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KINEMATICS AND DISPERSION RELATIONS FOR GENERAL PRODUCTICN PROCESSES

Martin Kretzschmar
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February 2, 1961

ABSTRACT

On the basis of heuristic arguments it is shown that the amplitude for

the reaction al + a2 -abl + b2 + b5 and the channels associated with it

allows a . dispersion representation analogous to that given by Mandelstam for

2’

amplitude can be assumed to be restricted, in complete analogy to Mandelstam's

processes of type a. + 3 provided that the singularities of the

1 2—>bl+b

case, to certain parts of real hyperplanes in the (complex) space of the
invariant variables s., = (qi + qk)g. (Here the qi(i=l,2,“',5) are the

particle four-momenta.) The question whether or not - this assumption is actually

Cfulfilled and to what extent it may be violated is not discussed in this paper.

A Lorentz-invariant description due to Kibble for the boundary of the

+is generalized for

physical region of the process a., + a —abl + b2

1 2
arbitrary reactions and discussed in terms of scattering angles for some
special cases. After suitable generalization. of the Breit frame a set of ten
one-dimensional dispersion relations analogous to the three one-dimensional
relations of Mandelstam is obtained by using a method due to Polkinghorne., Each
relation apart from pole terms consists of six dispersion integrals, each of
which corresponds to a certain reaction channel. The absorptive parts are

obtained from analytic continuation of the unitarity condition in the respective

channel. For obtaining such a result it is essential to keep fixed not four

-variables of type s, but three such variables and a fourth variable v,

ik

which was formerly introduced by Polkinghorne and which is a general linear
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function of those which havé not been kept fixed. DProvided that there

s,
ik ’
are no complex singularities each of these one-dimeénsional dispersion relations

can--in a formal way--be derived from a two-dimensional representation, in

which certain three variables s are fixed and whgch consists of twelve

ik
double integrals. It is suggested that if we had analyticity with regard to
all .variables and only real singularities .a possible representation in terms

of fivefold dispersion integrals would be of considerable complexity and

consist of at least 162 terms.

-
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I. INTRODUCTION

The method of dispersion relations has in recent years found a wide
aﬁpiication for the study of elementary particle reactions. Most of the work,
however, deals with reactions of the type aq + a5 —>bl + b2 , while the theory
of those with more than two particles in the final state is still in a very
preliminary stage. One reason for this is that evenvwith only three particles
in the final state the theory is already much more complicated. Nevertheless,

a further development of the theory seemed to us very desirable.

As is well known, the theory.at present is being developed on various
levels simultaneously.

(a) From & heuristic point of view, approaches of a more or less formal

character are. being carried out with the aim of suggesting plausible formulagions

of equations and theorems that interconnect the various amplitudes.

Work done under an appointment supported by the International Cooperation
Administration under the Visiting Research Scientists Program administered

by the®National Academy of Sciences of the United States of America.

-@ Permanent address after September 1, 1961: Max-Planck-Institut fur Physik

und Astrophysik, Munchen 23, Germany.
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(b) Attempts are being made to correlate these equations and theorems
with experimental data, eventually after appropriate approximations. _ .
(e) The heuristic approaches have to be put on a mathematically rigorous ¥
basis, starting from the "axioms" of quantum field theory. This part is by farb
the most difficult and has so far been carried through successfully for only a
small number of problems.
This paper clearly falls into the first category, but we hope to coﬁtribute
in subsequent publications to the two others also. Generally speaking,'the
aim of this paper is to put the theory in a'form as closély as possible analogous
to Maﬁdelstam's formulation (1) of the theory of reactions of type
a.-+ a., —b, + bé . In the later sections we specialize oh reactions

17 %270
ay + a, —>bl + b2 + b5 B but as much as possible the formulation is in mére
general terms. A diécussion of spécific physical reactions, in particular pion
production in.pidn-nﬁcleon collisions, has aiso been carried'out,vbut is to be
presented in a later publication. Here we restrict:ourselves to tﬁose aspects
of the theory which can be fﬁrmulated‘quite generally.

The first problem of course, 1s the definition of appropriate variables.
As one might expect, wée will infrdduce quantities 8oy = (qi + qk)2 s Where
qi, qk are particle four-momenta, and will call these s variables. They are

related to one another by various linear equations, which will be discussed in

detail. As for the description of the physical region, we will generalize the

-
Y4

Lorentz-invariant, elegant. formulation due to Kibble (2). All these kinematical

questions can, of course, be treated on a mathematically rigorous basis. The

[
*

next point will be to write down dispersion relations, not only for the reaction

a, + a but also for the associated '®hannels"

17" % 3 7

a; + bl - a, +,b2 + b5’ al + b2 —>a2 + bl + b3 B

a rigorous theory one would have to prove the possibility of various analytic

-9bl + b2 + Db

etec. In order to do this in
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continuations. In the present context, however, we are content with an application
of the heuristic and purely formal technigues developed by Polkinghorne (3). All
objections that could be raised against his work would likewise apply to +this one.
Keeping an arbitrary incoming and an arbitrary outgoing particle in the state
vectors, and after generalizing the Breit system in an approﬁriate way (such

that the vector of momentum transfer between these two particles has a vanishing
timelike component, which, of course, is possible only for negative momentum
transfers), we can readily apply Polkinghorne's techniques and obtain in_this way
a set of 10 one-dimensional dispersion relations, each connecting a set of six
"reaction channels" to one another. Since the amplitudes are determined by five
independent variables, the important question arises how to choose four variables.
which are kept fixed. For obvious reasons we cannot for -our purposes simply
choose four s variables, but we have to take three s variables and a quantity

Vv, which is a general linear function of s variables.» If those sv variables

which represent the total center-of-mass energy in .the respective, "reaction channels"”

vare introduced into the dispersion integrals as integration variables, the

dispersion relations assume a very neat form, which is completely analogous to that
of the three one-dimensional dispersion relations given by Mandelstam (l).

This is an intéresting starting point for speculations on the form of
possible multidimensional dispersion relations. The first thing to do here is
to remove the quantities v from the pictUre. We will show that, at least on a
purély formal basis, for each of the one-dimensional dispersion relations one can
write down a two-dimensional dispersion relation in which three s-variasbles are
kept fixed and from which the corresponding one-diménsional relation can be
derived. It would be interesting to see if these two-dimensional representations

could be proved in perturbation theory. It is to be expected that, if their
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validity can be established at all; it will be restricted as in Mandelstam's

Y

case (;) to‘certéin combinations of external masses with normal or with only certain
types of anomalous thresholds. Possibly there will also be restrictions on the . @
fixed variables. Up to now these questions are completely open.

Once the two-dimensional representations formulated solely in terms of
s-variables have been established, we might ask the furthér question: If the
amplitudes were analytic functions in all five variables and if there were a
five-dimensional dispersion repreSentation,‘what would it look like? Mandelstam's
result might suggest that we have to write a fivefold dispersion integral for each
combination of five independent s variables. If this were the case, the
representation would consist, besides the pole terms, of 162 fivefold integrals.

It is well realized that within the framework of a rigorous field theoretical
approach the present calculations do not prove anything. It is hoped, hoﬁever,
that they will not be quite useless, but may provide us with some definite
‘suggestions on what the results of a more complete theory might be. G. F. Chew (4),
in his fecent outline of the possible framework of a complete dynamical théory

for gtrong interactions, points but why investigations of this type are desirable
and what use can be made of them. He even raises doubts that correct final

answers can be obtained from quantum field theory in its present form.
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v II. DEFINITION OF VARTABLES

We begin with the consideration of a general reaction, for which the

P

total number ofiingoing and outgoing particles is n. Each particle is characterized
\ , '
by a four-momentum 9 (i = 1, 2,5 +yn), which has a positive timelike component for

an incoming particle, and a negative timelike component for an outgoing particle.
With this convention all momenta in Fig. 1 are pointing inward and our formulae

maintain a maximum of symmetry. The mass of the ith particle is given by

q 2 = mi2 , and energy and momentum conservation are expressed by

EE q. = 0. (1)

Now denote by o, the set of indices i = 1,2j+++yn, let o be a subset of

0

6., and o that subset of o. which is complementary to o (i.e., oAT = 0

o’ 0

and 0UOT = 0 Each such o defines a "reaction channel," i.e., it may be

O)'
associated with the reaction in which the particles characterized by 1ieo
are incoming (and ieo outgoing). The square of the total center-of-mass energy

in this reaction channel is given by

5y 2
5 T (iec qi) ) (2)
This Lorentz-invariant expression will subsequently be called an "s variable, "
- and we shall try to make as wide a use of these variables as possible. For obvious
~ reasons we are particularly interested in reaction channels with only two incoming
particles, and we introduce a special notation for the associated s variables,

2 > o A
Sig = Sig = (I F ) = w4+ mS 4 2q.q . (3)
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'n .
From energy and momentum conservation we obtain a set of %‘- Z ( o } = 2n-l
. ﬁ:‘=

identities for the s variables,.

