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Leber’s hereditary optic neuropathy is a maternally inherited blinding disease caused as a result of homoplasmic point mutations

in complex I subunit genes of mitochondrial DNA. It is characterized by incomplete penetrance, as only some mutation carriers

become affected. Thus, the mitochondrial DNA mutation is necessary but not sufficient to cause optic neuropathy.

Environmental triggers and genetic modifying factors have been considered to explain its variable penetrance. We measured
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the mitochondrial DNA copy number and mitochondrial mass indicators in blood cells from affected and carrier individuals,

screening three large pedigrees and 39 independently collected smaller families with Leber’s hereditary optic neuropathy, as well

as muscle biopsies and cells isolated by laser capturing from post-mortem specimens of retina and optic nerves, the latter being

the disease targets. We show that unaffected mutation carriers have a significantly higher mitochondrial DNA copy number and

mitochondrial mass compared with their affected relatives and control individuals. Comparative studies of fibroblasts from

affected, carriers and controls, under different paradigms of metabolic demand, show that carriers display the highest capacity

for activating mitochondrial biogenesis. Therefore we postulate that the increased mitochondrial biogenesis in carriers may

overcome some of the pathogenic effect of mitochondrial DNA mutations. Screening of a few selected genetic variants in

candidate genes involved in mitochondrial biogenesis failed to reveal any significant association. Our study provides a valuable

mechanism to explain variability of penetrance in Leber’s hereditary optic neuropathy and clues for high throughput genetic

screening to identify the nuclear modifying gene(s), opening an avenue to develop predictive genetic tests on disease risk and

therapeutic strategies.

Keywords: LHON penetrance; mitochondrial biogenesis; mtDNA copy number

Abbreviations: LHON = Leber’s hereditary optic neuropathy; RNFL = retinal nerve fibre layer; SNP = single nucleotide polymorphism

Introduction
Leber’s hereditary optic neuropathy (LHON) is the prototypic mito-

chondrial optic neuropathy and the most frequent mitochondrial

disease (Chinnery et al., 2000; Carelli et al., 2004). The primary

role for mitochondrial aetiology is revealed by maternal inheritance

and association with specific mitochondrial DNA point mutations

affecting complex I subunit genes MT-ND4 (m.11778G4A), MT-

ND1 (m.3460G4A), and MT-ND6 (m.14484T4C) (Newman,

2005). The classical presentation of LHON includes the rapid loss

of central vision, predominantly in young males, with the estab-

lishment of optic atrophy �1 year after onset (Newman, 2005;

Barboni et al., 2010). In most cases, pathogenic LHON mutations

are homoplasmic (100% mutant mitochondrial DNA) in all mater-

nally-related individuals, but only a subset of them will express the

disease. Thus, the mitochondrial DNA mutation is necessary but

not sufficient to cause optic neuropathy and disease penetrance

may vary in different families with the same mutation, and even

within the same family in different branches (Howell and Mackey,

1998; Carelli et al., 2003). Unexplained questions regarding LHON

include the incomplete penetrance, the male prevalence and the

tissue-specific targeting of retinal ganglion cells. The first two

issues might be addressed by the existence of modifying genes

in the nuclear genome. A leading hypothesis for male prevalence

suggests the involvement of chromosome X and different loci were

reported by linkage and association studies in LHON families, but

no significant variants have been identified to date (Hudson et al.,

2005; Shankar et al., 2008; Ji et al., 2010). A genome-wide scan

of Asian LHON families suggested the existence of multiple loci,

finding a significant association with two single nucleotide poly-

morphisms (SNPs) in the presenilin-associated rhomboid-like

(PARL) gene (Phasukkijwatana et al., 2010). However, a subse-

quent study on a large cohort of patients with LHON from China

failed to reproduce this association (Zhang et al., 2010).

A compensatory strategy to mitochondrial dysfunction com-

monly observed in mitochondrial diseases is the increase of mito-

chondrial biogenesis, as exemplified by the massive proliferation of

mitochondria in skeletal muscle fibres (DiMauro and Schon, 2003).

The ragged-red fibres have been reproduced in mouse by disrupt-

ing the expression of TFAM and the increased mitochondrial mass

partly compensated for the reduced function of the respiratory

chain by maintaining overall ATP production in skeletal muscle

(Wredenberg et al., 2002). Thus, within certain limits, an increase

of mitochondrial mass can be a successful compensatory strategy.

In skeletal muscle from patients with LHON a relative increase in

mitochondrial mass is indicated by subsarcolemmal enhancement

of succinic dehydrogenase staining as a result of parcellar accu-

mulations of mitochondria (Larsson et al., 1991; Iommarini et al.,

2012). Increases of the matrix enzyme citrate synthase and succi-

nic dehydrogenase activities, both good indicators of mitochon-

drial mass, have also been described in LHON (Larsson et al.,

1991; Yen et al., 1996). A few small studies reported that there

was an increase in mitochondrial DNA content in blood cells from

patients with LHON (Yen et al., 2002; Iommarini et al., 2012), as

well as in unaffected mutation carriers (Nishioka et al., 2004),

compared with controls, suggesting the activation of mitochondrial

biogenesis. Interestingly, the mitochondrial DNA content was

slightly higher in carriers. Furthermore, anti-retroviral therapy,

which reduces mitochondrial DNA content, apparently triggered

optic neurpathy in a few cases of patients with LHON infected

with HIV (Mackey et al., 2003). Finally, studies on neuronal NT2

cybrids carrying the homoplasmic m.11778G4A mutation showed

a pathological phenotype with increased oxidative stress only after

neuronal differentiation, which remarkably reduced by 3-fold the

mitochondrial DNA:nuclear DNA ratio (Wong et al., 2002). Thus,

we postulate that mitochondrial DNA copy number per cell

and mitochondrial biogenesis may be important factors in

LHON, possibly involved in protecting from or promoting the

disease process.

In the present study, we show that a higher mitochondrial DNA

content and increased mitochondrial biogenesis in multiple tissues

differentiates the unaffected mutation carriers from LHON af-

fected patients and control subjects. This observation provides a

plausible explanation for incomplete penetrance in LHON and has

broad implications for therapy in LHON and other disorders.
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Materials and methods
The procedures for ex vivo collection and use of human tissues for

this study were approved by the Ethics Committee of the St. Orsola-

Malpighi Polyclinic (University of Bologna) and the Sao Paulo Hospital

(Federal University of Sao Paulo). The procedures for collection and

use of human post-mortem tissues were approved by the University of

Southern California Ethics Committee. All samples were obtained from

donors or their families having provided written informed consent ac-

cording to the Declaration of Helsinki.

Detailed experimental procedures are available in the Supplementary

material.

Leber’s hereditary optic neuropathy
pedigrees and case series
We first investigated three large LHON pedigrees harbouring the

m.11778G4A homoplasmic mutation on a haplogroup J background

(Table 1 and Supplementary Figs 1–3). Family 1 is a previously re-

ported large maternal lineage of Italian ancestry, now mostly living

in Brazil (SOA-BR family) (Sadun et al., 2003, 2004, 2006; Ventura

et al., 2005; Carelli et al., 2006; Shankar et al., 2008; Ramos Cdo

et al., 2009; La Morgia et al., 2010; Pan et al., 2012). We had avail-

able peripheral blood from 25 affected and 38 unaffected mutation

carriers from this pedigree. As controls (n = 54) we used the spouses

from the same family, which do not belong to the mutant maternal

lineage (off-pedigree). Family 2 is a previously reported (Carelli et al.,

2006) Italian family composed of 21 individuals (eight affected, eight

carriers and five off-pedigree). Family 3 is an Irish-American pedigree

composed of 17 individuals (two affected, 14 carriers and one off-

pedigree).

