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Abstract

Nonzero Degree Maps Between Three Dimensional Manifolds

by

Yi Liu

Doctor of Philosophy in Mathematics

University of California, Berkeley

Associate Professor Ian Agol, Chair

The main result of this dissertation shows that every orientable closed 3-manifold
admits a nonzero degree map onto at most finitely many homeomorphically dis-
tinct non-geometric prime 3-manifolds. Furthermore, for any integerd > 0, every
orientable closed 3-manifold admits a map of degreed onto only finitely many
homeomorphically distinct 3-manifolds. This answers a question of Yongwu Rong.
The finiteness of JSJ piece of the targets under nonzero degree maps was known
earlier by the results of Soma and Boileau–Rubinstein–Wang, and a new proof is
provided is this dissertation. We also prove analogous results for dominations rela-
tive to boundary. As an application, we describe the degree set of dominations onto
integral homology 3-spheres.
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Chapter 1

Introduction

In the present dissertation, we study finiteness associatedwith nonzero degree maps
between 3-manifolds, from the viewpoint of geometrization. For convenience, we
often stay in the piecewise linear category of 3-manifolds for topological discus-
sions, and throughout this dissertation, a 3-manifold is always assumed to be con-
nected, unless explicitly stated otherwise. In this chapter, we provide an overview
of known results and the main result of the present dissertation.

1.1 Background

Let M, N be two orientable closed 3-manifolds. For an integerd > 0, we say that
M d-dominates Nif there is a mapf : M → N of degreed up to sign. We say
M dominates Nif M d-dominatesN for some integerd > 0. The notion of domi-
nation can certainly be extended to orientable compact 3-manifolds. However, for
most of the topics discussed below, the general case can be derived easily from the
essential case of closed 3-manifolds, so we shall not consider dominations relative
to boundary until Chapter 6.

Dominations of degree one naturally induces a partial ordering on the set of
homeomorphism classes of orientable closed 3-manifolds, sometimes attributed to
Mikhail Gromov in literature. According to [CT89], Gromov suggested studying
the degree set of dominations between closed orientable manifolds of general di-
mensions in a lecture given in 1978. In dimension three, the following two problems
are the basic aspects of our interest:

Problem 1.1.1.For every pair of orientable closed 3-manifoldsM andN, describe
the set of mapping degrees that are realizable by maps between M andN.
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Problem 1.1.2. For every orientable closed 3-manifoldM, describe the set of 3-
manifolds up to homeomorphism that are dominated byM.

If the word ‘describe’ here was taken in the strong sense as todecide, as far as
we are concerned, both of these problems are still widely open except for a few very
special cases. However, if the word was taken in a weaker sense as to determine the
finiteness, much has been known since the 1990s, when the study of nonzero degree
maps started to become active. In this course, William Thurston’s revolutionary
program of geometrization played an influential role, not only because it provided
deep insight into the topology of 3-manifolds, but also because it naturally brought
maps between 3-manifolds as the next stage of exploration.

When the target manifoldN is the same asM, one of the pioneer results in
this area, due to Shicheng Wang [Wan93], implies that the setD(M,N) of mapping
degrees in Problem 1.1.1 is infinite if and only if eitherM is prime supporting one
of the geometriesH2 × E1, E3, Nil, or Sol, or that every prime factor ofM supports
one of the geometriesS3 or S2 × E1. Later work of various people [Du09, SWW10,
SWWZ12] fully characterized the set of self-mapping degree. More recently, Pierre
Derbez, Hongbin Sun, and Shicheng Wang [DSW11] showed that for a givenN,
there exists anM so thatD(M,N) is infinite if and only if D(P,P) is infinite for
every prime factorP of N.

Problem 1.1.2 has been answered restricted to geometric targets by the work of
various people, cf. [Som00, BBW08, BRW]. As a summary of their conclusions,
every closed orientable 3-manifoldM dominates at most finitely many geometric
3-manifolds that support none of the geometriesS3, S̃L2 or Nil. Note that any
3-manifold supporting one of the excluded three geometriesabove dominates in-
finitely many homeomorphically distinct 3-manifolds of thesame geometry. It is
remarkable that in [BRW], Michel Boileau, Hyam Rubinstein, and Shicheng Wang
actually proved the finiteness of possible homeomorphism types of JSJ pieces in the
targetN. They also wondered if every closed orientable 3-manifoldM dominates
finitely many irreducible 3-manifolds supporting none of the geometriesS3, S̃L2 or
Nil.

1.2 Results

In the present dissertation, we shall show that every orientable closed 3-manifold
dominates at most finitely many homeomorphically distinct non-geometric prime
3-manifolds, (Theorem 5.4.2). This answers affirmatively the question of Boileau,
Rubinstein, and Wang in [BRW]. Our proof also provides an alternative approach
to the finiteness of JSJ pieces previously obtained by [Som00, BRW]. Furthermore,
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we shall also show that for any integerd > 0, every orientable closed 3-manifoldd-
dominates only finitely many homeomorphically distinct 3-manifolds, (Theorem
6.1.1). In particular, this answers an earlier question of Yongwu Rong [Kir97,
Problem 3.100], which was concerned about 1-dominations. This was known be-
fore only under the assumption of geometric targets, cf. [Som00, HLWZ02, WZ02,
BBW08]. Analogous results also hold for dominations relative to boundary (The-
orems 6.2.1, 6.2.2). As an application, we provide a description of the degree set
of dominations onto integral homology spheres, partially resolving Problem 1.1.1.
We show that for any oriented closed 3-manifoldM, there are only finitely many
integral homology 3-spheresN dominated byM, as previously obtained by [BRW,
Theorem 1.2]; moreover, we show that the (signed) degree setof dominations ofM
onto N is either finite or a translationally periodic subset ofZ with zero removed,
(Theorem 6.3.1). This provides some description, beyond the finite-versus-infinite
dichotomy, about the degree set of dominations onto integral homology 3-spheres.

A traditional approach to Problems 1.1.1 and 1.1.2 is via volume estimation.
For example, whenM is given, the simplicial volume ofM imposes an upper bound
on the simplicial volume of the targetN under the domination assumption. Such
a bound provides certain restrictions to the topology of hyperbolic pieces ofN.
As a variation of this idea, the Seifert volume of a 3-manifold was introduced by
Robert Brooks and William Goldman [BG84]. It is analogous to thehyperbolic
volume in the representation sense, and there has been interesting applications of
this notion to dominations onto graph manifolds. For example, Derbez and Wang
[DW09a, DW09b] showed that nontrivial graph manifolds have virtually positive
Seifert volume, so the mapping degree setD(M,N) is finite if N is a nontrivial
graph manifold. While it has been successful dealing with Problem 1.1.1 in many
situations, the volume estimation approach has its weakness in solving Problem
1.1.2, mainly because there are usually infinitely many manifolds with uniformly
bounded volume of either version.

Our main technique is a new type of estimation as was developed in [AL12],
inspired by the idea from an unpublished paper of Matthew White [Whi]. Heuristi-
cally speaking, whenever there is a mapf : M → N, one may geometrize the map
in a certain manner with respect to the geometrization ofN. If N has either a deep
Margulis tube in a hyperbolic piece, or a sharp cone point in aSeifert fibered piece,
or heavy distortion along a cut torus, then the map would haveto fail to be sur-
jective homologically localized to these significant elementary parts. In particular,
it would not be a domination. To be more precise, one may regard the geometric
features ofN above as a certain form of complexity, then in fact, we shall show that
under the assumption of domination, such complexity can be bounded in terms of
the triangulation numberτ(M) of M, namely, the minimal number of triangles in
any triangulation ofM. In [AL12], the role of triangulation number was played by
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the presentation length ofπ1(M).

1.3 Organization

In Chapter 2, we provide a brief review on topology of 3-manifold, especially the
geometric decomposition. In Chapter 3, we discuss a general process known as
straightening a mapf : M → N between 3-manifolds. Heuristically, this homo-
topes f to a position of minimal area with respect to a metric ofN close to the
geometric metric in each piece. In formulation, we shall adopt ruled surfaces in-
stead of minimal surfaces to avoid unnecessary technicalities. In Chapter 4, we
provide an alternative proof of the finiteness of geometric pieces using the tech-
niques from Chapter 3. In Chapter 5, we prove the finiteness of gluings under
dominations. This will complete the proof of the main theorem (Theorem 5.4.2). In
Chapter 6, we consider the case of bounded-degree dominations, and deduce Corol-
lary 6.1.1 from Theorem 5.4.2. We also provide generalizations of Theorems 5.4.2
and 6.1.1 to the boundary-relative case. Finally, we shall describe the degree set of
dominations from any closed oriented 3-manifold to integral homology 3-spheres.
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Chapter 2

Preliminaries

In this chapter, we review topology of 3-manifold from the perspective of ge-
ometrization, cf. [Thu80, MF10]. We also refer to [Jac80] for standard terminology
and facts of 3-manifold topology.

2.1 Geometric decomposition

SupposeN is an orientable compact 3-manifold, possibly with boundary. We say
that N is geometric, if it supports one of Thurston’s Eight Geometries:E3, S3,
H

3, S2 × E1, H2 × E1, S̃L2, Nil, or Sol, in the interior of finite volume. Under
this circumstance, it is necessary thatN is prime; and that every component of
∂N, if any, is an incompressible torus; and thatN is not homeomorphic to an
orientable thickened-torus, or anorientable thickened-Klein-bottle, i.e. the trivial
interval-bundle over a torus, or the twisted interval-bundle over a Klein bottle, re-
spectively.

In general, ifN is an orientable compact 3-manifold satisfying the necessary
conditions above, the Thurston–Perelman Geometrization Theorem implies that
there exists a canonicalgeometric decompositionof N, namely, a minimal finite
collection of essential tori or Klein-bottles, unique up toisotopy, cuttingN into
geometric pieces. Recall that by the Kneser–Milnor Theorem,every orientable
compact 3-manifold is homeomorphic to the connected sum of afinite collection of
prime 3-manifolds, unique up to homeomorphism. It follows that every orientable
closed prime 3-manifold admits a canonical geometric decomposition.

We shall only speak of the geometric decomposition for orientable closed prime
3-manifolds. Such a manifold,N, is either geometric or non-geometric. WhenN
is itself geometric, it is either atoroidal, supporting theH3-geometry, or Seifert-
fibered, supporting one of the six geometriesH2 × E1, S̃L2, E3, Nil, S2 × E1 or S3,



CHAPTER 2. PRELIMINARIES 6

or otherwise, supporting the Sol-geometry. The geometry ofthe Seifert-fibered
case can be determined according to the sign of the Euler characteristicχ ∈ Q of
the base orbifold and to whether the Euler numbere ∈ Q of the fiberation vanishes.
WhenN is not geometric, there are only two types of its geometric pieces, namely,
H

3 or H2 × E1. In other words, every geometric piece is either homeomorphic to a
cusped hyperbolic 3-manifold of finite volume, or homeomorphic to an orientable
Seifert-fibered space with boundary over a cusped hyperbolic 2-orbifold of finite
area.

The geometric decomposition splitsN as agraph-of-spaces, where each vertex
is decorated by a geometric piece, and each edge is decorateda cutting torus or
Klein-bottle, joining vertices decorated by the adjacent pieces. Since the regular
neighborhood of a cutting Klein-bottle inN has only one boundary component, the
cutting Klein-bottle decorates an edge with only one end. This suggests that such an
edge should be regarded as a ‘semi-edge’. Similarly, it willbe convenient to regard
a Seifert-fibered piece (over a non-orientable hyperbolic base orbifold) containing
an essential Klein-bottle as a ‘semi-vertex’. For this reason, we shall think of the
underlying graph of the geometric decomposition as a graph with semi-objects. See
Definition 2.2.1 for a rigorous formulation.

2.2 Gluing geometrics

Gluing geometrics is the opposite procedure of the geometric decomposition. The
purpose of this section is to lay down some notations for the rest of our discussion.

Definition 2.2.1. A graph with semi-objects, or simply agraph, is a finite CW 1-
complexΛ with a (possibly empty) subset of loop-edges marked assemi-edges,
and with a (possibly empty) subset of vertices marked assemi-vertices. We shall
refer to other vertices and edges asentire-verticesandentire-edges, respectively. A
entire-edge has twoends, but a semi-edge has only one. Thevalenceof a vertex
v is the number of distinct ends adjacent tov. For a graphΛ, we denote its set
of vertices as Ver(Λ), and its set of edges as Edg(Λ). The set of ends-of-edges
Ẽdg(Λ) is a branched two-covering of Edg(Λ) singular over all the semi-edges. The
covering transformation takes every endδ to its opposite end̄δ, of the same edge
thatδ belongs to.

Definition 2.2.2. A preglue graph-of-geometricsis a finite graphΛ, together with
an assignment of each vertexv ∈ Ver(Λ) to an oriented, compact, geometric 3-
manifold Jv whose boundary consists of exactlynv incompressible tori compo-
nents, wherenv is the valence ofv, and with an assignment of each end-of-edge
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δ ∈ Ẽdg(Λ) adjacent tov to a distinct componentTδ of ∂Jv with the induced orien-
tation. We require a semi-vertex be assigned to aJv containing an embedded ori-
entable thickened-Klein-bottle, and an entire vertex be assign to aJv not as above.
Let J be the disjoint union of allJv’s. We often ambiguously denote the preglue
graph-of-geometrics as (Λ,J).

Definition 2.2.3. Two preglue graphs-of-geometrics (Λ,J) and (Λ′,J ′) are said
to be isomorphicif there is a homeomophismJ → J ′, which compatibly (in an
obvious sense) induces a graph isomorphismΛ→ Λ′.

Definition 2.2.4. A gluing of a preglue graph-of-geometrics (Λ,J) is an assign-
ment of each end-of-edgeδ ∈ Ẽdg(Λ) to an orientation-reversing homeomorphism
φδ : Tδ → Tδ̄ between the tori assigned toδ and its the opposite end̄δ, up to isotopy,
such thatφδ̄ = φ−1

δ for any end-of-edgeδ. Let:

φ : ∂J → ∂J ,

be the orientation-reversing involution defined by allφδ’s. We often denote the
gluing asφ, and denote the set of all gluings of (Λ,J) asΦ(Λ,J).