All the 8 can be expressed in terms of sik .and mi2 :

. 2
EEDY Z Q.9 = Z o8, = (r-2) Z m.“, (5)
o ieo keo 1k i, keo ik ieg.
' i<k

where r denotes the number of indices contained in o. Therefore we can deduce ‘
from the identities (4) a number of (not necessarily independent) relations for
the Sip 2

2 2
Z Sit " (r - 2) Z m = Z _ Sy - (n-r-2) Z_ m,~ .
i, keo ieo i, kec ieo

For later purposes it will be convenient to have some of these equations written

explicitly:
n n o
for ¥ =0, 0 empty: O = Z S41c - (n - 2) Z m.~ (7a)
: i, k=1 i=1
i<k
for r=1, o= j: m.2=z S. -(n-3) Zme, (7b)
J . ik
1,k,1-3 i#3
i<k
for r =2, o0=34,8: S.,= . s,.. = (n-1L) 2. m,° . (Te)
. Jje- ik . 7. i
. 1;4.3,.,8
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By subtracting (7Tb) from (7a) we obtain another useful equation,

n . n

Z s.., = (n-154) m.e 4 Z m,° . (8)
k;l LK ‘ do i |
k£3.

Equations (7c) and (8) ‘wil]'- be the most freqently used relations. In the case

n =L (7c) reduces to S1p = S5y 0 S13 = Spy ; S1) = ‘525. and each of the

relations (7a), (7b), (8) reduces to the well-known equation

2- 2. 2 2

812 + s15A+VSlL|- = ml + m2 + ‘m3 + mu .
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ITT.  CONDITIONS FOR THE PHYSICAL REGICN : v
In the physical region of any reaction the four-momenta qi of the L8

particles involved :(i = 1,2, -«+yn, Wwhere n is the total number of incoming
and outgoing particles) are real timelike vectors (since qi2 = mi2 > 0). This
fact will be used in this section to derive inequalities that tell us where

in the space of s variables the physical regioﬁs of the vafious reaction channels

are situated.

Theorem I: 1In the physical region any two of the n four-momenta a; satisfy

the inequality

2

m, a. q. a. da

i i, 17,

A 14 — 2 ] = 9% (20)

1'% a9 m, a; 9

2 71 2 2 3
2

a. 4 q. 4d. m .

15 11 l5 12 15 4

any four of the n four-momenta q satisfy the inequality
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w2 a, d a, q q, q
11 ll 12 ll 15A ll lll-
4. q m, ° Vq a. a, 4
i1 i i i i i
R =t 2 23 2 " = 0
totsty = '
2
a, 4, a. q. m, ° a. q.
15 ll- 1-5 12 :L5 15 1]_,.
a, q a4, q a. q m, 2
lll- ll l)_'- 12 ' lLl- l5 lll-
(11)

Analogous determinants, constructed from more than four four-momenta q_ vanish.
i

Remark: This theorem can be formulated in terms of s variables by using Eq. (3)
Also we could, following Kibble (2), express. AV ,.Ai P40 Ai 144 as
‘ 172 17273 172737l
homogeneous, polynomials in s variables. The resulting expressions, however, would
in general (i.e., for n=5) not be uniquely determined, since we have many
relations (not only one) among the s variables,

v
Proof: First we prove (11). Denoting the metric tensor by g™

00 11, 2P 33 ik

(g ~-g =-g =-g7 =1, g =0 for 1 % k), we can write the left-hand

side of (11) in the form

v Y
E: e g 94 ZI a g q, .
v M L W M oV
VAR = .
11121514 | 2: " 2: . (12)
@ 8 . e a, . ..
LY 1Y ok 1Y

1]

. BV oy ,
q; ) " det (g7 ) - det (q; 9; a5 a; )

det (q. q, Q.
. 1 ?2 1z 4y 172 73 74



UCRL-9555

-13-

Here det (qi q4; 9 9y ) denotes the determinant, whose rth row

17273 4
(r =1, 2, 3, 4) consists of the four components of the vector a - Equation(11)s
T
follows from the fact that det (g"') = -1 and (det (a, a. . a. )2 >0, if _
i, 7, 15 1), . ¢
all the four-mbmenta qi B qi s 4. 5 Q. are real. To prbve (10), we first find

i 1
1 2 3 L
a Lorentz frame in which the fourth component of each of the three vectors
a. » 4 qi vaniShes.: The argument then proceeds in the same way as before;

i 1
1 T i
we have, however, instead of det (g“y), the three-rowed determinant

00 01 02
g g g
10 11 12
g g g =+ 1
20 - 21 22
g g g

Similarly we proceed for the proof of (9).' The last statement follows from the
fact that any five four-vectors are linear 1y dependent, and therefore by combining
rows and columns in an appropriate way the elements of a whole column can be made

to vanish. .Introducing into (9), by means of (3), the variable s, ; » we find
172

Thus the hypersurface in the space of the s, (i,k = 1,**4n,i # k) defined

&

by Aﬁ i = 0 consists of two hyperplanes. ' In the physical region we have either
172 '
s, 3 < (m:,L - my )2 or s, > (mi + m, )2 The first inequality obviously -
172 1 2 172 1 e w
holds when par ticle i is in the initial and 1 in the final state, or vice

1

versa; the second inequality holds, when both particles are in either the initial

2 ¢

or final state. Thus we have
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Definition: s; 1 is called an 'energy-type variable" if in the physical region
' 172
s, . > f{m, + m. )2 . It is called a "momentum-transfer type variable"
i i i .
172 1 2
if in the physical region s, . <"(m.i - m, )2 .
; 12 1 2.
Theorem IT: The six hyperplanes, defined by 4, . =0, A, ., = 0, and
e, . 1,15 1115
A, . =0 are tangent to the hypersurface defined by,lA. A = 0, Similarly
1213 :Lll.el5 :
the four hypersurfaces defined by Ai ;1 = o, -Ai s 5 = 0, Ai i i = 0, and
17273 1727k 17374
Ai i1 = O are tangent to the hypersurface defined by Ai 144 =
2737k 17273
Proof': In order to show that A, = 0 1s tangent to 4, . ., = 0, we need only
— . i1, 11123.5
prove that all points common to both hypersurfaces are double 'points. Writing
the equation. A, ; . = 0 1in terms of s variables, we obtain
: ' ijii - : ,
17273
O=5 41 =m12mi‘2m12+711 (s5 5 -mi'e 'mie')(sii 'mi’2 'mig)
17273 1 2 3 172 1 2 173 1 5
(s5 4 _miz_mie)
273 2 )
1 2 2. 2.2 2. 2 2,2
- Fmg (g g oy Temy )Ty T sy -mp T em %)
1 273 2 3 2 173 1 3
+ m, 2 (Si' -y 2. m, 2)2 (14)
3 12 1 2
. 2
Tnserting s, . = (mi + m, ) , we find
172 1 2
O=Aiii="711[mi (Sli-m'g-m'e)
1103 1 By L '3
Imi (s; 5 -mig-mig)]z, (15)
2 1.3 1 )



UCRL-9553

wl15a
which proves our statement on Ai' ;= 0. . In a similar fashion we show, that
‘ 172 ' ,
Ai ;= 0 and Ai 4 = 0 are tangent to Ai 14 = 0. Now we prove the second
1t3 273 | 17273 |
part of our theorem. With x =q. 9. , X, =d.,d, , X, =q. 4, we can .
1 i, 11{ 2 1y ll&_ _ 3. 15 i), L@
write :
-2 2 2 2 '
A, .. o=mo A L.+ X a .+ X, a,,+ X, a,,+2X%XX,a
111215;h- i) 111215 1 11 2 22 3 33 :l 2 12_
* 2-xlx5 815+ .2.x2x5a23 , (16)
with coefficients a, depending on s, . , s, . and s, . . By straight-
ik 1,3, ;113 _1215
forward calculation one can show
1811 21 11 %13 B2 %23 '
2 2 2
! + + = (m, “+m, “+m )4, ., .
Ea i, i, 13 111215
212 2op 813 %33 %23 %33
(17)
%11 %12 %13
' 2
a a a = (o, .. )<
12 . 22 23 i)i5ig (18)
a a a
13 23 331
&
: v
From this we conclude: For Ai, i3 = 0, then Ai iii is a .quadratic
17273 172737h v
3 ,
form Z Xixk aik with eigenvalues 7\.1 ;4 0, )\.2 = A, = 0. Therefore,

i, k=1 ‘ 3
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three coefficients bl, b2’ bB‘,(dependlng on si 00 Sy 40 si 5 ) exist,
| o, 12 173 273
iligiBiu ='€'(lel,+ b2x2.+.b5xj) , € being the sign of’ Xii
This proves that the two hypersurfaces Aﬁ i3 = 0 and Ai 544 = 0
17273 172737h
have only double points in common and are thus tangent to each other.

