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Abstract

Nonzero Degree Maps Between Three Dimensional Manifolds
by
Yi Liu
Doctor of Philosophy in Mathematics
University of California, Berkeley

Associate Professor lan Agol, Chair

The main result of this dissertation shows that every oaigliet closed 3-manifold
admits a nonzero degree map onto at most finitely many homegxdmeally dis-

tinct non-geometric prime 3-manifolds. Furthermore, foy antegerd > 0O, every

orientable closed 3-manifold admits a map of degieento only finitely many
homeomorphically distinct 3-manifolds. This answers astjoa of Yongwu Rong.
The finiteness of JSJ piece of the targets under nonzeroaegeps was known
earlier by the results of Soma and Boileau—Rubinstein—Wamgj,aanew proof is
provided is this dissertation. We also prove analogoudtsefar dominations rela-
tive to boundary. As an application, we describe the degreefsilominations onto
integral homology 3-spheres.
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Chapter 1

Introduction

In the present dissertation, we study finiteness associatleonzero degree maps
between 3-manifolds, from the viewpoint of geometrizati&or convenience, we
often stay in the piecewise linear category of 3-manifolastbpological discus-
sions, and throughout this dissertation, a 3-manifolduwsagt assumed to be con-
nected, unless explicitly stated otherwise. In this chapte provide an overview
of known results and the main result of the present dissentat

1.1 Background

Let M, N be two orientable closed 3-manifolds. For an integjer 0, we say that
M d-dominates Nf there is a mapf : M — N of degreed up to sign. We say
M dominates Nf M d-dominatesN for some integed > 0. The notion of domi-
nation can certainly be extended to orientable compact @ifolds. However, for
most of the topics discussed below, the general case carribedieasily from the
essential case of closed 3-manifolds, so we shall not cendmiminations relative
to boundary until Chapter 6.

Dominations of degree one naturally induces a partial andeon the set of
homeomorphism classes of orientable closed 3-manifotdeetmes attributed to
Mikhail Gromov in literature. According to [CT89], Gromov ggested studying
the degree set of dominations between closed orientabl&otgmof general di-
mensions in a lecture given in 1978. In dimension three,ahevfing two problems
are the basic aspects of our interest:

Problem 1.1.1. For every pair of orientable closed 3-manifolsandN, describe
the set of mapping degrees that are realizable by maps betdeadN.
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Problem 1.1.2. For every orientable closed 3-manifoM, describe the set of 3-
manifolds up to homeomorphism that are dominated/by

If the word ‘describe’ here was taken in the strong sense dedale, as far as
we are concerned, both of these problems are still widely egeept for a few very
special cases. However, if the word was taken in a weakeese® determine the
finiteness, much has been known since the 1990s, when thedftndnzero degree
maps started to become active. In this course, William Tibats revolutionary
program of geometrization played an influential role, ndydrecause it provided
deep insight into the topology of 3-manifolds, but also hesesit naturally brought
maps between 3-manifolds as the next stage of exploration.

When the target manifoléN is the same a#/, one of the pioneer results in
this area, due to Shicheng Wang [Wan93], implies that th®g&et N) of mapping
degrees in Problem 1.1.1 is infinite if and only if eitidris prime supporting one
of the geometriesl? x E*, E3, Nil, or Sol, or that every prime factor &fl supports
one of the geometrie$® or S? x EL. Later work of various people [Du09, SWW10,
SWWZ12] fully characterized the set of self-mapping degreeréMecently, Pierre
Derbez, Hongbin Sun, and Shicheng Wang [DSW11] showed that gvenN,
there exists aM so thatD(M, N) is infinite if and only if D(P, P) is infinite for
every prime factoP of N.

Problem 1.1.2 has been answered restricted to geometyetsary the work of
various people, cf. [Som00, BBW08, BRW]. As a summary of theirahasions,
every closed orientable 3-manifod dominates at most finitely many geometric
3-manifolds that support none of the geometi§é€s SL, or Nil. Note that any
3-manifold supporting one of the excluded three geometiies/e dominates in-
finitely many homeomorphically distinct 3-manifolds of tekeme geometry. It is
remarkable that in [BRW], Michel Boileau, Hyam Rubinstein, amic8eng Wang
actually proved the finiteness of possible homeomorphigregwf JSJ pieces in the
targetN. They also wondered if every closed orientable 3-manifdidominates
finitely many irreducible 3-manifolds supporting none o tleometrie§?, SL, or
Nil.

1.2 Results

In the present dissertation, we shall show that every @al#atclosed 3-manifold
dominates at most finitely many homeomorphically distinmbigeometric prime
3-manifolds, (Theorem 5.4.2). This answefSrmatively the question of Boileau,
Rubinstein, and Wang in [BRW]. Our proof also provides an aétBve approach
to the finiteness of JSJ pieces previously obtained by [SoBRW]. Furthermore,
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we shall also show that for any integir- 0, every orientable closed 3-manifald
dominates only finitely many homeomorphically distinct &mifolds, (Theorem
6.1.1). In particular, this answers an earlier question ofigivu Rong [Kir97,
Problem 3.100], which was concerned about 1-dominatiofgs Was known be-
fore only under the assumption of geometric targets, cir{@@ HLWZ02, WZ02,
BBWO08]. Analogous results also hold for dominations relatwé&oundary (The-
orems 6.2.1, 6.2.2). As an application, we provide a desenpf the degree set
of dominations onto integral homology spheres, partiadisotving Problem 1.1.1.
We show that for any oriented closed 3-manifdl there are only finitely many
integral homology 3-spheréé dominated byM, as previously obtained by [BRW,
Theorem 1.2]; moreover, we show that the (signed) degresf sieiminations oM
onto N is either finite or a translationally periodic subsetZoWith zero removed,
(Theorem 6.3.1). This provides some description, beyoadittite-versus-infinite
dichotomy, about the degree set of dominations onto intégraology 3-spheres.