A gluing φ is said to benondegenerateif it does not match up ordinary-fibers in
any pair of (possibly the same or via semi-edges) adjacent Seifert-fibered pieces.

For any gluingφ ∈ Φ(Λ,J), there is a naturally associated oriented closed 3-
manifoldNφ fromJ obtained by identifying points in∂J with their images under
φ. It is clear thatNφ has the same geometric decomposition as prescribed by (Λ,J)
andφ if and only if φ is nondegenerate, and in this case,Nφ is by definition non-
geometric.

Let Mod(∂J) be the special mapping class group of∂J , consisting of isotopy
classes of component-preserving, orientation-preserving self-homeomorphisms of
∂J . There is a natural (right) action of Mod(∂J) onΦ(Λ,J). In fact, abusing the
notations of isotopy classes and their representatives, for any τ ∈ Mod(∂J), and
φ ∈ Φ(Λ,J), one may defineφτ ∈ Φ(Λ,J) to be:

φτ = τ−1 ◦ φ ◦ τ,

namely, (φτ)δ = τ−1
δ̄
◦ φδ ◦ τδ for each end-of-edgeδ ∈ Ẽdg(Λ), whereτδ ∈ Mod(Tδ)

is the restriction ofτ on the torusTδ. It is straightforward to check that this is a
well-defined, transitive action.

Definition 2.2.5. Two gluingsφ, φ′ ∈ Φ(Λ,J) are said to beequivalentif φ′ = φτ

for someτ ∈ Mod(∂J) that extends overJ as a self-homeomorphism. Hence
equivalent gluings yield homeomorphic 3-manifolds.
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We close this section with a discussion of a special type of elements in Mod(∂J),
called fiber-shearings. Recall that for an oriented torusT and a slopeγ ⊂ T,
the (right-hand)Dehn-twistalongγ is self-homeomorphismDγ ∈ Mod(T) so that
Dγ(ζ) = ζ + 〈ζ, γ〉 γ for any slopeζ, where〈·, ·〉 denotes the intersection form. Note
this does not depend on the direction ofγ. For any integerk, ak-times Dehn-twist
alongγ is known as thek-times iterationDk

γ.

Definition 2.2.6. Let (Λ,J) be a preglue graph-of-geometrics. We say an auto-
morphismτ ∈ Mod(∂J) is a fiber-shearingwith respect to (Λ,J), if for each
end-of-edgeδ ∈ Ẽdg(Λ) adjacent to a vertexv, τδ ∈ Mod(Tδ) is either the identity,
if Jv is atoroidal, or akδ-times Dehn-twist along the ordinary-fiber, wherekδ is an
integer, if Jv is Seifert-fibered. Theindexof τ at a Seifert-fibered vertexv is the
integer:

kv(τ) =
∑

δ∈Ẽdg(v)

kδ,

whereẼdg(v) denotes the set of ends adjacent tov. For any gluingφ ∈ Φ(Λ,J), the
fiber-shearingof φ underτ is the gluingφτ ∈ Φ(Λ,J).

Note that the index is additive for products of fiber-shearings.

Lemma 2.2.7.Fiber-shearings of the same index at all Seifert-fibered vertices yield
equivalent gluings.

Proof. It suffices to show that a fiber-shearing with zero index at all Seifert-fibered
vertices does not change the equivalence class of a gluing. This follows immedi-
ately from the fact that for any pair of boundary toriT,T′ in a Seifert-fibered piece
J, there is a properly embedded annulusA bounding a pair of ordinary-fibers, one
on each component. As the annulusA is two-sided whenJ is oriented, there is a
well-defined Dehn-twist onJ along this annulus, restricting to a right-hand Dehn-
twist onT and a left-hand Dehn-twist (i.e. the inverse of a right-handDehn-twist)
onT′. �
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Chapter 3

Maps and geometrization

In this chapter, we introduce a general process that homotopes a map between
3-manifolds to a position respecting the geometrization ofthe target, known as
straightening. Note that this process is nontrivial only if the target is either non-
geometric, or supports one of the geometriesH3, H2 × E1 or S̃L2. In these cases,
straightening will allow us to study the local behaviour of the maps from a hyper-
bolic geometric point of view. Our treatment here is an extension of the techniques
developed in [AL12]. In an unpublished paper of Matthew White[Whi] about di-
ameters of closed 3-manifolds, essentially equivalent estimations was considered,
although in slightly different formulations. His idea inspired [AL12] and the gener-
alizations that we shall discuss in this chapter.

3.1 Straightening a map

Let M be an orientable closed 3-manifold, andN be an orientable closed prime
3-manifold. Supposef : M → N is a map fromM to N. We triangulateM, and
geometrizeN, and homotopef to a nice position with respect to these structures,
as follows.

Take a minimal triangulation ofM, namely, a finite 3-dimensional simplicial
complex structure onM with the fewest possible 3-simplices. We often denote
M(i) ⊂ M for the i-skeleton ofM, where 0≤ i ≤ 3. The number of tetrahedra:

τ(M),

in this triangulation will be called thetriangulation numberof M. HenceM(2)

contains exactly 2τ(M) triangles.



CHAPTER 3. MAPS AND GEOMETRIZATION 10

SupposeN is an orientable closed prime 3-manifold. We often denote the un-
derlying graph of the geometric decomposition ofN asΛ = Λ(N). Let:

T =
⊔

e∈Edg(Λ)

Te ⊂ N,

be the union of cutting tori or Klein bottles ofN in its geometric decomposition,
and let:

U =
⊔

e∈Edg(Λ)

Ue ⊂ N,

be a compact regular neighborhood ofT . Note∂U can be naturally identified as
the disjoint union of toriTδ’s, whereδ ∈ Ẽdg(Λ), and the complement inN of the
interior ofU can be naturally identified with the disjoint union of the geometric
piecesJ . Making this identification, we have:

N = J ∪∂U U.

Let ǫ3 > 0 be the Margulis constant ofH3, so every 0< ǫ < ǫ3 is a proper
Margulis number ofH3 (hence also ofH2). For any 0< ǫ < ǫ3, we may endow
N with a Riemannian metricρǫ that approximates its geometrization, namely, the
complete Riemannian 3-manifold:

(N, ρǫ),

satisfies the following requirements. For everyH3-geometric pieceJv of N, (Jv, ρǫ)
is isometric to the corresponding complete hyperbolic 3-manifold Jgeov with open
ǫ-thin horocusps removed; or ifJv is Seifert-fibered, (Jv, ρφ) is isometric to a corre-
sponding completeH2 × E1-geometric or̃SL2-geometric 3-manifoldJgeov with open
horizontal-ǫ-thin horocusps removed. Here byhorizontalwe mean with respect to
the pseudo-metric pulled back from the metric on the hyperbolic base orbifold, so
for instance, a horizontal-ǫ-thin horocusp means the preimage inJgeov of a ǫ-thin
horocusp inOgeo, the base orbifold with the naturally induced Riemannian metric.
We do not impose further conditions forρǫ on the rest ofN.

Note that with the Riemanian metricρǫ on N, one may speak of thearea for
any piecewise-linearly immersed CW 2-complexf : K → N, or for any integral
(cellular) 2-chain ofK. Specifically, note that for each hyperbolicJv, there is an
area measure onf −1(Jv) ∩ K pulling back the hyperbolic area measure onJv, and
for eachH2 × E1-geometricJv, there is an area measure onf −1(Jv)∩ K puling back
the horizontal-area measure onJv, (namely, the area pulled back from the base
orbifold). Thus, thearea of K with respect tof is known as the sum of the area
measures ofK ∩ f −1(Jv) for all v ∈ Ver(Λ), denoted as Area(f (K)); and the area
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of an integral 2-chain ofK is the sum of the areas of its simplices weighted by the
absolute values of their coefficients.

We first homotopef to be piecewise linear so thatf −1(T ) ⊂ M becomes a
normal surface in minimal position with respect to the triangulation ofM, and that
f −1(U) ⊂ M is an interval bundle overf −1(T ). Here minimal position means that
the cardinality off −1(T ) ∩ M(1) is minimized. Furthermore, we pull straightf |M(2)

within eachJv relative to∂Jv, with respect to the Riemannian metricρǫ, namely:

Lemma 3.1.1. If ǫ > 0 is sufficiently small, then the map f: M → N can be
homotoped relative to f−1(U), so that f(M(2)) ∩ J is ruled on each component of
the image of the2-simplices of M, and that the area of M(2) is at most2πτ(M),
whereτ(M) is the number of tetrahedra in the triangulation of M.

Proof. To sketch the proof, pick a subdivision of the components ofM(2)\( f −1(U)∪
M(1)) into the fewest possible triangles. First homotopef relative to f −1(U), so that
the image of the sides of these triangles becomes geodesic intheir correspond-
ing pieces. Then relatively homotopef further, so that the image of these trian-
gles becomes ruled in their corresponding pieces. If we fixf |M(0), asǫ → 0, the
image of these triangles converges to geodesic (possibly degenerate) triangles in
hyperbolic pieces, and to horizonally-geodesic (possiblydegenerate) triangles in
H

2 × E1-geometric orS̃L2-geometric pieces (in the sense of being geodesic after
projecting onto the base orbifold). Moreover, for each 2-simplex of M(2), all ex-
cept at most one triangle above contained in this 2-simplex becomes degenerate in
the above sense, while the exceptional one has area at mostπ. Thus, for sufficiently
smallǫ > 0, the area ofM(2) can be bounded by 2τ(M)π where 2τ(M) is the number
of 2-simplices ofM(2) with our notations. �

We shall say thatf : M → N is straightenedif it has been homotoped to a
position satisfying the conclusion of Lemma 3.1.1. Note this process depends on
the choice of the minimal triangulation ofM, and the Riemannian metricρǫ of N
for a sufficiently smallǫ > 0, but for the sake of simplicity, we shall not mention
such a choice explicitly as long as it causes no confusion.

3.2 Local geometry of straightened maps

Let M be an orientable closed 3-manifold, andN be an orientable closed prime
3-manifold. Supposef : M → N is a straightened map fromM to N.

By a local regionW ⊂ N, we mean a connected compact 3-submanifold ofN
whose boundary lies entirely inN \ U, such that any component of the preimage
of W is a convex submanifold of the Riemmanian universal cover ofN. Suppose
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W ⊂ N is a local region, generic in the sense thatf −1(∂W) intersectsM(2) in
general position, i.e. that any 2-simplex ofM(2) is transversal to∂W under f . We
write M(2)

W for f −1(W) ∩ M(2), and M(2)
∂W for f −1(∂W) ∩ M(2). Then M(2)

W has a
natural CW 2-complex structure, induced from the triangulation of M, andM(2)

∂W is
a 1-subcomplex.

We are interested in two aspects of the local behavior off overW. On one
hand, the local second relativeR-homology of (M(2)

W,M
(2)
∂W) has a bounded generat-

ing set of relativeZ-cycles, (Lemma 3.2.1); and on the other hand, the domination
property can be inherited locally, yielding a surjection onthe second local relative
R-homology, (Lemma 3.2.2)

Lemma 3.2.1. If f : M → N is a straightened map, andW ⊂ N is a local
region, then there is anR-spanning set of H2(M

(2)
W,M

(2)
∂W; R), in which the elements

are represented by relativeZ-cycles each with area bounded by A(2τ(M)). Here
A(n) = 27n(9n2

+ 4n)π, andτ(M) is the triagulation number of M.

Proof. LetN be an open regular neighborhood ofM(0) in M(2). Let KW = M(2)
W \

N , andK∂W = (M(2)
∂W ∪ N̄) \ N . As H2(KW,K∂W; R) � H2(M

(2)
W,M

(2)
∂W; R) via

an obvious quotient mapKW → M(2)
W, it suffices to find anR-spanning set of

H2(KW,K∂W; R) represented by relativeZ-cycles of area at mostA(2τ(M)).
BecauseW is local and f is straightened,KW is a finite union of 0-handles

(half-disks), 1-handles(bands),monkey-handles(hexagons), and possibly a few
isolated disks(disks whose boundary do not meet the 1-skeleton ofM(2)). It is clear
that the number of monkey-handles is at most the number of 2-simplices 2τ(M), and
the union of 1-handles inKW is an interval-bundle over a (possible disconnected)
graph. By fixing an orientation for each of them, the handles and the isolated disks
give a CW-complex structure onKW in an obvious fashion. LetC∗(KW,K∂W),
Z∗(KW,K∂W),B∗(KW,K∂W) denote the freeZ-modules of cellular relative chains,
cycles and boundaries, respectively. Note thatC2(KW,K∂W) has a natural basis
consisting of the handles and the isolated disks.

To prove the lemma, it suffices to find a generating set forZ2(KW,K∂W; Q)
whose elements are inZ2(KW,K∂W) ≤ C2(KW,K∂W) with bounded coefficients
over the natural basis. DecomposeKW as:

KW = SW ⊔ EW ⊔ K′W,

whereSW is the union of the isolated disk components,EW is the union of the com-
ponents that contain no monkey-handles, andK′W is the union of the components
that contain at least one monkey-handle. LetS∂W, E∂W, K′

∂W be the intersection of
SW, EW, K′W with K∂W, respectively.
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Z2(KW,K∂W; Q) = Z2(SW,S∂W; Q) ⊕Z2(EW,E∂W; Q) ⊕Z2(K
′
W,K

′
∂W; Q).

It suffices to find bounded generating relativeZ-cycles for the direct-summands
separately.

First, considerZ2(SW,S∂W; Q). Clearly, it has a generating set whose elements
are the isolated disks. Hence absolute value of the coefficients over the natural basis
are bounded≤ 1 for every element of the generating set.