such that A

The meaning of this theorem can best be seen from a discussion of the
case n = b4, for which we refer the reader to Kibble's paper (2). Roughly
speaking we may say: The set of inequalities (11) is mare restrictive than
the set of inequalities (10); these in turn are stronger than the inequalities (9).
In saying this we have considered all_reaétion channels simultaneously, When
we wish to pick out a specific channel, we have in addition to specify which
s variables are of the "energy type'" and which are of the "momentum-transfer
type". »

In special cases some of the inequalities (9), (lo), (11) admit a simple
interpretation in terms of scattering angles. To show,this let us consider (10).
Denoting.the timelike and »spatial part of g (1 = 12, sege 1)) by 44, and

I—> L - -

o
q. | . | gk lcos eik; g. ° qk )

_> . . ! .
qi respectively, and defining the angle gik by 5 5

we find the general expression
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A ( E !. a I sin @, + q. a E sin ©
oo = (q, . . . : o, . . . . . . -
111215 110 i, i 15. 1215 120 i, 1‘5 115
+ q J 2l eme )2
L on QL f cosin G,
.150 =2 ;Ei i3,

+ ai 2 a. 2<a_ 2 (cos™ 8. + cos “ei ; +teosTe,

1 2 3 172 173 273

-2cos®, ., cos 8 cos &, , - 1)
1o 173 273
o e

+ 29, ~q Al Pl | q.%(ess (8, . + 6, ., ) - cos.B, )

10 TR0 | T | T 1tz 1o 11

- - -2

+ 2q. A Q. .| . “(cos (®, ., + 8@, . )=-cos.® ., )

110 150 %h; %BIQ;Q 112 512 1115
+ 2 q % |q ( (o + 8 ) - cos © )

a4 o L a. | - |a, [q; cos (e, . -cos®, . ).

120 150 i, 15 i i1 1511 . 215

(19)

T -y —

. It is easily seen that the last four terms vanish if E. s Q. qi are coplanar.

1 2 3

This is the case, for example, when we consider a reaction:with three particles

in the final (or initial) state.ih its center-of-mass system and when qi s 4. s

1,

1 2

qi are the four-momenta of these three particles. Another simple case is a

3

reaction with only two particles in the initial (or final) state. When'_q_1

and q2 are the four-momenta of the two incoming particles, then in the

= 2

’center-of-mass_system.we.can put ai?'i q2 =

vanish, and the first one reduces to

-

q

2

The last four terms in (19)

@
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Doy = S1p -32- 31 (l-cose 6, Y= o . (20)
3 3 3

The expression for (ll),_ which is quite complicated in the general case, reduées

now to
' -2 > 2= 2 2 2 2
A,... ==5,9d°q “q. (1L -cos“6,, -cos” e, =-cos” 8, .
12151u_ 12 :J.5 1) _ 115 llh 1512+
+ 2 cos ©, ., cose,.. cos O, . )=o0. (21)
| s e T

Obviously to fulfill (20) and (21) we have to require

=1= cos eli55 + 1 and cos .(Ql15 + Gliu)fcos 6, ; =cos (911 -8e.. ).
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IV. DEFINITION OF AMPLITUDES

Iﬁ\this section we collect_seme'definitions_thatvareEuseful‘fef—the TN
discussion of dispersion relatiohs, In doing so we restrict ourselves to the
consideration of reactions;ﬁith only two incoming and an arbitrary’numbe? of
outgoing particles. (Polkinghorne (3) has given a heuristic derivation of
dispersion relations for a reaction with one nucleon and -m mesons in the initial.
state and one nucleon and n  mesons in. the final state ﬂ(ﬁmzl,, nZ.l)". For this
derivation a particular-causality,requirement'bad to be used. To fulfill this
condition a '"causal product" was definedl and it has been explicitly assumed
that the amplitude possesses a representation in terms  of these: "causal products."
Subsequent investigations (z)r_hqwever, showed that in the S-matrix formalism
using reduction formulae (3, 6, 7) and local commutativity such representations
would be obtained only for m=1 or. n=1. Thus, if we have both m=Z2 and
n 2z 2, the connection of Polkinghorne's generalized dispersion relations with the
S-matrix formalism is nbdt clear.) For reasons of simplicity we consider only
scalar hermitean fields., In the following we-assume that the four-momenta .of the
two incoming particles are given by 'qi ‘and =) those of the n-2 -outgoing
particles by Azr Dy Y, Using‘the LSZ-formalism (6) and denoting the time-
like component of qi(i-= 1, 2, »++ n) by Q4 We can.express the matrix
elements of the S matrix-and_its.adjoint éT as follows:

A
'S(q'fl’ qu-l’ ) q53‘ ‘qg} ql) =. TR<,qn’. q‘n‘-l’ ° '.: q'B,; q?) ql)"

-

(22a) ¢



UCRL-9553

20~

(-1)- (em) "8 (a o +a,)

s'(a , 2% ) =
qn qu_l qB q2 q‘l | \/(2ﬂ)3n~2]qlo' .2|q-20' . . . -2'q_no| .

Tplapa, s 8550y 9)) (22v)
where

L

0,0 Fpa ®

Telap e, prrnagsae) =9 dhx5d

Caple 3,0y Grydseees 350x5)s 35000 lay)

(23a) .

b at 4 Sagxs layx, - i, X
rA(qn,qn_l,-.-,QB;qg,ql) = Qfa xd x| A e 373 TR U1 X1

Caple (350000 35000 3,1 G ) ] lap)

~ (23Db)

Here we have used Screaton's notation (7); R is defined as

2 = (en)” - (-0 ela ) 2la ], (b

and Jk(xk) = - (0O~ mkg) ¢£ (x,) is the current associated with the field

ﬁk(xk), which describes the particle of momentum Gy - The expressions
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-8 [jn-l (xnfl)’ Jn'e‘(xh'e)i.i"JBK.B ;-JQ

= ze (Xn-l - X )

n-*2) O.(x =% 5) o0 (Xh,' X‘B)"S (x

n-2 n—j.\..

/

5

[jn-l«(xn-l).,. [jh(xh)? [33(X5)’ Jg(o)]]"’] ’ (25a.)

6 [35(0): 35(x50, 3), ()5 7753, ) (5]

n-1

a(x =X

= Ze (--XB_) e(x5 - Xh)

n-3. -Xneé) e(Xn-E n-l)

] [~~[[32(O)’ 35055)] : Ju(xﬂ]»"' In-1. (Xn-l)]’

(25b)

where the summation goes over all permutations of 3, U4, ..-,n-1l, are apart from

=3

a factor (fi)n identical to the advanced and retarded.commutators as defined
in L8Z (6). The expressions (23) will be used to define dispersive and absorptive

amplitudes. D .and A:

Dlayya, ys 095509 ) :%’[T'R‘ (dp a7 778559 9) +°Ty V(qnf Yopr 8% )]

(26a)
Ala,a,_q» j--,qi;q?, ‘11)_ = ;—1 [TR(qﬁ; qn_l,_'”-,__qasqe_, SO AER N CRPL-ERSPRERY 5;qg,ql)];
| | )

such that
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Tp = D+ iA, (27a)
TA = D - iA. (27p0)

If we can (denoting by * . the complex conjugate) show.