Subsequently, we studied all the available individuals from 39 unre-

lated Italian LHON pedigrees (64 affected and 68 carriers) harbouring

one of the three common LHON mutations: m.11778/G4A/MT-

ND4, m.3460G4A/MT-ND1 and m.14484T4C/MT-ND6 mutations

(Table 2). A further independently-collected cohort (100 affected

and 100 carriers harbouring the same common mutations) from

Northern Europe was used only for the association studies investigat-

ing candidate genetic variants in genes involved in mitochondrial

biogenesis.

For all cases, we assessed only unaffected carriers 535 years of age,

to minimize the possibility that these individuals could become affected

in the future.

Ophthalmological assessments in
carriers from Family 1 (SOA-BR)
The ophthalmological data used for correlative analysis with mitochon-

drial DNA content were previously reported assessments of ocular

fundus features (Sadun et al., 2004), contrast sensitivity functions

(Ventura et al., 2005), and optical coherence tomography measure-

ments of retinal nerve fibre layer (RNFL) thickness and optic disc size

(Ramos et al., 2009), carried out in carriers from Family 1. The ana-

tomical measures of optical coherence tomography analyses con-

sidered in this study are the RNFL thickness around the optic nerve

head in the temporal, superior, nasal and inferior quadrants

(QUADRANT T, S, N, I), as well as the optic disc area and the aver-

age, minimum, and six sectorial (TEMPSUP, SUP, NASSUP, NASINF,

INF and TEMPINF) RNFL thicknesses measured from the annulus

centred on the fovea.

Muscle biopsies
Vastus lateralis or tibialis anterior muscle biopsies were performed by

open surgery, under local anaesthesia and after informed consent of

the patient. Muscle specimens were frozen in cooled isopentane and

stored in liquid nitrogen for histological and histoenzymatic analysis

including succinic dehydrogenase activity and adenosine triphospha-

tase (ATPase) staining according to standard protocols. Analysis of

the distribution of type I and II fibres was performed by counting

Table 1 Demographic data of the three m.11778G4A LHON families

ID (reference) Ethnic origin Affected Mean age (range) Carriers Mean age (range) Controls Mean age (range)

Family 1 (Carelli et al., 2006) Italian-Brazilian 22 M 43 (15–84) 12 M 47 (37–79) 28 M 46 (21–75)
3 F 63 (59–67) 26 F 48 (35–85) 26 F 44 (23–79)

Family 2 (Carelli et al., 2006)) Italian 6 M 39 (21–64) 1 M 47 3 M 32 (31–33)
2 F 46 (25–68) 7 F 51 (36–67) 2 F 28 (27–29)

Family 3 Irish-American 2 M n.a. 7 M n.a. 1 M n.a.
– – 7 F n.a. – –

n.a. = not available; F = female; M = male.

Table 2 Demographic data of the 39 LHON families

Genotype Number of Families Affected Mean age (range) Carriers Mean age (range)

m.11778G4A 24 28 M 32 (9–79) 12 M 52 (36–75)
9 F 40 (11–65) 33 F 52 (36–73)

m.3460G4A 10 9 M 33 (8–63) 3 M 44 (36–55)
10 F 42 (10–80) 12 F 54 (36–82)

m.14484T4C 5 6 M 29 (15–58) – –
2 F 36 (35–38) 8 F 56 (36–82)

F = female; M = male.
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them with light microscopy on sections from tibialis anterioris stained

with ATPase. At least 200 fibres (from 200 to 700) were counted for

each biopsy.

Optic nerve and retina studies
We examined formalin-fixed, paraffin embedded ocular post-mortem

specimens as follows: sagittal histological serial sections of optic nerves

from four control male subjects (left and right eyes; age range 60–80;

mean 72); retrobulbar histological serial cross-sections of optic nerves

from six control subjects (left and right eyes; four males, age range

58–74, mean 66); two LHON-affected eyes (both sagittal and cross-

sections) from a 59-year-old male subject bearing the m.11778G4A

mutation; two LHON-unaffected carrier eyes (both sagittal and cross-

sections) from an 83-year-old female bearing the m.11778G4A mu-

tation. Control eyes were obtained from the Lions Eye Bank of Oregon

(Portland, OR). The eyes from affected and carrier individuals were

obtained at post-mortem examination. The interval between time of

death and time of formalin preservation ranged from 5 to12 h. Time in

formalin varied from 1 month to 2 years.

For histological analysis, sections were stained with Masson tri-

chrome stain. Immunohistochemistry with anti-neurofilament mono-

clonal antibodies (Dako, 1:1000) was also performed. For laser

capture microdissection (MMI NIKON UV-CUT System, Molecular

Machines and Industries) three serial 5-mm thick cut sections were

mounted on a polyethylene foil slide and stained with either haema-

toxylin and eosin or Luxol Fast Blue. Sections were observed under

light microscope with a �40 objective. Selected tissue areas were

microdissected by a UV laser and collected on an adhesive cap of

nanotubes as previously described (Giordano and d’Amati, 2011).

Samples were digested with proteinase K (20mg/100 ml). Absolute

quantification of mitochondrial DNA was performed by the standard

curve method using serial known dilutions of a vector in which the

mitochondrial DNA region used as template for the amplification (nu-

cleotides 4625–4714) was cloned, as previously detailed (Cossarizza

et al., 2003). Preliminary to these experiments, we amplified serial

dilutions of DNA obtained from a fixed tissue and we verified that

the PCR was quantitative. Nonetheless, as quantity and quality of

DNA recovery from formalin-fixed tissues is dramatically influenced

by fixation time and type (Gilbert et al., 2007), and as the small

amount of DNA obtained from microdissected tissues does not allow

one to run an appropriate standard curve within each experiment, to

reduce inter-samples variability we report, for each sample, the ratio

between the mitochondrial DNA content obtained in two different

microdissected areas.

Statistical analysis
Data were analysed by using SPSS Base 16 software, applying the

ANOVA test in conjunction with Tukey’s test. Statistical significance

was set at P5 0.05. Mitochondrial DNA per cell distribution analysis

was performed considering the number of individuals falling within

classes of 200 mitochondrial DNA copies per cell, graphically expressed

as dispersion. Numerical calculations for the normal mixture model,

logistic regression and multiple regression analysis were performed

with the software R and the package BMA (R: A Language and

Environment for Statistical Computing, R Development Core Team,

R Foundation for Statistical Computing, Vienna, Austria, 2012, ISBN

3-900051-07-0, http://www.R-project.org/).

Results

Analysis of three Leber’s hereditary
optic neuropathy pedigrees reveals
increased mitochondrial DNA copy
number in white blood cells particularly
in unaffected mutation carriers
We first investigated mitochondrial DNA copy number in periph-

eral white blood cells from LHON affected individuals (affected)

and unaffected mutation carriers (carriers) from three large LHON

pedigrees, two of them previously reported (Carelli et al., 2006),

genetically homogeneous for harbouring the m.11778G4A muta-

tion on a haplogroup J background (demographic data of the

three families are reported in Table 1 and pedigrees are shown

in Supplementary Figs 1–3).

