, if a student say “B must be 
greater than A,” then A is the determiner and B is the determined. 
Likewise, if a student says, “Delta constrains the size of the 
interval,” then delta is a determiner of the interval. I assert that the 
distinction between determining and constraining is 
inconsequential for purposes of the analysis in this chapter.  
  

Domain constraint for a 
limit 
 

A limit only considers values of x near or close to a.  

Dynamic definition of a 
limit 
 

A limit is a number that f (x) approaches, as x approaches a. 

Function slots This resources uses the stipulation that a function is a relationship 
between x and f (x) or y. This resource supposes that when two 
quantities share a functional relationship, one quantity is the x and 
the other is the f (x) or the y.  
 

(Table continues) 
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Table 6.1.  
Glossary of Knowledge Resources 
Knowledge resource Description 
Functional dependence 
 

In an input-output relationship, the input directly determines the 
output. The relationship has a clear direction that the input 
determines the output, but not vice-versa. Functional dependence 
is a particular kind of determining. In the analysis, I differentiate 
between functional dependence and determining because of the 
specific nature and prevalent use of functional dependence in 
mathematics.  
 

The resource likely stemmed from students’ experiences learning 
about functions. The y or f (x) is often treated as the dependent 
variable, and x the independent variable.  

Givenness A characteristic of being specified in advanced. A given quantity 
is one whose properties are previously stipulated, and therefore its 
determination is not relevant for further examination.  
 

Any mention of a quantity being previously set is a version of this 
resource. Students often assume that the variable x or the domain 
of any function is a given.  

Proportional variation A small change in the independent variable leads to a small 
change in the dependent variable. This may be a mathematical 
application of the more physically intuitive Ohm’s p-prim 
(diSessa, 1993). Ohm’s p-prim says bigger effort begets bigger 
result, and consequently smaller effort begets smaller result.   

Quality control The idea of controlling the input values of a function in order to 
meet a given specification (e.g., error bound) for the output values.  
 

This resource involves the resource givenness of the constraint for 
the desired output, but it also emphasizes the modification of the 
input to satisfy the given constraint.    

 
The first step in identifying a knowledge resource is to uncover the meaning behind relevant 

parts of Adam’s argument. To help interpret the meaning of the idea in the particular context, I 
looked for other instances in the full transcript where Adam expressed a similar idea. I did not 
assume that the two ideas would be consistent. In fact analyzing their consistency helped to 
interpret the use of an idea in the particular context. At times I also relied on existing literature to 
help interpret the idea that Adam used.  

A theoretical assumption about knowledge resources, and a methodological orientation 
assisted in the identification of knowledge resources. The neutrality assumption—knowledge 
resources are not correct or incorrect—distinguished knowledge resources from larger ideas that 
were results of the use of several knowledge resources. For example, as I alluded to at the end of 
Chapter 5, students’ reasoning patterns could not be knowledge resources because those 
reasoning patterns could be correct or incorrect. Unpacking the ideas behind these reasoning 
patterns helped identify the knowledge resources.   

The methodological orientation of staying accountable to the dynamics of development of 
thinking across contexts was also helpful in identifying knowledge resources. I strive to 
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understand when a knowledge resource is activated and when it is not, and why. For example, 
suppose one knowledge resource was used in one segment but not in another. First I asked 
myself the question, was the resource really not activated in the other segment? If so, why was it 
not? I exploit all the available data to answer those questions. The “analysis” section for each 
segment focuses on identifying knowledge resources, assisted by the theoretical assumption and 
the methodological orientation. 

I also used competitive argumentation to construct a model of Adam’s argument, including 
the role for each knowledge resource in the particular context. Competitive argumentation is 
illustrated explicitly with the use of counter-models.24 The counter-models serve as competing 
hypotheses for the way that Adam put together the different knowledge resources that I identified 
in the “analysis” section. The methodological orientation of focusing on the dynamics of the 
development of thinking was useful in generating counter-models and in deciding the most likely 
to be valid model of Adam’s argument.  

 

 
Figure 6.3. Knowledge resources Adam cued in each of the four segments. 

 
In summary, this analysis section seeks to investigate the role of intuitive and formal 

mathematical knowledge resources in the sense making process. Figure 6.3 above provides a 
preview of the analysis. As a reminder, pink is for delta first. Yellow is for no order, and green is 
for epsilon first. As we continue with the analysis of the four segments, I invite the reader to 
                                                
24 The counter-model is also a helpful way to present the data. It allows the reader to focus on the 
model and the supporting explanation before they are problematized by competitive 
argumentation. Then the reader can consider the validity of the counter-models.  
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keep in mind the three specific aims of the analysis: to determine the student’s repertoire of 
resources, to establish the dominance of functional dependence and to explore the richness of 
the formal definition as a topic and its implication. I revisit these three aims in the discussion of 
the chapter. We start with the first focus segment next. 

Segment 3(a): The Determiner vs. the Determined and Functional Dependence 
 
312 Adam /…/ [Y]ou're saying delta [points at 0 <| x – a |< δ] must be greater than the input 

/…/ subtracted by what you're centered around /…/. So you're saying that /…/ the 
interval around a number a [points at 0 <| x – a |< δ] must be less than delta. So 
you're saying, the input cannot get outside of this [unspecified] region. /…/ This 
interval /…/ cannot get exceedingly big. 

314- 
316 

Adam And then for epsilon, you're evaluating x around a, and then you're subtracting 1. 
When you plug in /…/ a for x. So what winds up happening is you're seeing how 
big the difference is between a number near a and the a itself. 

317 Int. So how does that say that epsilon depends on delta? 
318 Adam It's because your input, your delta is influencing your input and then epsilon must 

be greater than your input minus your input of a,  
319 Int. Okay. Or your output [correcting]. 
320 Adam Your output [in agreement]. 
321 Int. And since, so since output [points at | f (x) – L |< ε] depends on input  

[points at 0 <| x – a |< δ].. 
322 Adam Yes.  
323 Int. Epsilon depends on delta. 
324 Adam Yes.  
   

Summary of argument. Adam initially said that delta was determined by the difference 
between x and a (“delta must be greater than the input /…/ subtracted by what you’re centered 
around,” turn 312). But ultimately he concluded that delta was influencing the input (turn 318) 
because it constrained the interval for x (“the interval around a number a [points at 0 <| x – a |< δ] 
must be less than delta,” turn 312). Epsilon evaluated the x values that were within the constraint 
(turns 314-316). Adam attended to the two inequalities (0 <| x – a |< δ and | f (x) – L |< ε) to make 
his claim. However, Adam read the two inequalities differently. He read the delta inequality as 
saying that delta constrained the x values. He read the inequality to say that “epsilon must be 
greater than [the output for] your input minus [the output for] your input of a” (turn 318). Adam 
suggested a role for delta when he said that the input could not get outside of the region specified 
by delta (turn 312). And he prescribed a relationship between epsilon and the output when he 
said that epsilon must be greater than the difference in outputs. Adam also agreed with the 
suggestion that epsilon depended on delta because output depended on input.  

Analysis. Adam treated the two variables epsilon and delta differently. The way he read the 
epsilon and delta inequality suggests his treatment of each variable and the relevant knowledge 
resources. Adam read the delta inequality (0 <| x – a |< δ) in two ways. Initially he read it as an 
inequality that would allow him to determine delta from the difference between x and a (first line 



 

 

47 

in turn 312). Here, delta would be determined by the difference between x and a. But for the 
remainder of the segment, he switched to delta constraining the interval around a. Delta made 
sure that the interval around a to not be too large (“This interval cannot get exceedingly big,” 
turn 312). He also said, “the input cannot get outside this region” (turn 312). Then delta 
determined the acceptable x values. Thus, delta played the role of the determiner. It is unclear 
at this point what he meant by the phrase “the interval around a must be less than delta.” The 
meaning of this is revealed in the next segment.  

Adam’s switch in his interpretation of the inequality was supported by the flexibility of the 
relationship between two sides of an inequality. The inequality | x – a |< δ within the inequality    
0 <| x – a |< δ, just like any other inequalities could be interpreted in two ways: either the left hand 
side determined the right or vice versa. Adam’s initial interpretation of the difference between x 
and a determined the delta was consistent with the left determining the right. This is consistent 
with a very common way students spatially reason with equations or inequalities: the right hand 
side is always the “answer,” or the thing to be calculated (for a discussion of potential causes for 
this interpretation see Carpenter, Franke and Levi, 2003, pp. 22-23). Despite this common 
tendency, Adam switched his interpretation. I revisit this potential inconsistency between delta as 
a determiner and delta as a determined in the next episode. 

Delta also made sure that only values of x that were close to a to be considered. Presumably 
this was the goal behind Adam’s assertion that the interval around a “cannot get exceedingly 
big.” This is evidence for the domain constraint for a limit resource. I posit that the notion of 
proportional variation was also used in this segment: a small variation in x leads to a small 
variation in f (x). The goal of making sure that the variation in f (x) was kept small was part of 
the reason why Adam said that the interval could not get exceedingly big. 

Epsilon, on the other hand, plays the role of the one to be determined by the difference of 
the function values. Adam read the epsilon inequality (| f (x) – L |< ε) as suggesting steps for 
calculation. First, evaluate the function at two different points, at a number near a and at a.25 
Then calculate their difference as a comparison value for epsilon. He said, “[E]psilon must be 
greater than [the output for] your input minus [the output for] your input of a” (turn 318). Thus, 
epsilon was to be determined by calculating the difference between the outputs.  

Different parts of the statement of the definition supported Adam’s interpretation of epsilon 
and the way he read the epsilon inequality. The f (x) within the epsilon inequality suggests some 
form of function evaluation (or plugging things in for some students). This might explain why 
Adam said for epsilon, one evaluates the input values (turns 314-316). Some form of evaluation 
did need to happen, but Adam thought that the evaluation would determine the number epsilon. 
This made epsilon the quantity to be determined. This is further supported by the implication 
structure of the if-then statement. The implication structure demands a verification of the epsilon 
inequality as a result of choosing x values that satisfy the delta inequality (turn 316). However, 
instead of verifying that all the output values were within epsilon distance from the limit, Adam 
concluded that epsilon had to be greater than the difference between the output and the limit. His 
interpretation that epsilon was to be determined was also supported by the tendency to interpret 

                                                
25 The way Adam read the epsilon inequality as | f (x) – f (a) |< ε suggests an assumption that         
L = f (a). However, during the interview Adam was discussing the formal definition in the context 
of the limit of a linear function, which was continuous. Hence, I did not consider this as a 
“misconception” as listed in Davis and Vinner (1986).  
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the right hand side of an inequality as the answer. Thus, in this segment for Adam, delta was a 
determiner (of the interval) and epsilon is the determined (by the difference in output values).  

Now that we know how Adam conceptualized epsilon and delta, the remaining question is 
how did Adam connect epsilon and delta to deduce the temporal order? Functional dependence 
connected epsilon and delta in the following way. Delta determined the small interval of x 
values around a. The functional dependence took in x values and produced f (x) values, which 
determined the number epsilon. Again, epsilon was determined by the difference in output of 
the function at a and at a number near a. As documented in the previous chapter, functional 
dependence between the input and the output, together with delta is similar to x and epsilon is 
similar to y (function slots) was a very common reasoning pattern to argue that epsilon 
depended on delta.  

Note that Adam did not apply the function slots resource to epsilon and delta like many 
students. That is, he did not use delta and epsilon to fill the x and y or f (x) slots. In this context, it 
seems that Adam cued the functional dependence with a productive interpretation of the delta (a 
constraint for the interval), and a particular interpretation of epsilon (greater than the difference 
of output values). Delta’s constraining the input is different from delta’s being similar to x. And 
epsilon’s being greater than the difference between the output at a and at a number near a is 
more specific than epsilon’s being similar to y. Thus, we have a different model than “delta is 
with x, epsilon is with y and since y depends on x, epsilon depends on delta.”  

Model. Adam focused on the role of delta and epsilon in the definition. Delta played the role 
of the determiner. Delta served the function of focusing on x values that were close to a 
(domain constraint for a limit), and made sure that the interval was not so large as to produce 
too large of a difference in the output (proportional variation). Epsilon on the other hand 
played the role of the one to be determined. The apparent role of delta and epsilon led him to 
read the inequalities in a particular way. Adam read 0 <| x – a |< δ  as saying the interval around a 
number a must be less than delta, and he read | f (x) – L |< ε as saying epsilon must be greater than 
the difference between the output of a number near a and the limit. Functional dependence 
connected the known determiner, delta, to the unknown to be determined, epsilon, via input-
output relationship. In this segment functional dependence supported the resources delta as the 
determiner of the acceptable input and epsilon as determined by the difference of f (x) and L, 
for x near a. Thus the resources for this segment include: determining, domain constraint for a 
limit, proportional variation and functional dependence.26  

Potential counter-model 1. Adam used the functional dependence of the output on the input 
as the main resource to determine the dependence between delta and epsilon. Adam needed to 
relate epsilon and delta to the input x and the output f (x) to utilize that argument. His 
interpretation of the two inequalities provided him a way to related delta to the input and epsilon 
to the output. Delta constrained the range of inputs, and epsilon was a comparison value for the 
difference between the output values at a and near a. Thus, function slots put delta in the slot of 
x and epsilon in the slot of f (x).  

It is true that the way Adam read the inequalities related epsilon to the output and delta to the 
input, and the functional dependence connected the input with the output. I have argued that 

                                                
26 The analysis in Segment 5 reveals that in this segment, Adam likely cued the dynamic 
definition of a limit in Segment 2 right before this Segment. The resource is consistent with the 
other resources cued in this segment. Thus, it is likely that dynamic definition of a limit was 
also used in this segment, without an explicit mention to it.  
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Adam’s interpretation of epsilon and delta was more specific than just an application of the 
function slots to epsilon and delta. A more important question to consider is how did Adam 
come up with the specific interpretation of the inequalities? Suppose Adam believed that epsilon 
and delta played a different role. Epsilon was a determiner of the difference in the output, and 
delta was determined by the difference between x and a. Then Adam would read the epsilon 
inequality to say that the difference between the output and the limit must be less than epsilon, 
and delta must be a number greater than the difference between x and a. This would also imply 
that epsilon was known and delta was not. This would have resulted in a closer to normative 
interpretation of the formal definition, but we did not see that. Moreover, in that case functional 
dependence would not be applicable with the known output and the unknown input. This 
emphasizes the central role determining played as resource in this segment.      

Potential counter-model 2. Adam interpreted the temporal order of delta and epsilon through 
the structure of the if-then statement in the definition. Since delta spatially came before the 
epsilon, then he inferred via the principle that the input came before the output that epsilon 
depended on delta. This model would need an argument for how Adam felt justified in ignoring 
the other symbols in the if-then statement. That is, how could if 0 <| x – a |< δ then | f (x) – L |< ε be 
read as saying if δ then ε? While this was a common interpretation of the if-then statement with 
other students, in the next segment we see that this was not how Adam interpreted the if-then 
statement.  

Segment 3(b): Epsilon Is Set and Determines the Input  
 
325 Int. So what about delta depending on epsilon? 
326 Adam Um [long pause] actually, /…/ it's more of uh—Because the epsilon can only be, is 

a set number and that, the difference, the outputs can only be a certain length apart 
[points at | f (x) – L |< ε]. That sort of limits also how far the inputs can be, how far 
apart [gestures a horizontal interval with his hands] the input can be from what 
you're trying to find the limit as x—the input approaches some number. 
 

Summary of argument. Before providing his argument for delta depending on epsilon, Adam 
very briefly reconsidered his claim that delta depended on epsilon (“actually /…/ it’s more of 
uh—”). He then explained that delta depended on epsilon because epsilon was a set number, 
which constrained the range of acceptable outputs. The output could only be a certain distance 
from the limit, which also constrained how far the input could be from a. 

Analysis. Adam started this segment by briefly reconsidering his claim about the temporal 
order. The next segment reveals that Adam might have thought to say that it was more that 
epsilon depended on delta. In this segment we begin to see some evidence for Adam’s 
uncertainty with the temporal order. At the same time, his brief reconsideration also provided 
some indications of the stability of his claim that epsilon depended on delta. But Adam 
temporarily suspended that thought and answered the question. He provided an explanation for 
why delta depended on epsilon. I explore some of the resources that came up.   

Some productive resources, like the givenness of epsilon came up in this segment. While it is 
likely that some of them might have come from Adam’s prior instruction, I focus on the way 
they played out in Adam’s reasoning. What was the role of epsilon and delta in Adam’s 
argument in this segment? What was the nature of the relationship between epsilon’s role in 
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constraining the output and its role in constraining the inputs? Ultimately, how did Adam 
connect delta with epsilon? I explore these questions below.  

I start by uncovering the meaning behind the parts of Adam’s argument as in the analysis of 
the earlier segment. However, one resource, absolute condition required analysis of earlier parts 
of the interview where Adam spoke about his general perspective on the definition. I assert that 
this resource had much to do with the way Adam connected delta and epsilon in this segment. I 
explore the resources related to epsilon, then go into the details concerning the absolute 
condition resource. Lastly, I discuss the role of delta in this segment.   

Competing characteristics of epsilon. From the beginning of the interview, Adam believed 
that he would be given an arbitrary number epsilon (“you’re gonna be given like a number 
epsilon, it’s gonna be a general epsilon,” turn 80). Moreover, epsilon also played a role of a 
determiner. Early in the interview I asked Adam about the meaning of epsilon, and he said that 
epsilon was a number that “[made] sure that the difference between the actual limit and numbers 
[f (x)’s] near it [was] exceedingly small” (turn 190). Adam might have alluded to this role of 
epsilon in this segment, but he did not emphasize the constraining characteristic of epsilon. 
Adam said that the epsilon was set—he cued the givenness of epsilon—but he only said “and 
that, the difference, the outputs can only be a certain length apart.” He did not say “epsilon is a 
set number and so the outputs can only be a certain length apart.” This way of describing epsilon 
de-emphasized the constraining role of epsilon when compared to the way he described it before 
using phrases like “must be” (turn 318) or “made sure” (turn 190). While the givenness of 
epsilon and the outputs’ being determined were cued together, there was a slight modification in 
the language that Adam used to describe those resources.   

Adam also started his argument with “the epsilon can only be,” and later said, “the outputs 
can only be.” On the one hand we can treat this as a coincidental repeated use of the phrase “can 
only be.” But I posit that the repeated use, along with the modification in the language noted 
earlier, suggest a shift in Adam’s treatment of epsilon from its being a determiner. In the next 
segment, Adam summarized epsilon as the difference between f (x) and f (a), which suggests the 
application of function slots to epsilon (i.e., epsilon was y or f (x)). This also suggests that 
epsilon would be determined by the difference between f (x) and f (a). Thus, in this segment we 
begin to see a tension between the characteristic of epsilon being a given number (givenness) 
and a determiner of the desired outputs, and epsilon’s being determined by the difference 
between f (x) and f (a) (function slots). In sum, concerning resources related to epsilon, Adam 
cued the givenness of epsilon, and epsilon was a determiner of the desired outputs, even though 
it was transitioning to inaccurately become the difference in output values.  

Emergence of the absolute condition resource. Adam said that epsilon “[also] limits how far 
the inputs [could] be.” The connection between epsilon and delta exists in the statement, “That 
sort of limits also how far the inputs can be.” Epsilon’s constraining the range of output values 
and also the input values might be rooted in the way Adam viewed the goal with the formal 
definition. Adam asserted that the goal was to find an interval of x values that would satisfy the 
epsilon and the delta inequality. I argue that Adam’s interpretation stemmed from Adam’s 
treating the delta inequality as an absolute condition. Below I explore the details concerning the 
resource absolute condition by elaborating Adam’s goal of finding an interval that satisfied the 
two inequalities in the formal definition. He also revisited this idea of finding an interval later in 
Segment 5.  

Adam elaborated on the goal of finding an interval of x values when he explained the 
meaning of the statement “the limit of 3x+2 as x approaches 1 is 5.” 
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[T]here's an interval /…/ around 1 that, such that if you plug in the numbers on the interval 
/…/ you'll get a number less than epsilon /…/, but it'll also satisfy the other part that /…/ if 
you plug in the interval /…/ for x minus 1, you'll get a number less than delta (turn 126) 
 

Adam asserted that the limit existed if he could find an interval of x values, such that if he were 
to plug in values from that interval into f (x) in |f (x)-5|, it would have resulted a number less than 
epsilon. At the same time, if the same values were to be used as x in |x-1|,27 then it would have 
also resulted a number less than delta. It seems clear that for Adam this interval was not 
equivalent to the one defined by the delta inequality. Adam seems to believe that the inequality 
was an additional condition to be verified. He discussed this idea several times during the 
interview (turns 44-54, 77-82, 107-118, 125-130, 213-233). 

He reiterated the same idea when he explained the meaning of the if-then statement. Adam 
interpreted “if 0 <| x – a |< δ then | f (x) – L |< ε” as two conditions for the interval to satisfy:  

 
The way I'm thinking is instead of saying, ‘if this [0 <| x – a |< δ] is true then this [| f (x) – L |< ε] 
must be true,’/…/, I'm thinking for this [| f (x) – L |< ε] to be true then both of these [0 <| x – a |< 
δ and | f (x) – L |< ε] must be true (turn 230).  
 

This differs from the normative interpretation of a logical implication, where the antecedent’s,    
0 <| x – a |< δ being false is irrelevant to the truth of the logical implication. If we simplify the 
statement “if 0 <| x – a |< δ then | f (x) – L |< ε” as “if P then Q,” then Adam was saying that for Q to 
be true, he would not check if Q was true, while assuming that P was true. Instead, Adam 
asserted that for Q to be true, both P and Q had to be true. The implication was that if P were 
false, then Q would also be false. Adam was aware of a normative interpretation of the logical 
implication, but he opted for a different interpretation in the context of the formal definition. 
Thus, Adam believed that for the epsilon inequality to be satisfied, the delta inequality had to 
also be satisfied. In other words, Adam treated the delta inequality as an absolute condition.  

There is not enough evidence to argue for some hypothesis concerning the origin of the idea, 
but the literature on students’ understanding of conditional statement suggests that this was a 
common overgeneralization. Students often infer from the truth of P then Q, the truth of the 
inverse. That is, if ~P then ~Q is also true (Hoyles and Kuchemann, 2002). The statement, “if 
you finish your homework, then you can play videogames,” usually means to a child that the 
inverse of the statement is also true: “if you don’t finish your homework, then you cannot play 
videogames.” It would be reasonable for the child to generalize that in order to be able to play 
video games, they must have finished their homework. This generalization is consistent with 
Adam’s assertion that for “if 0 <| x – a |< δ then | f (x) – L |< ε” to be true then the delta inequality 
had to be satisfied.   

Interpreting Adam’s argument in that light, we can now interpret the statement, “That sort of 
limits also how far the inputs can be.” The epsilon’s being given and the outputs’ being 

                                                
27 Similarly to what I suggested in Segment 3(a), Adam seemed fluent in thinking about function 
evaluation in terms of intervals. He performed operations on intervals without considering actual 
x values. For example, in turn 78, he used end points as proxies for the whole interval, “[W]e can 
find an interval sufficiently small enough that if you plug it [the interval] in for x, the end points 
will always be less than a number delta.” 
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constrained might be a proxy for the epsilon inequality’s being satisfied. Since the delta 
inequality was an absolute condition, then the delta inequality had to be satisfied. The 
givenness of epsilon also provided an order in which the two inequalities were to be satisfied.  

The delta inequality’s being satisfied meant that the input was also constrained. It is unclear 
what would constrain the input values. Normatively, delta would play that role. That was what 
Adam said in the previous segment. While Adam did not explicitly mention delta in this 
segment, his argument for delta depending on epsilon suggests a particular interpretation of 
delta. Adam only mentioned constrained input values in connecting his argument to delta. This 
suggests that Adam thought of delta as the input or x values. That is, Adam applied function 
slots to delta (i.e., delta was the x). Recall that Adam was about to apply the function slots 
resource to epsilon.28  

Model. Adam argued that delta depended on epsilon with the givenness of a determiner 
epsilon. Epsilon was a determiner of the range of acceptable outputs. Epsilon was in transition 
between being a determiner in the previous segment and a determined in the segment after this 
one. Delta on the other hand became input values in this segment. Adam applied function slots 
to delta (delta is the x). Adam’s treating the delta inequality as an absolute condition provided a 
connection between the output values and the input values. That is, the delta inequality had to be 
satisfied in order for the epsilon inequality to be satisfied. The givenness of epsilon provided the 
order in satisfying the two inequalities. Thus the resources for this segment include: givenness of 
epsilon, epsilon determined the range of outputs, partial application of function slots to delta 
but not yet epsilon, and treating delta as an absolute condition. 

Potential counter-model. Adam showed productive understanding of the formal definition. 
He understood that epsilon was given (givenness) and that it determined the range of acceptable 
outputs. Without explicitly saying it, Adam argued that from the given epsilon, he would find a 
delta that would constrain the range of input values. In this way delta played a role of a 
determiner of the acceptable range of input values.  

This model differentiated between delta and the range of inputs. While Adam treated delta as 
a determiner in the previous segment, the lack of mention of delta in this segment and his 
treating delta as the actual interval reject that differentiation. Moreover, this model also missed 
the subtlety of the relationship between the constrained outputs and the constrained inputs. The 
relationship was not well defined for Adam. In fact, even at the end of the interview, Adam did 
not end up justifying the temporal order from a normative interpretation of the statement “for 
every number ε >0, there exists a δ >0.” For the most part Adam focused on the if-then statement 
in the definition and the givenness of epsilon.  

In fact earlier part of the interview shows that Adam’s interpretation of the statement “for 
every number ε >0, there exists a δ >0” would be inconsequential. Adam believed that the 
statement served two purposes. First, the statement gave delta and epsilon names, and second, 
the statement set both epsilon and delta to be greater than zero, without any relationship or order 
between the two (turn 194). So even if Adam used his interpretation of that statement, it would 
not have necessarily influenced the ordering.29 We now explore Adam’s hesitation with his claim 

                                                
28 In the next segment, Adam applied function slots to both epsilon and delta. 
29 It is interesting to contrast the first part of the definition with the if-then statement. It seems 
that in terms of access, the if-then statement is more accessible to understand for most students. 
There is a lot more productive prior knowledge that could be applied in interpreting this part of 
the definition. The literature has noted that the quantifiers can be a roadblock for students. 
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in the beginning of this segment, which resulted in a change in claim about the temporal order in 
the next segment.  

Segment 4: Epsilon Really Doesn’t Have Any Effect  
 
327 Int. Can you sort of just restate what you just said? 
328 
–334 

Adam So epsilon is the difference between the output and f of x [f (x)]. So a number 
near a and then f of a [f (a)]. And then delta is the interval around a, so the 
epsilon sort of influences how far the delta can be.. from it. Even though it has no 
direct connection /…/, delta must.. be within a certain /…/ distance from the 
center /…/ Actually it really doesn't have any effect, I don't think, because— It's 
more that epsilon depends on delta than delta depends on epsilon.  

 
Summary of argument. Adam was attempting to restate his previous argument in 3(b): “the 

output can only be a certain length apart and that sort of limits also how far the inputs can be.” 
He asserted that epsilon was the difference between f (x) and f (a), and delta was the interval 
around a. He said that epsilon “sort of influences” how far the interval could be from a, albeit 
with “no direct connection.” Then Adam changed his mind and said that epsilon had no effect on 
delta, and so epsilon depended on delta instead. He attempted to provide a counter argument for 
why epsilon had no effect on delta, but he ended up concluding his thought.  

Analysis. This segment focused the waning influence of epsilon on delta. This resulted in 
Adam’s changing his mind and asserting that it was more that epsilon depended on delta. I 
discuss what might be behind the changing influence of epsilon and the alternative claim about 
the temporal order that Adam ended up prioritizing.  

Adam revised the role and meaning of both epsilon and delta in this segment. Whereas in 
3(a) Adam explicitly mentioned that epsilon determined the acceptable range of outputs, and 
alluded to the same idea in 3(b), by this segment epsilon became a difference between the output 
f (x) and the limit. That is, epsilon was the difference between the output at a, and near a 
(domain constraint for a limit). Adam also explicitly said that delta was the interval around a, 
which was markedly different from delta determining the range of acceptable x values from 
3(a). It is clear that in this segment he applied function slots to delta and epsilon, where delta 
was the x and epsilon was the f (x).  

Adam did not explicitly focus on the way that epsilon influenced delta in the summary he 
provided. With the revisions on interpretations of the role and meaning of epsilon and delta, 
Adam summarized the relationship as “epsilon sort of influences delta.” The use of the phrase 
“sort of” might be a reflection of the tenuous nature of epsilons’ influence on delta for Adam. 
Notice also that the term “influence” is a much more general term in describing a relationship 
between two quantities than “limit,” as used in 3(b). The use of the more general term might 
have also deemphasized the constraining or determining aspect of epsilon on delta.  

He also did not cue the givenness of epsilon in this segment. I asserted that in 3(b) that the 
givenness of epsilon provided an order in satisfying the two inequalities. Not attending to these 
resources might have contributed to the ambiguity of how delta depended on epsilon. This lack 
of a direct connection from epsilon to delta might have contributed to the uncertainty of the 
notion that delta depended on epsilon. 

Adam also had the competing claim from Segment 3(a), where he cued functional 
dependence. In multiple instances throughout the interview, functional dependence assisted 
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Adam in establishing a direct connection between epsilon and delta via function evaluation (e.g., 
turns 289–290). Early in the interview Adam explained this idea explicitly:  

 
… this one [points at | f (x) – L |< ε] is dependent on this one [0 <| x – a |< δ] because in this one 
[points at 0 <| x – a |< δ] you're choosing the x, this [points at | f (x) – L |< ε] is evaluating the 
function at x (turn 238).  
 

While Adam provided a more nuanced argument in 3(a), his use of functional dependence in 
other context, as exemplified above, can help inform what might be a competing argument for 
Adam.   

In Segment 3(a), Adam cued functional dependence independently from function slots. In 
this segment the activation of function slots—delta was the interval and epsilon was the 
difference in output values—might have increased the priority of functional dependence. In 
other words, having revised the meaning of epsilon and delta to be a difference in f (x) and f (a) 
and an interval of x values, respectively, the two should then follow the relationship of f (x) 
depending on x. Thus, epsilon depended on delta. In particular, faced with the ambiguity of the 
way that epsilon influenced delta, it is likely that Adam prioritized this argument and concluded 
that epsilon depended on delta.  

Model. The lack of direct [functional] relationship describing the way that epsilon influenced 
delta, and a revision on the meaning and role of epsilon and delta contributed to the change of 
claim in this segment. The removal of the determining resource and the givenness of epsilon 
might have further obscured the way that epsilon influences delta. Function slots, which 
associated epsilon with f (x) values and delta with x values might have increased the priority of 
functional dependence between x and f (x) from earlier segments. Together they might have 
contributed to Andrew prioritizing his earlier claim that epsilon depended on delta. While 
applying function slots, Adam still prioritized values of x that are close to a (domain constraint 
for a limit). Thus the resources for this segment include: functional dependence, function 
slots, and domain constraint for a limit. It is likely that Adam used proportional variation, 
but he did not explicitly mention that resource.  

Potential counter-model 1. The main issue in this segment was Adam’s interpretation of 
delta and epsilon instead of the lack of direct relationship. Correcting his interpretation of the 
meaning and the role of epsilon and delta would have resolved the issue.  

Suppose Adam returned to the interpretation that epsilon constrained the range of acceptable 
output values, and delta was a constraint for the interval of x values. He would still need an idea 
to connect epsilon and delta. In Segment 3(b), the givenness of epsilon helped determine the 
order by which epsilon and delta were satisfied. Also notice that in that segment, Adam also 
applied function slots to delta, and partially to epsilon (“how far the input can be from [a]” and 
“difference in outputs”). What led him to the correct ordering was, again, his attending to the 
givenness of the determiner epsilon, which also made delta the determined. In this segment 
Adam did not prioritize those resources.  

The model then predicts that knowing a more direct way that epsilon influences delta might 
have led Adam to a different conclusion. Suppose Adam knew that delta was proportional to 



 

 

55 

epsilon,30 then Adam might have stayed with the claim that delta was also dependent on epsilon. 
The next segment supports this argument. In the next segment Adam used a direct relationship 
suggested by the inequality 3δ < ε, along with the givenness of epsilon to conclude the temporal 
order of delta and epsilon. 

Segment 5: The Size of the Interval Must Be Smaller Than the Epsilon 
 
336 Adam Because, [looks at the definition] you can always find, you may be able to find an 

interval such that uh… [looks up to the ceiling and smiles] I don’t know actually. I 
actually don't know. Cus if you go back to thinking this idea [circles 3δ < ε in 
Figure 6.4], 

338 Adam then you get the idea that the size of the interval must be smaller than the number 
epsilon. That [the] size of the interval times three [3δ] must be smaller than 
epsilon. So the radius times three [3δ] I should say, of the interval must be smaller 
than epsilon. 

340 Adam So it influences delta cus if epsilon is set then.. delta.. has to be a certain size of 
radius in order to… conform to the size of epsilon but I don't know how I, I prove, 
well not prove, show that that [the limit] exists using the definition. 

   

 
Figure 6.4. [Top right] Adam’s recall of the “proof” for the limit of f (x) = 3x + 2  

as x goes to 1. 
 

Summary of argument. Adam started this segment by attempting to provide a 
counterargument for delta depending on epsilon. He mentioned that one could always find “an 

                                                
30 In practice, it is rare that one would define a direct functional relationship between delta and 
epsilon for the formal definition. Though in most first semester calculus, this might be the 
impression that many students have.  
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interval,” but then he stopped himself. He focused instead on the inequality 3δ < ε.31 The 
inequality said that three times the size of the interval (delta) must be smaller than the number 
epsilon. Unlike in the previous segment where he said that delta was the interval itself, here 
Adam specified that delta was the radius of the interval. He also said that if epsilon was set, then 
delta had to conform to the size of the epsilon. He re-established the influence of epsilon on delta 
and returned to his previous claim that epsilon and delta depended on each other. However, 
Adam still felt like he did not know how to prove the limit existed using the definition. 

Analysis. This segment followed immediately after Segment 4. Adam started by providing an 
argument against his previous claim that delta depended on epsilon. His statement, “you can 
always find, or you may find an interval such that…” was his reading of part of the statement of 
the definition (turn 336). He was reading “there exists a δ > 0 such that…” in the definition. Like 
I discussed in Segment 3(b), Adam believed that for the limit to exist then he needed to be able 
to find an interval of x values that would satisfy the epsilon and delta inequalities. Here, Adam 
did not finish his thoughts, but he was reading that statement while arguing that epsilon did not 
have any influence on delta. Thus, with the statement Adam might have wanted to say that he 
could always find an interval that would satisfy the epsilon inequality, but not the delta 
inequality (delta as an absolute condition). The cueing of this resource is not surprising, 
considering in 3(b) he cued this resource to argue for the same claim, that delta could depend on 
epsilon. The consistency of the interpretation with what comes next provides additional warrant.    

While Adam was trying to figure out if such an interval—one that did not satisfy the delta 
inequality—existed, his attention was taken by the inequality 3δ < ε from his proof for the limit 
of f (x) = 3x + 2 as x approached one (see Figure 6.4). He said, “I actually don’t know. Cause if you 
go back to thinking this idea [circles 3δ < ε], then you get the idea that the size of the interval 
must be smaller than the number epsilon” (turn 336-338). For some reason, the size of the 
interval’s being smaller than the number epsilon from the inequality 3δ < ε, challenged the 
possibility of his always being able to find an interval of x values that did not satisfy the delta 
inequality. I use Adam’s argument in Segment 2 to help uncover the way that the inequality 
addressed the possibility of finding such an interval.  

In Segment 2, Adam explained the way he inferred the existence of a limit of a function 
through the if-then statement. He did so while discussing the dependence of epsilon and delta. 
Several turns prior, Adam explained that the dependence between delta and epsilon depended on 
the function (turns 292–299). Adam explained why with the function, f (x) = 3x + 2, epsilon and 
delta depended on each other:   

 
In this case [the limit of f (x) = 3x + 2 as x approaches 1], they do depend on each other 
because this [function] actually works out good, because when you break it [the epsilon 
inequality] down, you find out three delta [3δ] must be less than epsilon. So the interval 
times three [3δ] must be less than epsilon (turn 304).  

 
Adam’s statement in turn 304 was similar to his statement in turn 338. Here, in Segment 5, he 
said, “You get the idea that the size of the interval must be smaller than the number epsilon. That 
                                                
31 δ = ε/3 would have been the optimal solution for the proof of the limit, but Adam focused, 
instead on the inequality, 3δ < ε. Even toward the end of the interview, Adam wrote the 
relationship as an inequality δ < ε/3, instead of an equation.  
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[the] size of the interval times three [3δ] must be smaller than epsilon” (turn 338). The difference 
was that delta in turn 338 was the size of the interval, not the interval itself. This similarity 
motivates the use of Segment 2 to help interpret what Adam was thinking in Segment 5.  

The phrase “works out good” suggests the connection between the dependence of epsilon and 
delta and the existence of the limit.32 When Adam said, “works out good,” he meant that with the 
function, f (x) = 3x + 2, as x approached 1, | f (x) – L | would get smaller as a result of | x – a |’s 
getting smaller. Just several turns prior, he explained, “If the limit exists then /…/ as this [points 
at 0 <| x – a |< δ] gets smaller, this [points at | f (x) – L |< ε] /…/, the difference is gonna get smaller. 
But if the limit doesn’t exist  /…/ then as this [points at 0 <| x – a |< δ] gets smaller, this [points at 
| f (x) – L |< ε] isn't gonna change, this [points at 0 <| x – a |< δ] isn’t gonna help [inaudible]” (turns 
292–294).33 Earlier in the interview, he wrote a limit symbol in front of | x – a | and | f (x) – L | with 
x approaching a (see the end of Appendix J for the first page of the written artifact). With the 
limit symbol, | x – a | and | f (x) – L | could get smaller as x approached a. The use of the limit 
symbol in front of | x – a | and | f (x) – L |, and the focus on the idea of f (x)’s getting closer to L as 
x’s getting closer to a, serve as evidence for Adam’s use the dynamic definition of a limit to 
infer this relationship between delta and epsilon. 

Therefore Adam inferred that the limit existed from the inequality 3δ < ε (this was the case 
that “works out good”). Certainly, Adam already knew that the limit existed from calculating the 
limit at the beginning of the interview, but 3δ < ε cued this knowledge for Adam in this segment. 
When the limit existed, according to Adam, then there had to be “an interval” of x values that 
satisfied both the epsilon and delta inequality (turn 126, see Segment 3(b)). Therefore, there was 
at least one function, whose limit existed, where it was not possible to find an interval where the 
epsilon inequality was satisfied but not the delta inequality. Adam found his counterexample.  

Having addressed his counterargument—there was at least one case where he could not find 
an interval that did not satisfy the delta inequality—Adam returned to thinking about the 
“influence” of epsilon on delta (turn 340). Recall that in the last segment Adam was also lacking 
a direct [functional] relationship to show that epsilon influenced delta. In this segment the 
inequality could provide such a relationship depending on how it was read (turn 338). The 
determining resource specified a way to read the inequality. Epsilon returned to its role as the 
determiner, and for the first time, it determined delta (“[The] size of the interval times three 
[3δ] must be smaller than epsilon,” turn 338).   

Adam re-asserted the givenness of epsilon, which he just used in Segment 3(b), to further 
establish the influence of epsilon on delta as suggested by the way he read the inequality. He 
said, “if epsilon is set then.. delta.. has to be a certain size of radius in order to… conform to the 
size of epsilon” (turn 340). Adam re-asserted the givenness of epsilon and the fact that epsilon 
was the determiner of delta. The two resources established the influence of epsilon on delta.  

Adam’s use of the word “conform” might suggest a different resource that was involved. 
Delta’s conforming to the size of epsilon could be interpreted to mean that the input needed to be 
                                                
32 Another interpretation is that Adam was arguing for the claim that epsilon and delta depended 
on each other by strictly using the inequality, 3δ < ε. He rejected it when I offered it as an 
interpretation of what he said (turn 310). I discuss this in the counter-model for the argument in 
this segment.  
33 Notice Adam’s normative interpretation of the if-then statement in this context. In stipulating 
the existence of a limit, he correctly constructed the negation of the if-then statement as P but not 
Q. This contrasts with his understanding of the if-then statement in Segment 3(b).  
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modified in order to accommodate a specification on the output: quality control. However, there 
was no mention of x (input) or f (x) (output) when Adam was discussing the inequality 3δ < ε.34 
Adam only mentioned the size of each of these “quantities” and their relationship to each other, 
without explicitly mentioning its constraining properties on the output and the input. So I posit 
that Adam did not cue quality control but instead focused on the functional dependence of 
delta on epsilon, which was suggested by the way that he read the inequality.    

Model. Adam revisited the inequality 3δ < ε to resolve previous conflicts. First, he used it to 
address the issue that he could always find an interval that would satisfy the epsilon inequality 
but not the delta inequality (delta inequality as an absolute condition). The fact that the limit of 
the function existed, as suggested by 3δ < ε, provided Adam a counterexample for the claim that 
such an interval would always exist.  

Adam also used the inequality to address the lack of direct [functional] relationship from the 
previous segment (functional dependence). The inequality suggested to Adam that epsilon 
would determine delta in that three times the radius of the interval must be smaller than epsilon. 
The givenness of epsilon, which was cued in 3(b) was reasserted to establish the influence of 
epsilon on delta. Having addressed the previous conflicts, Adam returned to his previous claim 
that delta could also depend on epsilon, and concluded that they depended on each other. 
Therefore the resources for this segment include: absolute condition, givenness of epsilon, the 
idea of determining as applied to delta and epsilon, functional dependence. 

Potential counter-model 1. The main resource in this segment was the idea of determining. 
Adam used that resource to interpret the inequality 3δ < ε, saying that three times the radius of 
the interval must be less than epsilon. Epsilon determined delta. Thus, delta depended on epsilon.  