To (4 07 95 4 9) = Ty (G Gypp 855 9 ) |
(28)

¥

Ty (4 goce0dss 9y 9) = TRA(qn’ Uoyr 7955 G G

then we can conclude that the dispersivg-and absorptive amplitudes D and A
are real functions. In fact, assuming the validity for our theory of the TCP
theorem (8), Eq. (28) holds in the physical region, where all four-momenta

R
in terms of vacuum expectation values (cf. LSZ (6), Eq. (43)), taking the complex

qi(i=l,2,~-~,n) .are real, This 1s most easily seen by expressing T, and TA

conjugate, substituting . Xy —.- xi (i;l,E,-‘-,n),> and using the TCP theorem in

Jost's formulation,

O P A D N SN E N

1 “ee 1

= (o lji ()3, (k) 13, (g 0) . (29)
1 2 2 n n

The representations (25&) and (23b) are, of course, not the only representations
of TR and TA in terms of expectation values between one-particle states. We
could as well have kept the other incoming: particle (with,momentum qg)_ in the
state vector and "converted" Particle 1 into a field operator. Likewise we could
have "Qonverted”_thg outgoing_particlevwith_foqr-moméntum‘ q, into a fieldfope;ator '

and kept any one of the other outgoing particles_(B,h,---,n-l)' in the state vector.

Indeed, these other representations will also be of importance for us:later on.
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V. GENERALIZATIONS OF BREIT'S FRAME OF REFERENCE

It -is well known that in order tb,derive for elastic scattering of a
Particle 1 by a Particle 2 the dispersion relation in which the momentum- y
transfer (qi +~q‘i)2 is kept‘constant,g_it is most convenient to use the so-

called Breit system. This is the frame of reference in which for the timelike

|

componenﬁs_ofiﬁhe four-momenta ql, qfl we have

g —
and for the spacelike components
> -
, = 2

In discussing more general reactions we shall wish to keepvthefmomentﬁm transfer
-bétwéen particles of unegqual mass constant._ Then we cannpt_fulfill\simulfaneouélyl
the two equations corresponding to (30) and (31). Usually one chooses to satiSfy
the second equation. This, however, would not be of great use for our purposes,
singe we wish to generalize Polkinghorne's_(z)’ heuristic proof of general dispersion
relations for the case in which there are only two incoming particles but the

masses of the particles involved méy,all,be different from each other. For this
proof it is_essential.that the vector of momentum transfer between the two particles,

¥

which ére kept’jn the state vectors in a representation. of type (23) of TR and

A

component. In. addition we will require that in this system the timélike components

T, (in the case of (23) the. vector q, +'a.) have a venishing timelike «

qio of all four-momenta qi(i=l,2,{-g,n) be equal to invariants that depend linearly

on the total energy s,,. .This leads,uniquelylto:replacing (30) and (31) by

o°
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Qo * Yo = % . (52)
Q+re)aq = (1-0¢)a, (33)

and to the ansatz

(1+c¢)aaq -(1-c)a,
1% i for 1e0,3,.-,mel. (34)

S TTS) a - (1-¢)a)”

%o

Evidently (32) cannot be satisfied unless sln;E_O.5 Therefore we will assume

explicitly in the following that gUEE(L Equation (55) has the solution

a; = (1 - c) iz a; = (1+ ¢) iz and this inserted into (32) yields

ml2 - mn2'+ 512-_ 6;2‘=,m12'- m% -k c§>2 = 0. On the other hand,
iy = (q10.+ qno)e'- (5; + a;)e = -4 592.. Thus c¢ can be expressed in terms
of sln as
m2 -m2
c = —E—E——-;—— . ' (35)
in

The wi(i=2,5,--~,n-l) can now be expressed entirely in terms of s variables:

we have, using (3),

2(aya; - aya + ¢ (qqq, + q4a)) = -

From (8) we find
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5 (W) m2+ 3 w2 (57)
S., + S, = =. s.. + (n-4%) m,” + . 37
;l in koo ik i Tl mk
k#i

Therefore, with the. abbreviation (note that A= 2q,, = - 2q )

2 : 2 2 2 : (mne - m12)2
A =.—..,((]_ + c)‘ql - (l - c) q‘n) = 2_(ml + mn ) - S-ln - S Ly
: 1n
(38)
we can write (i=2,3, *++,n-1) as
1 mn2 - ml2 : n-1 5 n-1 5
® TR (859 = 84+ —5— (syp = X s+ (-8 m™ + " )
1n =2 . k=2-
k#i
(39)
Furthermore it is useful for the following to introduce
w,
vV, = - —= for i=2,3,...,n-1 . (k40)
i W -~
2 .
From (1) and (32) .we_have Gyt gyttt qn-l,O,z'O’ _thereﬁore
°
L v5‘ *orerE v, )= 0, _ (k1)

for 1i,k=2,3,+-+,n-1 .

o
-
b
i
<
L8

(k2)
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In particular we have vi2 = -’vi.. In the'physical region “é represents the
energy of an incoming particle‘and is thus positive. A1l other wi belong to
outgoing particles and are negative. Therefore all vi except v2 = =1 are

positive quahtities.‘ After these preparations we can proceedvto discuss the

dispersion relations..
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VI. DISPERSION RELATIONS

An important point in the derivation of general dispersion relations is the
selection of a set of variables, which are kept fixed at real values in the

physiaal region of the considered process. Polkinghorme (3)  suggested choosing

the vi defined in (40) and in addition to this constructing a set of linear
combinations ‘Sq of the four -momenta ql,qg,"~,qn, such that the timelike

component of each Sa - vanishes, and keeping the squares of the spatial parts

_.)
(6 a)E at fixed values. But since we have restricted ourselves to regctions with

only two incoming partiéles; ;t is actually sufficient to have only one such
vector, namely the momentum transfer between the two particles, which have been
kept in the state vectors--for example, in representation,(23)~the vector

9 + 9. Thus in order to derive the dispersion relation for the amplitude: as
represented in (23) we propbse to keep fixed the quantities vi(i=3,H,"',n-l),

81 and all Sy with 2=i=n-l, 22k<n-1 and i # k. Not all these variables,

of course, are independent of one another. As shown in the preceeding section, for
slrl < 0, the timelike component of 9 + 9, can be made to vanish, and then an
examination.of Polkinghorne's heuristic derivation of the dispersion relations shows

that his arguments can be applied even in our general mass case without any changes.

5 is an analytic function

We thus find that TR(gb, cen, v,

Vs n-1” 23?""$n-2;n-1)

in the upper half of the complex ab ~plane, while TA(mb, va""vn-l’ SEB""’Sn-E,n-l)

is an analytic function in the lower half plane (except for cuts along the real

axis). We define T(aé’-VB’.."vn-l’ 525’.'.’Sn-2,n-l)" to be the analytic function,.
which equals TR in the upper half plane and TA in the lower half plane.

We then can write the dispersion relationlL (ignoring the evenbtual necessity

*

of subtractions)
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Dlos Vapee ¥y 10 Spgr " %np nay )
' . . 00 . LR
. }oo " A(w,e, ?5”"’ynflf Spgr " Sp o no
7 2 f
-0 w o - (1)2
(43)

or

L P - X oo
+00 | Alw 0’ v5, Vo Spw "snag,n-l)

. : o . [ y .
€—+0 ® ®'y (a)2 + ie)

(hd)

Since we have not necessarily . sln < 0 . throughout the physical region, we assume
that the dispersion relations can be continued analytically to those parts where

SlnE:O’ In this connection note,that.the:quantities_ vi (i=2,---,n-l), on which

the amplitudes depend, are not singular at. éln-= 0.
One might ask whether or not one could avoid introducing the :variables

Yoy etV and replace them simply by s variables. - In order to decide this

3’ n-1
‘question let us consider the simplest example, n =v5,'which.exhibitsAall.essential
features. . As is easily demonstrated, there are five linearly independent s

variables, and therefore in.order to write one-dimensional dispersion relations

four independent wvariables have to be kept fixed. As such: we have proposed to

choose
2 o2
5 T , . 2 2, -
o 513 - 535.4_ _25___.-__ (515 - 325 -.53)4‘ + me + m)+ ) )
v = 3 ) : '
vV, = - = - .
p) wy o 2. o 2
- 21 s . _ 2. 2y
S1p T %5t T 55 (s)5 Sp3 " Spu T My Ty )

(45)
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and Sp3 Spl Ss)” From (7c) we have

o o 2 2
515 T %23 T Sou T Sz T My T My My (46)

so that 515 ;s also fixed. The remaining s variables are 810 315{ S
and 325, 555, SAB' Now we shall wish to replace the integral with respect to
®', in (L4) by a sum of integrals with respect to.s variables, so.that we obtain