Secondly, considerZ2(EW,E∂W; Q). We show that it has a generating set
whose elements have coefficients bounded≤ 2 in absolute value over the natural
basis. To see this, note thatE = EI ∪ D1 ∪ · · · ∪ Ds is a union of anI -bundleEI

over a (possibly disconnected) graphΓI together with 0-handlesD j, 1 ≤ i ≤ s.
Note also thatK∂W ∩EI is an embedded∂I -bundleE∂I . NowZ2(EI ,E∂I ; Q) can be
generated by all the relativeZ-cycles, in fact finitely many, of the following forms:
(i) AI ∈ Z2(EI ,E∂I ), where (AI ,A∂I ) ⊂ (EI ,E∂I ) is a sub-I -bundle which is an em-
bedded annulus; or (ii)RI + 2BI + R′I ∈ Z2(EI ,E∂I ), where (RI ,R∂I ), (R′I ,R

′
∂I ) ⊂

(EI ,E∂I ) are sub-I -bundles which are embedded Möbius strips, and (BI , B∂I ) ⊂
(EI ,E∂I ) is a sub-I -bundle which is an embedded band joiningRI andR′I . More-
over,Z2(EW,E∂W; Q) /Z2(EI ,E∂I ; Q) can be generated by the residual classes
represented by all the relativeZ-cycles, in fact finitely many, of the following
forms: (i) D j + BI ± D j′ ∈ Z2(EW,E∂W), whereD j, D j′ are distinct 0-handles,
and (BI , B∂I ) ⊂ (EI ,E∂I ) is a sub-I -bundle which is an embedded band joiningD j

and D j′ ; or (ii) 2D j + 2BI + RI ∈ Z2(EW,E∂W), whereD j is a 0-handle, and
(RI ,R∂I ) ⊂ (EI ,E∂I ) is a sub-I -bundle which is an embedded Möbius strip, and
(BI , B∂I ) ⊂ (EI ,E∂I ) is a sub-I -bundle which is an embedded band joiningD j and
RI . All these relativeZ-cycles together generateZ2(EW,E∂W; Q), and each of
them has coefficients bounded≤ 2 in absolute value over the natural basis.

Finally, considerZ2(K′W,K
′
∂W; Q). We show that it has a generating set whose

elements have coefficients bounded≤ 27t(9t + 4) in absolute value over the natural
basis, wheret ≤ 2τ(M) is the number of monkey-handles. We write the 1-handles of
K′W asB1, · · · , Br , and the 0-handles asD1, · · · ,Ds in K′W, and the monkey-handles
asF1, · · · , Ft. Pick a maximal union of 1-handlesK′I so thatK′I is homeomorphic
to a trivial I -bundle over a (possibly disconnected) graph. We write its components
asK′I ,1, · · · ,K′I ,p, wherep ≤ 3t.

Let ∂̄ : C2(K′W,K
′
∂W)→ C1(K′W,K

′
∂W) be the relative boundary operator. Then

Z2(K′W,K
′
∂W; Q) is by definition the solution space of:

∂̄U = 0,

for U ∈ C2(K′W,K
′
∂W; Q). We shall first solve the residual equation∂̄U = 0 modulo

B1(K′I ,K
′
∂I ), then lift a set of fundamental solutions to solutions of∂̄U = 0 by
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adding chains fromC2(K′I ,K
′
∂I ). This set of solutions together with a generating set

ofZ2(K′I ,K
′
∂I ; Q) will be a generating set ofZ2(K′W,K

′
∂W; Q).

To solve∂̄U = 0 moduloB1(K′I ,K
′
∂I ), we write:

U =
r∑

i=1

xi Bi +

s∑

j=1

yj D j +

t∑

k=1

zk Fk.

The topological interpretation of̄∂U moduloB1(K′I ,K
′
∂I ) is the total ‘contribution’

of the base elementsBi, D j, Fk’s to the fiber of each component ofK′I .
To make sense of this, on each componentK′I ,l of K′I , we pick an oriented fiber

ϕl, 1 ≤ l ≤ p. Note thatC1(K′I ,K
′
∂I ) = C1(K′I ,1,K

′
∂I ,1)⊕ · · · ⊕C1(K′I ,p,K

′
∂I ,p), and that:

C1(K
′
I ,K

′
∂I ) /B1(K

′
I ,K

′
∂I ) � Z⊕p,

generated byϕ1, · · · , ϕp modB1(K′I ,K
′
∂I ). The contribution ofBi, D j, Fk on ϕl is

formally the value of̄∂Bi, ∂̄D j, ∂̄Fk moduloB1(K′I ,K
′
∂I ) on thel-th direct-summands.

In other words, we count algebraically how many components of ∂̄Bi is parallel toϕl

in K′I ,l, and similarly for∂̄D j, ∂̄Fk. In this sense, on anyϕl, eachBi contributes 0 or
±2, eachD j contributes 0 or±1, and eachFk contributes 0,±1,±2 or±3. Let~u be
the column vector of coordinates (x1, · · · , xr , y1, · · · , ys, z1, · · · , zt)T , andq = r+s+t.
Let alm be the contribution of them-th basis vector (corresponding to someBi, D j

or Fk) on ϕl. Thus,alm are integers satifying|alm| ≤ 3, for 1 ≤ l ≤ p, 1 ≤ m ≤ q,
and

∑p
l=1 |alm| ≤ 3, for 1 ≤ m ≤ q. The residual equation̄∂U = 0 modB1(K′I ,K

′
∂I )

becomes a linear system of equations:

A~u = ~0,

whereA = (alm) is ap×q integral matrix. Every column ofA has at most 3 nonzero
entries, and the sum of their absolute values is at most 3. Ouraim is to find a set of
fundamental solutions overQ with bounded integral entries.

Picking out a maximal independent collection of equations if necessary, we may
assumep equals the rank ofA overQ. We may also re-order the coordinates and
assume the firstp columns ofA are linearly independent overQ. Let A = (P,Q)
whereP consists of the firstp columns andQ of the restq − p columns. Let

~u =

(
~v
~w

)
be the corresponding decomposition of coordinates. Then the linear

system becomesP~v+Q~w = ~0. Basic linear algebra shows that a set of fundamental
solutions is~vn = −P−1Q~en, ~wn = ~en, where 1≤ n ≤ q − p and (~e1, · · · , ~eq−p) is
the natural basis ofRq−p. We clear the denominator by letting~v∗n = −P∗Q~en, ~w∗n =
det(P)~en, whereP∗ is the adjugate matrix ofP. The corresponding~u∗1, · · · , ~u∗q−p is
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a set of fundamental solutions overQ of the linear systemA~u = ~0 with integral
entries.

For each 1≤ n ≤ q− p, ~u∗n has at mostp+ 1 non-zero entries, and the absolute
value of the entries are all bounded 3p. Indeed,~u∗ has at mostp+1 non-zero entries
by the way we picked~v∗n and~w∗n. To bound the absolute value of entries, note each
column ofP has at most 3 nonzero entries whose absolute value sum≤ 3. It is easy
to see|det(P)| ≤ 3p by an induction onp using column expansions. Similarly, the
absolute value of each entry ofP∗ is at most 3p−1, and each column ofQ has at most
3 nonzero entries whose absolute value sum≤ 3, so the absolute value of any entry
of −P∗Q is also≤ 3p.

Let U∗1, · · · ,U∗q−p ∈ C2(K′W,K
′
∂W) be the relative 2-chains corresponding to the

fundamental solutions~u∗1, · · · , ~u∗q−p respectively as obtained above. Then theU∗n’s
form a set of fundamental solutions tō∂U = 0 modB1(K′I ,K

′
∂I ). To lift U∗n to a

solution of ∂̄U = 0, note∂̄U∗n is theZ-algebraic sum of 1-simplices each parallel
to a fiberϕl. For a 1-simplexσ parallel toϕl coming from∂̄U∗n, we pick a sub-I -
bundle ofK′I ,l which is an embedded band joiningσ andϕl, and letLn ∈ C2(K′I ,K

′
∂I )

be the relativeZ-chain which is the algebraic sum of all such sub-I -bundles. Since
each sub-I -bundle as a relativeZ-chain has coefficient bounded by 1 in absolute
value over the natural basis, the absolute values of coefficients ofLn are bounded
≤ 3 · 3p(p+ 1) = 3p+1(p+ 1). LetÛn = U∗n − Ln, 1 ≤ n ≤ q− p, then∂̄Ûn = 0, with
coefficients bounded≤ 3p+1(p+ 1)+ 3p

= 3p(3p+ 4) in absolute value.
In other words,Ûn ∈ Z2(K′W,K

′
∂W), 1 ≤ n ≤ q − p. Moreover,Ûn’s together

with a generating set ofZ2(K′I ,K
′
∂I ; Q) generateZ2(K′W,K

′
∂W; Q). SinceK′I has

no monkey-handle, the no-monkey-handle case implies thatZ2(K′I ,K
′
∂I ; Q) has a

generating set of relativeZ-cycles with coefficients bounded by 2 in absolute value.
Therefore,Z2(K′W,K

′
∂W; Q) has a generating set of relativeZ-cycles, consisting of

Ûn’s and the generating set ofZ2(K′I ,K
′
∂I ; Q) as above, with coefficients bounded by

3p(3p+ 4) in absolute value. Rememberp ≤ 3t, the absolute values of coefficients
are bounded≤ 33t(3 · 3t + 4) = 27t(9t + 4).

Now a generating set ofZ2(KW,K∂W; Q) is obtained by putting together the
generating sets of its direct summandsZ2(SW,S∂W; Q), Z2(EW,E∂W; Q), and
Z2(K′W,K

′
∂W; Q) as constructed above. It consists of relativeZ-cycles with co-

efficients bounded by 27t(9t + 4) over the natural basis. In particular, they repre-
sent homology classes that generateH2(KW,K∂W; Q). Remember that the natural
basis ofC2(KW,K∂W) consists of handles and isolated disks, whose total area is
bounded by 2πτ(M), (Lemma 3.1.1). Therefore, the generating set consists ofrel-
ative Z-cycles with area bounded≤ 27t(9t + 4) · Area(KW) ≤ A(2τ(M)), where
A(n) = 27n(9n2

+ 4n)π. �
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Lemma 3.2.2. If f : M → N is a straightened domination, andW ⊂ N is a local
region, then the induced homomorphism:

f |∗ : H2(M
(2)
W,M

(2)
∂W; R)→ H2(W, ∂W; R),

is surjective.

Proof. We first decompose the homomorphismf |∗ as:

H2(M
(2)
W,M

(2)
∂W; R)

�

y

H2(M(2),M(2)

N\W̊
; R)

i∗−−−−−→ H2(M,M
(2)

N\W̊
; R)

f̄∗−−−−−→ H2(N,N \ W̊; R)

�

y
H2(W, ∂W; R),

where the vertical isomorphisms are homology excisions. The homomorphismi∗
induced by the inclusion is surjective by the long exact sequence of relative homol-
ogy:

· · · −→ H2(M
(2),M(2)

N\W̊
; R)

i∗−→ H2(M,M
(2)

N\W̊
; R) −→ H2(M,M

(2); R) −→ · · · ,

whereH2(M,M(2); R) � 0. It suffices to showf̄∗ is surjective.
Becausef : M → N has nonzero degree, the commutative diagram:

H3(N, N \ W̊; R)
f̄ ∗

−−−−−→ H3(M, M(2)

N\W̊
; R)

y
y

H3(N; R)
f ∗

−−−−−→ H3(M; R),

implies that f̄ ∗ is injective on the thirdR-coefficient relative cohomology.
Thus,

f̄ ∗ : H∗(N, N \ W̊; R)→ H∗(M, M(2)

N\W̊
; R),

is injective on all dimensions, following from the commutative diagram:

H i(W̊; R) ×H3−i(N, N \ W̊; R)
⌣−−−−−→ H3(N, N \ W̊; R)

f̄ ∗
y f̄ ∗

y f̄ ∗
y

H i(M − M(2)

N\W̊
; R)× H3−i(M, M(2)

N\W̊
; R)

⌣−−−−−→ H3(M, M(2)

N\W̊
; R),
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where the cup-product pairings are nonsingular and the rightmost vertical homo-
morphism is injective.

Therefore,f̄∗ : H∗(M, M(2)

N\W̊
; R) → H∗(N, N \ W̊; R) is indeed surjective on

all dimensions, and in particular, on dimension two as desired. �
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Chapter 4

Preglue finiteness

In this chapter, we study finiteness of preglue graph-of-geometrics under domina-
tion. In particular, we show that given an orientable closed3-manifold M, then
there are at most finitely many possible homeomorphism typesof JSJ pieces that
could appear in a non-geometric prime 3-manifold dominatedby M. This result
was known due to Soma [Som00] and Boileau–Rubinstein–Wang [BRW], and our
treatment provides an alternative approach.

4.1 Short hyperbolic geodesics

In this section, we give a lower bound estimation for the length of geodesics in an
H

3-geometric piece of the target, under the assumption of domination. Note that
if N is an orientable closed prime 3-manifold, and ifJ is a hyperbolic piece inN,
then it follows from the Mostow-Prasad Rigidity Theorem thatthe interior ofJ has
a unique complete hyperbolic metric of finite volume, up to isometry. In this sense,
we may speak of geodesics in this piece.

Proposition 4.1.1.Suppose M is an orientable closed3-manifold, then there exists
a constantδ > 0, depending only on M, satisfying the following. If f: M → N is
a domination, and J is anH3-geometric piece of N, then the length of every closed
geodesic in J is at leastδ.

Proof. Without loss of generality, we may assumef has been straightened, with re-
spect to a minimal triangulation ofM and a Riemannian metricρǫ of N approximat-
ing its geometrization for some sufficiently small Margulis numberǫ > 0, (Lemma
3.1.1). Supposeγ is a closed geodesic inJ. A theorem of Chun Cao, Frederick
Gehring and Gavin Martin says that ifγ has lengthl <

√
3

2π (
√

2− 1), then there is an
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embedded tubeV ⊂ M of radiusr with the core geodesicγ, such that:

sinh2(r) =

√
1− (4πl/

√
3)

4πl/
√

3
− 1

2
,

[CGM97]. This means ifγ is very short, it lies in a very deep tubeV. In particular,
any meridian disk ofV will have very large area.