This would not be a sufficient explanation because I argued that part of the reason for Adam 
to attend to the inequality was to challenge the functional dependence and function slots 
argument from Segment 4. So that argument needed to be addressed in this segment. Moreover, 
this interpretation completely ignored the first statement of this segment about the idea of finding 
“an interval” to satisfy the inequalities (the delta inequality as an absolute condition). Adam 
attended to this resource to come up with the counterexample. Adam also did not use the 
determining resource directly to establish the temporal order. He used it to read the inequality to 
establish a functional dependence relationship, and later to re-establish the influence of epsilon 
on delta.   

Potential counter-model 2. Adam already knew that delta depended on epsilon from the 
inequality 3δ < ε. There are always two ways to read any inequalities: the left hand side is less 
than the right hand side or the right hand side is more than the left hand side. So the two sides are 
always dependent on each other. In fact, that seems to be what Adam was saying in Segment 2: 
“[T]hey depend on each other cause the one must be 3 times smaller than the other” (turn 306).  

Adam could have read the same inequality to conclude that epsilon should conform to the 
delta. He could have done so by concluding that the size of the epsilon must be greater than three 
times the radius of the interval. This would have been inconsistent with the givenness of epsilon. 
We did not see Adam reversing the order. Adam also mentioned specifically that delta was not 
given a number of times (e.g., turns 108, 148). Moreover, Adam rejected this model earlier in the 
interview (Segment 2). I had asked him if the reason epsilon and delta depended on each other 

                                                
34 It is also notable that at this point, Adam did not take the next logical step and say that δ < ε/3. 
This would have further supported the idea that epsilon determined delta. However, in Segment 
8, he did (turn 397). In Segment 8, Adam argued that epsilon came first.  
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was just because of the inequality. He said no, and elaborated on his argument. His elaboration 
was actually the beginning of Segment 3(a) in this chapter.  

It is worth noting that having addressed the issue was not sufficient for Adam to abandon the 
claim that epsilon depended on delta. In the discussion after Segment 5, which I do not explore 
in detail, Adam wrestled with the issue of whether epsilon was set. Ultimately, relying on his 
experience of “breaking down epsilon” (simplifying the epsilon inequality to find the “delta 
expression”), Adam concluded that epsilon had to come first and so delta depended on epsilon. I 
close the analysis section with a full narrative summary from the four segments.  

Full Narrative Summary 
Figure 6.5 shows the resources that Adam used in Segments 3(a), 3(b), 4 and 5. In Segment 

3 Adam claimed that epsilon and delta depended on each other. In 3(a) Adam explained that 
epsilon depended on delta because delta determined the input and epsilon was determined by 
the difference in the output and L. Those resources assisted Adam in reading the epsilon and 
delta inequalities. Functional dependence supported the directionality of the relationship via the 
input output relationship. Domain constraint for a limit and proportional variation provided 
details for the meaning Adam attached to the delta inequality: delta made the interval small so 
that the epsilon was small. In 3(b) Adam argued that delta could also depend on epsilon by 
relying on the givenness of the determiner epsilon. This resource interacted with Adam’s goal 
of finding an interval to satisfy the delta inequality as an absolute condition. In finding this 
interval, Adam would start with a given epsilon to find the interval delta. Adam applied function 
slots to delta (delta was the interval of x values).   

 In the process of restating his explanation for why delta depended on epsilon, Adam ended 
up concluding that epsilon depended more on delta than the other way around. First, the de-
emphasis on givenness of epsilon and the determining resource led to the weakening of the 
influence of epsilon on delta. Second, the application of function slots to both epsilon and delta 
and the lack of direct [functional] relationship from epsilon to delta might have prioritized 
Adam’s argument using functional dependence from before. The function slots resource, 
which associated epsilon with f (x) values at a and near a (domain constraint for a limit and 
likely proportional variation) and delta with x values might have cued the functional 
dependence between x and f (x). This might have provided a more convincing argument in the 
face of the ambiguous influence of epsilon on delta.  

In fact, in Segment 5 Adam switched back to claiming that delta could also depend on 
epsilon by re-establishing the influence of epsilon on delta. He first addressed the possibility of 
always finding an interval that did not satisfy the delta inequality (absolute condition), with a 
counterexample of a function whose limit existed. He used the dynamic definition of a limit to 
determine whether the limit existed. He then re-established the influence of epsilon by re-
asserting the givenness of epsilon and its role as a determiner of delta as suggested by the 
inequality 3δ < ε. 

Figure 6.5 summarizes the activation of different knowledge resources throughout the four 
segments. Grey signifies activation of the resource, white is no activation, and shaded is a 
consistent resource but no explicit mention of the resource. One interesting pattern, which can be 
seen in the figure, is that the use of knowledge resources was not consistent across segments. 
Some resources were dominant in one segment but became less dominant in the next segment 
(e.g., givenness played a significant role in Adam’s argument in Segment 3(b), was 
deemphasized in Segment 4, only to return in Segment 5).  
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Seg. CLAIM 

KNOWLEDGE RESOURCE 

Absolute 
condition 

Proportion- 
al variation 

Determin-
ing 

Function 
slots 

Functional 
Dependence 

Given
ness 

Dynamic 
definition 

of a 
limit35 

Domain 
constraint 
for a limit 

3(a) 
No order 

(delta 
first) 

      
 

 

3(b) 
No order 
(epsilon 

first) 
      

 
 

4 Delta first       

 

 

5 
No order 
(epsilon 

first) 
      

 

 

Figure 6.5. The progression of activation of knowledge resources across the segments. 

Discussion 
In the interview, Adam started with the claim that epsilon depended on delta (delta first) and 

ended with delta depended on epsilon (epsilon first). Despite knowing how to reproduce parts of 
epsilon-delta proofs from memory, when asked about the relationship between delta and epsilon, 
Adam wavered (Part I). While this pattern is consistent with the finding from Chapter 5 that the 
temporal order was challenging for students, this analysis chapter investigates the details of the 
struggle. The analysis of Segments 3 to 5, in Part II, explores the process of Adam’s reasoning 
by uncovering some of the knowledge resources that were involved. I now discuss the three 
specific aims of the analysis: the student’s repertoire of resources, the richness of the formal 
definition as a learning context and the prevalence of the functional dependence.  

Revealing Resources: Mathematical and Intuitive Knowledge Resources 
The fine-grained analysis was able to reveal a number of key resources in Adam’s reasoning. 

Some of them were closely tied to the concept of limit, like domain constraint for a limit and 
dynamic definition of a limit. Others were more general mathematical resources, like 
functional dependence and function slots. The analysis also revealed several informal/intuitive 
knowledge resources, like absolute condition, givenness and the idea of determining.  

 
Progression and influence of the determining resource 

The determining resource describes the role of one quantity in establishing and constraining 
another. We see in the data that the determining resource played a consistent and significant role 
in Adam’s reasoning about the temporal order. In particular this resource was cued in discussing 
the role of epsilon and delta in the formal definition. Table 6.2 documents the activation of this 

                                                
35 Dynamic definition of a limit was cued in Segment 2 to determine the existence of a limit. 
While the resource was consistent with Adam’s argument in Segment 3(a), it was not explicitly 
mentioned. In Segment 5, while the conclusion of the limit of the function existed used the 
resource, Adam had made that conclusion before. The exposition for Segment 5 included it to 
elaborate on the meaning behind the inequality 3δ < ε.  
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resource with the meaning of epsilon and delta across the segments.  
 
Table 6.2.  
The Progression of the Meaning of Delta and Epsilon vis-à-vis the Determining Resource 
  Segment Operational definition Turn Determining resource 

Delta 

3(a) constrains the x values to be 
close to a and made sure the 
interval is not too large  

312 determiner (of the input) 

3(b) constrains the interval; but it is 
also an unknown  

326 determiner (of the interval) 
& determined (delta is an 
unknown) 

4 is the interval or the x values 332 determiner (it is the x values 
in a functional dependence) 

5 is the radius of the interval 338 determined (by epsilon 
through 3δ < ε) 

Epsilon 

3(a) must be larger than the 
difference in the outputs 

318 determined (by the outputs) 

3(b) is set and constrains the 
difference in the outputs and 
also the input x from a 

326 determiner (of the output and 
input) 

4 is the difference in the outputs 
or the f (x) values 

328–
330 

determined (it is the y values 
in a functional dependence) 

5 is set and must be larger than 
three times delta (3δ < ε) 

338 determiner (of delta) 

 
The determining resource specified a way to read the different inequalities. Adam used the 

resource to interpret the inequalities in the if-then statement. Adam’s interpretation of the 
statement 0 <| x – a |< δ ⇒| f (x) – L |< ε, and 3δ < ε was influential in the development of his claim 
about the temporal order. In Segment 3(a) and (b), the if-then statement directly influenced 
Adam’s transitional claims about the temporal order. For example, in Segment 3(a) where delta 
was a determiner and epsilon the determined, Adam interpreted the if-then statement to mean 
that the known delta constrained the x values and the epsilon inequality evaluated the x’s to 
compute the unknown epsilon. Thus, epsilon depended on delta.  

In Segment 4, the de-emphasis on this resource, specifically the determining role of epsilon 
reduced the influence of epsilon on delta, which led to the change of claim. In Segment 5, the 
resource was supported by the givenness of epsilon to re-establish the influence of epsilon on 
delta. It also assisted Adam in reading the inequality 3δ < ε. The inequality asserted that three 
times the radius of the interval must be less than epsilon. He could have read the inequality in the 
other direction, but just like in Segment 3(a), the resource helped Adam read the inequality in a 
particular direction.   

One might argue that this resource was directly cued by the wording of the question in the 
interview about dependence between epsilon and delta. Is it not the case that the issue of 
dependence is about which determine which? Yes, but the quantity that the determiner 
determined matters. Epsilon’s being a determiner could mean that epsilon determined delta, but 
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it could also mean that it determined the output. In this way the resource can be attached to 
different quantities. Thus, determiner and determined can be attached to different quantities, 
just like other resources. The resource can be attached to epsilon and delta (epsilon is the 
determiner and delta is the determined), or it can also be attached to delta and the interval (delta 
is the determiner and the interval is the determined).  

The dual role of delta being both a determiner and a determined might add another layer to 
the complexity of understanding the formal definition. On the one hand, according to the 
temporal order, delta is determined by epsilon. On the other hand, in the delta inequality, delta 
is the determiner of the size of the interval—we only consider x values that are within delta of 
a. While Table 6.2 shows Adam switching back and forth on the roles of both delta and epsilon, 
according to the definition epsilon can only take on one role. Epsilon is strictly a determiner in 
the definition. It is a determiner of delta and the determiner of the acceptable distance from the 
limit. Delta on the other hand, normatively holds the dual role, a subtlety that students need to 
recognize.  
 
Interaction between resources  

A claim about the temporal order was not based on a single knowledge resource. A claim 
was based on several resources that Adam put together in a particular way. We see different 
kinds of interaction between the resources across the four segments. Sometimes a resource can 
connect one resource with another. For example, in Segment 3(a), delta determined the 
acceptable input, and epsilon determined the acceptable difference between the output and the 
limit. The two would not have been related had it not been for functional dependence between 
input and output. The interaction between these resources made up Alan’s argument for that 
segment.  

A resource can also impose an order where there was ambiguity associated with another 
resource. In Segment 3(b), there was ambiguity as a result of treating the delta inequality as an 
absolute condition. The absolute condition provided Adam with a goal of finding an interval to 
satisfy both the epsilon and delta inequality. The givenness of epsilon provided a reasonable 
ordering to satisfy the two inequalities. Since epsilon was given, it was reasonable for Adam to 
satisfy the epsilon inequality before the delta inequality. 

Lastly, a resource can either bolster or weaken another resource. In Segment 4, the 
application of function slots to delta and epsilon likely increased the (cueing) priority of 
functional dependence. At the same time, this highlighted the lack of functional relationship 
between the determiner, epsilon, and the determined, delta. This contributed to Adam’s 
questioning of the influence of epsilon on delta, which temporarily changed his claim about the 
temporal order. In Segment 5, we see the givenness of epsilon supporting the role of epsilon as 
the determiner of delta.  
 
Post-analysis notes about identification of knowledge resources 

Identifying knowledge resources is a difficult endeavor, but the various methodological 
orientations and theoretical assumptions assisted with the effort. Competitive argumentation as a 
methodology was helpful in problematizing the existence of a more obscure knowledge resource 
and also in ensuring the activation of other resources. For example, competitive argumentation 
assisted in identifying the determining resource. Initial stage of analysis identified functional 
dependence as the main resource in Segment 3(a), but several rounds of competitive 
argumentation led to the initial claim being a counter-model (seeCounter-model 1). As discussed 
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in 3(a), the determining resource helped Adam interpret the inequalities, which in turn helped 
him decide the temporal order.  

The theoretical assumptions about the resources also helped the identification process. The 
neutrality of a knowledge resource was a productive assumption. Initial stages of the analysis 
labeled larger claims and interpretations as knowledge resources. The resources were the neutral 
ideas underneath the claims and interpretations. Function slots was identified from the claims 
“delta is x” and “epsilon is y.” The reason that they were not resources was that “delta is x” and 
“epsilon is y,” in addition to being a larger claim, they were not neutral in terms correctness. That 
is, “delta is x” and “epsilon is y” could be seen as an incorrect. The incorrectness can come as a 
result of attaching resources to other quantities. For example, students attached delta to x and 
epsilon to y. The stipulation that two quantities sharing a functional relationship, one is the x and 
the other is the f (x) is neutral, which made it a knowledge resource called function slots.  

Absolute condition was also identified as a result of the neutrality assumption. Absolute 
condition was identified from the claim “conditional statements are bi-conditional.” The claim 
that “conditional statements are bi-conditional” was incorrect and thus could not be a knowledge 
resource. The resource underneath the claim was absolute condition, or students’ knowledge 
about what it meant for a condition to be necessary and sufficient (absolute). The definition 
provided in Table 6.1 shows that the resource absolute condition could often lead to the 
assertion that “conditional statements are bi-conditional.” 

The determining resource was identified from Adam’s interpretation of inequalities in the if-
then statement. His interpretation of the if-then statement was a reasoning pattern, and unpacking 
the ideas behind his interpretation of the statement led to the determining resource. As noted 
above, the process of competitive argumentation also helped in identifying this particular 
resource.  

The methodological orientation of striving to understand when and why a knowledge 
resource is and is not used was also helpful in identifying the resources. Figure 6.5 is a 
concretization of the methodological orientation. The figure in some way kept the analysis 
accountable to track the activation of resources across the segments. For example, with absolute 
condition, the methodological orientation questioned if the resource was activated in other 
segments. Its activation in Segment 5 was not immediately obvious. When I realized that Adam 
was trying to find an interval, I had to consider the absolute condition resource. That introduced 
a new piece of information to triangulate.  

The orientation also assisted in the revision of Figure 6.5. Initially I had claimed the 
activation of dynamic definition of a limit in Segment 5. This raised the question of when else 
did Adam use that resource, and what happened in between its activations? I concluded that 
Adam did not determine the existence of the limit of the function using the definition in Segment 
5. He did that in Segment 2. In Segment 5, he used the assertion that the limit existed, to counter 
the claim that he could always find an interval that did not satisfy the delta inequality. Since it 
was activated it Segment 2, then I had to consider the possibility of its activation in Segment 3(a). 
Based on its consistency and immediacy of its activation between Segment 2 and 3(a), I 
concluded that the resource was present but not explicitly attended to.   
 
Potential limitation of counter-models 

There is a potential limitation to the use of counter-models in identifying resources. As the 
analyst is the one generating the counter-models, then it is limited by the extent to which the 
person is able to generate counter-models that would be illuminating of the thought process of 
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the research subject. The challenge is that another analyst might read the data and come up with 
another counter-model.  

For this reason collaborating with other researchers can be helpful in making sure that no 
important counter-models have been overlooked. At the same time, the result of the analysis is a 
model. In that way, a model can always be refined and elaborated. Creating a model that is most 
informative is more productive than finding the “final” model.  

The finality of the model also partly depends on the goal of the analysis. For example the 
goal of the analysis in this chapter is to identify some of the more dominant resources to illustrate 
the process of Adam’s sense making. It was not to come up with an exhaustive list of intuitive 
knowledge students have about the temporal order. That is not to say that such endeavor would 
be unproductive, but it would require a more extensive analysis with a different data source.36 So 
keeping in mind the goal of the analysis, while continuing to engage with other researchers about 
the data can increase the productivity of this methodology.  

Lastly, a certain level of healthy skepticism is recommended. I caution against being too 
comfortable with one’s model of a student thinking. As I reported earlier, I was convinced of 
theCounter-model 1 in Segment 3(a) for a number of months. It was not until I untied myself 
from that one interpretation that I was able to recognize other resources that could potentially be 
involved.  

Changing Levels of Specificity of Knowledge as an Indicator for Source of Difficulty 
 

Changing levels of specificity of delta and epsilon 
We see Adam moved through different levels of specificity in thinking about different 

aspects related to the temporal order. For example, one of the key players in determining the 
temporal order was the meaning of delta and epsilon. Depending on the segment, the level of 
specificity of delta and epsilon changed (see Table 6.2 above). For example, from 3(b) to 4, delta 
and epsilon underwent similar transformation. Delta went from being the determiner of the 
acceptable interval to becoming the interval itself. Epsilon’s role went from the determiner of 
the acceptable difference in the outputs, to being the difference itself. How can we explain the 
changes in the meaning of epsilon and delta? Did Adam turn the inequality into an equation? 
Why was the word radius only used to describe delta in Segment 5?  

 I argue that these changes reflect changing levels of specificity in Adam’s use of the terms 
epsilon and delta, and it was less of a misunderstanding or instability of the meaning of epsilon 
and delta for Adam. These changes illuminate the process by which Adam developed the claim 
about the temporal order. Some of these characterizations of delta and epsilon were incorrect 
(e.g., delta was just not the interval) but they did not stem from a misunderstanding.  

Moving between different levels of specificity about epsilon and delta served a particular 
purpose for Adam. For example, in 3(a), Adam treated delta as a determiner and epsilon as the 
one determined to read the inequalities to mean that delta determined the appropriate interval 
for the input, and epsilon determined the acceptable difference in the outputs. In Segment 4, 
Adam’s conceptualization of epsilon and delta (as f (x) and x values respectively) might have 
been a reflection of Adam’s prioritizing functional dependence, or it might have increased the 
priority of the functional dependence resource.  
 
                                                
36 Studies whose focus is in identifying knowledge elements typically employ clinical interview 
method (e.g., diSessa, 1993; Wagner, 2010), which this study did not fully employ. 
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Source of difficulty: hyper-richness of context with high level of cognitive load 
The literature on the teaching and learning of the formal definition of a limit has long argued 

that the definition is complex. Studies have pointed to different aspects of it as potential source 
of difficulty: quantifiers, absolute values and issues pertaining to the backward functional 
relationship. Thus, it is reasonable to conclude that one difficulty with the definition is that 
reasoning about the formal definition probably requires students to sustain a high level of 
cognitive load (Chandler and Sweller, 1991). There was some evidence for Adam’s struggle with 
quantifiers—he interpreted the first part of the definition as simply giving epsilon and delta a 
name and setting it larger than zero. Related to quantifiers, some studies argue that students have 
difficulty negating the statement of the definition, and there was some evidence that Adam might 
have had similar issue (e.g., what it meant to satisfy the if-then statement).37  

The analysis in this chapter presents a hypothesis on the source of difficulty at a finer level of 
detail. I argue that Adam struggled in navigating through and aligning the different knowledge 
resources. diSessa’s (2007) calls this the hyper-richness hypothesis. Certain learning goal might 
cue a large repertoire of prior knowledge that can be applied to it. diSessa posits that one of the 
downsides of an example or a learning context’s being hyper-rich is that students might 
experience difficulty in deciding which prior knowledge is most relevant in the particular context.  

I claim that the temporal order and the formal definition are hyper-rich. For example, 
consider the way Adam read epsilon and delta. Epsilon and delta as concepts are hyper-rich. 
Adam was aware of different characteristics and roles of epsilon and delta. Some of these 
characteristics competed with the temporal order (see characteristics of epsilon section in 
Segment 3(b)). Depending on what the argument he was making, he attended to different aspects 
of epsilon and delta (Table 6.2). Thus, when Adam glossed over the delta inequality and 
concluded that delta was the interval, I posit that he was not ignoring the symbols.38 Instead, he 
did so to support an argument that he was trying to make. His argument in each segment utilizes 
a particular aspect of epsilon and delta. For example, Adam’s argument in Segment 4 using 
functional dependence was consistent with epsilon’s being | f (x) – f (a) |, whereas his argument 
in Segment 3(b) and 5 uses epsilon’s givenness and constraining role.   

I posit that the complexity of the formal definition magnifies the complexity of dealing with 
its component parts. That is, while individual ideas, like quantifiers, can be difficult, some of 
these concepts might be more challenging to deal with correctly when working with a concept as 
complex as the formal definition. Students might need to navigate through different aspects of 
the concept to support their argument. The changing levels of specificity of student thinking 
might be a good indicator of the hyper-richness phenomenon.  

According to the model presented in the analysis, Adam resolved his difficulty by addressing 
conflicts on the level of individual resources (e.g., lack of functional dependence in Segment 4). 
If we assumed that Adam’s struggle was with the definition of epsilon and delta or with the 
quantifiers, addressing those might not have necessarily addressed some of the underlying issues 
for Adam. Moreover, the hyper-richness hypothesis also challenges the notion that had Adam 
just stuck with a normative definition of epsilon and delta then he would not have been confused. 
I argue that changing levels of specificity was necessary and was a by-product of the hyper-
richness of this context.  

                                                
37 It was unclear if Adam struggled with absolute values, though his facility with thinking in 
terms of interval suggests otherwise.  
38 Other students also loosely associated delta with x and epsilon with y. 
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Prevalence of the Functional Dependence Resource  
The previous analysis chapter clearly documented how functional dependence, along with 

delta is similar to x and epsilon is similar to y was a very common reasoning pattern across 
students in this study. In this chapter, we see that the resource played an important and consistent 
role in the four segments. Adam’s argument initially in Segment 3(a) appeared similar to the 
common reasoning pattern documented in chapter 5 (see Counter-model 1). However, a closer 
analysis revealed a slightly different use of the resource. The functional dependence was used 
to connect the input to the output, but not in the way it typically does in the common reasoning 
pattern. Adam used the determining resource to read the epsilon and delta inequalities to 
describe the relationship between epsilon and delta to f (x) and x values. Moreover, in Segment 4, 
the data suggests that the lack of having functional dependence to describe the way that epsilon 
influenced delta might have led Adam to challenge his own claim that delta depended on epsilon. 
We see Adam “addressed” this issue in Segment 5 when he re-established the functional 
dependence using the inequality 3δ < ε.  

The analysis of this chapter also suggests that students—likely as a result of instruction—
might be predisposed toward explicit functional relationships. Students might see a relationship 
between two variables that cannot be expressed as an equation (or inequality) as tenuous and 
thus less preferred. In Segment 4, Adam challenged epsilon’s influence on delta and favored the 
functional dependence between x and f (x) to described the temporal order. He returned to the 
appropriate temporal order with an explicit functional dependence relationship to describe 
epsilon’s influence on delta, as suggested by the inequality 3δ < ε. 

One hypothesis of the study is that the fact that epsilon is a given quantity might challenge 
students’ reliance on the functional dependence relationship between x and f (x). That is, the 
givenness resource might reduce the prevalence of the functional dependence resource. The 
givenness of epsilon was a productive resource that helped Adam conclude the correct temporal 
order of epsilon and delta, even with the prevalence of the functional dependence resource. We 
see in the analysis that the givenness of epsilon did not replace the common unproductive 
functional dependence between epsilon and delta. The givenness resource helped Adam 
reorganize his knowledge (Smith et al, 1993). The temporal order claim changed as a result of 
interactions of various knowledge resources. The givenness of epsilon played a significant role 
in some of those interactions.  

In one case, the givenness of epsilon interacted with the goal of finding an interval of x 
values that satisfied the epsilon and delta inequalities (delta as an absolute condition). The 
givenness of epsilon set the order in verifying the two inequalities (see Segment 3(b)). In 
Segment 5, the givenness of epsilon was also cued to support the influence of epsilon in 
determining delta. Recall that Adam already stated that epsilon determined delta, but in stating 
his final justification, Adam included the givenness of epsilon to support his argument.  

The analysis also shows that the givenness of epsilon does not always compete with 
functional dependence. On the one hand, one might argue that Adam’s argument in Segment 
3(a), which used the functional dependence, and his argument in 3(b), which focused on the 
givenness of epsilon were contradicting each other. Thus, the two resources were conflicting. On 
the other hand, in Segment 5, the givenness of epsilon and the functional dependence of delta 
on epsilon (inferred through 3δ < ε) were cued together to support the claim that delta depended 
on epsilon. Adam did not switch his temporal order claim between Segment 4 and 5 by replacing 
functional dependence with the givenness of epsilon. Instead, Adam inferred another functional 
dependence relationship, which was consistent with the givenness resource.   
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That is certainly not the only way for students to productively use the functional 
dependence resource. In Chapter 8, we see Adriana’s repurposing the functional dependence 
relationship to describe the relationship between errors instead of between error bounds as a 
result of discussing the Pancake Story. The common thread between the two students was that 
the change in conception happened as a result of students’ reorganizing their prior knowledge, 
and not by replacing a “misconception.” Specifically both Adam and Adriana looked for a 
context in which to productively use functional dependence, and they also specified the 
meaning and role of delta and epsilon and de-emphasized the claim “delta is x, and epsilon is y.”   
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CHAPTER 7: REASONING ABOUT THE TEMPORAL ORDER WITH THE PANCAKE 
STORY 

 
This chapter explores the influence of the Pancake Story on students’ understanding of the 

temporal order of delta and epsilon. The goal of the analysis is to document changes in students’ 
responses to the four questions about the temporal order after engaging with the Pancake Story. 
It also explores some of the more common reasoning patterns that emerged after discussing the 
story. The chapter closes with discussions of remaining challenges regarding the story that 
students reported. 

Analysis Methods 
The first part of the analysis is similar to the analysis done in Chapter 5. To document 

changes in students’ responses to the temporal order questions, I categorized students’ response 
to each question about the temporal order after they engaged with the story. As a reminder, I 
asked about the temporal order of delta and epsilon in four contexts: dependence, sequential 
order, set-ness and the order of ε, δ, x and f (x). The following were the actual questions: 

1. In the definition, with epsilon and delta, what depends on what, if anything you think? 
Delta depends on epsilon? Epsilon depends on delta? They depend on each other? Or 
they do not depend on each other? And why? 

2. In the definition, between epsilon and delta, which one do you think comes first and 
which one do you figure out as a result? And why? 

3. In the definition, between epsilon and delta, which one do you think is set? Epsilon? 
Delta? Both? Or neither? And why?  

4. How would you put the four variables, epsilon, delta, x and f (x) in order, in terms of 
which comes first in the definition? And why? 

The three categories were: epsilon first, delta first or no order. Students responded again to the 
four questions related to the temporal order. The response to each question was given a score 
from 0 to 2 (delta first=0, no order=1, epsilon first=2). The sum of the scores ranged from 0 to 8 
and their total score placed them along a continuum between the claim of delta first and epsilon 
first. For students from the pilot study, scoring 2 on all the questions that were asked would lead 
to a total score of 8. In the first round of pilot study, students were asked only one question about 
the temporal order (question 1, above). In the second round of pilot study, students were asked 
three of the four questions (questions 1, 2 and 4). In those cases, the total was normalized to 8 
based on the number of available questions.  

I also documented the changes in the number of questions students answered with epsilon 
first across the four questions. I grouped students based on the number of epsilon first responses 
they provided. Figure 7.1 presents these numbers in a bar graph. I also included the number of 
epsilon first responses for the comparison group in the graph. The comparison group in this study 
read a section from a textbook about the formal definition, which also talked about the temporal 
order, instead of discussing the Pancake Story. Figure 6 is presented along with a modified 
Figure 5.1 from Chapter 5 to help the reader make the comparison with students’ responses prior 
to the intervention. The student score that was described in the previous paragraph detected more 
subtle changes in student understanding about the temporal order that was not captured by the 
comparison of the number of questions students answered with epsilon first.  

I documented new categories of reasoning patterns for students’ responses to the temporal 
order questions that emerged as a result of engaging with the story. As noted in Chapter 2, I 
define a reasoning pattern as the essential common core of reasoning found in a range of 
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students concerning the justification for a particular claim. The methods by which I identify 
reasoning patterns are the same as in Chapter 5. I look for core ideas shared in students’ 
justification for the temporal order. The difference is that many of the reasoning patterns in this 
chapter use the language of the Pancake Story. New reasoning patterns were identified.   

I. Changes in Students’ Responses About the Temporal Order 
The table below shows how each student in the study answered each question about the 

temporal order after the story. The top half of the table includes students from the current study 
and the bottom half includes students from the two rounds of pilot study. The color was again 
meant to help the reader get an overall sense of the responses across the different questions. 
 
Table 7.1.  
Students’ Responses to Each Question About the Temporal Order After the Pancake Story 

Student Dependence Temporal Set Order Total 
Erin 2 2 2 2 8 

Sheila 2 2 2 2 8 
Simon 2 2 2 2 8 
Bryan 2 2 2 2 8 

Roberto  2 2 2 2 8 
Ryan39 2 2 2 2 8 
Spencer 1 2 2 2 7 

Chen 2 2 1 2 7 
Julia 1 1 1 1 4 

Aruna 1 1 1 0 3 
Jane 0 0 2 0 2 

Silvia 0 0 1 0 1 
Dean 2 NA NA NA 8 
David 2 NA NA NA 8 
Jacob 2 NA NA NA 8 

Adam40 2 NA NA 2 8 
Adriana 2 2 NA 2 8 
Sophia 1 2 NA 2 7 
Anwar 1 1 NA 0 3 

Note. The table is sorted from the lowest to highest total. It is grouped by current study and pilot study. 
 

Similarly to Table 5.1 in Chapter 5, the table above shows that students’ responses were not 
stable across contexts after the story. Whereas 7 of the 12 students in the latest iteration of the 
study (top rows) argued consistently across contexts, the rest did not. For example, Aruna 
                                                
39 Ryan responded with delta first on all of the questions after the story. His justification was that 
he was given the error in size and he would determine the error in the batter. Other students used 
this reasoning pattern to conclude that delta depended on epsilon. Ryan miss-mapped the error in 
the batter to epsilon and the error in size to delta. At the end of the interview, Ryan said that he 
knew that it was wrong but said that he was too tired to fix it. I gave it 2’s instead of 0’s because 
I attribute the miss-mapping to the length of the interview and not lack of understanding.  
40 Adam’s interview went long so that I decided to ask two of the four questions at the end of the 
interview. Adam was part of the pilot study.  
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claimed that epsilon and delta were dependent on each other and so there was no particular order 
by which they were set or which one came first between the two. However, in ordering the four 
quantities, she argued that epsilon had to be last, so delta came first.  

Findings from Chapter 5 can help contextualize the findings in this chapter and assist in 
observing the changes in students’ responses to the temporal order questions. The first 
comparison is between the numbers of questions students answered with epsilon first (score of 2) 
(see Figure 7.1 and 7.2 below). The two figures compare the number of questions that students 
answered with epsilon first before and after the story. Both figures include all students who 
participated in the study during its multiple iterations. The responses for the comparison group 
(who read the text instead of the story) are shown as separate bars in the figure.  
 

 
Figure 7.1. The distribution of students in answering four questions about the temporal order 

with epsilon first. 
 

 
Figure 7.2. The distribution of students in answering four questions about the temporal order 

with epsilon first after the story. 
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Comparing the two figures, we observe that there was a significant shift in students’ responses to 
the temporal order questions. In the beginning of the interview 11 of 19 students (58%) did not 
answer one question about the temporal order with epsilon first, and only 3 of 19 students (16%) 
answered all four questions with epsilon first. After the story, 4 of 19 students (21%) answered 
none of the questions with epsilon first, and 11 of 19 students (58%) answered all four questions 
with epsilon first. The comparison group did not reflect a similar pattern of change.  

Table 7.2 documents the change in the total scores for the responses before and after the 
story. It reflects more subtle changes in the students’ reasoning about the temporal order. Blue 
marks an increase, red marks a decrease and white marks an unchanged score. 

 
Table 7.2.  
Total Scores Before and After the Intervention 
Group Student Pre Score Post Score Change 

Current 
Study 

Sheila 0 8 8 
Spencer 0 7 7 
Simon 3 8 5 
Ryan 3 8 5 
Chen 0 5 5 
Jane 1 5 4 
Bryan 5 8 3 
Aruna 1 3 2 
Julia 0 2 2 
Roberto 7 8 1 
Erin 8 8 0 
Silvia 5 2 -3 

Pilot Study 

David 0 8 8 
Jacob 0 8 8 
Adriana 0 8 8 
Sophia 0 7 7 
Anwar 0 3 3 
Adam 6 8 2 
Dean 8 8 0 

Comparison 
group 

Patricia 0 8 8 
Katrina 3 5 2 
Jose 1 2 1 
Milo 2 2 0 
Veronica 0 0 0 
Guillermo 4 1 -3 

Note. The table is sorted according to the net change in score from highest to lowest. 
 

The majority of students who discussed the Pancake story increased in scores (16 of 19, 
84%). Two of the students who started with 8 stayed at 8. There was one student whose score 
decreased after engaging with the story. We explore her justifications and the implication of this 
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decrease in the discussion. The total score of some students in the comparison group also 
changed. Three of the six students increased in scores, two stayed the same, and one score 
decreased. The number of students in the comparison group was lower to start, so a comparison 
of proportion of students whose total score increased might not be informative. However, 
considering the number of students who answered with epsilon first might help put things in 
context. As noted earlier, the dramatic shift from 0 question answered to epsilon first to 4 
questions answered with epsilon first, did not happen with the comparison group.  

In summary, there is evidence that the Pancake Story had a positive influence on students’ 
conception of the temporal order. The question then becomes, how can we begin to account for 
the success of the Pancake Story? We now explore reasoning patterns across students and some 
of the additional resources the story might have provided for students. 

II. Reasoning Patterns for the Temporal Order After the Pancake Story 
In this section I explore different reasoning patterns that emerged from the different 

justifications students provided in answering the temporal order questions. Table 7.3 shows the 
catalogue of reasoning patterns that emerged and the number of students who used the particular 
reasoning pattern. The table is organized by the temporal order claim for which the students used 
the justification. The total number of students was more than 19 (those who engaged with the 
story) because some students included more than one justification per question, and some 
students provided no justification. Star marks a new reasoning pattern compared to the ones 
reported in Chapter 5.   
 
Table 7.3.  
Students’ Reasoning Patterns About the Temporal Order Questions After the Pancake Story 
The temporal 
order 

 Reasoning pattern 
Number of 
students 

Epsilon comes 
first, or δ  
depends on ε , or 
ε  is set first 

1. Because one finds ε  first. Students argued that epsilon 
could be found first. Students said that they could do this 
because they knew f (x) and L. 
Example: “Because you know what f (x) is and I wanna say 
you know what L is so you find epsilon [first]” (Roberto)   2  
2*. Because one chooses ε  first. The focus was on the fact 
that one could choose some epsilon, and that was done first. 
Example: “Epsilon [is set first] because they say for every 
number epsilon, which I think means choose whatever 
epsilon I want” (Sheila). 3 

(Table continues) 
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Table 7.3. (continued) 
Students’ Reasoning Patterns About the Temporal Order Questions After the Pancake Story 
The temporal 
order 

 Reasoning pattern Number of 
students 

Epsilon comes 
first, or δ  
depends on ε , or 
ε  is set first 

3. Because ε  is given. The givenness of epsilon was used 
directly to determine the order. That is, the fact that epsilon 
was given directly implied that epsilon came first.  
Variation 1: One determines the batter error from the given 
size error.  
Variation 2: Epsilon is set first because epsilon is given in 
the story. 
Example: “[Epsilon comes first because] you could say that 
epsilon’s given, you figure out delta” (Adam). 11 
4*. Because ε  is given in the story, and the goal is to 
satisfy that output constraint by constraining the input. 
This pattern highlighted the notion of quality control, which 
included the role of constraining the input in order to satisfy 
a given constraint in the output. 
Example: “[Delta depends on epsilon] cus you have an 
error level that you want, and so you set delta so that you 
can achieve that level, that epsilon level” (Jacob). 7 
5*. Because the goal is to minimize the distance between 
the function and the limit. Instead of just focusing on 
satisfying some constraint, this pattern incorporated the idea 
of minimizing the difference between the function and the 
limit.  
Examples: “[E]psilon [is] set first because you're given in 
the story /…/ the pancake diameter and you want to minimize 
it. So that's what you're trying to do, you want to minimize 
the difference between the function and the limit” (Erin). 3 
6*. Because ε  is given, and δ  is not | x – a | and ε  is not        
| f (x) – L |. In the language of the story, some students made a 
distinction between errors and error bounds. 
Example: “[C]us I thought that the epsilon and the delta 
were the errors but they're the error bounds. And if the 
epsilon is already set then you would have to change your 
delta” (Adriana). 3 

(Table continues) 
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Table 7.3. (continued) 
Students’ Reasoning Patterns About the Temporal Order Questions After the Pancake Story 
The temporal 
order 

 Reasoning pattern Number of 
students 

Epsilon comes 
first, or δ  
depends on ε , or 
ε  is set first 

7. Because of the statement for all ε>0 there exists δ  >0. 
A few students read this statement as ε>0 implies δ>0.  
Example: “Because from this definition, for every number 
epsilon is greater than zero, I want to say delta depending on 
epsilon because if there’s an epsilon greater zero, then 
there’s a delta that’s also greater than zero” (Chen). 3 
8. Because the ε-δ  proof procedure starts by simplifying 
the epsilon inequality to “find” the delta inequality.41 3 

No order, or ε  
and δ  are 
dependent on 
each other 

9*. Because on the one hand, δ  depends on ε  because ε  is 
given and one finds delta to satisfy ε . On the other hand, 
δ  implies ε  because f (x) depends on x. Students concluded 
that there was no order from the contradicting justifications 
(#3 above and #11 below). 
Example: “They depend on each other because if the delta 
value changes then epsilon value changes. /…/ I see now 
more that delta also depends on epsilon if you’re given 
epsilon. /…/ since I said that pancake size was epsilon and 
the batter was delta, then if the pancake size was a certain 
size first, then you know your delta size from that” (Jane). 3 
10*. Because it depends on which was given. If epsilon 
were given, then epsilon would come first. If delta were 
given then delta would come first. 
Example: “Depends on the situation, and what I was given. 
Sometimes you might be given epsilon, sometimes delta” 
(Aruna). 4 
11. Because both ε  and δ  are arbitrary numbers.  
Example: “Neither are set [first] because the epsilon and 
delta changes” (Silvia). 2 

(Table continues) 
  

                                                
41 Students described the ε-δ proof procedure, and since this was also a reasoning pattern from 
Chapter 5, I did not include an example given space constraint in the table.  
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Table 7.3. (continued) 
Students’ Reasoning Patterns About the Temporal Order Questions After the Pancake Story 

The temporal 
order 

 Reasoning pattern Number of 
students 

Delta comes 
first, or ε  
depends on δ , or 
δ  is set first 

12. Because batter makes pancakes (f (x) depends on x), 
and δ  is the amount of batter and ε  is the size (δ  is x and 
ε  is y).  
Example: “The error in the batter causes the error in the 
pancake size. So delta comes first” (Silvia). 4 
13. Because the process in the formal definition ends with 
checking if | f (x) – L |< ε . So ε  comes last. 
Variation: Students attended to the if-then statement and said 
that one needs to satisfy the delta inequality before the 
epsilon. 
Example: “Your epsilon is always last. To see if you are 
going to be within that epsilon” (Aruna). 3 
14*. Because working backwards from a given ε  implies 
that the given ε  is the intended result. 
Example: “I still think that epsilon is the result /…/ if you're 
trying to make your way backwards then the given [epsilon] 
would be the result” (Julia). 1 

 
In Chapter 5, I recorded 25 different reasoning patterns for the temporal order. After the 

story, I found 14 different reasoning patterns. The number of reasoning patterns decreased after 
students engaged with the story. Seven of the reasoning patterns (1, 3, 7, 8, 11, 12 and 13) were a 
repeat from Chapter 5. While they were reported earlier, the number of students who used each 
one and the way it was articulated was different. For example, Reasoning Pattern 12, which 
relied on the functional dependence between x and f (x), was one of the most common reasoning 
patterns before the story (11/25 students). It was not as common after the story (4/19 students), 
and they also explained the idea using the language of the story (e.g., error in the batter and size). 
Reasoning Pattern 3, which relied on the givenness of epsilon, was used by 4 of 25 students 
before the story, but afterwards it became the most common reasoning pattern used by students 
(11/19 students). Students also used the language of the story in their justification.   

Seven new reasoning patterns also emerged after students engaged with the story, showing 
that the story provided additional resources for students to think about the temporal order. I 
included an example for each reasoning pattern in the table to give a sense for which ideas from 
the story students took up. One of the most noticeable patterns is that all 19 students used the 
idea of epsilon being given (givenness of epsilon) as part of their justification for the temporal 
order, after the story. Reasoning patterns 3, 4, 5, 6 used the idea that epsilon was given (in the 
story or in general) to argue that epsilon came first. Reasoning patterns 9, 10 and 14 also used the 
fact that epsilon was given, despite them arguing for a different temporal order of delta and 
epsilon. All 19 students used at least one of those reasoning patterns. The majority of the time, 
students used the givenness of epsilon along with another justification to justify their claim about 
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the temporal order. The next several sections explore different ways that students used the idea 
of givenness of epsilon: 1) to determine the temporal order directly, 2) to determine the temporal 
order by treating it like a constraint for the output, and 3) to reconcile conflicting ideas from 
before the story.  