2

a dispersion relation resembling Mandelstam's one-dimensional relations.’ For this
one has to discuss in some détail the structure of the absorptive amplitudes. As
will be shown in a moment, all six reactioﬁ‘channels,.whose s variables have nqt‘
yet been fixed, contribute to the dispersion relation and therefore the remaining
six s variableS'appear in the denominators of the .dispersion.integrals. ‘Hence
none-of -these six s . variables can.be choseﬁxas a fourth fixed variable, and‘we
necessarily_have to resort to certaih functions of the. s. like thehabove‘ VBJ
Altogether the structure.of the absorptive ‘amplitude leads to»thé.concluéion
that in general (n arbitrary) éll s .variables sdg'ﬁhere o .contains eitlter
‘1l or n, but not -1 and n . simultaneously, will appear in the denominators -of the
dispersion integrals. Therefore no other s variableg than S10 Spw Spl 1 Sy0 nm1
" or variables dependent .on these can'be chosén as fixed s ‘variables. For all further
needs we have -to make use of-the vi.
Since a complete discussion of the general case Would be too involved, .
. we shall in the following again restrict ourselves.-to n = 5{ o
.We will now eliminate from (43) or (44) the integration with respect to

w'2 in. favor of integrations over “5111

we have to decampose*the‘absorptive.amplitudejand introduce appropriate sums over

or s'i5 (i=2,3,4). For this purpose

intermediate states. First we observe that from . 6(x). + 6(-x) =1 we obtain
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e(xl - x2) 9(X2 - XB) -9_(3(3 - Xg) 9(X2 - Xl) =9(Xl' Xe) 'G(XBV"XE) ,
(47a)

or, equivalently,
_ e(xl.- xg)ve(x2 5-x5)_-e(x3‘- x2)fe(x2,- xl).= 6(g2 - xj),-e(x2 - Xl)'

(47o)

Therefore, using the Jacobi identity, we find

= (6l3,(x)), 35(x3): 3,001 -8 13,(0): §5(x5), 3, (x)1)

N

P (-8 0 - ) [32.(0')’ [35055), Ju(xu)]i]i +0x) [3,(:), {3505, -32.(0)]]‘
+ 8l-xy) tja(*B)?_[Je(o)’ i lx) ]])< (48)

For the right«hand side we :can find other equivalent expressions, for example

- (-e<xu-x5> [ae(d), ERENS ;3<x_5)‘-]] + 8 (-x,) {Jh(xh): 3200, 35@%)]}

Rl

+ 6(xy) [33(;;3), [jxh(xu)_, 32(0)]]‘_), | (49)
and by taking the average of (48) and (49) we obtain/
o (-e(xa-xu) (3,(0), [35(23),,Ju(xh)]] + e(xa},[jh(xh), [33(x5),. 32(0)]]
el [33@3'),_[31,(:,«&), 32<o>]]), (50)

where . e(x) =.8(x) - 0(-x).
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Using any one of these formulae, we can define a decomposition of. the
absorptive amplitude into partial amplitudes; for example, using (48), we define,
for i=2,34 (let i, X, £ be (2,34), (3,2,4), or (4 3,2)),

-19_5}(5 -1q_)+X)+

A(li)((bgy VB, 525; 55)4_: SL‘_E) = sézz'f d)-lixe. duXB d'll-xi.l. SM(XQ) e()ﬁ{ - .Xae.) €

(o] [l 3,000 ] 8,0x) o)y s (51a)

| N S W T -1q,%, -1,
A(5l)(‘-"2,’,"5’ Sp3 Sl Slp) = Fia Ko 4 %5 0 Xlﬁs‘% (xp) 80x = %) e P

Cagl 3y (xg) [a (s 3,60l - (510)
Thus we have

Ay V55 5555 8510 810) = a12) _,(3) 4k ,G2)  ,063) 06k

o (52)

The question_arises whether;aﬁalogousAdecompositionsVof the absorptive amplitude
derived by using (49) or (50) instead of (48) are equivalent to (51). We shall
come to this in a moment. |

-Let us remark that theuindices_on the right-hand side of (52) indicate with.
. which s variable we'wish to associate the respeéti%e partial amplitnde., It will .
turn out that_ A(li).resp. A(Si) - can be obtained by analytic continuation via the
unitarity conditidh_from,the'imagihary»part:of‘thé,émﬁlitude_in'tbe'physigal region
of that reaction channel,_in which JEI; _resP.vaEE _ represents the total center-
of-mass energy. To make this statement somewhat more explicit Wé now introduce

a resolution of unity into (51).
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‘Let the one-particle states of our theory be associated with masses
My pz,f'-,um,'and the mass of the lowest two-particle state be Hc; then the

‘resolution of unity  is given by
b 2,2 2 o2 ' ' ' ,
, I=zfa’p fap® p(u7) 8 (py -NK + 27 )|er) (pr] (53)
y .

with the weight function

m - \
o(17) = X (1 - 17 + o (1) (54)

_pc(ué)

= 0 .for u2‘(_ué2- .

Introducing this into (51) and using

5, -V + B 2) = 23y 8lng) 8le - (F+ B5)) = 2p; 8(py) 86° - ),

we find
(1),
AT 0y Var Sp5 85 510
= -m p(sy;) 8(ayq+a54) Tlagaisay (a) + a3)7) T(-(q + a;) 7lale)
X (55)
2 051) ,
A0 V55 855 850 8

= =mplsg;) 0(-ag4 -a,0) Tlaglay| - (a5 + a3)7) T((ag + a;)7, s Ty 9 )
| (56)
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where' we have used the abbreviations

r(p,0 |y |m,0,) = (en>5\/elplo| 2l (- 200, )y 57

T(p0ys Gt Qp PO) = o1 (2) \/2|Plo 2lpyplf aye

epgey [6(y) 13,50 3,000 Inymy ). (58)

Here ( and ]p2a2) are arbitrary state vectors, which satisfy

l ll
+ gi + p, = 0.1in (57) and P+ G+ q,+ Py =0 in- (58). When

.and )' both are dne-particle states. and describe an outgoing

particle « - and an. incoming particle B respectively, then P(plallqi|p2a2)
continued analytically to the point where_'qi2 equals m.? ‘ié by,defihition the
rengrmallz?dlco?pllng constant . g g Similarly T(pl 12— qk, qz pgaé), wvhen
continued analytically to a reglon where Py -and qz are real and belong to the
physical region of the reaction B + £ - + k, is just the amplitude‘of this
reaction. ' In general, however, the intermediate states in (55), (56) are
multiparticle states. Thus, when 4(-(qi +‘q.)7|'<in (55) represents an. outgoing

state of particles « °°',a w1th total center- of-mass energy'v 117 then

g
, I."(-(q_l + qi)qui|ql) is essentlally the amplitude of the reaction 1 + 1i. ->ai + +o%
in.itS‘physical region, likewise T(qé, qk; qz,,(ql + qi)y) is ‘the amplitude of the
reaction 5 + k + 4 f?oi +° 0+ O} and is also in the physical region, provided that
( V3

,SQB,SBh,SME) lies in the physical region:of 1+ i -ok+ £+ 5. Thergfore.
the partial amplitude .A(li) ( 3‘,s B’SBA’ he) when cdntinued analytically to the
phyéical region-of ‘the reagtion_ﬂl +i-k+ £+ 5, represents the imaginary part
of the reaction amplitude for 1+ 1i-k+ £ + 5,land the right-hand side of (55)

is nothing-else than the unitarity condition. -In a similar fashion we can discuss (56).
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We can novw investigate the possible equivalence %o (51) of partial
amplitudes defined with help of (L49) or (50). After intermediate states have
been introduced, the only part that might be affected is the analog of (58). As
long as we consider multiparticle intermediate states all three possible forms of
the partial amplitudes A(li) and A(Si) are equivaleht, since then
T(plOél qk% qz, pgaé)A and its-anélogs‘are related. to amplitudes, where particles
k -and £ are either both incoming or both outgoing. The order in which 'k
and £ are_taken»out‘of the state vector and converted into current operators
clearly does not matter. But considering. one-particle intermediate states and
using (49), we would now find the analog of (58) related by amalytical.continuation
to the reaction amplitude B + k > + £ instead of P + £ >+ k. Since we know
from the Mandelstam representation that both these reaction amplitudes-are_one and
the same analytic function, the analytic_continuation from the physical region of
B+ koa+ £ or from B+ £ —>a+ k. to the unphysical points needed in (55)
‘and (56) will in either case lead to. the same result. From this consideration. it
is also evident that a linear combination of (48) and (49) is not admissible.
Previously several authors (9,10) have used_the decomposition (50) and were
consequently led to the conclusion. that the residues of the one-particle pole
terms essentially are the product of a. renormalized coupling constant with thé
’dispersive-part>only of a reaction amplitude of type o+ k > £+ B. A
perturbation calculation, however, contradicts this result and predicts instead
of the dispersive part the full amplitude, and this comfirms our above conclusions.