Up to a small adjustment of the radius ofV, we may assume the image of two
skeletonf (M(2)) intersects∂V in general position. PickingV as the local regionW,
we apply Lemma 3.2.1 and see that the homomorphismf |∗ : H2(M

(2)
W,M

(2)
∂W; R) →

H2(W, ∂W; R) would vanish if the area of the meridian disk of the tubeV was
larger thanA(2τ(M)). This would violate the assumption thatf is a domination by
Lemma 3.2.2. Therefore, the radiusr of V must satisfy:

π sinh2(r) > A(2τ(M)),

which implies a lower bound of the length ofγ depending only on the triangulation
numberτ(M) of M. �

4.2 Sharp cone angles

In this section, we give a lower bound estimation for the coneangle of the base
orbifold in anH2 × E1-geometric orS̃L2-geometric piece of the target, under the
assumption of domination. Note that ifN is an orientable closed prime 3-manifold,
and if J is aH2 × E1-geometric orS̃L2-geometric piece inN, then J is a Seifert
fibered space over a hyperbolic base orbifold, and the cone angle at any cone point
equals 2π divided by its order. In this sense, we may speak of angle of cone points
on the base orbifold of this piece.

Proposition 4.2.1.Suppose M is an orientable closed3-manifold, then there exists
a constantδ > 0, depending only on M, satisfying the following. If f: M → N is a
domination, and J is anH2 × E1-geometric orS̃L2-geometric piece of N, then the
angle of every cone point on the base orbifold of J is at leastδ.

Proof. Without loss of generality, we may assumef has been straightened, with re-
spect to a minimal triangulation ofM and a Riemannian metricρǫ of N approximat-
ing its geometrization for some sufficiently small Margulis numberǫ > 0, (Lemma
3.1.1). Supposeγ is the (geodesic) fiber over a cone point of the base orbifold of
J. A result of Gavin Martin implies that for any complete hyperbolic 2-orbifoldO
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with a cone point of angle2πq , there is an embedded cone centered at the point with
radiusr satisfying:

cosh(r) =
1

2 sinπ
q

,

which is optimal inS2(2,3,q), (cf. [Mar96, Theorem 2.2]). Applying to the cone
point we are concerned about, the preimage of the embedded cone inJ is a tubeV,
which will have very large radius if the cone is very sharp. The rest of the proof is
a verbatim repeat of the second paragraph in the proof of Proposition 4.1.1. �

4.3 Finiteness of preglue graph-of-geometrics

In this section, we bound number of allowable preglue graph-of-geometrics under
domination.

Theorem 4.3.1.Suppose M is an orientable closed3-manifold. Then there are
at most finitely many isomorphically distinct preglue graph-of-geometrics(Λ,J),
which admit a nondegenerate gluingφ ∈ Φ(Λ,J) yielding a3-manifold dominated
by M.

Remark4.3.2. Theorem 4.3.1 implies that ifM dominates a non-geometric prime
3-manifoldN, then there are at most finitely many homeomorphism types of JSJ
pieces that can appear inN. This reproves [BRW, Theorem 1.1] modulo some easy
geometric cases. Moreover, the part of the argument about hyperbolic pieces does
not appeal to the fact thatN is non-geometric, so it works for the geometric case as
well, reproving [Som00, Theorem 1].

Proof. Suppose (Λ,J) is a preglue graph-of-geometrics with a nondegenerate glu-
ing φ ∈ Φ(Λ,J) that yields a 3-manifoldNφ dominated byM. As the Kneser–
Haken numberh(M), namely i.e. the maximal possible number of components
of essential subsurfaces ofM, bounds that ofNφ (cf. [Wan91, Propositio 4]), the
number of edges ofΛ is at mosth(M), and the number of vertices ofΛ is at most
h(M) + 1. Thus there are at most finitely many allowable isomorphismtypes ofΛ.
Note also thatNφ is by definition non-geometric. It suffices to bound the number
of homeomorphism types of geometric pieces that can appear as components ofJ ,
which are eitherH3-geometric orH2 × E1-geometric.

SupposeJ is anH3-geometric piece ofNφ. AsNφ is dominated byM, the simpli-
cial volume ofNφ is bounded by that ofM. It is a well-known result due to Teruhiko
Soma [Som81, Theorem 1] that the simplicial volume of a closed 3-manifold equals
the sum of the hyperbolic volumes of its hyperbolic pieces. Thus the volume ofJ is
bounded above by the simplicial volume ofM. Moreover, Proposition 4.1.1 implies
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that the length of the shortest geodesic inJ is bounded below in terms of the triangu-
lation number ofM. It follows from the Jørgensen–Thurston Theorem (cf. [Thu80,
Theorem 5.12.1]) that there are at most finitely many allowable homeomorphism
types ofJ.

SupposeJ is anH2 × E1-geometric piece ofNφ. It suffices to bound the num-
ber of allowable isomorphism types of the base orbifoldO. Applying the Kneser–
Haken finiteness again, we see the genus and the number of conepoints ofO are
both bounded above in terms ofh(M). Moreover, Proposition 4.2.1 implies that the
cone angles ofO are bounded below in terms of the triangulation number ofM.
Thus there are at most finitely many allowable isomorphism types ofO, and hence
finitely many allowable homeomorphism types ofJ. This completes the proof.�
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Chapter 5

Gluing finiteness

In this chapter, we study finiteness of gluings under domination for any given
preglue graph-of-geometrics. This will lead to the main result of the present disser-
tation, namely, that every orientable closed 3-manifold dominates at most finitely
many non-geometric prime 3-manifolds up to homeomorphism,(Theorem 5.4.2).

5.1 Distortions in a gluing

In this section, we introduce the notion of distortion measuring the complexity of a
nondegenerate gluing. There are distortions at vertices ofΛ, or along edges ofΛ,
which, roughly speaking, measure the local obstruction to extending the geometry
beyond the corresponding pieces, or across the corresponding cutting tori or Klein
bottles, respectively.

Let (Λ,J) be a preglue graph-of-geometrics, andφ ∈ Φ(Λ,J) be a nondegen-
erate gluing. Remember that in this situation, the associated 3-manifoldNφ is non-
geometric, and every geometric pieceJ of Nφ is a component ofJ with nonempty
tori boundary, and supports either the geometryH3 or the geometryH2 × E1.

We first introduce a natural positive-semidefinite quadratic form:

qJ : H1(∂J; R)→ R,

on H1(∂J; R), for each geometric pieceJ ⊂ J , as follows.
If J is H3-geometric, the interior ofJ has a unique complete hyperbolic metric

of finite volume, so we denote the cusped hyperbolic 3-manifold asJgeo. Then the
induced conformal structures on the cusps endowH1(∂J; R) with a canonical norm.
Specifically, letǫ > 0 be a sufficiently small Margulis number ofH3, so that the
compactǫ-thick part of Jgeo removes only horocusps ofJgeo. Then the boundary
of ǫ-thick part is a disjoint union of toriT1 ⊔ · · · ⊔ Tq with induced Euclidean
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metrics, canonical up to rescaling for sufficiently smallǫ. We rescale the Euclidean
metric on eachT j so that the shortest simple closed geodesic onT j has length 1.
This rescaled metric induces a Euclidean metric on the universal covering ofT j,
and hence defines a canonical positive-definite quadratic form qT j via the naturally
induced inner product onH1(T j; R). We define the positive-definite quadratic form
qJ on H1(∂J; R) � H1(T1; R)⊕ · · · ⊕H1(Tq; R) to be the direct sum of the quadratic
forms on its components.

If J is H2 × E1-geometric, it is a Seifert fibered space over a hyperbolic base
orbifold O. Let p : π1(J) → π1(O) be the naturally induced homomorphism,
where π1(O) is the fundamental group in the orbifold sense. For any compo-
nent T ⊂ ∂J, we regardπ1(T) as a subgroup ofπ1(J), so we may first define
for any ζ ∈ H1(T; Z) � π1(T) that qT(ζ) equals the square of the divisibility of
p(ζ) ∈ π1(O) if p(ζ) is nontrivial, and equals zero ifp(ζ) is trivial. This extends
to a unique positive-semidefinite quadratic formqT on H1(T; R) which vanishes on
the ordinary-fiber dimension. We define the positive-semidefinite quadraticqJ on
H1(∂J; R) by summing up the quadratic forms on its components.

These local quadratic forms allows us to define a positive-definite quadratic
form qφ associated to a nondegenerate gluingφ ∈ Φ(Λ,J):

Definition 5.1.1.Suppose (Λ,J) is a preglue graph-of-geometrics, andφ ∈ Φ(Λ,J)
is a nondegenerate gluing. For any end-of-edgeδ ∈ Ẽdg(Λ), let v, v′ be the vertices
adjacent toδ and its oppositēδ, respectively. For anyζ ∈ H1(Tδ; R), we define:

qφ(ζ) = qJv(ζ) + qJv′ (φδ(ζ)).

Note that this is also well-defined whenδ = δ̄, and that this is positive-definite asφ
is nondegenerate. We define the positive-definite quadraticfrom qφ on:

H1(∂J ; R) =
⊕

δ∈Ẽdg(Λ)

H1(Tδ; R),

to be the direct sum of the quadratic forms on its components.Note thatqφ depends
only on the equivalent class ofφ.

We are now ready to introduce the notion of distortions of a nondegenerate
gluing. Recall that for any freeZ-moduleV of finite rankn ≥ 0, and a quadratic
form q onVR = V ⊗Z R overR, the discriminant:

∆(V, q) ∈ R,

is the determinant of the associated bilinear form ofq over a (hence any) basis ofV.
Whenq is positive-definite, it equals the square of the volume of then-dimensional
flat torusVR /V with the Euclidean structure ofVR induced fromq.
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Definition 5.1.2. Let φ ∈ Φ(Λ,J) be a gluing, and lete ∈ Edg(Λ) be an (entire or
semi) edge. We define theaverage distortion(or simply, thedistortion) of φ along
eas:

De(φ) = ∆
(
H1(Tδ; Z), qφ

) 1
4
,

whereδ is an end ofe. Note the definition does not depend on the choice of the end.

Definition 5.1.3. Let φ ∈ Φ(Λ,J) be a gluing, and letv ∈ Ver(Λ) be a vertex of
valencenv. Supposenv > 0. If v is an entire-vertex, we define theaverage distortion
(or simply, thedistortion) of φ atv as:

Dv(φ) = ∆
(
∂∗H2(Jv, ∂Jv; Z), qφ

) 1
2nv ,

where∂∗H2(Jv, ∂Jv; Z) denotes the image ofH2(Jv, ∂Jv; Z) in H1(∂J ; R) under the
natural boundary homomorphism. Ifv is a semi-vertex,Jv is Seifert-fibered with a
non-orientable base orbifold. Let̃Jv be the double covering ofJv corresponding to
the centralizer of its ordinary-fiber, and letq̃φ onH1(∂J̃v; R) be the direct sum of the
quadratic forms on each componentH1(T̃; R) pulled back fromqφ, whereT̃ ⊂ ∂J̃v.
We define:

Dv(φ) = ∆
(
∂∗H2(J̃v, ∂J̃v; Z), q̃φ

) 1
4nv .

We also defineDv(φ) = 0 if nv = 0.

Remark5.1.4. Note the definition of average distortion along entire edgescan be
restated in a similar fashion if one takes a compact regular neighborhoodUe of Te

in place of the role ofJv above, because∂∗H2(Ue, ∂Ue; Z) � H1(Tδ) is a canonical
isomorphism. One can also restate the definition of average distortion along semi-
edges.

5.2 Gluing with bounded distortions

In this section, we show a finiteness result that there are only finitely many home-
omorphically distinct orientable closed irreducible 3-manifolds obtained from non-
degenerate gluings of a preglue graph-of-geometrics with bounded distortions. This
is an immediate consequence of the following:

Proposition 5.2.1. Let (Λ,J) be a preglue graph-of-geometrics. For any C> 0,
there are at most finitely many distinct nondegenerate gluingsφ ∈ Φ(Λ,J) up to
equivalence, such thatDv(φ) < C for every vertex v∈ Ver(Λ), and thatDe(φ) < C
for every edge e∈ Edg(Λ).
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We prove Proposition 5.2.1 in the rest of this section. Our strategy is as fol-
lows: using distortion along edges, we bound the allowable gluings up to fiber-
shearings (Definition 2.2.6); then using the distortion at Seifert-fibered vertices, we
shall bound the allowable indices of fiber-shearings, and hence the allowable glu-
ings up to equivalence. This will prove Proposition 5.2.1.

Firstly, we show that distortion along edges bounds nondegenerate gluings up
to fiber-shearings. This follows from a general fact about twisted sum of positive
semi-definite quadratic forms. Although we shall only applythe rank two case of
Lemma 5.2.3 in our estimations, it might be worth pursuing a little more generality
for certain independent interest.

The following an easy fact in linear algebra will be used later.

Lemma 5.2.2.Let V be a freeZ-module of finite rank n> 0, andq be a positive-
definite quadratic form on VR = V ⊗Z R. For any C> 0, and any integer0 ≤ k ≤ n,
there are at most finitely many rank-k submodules W of V with thediscriminant
∆(W, q) < C.

Proof. Fix a basise1, · · · ,en of V. It suffices to prove for the Euclidean formq0
induced by the fixed basis as an orthonormal basis, since the nondegeneracy en-
sures∆(W, q0) < λ · ∆(W, q) for someλ > 0 depending onlyq. Note that rank-k
submodules ofV are in bijection with rank-1 submodules of∧kV, represented by
primitive elementsw ∈ ∧kV up to sign. As∧kV has a natural inner product with a
standard orthonormal basis{ei1 ∧ · · · ∧ eik |1 ≤ i1 < · · · < ik ≤ n}, for any±w ∈ ∧kV
representingW, the well-known Cauchy–Binet formula implies:

∆(W, q0) = ‖w‖2,

where‖·‖ is the norm induced from the inner product structure. Asw is an integral
linear combination of the basis vectors, there are at most finitely many primitive
w’s satisfying‖w‖ < C. �

Let V be a freeZ-module of finite rankn ≥ 0. The special linear groupΓ =
SL(V) acts naturally (from the right) on the space of quadratic forms onVR, namely,
any τ ∈ Γ transforms a quadratic formq into the compositionqτ. We write the
stabilizer ofq in Γ asΓq. We say a quadratic formq hasrational kernelwith respect
to the latticeV ⊂ VR, if the kernelUR of (the associated bilinear form of)q in VR

intersectsV in a lattice (i.e. a discrete cocompact subgroup)U ⊂ UR.