The cumulative results for all three families, comparing the mito-

chondrial DNA content per cell of the three groups (affected, car-

riers and controls) showed that subjects belonging to the mutant

maternal lineages (affected and carriers) presented a significantly

higher mitochondrial DNA content, as compared with controls

(481 � 18 versus 178 � 6; P50.0001). Subgrouping the individ-

uals carrying the m.11778G4A mutation into affected and

carriers, we found that the mitochondrial DNA content was sig-

nificantly higher in carriers (Fig. 1A).

By analysing cumulatively the three families, the frequency dis-

tribution of the mitochondrial DNA copy number per cell in con-

trols, affected and carriers showed that the peak of mitochondrial

DNA content shifts progressively towards higher values from con-

trols to affected to carriers, this last group having the widest vari-

ability and peaking at 4500 mitochondrial DNA copies (Fig. 1B).

This distribution pattern, as well as the statistical significances pre-

viously shown amongst groups, is consistent across each of the

individual pedigrees (P5 0.0001) (Supplementary Fig. 4A).

Analysis of a large Leber’s hereditary
optic neuropathy Italian cohort with all
three primary mutations confirms that
carriers present the highest
mitochondrial DNA copy number in
white blood cells
To extend the previous findings, we investigated an independent

cohort of all available individuals belonging to 39 unrelated Italian

LHON pedigrees harbouring one of the three common primary

mutations (demographic data of the Italian cohort are reported

in Table 2). We assessed the mitochondrial DNA copy number

per cell in a total of 64 affected and 68 carriers, finding, as we

did in the three large pedigrees described above, a significantly

higher mitochondrial DNA content in peripheral white blood cells

from carriers compared with affected individuals (Fig. 1C). The

frequency distribution of the mitochondrial DNA content for

affected and carriers showed carriers peaking at 4600
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mitochondrial DNA copies (Fig. 1D). Stratifying these data for mu-

tation type, the frequency distribution of the mitochondrial DNA

content was similar for the three mutations, with a slightly lower

mean for the m.14484T4C carriers (Supplementary Fig. 4B).

Mitochondrial DNA copies in blood
cells discriminate affected and carriers
and correlate with subclinical signs of
disease in carriers
After combining all data from the two previous data sets we

applied a normal mixture model fitted to the mitochondrial DNA

content observations. The model identified three populations with

estimated means of 155 � 24, 301 � 63 and 612 � 141

mitochondrial DNA copies per cell (Fig. 2A). These populations

consistently fitted the frequency distribution of controls, affected

and carriers, with a putative threshold of �500 mitochondrial DNA

copies discriminating affected from carriers. Logistic regression

analysis applied on the same overall data set, stratified by

gender, identified a similar mitochondrial DNA copy number per

cell threshold. The probability to be a carrier is 100% at 4600

mitochondrial DNA copies, whereas 5300 the probability of being

a carrier is almost reduced to zero (Fig. 2B). Females presented a

shifted probability curve indicating that for a certain amount of

mitochondrial DNA content the probability to be a carrier is sig-

nificantly higher compared with males (P50.01), consistent with

the known lower risk to be affected in females (Fig. 2B).

It is noteworthy that five carriers from the previously reported

large Family 1 (SOA-BR) converted to be clinically affected in the

Figure 1 Analysis of mitochondrial DNA (mtDNA) content in three LHON pedigrees and an Italian cohort. (A) Scatter-plot of mito-

chondrial DNA copy number per cell with means � SD for affected and unaffected mutation carriers from three large LHON pedigrees

harbouring the m.11778G4A/MT-ND4 mutation and for controls. Both affected and carriers showed increased mitochondrial DNA

content compared with controls (affected versus controls, P50.0001; carriers versus controls P50.00001). Carriers showed increased

mitochondrial DNA content compared with affected individuals (P50.0001). (B) Frequency distribution of mitochondrial DNA copy

number per cell from the same three families showed that the peak of mitochondrial DNA content shifts towards higher values from

controls to affected to carriers. (C) Scatter-plot of mitochondrial DNA copies per cell with means � SD for a large Italian cohort with all the

three primary LHON mutations. Unaffected carriers showed increased mitochondrial DNA content compared with affected subjects

(P50.0001). (D) Frequency distribution of mitochondrial DNA copy number per cell from the large Italian cohort showed that the peak of

mitochondrial DNA content shifts progressively towards higher values from controls to carriers. Experiments were performed in triplicates

for all samples. Asterisks indicate statistical significance (*P50.0001; **P5 0.00001, ANOVA test).
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last 10 years, the time elapsing from the blood sampling used in

the current investigation (Sadun et al., 2003, 2006). Of these, the

four males had 5400 mitochondrial DNA copies (277, 289, 359

and 381, respectively), in accordance with the possible threshold

of �600 mitochondrial DNA copies, above which carriers are at

virtually no risk to become affected. The only female, who con-

verted at 46 years of age, had 621 copies of mitochondrial DNA.

The blood sample assessed was drawn �9 years before she under-

went menopause and shortly after she became affected.

For most of the carriers from the large Family 1, we had avail-

able a series of ophthalmological examinations, characterizing the

subclinical changes that frequently occur in carriers (Sadun et al.,

2004; Ventura et al., 2005). Using the fundus examination and

the contrast sensitivity evaluation classified as normal or abnormal,

we found that mitochondrial DNA copy number was significantly

higher in carriers lacking abnormalities in both parameters, as

compared with carriers having at least one abnormal evaluation

and carriers with both fundus and contrast sensitivity abnormal-

ities, who had the lowest mitochondrial DNA copy number

(Fig. 2C). We also assessed by optical coherence tomography

the RNFL thickness around the optic nerve head, as well as the

optic disc area and the macular RNFL thickness. These are ana-

tomical measures indicative of the number of retinal ganglion cells

and correlated axons, which form the RNFL and enter the optic

disc. Previous studies documented that a subset of carriers display

increased RNFL thickness, probably a result of pathological axonal

swelling, in the inferior-temporal quadrants of the optic disc,

which is currently considered a subclinical sign of disease (Savini

et al., 2005). This increase (pseudoedema) may lead to conversion

to visual loss and onset of acute LHON, at which point RNFL

thickness decreases as part of the process of optic atrophy

(Barboni et al., 2010). However, many carriers maintain lifelong

Figure 2 Affected/carrier and gender discrimination by mitochondrial DNA content in blood cells and correlation with subclinical signs of

disease in carriers. (A) Density of mitochondrial DNA copy number per cell obtained by normal mixture model applied to the overall data

set. The model identified three populations that fitted the frequency distribution of controls (blue bars), affected individuals (red bars) and

carriers (green bars). (B) Logistic regression analysis applied on the same overall data set discriminating affected/carrier status and

accounting for gender. Circles in the upper line represent carrier individuals, circles in the bottom line represent affected individuals, red

circles are females; black circles are males. The probability of being affected or a carrier is predicted by the blood mitochondrial DNA

content with thresholds of 4600 and 5300 mitochondrial DNA copies per cell, respectively. Females (red line) presented a shifted

probability curve as compared with males (black line). (C) Scatter-plot of mitochondrial DNA copies per cell with median and interquartile