Givenness of Epsilon Directly Determines the Temporal Order 
In this section I focus on a reasoning pattern that used the givenness of epsilon to directly 

determine the temporal order (Reasoning Pattern 2). This is the most common reasoning pattern 
that students provided (11/25 students). Seven of the 11 students (Adam, Dean, Erin, Ryan, 
Sophia, Spencer and Sheila) who used Reasoning Pattern 2, argued that epsilon came first 
because they were to figure out delta from a given epsilon. For example, Erin said, “Epsilon 
comes first /…/ [because] epsilon is the pancake diameter error bound and that's what you're 
given, and that's set first. And it's up to me to figure out what the error bound for the batter, 
delta.” A couple of these students (Adam and Dean) alluded to the idea of quality control 
(pattern 4), but they did not emphasize the importance of controlling the input to achieve the 
desired result. These students focused more on the givenness of epsilon and finding delta from 
that (but did not elaborate on the role of delta to control the input). Dean explained how the story 
made this process more obvious to him: 

 
And when you specifically say um your boss gives you an error range in the y values, you 
know, in your pancake size, and you have to figure out what values of x correspond to those 
you know, correspond to being sufficient to meet those error requirement, it just makes it 
more obvious that you know you have these conditions for y you need to figure out x. So that, 
to me that made it more obvious you're given epsilon, you need to figure out delta.  
 

Dean explained how the story provided the intuition for him to attend to the condition on the y 
values (epsilon) to determine the appropriate x values. I explore the notion of quality control in 
the next section. 

Four of the 11 students (Chen, Erin, Jane, and Roberto) used the givenness of epsilon in the 
context of which between epsilon and delta was set first. These students argued that since epsilon 
was given in the story, then epsilon was set first. For example, Roberto, explained how he 
changed his mind about the temporal order with this justification. He said, “I changed my mind 
now. Um. I said neither before, but now, I'm just thinking back to the story. Epsilon is set. 
Epsilon is set. Yeah. You still kinda figure… No, yeah, epsilon is set. Yeah I guess it was given, 
so it's set.” He made a reference to the givenness of epsilon from the story and deduced that then 
it was set. This explanation is representative of the other three students who used this 
justification.  

Some students used similar idea of the givenness of epsilon determines the order, but they 
also argued that if delta were given then that would change the order. Aruna, Anwar, Jane, and 
Spencer used this justification to conclude that there was no order to delta and epsilon 
(Reasoning Pattern 10). This reasoning pattern focuses on the idea that at times epsilon would be 
given, but other times, delta could be given as well. For example, Aruna explained: 

 
Like for example, if I was given the pancake story, /…/ the boss gave me an upper limit of 
like five inches, I can be five inches away, or half inch away from 5-inch pancake. But like, 
if my boss gave me like, I have to be within this much of 1 cup of batter then my diameter 
pancake would have been the dependent /…/ I would have figured out the epsilon after I 
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figured out my delta. Because my delta he would have said, oh you can only be one sixteenth 
of a cup off. Then if I measure the size of my pancakes, if I follow within that range then I 
would be able to figure out the maximum I can be off from, like because I use one, one 
sixteenth (1 1/16) cup of pancake, the maximum diameter that I would get, or the minimum 
diameter I would get from using that cup of batter. 
 

Depending on which quantity the boss decided to constrain, she would use that information to 
figure out the other quantity. If, like the pancake story, she was given epsilon (an upper bound 
for the size), then she would figure out delta (the maximum she could be off for the batter). But 
if the boss gave her a constraint on the batter (delta) then she would figure out the epsilon after 
she figured out her delta. Spencer expressed a similar idea to Aruna. When asked about the 
dependence between epsilon and delta, he responded, “So if you’re given epsilon then delta 
depends on epsilon.” When asked if he was given epsilon, he said, “It depends, yeah from here 
(the statement of the definition) it’s not given.” He reported that he could go either way. So 
while the givenness idea is salient for many students, some students were not convinced that 
epsilon was the only quantity given in the definition. 

 [The Given] Epsilon Is a Constraint 
In this section I explore reasoning patterns that used epsilon, or the givenness of epsilon as a 

constraint for the output, to determine the temporal order. This is a different use from what I 
discussed in the previous section, where students mostly focused on the givenness of epsilon. 
Here, students attached meaning to epsilon that it was a constraint to be satisfied.  

 Quality control. I specifically designed the idea of quality control into the Pancake Story,  
as an intuitive idea for students to potentially use to make sense of the temporal order. Reasoning 
4 uses the idea of quality control, and it was the next most common reasoning patterns (7/19 
students used it). As I alluded to earlier, the notion of quality control is that for a given constraint 
in the output, the goal is to find a constraint for the input so that the set of inputs yield outputs 
within the given constraint. In this way, quality control also incorporates the use of the givenness 
of epsilon. Jacob provided a succinct explanation of quality control. He said, “[Delta depends on 
epsilon] cus you have an error level that you want, and so you set delta so that you can achieve 
that level, that epsilon level.” He emphasized the idea of setting delta in order to achieve the 
given constraint.  

Adriana who initially said that epsilon depended on delta, explained how she changed her 
mind:  

 
Because I was given an epsilon and that's kinda like the main goal. The main goal is to get 
the pancake, /…/ and they gave me a constraint. And then they didn't give me an error bound 
for the batter or for the a or x. But I know I want to make it small so that it's within the error 
bound, the epsilon. So then I would kinda base my delta on what was epsilon. 
 

Adriana treated creating pancakes within the given error bound as the goal. She would make the 
error bound for the batter small so that the outcome is within the given error bound epsilon. She 
noted the givenness of epsilon, as well as quality control in her justification. Bryan did not 
change his mind. His order of the four variables, and thus the temporal order of delta and epsilon 
stayed the same before and after the story. However his explanation changed. He explained, 
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"So we're gonna have epsilon first, as a requirement. And then we're gonna have, two, our 
delta second because those are our bounds to be within the requirement and then three, we’re 
gonna have x, which is what we actually, what we do, or what we scoop. And then four, 
we’re gonna have f of x [f (x)] which is the outcome, what happens." 
 

When I asked him if anything changed since we discussed the story, he responded, “Yeah 
exactly what changed, the reason I gave you for this [before] was the literal interpretation of the 
sentence [of the definition]. The reasoning I gave you for this [now] was an understanding of 
how to make a pancake and to meet the requirements.” Before the story, Bryan relied on the 
spatial location of the different variables in the statement of the definition. He read epsilon, delta, 
x and f (x), as they appeared in the statement. It seems that the notion of quality control, and his 
experience of making pancakes became salient for Bryan in reading the story. In the next 
chapter, I explore in greater detail the role of quality control and other knowledge resources in 
assisting a student, Adriana to sort through different claims about the temporal order. For now, I 
focus on another way that students used epsilon as a constraint, and also incorporate more ideas 
to support their claim about the temporal order.  

Minimizing the error. Some students (Adriana, Erin and Sophia) who used the notion of 
quality control also included an idea of minimizing the difference between the output and the 
limit. The idea of minimizing is important because of the consideration of multiple errors. 
Whereas in the discussion above, most students focused on one or two numbers as a constraint, 
the idea of minimizing suggests that the constraint might be decreasing. This is a specific idea 
designed into the story, where ultimately the boss would not give a specific error bound for the 
pancake, but wanted the employer to get increasingly more precise. Sophia changed her mind 
about the temporal order to delta depending on epsilon. This was the explanation she provided 
right before she changed her mind, and she incorporated the idea of minimizing the error in the 
output as the goal: 

 
Ok, so you, you, you figure out the error on the batter based on the error in the pancake size 
that you're given, like the maximum allowed error of the pancake size that you're given, so in 
that way it is dependent the other way around, /…/ your batter error is dependent on the 
pancake error. Because your pancake error is like, is like given to you and then it's like what 
you're looking to minimize so you're trying to create a batter error that will facilitate that. 
 

Sophia thought of epsilon as the maximum allowed error of the pancake size, but seemed to at 
times interchange it with just the error (“pancake error, is like given to you and then it’s like 
what you’re looking to minimize”). On the one hand, she recognized that epsilon was given, and 
that she was trying to minimize it. At the same time, she might have confused epsilon as the error 
in the pancake size. Nonetheless, she still used the idea of epsilon being given, and that she was 
trying to minimize the error. Certainly this provides an opening for her to think about the 
arbitrariness of epsilon, perhaps after she sort through the meaning of epsilon.  

Erin spoke about this idea of minimizing the error (not quite error bound) but in the context 
of the function and the limit. Her claim about the temporal order did not change, but she 
explained what might have changed in her thinking about it. She explained,  
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I'm kind of more sure epsilon set first, because you're given in the story that, you're given 
that the pancake diameter and you want to minimize it. So that's what you're trying to do, you 
want to minimize the difference between the function and the limit.  
 

Similar to Sophia, Erin’s language seemed a bit vague (Was she trying to minimize the pancake 
diameter?). The phrase “you’re given that the pancake diameter” could be interpreted to mean 
that she was thinking that epsilon was the pancake diameter, which would be erroneous. She 
could also be thinking that given an error bound for the diameter, the diameter had a given 
constraint. The word “it” was also unclear. However, she clarified that ultimately what she 
wanted to minimize was the difference between the function and the limit. But just like Sophia, 
it’s unclear whether she grasped the arbitrariness of epsilon and its role in minimizing. 

Adriana attended to the idea that she wanted to be really close to the limit and the role that 
epsilon played in that. After the story she argued that delta came first before epsilon. She 
explained why she changed her mind, 

 
That changed because like the, the ultimate goal is to get close to L or to get to the limit. So 
we want like, we want a goal to be within and we don't want like 100, so we want it to be 
very very close so we said like within a half.  Um so then that's how we would figure out like 
delta it's not gonna be like a hundred pounds of batter, we want it to be closer we want it to 
be within 5 inches of diameter, or close to 5 inches in diameter. 
 

Adriana attended to the notion of quality control. She treated epsilon as a constraint for the 
output but she also related it back to the idea that she wanted to get “very very close” to the limit. 
Instead of considering multiple epsilons, she considered what would be unreasonable for epsilon. 
She was alluding to incorporating the arbitrariness of epsilon, albeit limitedly.  

Effects of Givenness of Epsilon on Conflicting Ideas From Before the Story 
The argument that the temporal order was dependent on which of epsilon and delta was given 

shows that while the idea of givenness of epsilon was salient to students, it was not sufficient for 
students to conclude that epsilon came first. In this section I contrast Reasoning Pattern 6, 9 and 
12 to illustrate different ways that the givenness of epsilon interacted with the most common 
reasoning patterns from before the story: imposing the functional dependence between f (x) and x 
onto epsilon and delta, and interpreting the if-then statement to suggest that delta had to be 
satisfied first.  

Error vs. error bound to address functional dependence. In Chapter 5, I reported quite a 
number of students who broadly related delta and epsilon to x and y values. This led many of 
them to conclude epsilon depended on delta either through the functional dependence of x and y 
or the if-then statement. After the story, it seems that a few students (Adriana, Chen, Simon, and 
Sheila) made the distinction between delta and epsilon and the x and y values (Reasoning Pattern 
6). It was not sufficient to change their claim about the temporal order. But it allowed many of 
them to see that epsilon no longer depended on delta. Then, with the givenness of epsilon, many 
of them changed their mind. Sheila provided an example. She said,  
 

Int. With epsilon and delta what depends on what if anything? 
Sheila [pause] Uh, delta depends on epsilon [laughs]. 
Int. Delta depends on epsilon. 
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Sheila Yeah. 
Int. It seems like you changed your mind. 
Sheila Uh-hm. 
Int. Why? 
Sheila Uh, because earlier I said epsilon depends on delta because I think of epsilon as an 

error instead of an error bound. 
Int. Hm, ok. 
Sheila Yeah. 
Int. So how did that, how did you figure out that epsilon's not an error, not an error but an 

error bound? 
Sheila Because the story said guess an error bound. So like I just, from that point I just 

realized there's an error and there's an error bound like they're different.  
 

Prior to the story, Sheila argued that delta was a bound for x and epsilon was a bound for y and 
the if-then statement suggested delta implied epsilon. So delta used to come first for Sheila. After 
the story, she made a distinction between the error and error bound. In the segment above, she 
explained how she used to think. She did not explain how making the distinction led her to 
conclude that delta depended on epsilon. What she said right before I asked her the question 
about the dependence relationship might clue us to another justification that might have been at 
play.  

Before she and I discussed the dependence between delta and epsilon, Sheila explained how 
the story helped her understand that the goal in the definition was to find delta. She explained,  

 
“Because [the story] is giving us a strong correlation between the epsilon and delta, like, it 
says bluntly like, oh the boss want you to make cake with [this] epsilon. So I have to find the 
delta so I can satisfy the condition that the boss gave.”  
 

This is the notion of quality control from the story. So it seems that together they might have led 
her to conclude that delta depended on epsilon.  

The next chapter gets into more details about how distinguishing between error and error 
bound led a student to change her claim about the temporal order. I explore the process by which 
the student, Adriana, distinguished between the error and error bound. We also see how unstable 
that distinction was. For now, I share what Adriana ultimately concluded about the error and 
error bound, and its effect on the temporal order: 

 
Um, see cus I was looking at it like /…/ the f of x [f (x)] depends on the x and that's how I 
was like saying that epsilon depends on delta because epsilon is related to the f of x [f 
(x)]/…/. But that's just saying the error of the L and the f of x [f (x)] depends on the a and x 
but that's not to say that epsilon depends on delta. 
 

She said that initially she relied on the functional dependence between x and f (x) to determine 
the temporal order. The story helped her to notice that the functional dependence described a 
relationship between the f (x) – L and x – a, not between epsilon and delta. How she came to that 
conclusion is one of the foci of the analysis in the next chapter. But just like Sheila, Adriana 
ultimately used quality control and the givenness of epsilon to change her claim. Next, I discuss 
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students who took up the idea of givenness and/or quality control from the story, but whose idea 
about functional dependence got validated by the story.  

Batter makes pancakes (functional dependence). One of the most common justifications 
provided by students for the temporal order before the story was using the functional dependence 
between x and f (x). Typically, students also loosely associated delta with x and epsilon with f (x). 
After the story, four students (Adriana, Julia, Ryan and Silvia) held on to this reasoning pattern 
(Reasoning Pattern 12). These students thought that delta and epsilon were either error in the 
batter and pancake size, respectively, or they were the actual batter and the pancake size. Then 
many said that batter made pancakes or that an error in the batter led to an error in the pancake 
size. So epsilon depended on delta.  Silvia provided a clear example of this reasoning pattern. I 
asked her with epsilon and delta, which depended on which. She responded: 

 
I think I said I switched this last time too, but now I think epsilon depends on delta. I think 
before I said delta depends on epsilon, well like with the pancake story, epsilon is like the 
pancake size and delta is the batter so pancake error is gonna change, pancake error is gonna 
change with the batter error so epsilon is gonna change with the delta. 
 

She connected her reasoning to the pancake story. She ultimately mapped the epsilon and delta to 
be the error in the pancake size and the error in the batter, and argued that when delta changes, 
then the epsilon would to. Silvia was the only student who after the story answered fewer 
questions with epsilon first. Her total score also decreased. Before the story, she argued that if 
epsilon changed then delta would to, and vice versa so they depended on each other. Now, it 
seems that the intuition of making pancakes became really salient to her and she went with 
epsilon was going to change with delta.  

When asked in the context of which came first, Silvia was consistent and provided very 
similar justification. She said,  

 
I think epsilon [comes first], or, [pause] I'm thinking ok, well if I relate it to the batter story 
then the delta would change and then because your delta changes your epsilon changes, 
because delta is like your batter size if that error changes then your error for the pancake will 
change too. 
 

Ryan expressed a similar idea. He argued, “Like the story it says that if one goes up the other has 
to go up the errors, /…/ if the delta goes up or maybe I think maybe epsilon depends on delta.” 
Ryan, albeit seemingly less sure, argued that if one error went up, the other had to as well. So 
epsilon was dependent on delta.  

Julia and Adriana both used the functional dependence more explicitly. Adriana, responded 
with the dependency question with: 

 
[B]ut more like whatever you're getting like f of x [f (x)] is always gonna depend on what x 
you're inputting it /…/ mostly whatever you putting in for x will determine what you get for f 
of x [f (x)]. So I, I still say the same thing like delta depends on epsilon 
 

Julia revealed the use of this idea after she answered which of the two variables were set first. In 
that context she used the givenness of epsilon so it was set. But when I asked her how did that fit 
with her previous claim that delta came first in the question before. She provided her reason: 
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“The reason? Normally for me, thinking that delta is x, and so x comes first then you think about 
the y.“ Here it seems that the functional dependence between x and y undermined the givenness.  

No order settles conflicting justifications. Some students, instead of prioritizing the givenness 
of epsilon or functional dependence concluded that there was no order to epsilon and delta. 
Anwar, Jane and Sophia recognized the givenness of epsilon. At the same time they held on to 
the functional dependence idea (Reasoning Pattern 9). Sophia used the two justifications to 
clearly explained why epsilon and delta depended on each other: 
 

Sophia I still believe that, like they depend on each other in both ways, both influence each 
other. But I mean, I feel like definitely like you're, the error that you have, how much 
batter you use determine how big your pancake is so how big the x values that you put 
into your function or how small they are, that distance does affect how your function 
how close your function goes to the full limit, so I feel like that's why I feel like your 
delta, your epsilon depends on your delta a lot 

Int. But delta doesn't depend on epsilon 
Sophia Delta /I think 
Int.          /Because before you were saying they depend on each other 
Sophia Yeah, um, in a way I feel like they do depend on each other because you're looking for 

a desired epsilon like if you're working backwards you'd want a desired pancake size 
so you're looking for desired error to get that desired pancake size and to get that you 
need your desired batter size or batter amount. So in that way you could see how 
epsilon could, could influence delta because epsilon is what you're looking to please, 
looking to fit to. 
 

Much like students who used the functional dependence idea, Sophia stated that batter made 
pancakes. At the same time, she recognized the epsilon as a constraint. With this she concluded 
that they depended on each other. Jane provided a very similar explanation, stating that after the 
story she was able to better see that “delta also depends on epsilon if you're given epsilon.” She 
still argued that epsilon depended on delta because batter made pancakes and “pancake size was 
epsilon and the batter was delta.” This example highlights the role of interpretation of delta and 
epsilon play in influencing the take up of ideas from the story, which I explore next.  

Different interpretations of epsilon and delta. Contrasting Reasoning Pattern 6, 9 and 12 
seems to suggest that the quantities that students attributed to epsilon and delta might have 
influenced the ideas they took up from the story. Students who relied on the relationship between 
pancake batter and the size of the pancake (functional dependence) attributed the amount of 
batter and the size of pancake to delta and epsilon, respectively. For example, Silvia said, “Well, 
like with the pancake story, epsilon is like the pancake size and delta is the batter.” Some 
students thought that epsilon and delta were errors, and this too, led many of them to conclude 
that any error in the batter would yield an error in the size. But many of them distinguished error 
from error bound and changed their mind about the temporal order. It is possible that doing so 
might have allowed them to prioritize ideas from the story, like the givenness of epsilon or the 
notion of quality control.  

Some students seem to change what they thought to be epsilon and delta as they provided 
their justification for the temporal order. For example, earlier when I discussed the idea of 
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minimizing the difference between the function and the limit, I mentioned that both Sophia and 
Erin were both vague in what they said about the two quantities. They used maximum error or 
error bound at one point, and error at another. When Sophia concluded that epsilon and delta 
depended on each other, it seems that she treated epsilon and delta as errors. I explore this back 
and forth students did with error and error bound in the next chapter.  

Reasoning Pattern 6, 9 and 12 show interesting ways that students differ in the way they 
conceptualized epsilon and delta in the story. However, it is interesting that whichever 
interpretation students had about epsilon and delta, all of them used the givenness of epsilon. 
This suggests that the notion of givenness was not tied to what epsilon was for students. This 
affirms that givenness might be a knowledge resource as suggested in Chapter 6.  

It is worth noting that students were not necessarily consistent with their mapping of 
quantities during the interview. After discussing the story, I asked students to map each quantity 
from the statement of the definition to the pancake story. This answer did not necessarily reflect 
their interpretation of epsilon and delta when they were discussing the temporal order. So that is 
why in this section, I focused more on ways that students used their interpretation during the 
discussion about the temporal order.  

Summary of Findings 
The first analysis section shows that the Pancake Story had a positive influence on students’ 

conception of the temporal order between epsilon and delta. The majority of students (16 of 19) 
increased in total score in answering the temporal order question across the four contexts. 
Moreover, the number of students who answered none of the questions with epsilon first 
decreased from 11 to 4, and those who answered all of them with epsilon first increased from 3 
to 11. The findings from the first section also show that some students’ knowledge of the 
temporal order was still consistent across contexts.  

The second analysis section explores the reasoning patterns for the temporal order across the 
four contexts after the story. After engagement with the story, the number of reasoning patterns 
decreased from 25 to 14. Half of the reasoning patterns documented in this chapter are new while 
the other half are similar to those reported in Chapter 5. While I did not include the details of the 
use of reasoning pattern across the contexts, some students did use similar justification across 
contexts. More specifically, students took up the idea of givenness of epsilon. All 19 students 
used it in their justification for the temporal order.  

Students used the idea of givenness of epsilon in different ways. Some students used it to 
directly determine the temporal order. Most students combined the givenness of epsilon with 
other ideas, like quality control or minimizing the difference between the function and the limit. 
The givenness of epsilon also competed with other ideas students started with, and they were sort 
out in different ways. Distinguishing error from error bound helped some students to prioritize 
other ideas from the story, while some students focused on the relationship between batter and 
pancake size. I also explored interpretation of epsilon and delta in the story as one factor in the 
take up of ideas from the story.  

Discussion 
The general finding of this chapter is that students took up a number of productive ideas from 

the story to shape their justification for the temporal order. I have shown that there was a general 
trend of movement in a positive direction in terms of students’ conception of the temporal order. 
Some improvements in the comparison group suggests that additional time spent on focusing on 
the temporal order and reading the text can help move their conception forward. The findings 
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about the types of reasoning patterns students used uncovered some of the affordances provided 
by the Pancake Story in reasoning about the temporal order.   

That there was a decrease in the number of reasoning patterns after the story is interesting. 
The story was designed to have students to attend to particular ideas and they did, albeit with 
different specificities. Students took up really good ideas from the story but in different ways. 
For example, the givenness of epsilon was taken up by all the students and used in very creative 
ways. Some salient ideas remained (e.g., functional dependence). Some students were able to use 
the story as a resource, including the givenness of epsilon, to sort it out, but others did not. This 
is a different story of change from a story of replacing students’ conception. The story did not 
discourage students’ prior knowledge, as half of the reasoning patterns found in this chapter 
existed before (productive or unproductive). The intent was for the story to help students 
reorganize their prior knowledge and possibly add some new knowledge, and that was what 
happened.  

With the case of Adam in Chapter 6, I suggested a potential tension between the givenness of 
epsilon and the idea of functional dependence. I suggested that the givenness of epsilon might be 
helpful in problematizing the functional dependence idea for epsilon and delta. The findings 
from this chapter give more insight into the process that these two seemingly competing ideas 
get sorted out by students. In this chapter, we saw some students using the givenness of epsilon 
to determine the temporal order once they sorted out the difference between error and error 
bound. But we found that some students were just comfortable having the two side-by-side and 
concluding that there was no order. As I discussed earlier, students’ conception of epsilon and 
delta might be an influential resource to sort this out.  

I note that students were still able to move forward with their conception of the temporal 
order, despite not having addressed these issues in their understanding (e.g., error vs. error bound, 
functional dependence). This could be explained partly by context specificity of knowledge 
(quite a number of students used givenness of epsilon to answer the set question). The hyper-
richness argument from Chapter 6 can also be helpful here. Given the hyper-richness of the 
formal definition, Adam’s conception of epsilon and delta moved between different levels of 
generality. Sometimes they were very specific (delta was the radius of the interval), and 
sometimes they were imprecise (delta had to do with inputs). This was a byproduct of 
considering different plausible arguments for the temporal order. It is possible that some of the 
reasoning patterns provided students with a broader frame to think through the temporal order 
without necessarily having to sort through every aspect of the definition. In instruction, this 
process can be seen as getting students to think through the big idea of the problem, before going 
into the details of the problem.  

Silvia was an interesting case. She was a student who came in with quite a few productive 
resources, and after the story her score decreased because she took up an intuitive idea from the 
story. Some might argue, and say, “Aha! Look at how intuition gets in the way of productive 
knowledge!” I believe this would be shortsighted. I view Silvia’s case as a case for intuitive 
knowledge, instead of against it. She did come in with some productive knowledge, but it was 
fragile on the face of a more intuitive idea. We can try to introduce information to students, but 
ultimately it has to make sense to them for it to be used by students consistently. I interpreted the 
problem with Silvia to be a mapping problem. The issue was that she thought epsilon and delta 
as pancake size and amount of batter. Looking for ways to make more salient the meaning of 
epsilon and delta in the story for students is a useful and productive direction to take in the future. 
Silvia could also be noise in the data. One student in the comparison group also decreased in 
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score. But the case of Silvia does bring up very interesting discussion points about the role 
intuition in the learning of mathematics.  

The discussion concerning epsilon being a constraint, in particular the idea of minimizing the 
errors was important. Focusing on epsilon as a constraint can serve as a potential springboard to 
discuss the arbitrariness of epsilon. As preliminary evidence for this claim, I include a discussion 
at the end of my interview with Dean about why no particular epsilon was given at the end of the 
story. Dean had just made an assertion about limit that with limit one was concerned with 
constraining the y-values and that was why epsilon was important. He then reflected on where 
epsilon came from. I answered that in reality we were not given any particular epsilon, then I 
asked him why.  

 
Int. In this story, at the end you're not given a value [for epsilon], why is that? Why in 

the story were you not given epsilon? You were initially given epsilon equals 1/2 but 
why were you not given epsilon at all by the end. What did your boss want, such that 
you're not given it? 

Dean Oh, your boss wanted your pancakes to be as close as possible. So if you choose one 
arbitrary number then you're not gonna get as close as possible to y. So the idea 
between epsilon and delta is that you can choose any epsilon that's close to your y 
value, and you will, the result will be a delta that is close to your x value.  

Int. Does that make sense?  
Dean Yep it does. Cool, cool! Wonder how long will it take to forget this. Probably won't 

actually now. You might have taught me something today.  
 

It would be difficult to claim that Dean arrived at the arbitrariness of epsilon from focusing on 
epsilon being a constraint. However, focusing on epsilon as the output constraint can lead 
students to ask questions about properties of epsilon, like what happened with Dean. This then 
became an opportunity to leverage other aspects of the story, which led to Dean making the 
connection between the arbitrariness of epsilon with the closeness to the limit. 

The question that remains now is, “What about the story helped the students, and what was 
the process of change like for many of these students?” In this chapter, I identified some 
productive reasoning patterns, but how did students take that up? How easy was it for students to 
change their claim after being exposed to some of the productive resources from the story? Was 
it a straightforward process or was there a negotiation of resources? Throughout this chapter I 
alluded to Adriana as an interesting case to explore more deeply. The next chapter explores all 
these questions with the case of Adriana.    
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CHAPTER 8: USING THE PANCAKE STORY TO MAKE SENSE OF THE 
TEMPORAL ORDER 

 
This chapter focuses on the case of Adriana, to illuminate the process by which a student 

made sense of the temporal order using the Pancake Story. Adriana was an intending 
mathematics and Chicano studies major. She was a Hispanic/Latina student who self-identified 
as Chicana. She took first semester calculus in high school and received an A, and retook the 
course in college and also received an A. But despite her background, even after engaging with 
the story she still initially argued that epsilon depended on delta.  

Adriana was a representative case in the following ways. Like many students, she used the 
justification “epsilon depended on delta because f (x) depended on x.” She also took up the idea 
of givenness of epsilon and quality control from the story. She was one of the students who 
sorted out the difference between error and error bound in making sense of the temporal order. 
Adriana’s case can illuminate the process by which students take up these ideas. To 
contextualize this case with the findings in other chapters, Adriana’s total score rose from 2 to 8. 
She answered one question with epsilon first before the story, and ultimately answered all 
temporal order questions with epsilon first, after the story. This chapter explores the role that the 
Pancake story played in the development of Adriana’s claim about the temporal order.   

The main goal of this analysis is to uncover the process by which Adriana changed her claim 
about the temporal order while discussing the dependence between epsilon and delta. First I 
show that Adriana’s conception of the temporal order was stable across the three contexts in the 
interview (Section I). This shows that the change in Adriana’s claim was stable. Then I explore 
how Adriana made a distinction between an error and an error bound (Section II). This 
distinction becomes influential in Adriana’s discussion about the temporal order. The last section 
is the main episode where Adriana discussed the temporal order in the context of dependence 
(Section III). She recalled the distinction between the error and the error bound, but this 
conflicted with many productive resources she drew from the story. The narrative in this chapter 
does not track the chronological progression in the transcript (e.g., the episodes in section I 
happened last in the interview). The arrows in Figure 8.1 show the chronological progression in 
the transcript. The figure also labels each section of the analysis and shows their connection.   

The main episode of interest was a learning episode instigated by a conflict between some of 
the productive resources from the story and Adriana’s prior knowledge. This occurred in the 
discussion of the first temporal order question. Section III focuses on Adriana’s response to the 
temporal order question in the context of dependence. Each section analyzes one episode of 
interaction. Each episode is made up of several thematic segments. That is, each segment focuses 
on a particular theme, issue or a claim that the student was making.  

The discussion at the end of the chapter focuses on the process of learning for Adriana, and 
the role of the pancake story plays in that process. So while some knowledge resources are 
identified, the identification of such resource is not the main goal of this chapter.42 As such the 
model and counter-model methodology are not explicitly used in this chapter. However, 
competitive argumentation still guides the analysis. I still put any model I construct of Adriana’s 
argument through the process of argumentation, and in some sections this is made explicit. The 
transcript that is presented was modified to facilitate reading. To do so many hedges, and uh-
huh’s and um-hm’s from the interviewer were removed.   

                                                
42 For the glossary of all the knowledge resources, see Table 6.1 in Chapter 6, pp. 41-43. 
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I. The Stability of the Temporal Order Claim Across Contexts 
After the story, Adriana initially argued that epsilon depended on delta by using the 

functional dependence argument.43 However, after some discussion she changed her claim to 
delta depending on epsilon (epsilon first). She also answered the other two temporal order 
questions in a similar way. She argued that epsilon came first and she would figure out delta as a 
result. Last, she ordered the quantities in the definition in the order L, a, ε, δ, x and f (x) (epsilon 
first). She thought it was important to include the L and the a in the ordering. Below we see that 
one of the ideas that drove the change in the temporal order was the change in the meaning of 
epsilon and delta for Adriana.  

Dependence  
Adriana argued that delta depended on epsilon by first acknowledging her mistake of 

thinking about epsilon as errors. She then prioritized productive resources from the story. 
 

577 Int. So, do they depend on each other, is it just one way now?  
578-
580 

Adriana Um, see cus I was looking at it like /…/ the f of x [f (x)] depends on the x and 
that's how I was like saying that epsilon depends on delta because epsilon is 
related to the f of x [f (x)]/…/. But that's just saying the error of the L and the f 
of x [f (x)] depends on the a and x but that's not to say that epsilon depends on 
delta. 

581 Int. Ok, so? 
582 Adriana So, I think that delta depends on epsilon now [laughs]. Just cus if it's given like 

this [unclear] and you're trying to aim at getting /…/ within a certain error 
bound, then you're gonna try to manipulate your entries /…/ to be within a 
certain error bound [gestures a small horizontal interval with her palms] 
 

Toward the end of the interview, Adriana prioritized the givenness of constraint (epsilon) and the 
notion of quality control to determine the temporal order. Recall that the givenness is a 
characteristic of a quantity whose existence is granted and thus its origin would not be 
questioned. Quality control is the idea of modifying the input of a function in order to achieve a 
desired output. Adriana seems to have taken the role of the manipulator of the input in order to 
be within a prescribed error bound for the output. The functional dependence from before was 
used to describe the relationship between the errors of the outputs and the inputs. She also noted 
her mistake in treating epsilon and delta as errors and using the functional dependence to 
describe their relationship. I present a closer analysis in the last section in this chapter.  

Sequential Order 
Adriana argued that epsilon came first and that she would figure out delta as a result. Again, 

she explained that she used to think of epsilon and delta as errors.  
 
Yeah I think I did change because I was thinking that whatever change I was making here   
(0 <| x – a |< δ), so I was thinking of it as errors. So I was thinking of it like whatever change I 
was making the x and the a, would affect the f (x) and the L (turns 614–616). 

                                                
43 For the relevant part of Adriana’s full transcript and written artifact, please see Appendix K.  
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She explained that she used to think about the sequential order of epsilon and delta using the idea 
of functional dependence. However, this involved treating epsilon and delta as the errors, f (x) – L 
and x – a. Below she used the idea that getting arbitrarily close to the limit as the justification for 
epsilon coming first in the definition.  
 

That changed because like the, the ultimate goal is to get close to L or to get to the limit. So 
we want like, we want a goal to be within, we don't want like a hundred [pounds of batter] 
close. So we want it to be very very close. So we said like within a half [inch]. Um, so then 
that's how we would figure out like delta, it's not gonna be like a hundred pounds of batter, 
we want it to be closer if we want it to be within 5 inches of diameter, or close to 5 inches in 
diameter (turns 618–622). 
 

She used the same ideas as she did in the context of dependence (the givenness of epsilon and 
quality control). Here she also emphasized the requirement that epsilon and delta be a small 
quantity. She wanted it to be “very very close.” Thus that was why she said that she would use 
half an inch error bound. Delta’s being small made sure that the pancakes would be “close to 5 
inches in diameter.” At the same time, Adriana also exemplified the process with familiar 
situations. She said, “It’s not gonna be like a hundred pounds of batter.” She was invoking 
familiar imagery of making pancakes and amounts of batter to make sense of the order.  

Adriana also began using formal mathematics language to describe the goal with the formal 
definition. Instead of saying that the goal was to make pancakes “within an error bound,” like she 
did in the previous context, she said that her goal was to “get to the limit.” Thus, in this particular 
context she argued that epsilon came first by cueing many of the same knowledge resources as 
she did in the context of dependence. She explained that the change in conception was a result of 
not treating epsilon and delta as errors. 

Order of Quantities  
Adriana put the quantities in the following order: L, a, ε, δ, x and f (x). So she put the epsilon 

first. In this context, she, again, emphasized the importance of getting close to the limit. And that 
she changed her mind based on changing the way she conceptualized epsilon and delta.  

 
Well first I would put your ultimate goal as the first one, which is the L. And then what 
you're trying to get to look at to get to your L is a, which is why I chose those two first. And 
then I put epsilon next because we're trying to get really close to L /…/. So I chose epsilon 
next, and then delta is kinda similar to epsilon. We want something that's really close to a so 
we put /…/ like a constraint on it too so we're not going too wide. [Epsilon’s first] because 
we're trying to get close to our ultimate goal, L. Yeah, so then delta. And then x next because 
that's what we're gonna try to get close to delta, or within delta to get an f of x [f (x)] that will 
give us /…/ a result that is within epsilon (turns 644–656). 
 

To determine the order between epsilon and delta, Adriana focused on getting the function close 
to the limit. She emphasized that delta was a constraint that kept the input x really close to a. She 
explained that some of the changes happened because she confused x with a. Early in the 
interview she said that a approached x, instead of the other way around.  
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Below she explained the other changes she made. Some of the changes occurred because she 
no longer thought of epsilon and delta as f (x) – L and x – a, respectively. To follow what Adriana 
said below, it might be helpful to consider that the order changed from f (x), x, a, L, ε, δ at the 
beginning of the interview. It changed to L, a, ε, δ, x and f (x) by the end. Adriana wrote the new 
order below the old order during the interview. I include Adriana’s writing below the transcript.  
 

I think these two [circles f (x) and x from the old order and L and a from the new one] I 
changed them because I thought that these [points at x and a] were each other. So I thought 
we were trying to get close to x [instead of a]. And then these [circles ε and δ] changed 
because I thought /…/ these [ε and δ] were the difference [f (x) – L and x – a]. So that’s why I 
put them last. Cus I was thinking of it like, oh analyze our errors at the end. And then these 
[circles x and f (x)] I put them last because I realized these [circles x and f (x)] are what we 
can control based on all of these [circles L, a, ε, δ]. Well this, this [points at x] is what we 
can control. Once we have all of this [L, a, ε, δ] laid out then I can start picking x’s that are 
close to a and then f of x [f (x)] will be what I get. And then I can compare them to what I 
have [circles L, a, ε, δ] (turns 662–672). 
 

 
Figure 8.2. Adriana’s old and new ordering of the six quantities. 

 
Adriana changed her ordering partly because she had previously confused x for a. She also used 
to end the ordering with ε and δ because she thought those were the errors, and errors were 
analyzed at the end. She, again, focused on getting the function close to the limit. These change 
of meaning of epsilon and delta and the goal of approaching the limit were the same ideas she 
used in the other two contexts.  

At the same time, in this segment she revealed an aspect of her understanding of the 
definition that she had not revealed before. She concluded that she had control over x based on 
knowing the limit, L, a, ε and δ. She understood that the values of the limit and of a were set. 
Epsilon was given, and delta was determined from epsilon. In analyzing the error, she only had 
control over the x values she was inputting, to check if the f (x) was within the prescribed bound. 
She did not mention this idea in the other contexts, presumably because this context asked her to 
make sense of the relationships between all the quantities, and not just epsilon and delta.   

Summary  
Adriana’s claim about the temporal order was stable across the three different contexts at the 

end of the interview. She concluded in all three contexts that epsilon came first. Moreover, she 
also relied on very similar resources. The quality control resource was reframed in terms of 
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getting the function close to the limit L. More noticeably, her justification in all contexts involves 
the correction that epsilon and delta were no longer errors. She did not specify what they were, 
but she emphasized that they were no longer errors. That seems to play a significant role in her 
changing her claim about the temporal order.  

We also begin to see the influence of the Pancake Story on Adriana’s conceptualization of 
the temporal order. In the context of dependence she invoked a familiar image of controlling the 
input values to meet the prescribed range of output values. In the context of sequential order, the 
familiar context of the story allowed her to come up with examples to illustrate her point. I return 
to this discussion at the end of the chapter. The next section explores how and when she first 
made the distinction between error and error bound, which seemed to drive the changes in her 
understanding of the temporal order.  

II. The Distinction Between Error and Error Bound 
In the previous section we see that Adriana justified the change in temporal order by 

changing the meaning of epsilon and delta. The Pancake Story and the proceeding questions 
were designed to make the distinction between error and error bound salient for students. For 
example, one of the questions after the story asks if students think that there is a difference 
between an error and an error bound.44 This was Adriana’s response:  

 
Well I think the error bound is kinda like the max /…/, the minimum and the maximum that 
you can get, and, and error would be /…/ anything in between there, it could be /…/ the 
actual bound or anything in between (turn 333).  
 

Adriana thought of error bound as the minimum and the maximum that she was allowed to get. 
For example, if -0.5< f (x) – L <0.5, then -0.5 and 0.5 are the error bounds for the quantity f (x) 
from the limit, L. An error could be anything in between the two bounds. She also mentioned that 
an error could be “the actual bound,” as well. This was going to be a source of conflict that 
would ultimately allow her to distinguish between x – a and delta, and f (x) – L and epsilon.  

She focused on the “less than” symbol (<) in the inequalities 0 <| x – a |< δ and | f (x) – L |< ε as 
the part of the definition that was conflicting for her. She said,  

 
The biggest thing that I'm like unclear about, is like, how come the delta and the epsilon are 
greater than this [circles | x – a |] this error or this [circles | f (x) – L |] difference or whatever. 
Like, that’s what I don’t understand (turns 406–408).  
 

The fact that epsilon was greater than f (x) minus L and the delta was greater than the x minus a, 
were problematic for her. Before she focused on this issue, when asked what epsilon and delta 
were in the story, Adriana said that epsilon and delta were “the error of the diameter of the 
pancake” (turn 385) and “the error of the batter” (turn 381). This suggests that Adriana 
conceptualized epsilon and delta as the errors, | f (x) – L | and | x – a | leading up to this point. The 
inequality strongly suggests that epsilon and delta were not errors because of the inequality sign.   
Conceptualizing epsilon and delta as errors fuels the conflict in the next segment. The nature of 
the confusion with the inequality also becomes clear in the next two segments.  
                                                
44 Adriana did not use the terms error and error bound before discussing the story. She spoke of 
epsilon as margin for the difference between f (x) and L. The story introduced these terms to her.  



 

 

92 

Segment 1: Can Errors Equal Error Bounds?  
Adriana pointed to the inequalities as the source of the conflict in her understanding. In this 

segment to explore the issue, Adriana tried to see if delta could equal the error. I, the interviewer, 
mistakenly thought that she was not attending to the difference between an error and an error 
bound. I attempted to remind her of the distinction she had made between the two, earlier (turn 
333, above). Since this was not the issue, it did not help her confusion. She restated her 
understanding about the difference between error and error bound at the end.  
 
416 Adriana But I don't, yeah, that's the thing that I don't understand, like, what are these, the 

epsilon and delta if they're not exactly that error, then, what are they? 
417 Int. Ok, um, let's see… So if they're not exactly the error what are they? 
418 Adriana Um-hm. 
419 Int. Ok, um. 
420 Adriana Well I guess I mean I guess it could be, yeah cus if I was thinking of error here 

[points at a region near a on the x axis] like I said the error was half [1/2] and 
tried to make my delta half [1/2] but then I would make it be equal to [points to 
the sign < in the delta inequality]. 

421 Int. Uh-huh. 
422 Adriana And since it's like less than, I don't…  
423 Int. I see, um [long pause]. You mentioned earlier that... there is a difference 

between... there's a difference between error bound and error? 
424 Adriana Yeah 
425 Int. Right? Did the story talk about error or error bound? 
426 Adriana Um well, it gave us an error bound for, for the pancake and then it asked us to 

be, to guess a bound for the batter 
427 Int. Um-hm. 
428 Adriana Um and then it just wanted our errors to be within those bounds 
429 Int. Um-hm. 
430 Adriana So it kinda talked about both. 
431 Int. Ok, so how does that relate to epsilon and delta and this notion of less than 

thing. 
432 Adriana Um, this error [points at | x – a |] is less than the error bound [points at delta]. 

Well if I call this [points at delta] the error bound, I would have called the 
epsilon and delta the bound, like the highest it could be that we want our error 
to be less than that, that bound. 