Lemma 5.2.3.With notations above, letq, q′ be two positive-semidefinite quadratic
forms on VR overR with rational kernels with respect to V. Note that the value of
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∆(V, qσ+q′) depends only on the double-cosetΓqσΓq′. Then for any C> 0, there are
at most finitely many distinct double-cosetsΓqσΓq′ of Γ, such that the discriminant:

0 < ∆(V, qσ + q′) < C.

Proof. We denote the unit-balls ofq andq′ asB andB′, respectively. The unit-ball
Bσ of qσ + q′ is clearly contained inσ−1(B) ∩ B′. When∆(V, qσ + q′) > 0, Bσ is
compact, butB or B′ may be noncompact ifq or q′ are degenerate.

We claim that for anyC > 0, there exists some compact subset:

K ⊂ VR,

such that for anyσ ∈ Γ with 0 < ∆(V, qσ+ q′) < C, there is someτ′ ∈ Γq′, such that
the unit-ballBστ′ of q(στ′) + q′ is contained inK.

To prove this claim, we need to understand the action ofΓq′. Let U′R be the
kernel ofq′, of dimensionk′, and letU′ = U′R ∩ V be the sublattice intersecting
V. As q′ has rational kernel,U′ also has rankk′, andV splits asU′ ⊕ L′ for some
sublatticeL′ of rankn− k′. Pick a basisξ′1, · · · , ξ′k′ of U′ and a basisξ′k′+1, · · · , ξ′n of
L′. Hence they form a basis ofV. NowΓq′ has a free abelian subgroupΠ′ generated
by the ‘elementary shearings’τ′i j ∈ Γ, defined for any 1≤ i ≤ k′, andk′+1 ≤ j ≤ n,
by the identity on all the basis vectors except for:

τ′i j (ξ
′
j) = ξ

′
i + ξ

′
j .

In particular,Π fixes the subspaceU′R. Moreover,Γq′ has a natural subgroup iso-
morphic to SL(U′), acting on theU′R factor while fixing theL′R factor. In fact, these
two subgrops generate a finite-index normal subgroup ofΓq′, which is a semidirect
productΠ′ ⋊ SL(U′).

We fix a reference Euclidean metric onVR with the orthonormal basisξ′1, · · · , ξ′n,
and denote the inducedm-dimensional volume measure on anym-dimensional sub-
space asµm. It will be also conventient to make the convention that the zero-
dimensional volume of the origin is one. The volume ofBσ is proportional to the
reciprocal of the square root of∆(V, qσ + q′), indeed:

µn(Bσ) =
ωn

∆(V, qσ + q′)
1
2

,

whereωn =
πn/2

Γ(1+n/2) is the volume of ann-dimensional Euclidean unit-ball. Thus
the assumption 0< ∆(V, qσ + q′) < C is equivalent to:

ωn√
C
< µn(Bσ) < ∞.
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Up to a composition by someτ′ in SL(U′) ≤ Γq′, we may first assumeσ−1(B)∩
U′R is bounded within a uniform distanceD1 > 0 from the origin. In fact, for any
σ ∈ Γ, we have:

ωn√
C

< µn(Bσ) ≤ µk′(σ
−1(B) ∩ U′R) · µn−k′(B

′ ∩ (U′R)⊥),

soµk′(σ−1(B) ∩ U′R) is bounded below in terms ofC. On the other hand,

µk′(σ
−1(B) ∩ U′R) =

ωk′

∆(U′, qσ)
1
2

=
ωk′

∆(σ(U′), q)
1
2

,

and∆(σ(U′), q) further equals the discriminant of the embedded imageσ(U′) of
σ(U′) in the quotientV /U, with respect to the induced nondegenerate quadratic
form q̄. Thus, the uniform lower bound ofµk′(σ−1(B) ∩U′R) yields a uniform upper
bound of∆(σ(U′), q̄). By Lemma 5.2.2, at most finitely many rank-k′ submodules
of V /U are allowed to be the imageσ(U′). Furthermore, if two imagesσ0(U′) and
σ1(U′) coincide, the identification pulls back to be an isomorphism τ′ in SL(U′),
so thatσ1 = σ0τ

′ restricted toU′. In other words, there are at most finitely many
σ−1(B) ∩ U′R up to compositions by elements of SL(U′) ≤ Γq′. Hence they can be
bounded uniformly within a uniform distanceD1 > 0 from the origin.

Now we also pick a splittingV = U ⊕ L, and correspondingly pick a basis
ξ1, · · · , ξk of U and a basisξk+1, · · · , ξn of L, in a similar fashion as before. For any
σ ∈ Γ with ωn√

C
< µn(Bσ) < ∞, we can findk + 1 ≤ j1 < j2 < · · · < jh ≤ n, where

h = n− k− k′, such thatU′R is transversal to the subspace:

σ−1(UR ⊕ HR),

whereHR is spanned byξ j1, · · · , ξ jh.
Let σ be as above. Up to a composition by someτ′ in Π ≤ Γq′, we may further

assumeσ−1(UR ⊕ HR) ∩ B′ bounded within a uniform distanceD2 > 0 from the
origin. In fact, we may find vectors:

η′j = y1 j ξ
′
1 + · · · + yk′ j ξ

′
k′ + ξ

′
j ,

for eachk′ + 1 ≤ j ≤ n, such that theη′j together spanσ−1(UR ⊕ HR). Noteτi j fixes
η′t whent , j, and changes only thei-th coordinate ofη′j by +1. Thus, usingστ′

instead ofσ for someτ′ ∈ Π, we may assume that 0≤ yi j < 1 for all theyi j ’s above.
Let R > 0 be sufficiently large, so that every point inL′R ∩ B′ is bounded within
in the radiusR ball centered at the origin. Then every point inσ−1(UR ⊕ HR) ∩ B′

is bounded within the radius
√

k′ + 1R ball centered at the origin, so we take this
radius as the uniformD2 > 0. Note that for a differentσ ∈ Γ one may need to
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pick a different coordinate subspaceHR ≤ LR, (indeed, there could be up to
(
n−k
h

)

choices), but the constantD2 > 0 depends only onq′. Note also that this does not
affectσ−1(B) ∩ U′R which we have already taken care of.

Under the adjustment assumptions above, every vectorv ∈ Bσ can be written as
u′ + w, whereu′ ∈ σ−1(B) ∩ U′R, andw ∈ σ−1(UR ⊕ HR) ∩ B′ for some appropriate
HR. Thus, for anyσ ∈ Γ with 0 < ∆(qσ+q′) < C, we have shown that there is some
τ′ ∈ Γq′ so thatBστ′ is bounded within the uniform radiusD1 + D2 ball centered at
the origin. Taking this uniform large ball asK, we have proved the claim.

To complete the proof of Lemma 5.2.3, observe that there is a uniform positive
lower bound of the length of the short-axis of the ellipsoidBσ, provided thatBσ is
bounded withinK. This is clear because the volumeµn(Bσ) is at leastωn√

C
. It follows

that for all suchσ’s, (qσ + q′)(ξ′t ) is bounded by some uniform constant, for every
1 ≤ t ≤ n. Suppose:

σ(ξ′t ) = xt1 ξ1 + · · · + xtn ξn,

wherext1, · · · , xtn are integers. Becauseq vanishes restricted toUR and is nonde-
generate restricted toLR, we obtain a uniform upper bound for everyxjt , where
k + 1 ≤ j ≤ n, and 1≤ t ≤ n. Hence at most finitely many integers are allowed to
be the the coefficients of theξk+1, · · · , ξn components. Moreover, whenever twoσ0,
σ1 coincide on these coefficients, they differ only by a post-composition of some
τ ∈ Γ, which preservesU and induces the trivial action onV /U. Such aτ belongs
to Γq, soΓqσ0 = Γqσ1.

To sum up, we have shown that for everyσ ∈ Γ with 0 < ∆(qσ + q′) < C, every
left-cosetσΓq′ contains a representative so thatBσ is bounded in some uniform
compact setK, and that these representatives belong to at most finitely many distinct
right-cosetsΓqσ. This means there are at most finitely many distinct double-cosets
ΓqσΓq′. �

Lemma 5.2.4.Let (Λ,J) be a preglue graph-of-geometrics. For any C> 0, there
are at most finitely many nondegenerate distinct gluingsφ ∈ Φ(Λ,J) up to fiber-
shearings, such thatDe(φ) < C for every edge e∈ Edg(Λ).

Proof. Let φ ∈ Φ(Λ,J) be a nondegenerate gluing satisfying the conclusion. For
any end-of-edgeδ ∈ Ẽdg(Λ), φδ : Tδ → Tδ̄ induces the quadratic formqφ| =
qJ′φδ + qJ on H1(Tδ; R), whereJ, J′ are the pieces containingTδ, Tδ̄, respectively.
Pick a reference gluingψδ : Tδ → Tδ̄, thenφδ = ψδσ for someσ ∈ Mod(Tδ). Write
q = qJ, andq′ = qJ′ψδ, andΓ = Mod(Tδ), thenqφ on H1(Tδ; R) equalsqσ + q′ for
someσ ∈ Γ. Clearly the stabilizerΓq of q in Γ is nontrivial only if J is Seifert-
fibered, in which caseΓq is generated by a Dehn-twist along an ordinary-fiber on
Tδ; and the stabilizerΓq′ is nontrivial only if J′ is Seifert-fibered, in which case
Γq′ is generated by a Dehn-twist along an ordinary-fiber onTδ̄ pulled back onTδ
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via ψδ. By the assumption and the definition of edge distortion,∆(H1(Tδ; Z), qσ +
q
′) < C. Moreover,∆(H1(Tδ; Z), qσ + q′) > 0 becauseφ is nondegenerate. Thus

Lemma 5.2.3 implies that there are at most finitely many allowable types ofφδ up
to fiber-shearings. Asφ : ∂J → ∂J is defined by all theφδ’s whereδ ∈ Ẽdg(Λ),
we conclude there are at most finitely many nondegenerate gluingsφ up to fiber-
shearings, which have edge distortions all bounded byC. �

Next, we show that distortion at Seifert-fibered vertices bounds nondegenerate
fiber-shearings of a given gluing up to equivalence.

Lemma 5.2.5.Let (Λ,J) be a preglue graph-of-geometrics, andφ ∈ Φ(Λ,J) be
a nondegenerate gluing. Suppose v∈ Ver(Λ) is a Seifert-fibered vertex. Then for
any C > 0, there exists some K> 0, depending on C andφ, such that whenever
φτ is a fiber-shearing ofφ with Dv(φτ) < C, the fiber-shearing index kv(τ) satisfies
|kv(τ)| < K.

Proof. There are two cases according tov being entire or semi.

Case 1. v is an entire-vertex, i.e.Jv has an orientable base orbifold.
In this case, we pick consistent directions for all the fibersof Jv, and for any

end-of-edgeδ adjacent tov, let λδ be the directed slope onTδ ⊂ ∂Jv. Suppose the
valence ofv is nv > 0. It is not hard to see that∂∗H2(Jv, ∂Jv; Z) < H1(∂Jv; R) has a
rank-(nv − 1) submodule:

Lv =


∑

δ∈Ẽdg(v)

lδ [λδ]
∣∣∣

∑

δ∈Ẽdg(v)

lδ = 0, wherelδ ∈ Z


,

and that there is an element:

[µv] =
∑

δ∈Ẽdg(v)

[µδ] ∈ ∂∗H2(Jv, ∂Jv; Z),

such that for eachδ ∈ Ẽdg(v), [µδ] ∈ H1(Tδ,Z) and the intersection number〈µδ, λδ〉 =
mv wheremv > 0 is the least common multiple of the orders of cone-points onthe
base orbifold. Moreover,

∂∗H2(Jv, ∂Jv; Z) = Lv ⊕ Z · [µv].

For simplicity, we writeq, qτ for qφ, qφτ . Note thatqτ = q restricted toLv.
We estimate the value ofqτ over the coset [µv] + Lv ⊗R of ∂∗H2(Jv, J∂v; R). For

any [ξ] =
∑
δ∈Ẽdg(v) lδ [λδ] ∈ Lv ⊗ R,

q
τ ([µv] + [ξ]) =

∑

δ∈Ẽdg(v)

q ([µδ] + (lδ +mvkδ) [λδ]) ,
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wheremv > 0 is as above, andkδ is the Dehn-twist number onTδ as in the definition
of fiber-shearings. We have:

∑

δ∈Ẽdg(v)

(lδ +mkδ) = mvkv(τ),

so if |kv(τ)| ≥ K, there must be one endδ∗ ∈ Ẽdg(v), such that|lδ∗ +mvkδ∗ | ≥ K/nv.

Thus:

q
τ ([µv] + [ξ]) ≥ q ([µδ∗ ] + (lδ∗ +mvkδ∗) [λδ∗ ])

≥ 1
2
q ((lδ∗ +mvkδ∗)[λδ∗ ]) − q ([µδ∗ ])

≥ K2rv

2nv
− Rv,

whererv = minδ∈Ẽdg(v) q([λδ]) andRv = maxδ∈Ẽdg(v) q([µδ]) are constants depending
only onJv andφ. Noterv > 0 becauseφ is nondegenerate.

Now we have:

Dv(φ
τ) =

(
∆(Lv, q) · inf

[ξ]∈Lv⊗R
{q([µv] + [ξ])}

) 1
2nv

≥
(
∆Lv · (

K2rv

2nv
− Rv)

) 1
2nv

,

where∆Lv = ∆(Lv, q) > 0 becauseφ is nondegenerate. In other words, ifDv(φτ) <
C, we obtain an upperboundK > 0 so that the absolute value of the fiber-shearing
indexkv(τ) is bounded byK.