range for a subset of unaffected carriers from the large Family 1, classified using the fundus and the contrast sensitivity evaluation as

normal or abnormal (AA = abnormal fundus and abnormal contrast; AN = abnormal fundus, normal contrast; NA = normal fundus, ab-

normal contrast; NN = normal fundus and normal contrast) (P = 0.05 for fundus effect; P50.02 for contrast effect, two-way ANOVA).
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the subclinical increased RNFL thickness without converting. We

applied a multiple regression analysis, modelling the mitochondrial

DNA content of blood cells as a function of the optical coherence

tomography anatomical measures in the carriers from Family 1,

and included gender and age as covariates. The best fitting

model shows a negative correlation between mitochondrial DNA

blood content and the temporal RNFL thickness/nasal-inferior

macular thickness (P50.005, Supplementary Fig. 5). Thus, by

fixing the other variables, the decreasing mitochondrial DNA con-

tent of blood cells correlates with increasing subclinical RNFL

thickness of the papillomacular axons originating from the nasal-

inferior macula and constituting the temporal quadrant of the

optic disc (Supplementary Fig. 5). Another significant correlation

in this model positively linked the mitochondrial DNA content

with the optic disc area, which has already been shown to be a

protective factor for disease conversion and final visual outcome

(Ramos et al., 2009).

Mitochondrial DNA copy number is
indicative of global mitochondrial
biogenesis
To confirm the activation of global mitochondrial biogenesis in

blood cells, we carried out a separate series of experiments from

a limited resampled subset of controls (n = 9), affected (n = 8) and

carriers (n = 9) belonging to the Italian cohort. For each blood

sample, we evaluated the content of mitochondrial DNA and of

messenger RNAs coding for key regulators of mitochondrial biogen-

esis and the amount of proteins belonging to different mitochondrial

compartments (matrix, inner and outer mitochondrial membrane).

The results are summarized in Fig. 3. The mitochondrial DNA copy

number per cell assessment reproduced the previous results, with

carriers having the highest mitochondrial DNA content (Fig. 3A).

The analysis of gene expression of transcription factors (NRF1 and

TFAM) and the PPRC1 co-activator showed a concordance between

mitochondrial DNA content and transcripts level displaying a scale

of increasing expression from controls to affected individuals to car-

riers (Fig. 3B). A significant difference was reached for PPRC1 and

TFAM, comparing carriers to controls. Western blots of a panel of

representative mitochondrial proteins showed a global increase of all

protein content in individuals carrying the LHON mutation com-

pared with controls and in carriers compared with affected individ-

uals (Fig. 3C). However, densitometric analysis failed to show any

statistical significance, possibly because of the small data set and the

intrinsic interindividual variability (Fig. 3C).

Overall, these results confirmed that blood cells from individuals

carrying the LHON mutation have a globally activated mitochondrial

biogenesis associated with increased mitochondrial DNA content.

Increased mitochondrial biogenesis
also characterizes the post-mitotic
skeletal muscle
We evaluated the mitochondrial DNA content (expressed as mito-

chondrial DNA/nuclear DNA ratio) in skeletal muscle biopsies from

17 controls, 24 affected and six carrier individuals harbouring one

of the three common primary LHON mutations. In skeletal muscle,

as in blood cells, the mitochondrial DNA content was significantly

higher in LHON affected individuals and carriers compared with

controls, as well as in carriers compared with those affected

(Fig. 4A). The difference between affected individuals and carriers

was less pronounced compared with the results from blood sam-

ples. Interestingly, in considering the three pairs of discordant male

siblings available (affected versus carrier brothers), all three male

carriers showed a higher mitochondrial DNA content compared

with their affected brothers (Fig. 4B). A similar result was obtained

by measuring the level of TFAM messenger RNA in the same

muscle samples (Fig. 4C).

Histoenzymatic staining of the muscle biopsies showed a fre-

quent subsarcolemmal increase of succinic dehydrogenase stain

in affected and carriers, indicative of mitochondrial proliferation.

These features were more evident in carriers (Fig. 4D). To see if

mitochondrial proliferation was associated with a switch in fibre

type, we counted type I and II fibres on muscle biopsies from four

groups of discordant siblings and from controls (n = 6). Based on

ATPase staining the distribution of muscle fibres was substantially

similar in the three groups. Interestingly, two of four carriers

showed a higher percentage of type I fibres (82% and 96%,

respectively) as compared with affected (range 49–75%) and

control subjects (range 62–81%) (Fig. 4D and E).

Taken together, these data confirm that mitochondrial biogen-

esis also is activated in a post-mitotic tissue with high-energy

requirement, exemplified by skeletal muscle.

Carrier-derived fibroblasts successfully
activate mitochondrial biogenesis
under forced oxidative
phosphorylation conditions
The results obtained on ex vivo tissues by comparing affected

and carrier individuals prompted us to investigate this issue further

in vitro, using skin-derived fibroblasts. Most cell studies in LHON

used the cybrid cell model (Vergani et al., 1995; Ghelli et al.,

2003; Baracca et al., 2005; Floreani et al., 2005; Giordano

et al., 2011), where only the mitochondrial DNA from the patient

was transferred to a cell line with a constant nuclear background,

thus eliminating the effects of the nuclear complement of genes.

Hence, we chose to investigate fibroblasts because the hypothet-

ical modifying genes in the nuclear genome might underlie differ-

ences in mitochondrial biogenesis measurable by comparing

affected and carrier individuals (Guan et al., 1996, 2001). To high-

light these differences, we studied fibroblasts grown in medium

containing either glucose or galactose as a carbon source. This

strategy was previously employed to enhance observable differ-

ences in oxidative phosphorylation efficiency, forcing cells in

galactose medium to rely on mitochondrial respiration for ATP

synthesis (Robinson et al., 1992).

Three control-derived fibroblast cell lines were compared with five

affected-derived and four carrier-derived cell lines. The growth rate

in galactose medium normalized on growth in glucose at the same

time points showed that fibroblasts from controls and carriers grew

at a similar rate, whereas a significantly slower rate characterized
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fibroblasts from affected individuals (Fig. 5A). Moreover, control cell

lines activated their ATP synthesis, increasing the ATP levels over

the time course in galactose (Fig. 5B). Carriers displayed a similar

behaviour, even if less efficiently than controls, whereas affected

clearly decreased their ATP content while incubated in galactose

(Fig. 5B). The cellular lactate production showed a sharp decrease

after switching to galactose medium in all groups, with a progres-

sive increase at the following time points (Fig. 5C). This increase

appeared earlier in affected (after 48 h), with a significant difference

compared with carriers and controls. Overall, these three experi-

ments underscored a clear difference in oxidative phosphorylation

efficiency between affected individuals and carriers. This difference

was mirrored by the change in mitochondrial DNA copy number per

cell over the time course in galactose medium (Fig. 5D). In fact, the

mitochondrial DNA content in fibroblasts from controls and affected

individuals had a similar behaviour, failing to show significant

Figure 3 Mitochondrial DNA copy number and global mitochondrial biogenesis in white blood cells. (A) Scatter-plot of mitochondrial DNA

copy number per cell with mean � SD. The increase of mitochondrial DNA content was confirmed in both affected individuals and carriers

compared with controls and in carriers compared with affected individuals (affected versus controls, P50.01; carriers versus controls,