 
Adriana made a deliberate move in questioning the meaning of epsilon and delta at the beginning 
of the segment (turn 416). Her confusion was whether error could equal the error bound, not so 
much if there was a difference between the two. From 426–432, Adriana accurately described the 
meaning of error bounds and their role in the story. The error bound for the diameter of the 
pancake was given, and she was asked to guess an error bound for the batter (turn 426). Then she 
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was to make sure that the errors were within those bounds (turn 428). However, this did not 
address the issue that she brought up in the beginning: what was epsilon and what was delta? 

She tried to use an example from the story to illustrate the conflict (turn 420). In the story the 
initial error bound for the pancake diameter was half an inch. Here, it seems that she tried to 
apply it as an error bound for the delta. Mistakenly using the ½ as delta did not affect the real 
issue: making the error and the delta both one-half conflicted with the less than symbol. When I 
encouraged her to use the distinction between error and error bound to sort out the inequality 
issue, she returned to her conception of error bound as the maximum for the error. This still did 
not address the issue. In the next excerpt she still focused on whether f (x) – L could equal 4.5 and 
5.5 (referring to the inequality 4.5< f (x) – L <5.5, which she would later revise to be -0.5< f (x) – L 

<0.5).  

Segment 2: Pancake Sizes’ Not Equaling 4.5 and 5.5 Inches Implies Errors Cannot Equal Error 
Bounds 

Adriana was in the process of figuring out if | x – a | and | f (x) – L | could equal δ and ε, 
respectively. She went back to the story to confirm that the story asked for pancake sizes that 
were between 4.5 and 5.5 inches, but not equal to either of those numbers. From there she 
inferred that the error could not equal the error bound.   
 
434 Adriana [Reading the pancake story] Oh ok, so, so it does say like we want the pancake 

to be between 4.5 and 5.5. So within an inch of bound. So it doesn't say like it 
can be 4.5 and 5.5 so  

435 Int. Alright. 
436 Adriana So I guess that's what this [| x – a |< δ] would be like, it [| x – a |], it has to be less 

than that [δ], like if the delta or no like if the epsilon [points at ε in | f (x) – L |< ε] 
or whatever, we wanted it to be within a half or whatever. 

437 Int. Um-hm. 
438 Adriana Like it would be, let me write this down [writes 4.5< f (x) – L <5.5]. So it would 

want it [to] be like greater than 4.5 or less than 5.5 but it doesn't say like it can 
be 4.5.  

 
Adriana productively mapped different quantities from the definition to the pancake story. She 
returned to the fact that the pancake diameter had to be between 4.5 inches and 5.5 inches and 
not equal to the boundary values. She correctly mapped the idea of “between” to the use of the 
inequality. But she confused the goal of wanting the error to be within ½ inch with the goal of 
wanting the epsilon to be within ½ inch. She concluded that 4.5< f (x) – L <5.5. 

It seems that Adriana deduced that the error could not equal the error bound by noting that 
the story asked for a pancake that were between 4.5 and 5.5 inches, but not equal to those 
numbers (turn 434). She inferred this from the story because it did not say that the pancakes 
could equal those sizes. Whereas in the previous segment Adriana was saying that the errors 
needed to be within the error bound, here she focused on the pancakes being within an inch of 
bound (turn 434). It seems that in that turn Adriana used the term bounds but she was not 
referring to an error bound. So how did Adriana make the jump from the bounds for pancakes to 
the error bound, epsilon? Understanding this shift is crucial in interpreting the change that 
occurred in Adriana’s conceptualization of the temporal order at the end of this chapter.  
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Conceptualizing error bound. Adriana’s inscription can help illuminate a subtlety in the way 
that she thought about error bounds. She inaccurately wrote 4.5< f (x) – L <5.5. The story 
illustrated that when the error bound was ½ inch, the pancake had to have a diameter between 4.5 
and 5.5 inches. Thus, the inequality should have been either 4.5< f (x)<5.5 or -0.5< f (x) – L <0.5. 
Adriana eventually corrected the inequality to -0.5< f (x) – L <0.5, but not until much later in the 
interview (turn 676, about 40 minutes from the segment above). I offer two interpretations for 
Adriana’s mistake and the potential implications, which may have informed the way she deduced 
the error bound from the inequality.  

I argue that Adriana meant to write 4.5<f (x)<5.5 but made a mistake in including the L in 
the inequality. Adriana was definitely focusing on the quantities 4.5 and 5.5 in the inequality 
(turns 434 and 436). So the outer parts of the inequality clearly were not a mistake. She inferred 
the ½ error bound from looking at the two bounds for the size of the pancakes (turns 436-438).  

Knowing that the ideal pancake size was 5 inches, then the lower and upper bound of the 
pancake size reflected the ½ inch error bound. Since the size could not equal the lower or the 
upper bound, then the error had to be less than the ½ inch error bound. In later segments we see 
that Adriana would refer to this inequality whenever she spoke about error bounds. It is worth 
noting that the inequality 4.5< f (x) – L <5.5 explicitly focuses on the range of possible output 
values, but not the error bound, 0.5. As noted, this carries implication for the temporal order later 
in Section III.  

The alternate interpretation for Adriana’s mistake is that she meant to write -0.5< f (x) – L 

<0.5 and so 4.5 and 5.5 were the error bounds for the pancake size. One might argue that this 
would be consistent with Adriana’s definition of error bound (“the error bound is kinda like the 
max /…/, the minimum and the maximum that you can get,” turn 333). The 4.5 and 5.5 were the 
minimum and the maximum values and thus they were the error bounds. However, this would 
imply that Adriana confused error bounds with the bounds for the size of the pancakes.  

Consider some of the ways that Adriana had used the word bounds. In turn 428, she said, 
“[The story] just wanted our errors to be within those bounds [for pancake and batter].” Contrast 
this with the way it was written in the story that the boss wanted the pancakes to be within ½ 
from 5. Errors cannot really be within an error bound. It could be less than the error bound.  

She was using “within” when she meant between. When Adriana talked about error bounds, 
Adriana did have the idea of minimum and maximum and a range of values. However, the 4.5 
and 5.5 were not mistakes because she would appropriately infer the bound from the minimum 
and the maximum values. For example, in turn 434 Adriana mentioned the pancakes needed to 
be “within an inch of bound.” If she was confused, she could have said that the pancakes needed 
to be “within a half an inch bound,” like she did in turn 436, but she did not. If she were in fact 
was talking about the error bound for the pancake in turn 434, the fact that it said “within one” 
instead of “within a half” would also have conflicted with her. Thus, it is more likely that the 
mistake was in including the L in the inequality.   

In sum, by focusing on the pancake story Adriana determined that the error could not equal 
the error bound. The story said that the pancakes needed to be between 4.5 and 5.5 inches. The 
inequality 4.5< f (x) – L <5.5 focused on the range of acceptable pancake sizes (output values), 
but I argue that she appropriately deduced the ½ error bound from the maximum and the 
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minimum value. From there she inferred that since the pancake sizes could not equal their 
maximum or minimum values, then neither could the errors.45   

Segment 3: The Emergence of Functional Dependence 
In between the previous segment and this segment, I asked Adriana what the quantities          

f (x) – L and x – a were in the story. She correctly mapped them to the error in the pancake size 
and the batter, respectively. The discussion presented thus far occurred during a discussion about 
the meaning of the “if-then” statement in the story. In this segment, she summarized the meaning 
of the “if-then” statement. In the process, she also summarized her previous confusion with error 
bounds.  
 
452 A Um so I think this is the, like these delta and the epsilon they're the error bounds of 

what I want, relating back to the story, like f of x [f (x)] minus L, since that's the error 
of the pancake size. So say we want this [points at f (x) – L] to be as close to 5 as 
possible or yeah, that was the point, but we want it to be within 1/2 bound [points at 
4.5< f (x) – L <5.5]. So this [points at 4.5] is the smallest it could be, this [points at 
5.5] is the biggest it could be, but we want it to be within that range [points at the 
inequality]. So that's why I was looking for to see if it said that it can be equal to 4.5 

453 I Um-hm. 
454 A But it's not. So that's why it doesn't have the equal sign. Um, so yeah. So we want it 

to be within these two quantities [refers to 4.5 and 5.5] or whatever 
455 I Um-hm. 
456 A And then we would have to, well cus it says like this one [points at 0 <| x – a |< δ] first, 

right? So this one [| x – a |< δ] would be like the batter /…/ if this [| x – a |] was the, the 
error of batter [writes error of batter below | x – a | in the definition], then /…/ this 
[points at 4.5< f (x) – L <5.5], this is a result of how much batter [points to 0 <| x – a |< 
δ] we're using. So size is a result of the batter that we're using.  

457 I Ok. 
458 A But it goes back to this, [points to “for every number ε>0, there exists a number 

δ>0”] too. Cus if there's an epsilon [circles f (x) – L in 4.5< f (x) – L <5.5] which 
means like there's gonna be an error bound for here [points back and forth at 4.5 and 
5.5] then there has to be an error bound for this one [points back and forth at the 0 
and δ in 0 <| x – a |< δ], but this one [points at 0 <| x – a |< δ] is the one that manipulates 
that one [points 4.5< f (x) – L <5.5]. 

                                                
45 Adriana’s inferring error bounds from the range of acceptable values might have been seen as 
a limitation of her understanding. One might argue that the story contributed in enforcing a 
misconception about an understanding of error bounds as lower and upper bound. While there 
were other ways to accurately infer error bounds, there was nothing wrong with the way she 
inferred error bounds from the range. Not only was it a productive use of an error bound (to 
determine acceptable values), she was able to correctly infer the appropriate error bound from 
the range of values. 
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Confirming the interpretation of the previous segment, Adriana inferred the error bound of ½ 
inch from the inequality 4.5< f (x) – L <5.5. She differentiated the error bound from the bounds 
for the size of the pancakes, and invoked a notion of range of values (turn 452). She specified 
that having an epsilon meant that there would be an error bound at the maximum and minimum 
size of the pancakes. In turn 458, she pointed back and forth between the 4.5 and 5.5 to find the 
error bound. She did not treat the delta inequality any differently because the inequality with the 
0 being a “lower bound” might have fit with her understanding of error bound. All of this further 
support the interpretation that she inferred the error bound appropriately from the inequality, 
despite having written an erroneous inequality. 

Adriana’s argument in turns 456 and 458 focused her on the functional dependence 
relationship. “Batter makes pancakes” or functional dependence was a common idea taken up by 
students from the story (a part of a common Reasoning Pattern in Chapter 7). Unlike those other 
students, Adriana did not claim that epsilon depended on delta in this segment, but she 
interpreted the “for-every” statement non-normatively. 

She argued that the statement meant that if there was an epsilon, if epsilon existed, then there 
had to be a delta that caused it (turn 458). This is different from one can find a delta for a given 
epsilon. This was actually quite common interpretation among students before and after 
engaging with the story (see Chapter 5 and 7). Here, we see evidence of Adriana using functional 
dependence to interpret the meaning of the “for every” statement. While the goal of being 
arbitrarily close to the limit was cued in this segment (turn 452), unlike what happened at the end 
of the interview (Section I of this chapter), here, that goal had not yet emphasize the appropriate 
relationship between epsilon and delta. It did not seem that Adriana was focusing on that 
relationship in this segment.  

I argue that the focus of the inequality 4.5< f (x) – L <5.5 on the range of acceptable output 
values might have also contributed to the use of the functional dependence argument. While 
Adriana could appropriately infer the error bound using the inequality 4.5< f (x) – L <5.5, its focus 
on the range of acceptable sizes of the pancakes might have unintentionally also prioritized the 
functional dependence relationship. The functional dependence relationship was appropriate to 
describe the error relationship and the “if-then” statement, but not to describe the “for every” 
statement, which prescribes the appropriate temporal order. 

Summary  
Adriana had a very particular (intuitive) way of conceptualizing error bounds. She inferred 

the error bound from the range of acceptable values. She knew the relationship between the error 
and error bound. The issue in this episode was whether an error could equal an error bound. 
Adriana reread the story to reestablish the goal of creating pancakes with sizes within a specified 
range, or between two particular sizes. She then inferred that the error also could not equal the 
error bound. While she could appropriately infer the error bound from the inequality, its focus on 
the range of output values might have contributed to her prioritizing the functional dependence 
idea at the end of the episode. While it did not materialize to her claiming that epsilon depended 
on delta, it did influence the way she inferred the “for-every” statement.  

III. Change in The Temporal Order 
I document Adriana’s stable conception of the temporal order in the first section. In the 

second section I explored the potential origin of the distinction between error and error bound. 
The two sections provide contexts for the discussion where I show how Adriana navigated 
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through conflicts between productive resources from the story and her prior knowledge. The 
distinction between an error and an error bound played a role in the development of her claim 
about the temporal order. She moved from initially using the functional dependence argument to 
prioritizing productive resources from the story to argue for the correct temporal order.  

There are four segments to this section. The first segment shows Adriana’s attempt to 
incorporate some of the productive resources from the story, which did not succeed; she ended 
up focusing on the functional dependence idea. The second segment shows that the distinction 
between error and error bound ended up confusing Adriana. The third segment shows Adriana’s 
first attempt at resolving the conflict. In the last segment Adriana settled the conflict by explicitly 
reorganizing her prior knowledge. To help the reader read the transcript, I highlighted productive 
statements in blue, erroneous statements in red and the temporal order claim in black. 

Segment 1: Incorporation of Productive Resources From the Story  
Aspects of Adriana’s prior knowledge were reintroduced into the discussion. At the same 

time productive resources from the story began to emerge. Adriana prioritized her prior argument 
that epsilon depended on delta because f (x) depended on x. The segment started with the 
interviewer asking Adriana about the dependence between epsilon and delta. She started with the 
claim that epsilon depended on delta. She prioritized the idea of functional dependence between 
x and f (x) over other ideas from the story in justifying her claim. In addition to the emergence of 
productive ideas from the story, there was a back-and-forth in the claim about the temporal order 
for which Adriana was arguing.    

 
547 I Ok, with epsilon delta what depends on what if anything?  
548 A Um, the [pause, stares at the wall] del-, the epsilon depends on the delta. 
549 I  Did you change your mind? [Adriana is still staring at the wall] Actually, you- you 

said the same thing. 
550 A [Looks at the interviewer] Yeah. So yeah, I think the delta depends on the epsilon 

cus that’s= 
551 I =Did anything change? 
552 A Um, I think /.../ in this case.. I think it can- /.../ they can kinda depend on= 
553 I =Each other? 
554 A Both, yeah in a sense because, but more whatever you're getting, like f (x) is 

always gonna depend on what x you're inputting it. But then, if you want to get 
something that's within delta [marks a small interval on the x axis with two 
fingers] you need to see if /.../ for example here [points to the pancake story] our 
epsilon here was already set, then that [points back and forth between 4.5 and 5.5 
in the inequality 4.5< f (x) – L <5.5] kind of depended on what we were putting in for 
x [points at the same interval around x on the graph] but.. but mostly whatever 
you’re putting in to your x is gonna determine what you get for f (x) [pause]. So 
I’m still saying the same thing like delta depends on epsilon but= 

555 I =Delta depends on epsilon? Or epsilon depends.. 
556 A No, yeah, epsilon depends on delta  
557 I Um-hm. 
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558 A But, /…/ if epsilon's already set then you'll manipulate your /…/ delta so it's 
within an error bound and /…/ then continue to manipu- wait [long pause] wait, so 
you're… hm. 

 
It seems clear that in this segment Adriana prioritized the functional dependence argument from 
before the story (“but mostly whatever you’re putting in for x is gonna determine what you get 
for f (x),” end of turn 554). Adriana’s statement, “delta so it’s within an error bound” (turn 558) 
suggests that Adriana might have returned to thinking of delta as an error in x. In this way, 
Adriana’s argument was still like that of many students at the beginning of the interview. This 
typical argument suggests the use of the following knowledge resources: functional dependence 
(between x and f (x)), function slots associating epsilon with f (x) and delta with x. Notice also, 
that she pointed to the inequality 4.5< f (x) – L <5.5 to talk about epsilon. 

She also recognized the possibility that delta could also depend on epsilon and so the two 
could have been dependent on each other (turn 552). Turns 554 and 558 could be interpreted as 
Adriana’s justification for delta depending on epsilon. She said, “[H]ere [points to the pancake 
story] our epsilon here was already set, then that [points back and forth between the 4.5 and 5.5 
in the inequality 4.5< f (x) – L <5.5] kind of depended on what we were putting in for x [points at 
the same interval around x on the graph]” (turn 554). In turn 558, she said, “if epsilon’s already 
set then you’ll manipulate your /…/ delta so it's within an error bound.” At first glance these two 
turns seem to be arguing for different things.  

In turn 558 Adriana seems to be using the notion of quality control. The givenness of epsilon 
was interpreted as a constraint, and the error was controlled to be within an error bound to satisfy 
the constraint. The “it” in the statement was referring to delta, and Adriana mistakenly treated 
delta as an error (“you'll manipulate your /…/ delta so [delta]'s within an error bound”). 
According to the story delta was supposed to be the error bound. In exactly two turns Adriana 
would confirm this interpretation. She would explain that she thought of delta as errors (turns 
560–564). Moreover, Adriana said, “so it’s within an error bound,” not the error bound. Later 
segments show that when she referred to epsilon while talking about delta, she would refer to it 
as “the given error bound” (turns 568–576). So Adriana was saying that if a constraint were 
given, then she would manipulate her error in the input to be within an error bound.  

The justification in turn 554 is more challenging to interpret. While it is clear that she took up 
the givenness of epsilon from the story (“here, the epsilon was already set”), how this argument 
supported the claim that delta depended on epsilon was less clear. Because it seems that the 
statement “that [the inequality] depended on what we were putting in for x” would suggest that 
epsilon depended on delta, the opposite of what she was arguing. Adriana also started this by 
saying that “if you want to get something that's within delta.”  

I took “if you want something within delta” as evidence for Adriana’s use of quality control. 
Comparing her use of the phrase “within delta” in other parts of the transcript suggests that in 
this segment, Adriana was arguing that to satisfy the given constraint, epsilon, one would want to 
x to be close to a, or “within delta” (turns 538, 640, 656). In turn 538, she used the same phrase 
in describing the goal with the formal definition after the story. She said,  

 
Yeah so we're only concerned with x's that are within the delta so that we're only getting 
answers that are within the epsilon. /…/ [S]o we want the errors to be like really close to a so 
that we're only looking at numbers close to the a. So that we're getting a really small error to 
get like the perfect pancake (turn 538).  
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She also described a similar idea of constraining the x to be within delta in later parts of the 
interview (turns 640, and 644–656). So it is not likely that Adriana’s “want[ing] to get something 
that’s within delta” was a reflection of confusion. She was not confusing the goal of making sure 
that the function was within epsilon from the story, and misapplied it to delta. She instead was 
arguing that in order to satisfy the given constraint, one would want x to be close to a. However, 
when she referred to the inequality and said that it kind of depended on the x she was inputting 
(turn 554), we see evidence for the way she prioritized the functional dependence at the end of 
the episode in the previous section (“This [points to 4.5< f (x) – L <5.5], this is a result of how 
much batter [points to 0 <| x – a |< δ] we're using. So size is a result of the batter that we're 
using…,” turn 456). 

The statement “that [the inequality] depended on what we were putting in for x, but... but 
mostly whatever you’re putting in to your x is gonna determine what you get for f (x)” in turn 
554 provides an opening for conflict. I argue that the pause on 554 and the long pause in 558 
suggest that Adriana might have realized a conflict in her explanation. The “but” at the end of 
turn 554 suggests that Adriana was trying to provide an explanation that would counter her 
previous statement. That is, whereas earlier in turn 554 she was arguing for delta depending on 
epsilon, at the end she was supposed to argue for epsilon depending on delta. But her 
justification ended up being the same: the output depended on the input.  

Adriana did not use the phrase “error bound” until turn 558. This is significant because had 
she continued with the conception that delta and epsilon were errors, they would follow the two 
relationships she described. The error in the output could depend on the error in the input. At the 
same time, given an acceptable error in the output (normatively set by a given error bound), one 
would want the error in the input to be small to satisfy the given constraint. So the error in the 
input could also depend on the error in the output. However, the use of the phrase “error bound” 
might have reminded her of a difference between an error and an error bound. She might have 
recalled the conversation that I analyzed in Section II. In fact Adriana start the next segment 
differentiating error from error bound.    

In sum, Adriana argued that epsilon depended on delta because f (x) depended on x and delta 
and epsilon were (errors) associated with x and f (x), respectively. At the same time, she also 
recognized the possibility that they might also depend on each other. She used quality control to 
argue the necessity to constrain x using delta to satisfy the given constraint, epsilon. However, a 
conflict emerged when she used the phrase error bound.   

Segment 2: Distinguishing Error From Error Bound Instigates a Conflict 
In this segment, Adriana remembered the delta and epsilon were error bounds, not errors, a 

distinction she made earlier (Section II). This led to a revision of the use of the productive 
resources from the previous segment. At the same time it also led to a conflict that she could not 
resolve. I included turn 558 from the previous segment to provide continuity.     

 
558 A But, /…/ if epsilon's already set then you'll manipulate your /…/ delta so it's 

within an error bound and /…/ then continue to manipu-. Wait [long pause] wait, 
so you're… Hm.  

559 I What's happening?  
560–
564 

A Oh cus /…/ I thought that the epsilon and the delta were the errors but they're the 
error bounds. And if the epsilon is already set then you would have to change 
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your delta. Yeah, /…/ I guess if your epsilon is already set then your delta would 
depend on epsilon [silence] 

565 I What just happened? 
566 A Uh, [laughs] well cus /…/ just looking at this [points back and forth between the 

pancake story and the inequality 4.5<f(x)-L<5.5] if I said epsilon was an error 
bound and if they already give me an error bound, I want… my result to be 
within this error bound here [circles the inequality 4.5<f(x)-L<5.5] then.. I would 
try to manipulate my errors here [points to a small range on the x axis on the 
graph] to be within a smaller error bound [points at delta in the delta inequality in 
the definition], which would be, delta would be [quietly] the biggest it can be 
[long pause] Huh.. [looks at the interviewer and smiles] I'm confused. 

 
In this segment, Adriana seems to be prioritizing the quality control argument to support the 
claim that delta depends on epsilon. She was using many of the same resources from the 
previous segment: givenness of epsilon (“they already give me an error bound,” turn 566), 
quality control (“I want my result to be within this error bound then I would try to manipulate 
my errors here to be within a smaller error bound,” turn 566). But the first thing she did in this 
segment was to remember that epsilon and delta were not errors. 

Adriana reiterated the givenness of epsilon. In turns 560–564, Adriana inferred the temporal 
order directly from the givenness of epsilon. She argued, “If the epsilon is already set then you 
would have to change your delta. Yeah, /…/ I guess if your epsilon is already set then your delta 
would depend on epsilon [silence].” This was a common justification used by many of the 
students I interviewed, but Adriana followed it with a pause. The phrases “I guess” and “would” 
at the end of turns 560–564 (“delta would depend on epsilon”) suggests that the temporal order 
was an implication from her newfound realization that epsilon and delta were error bounds. 
Since this argument was newly constructed, she might have needed time to align it with her 
previous argument.  

In comparison to what Adriana said in turn 558 in the previous segment, her explanation of 
quality control in turn 566 was more complete and explicit. Not only did she attend to the 
difference between error and error bounds, doing so also allowed her to be more explicit about 
roles of delta and epsilon in the process. Epsilon as an error bound was used as a constraint for 
the outputs (“I want… my result to be within this error bound here [circles the inequality 4.5<         

f (x) – L <5.5]”). Again, she focused on the range of acceptable outputs to infer the error bound. 
Delta as an error bound was used as a way to manipulate the errors in the input to achieve the 
desired result (“I would try to manipulate my [input] errors here to be within a smaller error 
bound /…/ delta would be the biggest it can be”). The givenness of epsilon helped to determine 
the order.  

Adriana could also have been attempting to incorporate the arbitrariness of epsilon in this 
segment. The phrase, “I would try to manipulate my errors here to be within a smaller error 
bound” suggests this kind of attempt. Analysis of other parts of the transcript reveals that the use 
of the phrase “smaller error bound” might have been Adriana’s attempt to vary epsilon. Adriana 
used the phrase “a smaller error bound” on two other turns during the whole interview (turns 482 
and 684). In both instances, Adriana was explaining the need for the phrase “for every number 
epsilon” in the definition. When discussing the story, she explained, “Cus /…/ maybe the boss 
will ask you later to make it a smaller error bound. But in terms of the task right there it's one 
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half an inch” (turn 482). She was explaining the part of the story where the boss would later 
change the constraint on the pancake diameter to be more precise.  

Much later, I asked her the same question. She said, “Like I said, the only thing I can think of 
is, if we want a smaller error bound here [epsilon inequality] then we would want to manipulate 
the smaller error bound for here [delta inequality]” (turn 684). Here, she explained the process 
with more details. Adriana explained that if she wanted a smaller error bound for the output (a 
smaller epsilon), then she would use a smaller error bound for the input as well (a smaller delta). 
So when she was saying “smaller” she was comparing the epsilon and the delta to the ones she 
used in the previous iteration. This could also explain what she meant by “continue to 
manipu[late]” in turn 558. She might have started with the idea of refining errors in turn 558, but 
by the end of turn 566 she was moving towards the idea of multiple epsilons.  

In sum, Adriana distinguished errors from error bounds, and used the givenness of epsilon 
and a very detailed account of quality control to argue that delta depended on epsilon. She even 
incorporated the role of varying epsilon in her explanation of quality control. Many of these 
ideas were perhaps new to her, but instead of simply acknowledging its novelty, she explicitly 
said that she was confused. The question is, what is the source of her confusion?  

I posit that the confusion stems from Adriana’s focus on the inequality 4.5< f (x) – L <5.5 to 
determine error bound. On the one hand, that inequality had embedded in it the error bound of ½. 
On the other hand, what were salient in the inequality were the lower and upper bound for the 
size of the pancakes. So while the error bound could be inferred, the inequality showed a range 
of output values. Adriana acknowledged the difference between error and error bound, but the 
representation focused on a range of output values. This was problematic when she was also 
juggling functional dependence as a justification for the temporal order. She created a distinction 
between error and error bound, but that was not enough to move away from the functional 
dependence idea. The error bound was still very much tied to a range of f (x) values, which she 
knew to be dependent on x values. She then had to reconcile the fact that the range of acceptable 
output values were specified, but at the same time they depended on x values she was inputting.  

Segment 3: Givenness of Epsilon as the Source of Confusion  
In this segment, Adriana made her first attempt at explaining the nature of her confusion. The 

givenness of epsilon confused her. In the process of explaining her confusion she cued many of 
the productive resources from the story. At the end, instead of corroborating her confusion, she 
ended up supporting the claim that delta depended on epsilon. But a fleeting description of delta 
might indicate another source of confusion.  

 
567 I Why are you confused? 
568–
576 

A Because if epsilon did depend on delta then, then I could change it here [points at the 
inequality 4.5< f (x) – L <5.5] or I mean, I'm confused because they gave me an 
epsilon [points at the inequality 4.5< f (x) – L <5.5]. And it's already set. And they 
didn't give me a delta so in that sense it didn't depend on delta… But then the 
delta, I would want it to be really close to.. or I would want my error bound to be 
really small to accommodate /…/ the error bound that was already given or the 
epsilon that was already given to me. So [quietly] epsilon could depend on delta? I 
mean, delta could depend on epsilon, or does depend on epsilon...  
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Adriana cued many of the same knowledge resources from previous segment: givenness of 
epsilon (“they gave me an epsilon”), and quality control (“want my error bound to be really 
small to accommodate /…/ the error bound that was already given”). But Adriana also applied 
the givenness idea to delta. That is, she emphasized the non-givenness of delta to support her 
claim that delta depended on epsilon. She attempted to explain her confusion twice in this 
segment, but ended up reiterating resources from the story and became more convinced that delta 
could depend on epsilon. There was also a shift in the description of delta. In previous segments 
Adriana attempted to describe the relationship of delta with other quantities (“so [delta] is within 
an error bound,” 558, “delta is the biggest [the error bound] can be,” 566). Here she started 
describing delta in a similar way (“delta to be really close to...”). She ultimately simplified the 
description to say that she wanted delta to be really small, thereby focusing more on the delta’s 
role as a bound.    

This episode confirms the confusion posited in the previous segment. Adriana was confused 
by the fact that epsilon was given. She said, “I’m confused because they gave me an epsilon and 
it’s already set.” When she said this, she was pointing at the inequality that focused on a range of 
f (x) values. The fact that epsilon was already given conflicted with the idea that f (x) values 
depended on the x values. The range of acceptable f (x) values was given, yet it was also 
depended on the x values used.  

The brevity of the first sentence of turn 568 makes it difficult to interpret. When she said, 
“epsilon depended on delta” in that turn, it could mean that the goal of the process was for the 
output values to be within epsilon. “If epsilon depended on delta then I could change it here [in 
the inequality]” could mean that given that the story specified a range of acceptable output 
values, then for the values to be in that range, Adriana could simply select an output value to was 
within that range of acceptable values. There is little supporting evidence for this, but I offer it as 
one interpretation. In any case, it is clear that the broader conflict was between her use of 
functional dependence and givenness of epsilon.   

The sentence “I would want [my delta] to be close to…” also suggests that another part of the 
confusion was sorting out the different conceptions of delta. Adriana’s wanting the delta to be 
close to something is analogous to when she wanted delta to be within an error bound (turn 558). 
Both instances treated delta as an error. Delta returning to being an error might have also 
increased the cueing priority of the functional dependence argument. But by saying that she 
wanted her error bound to be really small in turns 568–576, she removed one layer of complexity 
of delta (what quantity it determined). Doing so might have allowed her to focus on the temporal 
order suggested by the quality control. She wanted her error bound for the input to be really 
small to accommodate the given epsilon. 

I argue that in this segment Adriana also used the proportional variation resource.46 She 
wanted to make the error bound for the input small in order to accommodate the given error 
bound for the output. Notice that she was no longer talking about a smaller error bound as she 
did in the previous segment. Other instances in the transcript where she used the word “small” 
with delta were mostly in attempts to make delta small so that x was close to a. This also 
suggests another knowledge resource: domain constraint for a limit. That is, with limits, Adriana 
would focus on x values that were close to a.  

                                                
46 Adam used the same resource in Chapter 6. This resource means that a small change in the 
input leads to a small change in the output.  
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In summary, in this segment Adriana pointed to the givenness of epsilon as a source of 
conflict between the story and her prior knowledge. The confusion might have stemmed from the 
inequality for the error bound, epsilon. She was still adjusting to the idea that delta was no longer 
an error bound, but she ended up cueing many of the productive resources from the story to 
support the claim that delta depended on epsilon.  

Segment 4: Previous Resources Aligned, and Productive Resources Prioritized 
In this segment we see that, after prioritizing the resources from the story, Adriana concluded 

that delta depended on epsilon. She did so after explaining how she repurposed the functional 
dependence argument from the first segment to describe the relationship between errors. 
Adriana’s description of error bounds still stemmed from a range of acceptable values. She 
explicitly used language from story to explain why her reasoning changed in this segment.  

 
577 I So, do they depend on each other, is it just one way now?  
578–
580 

A Um, see cus I was looking at it like /…/ the f of x [f (x)] depends on the x and that's 
how I was like saying that epsilon depends on delta because epsilon is related to the 
f of x [f (x)]/…/. But that's just saying the error of the L and the f of x [f (x)] 
depends on the a and x but that's not to say that epsilon depends on delta. 

581 I Ok, so? 
582 A So, I think that delta depends on epsilon now [laughs]. Just cus if it's given like this 

[reference unclear] and you're trying to aim at getting /…/ within a certain error 
bound, then you're gonna try to manipulate your entries /…/ to be within a 
certain error bound [gestures a small horizontal interval with her palms] 

583 I Ok. Alright, so and so you changed your mind it seems? Um, so how did that 
happen? Why did you change your mind? 

584–
588 

A Because I was given an epsilon [points at the inequality 4.5< f (x) – L <5.5] and 
that's kinda like the main goal. The main goal is to get the pancake, /…/ and they 
gave me a constraint /…/ and /…/ they didn't give me an error bound for the 
batter or for like the a or x, they didn't give me an error bound. But I know I want 
to make it small so that it's within the error bound, the epsilon. So then I would 
kinda base my delta on what was epsilon. 

 
If one considers this segment in isolation, it seems to suggest a nice success story. Adriana 
realized and corrected her mistake in using functional dependence to determine the temporal 
order for epsilon and delta. She realized that she had loosely associated epsilon with the function, 
f (x), and recognized that that was false. She then used functional dependence to describe the 
dependence between the errors. Once that happened, it seems that the productive resources from 
the story became more salient. With those resources prioritized, Adriana concluded that epsilon 
depended on delta. However, considering this segment in relation to the prior segments and 
episodes reveal a more nuanced story of learning.  

In the episodes and segments leading up to this one, Adriana never once stated that epsilon is 
related to f (x).47 There was more to Adriana’s statement about epsilon’s being related to the 
                                                
47 This was confirmed by a search of the full transcript for the phrase “epsilon is.” 
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function. Really early in the interview, Adriana did say that epsilon was the difference between 
the function and the limit. But closer to this segment, Adriana had been inferring the error bound, 
epsilon from the inequality 4.5< f (x) – L <5.5. In fact, this inequality was what Adriana referred 
to whenever she spoke about error bound. Phrases like “You aim at getting within a certain error 
bound” and “manipulating your entries to within a certain error bound” show that epsilon—and 
possibly delta—was still conceptualized as stemming from a range of values (turn 582). So in 
this way, her way of conceptualization of error bound was still the same as before. Epsilon was 
an error bound that could be inferred from a range of f (x) values.    

More than just correcting a mistake, Adriana repurposed the functional dependence between 
epsilon and delta to describe the relationship between the errors (turns 578–580). This was a very 
important and productive move. She attended to a context in which the functional dependence 
idea could be used productively—the relationship between errors—and it helped her align her 
prior knowledge with productive resources from the story. 

The move also further differentiated the conception of an error from the conception of an 
error bound. By using functional dependence to describe a relationship between the errors, and 
not the error bounds, she opened up the possibility of the relationship between the error bounds 
to be described using other kinds of relationships (e.g., quality control). Thus she distinguished 
the nature of the relationship between the errors and that between the error bounds in addition to 
their not being equal.  

The move of attributing functional dependence as the relationship between the errors also 
addressed the conflict with the fact that epsilon was given (givenness of epsilon from earlier). To 
Adriana, the inequality, 4.5< f (x) – L <5.5 represented a range of f (x) values as well as the 
existence of an error bound (the 4.5 and 5.5). The move examined the ties between the errors and 
error bounds that existed through the inequality. It specified the functional dependence to only 
describe the relationship of f (x) – L —the inside of the inequality—with x – a (turn 580). No 
longer tied to f (x) values, the error bounds (the 4.5 and 5.5) were freed to take up any other 
characteristic and relationship. Now the givenness of epsilon was no longer a conflict, and she 
could also take up the quality control relationship that was consistent with the givenness of 
epsilon (turns 584–588). The flow of Adriana’s argument and the lack of pauses suggest that this 
particular shift might have addressed the conflict that she had before. 

In addition to focusing on the givenness of epsilon and the notion of quality control, Adriana 
also cued other resources that were consistent with those resources (turns 584–588). Adriana 
cued the givenness of epsilon (“they gave me a constraint”) alongside the non-givenness of delta 
(“they didn't give me an error bound for the batter”). Adriana was unique in the way that she 
inferred the idea that delta was not given in the story by comparing it to epsilon. This was a 
productive inference as it supported her interpretation of the appropriate temporal order.  

Quality control was cued with proportional variation (“I want to make the [delta] small so 
that [the output] is within epsilon”). This contrasts with other students who did not include the 
“small-ness” of delta in talking about the goal of satisfying an output constraint by controlling 
the input. As Adriana started to do in Segment 3, she reestablished the role of delta as a bound by 
focusing on its “small-ness.” The proportional variation was also used in Segment 3, where she 
focused on the making sure that delta was even smaller—perhaps compared to epsilon—to meet 
the requirement of a small epsilon.  

She also noticeably switched her language when explaining the reason for the change in her 
thinking. When I first asked the temporal order question, she did not mention pancakes or batter 
in her explanation. She did use the terms “error” and “error bound,” which were terms 
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introduced in the story that she did not use before.48 However, in explaining the change in her 
thinking, she used parts of the story more explicitly. She referred to satisfying epsilon as the goal 
of making pancakes within a specified constraint. Delta was the error bound for the batter, and 
that was not a quantity that was given. This suggests that ideas from the story solidified her 
thinking in productive ways.  

In sum, Adriana corroborated the difference between an error and an error bound that she had 
previously established, before she prioritized the productive resources from the story. Focusing 
on the functional dependence relationship to describe the relationship between the errors but not 
the error bounds was a move to align productive resources with her prior knowledge. She then 
prioritized the idea of givenness of epsilon and quality control to conclude that delta depended 
on epsilon. She still conceptualized epsilon and delta as stemming from a range of acceptable 
values. 

Summary of Analysis 
Adriana changed her temporal order claim from epsilon depended on delta to delta depended 

on epsilon. She initially focused on the functional dependence idea, likely because she treated 
epsilon and delta as errors instead of error bounds. Productive ideas from the story, in particular 
the givenness of epsilon, confused Adriana. The confusion was caused by her way of 
determining error bounds from the inequality 4.5< f (x) – L <5.5, which showed a range of f (x) 
values. The focus of this inequality on the range of output values might have prioritized the 
functional dependence relationship. Adriana specified functional dependence to describe the 
relationship between the errors, the f (x) – L, which freed up the relationship between the error 
bounds for quality control. With the error bounds no longer being attached to functional 
dependence, she could then prioritize the givenness of epsilon from the story. By cueing other 
consistent resources, like the non-givenness of delta and proportional variation, she concluded 
that delta depended on epsilon.   

Discussion 
The findings from this chapter elaborate on the findings from Chapter 7. The pancake story 

provides productive resources for students to reason about the temporal order of delta and 
epsilon. Whereas in Chapter 7 the benefits are seen through students’ justifications, in this 
chapter we see the ways that the story influence and interact with Adriana’s thinking about the 
temporal order. Adriana took up many of the productive resources from the story, but she needed 
to do some work to align them with her existing prior knowledge. The findings from this chapter 
provide evidence to support many of the theoretical assumptions of Knowledge in Pieces. They 
also illustrate different ways that the Pancake Story assists students in making sense of the 
temporal order, and in understanding the formal definition more broadly. I elaborate on each of 
these points below.  

Illustrations of Theoretical Assumptions 
The first section of the analysis and Adriana’s repurposing the use of the functional 

dependence resource in a more productive context, nicely illustrates the importance of context 
for knowledge. In the first section of the analysis we see how Adriana’s conception of the 
temporal order was stable across contexts. In this way, Adriana’s understanding about the 

                                                
48 As we see in part II of the analysis, the distinction between the two was not immediately clear 
to Adriana.  
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temporal order was ideal because after engaging with the story, her conception was stable across 
the three contexts.49 She consistently argued that epsilon came first across the three contexts. She 
did so by focusing on the same productive ideas, some of which were resources introduced by 
the story (e.g., getting arbitrarily close to the limit, quality control, givenness of epsilon and 
distinguishing error from error bound). At the same time the particular language to describe these 
ideas and the details of her arguments were different. For example, in the context of sequential 
order, she created familiar examples to stabilize her understanding of the need to use a small 
delta (“we’re not gonna use 100 lbs.”). On the other hand, in ordering the four variables, she also 
concluded that x was the only variable she could control. This described the relationship of the 
four variables in addition to specifying the temporal order. So the ideas might have been similar 
but the particular details and implication of their use varied by context.  

Adriana’s productive use of the functional dependence resource nicely illustrates the context 
specificity of knowledge. Functional dependence was productive to describe the relationship 
between errors but not the relationship between error bounds. Not only did Adriana find a 
productive context for the knowledge resource, doing so also further established the difference 
between an error and an error bound. This ultimately helped Adriana prioritize the productive 
resources.   

The way Adriana reorganized her knowledge illustrates the process of learning as theorized 
by Knowledge in Pieces. During the discussion about the temporal order, Adriana did not learn 
the correct order by replacing her “misconceptions” with the correct conception. She initially 
supported her claim using the functional dependence argument for the temporal order. This 
supposed “misconception” was not replaced but was reprioritized. Adriana found a context in 
which the knowledge was productive (functional dependence for errors). Since she was focusing 
on the relationship between the error bounds, then that relationship became less prioritized. 
Instead the resource quality control along with givenness of epsilon became prioritized.  

Adriana’s case also illustrates how learning did not take place by simply having the right 
ideas at one’s disposal. Adriana knew about the productive resources from the story and a way to 
productively put them together (Segment 2 in the last section). However, that did not change her 
claim immediately. Learning happened for Adriana as she aligned different productive resources 
from the story (e.g., givenness of epsilon) with her existing prior knowledge (e.g., functional 
dependence). That is, the conflict between her prior knowledge and the productive resources 
needed to be addressed before she could prioritize the productive ideas that she learned from the 
story.  

Adriana’s case also shows the non-linearity of the process of learning. Her understanding an 
idea in one context did not guarantee that it would be used in another context. We see this with 
Adriana’s distinction of error and error bound. Adriana made the distinction between error and 
error bound using the story (Section II). She was able to articulate the difference and the 
relationship between them in talking about the “if-then” statement in the story, and concluded 
that epsilon could not equal the error. However, later, when discussing the dependence between 
epsilon and delta, it took her time before she remembered that epsilon and delta were error 
bounds and not errors. The distinction that she made in section II was new and might not have 
been stable across contexts yet. In Section III, Adriana elaborated the distinction by 
differentiating the nature of the relationships between the errors and the error bounds. This was 

                                                
49 Not everyone in the study achieved such stability with his/her understanding, though many did 
(see table 7.1 in Chapter 7). 
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when she was able to prioritize the resources from the story. Thus at the end, Adriana 
incorporated that knowledge (about the distinction) in a new context, which potentially solidified 
the distinction. Notice that from the last segment in section III that distinction remained with 
Adriana and was used consistently across contexts (Section I).  