Using (37), (39), and (L40), we now can express ; in terms of V., s

2 3
524, th’ and any one of the six variables 8,4 ©Or si5 (for i=2,3,L4). From

1]

03’

(39) and the remarks following this equation.we see: When W, 2+ @ (-),

then each of the three "energy-type' variables s also tends to

122 S35 Sus
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+ (-0), while each of the three "momentum-transfer-type" variables 515, 51 )

s tends to - (+c0). Thus introducing these variables as integration variables -«

into (44) and using (52) and the content of (55) and (56), we can write (the small
imaginary parts in the denominators of the dispersion integrals have to be taken
' |

negative, when. the integral is with respect to an "energy-type'" variable, and

positive when it is with respect to a . "momentum-transfer type" variable):

(11) -
T (0,V.,5,.,8.1,5.) = %& %: Ay (515 = Hy V32803851 8)0)
2 J b J -
RY 2’ "% 23’ V3L 1;2. &1 &5 2
I , Ho 11
NG BT
. Ay (s5; = My 1 V37 8039 S4) S)p)
: 2
My 7 ®s51
11).
L4 00 A( S'_ .,V ;8. _,S 1,5,
Y T N
k14 4 1i : :
€0 i=2], 2 gl .- s ¥ ie
He 1177 P1i
(51) oy
@ AN (S LV, S5y Sy )
. 2 W lp
+ f ds'5,j_ . o1 3—5 34 , (59)
2 s'_, =~ s.. + ie
Ho 51 51 -
Here we have taken into account that A(ll)> as a function of s due to (54),
(55), and (56) vanishes for 51 < HCE "apart from isolated points Hyg.'-Likewise .
A(sl) behaves as a function of S5i'~ Aa(ll)‘ and. Aa(sl) -are the expressions (55)
and (56) taken at s15 =,pd?' and S5y = ud respectively, but with the factor &

T . p(sli) resp.. m é(s5i? left}out, Ifiwq specified the reaction so that we .
could use selection rules, we would eventually“be able to show‘that the residﬁes of
some of the pole terms wvanish .and to find highgr-values for the lower limits of the
integrations. This will be seen in detail when in subsequent papers we treat reactions

involving pions, nucleons and antinucleons.
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The dispersion relation (59) for the reaction 1+ 2 —» 3+ 4+ 5 connects
vthis reaction "channel" with five other channels, namely with the reactions
1+3-2+h4+5 1+bo52+3+5 5+2-1+3+h4 5%3-51+24 L
54 451+ 2+ 3.  If we had derived a dispersion relation for -any of these other
five reactions, using the same methods as'above and also keeping Particles 1 and
5 1in the state vectors, then we would have found formally exactly the same result,
the only difference beipg that now the variables ?5’ 525, SBH’ sug would be
fixed at certain values in the physical region of one of the other five reactions.

In all the foregoing we have assumed that Particles 1 and 5 have been
kept in the state vectors. Obviously we could have chosen any,other'pair.of
particles instead._ We would then have obtained a different dispersion relation
connecting a different set of six channels to one another. All together, we can

construct 10 different one-dimensional dispersion relations, each relating a set

- of six channels to one another. Focusing our attention on a specific reaction,

say 1+ 2 =3 + Ly + 5,. we find that there are six dispersion relations.in.which
a dispersion integral with respect to the square of the total energy 512 occuré,
and that there are four other dispersion relations in which the total epe?gy is

a .fixed variable.

It is quite informative to write down in form of a table the various sets

of‘fixed variables and related channels.
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In addition to the fixed s variables one of the

six eolumns correspond to dispersion relations in which‘integrals with respect to s

the last four are for fixed

S

12°

functions v

TABLE TI: 'The»One-Dimensional Dispersion Relations For n = 5
Particles kept in 1% ik [ 15 o3 AN 25 AN %5 15 12
~the state vectors '
’Fixed s variables 315 s]-_)+ 315 325 Sgh 525 th 355 sLL5 512
Sob | B2z | Sz | Siu | S13 | S13 | P12 | P12 | P12 Sy
525 825 S5, 515 515 Slh 315 S1), 513 355
w5 | P35 | B3k | s | S35 fzh) a5 | Solk | ez | Fls
‘IntegrationIVariables s S, s s s S s s S s
corresponding o ’ 12 12 12 21 V21 21 31 31 ] 13
related channels s s o < < <
1| P13 | P13 | Pek | %23 | So3z | Pmp 32 b2 1k
815 | S5 | Sk | Sos5 | So5 | Soy | S35 | Ssu | Syz | 515
%2 | Sk | Pse ! sl Sm %s1| S| Ss1 Ssi| Sose
1 %sh) Sus [ S5z Ssu | Sus | %53 | S | Ssp | S5 Soy
% s Ssh Ssse Tus o Psh o Sis 1 %Sk S50 fos

has to be kept fixed. The first

84, oOccur,
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VII. SOME CONSIDERATIONS TOWARDS A GENERALIZATION OF THE
MANDELSTAM REFPRESENTATION

For n=4 one has a set of three one-dimensional dispersion relations,
each relating two of the three reaction channels. These one-dimensional relations
form the starting-point,for Mandelstam's (i) discussion -of double dispersion
relations. For né5 the analogous set of dispersion;relations.is given
symbolically in Table I. It is therefore tempting pé sgarch for possible forms
of multiple dispersion relations, from which those of Table I can be deduced.
Such considerations can,_of course, be only of a purely formal character. What
we wish to assert is this: The dispersion relation (59) can be derived from
a,ﬁwo-dimensional-dispersion relation with fixed 525, Sp)p S5h’ if the singularities
of the amplitude can be assumed to be restricted to the real plane of the
remaining two variables and if they are located there in:a way similar to that
in Mandelstam's case n=4. If such a two-dimensional relation should exist, one
would expect it to hold (analogously,to n=4) only for certain combinations. of
external masses and possibly only for restricted values of the fixed variables.

At present the only conceivable method of investigating thié question
uses the framework of pefturbation.theory. For n=4 it has thus been possible
to establish the validity of the double-dispersion relation (;;), but for n=>5
not even the analytic properties of the contribution from the simplest loop
diagram are known in detail. There is evidence that in general there are
complex singularities (lgz.£2>: but their precise location is unknown. Among
these singularities there are complex pole terms. Cook and Tarski (;&) have
investigated their positibn for some special cases and found that they may or
may not lie on. the physical sheet. It should be kept in mind that the
singularity from a certain graph may in some cases cancel out singularities

contributed by other graphs of the perturbation series (15). Also it has been
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suggested by Eden that,.even if thére are éoﬁﬁiéx singularities on the

physical sheet, their occurence might be restriéted fo é finite number of

graphs so that the rest of the ampiitude (including all higher-order
contributions) might éatisfy a double-dispersion relation (16). From this point
of view there is a‘certain interest in answering the question on what the double-
dispersion relations for n=5 may possibly look like. Eventﬁally.thé formulas
given beiow-will have fo be modified to inélude contributions. from complex
contours.-

Thé first problem, which presents itself guite naturally, is to remove
fhe-dpantities v from the picture, in othef words to search for double-
dispersion relations in -which threé s variables are kept fixed and which
consist of a sum of double integrals with respect to s variables. Obviously
every pair of integration4variables together with the threevfixed'Variables has
to form a set of five independent s Variables. Considering again the1Case in
.which Particles 1 and "5 have been kept in the state vector, and neglecting
for the moment possible pole terms; we are thus led to-the followingiansatz,
which is the most genéralvone, if we assume that the singularities are
réstricted to certain parts of real hyperplanes in completé anaiogy_to _