P50.001; carriers versus affected, P = 0.05). (B) Messenger RNA relative expression (mean � SEM) of PPRC1, NRF1 and TFAM. Significant

increase of TFAM and PPRC1 gene expression was found in carriers compared with controls. (C and D) Mitochondrial proteins expression:

representative western blot and densitometry are shown (mean � SEM). The quantification showed a generalized increase of all proteins

content in individuals carrying the LHON mutation compared with controls, higher for carriers, although the statistical significance was not

reached. Core2 = Cytochrome b-c1 complex subunit 2; CS = citrate synthetase; MnSOD = manganese superoxide dismutase. Experiments

were performed in triplicates for all samples. Asterisks indicate statistical significance: *P50.05, **P50.01, ANOVA test.
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changes of mitochondrial DNA copy number. In contrast, fibroblasts

from carriers increased their mitochondrial DNA content �1.5-fold

when incubated in galactose. These results were paralleled by the

results of western blot analysis of NRF1, TFAM and mitochondrial

single stranded DNA-binding protein (mtSSB), whose levels

increased during the time course in galactose medium only in car-

riers, compatibly with the activation of mitochondrial biogenesis

(Fig. 5E).

To further document the increase of mitochondrial biogenesis as

a general process not limited to mitochondrial DNA cellular con-

tent, we determined the citrate synthase protein level and activity.

Control subjects and carriers increased both citrate synthetase ac-

tivity and protein content in galactose, whereas affected individ-

uals did not show any difference (Fig. 6A and B). In fibroblasts

from control and affected subjects, the citrate synthetase activity

did not correlate with mitochondrial DNA content (Fig. 6C).

Conversely, the increase of citrate synthetase activity and mito-

chondrial DNA copy number per cell in galactose medium were

correlated in carrier-derived cells (Fig. 6C), suggesting a global

activation of mitochondrial biogenesis (Fig. 6C).

Fibroblasts from carriers are the
most effective in repopulating
mitochondrial DNA after depletion
by ethidium bromide
Recent reports showed that mitochondrial DNA repopulation rate,

in cells previously depleted of mitochondrial DNA by ethidium

bromide exposure, may vary depending on the efficiency of mito-

chondrial DNA maintenance machinery (Stewart et al., 2011). We

adopted the same experimental strategy to further validate the ac-

tivation of mitochondrial DNA replication specifically in fibroblasts

from carriers. After ethidium bromide withdrawal and growth in

glucose medium, cells remained quiescent until Day 8 and then

started to increase their mitochondrial DNA content, demonstrating

a clear divergence at the 12th day with cells from carriers being the

most efficient, followed by those from affected and then control

subjects (Fig. 7A). Thus, the presence of the LHON mutation signals

a compensatory activation of mitochondrial DNA replication, which

is most efficient in carriers with the permissive glucose medium. The

Figure 4 Mitochondrial biogenesis in skeletal muscle from controls, affected individuals and carriers. (A) Scatter-plot of mitochondrial

DNA/nuclear DNA ratio with mean � SD for skeletal muscle of controls, affected individuals and carriers belonging to the Italian cohort.

A higher mitochondrial DNA content was confirmed in both affected individuals and carriers compared with controls and in carriers

compared with affected subjects (affected versus controls, P5 0.001; carriers versus controls, P50.001; carriers versus affected,

P50.05). (B) Mitochondrial DNA/nuclear DNA ratio from skeletal muscle in three pairs of discording brothers. All three carriers showed a

higher mitochondrial DNA content compared with the affected brother. (C) TFAM messenger RNA relative expression (mean � SD) in the

skeletal muscle of the three pairs of discording brothers. All three carriers exhibited a higher TFAM expression compared with the affected

brothers. Experiments were performed in triplicate for all samples. (D) Succinic dehydrogenase (SDH) and ATPase pH 9.4 staining in

skeletal muscle from controls, affected and carriers. Both affected and carriers presented an increased intensity of subsarcolemmal succinic

dehydrogenase staining as compared with controls, especially evident in carriers. Muscle from the affected individual showed variability in

fibre size (succinic dehydrogenase, Scale bar = 100 mm; ATPase pH 9.4, Scale bar = 200mm). (E) Scatter-plot of frequency of type I fibres

(mean � SD) in skeletal muscle from controls (n = 5), affected individuals (n = 7) and carriers (n = 4). Asterisks indicate statistical

significance: *P50.05, **P50.01, ANOVA test.
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Figure 5 Mitochondrial function and biogenesis in fibroblasts grown in galactose medium. (A) Growth rate of controls, affected and

carrier-derived fibroblasts reported as the ratio between cell number counted in galactose (Gal) and in glucose (Glu) medium at 3, 5 and

10 days. Carriers significantly differed from affected individuals, which had severely impaired growth, by showing a growth rate closer to

controls. (B) Intracellular ATP levels during the galactose time course, normalized on ATP level in glucose medium at each time point. ATP

content significantly increased in controls and carriers but decreased in affected individuals. (C) Level of L-lactate during the galactose time

course normalized to the level in glucose at each time point. In all groups L-lactate decreased immediately after switching to galactose

medium. At the following time points it increased with a higher rate in affected at 48 h. At the last time point, L-lactate in controls was

significantly higher than carriers. (D) Mitochondrial DNA amount in fibroblasts (expressed as mitochondrial DNA/nuclear DNA ratio)

normalized on mitochondrial DNA amount in glucose medium at each time point. During growth in galactose, carriers significantly

increased mitochondrial DNA content as compared with controls and affected individuals. (E) Expression of proteins involved in

mitochondrial DNA replication (TFAM, mtSSB and NRF1) in galactose medium, normalized on protein levels in glucose medium at each

time point. Representative western blot and densitometry are shown (mean � SEM). Proteins increased in carriers during growth in

galactose medium, but remained unchanged in controls and affected individuals. Experiments were performed in quadruplicate for all

samples. Asterisks indicate statistical significance: *P5 0.05; **P50.01, ANOVA test.
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faster repopulation in carriers over controls probably depends on the

activation of the compensatory response as a result of the LHON

mutation. Conversely, when cells were grown in galactose medium

after removal of ethidium bromide, control cells showed the most

efficient repopulation rate, followed by those from carriers (Fig. 7B).

Cells from affected individuals presented a slow repopulation rate

until Day 10, at which point three of four lines were lost as a result

of massive cell death. The only surviving line continued to show

mitochondrial DNA repopulation, albeit at a very slow rate. Thus, in

the restrictive galactose medium, mutant cells do perform worst

compared with controls.

These results consolidate the evidence for a clear difference

between unaffected mutation carriers and affected individuals in

activating mitochondrial DNA replication.

Analysis of human ocular tissues
shows that neurodegeneration in
Leber’s hereditary optic neuropathy
follows the gradient of mitochondrial
DNA content and compensatory
changes characterize a carrier
To verify our previous findings in the LHON target tissue, we

evaluated mitochondrial DNA amount in formalin-fixed retinal

and optic nerve post-mortem specimens from six control subjects,

one affected and one carrier individual from well-characterized

cases belonging to Family 1 (Sadun et al., 2003, 2004; Ventura

et al., 2005; Carelli et al., 2006; Sadun et al., 2006; Ramos et al.,

2009).