The Role of the Pancake Story 
The pancake story provided a number of productive resources for Adriana to think about 

temporal order. The language of the story was designed to be more accessible to students to 
communicate ideas from the definition. Adriana took up ideas such as the givenness of epsilon, 
quality control, error and error bound, which were designed to be salient in the story. It is clear 
that making the distinction between error and error bound also played a significant role in 
Adriana’s final response to the temporal order question in the last episode. I now explore the 
details of these affordances of the Pancake Story. 

Benefits of accessible concepts through an accessible language. At the end of the final 
episode, Adriana’s language completely shifted to the language of the story. This shift in 
language was quite common among all the students I interviewed. Twelve of the 19 students 
incorporated words like “error” and “error bound,” and nine students specifically mentioned 
“pancakes” and “batter” in their justification for the temporal order. First, the take up of the 
language from the story is important because access into formal mathematics through everyday 
language was part of the design of the story. At the same time, the productive mapping that 
Adriana made between the formal definition and the story highlights another aspect of access 
into the topic of formal definition provided by the story. 

Adriana was able to use the story to stabilize and gain access into conceptualizations of 
different parts of the definition. The story made salient the givenness of epsilon, an important 
aspect of the definition, which was not immediately obvious to Adriana and many students in the 
study. The error bound for the pancake was given, but Adriana inferred the givenness of epsilon 
from that. Adriana also used the story to stabilize the distinction between f (x) – L and epsilon, an 
aspect of the definition with which many students struggled. This happened as she distinguished 
error from error bound. This also helped Adriana deepen her conceptualization of epsilon and 
delta. In certain segments, she even made productive inferences from the story that helped her 
make sense of the formal definition. She could only do this after she successfully mapped the 
different parts of the story to the definition. I return to this idea shortly.    

Distinguishing error from error bound. Adriana used the story to distinguish the meaning of 
errors and error bounds, and the resulting distinction played a significant role in the change of 
her conception of the temporal order. In Section II of the analysis, Adriana focused on the 
“between-ness” of the range of acceptable pancakes to deduce that the error could not equal to 
the error bound. In this way, the story served as a stepping-stone to creating the conceptual 
distinctions between error and error bound. In one of the segments in Section III, Adriana began 
to shift her conceptualization of delta using the story. She moved from focusing on delta’s 
relationship to other quantities (e.g., delta is close to a) to delta’s being a small bound.  

The distinction between the error and the error bound also became relevant in answering the 
temporal order question. She elaborated on the distinction by distinguishing the relationship 
between the errors from the relationship between the error bounds. This last distinction happened 
as a result of a productive resource that was made salient by the story. The givenness of epsilon 
conflicted with functional dependence and she needed to reconcile them. It was in reconciling 
the two resources that she was able to further distinguish the errors and the error bounds, and 
prioritized quality control to describe the relationship between the error bounds. She also used 



 

 

108 

other resources to support her claim.   
Productive inferences. Some of these resources came as a result of Adriana’s productive 

inferences from the story. For example, Adriana re-read the story to decide if the error could 
equal the error bound. Adriana focused on the goal of creating pancakes with sizes between 4.5 
and 5.5 inches. Since the story did not say that the pancake sizes could equal 4.5 or 5.5, she 
inferred that the errors also could not equal the error bound. This was the first distinction she 
made between the error and error bound. The story did not explicitly say that the two could not 
be equal. Another example was when she focused on the non-givenness of delta to support her 
claim about the temporal order. She inferred that the error bound for the batter (delta) was not 
given. From that she concluded that epsilon could not depend on delta. The story did not 
emphasize that delta was not given, but she inferred as much and made productive conclusion 
from it. Both of these examples show a different kind of interaction with the story. While she 
incorporated many productive resources from the story, she also made productive inferences 
using resources from the story to support her claim.    

 
The analysis in this chapter suggests that the pancake story can serve as a rich learning space 

for students. It is a space that can be used by students to make sense of the temporal order and 
the formal definition more broadly. In this chapter we explore the process for Adriana in making 
sense of the temporal order of delta and epsilon using the story. We see the change in Adriana’s 
conception of the temporal order as she aligned productive resources with her existing prior 
knowledge. The case also nicely illustrates many of the affordances of the story for making sense 
of the temporal order. Specifically, the case illustrates the way that the story honors students’ 
prior knowledge and leverages students’ intuitive knowledge that are productive in learning the 
formal definition. 
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CHAPTER 9: DISCUSSION, CONCLUSION AND IMPLICATION 
 

This chapter connects the findings from the previous analysis chapters with the broader 
literature. It also discusses connections among the findings from the different chapters to provide 
additional insight into the process of making sense of the temporal order for students. I start with 
a summary of the findings and revisit to the two research questions I posed in Chapter 1:  

1. How do students make sense of the temporal order of delta and epsilon? 
2. How does the Pancake Story influence students’ understanding of the temporal order?  

I close with some implications for research and the teaching of the formal definition of a limit.   
 

Summary of Findings 
Chapter 5 documents students’ struggle with the temporal order of delta and epsilon. The 

majority of students in the study were not able to answer one question about the temporal order 
correctly. This confirms the findings from the literature that students have difficulty in making 
sense of the temporal order. Moreover, students’ claims about the temporal order were not stable 
across contexts.  

Students used a variety of reasoning patterns to justify their claim about the order. Most of 
these patterns came from interpretations of the statement of the definition and students’ (partial) 
recall of the epsilon-delta proof procedure. Two reasoning patterns were most common among 
the students. First, many students concluded that epsilon depended on delta as a result of using 
the knowledge resource functional dependence because delta was linked with x and epsilon was 
linked with f (x). Second, many students argued that delta came first because the if-then 
statement of the definition said that delta had to be satisfied first.  

The microgenetic analysis of Adam’s learning episode in Chapter 6 reveals details about the 
process of making sense of the temporal order. The chapter reveals various knowledge resources 
that were at play across the three focus segments (for the glossary of all the knowledge 
resources, see Table 6.1 in Chapter 6, pp. 41–43). Some resources were mathematical (functional 
slots, functional dependence, proportional variation) and others were more intuitive (absolute 
condition, determining, givenness, quality control). A couple of resources were specific to the 
topic of limit (domain constraint for a limit, dynamic definition of a limit). The priorities of each 
of these resources changed as Adam considered different arguments about the temporal order. 
See Figure 6.5 for a summary of the activation of knowledge resources (p. 60).  

Adam’s interpretation of the meaning and the roles of delta and epsilon varied as his 
understanding of the temporal order developed. For example, epsilon started as a constraint for a 
range of acceptable output values, but it became the difference in f (x) and f (a) in the next 
segment. The determining resource was cued consistently across the segments and it helped 
define the role of epsilon and delta (for a summary, see Table 6.2, p. 59). The changes in the 
specifics of delta and epsilon might be an indication of the formal definition as a hyper-rich 
learning context that also demands high level of cognitive work.  

Chapter 7 measures the impact of the Pancake story on students’ understanding of the 
temporal order of delta and epsilon. There was a general shift for students toward being able to 
answer the majority of the questions about the temporal order questions correctly. There was 
some evidence for the stability of students’ claim about the temporal order after the story.  

The number of reasoning patterns decreased after students engaged with the story. In 
particular the number of unproductive reasoning patterns decreased after students engaged with 
the story. The story did not suppress students’ prior knowledge. Some of the reasoning patterns 
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from before the story reappeared, including a few of the unproductive ones. All the students took 
up the idea of the givenness of epsilon from the story, though they used it in very different ways 
to support their claim. The resource quality control was also taken up by many of the students to 
make sense of the temporal order.  

The case study in Chapter 8 illustrates how one student, Adriana aligned productive 
knowledge resources from the story with her prior knowledge. She effectively used the givenness 
of epsilon and quality control to determine the temporal order. She distinguished between error 
bounds from errors and repurposed functional dependence to describe the dependence of the 
errors. She also used the language of the story to explain the changes in her reasoning. The data 
suggests that her claim about the temporal order was stable by the end of the interview. I now 
discuss these findings vis-à-vis the two research questions this dissertation aims to answer.  
 
A Return to the Research Questions 

Students’ Understanding and Sense-making of the Temporal Order of Delta and Epsilon 
Students clearly struggled with the temporal order of delta and epsilon. Students had a lot of 

ideas about the temporal order. We see this through the large number of reasoning patterns 
documented in Chapter 5. Adam’s and Adriana’s case in Chapter 6 and 8 also document the 
diversity of ideas they had about the temporal order.  

As I argued in the literature review in Chapter 3, perspective on the diversity of prior 
knowledge is very important. Discounting the table of reasoning patterns in Chapter 5 as 
misconceptions, and not a transitional form of an understanding would be shortsighted. These 
reasoning patterns reveal useful information about students’ understanding of the temporal order 
and the formal definition more generally.  

Consider a common reasoning pattern that Knapp and Oehrtman (2005) also found in their 
study: “First we resolved δ then we go on to resolve ε.” Many students based that claim on their 
interpretation of the if-then statement. This tells us that students tend to focus on the if-then 
statement of the definition, over the for-every statement of the definition, to establish the 
relationship between epsilon and delta. This points to the necessity of making salient the first 
part of the definition in instruction.   

At the same time the reasoning pattern also shows that students had minimal issue in 
interpreting the if-then part of the statement. The idea of verifying the delta inequality, then 
moving on to verifying the epsilon inequality seems accessible for students, and it is a part of the 
normative understanding of the formal definition. It is equally important to recognize what 
students understand, as well as what they have not yet understood. 

The functional dependence argument was a very common reasoning pattern. The reasoning 
pattern suggests that many students linked delta and epsilon to x and f (x) values, respectively. 
How and why students linked epsilon and delta to x and f (x) values needed further exploration. 
In fact, each documented reasoning pattern in Chapter 5 says something about the way that 
students make sense of the temporal order of delta and epsilon and the formal definition more 
generally. This was one of the goals of the analysis in Chapter 6: to unpack some of the 
reasoning patterns to reveal the underlying knowledge resources.  

The analysis reveals a number of knowledge resources that Adam drew upon in discussing 
the temporal order of delta and epsilon. Adam, like many students from Chapter 5, at some point 
said that delta was the interval of x values, and epsilon was the difference between f (x) and f (a) 
(function slots). We learn that he did so to accommodate an argument that uses functional 
dependence resource. However, as Adam considered his other arguments about the temporal 
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order, the meaning and role of epsilon and delta changed accordingly. His use of function slots 
and functional dependence suggest students’ general predisposition toward explicit functional 
relationship to describe a relationship between two quantities.     

Adam’s case also shows that the complexity of the formal definition as a concept might 
amplify the complexity of dealing with its components (e.g., inequalities or conditional 
statements). The changes in specificities of epsilon and delta across the segments reflect Adam’s 
struggle in considering competing arguments about the temporal order. At some point, Adam 
even rejected a normative interpretation of a conditional statement to favor the absolute 
condition resource (see Segment 3(b) in Chapter 6). Yet he was able to use the normative 
interpretation of the conditional statement in a different segment (see Segment 5 in Chapter 6).  

The analysis also reveals that delta normatively took on a role of a determiner (of the 
acceptable interval for x), and a determined (by epsilon). Delta’s dual role contrasts with 
epsilon’s consistent role as a determiner of delta and the acceptable range of output values. I 
posit that the dual role of delta might be another layer of complexity that students need to 
uncover and understand. Students’ understanding of role of delta in the definition warrants 
further investigation.  

In addition to being complex, the formal definition is also a hyper-rich learning context 
(diSessa, 2002). Students had a lot of ideas that appeared equally productive to them. Deciding 
which knowledge resource to prioritize at any given point was challenging, particularly when 
many ideas were present. Adam and Adriana had various—at times competing—arguments 
about the temporal order. For example, both Adam and Adriana had productive ideas about the 
formal definition. Adam recalled an epsilon-delta proof, and Adriana took up many productive 
ideas from the story. It was not immediate that they gave priority to these productive ideas, 
particularly when they had other ideas that were also viable to them.  

In sum, I found that students struggled with the temporal order of delta and epsilon. 
However, the struggle could not simply be characterized as a struggle in understanding a single 
topic, (e.g., a reversal of function process, or absolute value), as many in the literature suggest. 
Each of the components of the formal definition is complex, but the formal definition as a topic 
is conceptually difficult and it increases the difficulty of dealing with the individual component.  

These findings may seem to suggest that any effort to teach the formal definition would be 
futile. Fortunately, the Pancake Story proved to be helpful in assisting students to make sense of 
the temporal order. What have we learned about ways that students could come to understand the 
temporal order of delta and epsilon from the success of the story and other analyses in this 
dissertation?  

Progress with the Temporal Order of Delta and Epsilon 
“A given error bound” and “quality control” are productive intuitive resources. A working 

hypothesis for this dissertation is that relevant and important intuitive knowledge resides in 
everyday understanding of quality control. The take-up of this intuitive idea by many students 
suggests that it was made salient by the story and it was accessible for students. At the same time 
the fact that it was a common reasoning pattern that was used to argue for the correct temporal 
order shows its relevance to the understanding of the formal definition more broadly. I posit that 
the notion of quality control can also help organize the different ideas in the formal definition 
and reduce some of the complexity.  

The analysis also suggests that the story made the givenness of epsilon more salient to 
students. The boss’ giving a constraint on the pancake size was an accessible idea for students to 
recognize the givenness of epsilon in the definition. The reasoning patterns in Chapter 7 suggest 
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that some students used the particular knowledge resource to determine the temporal order 
directly. Others combined it with other resources like quality control to conclude the correct 
temporal order. A deeper analysis of the case of Adriana reveals that this resource instigated a 
very important conflict that drove the change in her conception of the temporal order. 

Students’ conception of epsilon and delta is crucial in understanding the temporal order. The 
story was designed to help students make meaning of epsilon and delta. The story’s use of the 
terms “error” and “error bounds” was intended to help students create a distinction between δ 
and | x – a |, and between ε and | f (x) – L |. Three students used a reasoning pattern that directly 
mentions this distinction (Epsilon comes first because ε is given and δ is not | x – a | and ε is not    
| f (x) – L |). Most of the students who used the idea of quality control also thought of epsilon and 
delta as error bounds or constraints. Moreover, in the case of Adriana, creating the distinction 
was crucial for her to move toward the correct temporal order. These findings suggest that 
distinguishing errors from error bounds might be productive in giving students access into 
conceptualizing and specifying the meaning of delta and epsilon.  

The process of creating the distinction between error and error bound, or between δ and  | x – 

a |, and between ε and | f (x) – L | was not trivial. While Adriana seemed to have a good grasp of 
the difference earlier in the interview, it took some work for her to use it productively in the 
context of discussing the temporal order. Similarly, the case of Adam also shows that even when 
a student knows that epsilon was a constraint for the acceptable output values, different 
arguments might favor a particular interpretation of delta and epsilon. Thus, the relationship 
between students’ conception of epsilon and delta and their understanding of the temporal order 
is not one directional. They inform and support each other.  

Everyday language can provide access to concepts. As I argue at the end of Chapter 8, the 
Pancake Story’s everyday language provided access into concepts that otherwise would be 
challenging for students. Adriana was able to make sense of various quantities within the 
definition using the language of the story. For example, at one point she used a familiar example 
of not wanting to make the error bound for the batter to be one hundred pounds to emphasize the 
need for a small delta. Moreover, Adriana also made productive inferences from the story. For 
example, she inferred that since the story did not give an error bound for the batter, then delta 
was also not given. She was able to correctly map the error bound for the batter to delta. She then 
used it, along with other productive resources to conclude the temporal order in the context of 
the formal definition. 

Productive resources are not sufficient. Adriana’s case also illustrates a very important point 
about learning from instruction. Her case clearly shows that knowing productive resources is not 
sufficient to change a student’s claim about the temporal order. Adriana needed to align all the 
productive resources with her prior knowledge (Schoenfeld et al, 1993; Smith et al., 1993). 
Adriana had the exact productive argument from the story about the temporal order based on 
quality control and givenness of epsilon, but it was not until after she found a productive context 
to apply the functional dependence resource that she was able to prioritize the argument.  

Adam’s case supports this claim. Adam had many productive resources from instruction 
(e.g., knowledge about epsilon-delta proof procedure, his facility in working with intervals). He 
concluded the correct temporal order for delta and epsilon using productive resources a number 
of times during the episode. However, competing resources emerged as he discussed the 
temporal order. It took him some time to align all the different resources before he prioritized 
some of the more productive resources and concluded the correct temporal order for delta and 
epsilon. Both Adam’s and Adriana’s case confirm that learning happens as a result of 
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reorganizations of prior knowledge, along with additions of knowledge elements from 
instruction, not by replacement of misconceptions (Smith et al, 1993). 

Procedural understanding of the epsilon delta proof can be a productive resource. Adam and 
many other students relied on their recall of an epsilon-delta proof to arrive at the correct 
temporal order. This suggests that the procedural understanding of the epsilon-delta proof that 
Oehrtman (2008) lamented might be a productive first step in learning the formal definition. The 
prevalence of this knowledge in students’ reasoning patterns to conclude the correct temporal 
order shows the productivity of this resource for many students (see Table 5.2 in Chapter 5, p. 
34). The iterative process between a procedural and a conceptual understanding has been 
suggested in the broader mathematics education literature (e.g., Rittle-Johnson, Siegler and 
Alibali, 2001). 
 
Limitations and Recommendations 

The study presented in this dissertation is not without its limitations. I document them here 
and discuss some ways to address them in future studies. The first limitation is the length of the 
interviews I conducted with students. Quite a few students reported that after the first hour 
thinking about the formal definition, they were quite drained. The extreme case of this was the 
student, Ryan, who opted not to change answers that did not make sense to him because he was 
tired from thinking. Future studies of the formal definition, given its cognitive demand, should 
consider conducting the interviews over two or more days.  

The changes in understanding reflected in this study were of students who had previously 
received instruction on the formal definition of a limit. In this way, the students’ prior 
knowledge, however limited it might be, should be considered in interpreting the success of the 
pancake story. For example, it just wouldn’t be the case that all calculus students would have 
knowledge about the epsilon-delta proof procedure. There was a student that I interviewed who 
had not received instruction on the formal definition. I included him in the study because there 
was very little difference in the way that he initially made sense of the formal definition 
compared to other students who had seen it before. His case suggests that there are potential 
benefits of using the story with students who have not seen the formal definition before.  

I also did not analyze the reasoning patterns of the comparison group who read a page from 
the textbook. This has the potential of contextualizing the findings in this study. This was the 
original design of the study that was not carried out in the analysis. At the same time, given the 
small number of students in the comparison group, it might have been difficult to infer reasoning 
patterns from the six students.  
 
Implications for Research and Practice 

The Pancake Story as a Discussion Tool 
The findings in this dissertation show that the Pancake Story can help leverage many 

productive intuitive ideas to help students learn the formal definition of a limit. While the focus 
of the discussion in this dissertation is on the influence of the story on students’ understanding of 
the temporal order, at the end of Chapter 7, I include a brief excerpt where a discussion about the 
arbitrariness of epsilon happened as a result of understanding that epsilon was a constraint from 
the story. It suggests that the story has the potential of enlightening students about different 
aspects of the formal definition, not just the temporal order.   

The goal of the story is not to teach the formal definition, per se. While it was used as an 
instructional treatment in the study, the students in this study had seen the formal definition of a 



 

 

114 

limit before. I imagine the story would be helpful as a way to discuss the formal definition. 
Students can gain access into the various concepts involved in the formal definition through the 
story’s use of everyday language and intuitive ideas, as many students did in this study. The 
story can be used as a tool to help students make sense of some of the subtle parts of the formal 
definition in conjunction with other means of understanding the formal definition.50  

Students’ Understanding of the Arbitrariness of Epsilon 
Several studies in the literature (Roh, 2009; Swinyard, 2011; Swinyard & Larsen, 2012) 

suggest that understanding the temporal order is a precursor to understanding the arbitrariness of 
epsilon. This dissertation did not specifically investigate the relationship between understanding 
the two topics. However, as part of the protocol, I asked students about why we needed epsilon 
to be arbitrary in the definition. Preliminary analysis of the students’ responses to the question 
before and after the Pancake Story suggests that students’ understanding about the arbitrariness 
of epsilon is limited. Most students said that they did not know why epsilon needed to be 
arbitrary, and I did not observe any noticeable difference in their thinking after the story. Two 
students guessed that the reason for epsilon’s being arbitrary was to be able to include the limit 
of all possible functions. One student in the comparison group associated the arbitrariness of 
epsilon with the idea of smaller and smaller neighborhood around the limit.  

I offer a couple of hypotheses to be considered in future studies about students’ 
understanding of the arbitrariness of epsilon. First, the fact that most students could not provide 
any response to the question might be a reflection of the limited resources students had available 
to make sense of the arbitrariness of epsilon. Students had different parts of the statement of the 
definition (e.g., the if-then statement) to help them make sense of the temporal order; such help 
is limited for the arbitrariness of epsilon. Moreover, students need to understand epsilon before 
they could understand the arbitrariness of it. The findings from this dissertation show that the 
process of understanding the meaning and the role of epsilon in the definition was not trivial. 
This fact might also contribute to students’ difficulty with the arbitrariness of epsilon.  

The second hypothesis is that the fact that students learn the temporal order before they learn 
the arbitrariness of epsilon might be a result of the limited resources hypothesis. Considering the 
limited resources to help make sense of the idea, understanding the temporal order might serve as 
a motivation, or perhaps a way to enter into a discussion about the arbitrariness of epsilon. Just 
like students in Swinyard’s (2011) study, having understood the importance on focusing on the y 
values (y-first conception), students might then be able to begin to explore the idea of how to 
conceptualize being as close as possible to the limit. The nature of the order of learning the two 
ideas within the definition merits further investigation.   

Reducing the Cognitive Demand of the Written Definition 
The findings from this study also suggest that one way to assist students in understanding the 

formal definition of a limit is to reduce the cognitive demand of the written definition. Fernández 
(2007) offered a suggestion with her version of the formal definition and her students found that 
useful. I speculate that the changes she made helped reduce some notational burdens, which 
allowed students to focus on some of the conceptual subtleties of the definition.  

Building on this idea, I suggest incorporating the word “given” into the definition to include 
the intuitive idea of givenness. The word “constraint” or “bound” can also attach some meaning 

                                                
50 Wolfram Demonstrations Project (demonstrations.wolfram.com) offers different modules that 
can show a graphical representation of the formal definition. 
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to epsilon and delta that distinguished them from the errors | x – a | and | f (x) – L | might provide 
additional support for students. One version of the definition might say:  

 
The limit of a function f (x) as x approaches a is L if and only if, for any given constraint (or 
error bound) on the output, ε > 0, there exists a constraint on the input, δ > 0, such that          
if 0 <| x – a |< δ then | f (x) – L |< ε.51  
 

It remains to be seen if these modifications embody some of the intuitive ideas expressed in the 
story, and/or if it has impact on students’ understanding of the formal definition.  

Microgenetic Study and Methods 
I set out to take an extremely close look at students’ understanding of the formal definition. 

The goal was to understand the knowledge resources students have about the formal definition 
and the process of their development in learning. The analysis in this dissertation is a first look 
into ways that students put these resources together. Considering the findings in this dissertation, 
I argue that this type of study is important particularly for understanding students’ understanding 
of persistently difficult topic in mathematics.  

The combination of competitive argumentation (Schoenfeld, Smith and Arcavi, 1993, 
VanLehn, Brown and Greeno, 1984) and the use of the counter-models is a productive analysis 
method to identify the different knowledge resources. It was also helpful in constructing a model 
for Adam’s argument about the temporal order. Together with the theoretical assumptions about 
knowledge resources, and some methodological orientations, the analysis reveals the 
complexities and subtleties in the use of the knowledge resources. The methodology used in this 
dissertation was able to detect some the subtle changes in students’ reasoning, and reject 
interpretations that did not capture the full complexity of the process, however reasonable they 
might appear.  

 Given the complexity of Adam and Adriana’s sense making, I do not claim generality in the 
way that the students put together the resources at their disposal. The goal of this type of study is 
to uncover the complexities of students’ thinking. Students, like Adam and Adriana think in very 
particular ways, and use knowledge resources in unique ways. While common resources might 
emerge, the goal is to understand the specifics of their use. Generality might happen at the 
theoretical level. That is, the knowledge resources identified in this study might be found in 
learning episodes in other contexts. Future studies can examine the degree to which the 
knowledge resources found in the analysis of this dissertation are used by other students, and in 
other topics in mathematics.  

Concluding Thoughts 
The formal definition of a limit is complex, and it requires a great deal of focus and attention 

for students to understand. It is challenging by way of quantifiers and inequalities, but also by the 
amount of information that students need to keep track of as they make sense of it. The abundant 
relevant prior knowledge provides an additional challenge to the process of making sense the 
temporal order. At the same time, students’ existing prior knowledge includes many productive 
knowledge resources that can be leveraged in instruction.  

I posit that unveiling students’ knowledge resources should be the work of both instruction 
                                                
51 I found that the absolute value notation | x – a | and | f (x) – L | are helpful for students to 
conceptualize them as errors and compare them to epsilon and delta.  
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and research. The more we successfully unpack the process, the closer we are to assisting 
students in organizing the different resources that they might have about the topic. Any 
instructional approach has to be sufficiently flexible to incorporate—or better, leverage—
productive knowledge resources in students’ prior knowledge.  
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APPENDIX A: The Formal Definition of Limit at a Point and an Example 

 
 

Definition. Let f be a function defined on some open interval that contains the number a, except possibly

at a itself. Then we say that the limit of f(x) as x approaches a is L, and we write

lim

x!a

f(x) = L

if for every number ✏ > 0 there is a number � > 0 such that

if 0 < |x� a| < � then |f(x)� L| < ✏

Example. Prove that lim

x!1
3x+ 2 = 5

Solution:

1. Preliminary analysis of the problem (guessing a value for �).

Let ✏ be a given positive number. We want to find a number � such that

if 0 < |x� 1| < � then |(3x+ 2)� 5| < ✏.

But |(3x+ 2)� 5| = |3x� 3| = |3(x� 1)| = 3|x� 1|. Therefore, we want

if 0 < |x� 1| < � then 3|x� 1| < ✏

that is,

if 0 < |x� 1| < � then |x� 1| < ✏

3

.

This suggests that we should choose � = ✏/3.

2. Proof (showing that this � works). Given ✏ > 0, choose � = ✏/3. If 0 < |x� 1| < �, then

|(3x+ 2)� 5| = |3x� 3| = |3(x� 1)| = 3|x� 1| < 3� = 3

⇣
✏

3

⌘
= ✏.

Thus

if 0 < |x� 1| < � then |(3x+ 2)� 5| < ✏.

Therefore, by the definition of a limit,

lim

x!1
3x+ 2 = 5.
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APPENDIX B: The Pancake Story 
 

You work at a famous pancake house that's known to make pancakes with 5” diameter. To make 
the perfect 5” pancake you would use exactly 1 cup of batter. On your first day of work your 
boss told you that it is practically impossible for you to be able to use exactly one cup to make 
the perfect 5 inches given how many and how fast you will be making these pancakes. So for 
now, since you’re new, as long as your pancakes are anywhere within ½” from the 5”, he won’t 
fire you. Your job is then to figure out the maximum you can be off from the 1 cup to still make 
pancakes that meet your boss’ standard. Specifically, given that your boss gave you the ½ an 
inch error bound for the size, you need to figure out the error bound for the batter so that your 
pancakes won’t be off more than the given error bound. 
According to the work manual, there are two steps to do this. Based on the error bound for the 
size, you first need to guess an error bound for the amount of batter. THEN, you have to check to 
see if using any amount of batter that is within the error bound from the 1 cup would make 
pancakes that are within the given error bound from the 5”. 
For example, suppose based on the ½ inch error bound, you guessed ⅙ of a cup error bound for 
the amount of batter. Then you check to see if using any amount of batter that is within ⅙ of a 
cup from the 1 cup, so between ⅚ and 1⅙ of a cup would make pancakes with size somewhere 
between 4½” and 5½”, that is within the ½” error bound from 5”.   

Over time, your boss expects you to be even more precise. So instead of ½” error bound from 5”, 
he says he wants you to make pancakes that are within some ridiculously small error bound from 
5”, but you don’t know what it’s going to be. This means while he started by asking you to be 
within ½,” later he might want ¼” or 1/1000” from 5”.  Your job then becomes for however close 
your boss wants the pancake to 5”, you need to figure out the maximum you can be off from 1 
cup of batter such that if you use any amount of batter that is within that error bound from the 1 
cup then your actual pancakes will still be within whatever error bound your boss gives you from 
the 5”.  

Now, you don’t want to spend time each morning to recalculate everything. So you will try to 
come up with a way to calculate an error bound for the batter based on whatever the given error 
bound for the size. 
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APPENDIX C: The Bolt Problem 
from Boester (2008) 

 
 

Suppose we run a bolt manufacturing company. We have lots and lots of 
contracts, with lots and lots of different companies. As you might expect, 
everybody’s needs are a little different. Bolts that we provide for home 
construction have to be of good quality, whereas bolts that we provide for NASA 
to be used on the space shuttle have to be of exceptional quality. For the sake of 
simplicity, let’s look at only one variable that goes into the quality of our bolts: 
length. Bolts for home construction that are supposed to be, say, four inches long 
can be a little more or a little less than four inches. But bolts for the space shuttle 
that are supposed to be four inches long have to be within a much smaller target 
range in order to be acceptable. The length of the bolt depends directly on how 
much raw material we put into the bolt making machine (assuming that the 
diameter of the bolts for the home and for NASA are the same), according to 
some function.  

How do we create bolts that we know will be of a length that falls within 
our target range?  
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APPENDIX D: Student Background Survey 

 

Student Background Survey 
 

 
Name: _______________________ 
 
1. How much do you agree with these statements? 
 
 Strongly 

agree 
Agree Disagree Strongly 

disagree 
N/A 

I’m certain I can master the skills taught in a math class.      
I’m certain I can figure out how to do the most difficult 
class work in a math class.  

     

I can do almost all the work in a math class if I don’t give 
up. 

     

Even if the work is hard, I can learn it.       
I can do even the hardest work in a math class if I try.       
 
2. When and where did you take first semester calculus class? __________________________________________ 
 
3. Please rate your first semester calculus class: 
 

Very challenging  Challenging Moderately 
challenging 

Not challenging at 
all 

N/A 

 
4. What grade did you receive for it? If you took the AP test, please indicate what score you received and for which 
course (AB or BC).  
 
_____________________________________________________________________________________________ 
 
4. When did you take Real Analysis? _______________________________________________________________ 
 
5. Please rate your Real Analysis class: 
 

Very challenging  Challenging Moderately 
challenging 

Not challenging at 
all 

N/A 

 
6. What grade did you receive for it? _______________________________________________________________ 
 
7. What is your class standing? ____________________________________________________________________ 
 
8. What is your intended major? ___________________________________________________________________ 
 
9. What is your self-identified gender? (Select all that applies) 
 

Male Female Transgendered Other: ____________ Decline to state 
 
10. How would you describe your race/ethnicity? (Please circle all that applies) 
 
African 
American 

Asian 
/Asian 

American 

Hispanic/ 
Latino 

Middle 
Eastern 

Native 
American or 

Alaska Native 

Native 
Hawaiian or 

Pacific Islander 

White  
(Non-

Hispanic) 

Other Decline 
to state 
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APPENDIX E: Interview Protocol 
 

PART	
  I:	
  TASKS	
  AND	
  DEFINITION	
  OF	
  LIMIT	
  
	
  

The	
  Task	
  [see	
  attached].	
  
	
  
“The	
  reason	
  why	
  we’re	
  here	
  today	
  is	
  that	
  I	
  want	
  to	
  talk	
  to	
  you	
  about	
  limits	
  and	
  specifically	
  its	
  formal	
  definition	
  or	
  the	
  
epsilon	
  delta	
  definition.	
  Turns	
  out	
  that	
  the	
  research	
  literature	
  on	
  limit	
  agrees	
  that	
  learning	
  and	
  teaching	
  limit	
  and	
  the	
  
formal	
  definition	
  is	
  difficult.	
  To	
  this	
  day	
  I’m	
  still	
  struggling	
  to	
  find	
  the	
  best	
  way	
  to	
  present	
  the	
  material.	
  So	
  today	
  I	
  want	
  to	
  
hear	
  how	
  you	
  make	
  sense	
  of	
  limit	
  and	
  the	
  formal	
  definition.	
  Even	
  if	
  things	
  don’t	
  make	
  sense	
  for	
  you,	
  it’s	
  still	
  helpful.	
  In	
  a	
  
way,	
  your	
  confusion	
  or	
  getting	
  things	
  wrong	
  is	
  still	
  really	
  helpful	
  to	
  me	
  in	
  figuring	
  out	
  how	
  and	
  why	
  this	
  is	
  difficult.	
  Now	
  
there	
  will	
  be	
  times	
  when	
  I	
  will	
  be	
  asking	
  you	
  the	
  same	
  question	
  multiple	
  times	
  or	
  similar	
  questions,	
  this	
  is	
  not	
  suggesting	
  
that	
  you’re	
  wrong.	
  It’s	
  just	
  my	
  way	
  of	
  making	
  sure	
  that	
  I	
  really	
  understand	
  you.	
  The	
  ultimate	
  goal	
  is	
  for	
  me	
  to	
  design	
  a	
  
better	
  instruction	
  in	
  the	
  future.	
  	
  
	
  
With	
  that	
  I	
  have	
  some	
  problems	
  that	
  I	
  want	
  you	
  to	
  take	
  a	
  look	
  and	
  use	
  to	
  refresh	
  your	
  memory.	
  I	
  want	
  you	
  to	
  try	
  to	
  think	
  
out-­‐loud	
  as	
  you’re	
  looking	
  at	
  this	
  problem	
  (see	
  Task	
  Sheet).	
  
	
  
Do	
  you	
  have	
  any	
  questions	
  about	
  the	
  purpose	
  of	
  this	
  interview	
  or	
  what	
  I	
  am	
  expecting	
  from	
  you?“	
  	
  
	
  

Definition	
  of	
  Limit	
  
	
  

16. Now	
  that	
  you’ve	
  solved	
  those	
  problems,	
  I	
  want	
  you	
  to	
  think	
  about	
  ‘what	
  is	
  a	
  limit’	
  to	
  you.	
  So	
  what	
  do	
  you	
  think	
  
limit	
  is?	
  “What	
  does	
  it	
  mean	
  for	
  say	
  example	
  1	
  that	
  the	
  limit	
  is	
  5?”	
  
	
  

17. Why	
  do	
  you	
  think	
  a	
  limit	
  of	
  certain	
  function	
  exist	
  while	
  others’	
  do	
  not?	
  
Follow	
  up:	
  Can	
  you	
  give	
  an	
  example	
  where	
  a	
  function	
  whose	
  limit	
  DNE?	
  	
  	
  

	
  
PART	
  II:	
  EPSILON	
  DELTA	
  DEFINITION	
  OF	
  LIMIT	
  

	
  
Epsilon	
  Delta	
  Definition	
  of	
  Limit	
  

	
  
So	
  there’s	
  this	
  thing	
  called	
  the	
  epsilon	
  delta	
  definition	
  of	
  limit.	
  Here	
  you	
  have	
  the	
  statement	
  	
  (see	
  Formal	
  Definition	
  of	
  
Limit	
  of	
  a	
  Function)	
  
	
  
A.	
  General	
  questions	
  about	
  epsilon	
  delta.	
  	
  
	
  

18. Before	
  we	
  get	
  into	
  what	
  the	
  statement	
  means,	
  what	
  do	
  you	
  think	
  this	
  statement	
  is	
  for?	
  OR	
  The	
  purpose	
  for	
  it	
  OR	
  
Why	
  do	
  we	
  have	
  it?	
  	
  

	
  
19. What	
  do	
  you	
  think	
  we’re	
  trying	
  to	
  do	
  with	
  the	
  definition?	
  Is	
  there	
  anything	
  we’re	
  trying	
  to	
  figure	
  out	
  or	
  trying	
  to	
  

show	
  is	
  true?	
  	
  
	
  

20. Can	
  you	
  please	
  try	
  your	
  best	
  to	
  explain	
  what	
  this	
  definition	
  says	
  in	
  the	
  context	
  of	
  example	
  1?	
  	
  	
  
	
  

21. Is	
  there	
  a	
  way	
  that	
  you	
  can	
  show	
  what	
  this	
  definition	
  says	
  graphically?	
  
If	
  already	
  drawn:	
  Can	
  you	
  explain	
  what	
  you	
  drew,	
  there?	
  	
  
	
  

22. Is	
  this	
  related	
  at	
  all	
  to	
  what	
  you	
  said	
  about	
  what	
  limit	
  was	
  to	
  you?	
  You	
  said	
  [insert	
  response	
  here].	
  Are	
  they	
  
related?	
  If	
  so,	
  how?	
  	
  
	
  	
  

B.	
  Specific	
  questions	
  about	
  parts	
  of	
  the	
  definition	
  
	
  

23. What	
  do	
  you	
  think	
  epsilon	
  is?	
  	
  
	
   	
  
24. What	
  about	
  delta?	
  

Follow	
  up:	
  Can	
  you	
  show	
  where	
  epsilon	
  and	
  delta	
  are	
  on	
  the	
  graph?	
  	
  	
  
	
  

25. What	
  about	
  “for	
  all	
  epsilon	
  greater	
  than	
  zero,	
  there	
  exists	
  delta	
  greater	
  than	
  zero”?	
  What	
  is	
  that	
  for?	
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26. 0<|x-­‐a|<delta?	
  What	
  do	
  you	
  think	
  that	
  means?	
  	
  
	
  

27. |f(x)-­‐L|<epsilon?	
  What	
  do	
  you	
  think	
  that	
  means?	
  	
  
	
  
28. “If	
  0<|x-­‐a|<delta	
  then	
  |f(x)-­‐L|<epsilon.”	
  Do	
  you	
  have	
  a	
  sense	
  as	
  to	
  what’s	
  the	
  if/then	
  for?	
   	
  

	
  
29. Why	
  do	
  you	
  think	
  that	
  here	
  we	
  have	
  the	
  greater	
  than	
  zero,	
  but	
  not	
  there?	
  	
  

	
  
C.	
  Specific	
  questions	
  about	
  epsilon	
  and	
  delta.	
  Now	
  I	
  am	
  going	
  to	
  ask	
  you	
  some	
  specific	
  questions	
  about	
  epsilon	
  and	
  
delta,	
  and	
  after	
  each	
  question	
  I	
  am	
  going	
  to	
  ask	
  how	
  sure	
  you	
  are	
  of	
  your	
  answer.	
  	
  
	
  

30. In	
  the	
  definition,	
  with	
  epsilon	
  and	
  delta,	
  what	
  depends	
  on	
  what,	
  if	
  anything	
  you	
  think?	
  Delta	
  depends	
  on	
  epsilon?	
  
Epsilon	
  depends	
  on	
  delta?	
  They	
  depend	
  on	
  each	
  other?	
  Or	
  they	
  do	
  not	
  depend	
  on	
  each	
  other?	
  And	
  why?	
  
Follow	
  up:	
  Where	
  did	
  you	
  get	
  that	
  from?	
  OR	
  How	
  does	
  that	
  relate	
  to	
  your	
  idea	
  that	
  ____	
  depends	
  on	
  _____?	
  	
  
Rating:	
  If	
  you	
  were	
  to	
  rate	
  how	
  sure	
  you	
  are	
  from	
  1	
  to	
  5,	
  1	
  being	
  a	
  guess	
  and	
  5	
  being	
  no	
  doubt	
  in	
  your	
  mind,	
  
how	
  would	
  you	
  rate	
  what	
  you	
  said	
  about	
  ________depending	
  on	
  __________?	
  
	
  

31. In	
  the	
  definition,	
  between	
  x	
  and	
  f(x),	
  which	
  one	
  do	
  you	
  think,	
  you	
  are	
  trying	
  to	
  control?	
  And	
  why?	
  	
  
Follow	
  up:	
  If	
  f(x),	
  what	
  is	
  the	
  role	
  of	
  epsilon	
  and	
  delta,	
  if	
  any?	
  	
  
Follow	
  up:	
  If	
  x,	
  what	
  is	
  the	
  role	
  of	
  epsilon	
  and	
  delta,	
  if	
  any?	
  	
  
Rating:	
  If	
  you	
  were	
  to	
  rate	
  how	
  sure	
  you	
  are	
  from	
  1	
  to	
  5,	
  1	
  being	
  a	
  guess	
  and	
  5	
  being	
  no	
  doubt	
  in	
  your	
  mind,	
  
how	
  would	
  you	
  rate	
  what	
  you	
  said	
  about	
  ________is	
  the	
  thing	
  you’re	
  trying	
  to	
  control	
  and	
  the	
  roles	
  of	
  delta	
  and	
  
epsilon?	
  

 
32. In	
  the	
  definition,	
  between	
  epsilon	
  and	
  delta,	
  which	
  one	
  do	
  you	
  think	
  comes	
  first	
  and	
  which	
  one	
  do	
  you	
  figure	
  out	
  

as	
  a	
  result?	
  And	
  why?	
  
Rating:	
  If	
  you	
  were	
  to	
  rate	
  how	
  sure	
  you	
  are	
  from	
  1	
  to	
  5,	
  1	
  being	
  a	
  guess	
  and	
  5	
  being	
  no	
  doubt	
  in	
  your	
  mind,	
  
how	
  would	
  you	
  rate	
  what	
  you	
  said	
  about	
  ________coming	
  first?	
  
	
  

33. In	
  the	
  definition,	
  between	
  epsilon	
  and	
  delta,	
  which	
  one	
  do	
  you	
  think	
  is	
  set?	
  Epsilon?	
  Delta?	
  Both?	
  Or	
  neither?	
  
And	
  why?	
  	
  
Rating:	
  If	
  you	
  were	
  to	
  rate	
  how	
  sure	
  you	
  are	
  from	
  1	
  to	
  5,	
  1	
  being	
  a	
  guess	
  and	
  5	
  being	
  no	
  doubt	
  in	
  your	
  mind,	
  
how	
  would	
  you	
  rate	
  what	
  you	
  said	
  about	
  ________being	
  set?	
  