Mandelstam's case:
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13)
A(lz) . )
@ . Y(s! 13).
ds _ ., |
1 ?o ds'y, f2 13 (S'lg )
HE) - W 2 DR
) A(12,14) )
i | | b T Sy
1 ?O ds'12 f ds 1} (8'12 512)(5 .
T2 2 u2
5 “'C (o]
. 2 (13,14) )
a }I) dS'lll- ' _ S 3)(8'111- _ Slu
}_ f ds'15 5 (S 13 N
+ 2 5 )
| ) c 35)
| (25,
] - )(S' 5 - 555)
00) 1 f dS'35 (5125 - 525 5
1 [ ds 25 1,
* ne 2 “ﬁl
| ) . 2(25,45) )
(0.0 » .
ds! ' - )(S , .
L ?O ds'25 fg )+5 (s o5 o
+ 5 , .
§ p'C [
(35, 15) |
(e 0] ' .
ds! ' - )(S . ;
;L_.. ?D ds'55 fg )_;5 (S . .
+ 5 5 N
i lJ'C A o
5)
2(12,3 —
0 0] .
- 12 7 512) (855 7 55
| “ | ) 12, 45)
¢ A(' ' |
. OO ]
1 ?O ds' f2 ds L5 (S'lg S .
+ —é- 5 V]JC
1t "
2 (13, 45)
: : - ;
a0 1 ?O dS'LL5 1 s )(S'u5 Su5
z e B o (8'y5 = 545
o+ 5 5 .
* p":3 (]
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4]
., o oo 1 (13,25)
+ == f ds'25. 'f ds'15 : ) . -
7 HCE MCQ (s o5 - 525)(s 15~ 313)
e o (1)4725)
v = as'ys [ sty — A '
ST e (815 = 350 (8", - =)
@ © (14, 35)
+ 1—2- [ ds'55 f ds'llL » A”C
T uce uc2 (s'55 - 855) (s ) = 59),)
(60)
Here the "spectral functions" A(ij’kz) depend on s'ij’ Sdkﬂ énd the fixed

variables s23, 824, S3h' On the right-hand side, of cogrse, all 12 termé have
to be takeh at.ihe same'boiht P 1in the five-dimensional space of s variables
as on te left-land side. P can be given either in éerms of |
(mb, v5, 525, th’ shg} or in terms of any of the 12 combinations _
(le, 513 Spzr Ssiy 542)’ (512’ S1)p Spzr Szl Shg)"'° The denominators
of all integrals have to be thought of as being furnished in the usual fashion
with small iméginary parts. Likewise we could ha&e given a forﬁulation in
terms of Cauchy principal values. As in Mandelstam‘s case we should add on the
right-hand side of (60) certain Qne—dimensional»dispersion iptegrals, but we
left these out, being interested mainly in the twé-dimensional integrals.

Let us now inVestigate how the one-dimensional dispersion relation

(59) can be derived from-(60); Iet i,k,£4 %be a permutation of 2,3,4, and

define

2 2

Ay = 2 (535 = Sy = S35+ mk2 * mze)’ (61)
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2 2
Bl R R E: i (62)
k=1
C; =B, + A, D; =B, - A (63)

then we can write, using (37), (39), and (42),

.. 2s_.+ C, 2s_. +.D, . 2s., + C, 2s_. + D, .
v - 1i ) 1 _ 51 i - . - 13 .4 - - 51 1 (6”-)
ik 251k + Ck 285k + Dk 2s5k + Dk 2$lk + Ck

.We thus have three relations,

1 o Vi
S35 7 Vi S1x = "5 (€5 - vy O =5 (O - v Cp) s (65a.)
1 Vi
551 7 Yix S5k T T 3 (Dy = vy D) =57 (D = vy Dy (65p)
- 1 Vik
S13 % Vi S5 = 3 (Cyt vy D) = -5 (D v v, Cp) e (65e)

We see that for all three types of integrals the problem is formally the same,

namely: Given an integral

f(z'l} Z'g)

| . 1 -
J e 1 faa 2 (é' -z )(zk -z.)
1 1 2 2

introduce a new variable v by 2z vz, = a and decompose the above integral

1" %2
into a sum of integrals, each of which depends on only a single one of the

variables .z 22; We define 'Ei = vz'2 + a, Eé =yt (z'. - a) and then

i 1

fina
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, _ N »
(z'l zl)(z'2 22) + (z‘l 2, (z 5 z2) v (z‘l vz', a)
= (z'l,- Ei)(z'g - Eé) , - (66)
and therefore
N N 1 I N
(z'l-- zl)(zfg'- z2) (z'l - zl)(z'2 - 22) i(z'l - zl)(z'é - 22)
(67)
Thus
t 1
f dz'l [ dz'2 e v * 2)
z'. =2 )(z', - z,)
1 1 2 2
f (z',, v, a) f.(z',, v, &)
= [z, 2 + [ asy 2 2 , (68)
2'y -2 2ot %
with
f(z' s 2! ) v .
£.(z', v, a) = [ dz', —e (6%)
2', =V T 2'. + VT a
2 1
flz', 2' ) '
£p(2'n v, 8) = f a2’} O : (690)
z'l -V 2’2 -8

- This outlines the procedure by which all integrals of Relation (60) can be

decomposed into tne-dimensional dispersion integrals With fixed v. We obtain

(11)  ,(51)

the following dispefsion relations for the absorptive parts A

that occur in (59):
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(11) ,_, .
A (s 117 Vzr Spx Sz SMQ)
(11, 1k) '
1 © o ATTT(s N STy, Sy S5 8),)
= T [, s 1x il 1
: — ) T T ,
He 8% " Vs 83T 5 0 -5 Vi O
L (1i,18), .
1 @ . A (s'15) 8'yp Spzr Sz1p 8 )
v 1 asyy, 1 1
1 - 1 = - =
ucg . S'yp = Vs (813 5C =5V, Cp)
@ A(li’5k)(s' s! s S.ys Sy )
1 ) 1 5k’ _"2% "3l “hol
+ - f ds 5k T T
. 1 1 —_— —
w2 8l * Vg ('35 ¥ 50+ 5 Vi D)
C
(11,52),_, \
L1 ‘f’o - A (s')4 s 50 Spz? Sl S)p)
£ 56 ' 1 i
“c2 S5z+vzl(511+2c‘+2.szz)
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(51) (.4 |
A (s 517 v3, s23, th, 542)
00 A(lk’Sl)( ! s'_., s s Sy 4)
_ 1 [ s ' 1x’ 7 517 "23’ "3l CLp
= X 1k , T T
-“c2 S'lk + Vg (s 5 + 5D 5 Vi Ck)
(14,51),_, \
O (s'1p 5’5y %2y Sy i)
T 2 12 4y (s'.. + Lp + 1y c,)
, 17 T4 V51T 21T B Vin e
k
N mv A(5 ,51)(8'5k} S!5i". 3251' Sj)_l_’ SLJ_E)
+ = ds'_
T o ok s' -V (s'_. + L D, - Ly D, )
My S5k T Yki ¥ 51 T2 P17 2 Y4k Tk
(54,51),_, \
s 27 4 AT (s sy 8Ty Spp Sa Sip )
T 50 _, R § 3+ ’
uce S'sp = Vg (8755 + 5 D5 -5 Vi, D)

(T1)

These equations as they stand, however, are cqrrect only when we have no
contributions from the one-particle intermediate states., In general the
dispersion relation (60) will have to be suéplemented by additional terms
corresponding to'the graphs of Fig. 2. These terms arise froﬁ the contribution

to the absorptive amplitudes as given by (55), (56) from one-particle intermediate
states. They are represented by pole terms with residues being the product of

a renormalized coupling constant and a scattering amplitude at some unphysical
point. Apart from these two factors, Eqs. (55) and (56) predict also a step
function © (qlo + qio) resp. © (-q5o - in)’ which comes from the requirement
that the intermediate state be a state of positive energy. In the specific
coordinate system that we use the arguments of the step functions can be

expreésed in terms of s variables,
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1 4.2 2
%ot Yo = 55 &7+ C; +2p7), ‘(72)
2
511 T My
: _ 1 2 v 2 ) |
-(q50+qi0>’ L, B (&7 + Dy +217) . (73)
S51 “B

Here we have used (37) through (39) and (61) through (63). Thé quantities
A, Ci’ Di depend only on the fixed variables s23, SBA, s)_#2 and the particle
masses,5 These step functions are not obtained in the framework of a perturbation
calculation, and therefore we suppose that they would not have appeared had we
carried out the analytical continuation of (55) and (56) somewhat more carefully.
In all equations that are to follow we shall ignore the step functions;

The scattering amplitudes, which occur in the residues of the pole
terms, themselves satisfy dispersion.relations. For example, we obtain by the
usual methods for the amplitude T(qﬁ, % 9y ql) of the reaction
1+ i-%k+ B the following dispersion relation:

m g g . €rin &
Bka. —ail Bicx ~okl
T(qB, %5 4y Q) = - § > .. T 732 '

=1 My 7Sy Mo = S1x
oo . agll’kﬁ)(s' s S..)
1 . , 1i° ik
+ = [ as'_.
oo 1i .
s'_ .. - s_,
5 1i 1i
.C : .
1 ©® a(lk} 16:)(5'11{’ Sik) . -
L7 ae 2 (7)
LI 1k ! - s
Mo 1k 1k