Case 2. v is a semi-vertex, i.e.Jv has a non-orientable base orbifold.
In this case, let̃Jv be the double covering ofJv corresponding to the centralizer

of ordinary-fiber as in the definition of the vertex distortion. Then∂J̃v is a trivial
double covering of∂Jv, and every fiber-shearingτ ∈ Mod(∂Jv) at v of indexkv(τ)
lifts to a unique ˜τ ∈ Mod(∂J̃v) of index 2kv(τ). As now J̃v is Seifert-fibered over
an orientable base orbifold, we reduce to the previous case,bounding the absolute
value of 2kv(τ) by someK depending onC andφ. �

Now we are ready to prove Proposition 5.2.1.

Proof of Proposition 5.2.1.By Lemma 5.2.4, there are at most finitely many allow-
able types of gluings up to fiber-shearings. By Lemma 5.2.5, for each allowable
fiber-shearing family{φτ} asτ ∈ Mod(∂J) runs over all fiber-shearings whereφ is
a reference nondegenerate gluing, there are at most finitelymany allowable indices
of τ at any Seifert-fibered vertex. Hence by Lemma 2.2.7, there are at most finitely
many distinct nondegenerate gluings up to equivalence withbounded distortions at
all vertices and along all edges. �
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The reader may have noticed that distortion at atoroidal (i.e.H3-geometric) ver-
tices are not used in the proof of Proposition 5.2.1. We closethis section with the
following lemma, which provides some reason behind.

Lemma 5.2.6.Let (Λ,J) be a preglue graph-of-geometrics, and v∈ Ver(Λ) be a
vertex of valence nv, corresponding to an atoroidal piece Jv ⊂ J . Then for any
gluingφ ∈ Φ(Λ,J),

Dv(φ) ≤ C ·


∏

δ∈Ẽdg(v)

De(δ)(φ)



2
nv

,

whereẼdg(v) denotes the ends-of-edges adjacent to v, and e(δ) denotes the edge
containing the end-of-edgeδ, and C > 0 is some constant depending only on the
topology of Jv.

Proof. We simply rewriteJv asJ, andnv asn. Write the submodule∂∗H2(J, ∂J; Z)
of H1(∂J; Z) asW, and the subspace∂∗H2(J, ∂J; R) of H1(∂J; R) asWR. From the
definition, we haveqφ ≥ qJ, both positive-definite onH1(∂J; R), so the unit-ball
Bφ of qφ is contained the (compact) unit-ballBJ of qJ. It suffices to show for some
C0 > 0 independent ofφ,

∆(W, qφ) ≤ C0 · ∆(H1(∂J; Z), qφ).

Picking a basis ofH1(∂J; Z) as an orthonormal basis, we fix a reference inner prod-
uct of H1(∂J; R). Denote the induced 2n-dimensional volume measure asµ2n, and
denote the inducedn-dimensional volume measure onWR and onW⊥

R asµn. It
suffices to show for someC1 > 0 independent ofφ,

µ2n(Bφ) ≤ C1 · µn(WR ∩ Bφ).

Note that:
µ2n(Bφ) =

ω2n

ω2
n

· µn(WR ∩ Bφ) · µn(B̄φ),

whereωm denotes the volume of anm-dimensional Euclidean unit-ball, and̄Bφ is
the image of the orthogonal projection ofBφ to W⊥. Therefore, the last inequality
follows immediately because:

µn(B̄φ) ≤ µn(B̄J),

whereB̄J is the image of the orthogonal projection ofBJ to W⊥. The right-hand
side is finite, independent ofφ. �
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5.3 Bounding distortions

In this section, we bound the distortions of a nondegenerategluing under the as-
sumption of domination, namely:

Proposition 5.3.1. Suppose M is an orientable closed3-manifold, and Nφ is an
orientable closed irreducible3-manifold obtained from a nondegenerate gluingφ ∈
Φ(Λ,J) of a preglue graph-of-geometrics(Λ,J). Then there exists some C> 0,
such that if M dominates Nφ, thenDv(φ) < C for every vertex v∈ Ver(Λ), and
De(φ) < C for every edge e∈ Edg(Λ).

The rest of this section is devoted to the proof of Proposition 5.3.1. The idea is
similar to the proofs of Propositions 4.1.1 and 4.2.1.

To start with, we reduce the proof to the case when the underlying graphΛ is
looplessandentire, namely, such that it contains no loop edges, and that there is no
semi-edges or semi-vertices:

Lemma 5.3.2. If Proposition 5.3.1 holds under the assumption thatΛ is loopless
and entire, it holds in general as well.

Proof. The idea is thatΛ, as an ‘orbi-graph’, has a finite coverκ : Λ̃→ Λ of index
at most four which is loopless and entire. To be precise, suppose f : M → Nφ

is a nonzero degree map. We rewriteNφ as N for simplicity. Take two copies
X0,X1 of the compact 3-manifold obtained by cuttingN along a maximal disjoint
union of incompressible Klein-bottles, and glue each component of∂X0 to a unique
component of∂X1 according to the gluing pattern ofN. Then we obtain a double
coverÑ′ of N, whose graph̃Λ′ is entire, (possibly disconnected ifΛ is itself entire).
Now cutÑ′ along the tori corresponding to the loop edges ofΛ̃

′, and glue two copies
of the resulting compact 3-manifold up according to the gluing pattern ofÑ′. Then
we obtain a double cover̃N′′ of Ñ′, whose graph̃Λ′′ is loopless and entire, (possibly
disconnected ifΛ̃′ is already loopless). Pick a connected component ofÑ′′, and
rewrite asÑ. ThusÑ coversN of index at most four, and has a loopless entire graph
Λ̃. Indeed,Ñ may be regarded as the associated 3-manifoldNφ̃ for a nondegenerate
gluing φ̃ ∈ Φ(Λ̃, J̃). Moreover, it is clear from the definition that distortionsare
preserving passing to covers induced by the graph, namely,Dṽ(φ̃) = Dκ(ṽ)(φ), and
Dẽ(φ̃) = Dκ(ẽ)(φ). However, sinceÑ is dominated by a (connected) coverM̃ of M
with index at most four, the distortions ofφ̃ are bounded byc(M̃), wherec(M̃) > 0
is a constant guaranteed by the assumption. Note there are only finitely many such
M̃’s, sinceπ1(M) is finitely generated. LetC > 0 be the maximum among all
possiblec(M̃), asM̃ runs over all the coverings ofM with index at most four. Thus
the distortions ofφ are bounded byC as well. �
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Without loss of generality, we assumeΛ is loopless and entire in the rest of this
section. To simplify the notations, we rewriteNφ asN in the rest of this subsection.
Let:

f : M → N,

be a domination as assumed. Letǫ3 > 0 denote the Margulis constant ofH3.
For any sufficiently small Margulis numberǫ with 0 < ǫ < ǫ3, by Lemma 3.1.1,

we may straighten the mapf via homotopy, with respect to a minimal triangulation
of M and a Riemannian metricρǫ of N approximating its geometrization. We still
write the straightened map asf . Remember thatN has the decomposition:

N = J ∪∂U U,

whereU are regular neighborhood of the cutting toriT , and components ofJ
areǫ-thick or horizontally-ǫ-thick, dependint on whether they areH3-geometric or
H

2 × E1-geometric, respectively.
For each edgee ∈ Edg(Λ), let:

We ⊂ N,

be the union ofUe together with the compactǫ3-thin (or horizontal-ǫ3-thin) horo-
cusp neighborhoods of its adjacent pieces. Possibly after an arbitrarily small shrink-
ing ofWe, we may assume the union ofWe’s is still a compact regular neighbor-
hood ofT , properly containingU wheneverǫ < ǫ3; and we may also assume
that f −1(∂We) intersectsM(2) in general positions. AsΛ is a loopless graph, each
We is local, and deformation-retracts toTe. Thus there is a quadratic form on
the subspace∂∗H2(We, ∂We; R) of H1(∂We; R), naturally induced fromqφ on
H1(Tδ; R) ⊕ H1(Tδ̄; R), whereδ, δ̄ are the two ends ofe. Furthermore, for each
vertexv ∈ Ver(Λ), let:

Wv ⊂ N,

be the union ofJv together with all theWe’s wheree runs over edges adjacent
to v. As Λ is a loopless graph, eachWv is local, and deformation-retracts toJv.
Thus there is a quadratic form on the subspace∂∗H2(Wv, ∂Wv; R) of H1(∂Wv; R),
naturally induced fromqφ on H1(∂Jv; R).

TheseWe’s andWv’s are natural geometric objects associated with the geomet-
ric decomposition ofN. The following comparison plays the role of the meridianal
area estimation in the proofs of Propositions 4.1.1 and 4.2.1:

Lemma 5.3.3.For any vertex v∈ Ver(Λ), if j : (S, ∂S)→ (Wv, ∂Wv) is a properly
piecewise-linearly immersed oriented compact surface, then:

Area(j(S)) ≥ 4
(
sinh (

ǫ3

2
) − sinh (

ǫ

2
)
)
·
√
qφ( j∗[∂S]),
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where j∗[∂S] ∈ ∂∗H2(Wv, ∂Wv; Z). The same holds for any edge e∈ Edg(Λ) in
place of v above.

Remark5.3.4. An easy computation in hyperbolic geometry yields that 4 sinh(ǫ2)
is the Euclidean length of the shortest geodesic on the boundary of a hyperbolic
horocusp whose injectivity radius is at mostǫ (realized at points on the boundary).
Moreover, the right-hand side of the inequality may be replaced by

(
1− 4 sinh (ǫ2)

)
·√

qφ( j∗[∂S]), if one takes mutually disjoint maximal horocusps instead of the Mar-
gulis horocusps in the definition ofWe. This follows because the length of shortest
geodesic on each component of∂We in this case is at least 1, (cf. [Ada92]).

Proof. We only prove the vertex case, and the edge case is similar.
Let v ∈ Ver(Λ) be a vertex. Write Edg(v) for the edges adjacent tov, and

Ẽdg(e) for the two ends of an edgee. As Λ is loopless,e ∈ Edg(v) has two ends
δ, δ̄, corresponding to the two components ofWe \ Ůe which we write asWδ,Wδ̄

respectively. Supposej∗[∂S] =
∑

e∈Edg(v) αe, corresponding to the direct-sum de-
composition:

H1(∂Wv; R) �
⊕

e∈Edg(v)

H1(Te; R).

It follows from an easy calibration argument that the area (or the horizontal-area)
of j(S) ∩Wδ is at least 4 (sinh (ǫ32 ) − sinh (ǫ2)) ·

√
qJδ(αe), for anyδ ∈ Ẽdg(e) and

anye ∈ Edg(v), whereJδ ⊂ J denotes the piece corresponding to the vertex thate
is adjacent to on the endδ, for the definition ofqJδ). We have:

Area(j(S)) ≥
∑

e∈Edg(v)

∑

δ∈Ẽdg(e)

4
(
sinh (

ǫ3

2
) − sinh (

ǫ

2
)
)
·
√
qJδ(αe)

≥ 4
(
sinh (

ǫ3

2
) − sinh (

ǫ

2
)
)
·
√ ∑

e∈Edg(v)

∑

δ∈Ẽdg(e)

qJδ(αe)

= 4
(
sinh (

ǫ3

2
) − sinh (

ǫ

2
)
)
·
√ ∑

e∈Edg(v)

qφ(αe)

= 4
(
sinh (

ǫ3

2
) − sinh (

ǫ

2
)
)
·
√
qφ( j∗[∂S]),

as desired. �

Lemma 5.3.5.For any vertex v∈ Ver(Λ), if α1, · · · , αm is a collection of elements
in ∂∗H2(Wv, ∂Wv; Z) spanning∂∗H2(Wv, ∂Wv; R) over R, then for at least one
1 ≤ k ≤ m, √

qφ(αk) ≥ Dv(φ).

The same holds for any edge e∈ Edg(Λ) in place of v above.
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Proof. This is a Minkowski-type estimation for lattices. Without loss of generality,
we may assume thatm is minimal, and hence equal to the valence ofv. Consider the
volume of the parallelogram spanned by theαi ’s with respect to the inner product
induced byqφ on∂∗H2(Wv, ∂Wv; R), then clearly:

nv∏

i=1

√
qφ(αi) ≥ |det(α1, · · · , αnv)| ·

√
∆(∂∗H2(Wv, ∂Wv; Z), qφ),

where det(α1, · · · , αnv) is the determinant regardingαi ’s as column coordinate vec-
tors over a basis of∂∗H2(Wv, ∂Wv; Z), which is a nonzero integer and hence at
least one in absolute value. Thus,

nv∏

i=1

√
qφ(αi) ≥

√
∆(∂∗H2(Wv, ∂Wv; Z), qφ) = Dv(φ)nv,

by the definition of vertex distortion. The lemma follows immediately from this
estimation, and the edge case is similar. �

We are now ready to prove Proposition 5.3.1.

Proof of Proposition 5.3.1.By Lemma 5.3.2, we may assumeΛ is loopless and
entire. RewriteNφ asN Let:

f : M → N,

be a domination as assumed. Letǫ3 > 0 denote the Margulis constant ofH3. For
a sufficiently small Margulis numberǫ with 0 < ǫ < ǫ3, straighten the mapf via
homotopy with respect toǫ > 0. We only prove the vertex case, and the edge case
is similar.