	
  
34. How	
  would	
  you	
  put	
  the	
  four	
  variables,	
  epsilon,	
  delta,	
  x	
  and	
  f(x)	
  in	
  order	
  in	
  terms	
  of	
  which	
  comes	
  first	
  in	
  the	
  

definition?	
  And	
  why?	
  	
  
Follow	
  up:	
  Why	
  did	
  you	
  order	
  it	
  that	
  way?	
  
Follow	
  up:	
  In	
  terms	
  of	
  the	
  process	
  within	
  the	
  definition,	
  how	
  would	
  you	
  put	
  the	
  four	
  variables	
  in	
  order?	
  	
  
Rating:	
  If	
  you	
  were	
  to	
  rate	
  how	
  sure	
  you	
  are	
  from	
  1	
  to	
  5,	
  1	
  being	
  a	
  guess	
  and	
  5	
  being	
  no	
  doubt	
  in	
  your	
  mind,	
  
how	
  would	
  you	
  rate	
  what	
  you	
  said	
  about	
  the	
  order?	
  

	
  
35. Option	
  (a):	
  Some	
  students	
  in	
  the	
  past	
  have	
  told	
  me	
  that	
  epsilon	
  comes	
  first	
  because	
  it	
  is	
  given	
  to	
  you.	
  What	
  do	
  

you	
  say	
  to	
  that?	
  
Option	
  (b):	
  Some	
  students	
  in	
  the	
  past	
  have	
  told	
  me	
  that	
  delta	
  comes	
  first	
  because	
  delta	
  is	
  related	
  to	
  x,	
  and	
  x	
  
comes	
  first.	
  What	
  do	
  you	
  say	
  to	
  that?	
  	
  
Follow	
  up:	
  How	
  does	
  it	
  fit	
  with	
  what	
  you	
  said	
  earlier?	
  	
  

	
  
36. For	
  some	
  reason	
  the	
  definition	
  starts	
  with	
  “For	
  every	
  number	
  epsilon>0.”	
  A	
  couple	
  of	
  questions	
  about	
  this:	
  	
  

(a)	
  Can	
  you	
  think	
  of	
  a	
  reason	
  or	
  reasons	
  why	
  [we/they]	
  start	
  with	
  epsilon?	
  
(b)	
  Why	
  do	
  you	
  think	
  [we/they]	
  need	
  “for	
  every”	
  epsilon?	
  
	
  

D.	
  The	
  Pancake	
  Story.	
  At	
  this	
  point	
  I	
  will	
  share	
  with	
  you	
  a	
  Pancake	
  Story.	
  You	
  have	
  it	
  in	
  front	
  of	
  you.	
  Feel	
  free	
  to	
  follow	
  
along	
  and	
  take	
  notes,	
  as	
  you’d	
  like.	
  
OR	
  
D.	
  Standard	
  Text.	
  At	
  this	
  point	
  I	
  would	
  like	
  you	
  to	
  read	
  the	
  following	
  text	
  taken	
  from	
  a	
  textbook,	
  and	
  afterwards	
  I	
  am	
  
going	
  to	
  ask	
  you	
  some	
  questions	
  about	
  the	
  formal	
  definition	
  again.	
  	
  	
  	
  
	
  

Pancake	
  story.	
  	
  
	
  

You	
  work	
  at	
  a	
  famous	
  pancake	
  house	
  that's	
  known	
  to	
  make	
  pancakes	
  with	
  5”	
  diameter.	
  To	
  make	
  the	
  perfect	
  5”	
  
pancake	
  you	
  would	
  use	
  exactly	
  1	
  cup	
  of	
  batter.	
  On	
  your	
  first	
  day	
  of	
  work	
  your	
  boss	
  told	
  you	
  that	
  it	
  is	
  practically	
  



 

 

126 

impossible	
  for	
  you	
  to	
  be	
  able	
  to	
  use	
  exactly	
  one	
  cup	
  to	
  make	
  the	
  perfect	
  5	
  inches	
  given	
  how	
  many	
  and	
  how	
  fast	
  you	
  
will	
  be	
  making	
  these	
  pancakes.	
  So	
  for	
  now,	
  since	
  you’re	
  new,	
  as	
  long	
  as	
  your	
  pancakes	
  are	
  anywhere	
  within	
  ½”	
  
from	
  the	
  5”,	
  he	
  won’t	
  fire	
  you.	
  Your	
  job	
  is	
  then	
  to	
  figure	
  out	
  the	
  maximum	
  you	
  can	
  be	
  off	
  from	
  the	
  1	
  cup	
  to	
  still	
  
make	
  pancakes	
  that	
  meet	
  your	
  boss’	
  standard.	
  Specifically,	
  given	
  that	
  your	
  boss	
  gave	
  you	
  the	
  ½	
  an	
  inch	
  error	
  
bound	
  for	
  the	
  size,	
  you	
  need	
  to	
  figure	
  out	
  the	
  error	
  bound	
  for	
  the	
  batter	
  so	
  that	
  your	
  pancakes	
  won’t	
  be	
  off	
  more	
  
than	
  the	
  given	
  error	
  bound.	
  

According	
  to	
  the	
  work	
  manual,	
  there	
  are	
  two	
  steps	
  to	
  do	
  this.	
  Based	
  on	
  the	
  error	
  bound	
  for	
  the	
  size,	
  you	
  first	
  need	
  
to	
  guess	
  an	
  error	
  bound	
  for	
  the	
  amount	
  of	
  batter.	
  THEN,	
  you	
  have	
  to	
  check	
  to	
  see	
  if	
  using	
  any	
  amount	
  of	
  batter	
  that	
  
is	
  within	
  the	
  error	
  bound	
  from	
  the	
  1	
  cup	
  would	
  make	
  pancakes	
  that	
  are	
  within	
  the	
  given	
  error	
  bound	
  from	
  the	
  5”.	
  

For	
  example,	
  suppose	
  based	
  on	
  the	
  ½	
  inch	
  error	
  bound,	
  you	
  guessed	
  ⅙	
  of	
  a	
  cup	
  error	
  bound	
  for	
  the	
  amount	
  of	
  
batter.	
  Then	
  you	
  check	
  to	
  see	
  if	
  using	
  any	
  amount	
  of	
  batter	
  that	
  is	
  within	
  ⅙	
  of	
  a	
  cup	
  from	
  the	
  1	
  cup,	
  so	
  between	
  ⅚	
  
and	
  1⅙	
  of	
  a	
  cup	
  would	
  make	
  pancakes	
  with	
  size	
  somewhere	
  between	
  4½”	
  and	
  5½”,	
  that	
  is	
  within	
  the	
  ½”	
  error	
  
bound	
  from	
  5”.	
  	
  	
  

Over	
  time,	
  your	
  boss	
  expects	
  you	
  to	
  be	
  even	
  more	
  precise.	
  So	
  instead	
  of	
  ½”	
  error	
  bound	
  from	
  5”,	
  he	
  says	
  he	
  wants	
  
you	
  to	
  make	
  pancakes	
  that	
  are	
  within	
  some	
  ridiculously	
  small	
  error	
  bound	
  from	
  5”,	
  but	
  you	
  don’t	
  know	
  what	
  it’s	
  
going	
  to	
  be.	
  This	
  means	
  while	
  he	
  started	
  by	
  asking	
  you	
  to	
  be	
  within	
  ½,”	
  later	
  he	
  might	
  want	
  ¼”	
  or	
  1/1000”	
  from	
  5”.	
  	
  
Your	
  job	
  then	
  becomes	
  for	
  however	
  close	
  your	
  boss	
  wants	
  the	
  pancake	
  to	
  5”,	
  you	
  need	
  to	
  figure	
  out	
  the	
  maximum	
  
you	
  can	
  be	
  off	
  from	
  1	
  cup	
  of	
  batter	
  such	
  that	
  if	
  you	
  use	
  any	
  amount	
  of	
  batter	
  that	
  is	
  within	
  that	
  error	
  bound	
  from	
  
the	
  1	
  cup	
  then	
  your	
  actual	
  pancakes	
  will	
  still	
  be	
  within	
  whatever	
  error	
  bound	
  your	
  boss	
  gives	
  you	
  from	
  the	
  5”.	
  	
  

Now,	
  you	
  don’t	
  want	
  to	
  spend	
  time	
  each	
  morning	
  to	
  recalculate	
  everything.	
  So	
  you	
  will	
  try	
  to	
  come	
  up	
  with	
  a	
  way	
  
to	
  calculate	
  an	
  error	
  bound	
  for	
  the	
  batter	
  based	
  on	
  whatever	
  the	
  given	
  error	
  bound	
  for	
  the	
  size.	
  

	
  
37. As	
  an	
  employee	
  what	
  is	
  your	
  job?	
  

Follow	
  up:	
  Is	
  there	
  a	
  specific	
  quantity	
  you’re	
  trying	
  to	
  figure	
  out?	
  
	
  

38. There	
  are	
  four	
  quantities	
  that	
  are	
  changing	
  in	
  the	
  story,	
  what	
  might	
  they	
  be?	
  

39. Which	
  quantity	
  or	
  quantities	
  are	
  you	
  given?	
  	
  	
  

40. Which	
  quantity	
  or	
  quantities	
  are	
  you	
  trying	
  to	
  figure	
  out?	
  Why?	
  	
  

41. Does	
  the	
  story	
  provide	
  steps	
  for	
  you	
  to	
  do	
  that?	
  If	
  so,	
  what?	
  	
  	
  

42. Between,	
  the	
  error	
  bound	
  for	
  the	
  batter	
  and	
  the	
  error	
  bound	
  for	
  the	
  size,	
  which	
  one	
  comes	
  first	
  in	
  the	
  story	
  and	
  
which	
  do	
  you	
  figure	
  out	
  as	
  a	
  result?	
  	
  
Follow	
  up:	
  How	
  does	
  it	
  compare	
  to	
  the	
  first	
  step	
  in	
  the	
  manual?	
  	
  
	
  

43. How	
  do	
  you	
  think	
  the	
  error	
  bound	
  for	
  the	
  batter	
  and	
  the	
  error	
  bound	
  for	
  the	
  size	
  are	
  dependent	
  on	
  each	
  other,	
  if	
  
at	
  all?	
  Why?	
  	
  
Follow	
  up:	
  How	
  does	
  it	
  compare	
  to	
  what	
  you	
  said	
  in	
  the	
  previous	
  question?	
  	
  
	
  

44. How	
  do	
  you	
  think	
  the	
  error	
  in	
  the	
  batter	
  and	
  the	
  error	
  in	
  size	
  of	
  the	
  pancake	
  are	
  dependent	
  on	
  each	
  other,	
  if	
  at	
  
all?	
  Why?	
  
	
  

45. Do	
  you	
  think	
  there	
  is	
  a	
  difference	
  between	
  an	
  error	
  and	
  an	
  error	
  bound	
  in	
  the	
  story?	
  If	
  so,	
  what?	
  	
  	
  

46. Why	
  were	
  you	
  not	
  given	
  a	
  particular	
  error	
  bound	
  for	
  the	
  size	
  towards	
  the	
  end?	
  

47. How	
  do	
  you	
  deal	
  with	
  the	
  fact	
  that	
  your	
  boss	
  might	
  give	
  you	
  different	
  error	
  bounds	
  in	
  the	
  size,	
  in	
  finding	
  the	
  
error	
  bound	
  for	
  the	
  batter?	
  	
  	
  
	
  

48. Do	
  you	
  think	
  the	
  story	
  had	
  anything	
  to	
  do	
  with	
  the	
  formal	
  definition?	
  If	
  so,	
  how?	
  	
  

49. If	
  you	
  try	
  to	
  relate	
  this	
  story	
  to	
  the	
  formal	
  definition:	
  
(a)	
  What	
  do	
  you	
  think	
  are	
  the	
  following	
  quantities:	
  x?	
  f(x)?	
  a?	
  L?	
  |x-­‐a|?	
  |f(x)-­‐L|?	
  epsilon?	
  delta?	
  	
  
(b)	
  “For	
  all	
  epsilon	
  there	
  exists	
  a	
  delta,”	
  what	
  do	
  you	
  think	
  that	
  is	
  in	
  the	
  story?	
  
Follow	
  up:	
  What	
  was	
  epsilon	
  again?	
  AND/OR	
  What	
  was	
  delta?	
  	
  	
  
(c)	
  What	
  about	
  the	
  “if-­‐then”	
  statement?	
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(d)	
  Why	
  “for	
  all	
  epsilon”?	
  
	
  

50. Is	
  there	
  anything	
  that	
  is	
  still	
  unclear	
  to	
  you	
  at	
  this	
  point	
  about	
  the	
  story?	
  	
  

E.	
  Post	
  story	
  sense	
  making.	
  
	
  
At	
  this	
  point	
  I	
  will	
  be	
  asking	
  some	
  final	
  questions.	
  You	
  answered	
  a	
  lot	
  of	
  these	
  already	
  but	
  I	
  want	
  to	
  ask	
  them	
  again	
  just	
  in	
  
case	
  any	
  of	
  them	
  has	
  changed	
  since	
  we	
  last	
  talked	
  about	
  it.	
  Fee	
  free	
  to	
  say	
  the	
  same	
  thing	
  if	
  it	
  has	
  not.	
  
	
  

51. (a)	
  Can	
  you	
  try	
  and	
  explain	
  what	
  the	
  formal	
  definition	
  is	
  saying	
  in	
  the	
  context	
  of	
  example	
  1?	
  	
  
(b)	
  Did	
  your	
  explanation	
  change	
  at	
  all	
  and	
  if	
  it	
  did,	
  why?	
  

	
  
52. (a)	
  What	
  is	
  it	
  that	
  you’re	
  trying	
  to	
  do	
  within	
  the	
  formal	
  definition?	
  Is	
  there	
  anything	
  we’re	
  trying	
  to	
  figure	
  out?	
  	
  

(b)	
  Did	
  your	
  explanation	
  change	
  at	
  all	
  and	
  if	
  it	
  did,	
  why?	
  
	
  

53. (a)	
  With	
  epsilon	
  and	
  delta,	
  what	
  depends	
  on	
  what,	
  if	
  anything?	
  	
  	
  
(b)	
  Did	
  you	
  change	
  your	
  mind?	
  If	
  you	
  did,	
  why?	
  
Rating:	
  If	
  you	
  were	
  to	
  rate	
  how	
  sure	
  you	
  are	
  from	
  1	
  to	
  5,	
  1	
  being	
  a	
  guess	
  and	
  5	
  being	
  no	
  doubt	
  in	
  your	
  mind,	
  
how	
  would	
  you	
  rate	
  what	
  you	
  said	
  about	
  ________depending	
  on	
  __________?	
  
	
  

54. (a)	
  In	
  the	
  definition,	
  between	
  x	
  and	
  f(x),	
  which	
  one	
  do	
  you	
  think,	
  you	
  are	
  trying	
  to	
  control?	
  And	
  why?	
  	
  
Follow	
  up:	
  If	
  f(x),	
  what	
  is	
  the	
  role	
  of	
  epsilon	
  and	
  delta,	
  if	
  any?	
  	
  
Follow	
  up:	
  If	
  x,	
  what	
  is	
  the	
  role	
  of	
  epsilon	
  and	
  delta,	
  if	
  any?	
  	
  
Rating:	
  If	
  you	
  were	
  to	
  rate	
  how	
  sure	
  you	
  are	
  from	
  1	
  to	
  5,	
  1	
  being	
  a	
  guess	
  and	
  5	
  being	
  no	
  doubt	
  in	
  your	
  mind,	
  
how	
  would	
  you	
  rate	
  what	
  you	
  said	
  about	
  ________is	
  the	
  thing	
  you’re	
  trying	
  to	
  control	
  and	
  the	
  roles	
  of	
  delta	
  and	
  
epsilon?	
  	
  
(b)	
  Did	
  you	
  change	
  your	
  mind?	
  If	
  you	
  did,	
  why?	
  	
  

	
  
55. (a)	
  Between	
  epsilon	
  and	
  delta,	
  which	
  one	
  comes	
  first	
  and	
  which	
  one	
  do	
  you	
  figure	
  out	
  as	
  a	
  result?	
  	
  

(b)	
  Did	
  you	
  change	
  your	
  mind?	
  If	
  you	
  did,	
  why?	
  
Rating:	
  If	
  you	
  were	
  to	
  rate	
  how	
  sure	
  you	
  are	
  from	
  1	
  to	
  5,	
  1	
  being	
  a	
  guess	
  and	
  5	
  being	
  no	
  doubt	
  in	
  your	
  mind,	
  
how	
  would	
  you	
  rate	
  what	
  you	
  said	
  about	
  ________coming	
  first?	
  
	
  

56. (a)	
  In	
  the	
  definition,	
  between	
  epsilon	
  and	
  delta,	
  which	
  one	
  do	
  you	
  think	
  is	
  set?	
  Epsilon?	
  Delta?	
  Both?	
  Or	
  neither?	
  	
  
(b)	
  Did	
  you	
  change	
  your	
  mind?	
  If	
  you	
  did,	
  why?	
  
Rating:	
  If	
  you	
  were	
  to	
  rate	
  how	
  sure	
  you	
  are	
  from	
  1	
  to	
  5,	
  1	
  being	
  a	
  guess	
  and	
  5	
  being	
  no	
  doubt	
  in	
  your	
  mind,	
  
how	
  would	
  you	
  rate	
  what	
  you	
  said	
  about	
  ________being	
  set?	
  

	
  
57. (a)	
  How	
  would	
  you	
  put	
  the	
  four	
  variables,	
  epsilon,	
  delta,	
  x	
  and	
  f(x)	
  in	
  order	
  in	
  terms	
  of	
  which	
  comes	
  first?	
  	
  

(b)	
  Did	
  you	
  change	
  your	
  mind?	
  If	
  you	
  did,	
  why?	
  
Rating:	
  If	
  you	
  were	
  to	
  rate	
  how	
  sure	
  you	
  are	
  from	
  1	
  to	
  5,	
  1	
  being	
  a	
  guess	
  and	
  5	
  being	
  no	
  doubt	
  in	
  your	
  mind,	
  
how	
  would	
  you	
  rate	
  what	
  you	
  said	
  about	
  the	
  order?	
  

	
  
58. (a)	
  Why	
  does	
  the	
  definition	
  start	
  with	
  epsilon?	
  

(b)	
  Why	
  do	
  we	
  need	
  “for	
  every	
  number	
  epsilon?”	
  
(c)	
  Did	
  you	
  change	
  your	
  mind?	
  If	
  you	
  did,	
  why?	
  
	
  

59. (a)	
  What	
  is	
  a	
  limit	
  to	
  you?	
  
(b)	
  Did	
  it	
  change	
  at	
  all	
  and	
  if	
  it	
  did,	
  why?	
  
	
  

60. In	
  what	
  ways,	
  if	
  at	
  all,	
  does	
  the	
  pancake	
  story	
  influence	
  how	
  you	
  think	
  about	
  the	
  formal	
  definition?	
  	
  
	
  

61. Does	
  the	
  formal	
  definition	
  meant	
  to	
  help	
  you	
  compute	
  the	
  limit?	
  Why	
  or	
  why	
  not?	
  	
  
	
  

62. Well	
  given	
  what	
  you	
  said,	
  what	
  does	
  this	
  have	
  anything	
  to	
  do	
  with	
  limits?	
  	
  
	
  

*Administer	
  Background	
  Survey*	
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APPENDIX F: Interview Protocol for Pilot Study II 
 

PART	
  I:	
  TASKS	
  AND	
  DEFINITION	
  OF	
  LIMIT	
  
	
  

The	
  Task	
  [see	
  attached].	
  
	
  
“The	
  reason	
  why	
  we’re	
  here	
  today	
  is	
  that	
  I	
  want	
  to	
  talk	
  to	
  you	
  about	
  limits	
  and	
  specifically	
  its	
  formal	
  definition	
  or	
  the	
  
epsilon	
  delta	
  definition.	
  Turns	
  out	
  that	
  the	
  research	
  literature	
  on	
  limit	
  agrees	
  that	
  learning	
  and	
  teaching	
  limit	
  and	
  the	
  
formal	
  definition	
  is	
  difficult.	
  To	
  this	
  day	
  I’m	
  still	
  struggling	
  to	
  find	
  the	
  best	
  way	
  to	
  present	
  the	
  material.	
  So	
  today	
  I	
  want	
  to	
  
hear	
  how	
  you	
  make	
  sense	
  of	
  limit	
  and	
  the	
  formal	
  definition.	
  Even	
  if	
  things	
  don’t	
  make	
  sense	
  for	
  you,	
  it’s	
  still	
  helpful.	
  In	
  a	
  
way,	
  your	
  confusion	
  or	
  getting	
  things	
  wrong	
  is	
  still	
  really	
  helpful	
  to	
  me	
  in	
  figuring	
  out	
  how	
  and	
  why	
  this	
  is	
  difficult.	
  Now	
  
there	
  will	
  be	
  times	
  when	
  I	
  will	
  be	
  asking	
  you	
  the	
  same	
  question	
  multiple	
  times	
  or	
  similar	
  questions,	
  this	
  is	
  not	
  suggesting	
  
that	
  you’re	
  wrong.	
  It’s	
  just	
  my	
  way	
  of	
  making	
  sure	
  that	
  I	
  really	
  understand	
  you.	
  The	
  ultimate	
  goal	
  is	
  for	
  me	
  to	
  design	
  a	
  
better	
  instruction	
  in	
  the	
  future.	
  	
  
	
  
With	
  that	
  I	
  have	
  some	
  problems	
  that	
  I	
  want	
  you	
  to	
  take	
  a	
  look	
  and	
  use	
  to	
  refresh	
  your	
  memory.	
  I	
  want	
  you	
  to	
  try	
  to	
  think	
  
out-­‐loud	
  as	
  you’re	
  looking	
  at	
  this	
  problem	
  (see	
  Task	
  Sheet).	
  Do	
  you	
  have	
  any	
  questions	
  about	
  the	
  purpose	
  of	
  this	
  
interview	
  or	
  what	
  I	
  am	
  expecting	
  from	
  you?“	
  	
  
	
  

Definition	
  of	
  Limit	
  
	
  

1. Now	
  that	
  you’ve	
  solved	
  those	
  problems,	
  I	
  want	
  you	
  to	
  think	
  about	
  ‘what	
  is	
  a	
  limit’	
  to	
  you.	
  So	
  what	
  do	
  you	
  think	
  
limit	
  is?	
  “What	
  does	
  it	
  mean	
  for	
  say	
  example	
  1	
  that	
  the	
  limit	
  is	
  5?”	
  
	
  

2. Why	
  do	
  you	
  think	
  a	
  limit	
  of	
  certain	
  function	
  exist	
  while	
  others’	
  do	
  not?	
  
Follow	
  up:	
  Can	
  you	
  give	
  an	
  example	
  where	
  a	
  function	
  whose	
  limit	
  DNE?	
  	
  	
  

	
  
PART	
  II:	
  EPSILON	
  DELTA	
  DEFINITION	
  OF	
  LIMIT	
  

	
  
Epsilon	
  Delta	
  Definition	
  of	
  Limit	
  

	
  
So	
  there’s	
  this	
  thing	
  called	
  the	
  epsilon	
  delta	
  definition	
  of	
  limit.	
  Here	
  you	
  have	
  the	
  statement	
  	
  (see	
  Formal	
  Definition	
  of	
  
Limit	
  of	
  a	
  Function)	
  
	
  
A.	
  General	
  questions	
  about	
  epsilon	
  delta.	
  	
  
	
  

3. Before	
  we	
  get	
  into	
  what	
  the	
  statement	
  means,	
  what	
  do	
  you	
  think	
  this	
  statement	
  is	
  for?	
  OR	
  The	
  purpose	
  for	
  it	
  OR	
  
Why	
  do	
  we	
  have	
  it?	
  	
  

	
  
4. What	
  do	
  you	
  think	
  we’re	
  trying	
  to	
  do	
  with	
  the	
  definition?	
  Is	
  there	
  anything	
  we’re	
  trying	
  to	
  figure	
  out	
  or	
  trying	
  to	
  

show	
  is	
  true?	
  	
  
	
  

5. Can	
  you	
  please	
  try	
  your	
  best	
  to	
  explain	
  what	
  this	
  definition	
  says	
  in	
  the	
  context	
  of	
  example	
  1?	
  	
  	
  
	
  

6. Is	
  there	
  a	
  way	
  that	
  you	
  can	
  show	
  this	
  graphically?	
  
If	
  already	
  drawn:	
  Can	
  you	
  explain	
  what	
  you	
  drew,	
  there?	
  	
  
	
  

7. Is	
  this	
  related	
  at	
  all	
  to	
  what	
  you	
  said	
  about	
  what	
  limit	
  was	
  to	
  you?	
  You	
  said	
  [insert	
  response	
  here].	
  Are	
  they	
  
related?	
  If	
  so,	
  how?	
  	
  
	
  	
  

B.	
  Specific	
  questions	
  about	
  parts	
  of	
  the	
  definition	
  
	
  

8. What	
  do	
  you	
  think	
  epsilon	
  is?	
  	
  
	
   	
  
9. What	
  about	
  delta?	
  

Follow	
  up:	
  Can	
  you	
  show	
  where	
  epsilon	
  and	
  delta	
  are	
  on	
  the	
  graph?	
  	
  	
  
	
  

10. What	
  about	
  “for	
  all	
  epsilon	
  greater	
  than	
  zero,	
  there	
  exists	
  delta	
  greater	
  than	
  zero”?	
  What	
  is	
  that	
  for?	
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11. 0<|x-­‐a|<delta?	
  What	
  do	
  you	
  think	
  that	
  means?	
  	
  
	
  

12. |f(x)-­‐L|<epsilon?	
  What	
  do	
  you	
  think	
  that	
  means?	
  	
  
	
  
13. “If	
  0<|x-­‐a|<delta	
  then	
  |f(x)-­‐L|<epsilon.”	
  Do	
  you	
  have	
  a	
  sense	
  as	
  to	
  what’s	
  the	
  if/then	
  for?	
   	
  

	
  
14. Why	
  do	
  you	
  think	
  that	
  here	
  we	
  have	
  the	
  greater	
  than	
  zero,	
  but	
  not	
  there?	
  	
  

	
  
C.	
  Specific	
  questions	
  about	
  epsilon	
  and	
  delta.	
  	
  
	
  

15. In	
  the	
  definition,	
  with	
  epsilon	
  and	
  delta,	
  what	
  depends	
  on	
  what,	
  if	
  anything	
  you	
  think?	
  Delta	
  depends	
  on	
  epsilon?	
  
Epsilon	
  depends	
  on	
  delta?	
  They	
  depend	
  on	
  each	
  other?	
  Or	
  they	
  do	
  not	
  depend	
  on	
  each	
  other?	
  And	
  why?	
  
Follow	
  up:	
  Where	
  did	
  you	
  get	
  that	
  from?	
  OR	
  How	
  does	
  that	
  relate	
  to	
  your	
  idea	
  that	
  ____	
  depends	
  on	
  _____?	
  	
  
Rating:	
  If	
  you	
  were	
  to	
  rate	
  how	
  sure	
  you	
  are	
  from	
  1	
  to	
  5,	
  1	
  being	
  a	
  guess	
  and	
  5	
  being	
  no	
  doubt	
  in	
  your	
  mind,	
  
how	
  would	
  you	
  rate	
  what	
  you	
  said	
  about	
  ________depending	
  on	
  __________?	
  
	
  

16. In	
  the	
  definition,	
  between	
  x	
  and	
  f(x),	
  which	
  one	
  do	
  you	
  think,	
  you	
  are	
  trying	
  to	
  control?	
  And	
  why?	
  	
  
Follow	
  up:	
  If	
  f(x),	
  what	
  is	
  the	
  role	
  of	
  epsilon	
  and	
  delta,	
  if	
  any?	
  	
  
Follow	
  up:	
  If	
  x,	
  what	
  is	
  the	
  role	
  of	
  epsilon	
  and	
  delta,	
  if	
  any?	
  	
  
Rating:	
  If	
  you	
  were	
  to	
  rate	
  how	
  sure	
  you	
  are	
  from	
  1	
  to	
  5,	
  1	
  being	
  a	
  guess	
  and	
  5	
  being	
  no	
  doubt	
  in	
  your	
  mind,	
  
how	
  would	
  you	
  rate	
  what	
  you	
  said	
  about	
  ________is	
  the	
  thing	
  you’re	
  trying	
  to	
  control	
  and	
  the	
  roles	
  of	
  delta	
  and	
  
epsilon?	
  

 
17. In	
  the	
  definition,	
  between	
  epsilon	
  and	
  delta,	
  which	
  one	
  do	
  you	
  think	
  comes	
  first	
  and	
  which	
  one	
  do	
  you	
  figure	
  out	
  

as	
  a	
  result?	
  And	
  why?	
  
Rating:	
  If	
  you	
  were	
  to	
  rate	
  how	
  sure	
  you	
  are	
  from	
  1	
  to	
  5,	
  1	
  being	
  a	
  guess	
  and	
  5	
  being	
  no	
  doubt	
  in	
  your	
  mind,	
  
how	
  would	
  you	
  rate	
  what	
  you	
  said	
  about	
  ________coming	
  first?	
  
	
  

18. In	
  the	
  definition,	
  between	
  epsilon	
  and	
  delta,	
  which	
  one	
  do	
  you	
  think	
  is	
  set?	
  Epsilon?	
  Delta?	
  Both?	
  Or	
  neither?	
  
And	
  why?	
  	
  
Rating:	
  If	
  you	
  were	
  to	
  rate	
  how	
  sure	
  you	
  are	
  from	
  1	
  to	
  5,	
  1	
  being	
  a	
  guess	
  and	
  5	
  being	
  no	
  doubt	
  in	
  your	
  mind,	
  
how	
  would	
  you	
  rate	
  what	
  you	
  said	
  about	
  ________being	
  set?	
  

	
  
19. How	
  would	
  you	
  put	
  the	
  four	
  variables,	
  epsilon,	
  delta,	
  x	
  and	
  f(x)	
  in	
  order	
  in	
  terms	
  of	
  which	
  comes	
  first	
  in	
  the	
  

definition?	
  And	
  why?	
  	
  
Follow	
  up:	
  Why	
  did	
  you	
  order	
  it	
  that	
  way?	
  
Follow	
  up:	
  In	
  terms	
  of	
  the	
  process	
  within	
  the	
  definition,	
  how	
  would	
  you	
  put	
  the	
  four	
  variables	
  in	
  order?	
  	
  
Rating:	
  If	
  you	
  were	
  to	
  rate	
  how	
  sure	
  you	
  are	
  from	
  1	
  to	
  5,	
  1	
  being	
  a	
  guess	
  and	
  5	
  being	
  no	
  doubt	
  in	
  your	
  mind,	
  
how	
  would	
  you	
  rate	
  what	
  you	
  said	
  about	
  the	
  order?	
  

	
  
20. Option	
  (a):	
  Some	
  students	
  in	
  the	
  past	
  have	
  told	
  me	
  that	
  epsilon	
  comes	
  first	
  because	
  it	
  is	
  given	
  to	
  you.	
  What	
  do	
  

you	
  say	
  to	
  that?	
  
Option	
  (b):	
  Some	
  students	
  in	
  the	
  past	
  have	
  told	
  me	
  that	
  delta	
  comes	
  first	
  because	
  delta	
  is	
  related	
  to	
  x,	
  and	
  x	
  
comes	
  first.	
  What	
  do	
  you	
  say	
  to	
  that?	
  	
  
Follow	
  up:	
  How	
  does	
  it	
  fit	
  with	
  what	
  you	
  said	
  earlier?	
  	
  

	
  
21. For	
  some	
  reason	
  the	
  definition	
  starts	
  with	
  “For	
  every	
  number	
  epsilon>0.”	
  A	
  couple	
  of	
  questions	
  about	
  this:	
  	
  

(a)	
  Can	
  you	
  think	
  of	
  a	
  reason	
  or	
  reasons	
  why	
  [we/they]	
  start	
  with	
  epsilon?	
  
(b)	
  Why	
  do	
  you	
  think	
  [we/they]	
  need	
  “for	
  every”	
  epsilon?	
  

	
  
Pancake	
  story.	
  	
  

	
  
You	
  work	
  at	
  a	
  famous	
  pancake	
  house	
  that's	
  known	
  to	
  make	
  pancakes	
  with	
  5”	
  diameter.	
  To	
  make	
  the	
  perfect	
  5”	
  
pancake	
  you	
  would	
  use	
  exactly	
  1	
  cup	
  of	
  batter.	
  On	
  your	
  first	
  day	
  of	
  work	
  your	
  boss	
  told	
  you	
  that	
  it	
  is	
  practically	
  
impossible	
  for	
  you	
  to	
  be	
  able	
  to	
  use	
  exactly	
  one	
  cup	
  to	
  make	
  the	
  perfect	
  5	
  inches	
  given	
  how	
  many	
  and	
  how	
  fast	
  you	
  
will	
  be	
  making	
  these	
  pancakes.	
  So	
  for	
  now,	
  since	
  you’re	
  new,	
  as	
  long	
  as	
  your	
  pancakes	
  are	
  anywhere	
  within	
  ½”	
  
from	
  the	
  5”,	
  he	
  won’t	
  fire	
  you.	
  Your	
  job	
  is	
  then	
  to	
  figure	
  out	
  the	
  maximum	
  you	
  can	
  be	
  off	
  from	
  the	
  1	
  cup	
  to	
  still	
  
make	
  pancakes	
  that	
  meet	
  your	
  boss’	
  standard.	
  Specifically,	
  given	
  that	
  your	
  boss	
  gave	
  you	
  the	
  ½	
  an	
  inch	
  error	
  
bound	
  for	
  the	
  size,	
  you	
  need	
  to	
  figure	
  out	
  the	
  error	
  bound	
  for	
  the	
  batter	
  so	
  that	
  your	
  pancakes	
  won’t	
  be	
  off	
  more	
  
than	
  the	
  given	
  error	
  bound.	
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According	
  to	
  the	
  work	
  manual,	
  there	
  are	
  two	
  steps	
  to	
  do	
  this.	
  Based	
  on	
  the	
  error	
  bound	
  for	
  the	
  size,	
  you	
  first	
  need	
  
to	
  guess	
  an	
  error	
  bound	
  for	
  the	
  amount	
  of	
  batter.	
  THEN,	
  you	
  have	
  to	
  check	
  to	
  see	
  if	
  using	
  any	
  amount	
  of	
  batter	
  that	
  
is	
  within	
  the	
  error	
  bound	
  from	
  the	
  1	
  cup	
  would	
  make	
  pancakes	
  that	
  are	
  within	
  the	
  given	
  error	
  bound	
  from	
  the	
  5”.	
  

For	
  example,	
  suppose	
  based	
  on	
  the	
  ½	
  inch	
  error	
  bound,	
  you	
  guessed	
  ⅙	
  of	
  a	
  cup	
  error	
  bound	
  for	
  the	
  amount	
  of	
  
batter.	
  Then	
  you	
  check	
  to	
  see	
  if	
  using	
  any	
  amount	
  of	
  batter	
  that	
  is	
  within	
  ⅙	
  of	
  a	
  cup	
  from	
  the	
  1	
  cup,	
  so	
  between	
  ⅚	
  
and	
  1⅙	
  of	
  a	
  cup	
  would	
  make	
  pancakes	
  with	
  size	
  somewhere	
  between	
  4½”	
  and	
  5½”,	
  that	
  is	
  within	
  the	
  ½”	
  error	
  
bound	
  from	
  5”.	
  	
  	
  

Over	
  time,	
  your	
  boss	
  expects	
  you	
  to	
  be	
  even	
  more	
  precise.	
  So	
  instead	
  of	
  ½”	
  error	
  bound	
  from	
  5”,	
  he	
  says	
  he	
  wants	
  
you	
  to	
  make	
  pancakes	
  that	
  are	
  as	
  close	
  as	
  possible	
  to	
  5”.	
  This	
  means	
  while	
  he	
  started	
  by	
  asking	
  you	
  to	
  be	
  within	
  ½	
  ”	
  
later	
  he	
  might	
  want	
  ¼”	
  or	
  1/1000”	
  from	
  5”.	
  	
  Your	
  job	
  then	
  becomes	
  for	
  however	
  close	
  your	
  boss	
  wants	
  the	
  pancake	
  
to	
  5”,	
  you	
  need	
  to	
  figure	
  out	
  the	
  maximum	
  you	
  can	
  be	
  off	
  from	
  1	
  cup	
  of	
  batter	
  such	
  that	
  if	
  you	
  use	
  any	
  amount	
  of	
  
batter	
  that	
  is	
  within	
  that	
  error	
  bound	
  from	
  the	
  1	
  cup	
  then	
  your	
  actual	
  pancakes	
  will	
  still	
  be	
  within	
  whatever	
  error	
  
bound	
  your	
  boss	
  gives	
  you	
  from	
  the	
  5”.	
  	
  

Now,	
  you	
  don’t	
  want	
  to	
  spend	
  time	
  each	
  morning	
  to	
  recalculate	
  everything.	
  It	
  would	
  be	
  nice	
  if	
  you	
  can	
  come	
  up	
  
with	
  a	
  way	
  to	
  calculate	
  an	
  error	
  bound	
  for	
  the	
  batter	
  based	
  on	
  whatever	
  the	
  given	
  error	
  bound	
  for	
  the	
  size.	
  	
  

	
  
D.	
  Questions	
  about	
  the	
  Pancake	
  Story.	
  	
  
	
  

22. As	
  an	
  employee	
  what	
  is	
  your	
  job?	
  
Follow	
  up:	
  Is	
  there	
  a	
  specific	
  quantity	
  you’re	
  trying	
  to	
  figure	
  out?	
  
	
  

23. There	
  are	
  four	
  quantities	
  that	
  are	
  changing	
  in	
  the	
  story,	
  what	
  might	
  they	
  be?	
  

24. Which	
  quantity	
  or	
  quantities	
  are	
  you	
  given?	
  	
  	
  

25. Which	
  quantity	
  or	
  quantities	
  are	
  you	
  trying	
  to	
  figure	
  out?	
  Why?	
  	
  

26. Does	
  the	
  story	
  provide	
  steps	
  for	
  you	
  to	
  do	
  that?	
  If	
  so,	
  what?	
  	
  	
  

27. Between,	
  the	
  error	
  bound	
  for	
  the	
  batter	
  and	
  the	
  error	
  bound	
  for	
  the	
  size,	
  which	
  one	
  comes	
  first	
  in	
  the	
  story	
  and	
  
which	
  do	
  you	
  figure	
  out	
  as	
  a	
  result?	
  	
  
Follow	
  up:	
  How	
  does	
  it	
  compare	
  to	
  the	
  first	
  step	
  in	
  the	
  manual?	
  	
  
	
  

28. How	
  do	
  you	
  think	
  the	
  error	
  bound	
  for	
  the	
  batter	
  and	
  the	
  error	
  bound	
  for	
  the	
  size	
  are	
  dependent	
  on	
  each	
  other,	
  if	
  
at	
  all?	
  Why?	
  	
  
Follow	
  up:	
  How	
  does	
  it	
  compare	
  to	
  what	
  you	
  said	
  in	
  the	
  previous	
  question?	
  	
  
	
  

29. How	
  do	
  you	
  think	
  the	
  error	
  in	
  the	
  batter	
  and	
  the	
  error	
  in	
  size	
  of	
  the	
  pancake	
  are	
  dependent	
  on	
  each	
  other,	
  if	
  at	
  
all?	
  Why?	
  
	
  

30. Do	
  you	
  think	
  there	
  is	
  a	
  difference	
  between	
  an	
  error	
  and	
  an	
  error	
  bound	
  in	
  the	
  story?	
  If	
  so,	
  what?	
  	
  	
  

31. Why	
  were	
  you	
  not	
  given	
  a	
  particular	
  error	
  bound	
  for	
  the	
  size	
  towards	
  the	
  end?	
  

32. How	
  do	
  you	
  deal	
  with	
  the	
  fact	
  that	
  your	
  boss	
  might	
  give	
  you	
  different	
  error	
  bounds	
  in	
  the	
  size,	
  in	
  finding	
  the	
  
error	
  bound	
  for	
  the	
  batter?	
  	
  	
  
	
  

33. Do	
  you	
  think	
  the	
  story	
  had	
  anything	
  to	
  do	
  with	
  the	
  formal	
  definition?	
  If	
  so,	
  how?	
  	
  

34. If	
  you	
  try	
  to	
  relate	
  this	
  story	
  to	
  the	
  formal	
  definition:	
  
(a)	
  What	
  do	
  you	
  think	
  are	
  the	
  following	
  quantities:	
  x?	
  f(x)?	
  a?	
  L?	
  |x-­‐a|?	
  |f(x)-­‐L|?	
  epsilon?	
  delta?	
  	
  
(b)	
  “For	
  all	
  epsilon	
  there	
  exists	
  a	
  delta,”	
  what	
  do	
  you	
  think	
  that	
  is	
  in	
  the	
  story?	
  
Follow	
  up:	
  What	
  was	
  epsilon	
  again?	
  AND/OR	
  What	
  was	
  delta?	
  	
  	
  
(c)	
  What	
  about	
  the	
  “if-­‐then”	
  statement?	
  	
  
(d)	
  Why	
  “for	
  all	
  epsilon”?	
  
	
  

35. Is	
  there	
  anything	
  that	
  is	
  still	
  unclear	
  to	
  you	
  at	
  this	
  point	
  about	
  the	
  story?	
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E.	
  Post	
  story	
  sense	
  making.	
  
	
  
At	
  this	
  point	
  I	
  will	
  be	
  asking	
  some	
  final	
  questions.	
  You	
  answered	
  a	
  lot	
  of	
  these	
  already	
  but	
  I	
  want	
  to	
  ask	
  them	
  again	
  just	
  in	
  
case	
  any	
  of	
  them	
  has	
  changed	
  since	
  we	
  last	
  talked	
  about	
  it.	
  Fee	
  free	
  to	
  say	
  the	
  same	
  thing	
  if	
  it	
  has	
  not.	
  
	
  

36. (a)	
  Can	
  you	
  try	
  and	
  explain	
  what	
  the	
  formal	
  definition	
  is	
  saying	
  in	
  the	
  context	
  of	
  example	
  1?	
  	