S

T(qB, qk; qi, ql) depends, of course, only on the invariants sli’ Slk’ ik
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~4 7=,

. - 2 e 2. .
subject to the condition sli + slk-+ sik = ml + mi + m, + mB ... The right-
hand side has been furnished as usual with small imaginary parts. The

‘absorptive amplitudes in (74) are in accordance with (22) through (26), defined

by

a(.li’ks:)(sli’sik)

- -} @07 - felayl - 2lagglf ateT F (li () 5, 0ay)
(752)
| S

(1k, ip)
a (130 85%)

v . | ‘ -19.x% . o
' (75b)

We can now write down an explicit expression for the contribution of

the pole terms to the dispersion relation (59):

y 2 €110 Baxp Ep a5
: 5 5
(i,%,2) ap=1 - (4, - sli)(ua - 85,3)

m (54, %),
) 5 i 1 }’O ds! & (s'sp Sy )
. - 2 7 54 1 s
(i,k, £) oa=1 My = 81y HCE s'5y - 85,
m | (11,%8), _,
DY y 548 1 ?O . a (s')55855)
. : - 2 7 i, - )
(1,k,£). B=1 Y .uce s'1; 7 Sq4
(76)
Here' 0. indicates a summation over .all permutations of (2,3,4) and the

(i,k £)
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quantities 853 resp. Sli. are the yalues of s5£ resp. Sli_ at the points,
. _ , o2 o2 ,
described by viZ{ 523{ SBM; SME. and sli = HJ resp. 553 = “B-f They are

given (cf. Eq. (65¢c)) by .
v
3 - A . 2
- Viz ' 2
S.;°° 5 (Dz + Vv CiF2 Hg ). (78)

In writing the first term of (76) we have used (67) and combined by pairs
the double-pole terms arising .from (59) and (74). Therefore the first term of (76)
is independent of the ‘v ‘Variablést This however, is not the case for the
second .and third term of (76). Here the counter terms, which are required in order
to form expressions not -dependent on Vv -variables, but analytic in the two
independent variables ‘sli’ §5
» . Which might be contained_in.the third and fourth term of (59).

R, are ordinary dispersion integrals in 'sli

and 552
Thus, supplementing the double-dispersion relation (60) by the expression

and with s.., instead of Eii’ we find

(76), but with s instead of s i1

54 54

that the one-dimensional dispersion relation (59)»follows from this by the

procedure discussed above. The resulting expressions for the absorptive parts

are (70) and (71), but supplemented by

(11, 48) ., -
R S StV
T o lo .Ly
B=l g+ vy (8105 ¥ 565+ 5 Vi D)
(1i,x8),_, .
Eogp & (8N 85y |
sy ' = (70")
by~ vy (8T ¥ 5 C 5V, D)
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(51, 40)
) Ii LA ST
a=1 2 1 iy 1
My * Vs (855 T 3D T 5 Vi &)
(5i)ka) 1 J
B e (s Si5) ,
=3 ) T 1 (72)
Hy * Y, (s 53 +5 D, + 5V p Cz)

It isclear that from the double-dispersion relation (60) supplemented by
the one-particle terms only the one-dimensional relation (59)ncan be derived,
but none of the nine,others,\which'are listed.symbolicaliy in Table I. This is
so because in the other relations different combinations of s variables are kept
fiied. Mandelstam's representation (;)ﬂof amplitudes:for reactions of type
1+ 2‘—95 + 4 might suggest as a possible general rule that the amplitudes
for more general reactions are likewise analytic functionsf-except‘for certain
cutbs~-=of éll'variables_on which they depend, and that they possess representations
in terms of multiple-dispersion integrals'analogousAto those of Mandelstam.
From 'such a general representation it should then be possible to derive all -
one-dimensional‘dispersion relations, for example in the case of the reaction‘
1+2->3%+ L+ 5 and related channels, all the one-dimensional relations
listed on Table TI. .

In Mandelstam's representation we have a double intggral-fpr each
pair of independent s variables. This suggests that in the,present case
(n;5),‘where-we have five independent variables,'ﬁe have to write a fivefold
dispersion integral‘for each,quinﬁuple of independent s<vériables._ Since we
have 10 different s'variableé;Awe can form from then (_%O ) = 252 quintuples,J
but not all of them consist of independent variables. 'Using.(7c) and (8), we

find that there are four distinct classes of combinations_of five independent
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ihi5 denoting an arbitrary permutation of 1,2,3,L4,5),

s variables (111215\

S; 1 S5 i Si4 Sii 541 (12 combinations) (2+ 2+ 2+ 2 + 2),
12 totz i3ty thts sty .

s, . S, . S; . 8. . S, . (30 combinations) (3 + 3+ 2+ 2+ 0),
11, iy i) Tinig 121h

s s s s s, . (60 combinations) (3 + 3+ 2+ 1+ 1),

1112 lll3 lllh 1213 1215 .

s4 511 Si4 534 Si4 (60 combinations) (3+ 2+ 2+ 2+ 1),
12 T3 1tk 25 375 |

' | (79)

all together 162 combinations. Thus we would suppose that for n=5 the
generalized Mandelstam representation would consist of 162, fivefold dispersion
integrals. It would seem conceivable, however, that one or several of the
classes (79) do not contribute nonvanishing terms (eventually after we have

made certain.approximations), For example, when.we_write_down the contributions
of lowest .order (iJEs,”fifth-order) perturbation theory in the form used by
Tarski (lz), we find that only those combinations of s variables occur

which belong to the first class in (79), This might suggest thatlinblowesti
order perturbation theory we have a representation, if there exists one at

all, in terms of the 12 fivefold dispersion integrals belqnging to the first
class.

By,keeping one s variable fixed we could derive from the five-
dimensional dispersion relation 10 different four-dimensional relations.
There would be two types of three-dimensional dispersion.relatiops'according
to whether the pair of fixed s variables is 'Sij’ Sy g
. From\each relation of the first

with i, Jj, k, £

all different, or whethe?_it is Sik’ Skl
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type we could derive two ofvthe one-dﬂnensional dispersion relatidhs,.from
each one of the second type only a single pne-dimensional relation. Likewise
from each of the four-dimensional represeﬁtations we could derive four of the
one-dimensional relations. |

We will close with some remarks on the evaluation of the unitarity.
condition for the process 1+ 2 -3+ U4 + 5, Even when we restrict ourselves
to the approxima£ion whereby,oniy two-particle_inter@ediaté states are
considered, the two-dimensional disperéion relation (60) must be used. This
1s.because wé have only threé indepeﬁdent energy-type ﬁariables, s0 that
the integration over intermediate étates involves at least two of the five
variables on which the amplitude depends. Unlike the analogous problem in
Mandélsbmn'sthiry(}) the resulting integral is too complicated to be
e&aluated,explicitly) but some of its properties can be discussed by
representing it as an integral over Feynman parameters and using Tarski's
methods (;l). It would also seem that for an gxgct evalqation.of the
three-particle contributions to the unitarity condition for a process of type
1+ 2 -3+ L4 one has to use the four-dimensional dispersion represéntation

of the amplitudes for 1+ 2 wa+b+c and a+b+c >3+ 4,
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FOOTNOTES

: . . . 2 2 , 2 .2 2.
We use the metric, in which x _-xo -rxl‘ -‘XQ - XB. .

Here we have denoted by 4, B and q'l, q'2 the four-momenta of

Particles 1 and 2 Dbefore and after the scattering, and chosen the

sign of q‘l and q'2_ according to the convention of Section 2,

. ‘ . t 1 —

1.6.,‘such that we have ql oyt a'y + q o = 0.

Kibble(2) bas shown tiet in "small" parts of the physical region this
inequality is not necessarily satisfied.

s does not appear -explicitly in the arguments, because it can be

1n.

expressed by 823’."’Sn22’sn-l

For n=L the expressions corresponding to (72) and (73) are always

-(cf. Eq. (7c)).

positive except for some processes that involve vertices with ancmalous

thresholds, e.g., certain strange-particle reactions.
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FIGURE CAPTIONS
The diagram of a general reaction.
Graphs representing the pole terms in the dispersion relation (59).
If, for example, we consider pion production in inelastic pion-
nucleon scattering and keep the nucleons in. the state vectors,
then the solid lines represent the nucleon lines and the broken

lines meson lines, and m = m, = nucleon mass.

a p
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