Let v ∈ Ver(Λ) be a vertex. TakingWv asW, by Lemma 3.2.1, there is anR-
spanning set [S1], · · · , [Sm] of H2(M

(2)
Wv
,M(2)

∂Wv
; R) represented by relativeZ-cycles

each with area bounded byA(2τ(M)), whereA(n) = 27n(9n2
+4n)π, and whereτ(M)

is the triangulation number ofM. From the construction, these relativeZ-cycles can
be regarded as proper immersions of compact oriented surfaces: j i : (Si , ∂Si) →
(Wv, ∂Wv), where 1≤ i ≤ m. By Lemma 5.3.3,

√
qφ( j i∗[∂Si]) ≤

1
4

(
sinh (

ǫ3

2
) − sinh (

ǫ

2
)
)−1

· Area(j i(Si))

≤ 1
4

(
sinh (

ǫ3

2
) − sinh (

ǫ

2
)
)−1

· A(2τ(M)),

for all 1 ≤ i ≤ m. Note that j i∗[∂Si] = ∂∗ j i∗[Si] ∈ ∂∗H2(Wv, ∂Wv; Z) for all
1 ≤ i ≤ m. On the other hand, Lemma 3.2.2 implies that all thej i∗[∂Si]’s together
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span∂∗H2(Wv, ∂Wv; R) overR, as f is a domination. Thus, by Lemma 5.3.5,

Dv(φ) ≤ max
1≤i≤m

√
qφ( j i∗[∂Si]) ≤

1
4

(
sinh (

ǫ3

2
) − sinh (

ǫ

2
)
)−1

· A(2τ(M)).

As ǫ > 0 can be arbitrarily small, we obtain:

Dv(φ) ≤ A(2τ(M))
4 sinh (ǫ32 )

,

where the right-hand side depends only onM. In fact, one can showDv(φ) ≤
A(2τ(M)) with the stronger estimation as mentioned in Remark 5.3.4. �

5.4 Finiteness of gluings

To summarize our discussions so far, we have the following finiteness of nondegen-
erate gluings as an immediate consequence of Propositions 5.2.1 and 5.3.1:

Theorem 5.4.1.Suppose M is an orientable closed3-manifold, and(Λ,J) is a
preglue graph-of-geometrics. Then there are at most finitely many equivalently
distinct nondegenerate gluingsφ ∈ Φ(Λ,J) yielding a3-manifold dominated by
M.

Finally, we obtain the following theorem, which is the main result of the present
dissertation as mentioned in the introduction:

Theorem 5.4.2.Every orientable closed3-manifold dominates at most finitely many
homeomorphically distinct non-geometric prime3-manifolds.

Proof. Note that every orientable closed non-geometric prime 3-manifold is ob-
tained from a nondegenerate gluing induced from its geometric decomposition.
Because equivalent gluings yield homeomorphic 3-manifolds, the theorem is an
immediate consequence of Theorems 4.3.1 and 5.4.1. �
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Chapter 6

Further results

In this chapter, we discuss consequences of Theorem 5.4.2.

6.1 Domination of bounded degree

In this section, we study finiteness for dominations of bounded degree.

Theorem 6.1.1. For any integer d> 0, every orientable closed3-manifold d-
dominates only finitely many homeomorphically distinct3-manifolds.

The rest of this section is devoted to the proof of Theorem 6.1.1. We shall
focus on the case when the target is Seifert fibered, and reduce to that case to prove
Theorem 6.1.1.

We start by the following estimation of the size of torsion under dominations
of bounded degree, directly generalizing a lemma previously obtained for the 1-
dominations, cf. [HLWZ02, Lemma 3], [WZ02, Lemma 3 (1)].

Lemma 6.1.2. For any integer d> 0, if M is an orientable closed3-manifold
d-dominating an orientable closed3-manifold N, then:

|TorH1(N; Z)| ≤ d · |H1(M; Zd)| · |TorH1(M; Z)|,

whereTor denotes the submodule of torsion elements, and where| · | denotes the
cardinality.

Proof. This follows from an easy algebraic topology argument. Suppose f : M →
N is a map of degreed (after approriately orientatingM andN), then the umkehr
homomorphism:

f! : H∗(N; Z)→ H∗(M; Z),
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is known asf!(α) = [M] ⌢ f ∗(α̌) for α ∈ H∗(N; Z), whereα̌ ∈ H3−∗(N; Z) denotes
the Poincaŕe dual ofα. It is straightforward to checkf∗ ◦ f! : H∗(N; Z)→ H∗(N; Z)
is the scalar multiplication byd. In particular,d · TorH1(N; Z) is surjected by
f!(TorH1(N; Z)) ≤ TorH1(M; Z). On the other hand, from the long exact sequence:

· · · −→ H1(N; Z)
d−→ H1(N; Z) −→ H1(N; Zd) −→ 0,

we have TorH1(N; Z) /d · TorH1(N; Z) ≤ H1(N; Zd). Note asf : M → N has
degreed, the image ofH1(M; Zd) in H1(N; Zd) has index at mostd. This gives our
inequality as desired. �

The Seifert-fibered case was previously obtained whend equals one, due to
Claude Hayat-Legrand, Shicheng Wang, Heiner Zieschang [HLWZ02] for theS3-
geometric case, and later due to Shicheng Wang, Qing Zhou [WZ02] for the general
cases. Their techniques actually work in general whend is greater than one, using
the updated version of torsion size estimation above:

Lemma 6.1.3.For any integer d> 0, any orientable closed3-manifold d-dominates
at most finitely many Seifert fibered spaces.

Proof. We give a brief outline of the proof, cf. [HLWZ02, WZ02].
SupposeM is an orientable closed 3-manifoldd-dominating a Seifert fibered

spaceN. We may focus on the case when the Euler class ofN is nonvanishing.
In fact, this happens exactly whenN supports one of the geometriesS3, Nil or
S̃L2, according to the sign ofχ. Other cases have already been covered by the
finiteness result of [BRW, Theorem 1.1] concerning JSJ pieces using a Kneser–
Haken finiteness argument. Furthermore, we may assume without loss of generality
that N has an orientable base orbifold, because every Seifert fibered space has a
finite cover of index at most two with this property, and becauseM has only finitely
many homeomorphically distinct index two covers.

We shall denote an orientable closed Seifert fibered 3-manifold as:

N = Σ(g; b0,
b1

a1
, · · · , bs

as
),

normalized so thats,g ≥ 0 andb0 are integers, and that 0< bi < ai are coprime
integers for 1≤ i ≤ s. When the base orbifold is orientable, it can be denoted as
Fg(a1, · · · ,as), which means the orientable closed surface of genusg with cone-
points of orderai ’s. The base orbifold has the Euler characteristic:

χ = 2− 2g−
s∑

i=1

(1− 1
ai

),
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and the Seifert fibration has the Euler class (as a rational number):

e= −b0 −
s∑

i=1

bi

ai
.

Whene is not vanishing, the torsion size in its first homology is:

|TorH1(N; Z)| = |e| ·
s∏

i=1

ai .

As we have assumed thatN fibers over an orientable base orbifold with nonva-
nishing Euler class, the rest of the proof falls into three cases according to the sign
of χ.

Whenχ > 0, N supports theS3-geometry. It is an easy exercise to check that
such a manifold is covered by a lens space of index at most 60. In fact, we have
g = 0 ands ≤ 3. For 0≤ s ≤ 2, N is a lens space (possibly the 3-sphere). For
s = 3, N is N is either a prism 3-manifoldΣ(0;b0,

1
2,

1
2,

b3
a3

), or of one of the types

Σ(g; b0,
1
2,

b2
3 ,

b3
3 ), Σ(g; b0,

1
2,

b2
3 ,

b3
4 ), orΣ(g; b0,

1
2,

b2
3 ,

b3
5 ). In each of these cases, there

is a cover of the base orbifold of order at most 60 with at most two cone points.
ThusN is covered by a lens space of index at most 60. Applying the covering trick
as above, we may assumeN is indeed a lens space, without loss of generality. As a
lens space has cyclic fundamental group, its order can be bounded by Lemma 6.1.2,
so there are only finitely many allowableN’s up to homeomorphism.

Whenχ = 0, N supports the Nil-geometry, and there are only finitely many
allowable values ofs,g andai ’s by the formula ofχ. For each possibility, there are
only finitely allowable values ofbi ’s because 0< bi < ai for 1 ≤ i ≤ s, and because
b0 can be bounded by the torsion-size comparison. Thus there are at most finitely
many homeomorphically distinctN’s with χ = 0.

When χ < 0, N supports thẽSL2-geometry. By Proposition 4.2.1 and the
Kneser–Haken finiteness, there are only a finite number of allowable isomorphism
types of the base orbifold ofN, which does not depend ond. Thus by the covering
trick, we may assumeN fibers over a closed orientable surface. In this case, it is
straightforward to check that the Euler number of the fiber isan integer whose ab-
solute value is bounded by the torsion-size ofH1(N), and hence is bounded in terms
of M andd. This yields the finiteness of allowable homeomorphism types of N, so
we have completed the proof of Lemma 6.1.3. �

Proof of Theorem 6.1.1.One may first reduce to the case when the target is irre-
ducible, because any orientable closed 3-manifold 1-dominates any of its connected-
sum components in the Kneser–Milnor decomposition, and because the number of
connect-sum components in the target is bounded in terms of the Kneser–Haken
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number of the source. Moreover, Theorem 5.4.2 reduces the statement to the case
of geometric targets. TheH3-geometric target case was proved by Teruhiko Soma
[Som00, Theorem 1], (cf. Remark 4.3.2). The Sol-geometric target case was proved
by Michel Boileau, Steve Boyer, and Shicheng Wang [BBW08] using torsion poly-
nomials. We also remark that provided the upper bound of mapping degreed, there
is an easy and direct argument bounding the number of allowable monodromies,
using the torsion-size estimation (Lemma 6.1.2). In the cases of the rest six ge-
ometries, the target is a Seifert fibered space, so we may apply Lemma 6.1.3. This
completes the proof of Theorem 6.1.1 �

6.2 Domination relative to boundary

In this section, we consider extension of Theorems 5.4.2 and6.1.1 to orientable
compact 3-manifolds with boundary. For two orientable compact 3-manifoldsM
andN, and an integerd > 0, N is said to bed-dominatedby M relative to boundary
if there exists a proper mapf : (M, ∂M)→ (N, ∂N) of degreed up to sign, namely,
that the induced homomorphismf∗ : H1(M, ∂M; Z) → H1(N, ∂N; Z) can be identi-
fied as the scalar multiplication byd : Z → Z. We sayM dominates Nrelative to
boundary ifM d-dominatesN for some integerd > 0. Note that under domination,
N has nonempty boundary if and only ifM has nonempty boundary.

Theorem 6.2.1.Every orientable compact3-manifold with nonempty boundary
dominates only finitely many irreducible, and∂-irreducible3-manifolds relative to
boundary, up to homeomorphism.

Theorem 6.2.2.For any integer d> 0, every orientable compact3-manifold d-
dominates only finitely many3-manifolds relative to boundary, up to homeomor-
phism.

The rest of this section is devoted to the proof of Theorems 6.2.1 and 6.2.2.
The idea is to perform a ‘doubling trick’ to reduce to the closed case, cf. [BRW,
Remark 4.7]. Recall that for an oriented compact 3-manifoldM with nonempty
boundary, thedoubleof M along boundary, denoted as Dbl(M), is the oriented
closed 3-manifoldM ∪∂M (−M), obtained from gluingM to its orientation-reversal
via the natural identification on the boundary. The double ofan orientable compact
3-manifold is the double of the 3-manifold picking an orientation, so it is canonical
up to homeomorphism.

Lemma 6.2.3. If Q is an irreducible,∂-irreducible, orientable compact3-manifold
with nonempty boundary, thenDbl(Q) is either non-geometric, or supports one of
the geometriesH3, H2 × E1, or E3, unless Q is homeomorphic to a ball.
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Proof. As Q is irreducible and∂-irreducible, Dbl(Q) is irreducible as well. Sup-
pose Dbl(Q) is geometric. If Dbl(Q) is S3-geometric,∂Q is necessarily a sphere
bounding a ball in Dbl(Q), so Q has to be a ball and Dbl(Q) is a sphere. The ir-
reducibility of Dbl(Q) excludes the possibility of the geometryS2 × E1. For the
geometries Nil, Sol, or̃SL2, the double Dbl(Q) could not support them since two-
sided incompressible subsurfaces in these cases would be tori. In fact, cutting along
tori in these cases results in Seifert fibered spaces with boundary, but if those were
Q, the double Dbl(Q) would be eitherH2 × E1-geometric orE3-geometric. �

In the statement of the following lemma, areflectionof a 3-manifold is known
as an orientation-reversing self-homeomorphism whose square equals the identity.

Lemma 6.2.4. If Q is an irreducible,∂-irreducible, orientable compact3-manifold
with nonempty boundary, then there are at most finitely many (possibly discon-
nected) incompressible subsurfaces ofDbl(Q) up to homeomorphism ofDbl(Q),
which could be the fixed point set of a reflection ofDbl(Q).

Proof. If Q is not a ball, Dbl(Q) is Haken by the assumption. The conclusion
follows from the fact that Out(π1(Dbl(Q))) has only finitely many finite subgroups
up to conjugacy [Zim86, Theorem 4.1], and uniqueness of the homeomorphism
realization for involutions up to homeomorphisms, [Tol81,Corollary 1]. �

Proof of Theorem 6.2.1.Let M be an orientable compact 3-manifold with nonempty
boundary. SupposeN is an irreducible,∂-irreducible, orientable compact 3-manifold
dominated byM relative to boundary. Then there is a naturally induced domina-
tion of the same degree between the double ofM and the double ofN. Applying
Theorem 5.4.2 for the non-geometric case and [BRW, Theorem 1.1] for the geo-
metric cases, it follows from Lemma 6.2.3 that there are onlyfinitely many allow-
able homeomorphism types of Dbl(N), under the assumption of domination. Fur-
thermore, Lemma 6.2.4 implies that there are hence only finitely many allowable
homeomorphism types ofN. �

Proof of Theorem 6.2.2.Let M be an orientable compact 3-manifolds. Suppose
f : M → N is ad-domination relative to boundary ofM onto an orientable compact
3-manifoldN. Cut N along a maximal unionS of mutually non-parallel disjoint
essential spheres and∂-essential disks into a disjoint union of compact components
Q. The number of components ofS can be bounded in terms ofM by a Kneser–
Haken type argument, so there is an upper bound on the number of components of
Q.