  
(b)	
  Did	
  your	
  explanation	
  change	
  at	
  all	
  and	
  if	
  it	
  did,	
  why?	
  

	
  
37. (a)	
  What	
  is	
  it	
  that	
  you’re	
  trying	
  to	
  do	
  within	
  the	
  formal	
  definition?	
  Is	
  there	
  anything	
  we’re	
  trying	
  to	
  figure	
  out?	
  	
  

(b)	
  Did	
  your	
  explanation	
  change	
  at	
  all	
  and	
  if	
  it	
  did,	
  why?	
  
	
  

38. (a)	
  With	
  epsilon	
  and	
  delta,	
  what	
  depends	
  on	
  what,	
  if	
  anything?	
  	
  	
  
(b)	
  Did	
  you	
  change	
  your	
  mind?	
  If	
  you	
  did,	
  why?	
  
Rating:	
  If	
  you	
  were	
  to	
  rate	
  how	
  sure	
  you	
  are	
  from	
  1	
  to	
  5,	
  1	
  being	
  a	
  guess	
  and	
  5	
  being	
  no	
  doubt	
  in	
  your	
  mind,	
  
how	
  would	
  you	
  rate	
  what	
  you	
  said	
  about	
  ________depending	
  on	
  __________?	
  
	
  

39. (a)	
  In	
  the	
  definition,	
  between	
  x	
  and	
  f(x),	
  which	
  one	
  do	
  you	
  think,	
  you	
  are	
  trying	
  to	
  control?	
  And	
  why?	
  	
  
Follow	
  up:	
  If	
  f(x),	
  what	
  is	
  the	
  role	
  of	
  epsilon	
  and	
  delta,	
  if	
  any?	
  	
  
Follow	
  up:	
  If	
  x,	
  what	
  is	
  the	
  role	
  of	
  epsilon	
  and	
  delta,	
  if	
  any?	
  	
  
Rating:	
  If	
  you	
  were	
  to	
  rate	
  how	
  sure	
  you	
  are	
  from	
  1	
  to	
  5,	
  1	
  being	
  a	
  guess	
  and	
  5	
  being	
  no	
  doubt	
  in	
  your	
  mind,	
  
how	
  would	
  you	
  rate	
  what	
  you	
  said	
  about	
  ________is	
  the	
  thing	
  you’re	
  trying	
  to	
  control	
  and	
  the	
  roles	
  of	
  delta	
  and	
  
epsilon?	
  	
  
(b)	
  Did	
  you	
  change	
  your	
  mind?	
  If	
  you	
  did,	
  why?	
  	
  

	
  
40. (a)	
  Between	
  epsilon	
  and	
  delta,	
  which	
  one	
  comes	
  first	
  and	
  which	
  one	
  do	
  you	
  figure	
  out	
  as	
  a	
  result?	
  	
  

(b)	
  Did	
  you	
  change	
  your	
  mind?	
  If	
  you	
  did,	
  why?	
  
Rating:	
  If	
  you	
  were	
  to	
  rate	
  how	
  sure	
  you	
  are	
  from	
  1	
  to	
  5,	
  1	
  being	
  a	
  guess	
  and	
  5	
  being	
  no	
  doubt	
  in	
  your	
  mind,	
  
how	
  would	
  you	
  rate	
  what	
  you	
  said	
  about	
  ________coming	
  first?	
  
	
  

41. (a)	
  In	
  the	
  definition,	
  between	
  epsilon	
  and	
  delta,	
  which	
  one	
  do	
  you	
  think	
  is	
  set?	
  Epsilon?	
  Delta?	
  Both?	
  Or	
  neither?	
  	
  
(b)	
  Did	
  you	
  change	
  your	
  mind?	
  If	
  you	
  did,	
  why?	
  
Rating:	
  If	
  you	
  were	
  to	
  rate	
  how	
  sure	
  you	
  are	
  from	
  1	
  to	
  5,	
  1	
  being	
  a	
  guess	
  and	
  5	
  being	
  no	
  doubt	
  in	
  your	
  mind,	
  
how	
  would	
  you	
  rate	
  what	
  you	
  said	
  about	
  ________being	
  set?	
  

	
  
42. (a)	
  How	
  would	
  you	
  put	
  the	
  four	
  variables,	
  epsilon,	
  delta,	
  x	
  and	
  f(x)	
  in	
  order	
  in	
  terms	
  of	
  which	
  comes	
  first?	
  	
  

(b)	
  Did	
  you	
  change	
  your	
  mind?	
  If	
  you	
  did,	
  why?	
  
Rating:	
  If	
  you	
  were	
  to	
  rate	
  how	
  sure	
  you	
  are	
  from	
  1	
  to	
  5,	
  1	
  being	
  a	
  guess	
  and	
  5	
  being	
  no	
  doubt	
  in	
  your	
  mind,	
  
how	
  would	
  you	
  rate	
  what	
  you	
  said	
  about	
  the	
  order?	
  

	
  
43. (a)	
  Why	
  does	
  the	
  definition	
  start	
  with	
  epsilon?	
  

(b)	
  Why	
  do	
  we	
  need	
  “for	
  every	
  number	
  epsilon?”	
  
(c)	
  Did	
  you	
  change	
  your	
  mind?	
  If	
  you	
  did,	
  why?	
  
	
  

44. (a)	
  What	
  is	
  a	
  limit	
  to	
  you?	
  
(b)	
  Did	
  it	
  change	
  at	
  all	
  and	
  if	
  it	
  did,	
  why?	
  
	
  

45. In	
  what	
  ways,	
  if	
  at	
  all,	
  does	
  the	
  pancake	
  story	
  influence	
  how	
  you	
  think	
  about	
  the	
  formal	
  definition?	
  	
  
	
  

46. Does	
  the	
  formal	
  definition	
  meant	
  to	
  help	
  you	
  compute	
  the	
  limit?	
  Why	
  or	
  why	
  not?	
  	
  
	
  

47. Well	
  given	
  what	
  you	
  said,	
  what	
  does	
  this	
  have	
  anything	
  to	
  do	
  with	
  limits?	
  	
  
	
  

*Administer	
  Background	
  Survey*	
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APPENDIX G: Interview Protocol for Pilot Study I 
 

PART 1: TASKS AND HOW TO FIND LIMIT 
 

The Task [see attached]. 
 
“The reason why we’re here today is that I want to talk to you about limits and specifically its formal definition or the 
epsilon delta definition. Turns out that the research literature on limit agrees that learning and teaching limit and the 
formal definition is difficult. To this day I’m still struggling to find the best way to present the material. So today I want 
to hear how you make sense of limit and the formal definition. Even if things don’t make sense for you, it’s still helpful. 
In a way, your confusion or getting things wrong is still really helpful to me in figuring out how and why this is difficult. 
Now there will be times when I will be asking you the same question multiple times or similar questions, this is not 
suggesting that you’re wrong. It’s just my way of making sure that I really understand you. The ultimate goal is for me 
to design a better instruction in the future.  
 
With that I have some problems that I want you to take a look and use to refresh your memory. I want you to try to 
think out-loud as you’re looking at this problem. 
 
Do you have any questions about the purpose of this interview or what I am expecting from you?“  
 

How to Find Limit 
 

1. Now that you’ve done these problems, can you help me understand how do you go about finding limits generally?  
 
2. “By the way, how do you know that the limit is not some other number?” or “How do you know that the limit exists 
and it’s this number?” 
 
3. Do you have other ways to determine that the limit is in fact that number?  
 

Definition of Limit 
 

1. “At this point I want you to think about ‘what is a limit’ to you. So what do you think limit is? “What does it mean for 
say example 1 that the limit is 5?” 
 
2. “If you were to explain this to someone who’s never taken calculus before. What would you say limit is?”  
 
3. “What about if you’re trying to convince your 1B instructor that you deserve to be in his/her class? What would you 
say?”  
 
4. Can you explain why you would explain it in that way to the non-calculus student vs. the teacher? 
 
5. Is there a difference between how to find a limit and what limit is for you?  
 

PART 2: EPSILON DELTA DEFINITION OF LIMIT 
 

Epsilon Delta Definition of Limit 
 

“So there’s this thing called the epsilon delta definition of limit. Here’s you have the statement.  
 
A. The purpose of epsilon delta.  
 

1. “Before we get into what the statement means, can you tell me what this statement is for?” OR The purpose 
for it OR Why do we have it?  
 

2. How do you go about doing that with the statement? Say, what would be your first step?   
 

B. Exploring parts of the statement:  
 

1. What is epsilon?  
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2. What is delta?  

 
3. For all epsilon greater than zero, there exists delta greater than zero? 

 
4. 0<|x-a|<delta? What does that mean?  

 
5. |f(x)-L|<epsilon? What does that mean?  

 
6. “If 0<|x-a|<delta then |f(x)-L|<epsilon.” Why the if/then?  

 
C. Meaning making.  
 

1. Can you please try your best to explain what the statement says?  
 

2. Is this related at all to what you said about what limit was to you? You said [insert response here]. 
Are they related? If so, how?  
 

3. Is there a way that you can show this graphically? 
 

4. What does it mean to satisfy this statement?  
 

5. [Follow-up] Can you tell me a situation where this statement would be false?  
 

6. With epsilon and delta, what depends on what, if anything? Delta depends on epsilon? Epsilon 
depends on delta? They depend on each other? Or they do not depend on each other? WHY? 
 

7. With x and y, what depends on what, if anything? x depends on y? y depends on x? They depend 
on each other? Or they do not depend on each other? WHY? 
 

8. Of the four variables, epsilon, delta, x and y, which one(s), if any, do you have control over (i.e., you 
can change), and which one(s), if any, are you trying to control? WHY?  

 
9. Option (a): Some students in the past have told me that what you’re trying to control is epsilon 

because you’re trying to get your f(x) close to L. What do you say to that? 
 
Option (b): Some students in the past have told me that what you’re trying to control is delta 
because epsilon is given to you. What do you say to that? 

 
10. The definition is written in such a way where it starts with “For all epsilon>0.” Sometimes people 

say, for any epsilon greater than zero. Or for a given epsilon greater than zero. Why do we say 
this?  
 

E. Pancake story.  
 
You work at a famous pancake house that's known to make a specific size pancake, say 5 inches in diameter. To 
make it perfectly you would use exactly 1 cup of batter. Since you're new and will be making lots of pancakes very 
quickly, your boss allows for a certain amount of error in the pancake size, say plus or minus 1/2 an inch. Your job is 
to figure out how much off you can be from 1 cup of batter in order to make sure that your pancake is still within the 
error that your boss gave you.  
 
Over time, your boss expects you to be even more precise. So instead of giving you a specific amount of error from 5 
inches, he says he wants the pancake to be as close as possible to 5. Your responsibility is to figure out how far off 
you can be from 1 cup in order to make sure your pancake is as close as possible to 5 inches. 
 
So now that you’ve heard the story, I want to ask you some questions about it.  
 

1. In this story, what is your responsibility? 
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2. What amount are you trying to figure out?  
 

3. What do you have control over as an employee?  
 

4. What you are trying to control?  
 

5. What are you given as you work there, (i.e., what is out of your control)?   
 

6. If we try to relate this story to the formal definition, what do you think [x, y, f(x), delta, epsilon, a, L, 
if/then statement, why for all there exists, why absolute value?  

 
F. Post story sense making. 
 
At this point I will be asking some final questions. You answered a lot of these already but I just want to make sure 
that I really understand you.  
 

1. Can you try and interpret what the formal definition is saying? Or what it means?  
 

2. [I want to briefly ask you some questions about a written proof here, and ask you some questions about why 
they do the steps.]  
 

3. With epsilon and delta, what depends on what, if anything? [Did you change your mind, why?] 
 

4. Of the four variables, epsilon, delta, x and y, which one(s) do you have control over (i.e., you can change), 
and which one(s) are you trying to control? [Did you change your mind, why?]  

 
5. Why are we given epsilon? [If so, is getting as close as possible to L and assumption or a goal?]  

 
6. Does the formal definition meant to help you compute the limit? Why or why not?  

 
Well given what you said, what does this have anything to do with limits?  
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APPENDIX H: Interview Task 
 

 
 

Interview Tasks

Fall 2011

Name:

INSTRUCTION: Please find the limit of a the following functions, if it exists.

1. lim

x!1
3x+ 2

2. lim

x!3

x

2 � 9

x� 3

3. lim

x!1

lnx

x

3

4-6 Let f be the function whose graph is presented below.

4. lim

x!2
f(x)

5. lim

x!1
f(x)

6. lim

x!5
f(x)



 

 

136 

APPENDIX I: Standard Text for Comparison Group 
 (adapted from Stewart, Calculus, 7th Edition, p. 73) 
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APPENDIX J: Half of Adam’s Full Transcript and Written Artifacts 
(up to question question 21 on the protocol in Appendix F) 

 
Line Speaker Utterance 
1 Int. What do you think limit is? What does it mean to say in example 1 or problem 1 

that the limit is 5? 
2 Adam Alright so the limit is 5 is, as you approach a number of some function, a 

number on a func- a graph of a function you're gonna [phone rings] you're 
gonna approach a number on the function as you approach a number that you're 
plugging in, in this case it'd be x so if you have f(x) and you approach the 
number [gesture approaching with left hand] that you want the the limit of, 
from either side you're gonna keep come- keep coming closer and closer to the 
number you actually, when you get when you plug it in 

3 Int. Can you use the numbers in that particular problem and the actual function? 
4 Adam So.. What? Can you restate that? 
5 Int. Oh can you , can you say what you said again but instead of using like a general 

number or function, actually… 
6 Adam So this one is as you approach 1 on the function from both the left and right. So 

if you come from this side of 0 as you approach 1 you're gonna start 
approaching the number 5 and as you approach the number 1 from, on the 
function from the right or from a number greater than 1 such as 2, you're gonna 
approach a number that's 5 because the limit is continuous and there's no 
discontinuity there.  

7 Int. ok, so, you- you talk about this approaches stuff. Um, I wanna know what's 
approaching 1 and what's approaching 5? 

8 Adam it's the, for what approaches 1 it's what the input is 
9 Int. what the input? 
10 Adam yeah so in this case x is your input, so as x approaches 1 you get 5 which is 

your output. 
11 Int. ok, so the input approaches one, the x approaches 1 and what happens? 
12 Adam then the output approaches 5.  
13 Int. the output approaches 5. okay, alright that's fair enoguh, um alright, uh.. du du 

du what does it mean for a limit to not exist 
14 Adam it means uh that there's some remova-, non removable discontinuity so.. like if 

you approach a number from one side so like in number 4 
15 Int. um hm 
16 Adam you asked just a random funiton, you don't really give us the function you just 

give us the graph. What if the function approaches 2, if you approach, if you put 
oh, put in a number for x close to 2 but is on the left you're gonna get a massive 
number that's positive. 

17 Int. um hm 
18 Adam and then it's going to to go off and it's just, it's gonna be become infinite as you 

get closer to 2. if, like if,you keep going and take the limit from that one side, 
19 Int. um hm 
20 Adam but if you do it, you going from the right, you're gonna get a negative number 

and as you approach 2 from the right it's gonna become negative and infinite,  
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21 Int. um hm 
22 Adam so it does not exist because the 2, the approach from the both sides don't meet in 

the middle.  
23 Int. ok, do-so do they have to? 
24 Adam can you restate that please? 
25 Int. do you have to meet in the middle or..? 
26 Adam sort of 
27 Int. what is this thing that you're talking about as they// 
28 Adam //the limits have to agree from the left perspective and the right perspective and 

in this case they don't 
29 Int. alright, um, how are you feeling by the way? I mean with this whole thing, this 

whole interview thing, I'm sensing you're a little, are you nervous at all? 
30 Adam It's just weird explaining this to you [laughs] 
31 Int. Ok, so here's the other thing. What we have to get used to here is I'm no longer 

your teacher. 
32 Adam I know 
33 Int. Right? Which is you know takes some getting used to and so I really, um, what 

I'm interested in is what you're thinking about. I really-really don't care if it's 
right or wrong, right? So, um and if you don't know something please let me 
know instead of like. And If you're trying to figure something, like, I don't 
know but this is what I'm thinking right now, please say something like that, 
yeah?  Alright, so let's move on. Um, so the bulk of this interview you can use 
the back of this like scratch paper if you ever want to.  

34 Adam Sweet [laughs] 
35 Int. Um, the bulk of this interview is gonna be spent talking about the 

followingdefinition of the limit alright? And so this is what it is, you have it 
right here [gives student the formal definition sheet]. Actually you can use this 
as well as scratch paper. Um, so here you have, here you have this statement. 
Um, before we get into what this statement means can you tell me what this 
statement is for, or the purpose of it, or why do we have it? 

36 Adam The formal definition is, every math has a formal definiton [laughs]. 
37 Int. Okay.  
38 Adam I mean a formal way, it's a proof, it's a way to go about proving the limit exists 

instead of just stating that they exist you know? 
39 Int. Okay. 
40 Adam Cus if you make a statement without proof then what is that statement actually 

mean? 
41 Int. Okay. 
42 Adam And, uh, these, this, this, you know, it's also helps with everyone knowing 

exactly what it means, you know like, there's no argument over the definition, 
the formal definition. 

43 Int. Ok, so you said something about um proving that the limit exists instead of just 
saying that the limit exists, um, how would you go about doing that for this 
statement? Like, what, yeah. 

44 Adam Alright so the way if, the way you prove it is, uh you show that for some limit 
is, the input x approaches a you get a number L 
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45 Int. um hm 
46 Adam and that's what that's saying, but if for every number greater than epsilon, for 

every number epsilon which is greater than zero, sorry, there is a number delta 
greater than zero. So what they're saying is if you take the difference, the 
magnitude of or actually it's just the difference in this case between x and a in 
which you're taking the limit of, I- I mean as x approaches, will be less than 
delta but greater than zero, so be some number. Doesn't matter really what 
number, but exists if then if you choose that, you can prove that when you plug 
in x for that number that minus the L that it will be less than a certain number 
epsilon, so.. uh let's see it's been a while since I've done this, anything like this 
um. Alright so it's gonna be like, this is just gonna be, um a is just gonna be a 
number and then you're gonna say, does the limit as you know x approaches a  

47 Int. um hm 
48 Adam of this, um it's gonna be less than d, well delta. Well delta's gonna shrink as x 

approaches a because once you hit a, a-a is gonna be 0 
49 Int. um hm 
50 Adam but on the other side you're greater than zero so it's technically not gonna be a 
51 Int. okay 
52 Adam so and then on for this you have f(x)-L, whoops [writing], it's gonna be less 

than epsilon and this is again when it approaches a. But at a, um at a, x here 
becomes L because you plug in thethe  input x into the function and you get L 
and L minus L is 0 but according to this x cannot be a cause zero is greater, I 
mean zero is not greater than zero, so you're gonna be a little off for like each 
thing it's gonna be miniscule but it's still gonna be a little off. But that's number 
gonna be smaller than another number delta 

53 Int. um hm 
54 Adam and such that that delta happens that if you plug in for, uh if you choose a 

number smaller than, uh, delta, that delta and you'll, you plug that number that 
you plugged in here they get a lot smaller than delta, you'll get the func- the 
input of that function minus L plus the actual, meaning the limit exists.  

55 Int. ok, alright. So your [inaudible]  so what I'm hearing from you that you're 
talking about, you have this number x that is um slightly off than a.  

56 Adam Yeah. 
57 Int. And the reason for that is because, because of the greater than zero= 
58 Adam =in the formal definition, yes 
59 Int. Oh okay, what do you mean by formal definition? 
60 Adam In this definition it states that x cannot be a, technically, because 0 is greater 

than, x minus a, the absolute value is greater than zero, 
61 Int. Uh-hm 
62 Adam but if a if x is equal to a you get zero= 
63 Int. =equals zero, ok so according to the definition it has to be greater than zero and 

you're saying that this number and then when you plug it into your f(x), that 
what, when subtracting L, that number will be less than epsilon. 

64 Adam The absolute value, yes. 
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65 Int. The absolute value will be less than epsilon.Um,  I'm curious about what you 
wrote here because you wrote um a limit as x goes to a of x minus a. What does 
that mean? 

66 Adam That would mean as x approaches a but technically that's not supposed to be 
there. 

67 Int. Uh-hm. 
68 Adam but uh,I was thinking,  it's- it's not gonna be exactly a, you get closer and closer 

to a and this number 's gonna shrink 
69 Int. um hm 
70 Adam and it's gonna be less than this number delta, 
71 Int. um hm 
72 Adam but it still has to be greater than zero. 
73 Int. I see. So, so is it fair to say that this definition essentially, these two parts the, 

you're essentially taking the limit as x goes to a of each one of these things 
[referring to |x-a|<delta and |f(x)-L|<epsilon]? 

74 Adam Umm 
75 Int. Is that how you're thinking if that's not what you're thinking about it then it's 

not.  
76 Adam That's technically how I'm thinking about it, yeah.  
77 Int. Ok, ok, alright, um, so here's a question, what do you think we're trying to do 

with this formal definition? Is there anything that we're trying to show is true? 
Or we're trying to find? Or anything like that? 

78 Adam We're trying to show that for a a- number epsilon given to us, which is just 
stated as epsilon, we can find an interval sufficiently small enough that if you 
plug it in for x, the endpoints will always be less than a number delta, and then 
that proves that the limit exists. 

79 Int. For, for every number epsilon, I'm gonna try to work through what you said, 
um, or you, or you might. Why don't you try to restate what you just said? 

80 Adam I know what I said, I'm wondering if I said it backwards... No I said that, I think 
I said it the right way. Alright so for every, you're gonna be given like a number 
epsilon it's gonna be a general epsilon 

81 Int. um hm 
82 Adam cus yeah. So as, um, for every, you'll find intervals such that, um in that interval 

of x-a it'll be less than delta but such that, that will also exist if you plug in the 
interval for this (refers to 0<|x-a|<delta)  it will be less than epsilon. 

83 Int. ok, alright, um, so sorry did you answer the question what is that you're trying 
to find? 

84 Adam Oh, you're trying to prove that the limit exists. 
85 Int. Right but how- is there anything specific that you're trying to find? 
86 Adam Um, I have no idea what you're asking me. Well, I don't know what exactly how 

to answer that, I mean. 
87 Int. Ok, that's fine but there's this thing about, uh, you said for a given number 

epsilon you're trying to find this interval, you said, right? 
88 Adam Yeah 
89 Int. And then, if you, and then what happens after you find that interval? 
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90 Adam That interval if you subtract it from a, and you take the absolute value it will be 
less than delta 

91 Int. And that's it? 
92 Adam Well you're trying to find delta using that 
93 Int. Ok. So the end result, so I'm hearing is the end result then now that the 

differenc- when you subtract a it will be less than delta? 
94 Adam Yes, but then that proves the limit exists.  
95 Int. Oh so, when you show that difference is less than delta then that proves the 

limit exists. 
96 Adam Yes [pauses]. Yeah.  
97 Int. Ok, alright 
98 Adam Feeling I'm doing this wrong.  
99 Int. What- what makes you think that you're doing this wrong? 
100 Adam Mainly, I haven't done a formal epsilon delta proof 
101 Int. um hm 
102 Adam in, in what? Two, three years now?  
103 Int. Yeah, it's fine. 
104 Adam and [laughs] 
105 Int. That's ok. I mean it might come back to you as we're talking about it more. Um, 

ok, is there a way you can show, oh wait, sorry, um. So can you try your best to, 
so we've sorta spoken about, we've spoken about this statement more generally. 
Can we go back to this statement right here like the fact that the limit is 5?  

106 Adam um hm 
107 Int. Can you explain what this is saying what this statement is saying, using this 

function? 
108 Adam [inaudible] Ok, so alright um x minus a and a is gonna be [writing]. And um, so 

if we believe that the limit is 5, [um hm] as x approaches 1 in this case then 
there must be the intervals such that if you take x, the, like endpoint of that 
interval minus 3 and take the absolute value you'll get a number less than delta, 
which isn’t given, and then if you plug in the input of that interval you'll 
become significantly small, sufficiently small enough that if you take the 
absolute value, you'll get a number less than epsilon. So what ends up 
happening is this interval- you're trying to find like, when you're- when I stated 
that you're supposed to find an interval 

109 Int. hm 
110 Adam in this case you just go. If the function which in this case is [inaudible] like 

3x+2  
111 Int. um hm 
112 Adam minus 5 is less than epsilon [writing] 
113 Int. um hm 
114 Adam that's equal to [writing]. And then um this is just [writing], but so you're trying 

to get, it's this, if 3 times this, which is uh, function, it's not a function it's more 
an equation, if the equation is less than epsilon but uh, this is set so this interval 
is for this would be like a number around 1 because unless this [x-1?] is close to 
zero, this is gonna be a bigger number than epsilon really.   

115 Int. ok 
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116 Adam so like if you have a number like 1.11111111111111 or like 
1.0000000000000000001 this can be a tiny number 

117 Int. um hm 
118 Adam and it'll be less than epsilon and if you plug that into here, it'll also be a tiny 

number, when you take the absolute value, if you take three times this number 
and plug in [looks perplexed/confused]...  Um you take this number and plug in 
here it will be less than that delta, if you knew like an interval from this case it's 
centered arou-around 1 and you'll have a number like a and b 

119 Int. so your number is centered around 1? 
120 Adam yeah 
121 Int. I see. 
122 Adam Op, yeah 
123 Int. So, where did that 3 come from? 
124 Adam Oops, that- that should be, no idea why I wrote 3 [laughs], it should have been 1 

cus a is 1 in this case and I should have used a different letter than a let's call it 
c 

125 Int. So can you say that one more time, so in- in sort of in summary what does it 
mean for the limit to of 3x+2 is 5 as x approaches 1 according to the formal 
definition? 

126 Adam So, it's that there is, around, there's an interval such that around 1 that such that 
if you plug in the numbers on the interval 

127 Int. um hm 
128 Adam that you'll get a number less than epsilon which is like, but it'll also satisfy the 

other part that uh if you plug in the interval you'll get you know for x minus 1, 
you'll get a number less than delta. 

129 Int. Ok, are you ok with that? 
130 Adam yes [laughs] 
131 Int. Um is this related at all to what you said limit was to you? Um because you said 

something about, you know as x approaches 1 the output which is 5. 
132 Adam Yes and no, it's um , it can be because the interval is like going to be small and 

it'll be as if it's approaching 1.  
133 Int. um hm 
134 Adam but then you also have this like delta, which you know, must be greater than this 

part of the definition you know x-a and I don't really think of that when I think 
of limit 

135 Int. um hm 
136 Adam even though it's part of the formal definition, it's, even though it's significant I 

just, it's sort of like forget about it [laughs] 
137 Int. ok, that's fair. Um, so I'm hearing from you, as you're explaining this um, so it 

seems like these two things are something to, to satisfy= 
138 Adam yes 
139 Int. you have to satisfy the f(x) minus L less then epsilon and at the same time the x 

minus a less than delta also 
140 Adam yeah 
141 Int. and it's basically trying to, trying, are you trying to find the x that that would 

satisfy the two or? 
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142 Adam um, you’re trying to, find, yeah an interval around the a that'll satisfy the two 
143 Int. ok so yo're tyrying to find an interval around the 1 in this case 
144 Adam in this case yes, the 1. 
145 Int. Right. and then what do you do with that interval, are you? Oh so you take x's 

from that interval or? 
146 Adam Mainly you want to make sure the endpoints work. So it's as if uh you don't 

actually ever equate it. You make sure that um so in this case its like you can if 
you can- you can realize that this is just, um x minus 1's here [points at |x-
1|<delta] and x minus 1's here [points at 3|(x-a)|<epsilon] so this is like you can 
also say 3 delta is less than epsilon  

147 Int. ok 
148 Adam so it's, you have to make sure that the delta.. let me make sure I'm saying this 

right. I think I am. So you're trying to make it satisfy the delta and epsilon 
equation, but you also are trying to satisfy, like as if you combine them, so you 
want to make sure where, this is, if you find a delta you multiply by 3 it's gonna 
be smaller than epsilon still, but you're never given a like an absolute delta 
you're just trying to find a, uh, like sort of like an equation, 

149 Int. uh huh 
150 Adam such that this works. 
151 Int. Ok, alright. Is there anything else you want to add about what you think the 

formal definition says? 
152 Adam No [laughs]. 
153 Int. ok. Alright, so we've, we've gone overlike things kinda spoken generally, um so 

I want to ask you specific questions about different parts of the definition. 
154 Adam Alright 
155 Int. What is epsilon? 
156 Adam Epsilon is a just a number that you use, to make sure that f(x) minus L, the 

absolute value is less than that number epsilon 
157 Int. Ok, sorry, say that one more time my mind was somewhere else 
158 Adam epsilon's just a number 
159 Int. um hm 
160 Adam and you're using it to make sure that f(x) minus L, the absolute value is just less 

than some certain nu- number and it must be greater than zero so you call it 
epsilon, cus, yeah. 

161 Int. um, I forgot to ask you, the reason why my mind was somewhere else, I forgot 
to ask you, can you show this definition graphically? Like in a graph? 

162 Adam [Looks away] Yeah, I can. 
163 Int. Ok, can you try that? 
164 Adam It's like [starts drawing]  
165 Int. you can feel free to use this function or general function 
166 Adam a general function will be easier [laughs] 
167 Int. ok, that's fine. 
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168 Adam um it doesn't really matter you can just choose an a um, let's call it 3 and then 
what it is is you have a function and [draws] the limit cus it's continuous would 
be, [draws] so this would be. The- you've like, the interval, which is here uh less 
than delta, so this is gonna be a small interval even though it's not [small] on the 
graph 

169 Int. It's fine. It's zoomed in.  
170 Adam So it's gonna be, this is gonna be an interval from c to b [draws bracket to 

indicate interval on the graph] 
171 Int. uh huh 
172 Adam and it's gonna be, doesn't actually matter if it's closed or open. And then from 

that you're gonna find, you subtract the function, I mean the function at that 
value the point minus L you get a number less than epsilon so the limit would 
be this, so any, if, for in between here you're gonna find a bunch of numbers 
tha, that if you evaluate them there and you subtract the actual limit you'll find a 
number that's less than epsilon. 

173 Int. what is the actual limit in that case? 
174 Adam in this case it, it'd be, as you approach 3 it can be 5 
175 Int. ok 
176 Adam a or whatever you wanna call it. So and just as this interval allows you to be 

extremely close to the actual limit in this case 5  
177 Int. um hm 
178 Adam such that if you actually plug in 3 for the limit you get 5 but if as long as you're 

within this interval it's gonna be, the numbers is gonna be extremely close and 
you-, I guess you could call it the error, would be exceedingly small. 

179 Int. Ok, alright. Ok, so um so you mentioned the word error? 
180 Adam Yeah 
181 Int. Um, error in what? 
182 Adam The difference between the actual func-, the l-,  what you think or in this case is 

the limit, 
183 Int. um hm 
184 Adam and what you're getting from points near the limit. 
185 Int. ok, um, ok. Does that change what you think epsilon is at all or? 
186 Adam No 
187 Int. Ok, so you think epsilon is just some number, to make sure that the difference, 

sorry I'm tryin to rephrase, 
188 Adam Epsilon is just well it's a small number, 
189 Int. yeah, it's a small number, 
190 Adam but uh it had- it it measu-, it makes sures that the difference in between the 

actual limit and you know numbers near it is exceedingly small. 
191 Int. Okay, what about delta? 
192 Adam Delta is another small number such that the interval, it makes the interval, sm- 

small but big enough so you can actually, it's not just a point but it's uh, that you 
get numbers that are close to the limit. 

193 Int. Ok, um why do we have this part "For all epsilon, for every number epsilon 
greater than zero there is a delta greater than zero" why do we have that you 
think? Why do you think we have that? 



 

 

145 

194 Adam Because, uh, if you have to have the, if there's epsilon then there is a delta 
because one it, it puts restrictions that epsilon and delta cannot be zero and that, 
if you believe that that one exists it has to satisfy this [circles 0<|x-a|<delta] and 
this [circles|f(x)-L|<epsilon]. It can't just satisfy one or the other. That uh, but 
mainly it's just restrictions on the number not being zero that you [inaudible] 
and then it just, it also uh limits confusion such that you don't have like mess 
up, you know it's saying there must be an epsilon and a delta it cannot be some 
random what what people wanna call them. 

195 Int. So you said two things so one is saying that the epsilon and the delta both, 
cannot be both cannot be zero 

196 Adam Yeah. 
197 Int. Ok.  
198 Adam And its uniformity, it's you wanna, you're stating them beforehand what you- 

the numbers are gonna be called that you're using to, 
199 Int. I see. 
200 Adam to evaluate. 
201 Int. So instead of calling it a and b or c and d you wanna call it epsilon and you 

wanna call it call it delta= 
202 Adam =yes. 
203 Int. So it's a matter of naming what it is. 
204 Adam Yes. 
205 Int. Ok, so what you do you think means, just this part [points to the part in the 

definition] um x minus a in absolute value is greater than zero less than delta?  
206 Adam So it means um, that that part is saying that around a, x around a, if you get x 

close to a it will be, if you take the actual value so you can be less than a or 
greater than a slightly it will be less than a number delta so its, it's actually just 
showing part of the interval is, a is less than delta but it's greater than zero but if 
you remove absolute value then you have, then you have to split you know, if 
you remove the absolute value it becomes less than delta but then you have a 
negatve x minus a is less than delta... plus a, sorry, and the you have x minus a 
is less than delta so, it gives you an interval, 

207 Int. Uh-hm. 
208 Adam such that if you take the difference of the two numbers there'll be, and the 

absolute, if you take the absoulte value it'll be less than a number delta. 
209 Int. Ok, what about the f(x) minus L less than epsilon? What do you think that 

means? 
210 Adam it's um when you start, when you think, you start like approachin it's gonna 

come exceedingly close and if you take the absolute value of the function 
approaching it and you subtract it from what you believe is the actual limit, 

211 Int. um hm 
212 Adam um, you can, uh it's supposed to be less than the uh epsilon but again it's sorta 

like an interval cus it can be greater if you take out the absolute value it can be 
greater than or less than like, cus it's in absolute value so it's saying the error is 
less than, but if it's to  make sure it's not negative so it's not less than zero. 
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213 Int. Okay. Ok, so now we're looking at this statement as a whole. Do you have a 
sense, or what do yout think it, the-the if then is for, you know, the if this then 
that like, what is that for, you think? 

214 Adam It's uh, it's like causation. If this exists then this also has to exist for this to be 
true. 

215 Int. So it's a causation thing? 
216 Adam like, you have to prove. It's not causation, it's uh. For this to be true, if this 

[delta inequality] is true then this [epsilon inequality] has to be true. 
217 Int. ok, um so that's a little different from what you were saying before because 

before you were saying these two things are just conditions two conditions to 
satisy 

218 Adam yeah 
219 Int. so how does this, if this is true then this has to be true play a part in what you 

said before?  
220 Adam um [pauses] 
221 Int. Or does it? I mean it doesn't have to be. 
222 Adam Because uh, it does because if it doesn't satisfy both like I was thinking before 

hand, then one of these is not true and the limit doesn't exist. 
223 Int. Okay. 
224 Adam So the way I was thinking of it is in saying one has, if one is true then the other 

one has to be true for it to exists. I was thinking for this to exist, both of them 
must be true, so both equations must be satisfied. 

225 Int. So for the- for the limit to be that, but both equation have to be satisfied. But 
then at the same time if one is true then the other one has= 

226 Adam to be true for the limit to exist. 
227 Int. So are these now two separate conditions? 
228 Adam No [laughs]. They're- 
229 Int. I'm trying to understand how you reconcile the two. 
230 Adam They're, they're pretty much the same, it's just uh. The way I'm thinking is 

instead of saying, if this is true then this must be true for this to be true.  I'm 
thinking for this [|f(x)-L|<epsilon] to be true then both of these [0<|x-a|<delta 
and |f(x)-L|<epsilon] must be true so there must be this, this [maybe the 0<|x-
a|<delta], this, they're pretty much stating this and giving this to you, 

231 Int. Um-hm. 
232 Adam So this is true, like you can always find something for this to be true but then 

this also has to be true for this to exist. 
233 Int. so if they're saying that you can always pick something for this [delta] to be true 
234 Adam Yeah. 
235 Int. So how does that work with what you said about you have to satisfy both, well  

I mean if you can always find something then= 
236 Adam =You can't always you can find something for this to be true but  you know like 

x minus a less to be less than delta but that might not always work for this part 
now the function of x minus L evaluated at f(x)-L is gonna be les than epsilon, 
that might not always be true from the interval. 
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237 Int. Ok, that makes sense to me. Um, ok, so then do you need to satisfy both or do 
you just need to satisfy this one? Do you just need to satisfy the f(x) minus L 
less than epsilon? 

238 Adam Uh [pause] no, because they're dependent so they both have to satisfy. Like, this 
one [points at 0<|x-a|<delta], well, this one, if this one [0<|x-a|<delta] is 
satisfied, this one [points at |f(x)-L|<epsilon] may not be satisfied, even though 
this one [points at |f(x)-L|<epsilon] is dependent on this one because in this one 
[points at 0<|x-a|<delta] you're choosing the x, 

239 Int. Hm. 
240 Adam this [points at |f(x)-L|<epsilon] is evaluating the function at x, 
241 Int. Ok.  
242 Adam so what ends up happening is uh, you then, this one like, you, even if you just 

solve this one [|f(x)-L|<epsilon] to be true, uh, you work backwards[points back 
to 0<|x-a|<delta] and that's what, technically you work backwards and for it to 
work but uh, you find, you know, this [unclear where he's pointing] is true and 
then you can find the interval, so you must, you're sort of combining them into 
one is satisfying is how I'm thinking about it. 

243 Int. What do you, you said this thing about working backwards? 
244 Adam yeah 
245 Int. like what does that mean? 
246 Adam because uh 
247 Int. did you do that there [points at his work] 
248 Adam yeah I uh cus you, you plugged it in and then you work all the way down 

through here [points at his work of working out the epsilon expression] and if 
it's less than 3 times the absolute value of x minus 1 

249 Int. um hm 
250 Adam cus 3 is always positive 
251 Int. um hm 
252 Adam but you realize that x minus 1 is always less than delta 
253 Int. um hm 
254 Adam so you can always say 3 delta is less than epsilon 
255 Int. um hm 
256 Adam and then it's work-, I think of it as working backwards because you plug this 

[points at possibly at 3delta<epsilon] in and then you found there's this [0<|x-
1|<delta], this is saying this interval is less than delta well, that interval times 3 
is always gonna be less than epsilon so you work backwards to prove that it 
exists even though you didn't technically find an absolute interval 

257 Int. so when you said working backwards, what are you working towards? 
258 Adam you're working towards to find an equation, sort of like this [points at 3|x-

1|<epsilon, 3delta<epsilon] 
259 Int. what does that tell you? 
260 Adam [long pause] it tells you, well this [3delta<epsilon] tells you that the difference 

between the interval and a, so the number surrounding a is less than, times 3, is 
less than epsilon. 

261 Int. ok 
262 Adam just a number. 
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263 Int. ok, alright. Um, alright. So uh one um thing, one last question with the parts, 
why is there a zero here [delta inequality] but not a zero there [epsilon 
inequality] do you think? Why do you think that is? … I mean= 

264 Adam because um if, the like, if the limit does exist than this [f(x)-L<epsilon] is going 
to be exceedingly small and it may end up like flattening out 

265 Int. um hmn 
266 Adam so if you have a flat function like just a constant number then um it doesn’t 

matter where you approach from what side you approach it from you're gonna 
get the same number so if you have like y equals 3 it 

267 Int. um hm 
268 Adam it's just gonna be a flat line 
269 Int. um hm 
270 Adam and if you plug in any number on the line you're gonna get 3 and then if you 

take the limit which is, which, which would be 3 and you plug a number in 
you're gonna get zero 

271 Int. I see 
272 Adam but that interval is still gonna be bigger than zero from this idea 
273 Int. but the interval is still gonna be bigger than zero… 
274 Adam yeah it's not gonna just be a point 
275 Int. oh ok because [point at 0<|x-a|<delta] you're talking about interval whereas 

over here [|f(x)-L|<epsilon] you're not talking, you're talking about 
276 Adam you're talking about, you're comparing a value 
277 Int. which value? 
278 Adam on the interval= 
279 Int. oh you're comparing the values of the [the function for] x from the interval and 

the limit. 
280 Adam yeah 
281 Int. ok, fair enough, ok now I have a specific questions about epsilon and delta. 

How are you doing? Doing alright? We'll take a break in about 10 15 minutes 
282 Adam this reminds me how much I hated epsilon [laughs] 
283 Int. [laughs] oh no, bringing back nightmares, I'm just checking to make sure um 
284 Adam it wasn't nightmares, it's just mainly when I solved them it was like I god, why? 
285 Int. Ok, alright well we'll try to make this quick and pain- as painless as possible but 

alright so specific questions for epsilon delta, in the definiton with epsilon and 
delta, um what depends on what if anything, you think? Does delta depend on 
epsilon, epsilon depend on delta, they depend on each other, they do not depend 
on each other and why? 

286 Adam Um delta, no, epsilon sorta depends on delta. 
287 Int. Epsilon depends on delta… 
288 Adam Because, um delta is giving you an interval for x, 
289 Int. Uh-hm. 
290 Adam And then like epsilon is evaluating x and subtracting the limit, 
291 Int. Uh-hm. 
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292 Adam So, um, they- they depend on each other a little but not like completely it's, a 
weak I'd say it's more of a weak, um connection because, uh if the limit exists 
then there's gonna be some sort of you know, if,  as this [points at 0<|x-a|<delta] 
gets, you know, smaller, this [points at |f(x)-L|<epsilon] is getting, the 
difference is gonna get smaller, 

293 Int. Uh-hm. 
294 Adam but if the limit doesn’t exist like it did in 4 [problem 4 from the beginning of the 

interview], where it, it, you know, it doesn't exist then as this [points at 0<|x-
a|<delta] gets smaller this [|f(x)-L|<epsilon] isn't gonna change, this isn’t [delta 
expression] gonna help [inaudible]. 