The retinal ganglion cells, selectively affected in LHON, have

large soma located in the inner retina, which give origin to unmye-

linated axons constituting the RNFL. Each axon then becomes

myelinated after turning posteriorly into the optic nerve head

and crossing the lamina cribrosa. These myelinated axons form

the optic nerve. We first studied, by laser capture, sagittal retinal

sections from two controls and the one available carrier, using

horizontal sections that went through the optic nerve head and

the macula. The retinal ganglion cells and RNFL complex, dis-

sected from the macular region and an equidistant area nasal

to the optic nerve head, were compared (Fig. 8A and B). The

macular/nasal ratio showed that the mitochondrial DNA content

(expressed as mitochondrial DNA copy per retinal ganglion

cell nucleus) from the macular region was higher than that

from the corresponding nasal region, both in controls and the

carrier individuals. The carrier showed the highest ratio (Fig. 8C).

These results suggest that the retinal ganglion cells of the mac-

ula, which give rise to the axons entering the temporal sector of

the optic nerve (i.e. papillomacular bundle), the first target of

neurodegeneration in LHON (Sadun et al., 2000), are the

most energy-dependent. In addition, the observation that the car-

rier displays the highest macular/nasal mitochondrial DNA ratio

may reflect a possible compensation in macular retinal

ganglion cells.

Figure 6 Mitochondrial mass and mitochondrial DNA content correlation in fibroblasts grown in galactose (Gal) medium. (A) Citrate

synthetase activity (mean � SEM) measured during the time course in galactose medium normalized on the citrate synthetase activity

measured in glucose medium at each time point. Citrate synthetase activity increased after 48-, 72- and 96-h incubation in galactose in

controls and carriers, whereas no significant change was observed in the affected group. (B) Citrate synthetase protein expression in

galactose medium normalized on glucose medium for each time point. Citrate synthetase protein increased after 48-, 72- and 96-h

incubation in galactose medium in controls and carriers, whereas it did not change in the affected group. Representative western blot and

densitometry are shown (mean � SEM). (C) Correlation between citrate synthetase activity and mitochondrial DNA content during the

time course in galactose medium. Only carriers displayed a significant correlation between the increase of mitochondrial mass and

mitochondrial DNA amount during the growth in galactose medium. Experiments were performed in triplicate for all samples. Asterisks

indicate statistical significance: *P50.05; **P50.01, ANOVA test.
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Myelination of retinal ganglion cell axons, as they exit the

lamina cribrosa, is associated with a marked reduction in the

number of mitochondria and activity of respiratory chain enzymes

(Andrews et al., 1999; Barron et al., 2004; Carelli et al., 2004; Pan

et al., 2012). Thus, we dissected portions of the optic nerve head

anterior to the lamina cribrosa and portions of post-laminar mye-

linated optic nerve using sagittal sections of optic nerves from four

controls and the carrier, at similar planes and showing similar fea-

tures. We did not evaluate the affected individual, because of

extensive gliosis (Fig. 9A and B). As expected, evaluation of mito-

chondrial DNA density (expressed as mitochondrial DNA molecule

per mm3) showed that, both in controls and the carrier, the pre-

laminar portion had more mitochondrial DNA copies than the

post-laminar region (up to 2.5-fold). Interestingly, the pre/post-

laminar ratio was lower in carrier. This might be because of an

increased mitochondrial DNA copy number in the carrier’s post-

laminar myelinated axons (Fig. 9C).

Finally, we microdissected portions from optic nerve cross-

sections in the post-laminar region. Control optic nerves displayed

a well-organized cross-sectional profile with axons grouped in

�1000 fascicles (Carelli et al., 2004). The carrier also showed an

essentially conserved number of fascicles and axons. In LHON the

neurodegenerative process starts from the temporal sector, which is

composed mostly of the small axons from the papillomacular bundle;

further degeneration extends into the central region, sparing some

of the far periphery of the superior, nasal and inferior quadrants, as

shown by the cross-sectional profile of the affected subject here

examined and in our previous studies (Fig. 9D) (Sadun et al.,

2000; Carelli et al., 2004; La Morgia et al., 2010; Pan et al.,

2012). Accordingly, we microdissected samples from the temporal

Figure 7 Mitochondrial DNA repopulation after depletion by ethidium bromide in fibroblasts. Mitochondrial DNA depletion and

repopulation in glucose (A) and in galactose medium (B). Mitochondrial DNA content (mean � SEM) was normalized on Day 0 before

ethidium bromide treatment. In glucose medium, after mitochondrial DNA depletion, repopulation started at Day 8. At Day 12,

mitochondrial DNA amount increase was most efficient in carriers, followed by affected individuals and controls. In galactose medium,

controls had the most efficient repopulation rate, followed by carriers and only one cell line from an affected individual, which had the

slowest repopulation rate. Experiments were performed in triplicate for all samples. Asterisks indicate statistical significance: *P50.05,

ANOVA test.
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quadrant, as well as from the inferior, nasal and superior far periph-

ery of the optic nerve (Fig. 9E). The results from 12 control optic

nerves (six individuals) showed that temporal area had the lowest

mitochondrial DNA density (mitochondrial DNA molecules per mm3),

whereas the nasal and the inferior far periphery of the optic nerve

had the highest (Fig. 9F). This pattern is in agreement with our pre-

vious observation that the average axonal diameter progressively

increases from temporal to nasal regions of the optic nerve,

the same gradient followed by the neurodegenerative process

(Pan et al., 2012). With the same approach, we also evaluated the

carrier individual, who showed a slight decrease of the inferior/

temporal, superior/temporal and nasal/temporal ratios compared

with controls (Fig. 9F), indicating a compensatory increase of mito-

chondrial DNA density in the temporal sector (papillomacular

bundle), relative to the other sectors of the same nerve. Analysis

of the LHON-affected individual revealed the virtual absence of

mitochondrial DNA in the temporal sector where the axonal popu-

lation was ablated, and a decreased mitochondrial DNA level in the

nasal and inferior periphery, matching axonal depletion of these

areas (data not shown).

Figure 8 Mitochondrial DNA content in retinal ganglion cells and nerve fibres from the macular and nasal retina. (A) Representative

montage of horizontal sections through the optic nerve head (ONH) and the macula. Red circles indicate the macular and a nasal area, at

equal distance from the optic nerve head, where retinal ganglion cells and the corresponding axons of the RNFL were microdissected by

laser capturing for mitochondrial DNA copy number evaluation in two controls and one carrier (haematoxylin and eosin, scale

bar = 200 mm). (B) Representative image of a retina before and after microdissection of retinal ganglion cells (RGC) and RNFL (haema-

toxylin and eosin, scale bar = 100mm). (C) The macular/nasal mitochondrial DNA ratio indicates that the mitochondrial DNA content

(expressed as mitochondrial DNA copy per retinal ganglion cell nucleus) from the macular region is higher as compared with the nasal

region. This ratio was even higher in the carrier. Data are mean � SD from two experiments.
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Figure 9 Mitochondrial DNA content in pre/post-laminar regions of sagittal optic nerve head and post-laminar optic nerve cross-sections.