For each componentQ ⊂ Q, let Q̂ be the manifold obtained by filling up sphere
boundary-components with balls. Note thatQ̂ is irreducible and∂-irreducible. Thus
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exactly one of the following three possibilities holds: either thatQ̂ is homeomor-
phic to S3, so Q is a 3-sphere with finitely many disjoint balls removed; or that
Q̂ is closed with nontrivial fundamental group, so two copies of Q̂ are connected-
sum components of the Kneser–Milnor decomposition of Dbl(N); or that Q̂ has
nonempty boundary, so Dbl(Q̂) is a connected-sum component of the Kneser–
Milnor decomposition of Dbl(N). Moreover, Dbl(N) is homeomorphic to the con-
nected sum of thêQ or Dbl(Q̂) in the latter two cases, respectively, together with
possibly a finite number ofS1 × S2.

As Dbl(N) 1-dominates each of its connected-sum components via pinching,
Dbl(M) d-dominates eacĥQ or Dbl(Q̂) as above. By Theorem 6.1.1, there are at
most finitely many allowable homeomorphism types ofQ̂ or Dbl(Q̂). Furthermore,
if Q̂ has nonempty boundary, the finiteness of allowable homeomorphism types of
Dbl(Q̂) and Lemma 6.2.4 implies the finiteness of allowable homeomorphism types
of Q̂ as well. Thus the homeomorphism types ofQ̂, and hence ofQ, are always
bounded in terms ofM andd.

Since the number of components ofQ and the number of allowable homeomo-
prhism types of components ofQ are both bounded in terms ofM andd, there are
only finitely many allowable homeomorphism types ofN that ared-dominated by
M relative to boundary, asQwas obtained by cuttingN along spheres and disks.�

6.3 Integral homology sphere and mapping degree

It is in general difficult to characterize the the degree set of maps between 3-
manifolds. Nevertheless, we attempt to offer a more comprehensive answer to Prob-
lem 1.1.1 for dominations onto integral homology 3-spheresin this section. It will
be natural to work in the oriented category, where the degreeof a map becomes a
signed integer.

SupposeM is an oriented closed 3-manifold. For any oriented closed 3-manifold
N, denote thedegree setof maps betweenM andN as:

DM(N) = {deg(f ) | f : M → N, deg(f ) , 0}.

By an integral homology 3-sphere we mean a closed 3-manifold whose ho-
mology coincides with that ofS3. In particular, it is orientable. We denote the
orientation-preserving homeomoprhism classes of oriented integral homology 3-
spheres asZHS3, often abusing the notation of elements ofZHS3 and that of their
representatives.

By a periodicsubset ofZ, we mean a subset invariant under the translation by
some positive integer.
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Theorem 6.3.1.Every oriented closed3-manifold M dominates only finitely many
N ∈ ZHS3, and the mapping degree setDM(N) is either finite, or an infinite,
periodic subset ofZ with zero removed. The latter case happens if and only if
N � Π#m # Π̄#n, where m,n ≥ 0 are integers, and whereΠ, Π̄ denote the ori-
ented Poincaré dodecahedral space and its orientation-reversal, respectively up
to a choice of orientation.

We prove Theorem 6.3.1 in the rest of this section. The finiteness ofZHS3

targets was previously obtained by [BRW, Theorem 1.2], but with Theorem 5.4.2
we have a quick argument:

Lemma 6.3.2.If M is an oriented closed3-manifold, then M dominates only finitely
many N∈ ZHS3.

Proof. This follows from the same argument as that of Theorem 6.1.1,once we
make the following two modifications in the proof of 6.1.3. Firstly, every Seifert
fibered integral homology 3-sphere either supports theS̃L2 geometry, fibering over
an orientable base orbifold, or supports theS3 geometry, homeomorphic to either
S3 or the Poincaŕe dodecahedral space. Thus we only need theS̃L2 fibered case in
the argument of Lemma 6.1.3, and we do not need to pass to a finite cover to ensure
the orientable base. Secondly, we replace the torsion size estimation by the trivial
fact that TorH1(N) = 0, instead of invoking Lemma 6.1.2. �

By a π1-surjectivemap, we mean a mapf : M → N which induces an epi-
morphism between the fundamental groups. The following lemma was implicitly
proved in [SWWZ12, Section 3] forπ1-isomorphic self-maps of orientable closed
3-manifolds with only spherical prime factors, and earlierin [HLKWZ01] for the
prime indecomposable case. We give a different argument in slightly more general
context.

Lemma 6.3.3.Let L be an oriented closed3-manifold withπ1(L) a free product of
finite groups. Then there exists a positive integer l such that the following holds.
For anyπ1-surjective map f: M → L from an oriented closed3-manifold onto L
of degree d∈ Z, there exists a map fn : M → L of degree(d+ nl), for every integer
n. Moreover, fn induces the same epimorphism between the fundamental groupsas
that of f .

Proof. Becauseπ1(L) is a free product of finite groups, it is virtually torsion free.
Let L̃ be a regular finite cover ofL corresponding to a torsion-free subgroup of
π1(L) of finite indexl.
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We first claim that anyπ1-surjective mapf ′ : M → L of degreed can be
modified to be a mapf ′ : M → L of degreed − l, inducing the same epimor-
phism between the fundamental groups. Supposef : M → L is such a map. Let
κ : L̃ → L be the regular covering above. Using the classification of 3-manifold
groups ensured by the Geometrization,L̃ is the connected sum of finitely many
copies ofS2 × S1. In other words, it is homeomorphically the double of a han-
dlebody, namely,̃L � Y ∪ Y′ whereY andY′ are two oppositely oriented copies
of a compact handlebody, glued up along the boundary∂Y = ∂Y′. We denote the
natural orientation-reversing reflection swappingY andY′ asσ : L̃ → L̃. Possibly
after an isotopy of̃L, we may assumeκ(Y) to be embedded inL. As f : M → L is
π1-surjective, possibly after an isotopy ofM, we may find an embedded handlebody
X ⊂ M which maps homeomorphically ontoκ(Y). Moreover, restricted onX there
is a lift f̃ : X → L̃ such thatκ ◦ f̃ = f . In particular,X is embedded asY via f̃ .
Now modify the mapf̃ to be the reflected embedding̃f ′ : X → L̃, namely, such
that f̃ ′ = σ ◦ f̃ . This induces a modified mapf ′ : M → L, such thatf ′|M\X = f ,
and thatf ′|X = κ ◦ f̃ ′. It is clear from the construction thatf ′ satisfies our claim.

Similarly, we may obtain anotherπ1-surjective mapf ′′ : M → L of degree
d+ l, inducing the same epimorphism between the fundamental groups as that off .
With the notations above, supposef̃ ′′| : ∂X × [0,1] → Y is a map of zero degree
relative to boundary homotoping̃f |∂X to an orientation reversing homeomorphism.
For example, ifc1, · · · , cm is a collection of disjoint essential simple closed curves
on∂X, bounding disjoint embedded disks inY under f̃ , we may take an orientation
reversing self-homeomorphismτ : ∂X→ ∂X that sends eachci onto itself reversing
orientation. Thenf̃ ′′| may be picked so that̃f ′′|∂X×{0} = f̃ while f̃ ′′|∂X×{1} = f̃ ◦ τ.
Regarding∂X× [0,1] as a collar neighborhood of∂X in X, with ∂X× {0} as∂X, we
may extendf̃ ′′| as a mapf̃ ′′ : X → L̃ which sends∂X × [0,1] ontoY via f̃ ′′| and
which sends the rest homeomorphically ontoY′. Now modify f to be f ′′ : M → L
so thatf ′′|M\X = f , and thatf ′′|X = κ ◦ f̃ ′′. We see the degree off ′′ equalsd + l.

Iterating these two constructions we see that for eachn ∈ Z, there is a mapfn :
M → L of degree (d+nl), inducing the same epimorphism between the fundamental
groups as that off . �

A π1-surjective map of nonzero degree is sometimes called anessential domi-
nation. Every domination factors canonically as an essential domination followed
by a finite covering up to homotopy. We denote the subset of DM(N) consisting of
degrees of essential dominations as EDM(N), and denote the subset of DM(N) of
degrees covering maps as CDM(N). Both of them could be empty. For a triple of
oriented closed 3-manifoldsM, L,N, it is clear that the elementwise product:

CDL(N) · EDM(L) ⊂ DM(N),
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consists of degrees of dominations factoring viaL.

Proof of Theorem 6.3.1.By Lemma 6.3.1,M dominates only finitely many integral
homology 3-spheres. SupposeN ∈ ZHS3 is dominated byM. The argument of
Lemma 6.3.1 made clear that every Seifert fibered prime factor of N is eitherS̃L2-
geometric, or the Poincaré dodecahedral space, unlessN is itselfS3. Note also that
an orientable Sol-geometric 3-manifold has nonvanishingZ2-homology, and hence
cannot be a prime factor ofN ∈ ZHS3.

If a prime factorQ of N contains at least oneH3-geometric piece, the simplicial
volume ofQ is nonvanishing by the result of Soma [Som81]; ifQ is a nontrivial
graph manifold or is̃SL2-geometric, the Seifert volume is nonvanishing for some
finite cover ofQ by Brooks–Goldman [BG84] and Derbez–Wang [DW09b]. In both
the cases above,DM(N) is a finite set.

We are left with the case when every prime factor ofN is S3-geometric, hence
homeomorphic to the Poincaré dodecahedral space unlessN is itself S3. In this
case, there are only finitely manyL1, · · · , Ls coveringN, up to orientation-preserving
homeomorphism, which are essentially dominated byM. In fact, if N is itself prime,
it has finitely many distinct covers up to orientation-preserving homeomorphism; if
N is not prime, every essential sphere lifts homeomorphically to be essential spheres
in the cover, so the index of the cover, and hence the number ofcovers essentially
dominated byM, can be bounded by the Kneser–Haken number ofM. Therefore,

DM(N) =
s⋃

i=1

CDLi (N) · EDM(Li).

The size of each CDLi (N) is bounded by either the size ofπ1(N) or the Kneser–
Haken number ofLi, so it is finite. By Lemma 6.3.3, EDM(Li) is an infinite, periodic
subset ofZ with zero removed. Because any union of finitely many periodicsets is
still periodic, we see in this case that DM(N) is an infinite, periodic subset ofZ with
zero removed. Indeed, the argument of Lemma 6.3.3 implies that the period can
be taken as 120, the order of the fundamental group of the Poincaŕe dodecahedral
space. �
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Sci. Publ. Math.69 (1989), 173–201.

[DSW11] Pierre Derbez, Hongbin Sun, and Shicheng Wang,Finiteness for
mapping degree sets of 3-manifolds, Acta Math. Sinica, (Engl. Ser.)
27 (2011), 807–812.

[Du09] Xiaoming Du,On self-mapping degrees of S3-geometry 3-manifolds,
Acta Math. Sin. (Engl. Ser.)25 (2009), no. 8, 1243–1252.



BIBLIOGRAPHY 47

[DW09a] Pierre Derbez and Shicheng Wang,Finiteness of mapping degrees
andPSL(2,R)-volume on graph manifolds, Algebr. Geom. Topol.9
(2009), no. 3, 1727–1749.

[DW09b] , Graph manifolds have virtually positive Seifert volume,
preprint,arXiv:0909.3489, 2009.

[HLKWZ01] Claude Hayat-Legrand, Elena Kudryavtseva, Shicheng Wang, and
Heiner Zieschang,Degree of self-mappings of Seifert manifolds with
finite fundamental groups, Rend. Istit. Math. Univ. Trieste32
(2001), 131–147.

[HLWZ02] Claude Hayat-Legrand, Shicheng Wang, and Heiner Zieschang,Any
3-manifold 3-dominates only finitely many 3-manifolds supporting
S3 geometry, Proc. Amer. Math. Soc.130(2002), no. 10, 3117–3123.

[Jac80] William Jaco, Lectures on Three-Manifold Topology,
Amer. Math. Soc., Providence, RI, 1980.

[Kir97] Robion Kirby, Problems in low-dimensional topology, Geo-
metric Topology (Athens, GA, 1993) (Robion Kirby, ed.),
Amer. Math. Soc., Providence, RI, 1997, pp. 35–473.

[Mar96] Gavin J. Martin, Triangle subgroups of Kleinian groups, Com-
ment. Math. Helvetici71 (1996), 339–361.

[MF10] John W. Morgan and Frederick T.-H. Fong,Ricci Flow and Ge-
ometrization of 3-Manifolds, Amer. Math. Soc., Providence, RI,
2010.

[Som81] Teruhiko Soma,The Gromov invariant of links, Invent. Math.64
(1981), no. 3.

[Som00] , Sequences of degree-one maps between geometric 3-
manifolds, Math. Ann.316(2000), no. 4, 733–742.

[SWW10] Hongbin Sun, Shicheng Wang, and Jianchun Wu,Self-mapping de-
grees of torus bundles and torus semi-bundles, Osaka J. Math.47
(2010), no. 1, 131–155.

[SWWZ12] Hongbin Sun, Shicheng Wang, Jianchun Wu, and Hao Zheng, Self-
mapping degrees of 3-manifolds, Osaka J. Math.49 (2012), no. 1,
247–269.



BIBLIOGRAPHY 48

[Thu80] William P. Thurston, The Geometry and Topology of Three-
Manifolds, Princeton lecture notes, preprint, 1980.

[Tol81] Jeffery L. Tollefson, Involutions of sufficiently large 3-manifolds,
Topol.20 (1981), no. 4, 323–352.

[Wan91] Shicheng Wang,The existence of maps of non-zero degree between
aspherical 3-manifolds, Math. Z.208(1991), 147–160.

[Wan93] , The π1-injectivity of self-maps of nonzero degree on 3-
manifolds, Math. Ann.297(1993), 171–189.

[Whi] Matthew E. White, A diameter bound for closed hyperbolic 3-
manifolds, preprint,arXiv:math/0104192v1.

[WZ02] Shicheng Wang and Qing Zhou,Any 3-manifold 1-dominates at most
finitely many geometric 3-manifolds, Math. Ann.332 (2002), 525–
535.

[Zim86] Bruno Zimmermann,Finite group actions on Haken 3-manifolds,
Quart. J. Math. Oxford Ser. (2)37 (1986), no. 148, 499–511.