295 Int. Uh-hm. 
296 Adam So it's gonna, still not exist even though the function is getting close to that 

point [gestures his two hand coming together horizontally] whereas if you have 
the, like I said, the [function that] exists like here then it keeps getting numbers 
closer [gestures his two palms coming together horizontally] to the actual value, 
the limit. 

297 Int. Ok, so, so you're saying they s- sor- depend on each other but it's, 
298 Adam //Sometimes.  
299 Int. //a weak connection. 
300 Adam Yeah, it depends on the function, I'd say. 
301 Int. It depends on the function, so let's just use number one for example. 
302 Adam Ok. 
303 Int. In that sense 
304 Adam So in this sense they do depend on each other because this actually works out 

good because when you break it down, you find out 3 delta must be less than 
epsilon. So the interval times 3 must be less than  epsilon. 

305 Int. Okay so that shows that delta= 
306 Adam that delta depends on epsilon, well they depend on each other cause the one 

must be 3 times smaller than the other 
307 Int. Uh-hm. So you can always, ok. Um, so let me just make sure um, so can you 

say why um, so since you say the depend on each other can you say why 
epsilon depends on delta? 

308 Adam Why? 
309 Int. Yeah. Or is it just because of that equation? 
310 Adam No, it's not just because of this equation, it's because delta is um, you're saying 

delta [points at the delta inequality] must be greater than the input minu- 
subtracted by what you're centered around [gestures a small horizontal interval 
with his palms]. 

311 Int. Uh-hm.  
312 Adam So you're saying that delta must be, the interval around a number a [points at 

delta inequality] must be less than delta, so you're saying, um the input cannot 
get outside of this region, it cannot be getting, well not region, [but] this interval 
it, it cannot get exceedingly big. 

313 Int. Uh-hm.  
314 Adam And then for epsilon you're evaluating x around a, 
315 Int. Uh-hm. 
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316 Adam and then you're subtracting 1. When you plug in x for, when you plug in a for x, 
so what winds up happening is you're seeing how big the difference is between 
a number near a and the a itself. 

317 Int. Uh-hm. So how does that say that epsilon depends on delta? 
318 Adam It's, uh, because your input, your delta is influencing your input and then 

epsilon must be greater than your input minus your input of a,  
319 Int. ok. or your output [correcting] 
320 Adam your output [in agreement]. 
321 Int. And since, so since output [points at epsilon inequality] depends on input 

[points at delta inequality].. 
322 Adam Yes.  
323 Int. epsilon depends on delta… 
324 Adam Yes.  
325 Int. So what about delta depending on epsilon? 
326 Adam Um [long pause] actually, it, it uh, it's more of uh, because the epsilon can only 

be, is a set number and that the difference, the output can only be a certain 
length apart, that sort of limits also how far the inputs can be, how far apart the 
input can be from what you're trying to find the limit as x- the input approaches 
some number. 

  Int. Can you sort of  just restate what you just said? 
328 Adam Um, so epsilon is the difference between the output and, 
329 Int. Uh-hm. 
330 Adam uh, uh f of x [f(x)] so a number near a and then f of a [f(a)].  
331 Int. Uh-hm. 
332 Adam and then delta is the interval around a, so um, the epsilon sort of influences how 

far the delta can be.. 
333 Int. um hm 
334 Adam from it? Even though it has no direct connection it's uh, delta must.. be within a 

certain length, um not length uh distance from the center however.. doesn't... 
Actually it really doesn't have any effect, I don't think, um, because, it's more 
that epsilon depends on delta than delta //depends on epsilon 

335 Int. //depends on epsilon. 
336 Adam Because, you can always find, you may be able to find an interval such that uh, 

[stops himself], actually, I actually don't know. Because if you go back to 
thinking this idea [circling the 3δ < ε in Figure 5], 

337 Int. Uh-hm. 
338 Adam then you get the idea that the size of the interval must be smaller than the 

number epsilon. That size of the interval times three [3δ] must be smaller than 
epsilon. So the radius times three [3δ] I should say, of the interval must be 
smaller than epsilon. 

339 Int. Uh-hm. 
340 Adam so it influences delta cus if epsilon is set then delta has to be a certain size of 

radius in order to, um, conform to the size of epsilon but I don't know how I, I 
prove, well not prove, show that that exists using the definition. 

341 Int. I see. So you're saying something about the epsilon being set, so you're saying, 
IF the epsilon is set .. 
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342 Adam Yes . 
343 Int. then you know, delta has to conform to this epsilon. Um, so is, so is epsilon set? 
344 Adam [It normally asks for delta]. 
345 Int. One of them is set? 
346 Adam Normally one of them is set, it's not a given number but you're given the 

equation. 
347 Int. So which one do you think it is that's set? 
348 Adam Epsilon I think. 
349 Int. Okay. Why do you think that is? 
350 Adam [pauses] Because it's a function minus the limit so what ends up happening is, 

um, you, it's the function minus the limit so you just, of x, so if you keep it 
generalized which you do when you subtract the limit, you're, you're gonna be 
it's gonna be exceedingly small and approaching zero [points to epsilon 
inequality in the definition] but then you can pull out [points at the work for 
3delta<epsilon], you can pull it out so you get delta times a number normally 

351 Int. um hm 
352 Adam so you get but um, but delta is kinda also set because um, if x minus a but, um x 

is just your input and a is the number you're taking the limit as x approaches, so 
they're both actually kinda set  

353 Int. Uh-hm. 
354 Adam So, [long pause] I'd say they're both set actually just in the fact that uh, they're 

set like sort of independently but the relationship is dependent on each other in 
a way.  

355 Int. They depend on each other, ok. Ok, um, I forgot to ask, where is, where is delta 
in your, in your picture here? If you don't mind using the red pen. Like where is 
delta and where is epsilon? 

356 Adam Delta would be this interval so it would be, um, delta [marks what would be the 
interval from 3 to 3+delta on y=5]. 

357 Int. Ok. 
358 Adam then epsilon in this case would be the difference in the numbers,  that'd be the 

rise so it's the difference between let's say [draws two dotted lines one at y=5 
and another right above ] if you like this, it'd be [marks the vertical interval as 
epsilon], 

359 Int. Ok. 
360 Adam even though it's uh [laughs] not to scale. 
361 Int. I understand. It's fine. So does that change what- what you- what you say deltas 

and epsilons are, or does that fit with what you said deltas and epsilons are? 
362 Adam I say It fits, with what I said deltas and epsilons are.  
363 Int. So how does that- can you explain again how you- what, 
364 Adam cus 
365 Int. epsilon is? 
366 Adam delta limits the size of the interval and this is your interval and delta, this is is 

like the radius in the interval, 
367 Int. Uh-hm. 
368 Adam so delta must be greater than the radius of the interval is what this says 
369 Int. hm 



 

 

152 

370 Adam so the radius is this, delta is gonna be this. And epsilon is the difference 
between the function evaluated minus the actual limit 

371 Int. um hm 
372 Adam which is less than epsilon, this would be you're evaluating as it approaches this, 

the difference between the actual limit and the number, the input close to the 
input you're trying to get to, so it isn't gonna be, the difference between them is 
gonna be exceedingly small but it's gonna be epsilon, a number epsilon so 
greater than that. 

373 Int. ok, alright, thank you for that. So let's see in the definition with x and y what 
depends on what if- if anything? x depends on y, y depends on x, they depend 
on each other they do not depend on each other? 

374 Adam so you're saying 
375 Int. between x and f of x I guess 
376 Adam so you're saying x, instead of using f and x, use y 
377 Int. right, or between x and f of x, it seems kinda silly but  
378 Adam which depends on? 
379 Int. what, yeah. 
380 Adam Um, y or f(x) depends on x. 
381 Int. Ok. Um, ok, how do you feel, do you want to take a break? Or do you…  
382 Adam Um, take a break 
383 Int. Let's take a break.  
384 Int. So, let's return to the beautiful epsilon delta, several more questions here. Um, 

so in the definition between x and y which one comes first and which do you try 
to figure out as a result? 

385 Adam Um, I'd say you try to figure out sort of concurrently  
386 Int. between x an y between x and f(x) 
387 Adam yeah because what you do is, um you're trying to get the interval be smaller 

than delta [points at 0<|x-a|<delta] but you also want it such that the output so 
f(x) minus the uh, minus the limit, or L in this case [points to |f(x)-L|<epsilon] 
will be less than epsilon so, you go down through like this [points to work of 
breaking down epsilon] so 

388 Int. so, so how does that, figuring it out concurrently? I mean, and no one comes 
first, really? 

389 Adam yeah cus like you find out that this like delta [points to |x-1|<delta] and then you 
break it down [points to the work of breaking down |3x+2-5|<epsilon], and you 
keep breaking it down, and you find out that, like normally there's a relationship 
sorta like this [points at 3delta<epsilon] 

390 Int. ok, um so what about epsilon and delta? Which one do you think comes first, if 
at all? and which one do you figure out as a result? 
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391 Adam um, I'd say delta [points at |x-1|<delta] comes first mainly but like you end up 
figuring out [points to the break down work] they're both..., you find, you figure 
out they're both like sorta dependent on each other [circles the general area of 
3delta<epsilon] so they don't really... which one comes first is, you know the 
size of the intervals [points back to |x-1|<delta] like, but then you and then you 
break down epsilon [points at work] and you know you get another, like I said, 
you get like another relationship like this [3delta<epsilon] and uh, but i'd say 
you find pretty much an epsilon and a- i mean you find an epsilon delta, i'd say 
you find the delta first. 

392 Int. so why do you say the delta comes first? 
393 Adam I mean the epsilon's sorta first 
394 Int. oh ok 
395 Adam because um, uh you're, your, cus you break down the epsilon 
396 Int. um hm 
397 Adam and then it ends up that you normally have this sort of uh um relationship in 

between the delta and epsilon [points at 3delta<epsilon]. So it ends up like if 
your epsilon is sorta like set and you solve for it [points at breaking down work] 
you have this relationship such that you know like this delta is less than 1/3 
epsilon and then you got to make sure that works with uh the equation for delta 
[points back to |x-1|<delta] 

398 Int. you said a couple things here. So you said delta is 1/3 epsilon 
399 Adam in, for yes, in this like equation  
400 Int. ok, so is that important that delta is 1/3 epsilon? 
401 Adam when you do multivariable it is [laughs] 
402 Int. oh ok why? 
403 Adam uh, why multivariable 
404 Int. no no like why is it important 
405 Adam just because uh like you wanna make sure that while it satifies that this works 

[points at [3delta<epsilon] it also satisfies this [|x-1|delta] 
406 Int. the x minus 1 less than delta ok, um so uh let me ask you something here, 

because you're now saying that the epsilon is set but then earlier you said that 
the epsilon and the delta are both set 

407 Adam yeah 
408 Int. so 
409 Adam so 
410 Int. which one's set first? I mean, are they both set at the same time? 
411 Adam um, trying to remember, last time I did this was multivariable [laughs] I'd say 

epsilon's set first because um like they're both set because I mean the delta is 
apparently not, is gonna be be greater than zero, you know that much, and then 
like you're just sorta like I guess you'd call it like fine tuning the size and you 
do that using epsilon. so epsilon is set because of the function, and then you just 
find, you know, a delta for the, a certain size 

412 Int. so does that change your answer about which between epsilon and delta which 
depends on which 

413 Adam yeah, I'd say so 
414 Int. so what is it now? 
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415 Adam I say delta more depends on epsilon than epsilon delta 
416 Int. delta depends more on epsilon, ok. Um, ok, uh let me throw a monkey wrench 

into this [student laughs] um, you said this [students work of breaking down the 
epsilon inequality] was working backwards 

417 Adam yeah 
418 Int. right, so how does that fit into epsilon being set if this [points at student work 

on arriving at 3delta<epsilon] is working backwards? 
419 Adam because if you look back to the definition you're saying if this [delta inequality] 

then this [epsilon inequality] 
420 Int. um hm 
421 Adam if you have epsilon set and you solve for this [points at |3x+2-5|<epsilon] you 

end up getting delta [points at 3delta<epsilon] which is supposed to be less than 
the uh the interval [points at [0<|x-a|<delta] so then it's sorta working 
backwards because you solve for this [points at |3x+2-5|<epsilon] and then you 
find delta [3delta<epsilon] and it's, you know, you know this relationship 
[3delta<epsilon] which is then this [|x-1|<delta] 

422 Int. um hm 
423 Adam so it's working backwards because it's as if this [delta inequality] then this 

[epsilon inequality], well you take this [the epsilon equation] and get to this 
[delta inequality].  

424 Int. um hm, ok. Um, so so there are four variables in there, there's x there's f(x) 
there's epsilon and there's delta 

425 Adam yeah four 
426 Int. can you put them in order at all like in terms of process in the formal definitoin 
427 Adam no 
428 Int. no 
429 Adam not even gonna try 
430 Int. not even gonna try ok. So here are some things, so it seems like we finally 

agree, or you say 
431 Adam [laughs] we agree 
432 Int. no, no, no, you say that um  
433 Adam I've made up my mind 
434 Int. you've finally made up your mind that delta depends on epsilon 
435 Adam yeah 
436 Int. and you believe epsilon is set first 
437 Adam right 
438 Int. and so, so in a sense it's like epsilon set first so you're trying to figure out delta 

as a result, is that ok? 
439 Adam yeah, 
440 Int. so some students in the past have told me that what you're trying to figure out 

instead of delta is epsilon. So you're trying to figure out epsilon because you're 
trying to get your f(x) close to L 

441 Adam yeah 
442 Int. what do you say to that? You see that that's the opposite of what you're saying 
443 Adam yes 
444 Int. so what do you say to that 
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445 Adam um, so they're saying exactly that you're given delta in a way, well no, they're 
saying you’re trying to find epsilon 

446 Int. um hm instead of trying to find delta they're trying to find epsilon 
447 Adam but they don't really specifically say that you're trying to find delta- delta is set, 

they're saying, right? 
448 Int. yeah, they're just saying that I'm just gonna figure out what epsilon is 
449 Adam um well um really epsilon is set but it's a relationship to delta in a way 
450 Int. um hm 
451 Adam so it's uh the interval is, I'm saying you're saying while you're trying to make it 

within a small distance from the actual limit [points at the epsilon inequality] so 
then you're finding uh you're finding the, you're, they're saying you're finding 
an epsilon. well, really I'm just I'm just thinking that you're taking this 
relationship [circles the epsilon inequality] and then you're going backwards 
[points at the delta inequality] and finding a delta so, they're opposite of me and 
um 

452 Int. what do you think? 
453 Adam I think.. Uh.. well by the way you put it I'd say that uh either one of us is wrong 

or we're both stating the same thing just in a very very [inaudible] unsimilar 
ways, different ways simply because they don't say delta is set, they just said 
you're trying to find the epsilon. 

454 Int. so what if they say delta is set? 
455 Adam Then I'd say we're both, one of us is wrong [laughs] 
456 Int. Can you figure out, like.. 
457 Adam Which, Who's wrong? Um, not really cus if they believe that than um, they 

probably have a good argument and I can make an arugment 
458 Int. So let's make that argument. Their only argument is that they're trying to make 

f(x) close to L. So they're trying to figure out what my epsilon is.  
459 Adam So me I would make the argument for the limit to exist the f(x)-L must be close 

to, f(x) must be close to L 
460 Int. uh huh 
461 Adam so then you're finding a small interval [points at the delta inequality] such that 

that [points at the epsilon inequality] is true 
462 Int. ok but so it's basically  
463 Adam You're arguing, you're presenting a different argument than what they're saying 
464 Int. yeah 
465 Int. Can you argue against them? 
466 Adam um not really because cus what they're saying is, um.. let's see, could I? um.. 

trying to get, trying to solve.. yeah um I can make a small argument I don't 
know how feasible it would be but I could argue that uh that yes, you're trying 
to make f(x) close to L but by this equation [the epsilon inequality] you're 
saying, you're stating that f(x) must be close to L and what you're trying to do 
is, they're trying to like, do the opposite, which is um f(x) must be close to L so 
there must be an interval such that that is true whereas um what they're trying to 
do is they're trying they're trying to do the same thing is that they're trying to 
minimize um how close it is, 

467 Int. um 
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468 Adam but like 
469 Int. is that ok, is that not ok? 
470 Adam it's, how should I put this? it seems, it doesn't seem natural, it's like yes you're 

trying to make it as close as possible but, if that's true then by, why not just say 
like "as the difference approaches zero" like in the definition as, like that's how 
I see it as like, um you have, they're arguing that uh, you're trying to find an 
epsilon [points at the epsilon inequality] because it's,cus you're trying to make 
that difference as small as possible but I, I'm thinking more of it's like you're 
trying to get this within a certain difference [epsilon inequality] so you must 
find an interval such that it is within that certain interval.  

471 Int. ok 
472 Adam so there's no real counterargument just that 
473 Int. you just disagree with them 
474 Adam yeah 
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APPENDIX K: Relevant Part of Adriana’s Transcript and Written Artifacts 
(From turn 405 to turn 674) 

 
405 Int. Ok, um let's ok, what about this if then statement what is this [points at if-then 

statement] saying right here? 
406 Adriana Um [9 sec pause] ok if like the only, the biggest thing that I'm like unclear 

about 
407 Int. Hm 
408 Adriana Is like why like how come the delta and the epsilon are, are greater than this 

[circles |x-a|] this error or this [circles |f(x)-L|] difference or whatever. Like 
that's what I don't understand  

409 Int. Um hm 
410 Adriana Um, but from what I like, from my understanding 
411 Int. Um hm 
412 Adriana It's the if there's a like a difference here [points at the region on the x axis near 

a] that. Yeah this, 'the less than' thing throws me off cus I don't know 
[inaudible].. but if like there's and error within here [points to a region around 
a] then there has to be an error here [points at a region near L] too but 

413 Int. So this is, this is a statement about the errors? 
414 Adriana Yeah 
415 Int. Ok, um,  
416 Adriana But I don't, yeah, like that's the thing that I don't understand, like, what are 

these like the epsilon and delta like if they're not exactly that error, then like, 
what are they? 

417 Int. Ok, um, let's see… So if they're not exactly the error what are they? 
418 Adriana Um hm 
419 Int. Ok, um 
420 Adriana Well I guess I mean I guess it could be like, uh hm. Yeah cus if I was thinking 

of error here [points at a region near a on the x axis] like I said the error was 1/2 
and tried to make my delta 1/2 but then I would make it be like equal to [points 
to the sign < in the delta inequality] 

421 Int. Uh huh 
422 Adriana And since it's like less than, I don't…  
423 Int. I see, um. You mentioned earlier that... there is a difference between... there's a 

difference between error bound and error? 
424 Adriana Yeah 
425 Int. Right? Did the story talk about error or error bound? 
426 Adriana Um well it gave us an error bound for, for the pancake and then it asked us to 

be, to guess a bound for the batter  
427 Int. Um hm 
428 Adriana Um and then it just wanted our errors to be within those bounds 
429 Int. Um hm 
430 Adriana So it kinda talked about both 
431 Int. Ok, so how does that relate to epsilon and delta and this notion of less than 

thing 
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432 Adriana Um, this error [points at |x-a|] is less than the error bound [points at delta]. Well 
if I call this [points at delta] the error bound, I would have called the epsilon 
and delta the bound, like the highest it could be that we want our error to be less 
than that, that bound 

433 Int. Um hm.  
434 Adriana [Reading the pancake story] Oh ok, so so it does say like we want the pancake 

to be between 4.5 and 5.5 so within an inch of bound so it doesn't say like it can 
be 4.5 and 5.5 so  

435 Int. Alright 
436 Adriana So I guess that's what this would be like, it, it has to be less than that, like if the 

delta or no like if the epsilon or whatever we wanted it to be within a half 
437 Int. Um hm 
438 Adriana Whatever like it would be, let me write this down. [writes 4.5<f(x)-L<5.5] So it  

would want it be like greater than 4.5 or less than 5.5 but it doesn't say like it 
can be 4.5  

439 Int. Hm 
440 Adriana So I think that's what that means? 
441 Int. So I forgot to ask one thing, what is f(x)-L 
442 Adriana f(x) 
443 Int. I'm sorry, what is x-a? 
444 Adriana Oh 
445 Int. Do you think, in the story? 
446 Adriana It's the error of the batter 
447 Int. It's the error of the batter 
448 Adriana Yeah 
449 Int. And f(x)-L? 
450 Adriana Is the error of the pancake size 
451 Int. Ok, I see, ok, um alright, so can you sort of because it seems like you've, it 

seems like you've talked a little bit about this stuff so can you say more, can 
you say again what this [if-then statement] is about? 

452 Adriana Um so I think this is the, like these delta and the epsilon they're the error 
bounds of like what I want, relating back to the story so like f(x) minus L since 
that's the error of the pancake size so like say we want this [points at f(x)-L] to 
be as close to 5 as possible or yeah that was the point but we want it to be 
within 1/2, bound [points at the inequality 4.5<f(x)-L<5.5] so this [points at 
4.5] is the smallest it could be this [points at 5.5] is the biggest it could be, but 
we want it to be within that range [points at the inequality] so that's why I was 
looking for to see if it said that it can be equal to 4.5 

453 Int. Um hm 
454 Adriana But it's not so that's why it doesn't have the equal sign. Um so yeah so we want 

it to be within these two quantities [refers to 4.5 and 5.5] or whatever 
455 Int. Um hm 



 

 

161 

456 Adriana And then we would have to, well cus it says like this one [points at |x-a|<delta] 
first, right? So this one [points at the delta inequality] would be like the batter 
if, if our bound for yeah so if this was the the error of batter [writes error of 
batter below |x-a|], um then then we would get [points at the 4.5<f(x)-L<5.5] 
like, then this [points at the delta inequality then quickly back to 4.5<f(x)-
L<5.5], this is a result of how much batter [points at the delta inequality] we're 
using. So size is a result of the batter that we're using. 

457 Int. Ok 
458 Adriana But it's like it goes back to this [points to for every number epsilon, there exists 

a delta] too cus if there's an epsilon [places finger on epsilon in the statement] 
which means like there like there's gonna be an error bound for here [points at 
4.5 and 5.5] then there has to be an error bound for this one [refers to the delta 
inequality], but this one [points to the delta inequality] is the one that like 
manipulates that one [points 4.5<f(x)-L<5.5] 

459 Int. Ok so so can you say one more time like what is this about again? 
460 Adriana Oh, this is  
461 Int. Like what is it saying? 
462 Adriana Oh this is saying that if there is, basically if you're not like hitting a exactly 
463 Int. Um hm 
464 Adriana If you're not hitting a exactly you're pick another x that um and then so that 

means there's gonna be an, there's going to be an error here 
465 Int. Um hm 
466 Adriana Then you're not going to hit this exactly, the limit exactly so you're gonna get 

something close to it so that means there has to be an error here. So because 
there's an error here you're gonna get an error here 

467 Int. Um hm, ok, um ok. Why do we need for every number epsilon? 
468 Adriana Hm.  
469 Int. In the story? 
470 Adriana Um, [pause] um I think just cus it's um just cus we will have an error here so if 

we can't get 5 inches exactly like if we have to have a bound 4.5 to 5.5 like if 
we're trying to get anywhere within that then that means we're using, like we're 
not using exactly 1 cup of batter so we're, we're like we're either using more or 
less of 1 cup  

471 Int. Um hm 
472 Adriana So if we're getting more or less than the 5 inches which is epsilon, um then 

we're gonna get a number that's like more or less ofthe 1 cup so it's kinda like 
um.  Ok hold on, see if you understand. 

473 Int. Um hm 
474 Adriana If we're not hitting 5 exactly then we're not hitting 1 exactly here so if we have 

an error down here then we're gonna have, er with the pancakes then we're 
gonna have an error with the batter for every number epsilon which is like an 
error with the pancakes, we're gonna have um a delta 

475 Int. Oh I see, so I, I'm not asking about the whole statement, I'm saying about why 
not just for one number epsilon, why do we have for every number epsilon? 
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476 Adriana Um, because like oh I guess kinda how I said like, the batter and the pancake 
was kinda like a proportional thing I think that's why. Like if  you're choosing 
different, for every, for every manipulation that you're making you're gonna 
have a specific answer for it 

477 Int. Is epsilon changing? 
478 Adriana If you're changing, oh. No? 
479 Int. In the story is epsilon changing? 
480 Adriana Uh no it's, well it's eventually it will but not, not as [inaudible] 
481 Int. Not as of? 
482 Adriana Cus it says like maybe, maybe the boss will ask you later to make it a smaller 

error bound but in terms of the task right there it's 1 1/2 an inch 
483 Int. I see 
484 Adriana But epsilon isn't changing in this case 
485 Int. /Ok 
486 Adriana /Like if I said epsilon was the error bound then that's not what's changing, 

what's changing is the error but um yeah I don't know 
487 Int. Ok, ok at this some point I will be asking some final questions, you answered a 

lot of these already but I wanted to ask again as some might have changed since 
the last time we talked about it. Feel free to say the same thing if it has not ok?  

488 Adriana Ok 
489 Int. Can you try to explain what the formal definition is saying using example 1 or 

um basically, this thing, can you say what the formal definition? 
490 Adriana Um 
491 Int. So 
492 Adriana Um, do you want me to use this to explain that? 
493 Int. Yeah 
494 Adriana Oh um. Um ok so I wouldn't know how to use this part though but so 3x +2 is 

our f so that's our function um and if we're looking at like um all x that is 
approaching so the limit of x as, the limit as x approaches 1 of this, this 
function or whatever at a, 1 is [muttering to self, inaudible] 

495 Int. Feel free to explain what, so let's do this, why don't we try to explain um what 
that means. I'm curious as to what you think that is saying now, after that, after 
we've gone over the story 

496 Adriana Um so like ok so I'll try to ok. Um so like if f is a function so f can be like any 
function 

497 Int. Um hm 
498 Adriana And it says  it's defined on an open interval that contains a so yeah a is just a 

point in this like domain I guess 
499 Int. /Um hm  
500 Adriana /Or whatever. Um and it says except possible at a itself so sometimes a won't be 

defined but the point is a is on this interval 
501 Int. Um hm 
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502 Adriana Um so then we're trying to see, we're trying to see that as x, like our interval is 
our x, we're trying to go from, if we're well I guess it's kinda backwards too but 
like if we're looking at as our x axis or whatever as it's approaching a, like or 
we could actually hit a or whatever like if that's on our function, like where, 
we're trying to see the limit of it so we're trying to see where it's where it's at at 
that point a. Um, I can explain it with a picture or something. Uh, um, ok so um 
um ok so I'm just gonna yeah so if 3x+2 is our function and it says like it's 
defined on an open interval so it's going fromnegative infinity to infinity or 
whatever but we just want to know where it is close to 1 so we're just concerned 
about this a, this a point that is in this interval so as like our x axis or like  
whatever like our quantities that we're trying to look at we just want to see like 
where it's at close to 1 

503 Int. Um hm 
504 Adriana And so as x approaches 1 or at 1 um we get 5 or whatever 
505 Int. Um hm 
506 Adriana So I guess yeah. Um, yeah so I think I think a is just where we're concerned 

about getting close to. So even like, if, like if this was our equation for our 
pancake thing and we're trying to get close to 1 cup of batter or whatever we 
would just plug in 1 cup of batter to get to this 

507 Int. Um hm 
508 Adriana Number but if we can't say it's not defined at 1 or we're not getting the right 

result, we would look at numbers that are really close to 1 
509 Int. Um hm 
510 Adriana But I um, yeah 
511 Int. So that's what the formal definition is saying? 
512 Adriana Yeah. So yeah. So I think I think the point of this is that we're looking at the 

number a so that's what we're concerned about is looking at the function cus if 
it's like defined on an open interval than this could be a lot of things but we're 
just looking at this specific number a cus that's what we're concerned about. Um 
and then, yeah, but sometimes it says it's probably not defined at a itself 

513 Int. Um hm 
514 Adriana So we just want to see what this function looks like or does or 
515 Int. Um hm 
516 Adriana Yeah, like close to a 
517 Int. Um hm, so I didn’t' hear any epsilon or delta or anything like that 
518 Adriana Oh I said that I didn't know how to 
519 Int. You didn't know how to do it ok alright, that's fine. Um, did your explanation 

change at all and if it did, why? 
520 Adriana Um it changed from last time just cus I thought we were looking at x and trying 

to pick a point a to be close to x but now that I think about it, well I guess I just 
read this better today we're looking mor at a than anything so a, I would 
probably switch these so a would be there and trying to get close to x and yeah 
so we're trying to see where, we're trying to get close to a and if there's no a 
close if there's no a, like if it's not defined at a we're trying to find and x that's 
really close to a 

521 Int. Um hm 
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522 Adriana Um so in that sense it did change 
523 Int. How did that change? Or why did that change? 
524 Adriana I just read it better, cus I was looking at it backwards 
525 Int. Hm. Ok, uh what is that you're trying to do within the formal definition? Is 

there anything we're trying to figure out? 
526 Adriana Um, we're trying to figure out what let's see if, we're trying to figure out like 

what. What I'm thinking about is like a function is like, not just the function for 
itself, so like applying it to something. So if we’re looking at um, like this 
pancake story or whatever like if we're looking at that then we want to have uh 
like a result so if we're, if we're plugging in like these numbers of batters we 
want to see what we're getting like how big our diameter is for our for um for 
our pancake. Um, and then like not just that so we're, so we're concerned with 
something that's close to that 1 cup of batter so if we can't get that exact one 
we're just concerned with what it looks like more or less than that 1 that 1 cup 
of batter to see how that affects our pancake. Um, and then we wanna see we 
wanna make sure that we're looking at those errors um just so we're not picking 
super random numbers like we have a constraint so we want to stay within that 
to use that  the errors and the error bounds to help us get closer and closer to 
that a or that 1 cup of batter. To get closer and closer to our like perfect pancake 

527 Int. Can you explain that just one more time? So that I just make sure that I 
understand you? 

528 Adriana Ok. Um. Ok so if we're looking at, cus like I said, if we're just looking at 
random functions then it could be anything but if we’re trying to apply it to 
something um like let's say we have a function for getting pancakes or whatever 

529 Int. Um hm 
530 Adriana Like for making pancakes and we have a specific function and we're trying to 

get, we're trying to get really, we're trying to get a which is our 1 cup of batter 
but at a we're not getting our like what we want which is our, our limit, we're 
not getting our 5 inch perfect pancake 

531 Int. Um hm 
532 Adriana So we're looking at xs which is like other quantities of batter  
533 Int. Um hm 
534 Adriana So but we want it to obviously be really really close to a, which is our 1 cup, 

we're only concerned with numbers close to a 
535 Int. Um hm 
536 Adriana Um to get something our f of x really really really close to our 5 inch um 

pancake and. Oh and we want we're concerned with the errors and the epsilon 
and delta so that we can we're not picking like random random numbers we're 
staying within a bound that's really close to a and [writing] so this would be at 
at the most this would be delta or whatever 

537 Int. Ok 
538 Adriana Can't draw a delta sign. Yeah so we're only concerned with x's that are within 

the delta so that we're only getting answers that are within the epsilon. This 
whole thing. Um [inaudible] um, where was I? Oh yeah so we want the errors 
to be like really close to a so that we're only looking at numbers close to the a. 
So that we're getting a really small error to get like the perfect pancake 
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539 Int. Um hm. Ho- did that change at all? 
540 Adriana From? 
541 Int. From before 
542 Adriana Yes 
543 Int. And how did that change? 
544 Adriana Oh just cus I actually can see something that it's applied to and not just like this 

random function that I'm using 
545 Int. Um hm 
546 Adriana Um, but yeah I think when you're, when you know you're trying to get 

something specific then that's when you'll like try different uh, that's when you 
know you're trying to get really really close to that, that number and it's not just 
this point a on the graph or whatever 

547 Int. Ok, with epsilon delta what depends on what if anything?  
548 Adriana Um, the del-, the epsilon depends on the delta 
549 Int. Did you change your mind? Actually, you said the same thing 
550 Adriana Yeah. So yeah, I think the delta depends on the epsilon cus= 
551 Int. Did anything change? 
552 Adriana Um, I think well, I mean in this case.. I think it can- it caaan they can kinda 

depend on 
553 Int. Each other 
554 Adriana Both, yeah in a sense because, but more like whatever you're getting like f(x) is 

always gonna depend on what x you're inputting it but then if you want to get 
something like that's clos- like within delta you need to see if you, like if for 
example here [points to the pancake story] like that our epsilon here was 
already like set [points back and forth between the .5's in the inequality .5<f(x)-
L<.5] then that kind of depended on what we were imple- putting in for x 
[points at a region around x on the graph] but.. but mostly whatever you 
putting in for x will determine what you get for f(x). So I I still say the same 
thing like delta depends on epsilon but 

555 Int. Delta depends on epsilon? Or epsilon depends? 
556 Adriana No, yeah, epsilon depends on delta 
557 Int. Um hm 
558 Adriana But, you like if if epsilon's like already set then you'll manipulate your, your 

delta so it's like within an error bound and then um and then continue to 
manipu-. Wait [long pause] wait, so you're. Hm. 

559 Int. What's happening? 
560 Adriana Oh cus I'm thinking like cus I thought that the epsilon and the delta were the 

errors but they're the error bounds 
561 Int. Uh huh 
562 Adriana And if the epsilon is already set then you would have to change your delta 
563 Int. Uh huh 
564 Adriana Yeah, so I mean, I guess if your epsilon is already set then your delta would 

depend on epsilon [pauses] 
565 Int. What just happened? 
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566 Adriana Uh, [laughs] like well cus just just looking at this [points back and forth 
between the pancake story and the inequality  .5<f(x)-L<.5] um if I said like 
epsilon was an error bound and if they already give me an error bound like I 
want.. my result to be within this error bound here [circles the inequality 
.5<f(x)-L<.5] then like.. then I would try to manipulate um my errors here 
[points to a small range on the x axis on the graph] to be within a smaller error 
bound [points at delta in the delta inequality in the definition] which would be, 
delta would be [quietly] the biggest it can be... Huh.. I'm confused. 

567 Int. Why are you confused? 
568 Adriana Because if epsilon did depend on delta then I could change it here [points at the 

inequality  .5<f(x)-L<.5] or I mean like. I'm confused because they gave me an 
epsilon [points at the inequality  .5<f(x)-L<.5] 

569 Int. Um hm 
570 Adriana And it's already set 
571 Int. Um hm 
572 Adriana And they didn't give me a delta so in that sense it didn't depend on delta… 
573 Int. Um hm 
574 Adriana But then the delta, I would want it to be really close to.. or I would want my 

error bound to, to be really small to, to, to like accommodate or whatever the 
error bound that was already given or the epsilon that was already given to me 
so 

575 Int. Um hm 
576 Adriana [Quietly] Epsilon could depend on delta? I mean, delta could depend on 

epsilon, or does depend on epsilon... 
577 Int. So, do they depend on each other, is it just one way now? 
578 Adriana Um, see cus I was looking at it like the x or the f(x) or the yeah, the f(x) 

depends on the x and that's how I was like saying that epsilon depends on delta 
because epsilon like is related to the f(x) or whatever 

579 Int. Um hm 
580 Adriana But that's just saying the error of the the L and the f(x) depends on the a and x 

but that's not to say that epsilon depends on delta 
581 Int. Ok, so? 
582 Adriana So, I, I think that delta depends on epsilon now [laughs]. Just cus if it's given 

like this [unclear what she's referring to, possibly the story] and you're trying to 
aim at getting like a certain, within a certain error bound then you're gonna try 
to manipulate your entries or whatever to be within a certain error bound 
[gestures a small horizontal interval with her palms] 

583 Int. Ok. Alright, so and so you changed your mind it seems? Um, so how did that 
happen? Why did you change your mind? 

584 Adriana Because I was like given an epsilon [points at the inequality  .5<f(x)-L<.5] and 
that's kinda like the main goal 

585 Int. Um hm 
586 Adriana The main goal is to get the pancake, like that's the main goal and they gave me 

like a constraint or whatever 
587 Int. Um hm  
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589 Int. Ok, of the four variables epsilon delta x and y, which one or which ones are you 
trying to control? 

590 Adriana Wait, what's y? 
591 Int. Oh sorry, epsilon delta, x and f(x), which one or which ones are you trying to 

control? 
592 Adriana Um, I'm trying to control x and f(x), wait x 
593 Int. So 
594 Adriana Yeah 
595 Int. Just x 
596 Adriana Just x 
597 Int. Did you change your mind? 
598 Adriana Um, I think I did. 
599 Int. And if you did? Why? 
600 Adriana I think I said that we're trying to manipulate delta and epsilon but that's because 

I was thinking of delta and epsilon as the error 
601 Int. Um hm 
602 Adriana And not the error bound 
603 Int. Yeah, you, yeah you said epsilon and delta to get the best estimate but now 

you're thinking that you're trying to control x. Um, what why did you change 
your mind? 

604 Adriana Um because that's ultimately what we’re manipulating in the, like that's the 
only thing we can manipulate in the whole thing cus that's like what we're 
inputting, that's the only thing we can 

605 Int. Um hm 
606 Adriana Like manipulate 
607 Int. So between epsilon and delta, which one comes first and which one do you 

figure out as a result? 
608 Adriana Uh which one do you figure out first? 
609 Int. No no which one comes first and which one do you figure out as a result of that 

one 
610 Adriana Oh epsilon comes first and then delta you figure out  
611 Int. Um hm, um did that change? 
612 Adriana Um, I think so 
613 Int. You think so? /Um 
614 Adriana /I don't remember. Yeah I think I did change because I was thinking like that 

whatever whatever um change I was making here so I was thinking of it as 
errors so I was thinking of it like whatever change I was making the x and the a 

615 Int. Um hm 
616 Adriana Would affect the f(x) and the L 
617 Int. Yeah you said delta first and the epsilon as a result because x to get f(x) you 

control the input first then the output, yeah so that changed. How did that 
change? 

618 Adriana That changed because like the, the ultimate goal is to get close to L or to get to 
the limit 

619 Int. Um hm 
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620 Adriana So we want like, we want a goal to be within in we don't want like a 100 close, 
so we want it to be very very close so we said like within a half  

621 Int. Um hm 
622 Adriana Um so then that's how we would figure out like delta it's not gonna be like a 

hundred pounds of batter, we want it to be closer if we want it to be within 5 
inches of diameter, or close to 5 inches in diameter 

623 Int. How would you put the four variables in order like epsilon delta x and f(x) in 
order in terms of which comes first 

624 Adriana Hm, you said epsilon, delta, f(x)? 
625 Int. x, um epsilon and delta and before you had the a and the L in there as well, you 

ordered it that way it seems. I'm wondering how would you put them in order 
now? 

626 Adriana Ok so now I would put them in, wait we don't have the a and the L? 
627 Int. I don't know if you 
628 Adriana Wait you said 
629 Int. Yeah I said the four variables but last time you added the a and the L 
630 Adriana Um, I would put the L first and then the a 
631 Int. Um hm  
632 Adriana And then epsilon and then hm. [pause] Ok I would put I'll just put delta and 

then x and f(x) 
633 Int. Um hm so as you can see it changes quite a bit so why did that change?  
634 Adriana Um, because like L is our ultimate goal or whatever, that's what we're trying to 

get to, a is what we're trying to input to get to L, like this would be the perfect 
number 

635 Int. Um hm 
636 Adriana Epsilon would be how close we're trying to get to L or within  how much can 

we get to L 
637 Int. Um hm 
638 Adriana Delta like see I was confused, I paused for delta cus I was thinking of if you 

could just find an estimate 
639 Int. Um hm 
640 Adriana Like if you have no idea, but I suppose you could just find an  estimate or a 

constraint for um for how close you want to get or how yeah, how close of an 
input you want to put that close to a and then x would be anything within delta 
like anything within that point that you want to plug in and f(x) would be kinda 
like your result of what you're getting  

641 Int. Um hm 
642 Adriana After you're estimating 
643 Int. Um hm so you explained each one but I'm not sure why you ordered them in 

that way? 
644 Adriana Oh um, cus if you're well first I would put your ultimate goal as the first one 

which is the L. And then what you're trying to get to to look at to get to your L 
is a which is why I chose those two 

645 Int. Um hm 
646 Adriana First 
647 Int. Um hm 
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648 Adriana And then I put like epsilon next because we're trying to get really close to L 
649 Int. Um hm 
650 Adriana And we like we don't wanna go this open interval, whatever, so I chose epsilon 

next and then delta kinda similar to epsilon we want something that's really 
close to a so we put a gap or not like a gap like a constraint on it too so we're 
not going to wide  

651 Int. Um hm, but why epsilon first? Instead of delta first? 
652 Adriana Um because we're trying to get close to our ultimate goal, L 
653 Int. Ok 
654 Adriana Yeah so then delta 
655 Int. Um hm 
656 Adriana And then x next because that's what we're gonna try to get close to delta or like 

within delta to get an f(x) that will give us like an estimate or a result that is 
within epsilon 

657 Int. Um hm 
658 Adriana Or just give it [inaudible] 
659 Int. So did you say why it changed? 
660 Adriana Oh um 
661 Int. Why or how it changed? 
662 Adriana I think these two [circles f (x) and x from old order and L and a from the new 

one] I changed them because I thought that these [points at x and a] were each 
other.  

663 Int. Oh right right, ok 
664 Adriana So I thought we were trying to get close to x [instead of a]. 
665 Int. And 
666 Adriana And then these [circles ε and δ] changed because I thought this was the 

difference, so I thought these  [circles ε and δ] were the difference so I put them 
last 

667 Int. Oh I see 
668 Adriana It’s kinda like, cus I was thinking of it like, oh analyze our /errors at the end. 
669 Int. /errors. I see I see ok 
670 Adriana And then these [circles f (x) and x] I put them last because I realized these 

[circles f (x) and x] are what we can control based on all of these [circles L, a, 
ε, δ]. 

671 Int. Hm, I see 
672 Adriana Well this, this [points at x] is what we can control. Once we have all of this [L, 

a, ε, δ] laid out then I can start picking x’s that are close to a and then f of x [f 
(x)] will be what I get. And then I can compare them to what I have [circles L, 
a, ε, δ] 

673 Int. Um, why does the definition start with epsilon? 
674 Adriana Cus that's that's what we're trying to get close to the limit or like, but if the 

limit's our goal we're trying to get really close to the limit so it starts with 
epsilon to show that we're, how close we want to get 
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