(A) Sagittal sections through the optic nerve of a control, a carrier and an affected individual. The control and carrier present similar

features, whereas the affected subject showed markedly atrophic nerve bundles and a thinned lamina cribrosa (Masson trichrome stain,

scale bar = 200mm). (B) Representative sagittal section through the optic nerve head after microdissection of prelaminar (preL) and

post-laminar (postL) areas (haematoxylin and eosin, scale bar = 200 mm). (C) The pre-/post-laminar mitochondrial DNA ratio indicates a

higher mitochondrial DNA density (expressed as mitochondrial DNA molecules per mm3) in the pre-laminar region in controls (n = 6).

The carrier had a lower pre-/post-laminar mitochondrial DNA ratio compared with controls. Data are mean � SD from three
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Mitochondrial genetic variability is not
a modifying factor of mitochondrial
DNA copy number
Multiple reports indicate that specific mitochondrial DNA hap-

logroup-specific polymorphic changes might influence the abun-

dance of mitochondrial genomes in cells by modulating respiratory

chain coupling and reactive oxygen species production (Moreno-

Loshuertos et al., 2006; Curran et al., 2007; Suissa et al., 2009;

Liou et al., 2010; Gómez-Durán et al., 2012). In particular, hap-

logroup J and the m.16189T4C/MT-DLOOP variant that gener-

ates a heteroplasmic uninterrupted polycytosines (poly-C) tract of

variable length (Bendall and Sykes, 1995), have been proposed to

affect the mitochondrial DNA transcription and replication rates,

eventually reflecting on the mitochondrial DNA content (Suissa

et al., 2009; Liou et al., 2010).

Thus, we analysed the distribution of mitochondrial DNA

content of affected individuals and carriers from the Italian

cohort stratified by haplogroup affiliation and presence of the

m.16189T4C variant. We failed to observe any significant hap-

logroup-driven difference, or trend, in mitochondrial DNA copy

number (Supplementary Fig. 6). Moreover, none of the analysed

samples presented the m.16189T4C polymorphism, indicating

that the mitochondrial DNA content variability in our cohort was

not determined by this nucleotide change (data not shown).

Searching for nuclear modifiers:
analysis of five candidate genes
These results strongly support a role for mitochondrial biogenesis

in modulating LHON penetrance. Thus, we sought to investigate

candidate modifiers in some of the genes regulating mitochondrial

DNA replication and biogenesis. We selected SNPs already

reported in the literature as associated with diseases or having a

functional activity. We screened nine SNPs in the coding region of

PPARGC1A (PGC-1�), PPARGC1B (PGC-1b), TP53 (p53), TFAM

and PARL (Supplementary Table 1). PGC-1� and PGC-1b are

transcriptional co-activators involved upstream of NRF1, and

TFAM, regarded as master regulators of mitochondrial biogenesis

(Scarpulla, 2008). p53 is a tumour suppressor protein mainly

involved in the DNA repair system, also implicated in the regula-

tion of mitochondrial DNA replication by interacting with POLG

(Achanta et al., 2005). TFAM, the main mitochondrial DNA

transcription factor, is the most abundant nucleoid protein and

regulates mitochondrial DNA replication (Campbell et al., 2012).

Finally, PARL is a mitochondrial protease, which cleaves, among

others, OPA1 and PINK1, genes responsible for dominant optic

atrophy and familial Parkinson’s disease (Martinelli and Rugarli,

2010). A recent report implicated a specific PARL SNP in regulat-

ing mitochondrial DNA copy number in a control population

(Curran et al., 2010), and linkage analysis in Asian LHON pedi-

grees found a significant association with other PARL SNPs

(Phasukkijwatana et al., 2010). Thus, we screened these genetic

variants in the large Family 1, in the cohort of 39 Italian families

and in a further, independently collected, LHON cohort from

Northern Europe. The affected and carrier individuals were com-

pared, considering genotypes (homo/heterozygous) and allelic fre-

quencies. We also searched for a correlation between genotypes

and mitochondrial DNA content and a multiple logistic regression

of all SNPs was performed.

None of the genotypes, or the allelic frequencies showed a stat-

istical difference between the two groups of affected and carriers

(Supplementary Table 1). Interestingly, we found a significant

correlation between two SNPs in the promoter of PARL gene

(rs3792588 and rs3792589) and the mitochondrial DNA cellular

content of affected individuals belonging to the large Family 1

(Supplementary Fig. 7), but not in the affected individuals of the

Italian cohort (data not shown).

Discussion
We have demonstrated, using different approaches, that mito-

chondrial DNA content and mitochondrial biogenesis are asso-

ciated with incomplete penetrance in homoplasmic LHON

families. First, we showed that high mitochondrial DNA content

and increased mitochondrial biogenesis, both in high turnover

tissue such as peripheral white blood cells and in post-mitotic

tissue such as skeletal muscle, are significantly associated with

unaffected LHON mutation carriers. In blood cells, a threshold

of �500 mitochondrial DNA copies discriminates the probability

of an individual carrying the LHON mutation to remain unaffected

or undergo clinical conversion to optic atrophy. Furthermore, in

carriers the mitochondrial DNA blood content was inversely corre-

lated with the occurrence of subclinical pathological features such

as fundus abnormalities and contrast/sensitivity losses, and with

structural abnormalities as measurements by optical coherence

tomography. We further demonstrated that fibroblasts derived

from LHON carriers, grown under the metabolic pressure of

galactose medium or after ethidium bromide-driven

mitochondrial DNA depletion, activate mitochondrial biogenesis

Figure 9 Continued
experiments.(D) Post-laminar optic nerve cross-sections of a control, a carrier and an affected individual. The control and carrier displayed

organized bundles of axons. The affected subject showed extensive gliosis of the temporal region and a relative sparing of axons in the

other quadrants (anti-neurofilament antibody, scale bar = 500 mm). (E) Representative post-laminar optic nerve-cross section before and

after microdissection of bundles of axons in the temporal (T, double nick) inferior (I), nasal (N) and superior (S, single nick) quadrants

(Luxol Fast Blue, scale bar = 500mm). (F) The superior/temporal, inferior/temporal and nasal/temporal mitochondrial DNA ratio indicate a

lower mitochondrial DNA density in the temporal area, both in controls (n = 6) and the carrier. In the carrier these ratios were slightly lower

compared with controls, suggesting a compensatory mitochondrial DNA increase in the temporal quadrant. Data are mean � SD from

three experiments.
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and mitochondrial DNA replication more efficiently compared with

those from affected individuals. Finally, our results on post-

mortem specimens indicate that the pattern of neurodegeneration

in the optic nerve is inversely related to the axonal mitochondrial

DNA density, which in turn matches the axonal diameter (Sadun

et al., 2000; Pan et al., 2012). Thus, the small fibres that consti-

tute the papillomacular bundle, the first target in LHON, by virtue

of their high surface/volume ratio are limited in their capacity for

compensation and this explains their high vulnerability (Sadun

et al., 2000; Pan et al., 2012). In addition, in a single carrier,

concordant results from the optic nerve and retinal sections sug-

gest the occurrence of a compensatory increase in mitochondrial

DNA amount in the most vulnerable macular retinal ganglion cells

and their axons that form the papillomacular bundle, which runs

into the temporal optic nerve head. These results lend support to

the hypothesis that carrier individuals are more likely to achieve,

by genetic variation, a highly efficient mitochondrial biogenesis.

This genetic modifying background may further interact with en-

vironmental (Sadun et al., 2003; Carelli et al., 2004) and hormo-

nal factors (Giordano et al., 2011), ultimately determining the

outcome of an LHON carrier in becoming affected. We tested

the possibility that genetic variants in mitochondrial DNA itself

or in the nuclear-encoded molecular machinery controlling mito-

chondrial DNA replication and mitochondrial biogenesis, may play

a modifying role leading to incomplete penetrance in LHON; we

evaluated mitochondrial DNA haplogroups and screened a few

candidate SNPs of interest in nuclear genes, without finding any

significant association in this pilot study. Overall, we have estab-

lished a solid correlation between incomplete penetrance in LHON

and the efficiency of mitochondrial biogenesis. This observation

may broadly apply to other mitochondrial DNA mutations with a

weak pathogenic potential.

LHON pathogenic mutations invariably affect complex I with

different biochemical phenotypic consequences (Carelli et al.,

2004; Newman, 2005). The m.3460G4A mutation consistently

decreases the complex I specific activity by affecting the

ND1 subunit and the quinone binding site, whereas the

m.11778G4A and m.14484T4C mutations, affecting the ND4

and ND6 subunits, respectively, do not decrease complex I activ-

ity, but most probably interfere with proton translocation and

complex I-dependent energy conservation (Carelli et al., 2004;

Gonzalez-Halphen et al., 2011). All three LHON primary muta-

tions ultimately decrease complex I-driven ATP synthesis rate, and

in addition, chronically increase reactive oxygen species production

and predispose cells to apoptosis (Vergani et al., 1995; Ghelli

et al., 2003; Baracca et al., 2005; Floreani et al., 2005).

Different views have emphasized the bioenergetic defect as most

important or, conversely, hypothesized that the critical problem

resided in increased reactive oxygen species production. Recent

data, obtained by studying the first faithful mouse model of

LHON, added weight to oxidative stress as the critical pathogenic

mechanism for retinal ganglion cells neurodegeneration (Lin et al.,

2012). However, increased reactive oxygen species production, in

addition to damaging cells, may also signal mitochondrial biogen-

esis and mitochondrial DNA content (Moreno-Loshuertos et al.,

2006). This signalling system, originating from dysfunctional mito-

chondria, may activate an orchestrated response with different

efficiencies based on genetic variation in the complex genetic ma-

chinery involved in mitochondrial biogenesis and mitochondrial

DNA replication (Liu and Butow, 2006). Thus, increased mitochon-

drial biogenesis may be a compensatory response that, if suffi-

ciently efficient, maintains unaffected the mutation carriers

(Korsten et al., 2010), even if we cannot completely exclude

other factors differentiating carriers and affected, such as mito-

phagy rate and mitochondrial turnover.

Given the overall weak pathogenic potential of LHON muta-

tions, we envisage a scenario where increased mitochondrial

mass supports the bypassing of complex I, through complex II

and downstream complexes III and IV, which are all unaffected

by the LHON mutations. This and the parallel increase of antioxi-

dant enzymes such as manganese superoxide dismutase and

glutathione peroxidase, as we also documented after oestrogen

exposure of LHON cybrids (Giordano et al., 2011), may coordi-

nately balance the complex I dysfunction and maintain unaffected

the carriers. If this compensatory mechanism fails, the increased

reactive oxygen species production may synergize with deficient

bioenergetics, ultimately leading to retinal ganglion cell loss, thus

converting mutation carriers to affected status.

Our current results closely resemble those recently reported for

an incompletely penetrant mitochondrial DNA mutation affecting

the transfer RNA isoleucine gene (Moreno-Loshuertos et al.,

2011). Furthermore, seminal cybrid studies by Bentlage and

Attardi (1996) highlighted the role played by mitochondrial DNA

content in modulating the pathogenic potential of the

m.3243A4G/MT-TL1 mutation associated with mitochondrial

encephalopathy, lactic acidosis, stroke-like syndrome (MELAS).

Similarly, most homoplasmic cybrids carrying the deafness-asso-

ciated mitochondrial DNA mutation at position m.7473insC/MT-

TS1 displayed only a mild respiratory defect, with the exception of

one clone with a reduced mitochondrial DNA content that

expressed severe growth impairment in galactose medium

(Toompuu et al., 1999).

Two further observations from our study deserve comment.

First, the m.14484C4T/MT-ND6 mutation had a lower average

peak of mitochondrial DNA content in blood cells for carriers. This

is compatible with the milder nature of this mutation, prone to low

penetrance in females and high rates of spontaneous recovery of

vision (Carelli et al., 2004; Newman, 2005). Second, the only

female who converted to become affected in Family 1 had a

supra-threshold mitochondrial DNA content (621 copies) in her

blood cells, but she became affected after her menopause, and

9 years after her blood was sampled. We postulate a post-meno-

pausal decrease in mitochondrial DNA content triggered her con-

version to affected, in accordance with the protective role of

oestrogens in LHON. In fact, we have recently shown in cybrid

cells that oestrogens activate mitochondrial biogenesis and mito-

chondrial DNA content (Giordano et al., 2011), a result both com-

patible with these present observations and the low penetrance of

LHON in females.

One important implication of these findings is that the assess-

ment of mitochondrial DNA cellular content may, once solidly

validated by quantitative studies in different tissues, become a

surrogate biomarker with predictive value on metabolic compen-

sation of unaffected mutation carriers; this would be in
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conjunction with other clinical and metabolic markers. The com-

bination of predictive markers may lead to a scoring system useful

in the assessment of prognosis and therapeutic options. Validation

of the current results, by dissecting the molecular mechanism

underlying the retrograde signalling that regulates mitochondrial

biogenesis and the understanding of genetic determinants driving

the efficiency of mitochondrial biogenesis, will also be advanta-

geous to exploit this spontaneous compensatory strategy for

therapeutic interventions. In fact, several studies are testing the

feasibility of this approach, which in the case of LHON may allow

unaffected carriers to avoid conversion indefinitely.

Our targeted approach of screening selected variants in candi-

date genes did not lead to positive results. We failed to confirm

the association with the previously reported SNPs in the PARL

gene, which were attractive candidates considering the proposed

role played by this protease in controlling mitochondrial DNA copy

number (Curran et al., 2010). Similarly, we failed to observe any

stringent association with mitochondrial DNA haplogroups or spe-

cific variants (Moreno-Loshuertos et al., 2006; Curran et al., 2007;

Suissa et al., 2009; Liou et al., 2010; Gómez-Durán et al., 2012).

However, currently available high-throughput strategies of genetic

screening, as well as expression studies in relevant tissues, using

large cohorts of patients or informative pedigrees, increase the

probability of successfully identifying the genetic basis of incom-

plete penetrance in LHON. It must be considered that a complex

interaction of genetic variants with environmental factors, already

validated as triggers for LHON, may further complicate their

identification.

In conclusion, we provide multiple lines of evidence that cellular

mitochondrial DNA content can differentiate the LHON affected

individuals from the unaffected mutation carriers. This observation

supports a mechanism in which penetrance is modulated by the

ability to efficiently activate mitochondrial biogenesis. This is a

natural compensatory strategy that cells from carriers successfully

use. This mechanism has wide implications for the pathogenesis of

LHON, providing indications for hunting the nuclear genetic modi-

fiers and studying their possible interaction with environmental

triggers. Ultimately, this compensatory strategy may be exploited

for new therapies in LHON carriers to maintain their visual func-

tion indefinitely.
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