A traditional approach to Problems 1.1.1 and 1.1.2 is viava estimation.
For example, wheM is given, the simplicial volume d¥ imposes an upper bound
on the simplicial volume of the targé&t under the domination assumption. Such
a bound provides certain restrictions to the topology ofdmigplic pieces oiN.
As a variation of this idea, the Seifert volume of a 3-manifalas introduced by
Robert Brooks and William Goldman [BG84]. It is analogous to hiyperbolic
volume in the representation sense, and there has beeesiter applications of
this notion to dominations onto graph manifolds. For examplerbez and Wang
[DWO09a, DW09b] showed that nontrivial graph manifolds haveually positive
Seifert volume, so the mapping degree B¢M, N) is finite if N is a nontrivial
graph manifold. While it has been successful dealing wittbfera 1.1.1 in many
situations, the volume estimation approach has its weakimesolving Problem
1.1.2, mainly because there are usually infinitely many foéds with uniformly
bounded volume of either version.

Our main technique is a new type of estimation as was developfAL12],
inspired by the idea from an unpublished paper of Matthew g\Nithi]. Heuristi-
cally speaking, whenever there is a mapM — N, one may geometrize the map
in a certain manner with respect to the geometrizatioN.off N has either a deep
Margulis tube in a hyperbolic piece, or a sharp cone pointSeiert fibered piece,
or heavy distortion along a cut torus, then the map would havil to be sur-
jective homologically localized to these significant eletagy parts. In particular,
it would not be a domination. To be more precise, one may cethee geometric
features oN above as a certain form of complexity, then in fact, we shalsthat
under the assumption of domination, such complexity candamtbed in terms of
the triangulation number(M) of M, namely, the minimal number of triangles in
any triangulation oM. In [AL12], the role of triangulation number was played by
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the presentation length af(M).

1.3 Organization

In Chapter 2, we provide a brief review on topology of 3-maliif@specially the
geometric decomposition. In Chapter 3, we discuss a gensvakgs known as
straightening a map : M — N between 3-manifolds. Heuristically, this homo-
topesf to a position of minimal area with respect to a metrichoitlose to the
geometric metric in each piece. In formulation, we shall@daled surfaces in-
stead of minimal surfaces to avoid unnecessary technezlitin Chapter 4, we
provide an alternative proof of the finiteness of geometrec@s using the tech-
nigues from Chapter 3. In Chapter 5, we prove the finitenesswhgsg under
dominations. This will complete the proof of the main thenr@heorem 5.4.2). In
Chapter 6, we consider the case of bounded-degree domisagioth deduce Corol-
lary 6.1.1 from Theorem 5.4.2. We also provide generatiratiof Theorems 5.4.2
and 6.1.1 to the boundary-relative case. Finally, we slestdbe the degree set of
dominations from any closed oriented 3-manifold to integanology 3-spheres.



Chapter 2

Preliminaries

In this chapter, we review topology of 3-manifold from therggeective of ge-
ometrization, cf. [Thu80, MF10]. We also refer to [Jac80]$tandard terminology
and facts of 3-manifold topology.

2.1 Geometric decomposition

SupposeN is an orientable compact 3-manifold, possibly with bougda¥e say
that N is geometric if it supports one of Thurston’s Eight Geometrieg?, S3,
HS3, S?x E!, H? x E', SL,, Nil, or Sol, in the interior of finite volume. Under
this circumstance, it is necessary thvitis prime; and that every component of
oN, if any, is an incompressible torus; and thétis not homeomorphic to an
orientable thickened-torysor anorientable thickened-Klein-bottle.e. the trivial
interval-bundle over a torus, or the twisted interval-bdenalver a Klein bottle, re-
spectively.

In general, ifN is an orientable compact 3-manifold satisfying the neagssa
conditions above, the Thurston—Perelman Geometrizatizeniem implies that
there exists a canonicgkeometric decompositioof N, namely, a minimal finite
collection of essential tori or Klein-bottles, unique upisotopy, cuttingN into
geometric pieces. Recall that by the Kneser—Milnor Theoreweyy orientable
compact 3-manifold is homeomorphic to the connected sunfinita collection of
prime 3-manifolds, unique up to homeomorphism. It folloWwattevery orientable
closed prime 3-manifold admits a canonical geometric dexsiion.

We shall only speak of the geometric decomposition for dabkle closed prime
3-manifolds. Such a manifold, is either geometric or non-geometric. Whin
is itself geometric, it is either atoroidal, supporting\dﬂﬁé-geometry, or Seifert-
fibered, supporting one of the six geometii#sx E, SL,, E3, Nil, S x E* or S3,
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or otherwise, supporting the Sol-geometry. The geometrthefSeifert-fibered
case can be determined according to the sign of the Euleactesisticy € Q of
the base orbifold and to whether the Euler nunmberQ of the fiberation vanishes.
WhenN is not geometric, there are only two types of its geometeces, namely,
H2 or H2 x EL. In other words, every geometric piece is either homeonioroha
cusped hyperbolic 3-manifold of finite volume, or homeoniicdo an orientable
Seifert-fibered space with boundary over a cusped hyperRetirbifold of finite
area.

The geometric decomposition splisas agraph-of-spaceswvhere each vertex
is decorated by a geometric piece, and each edge is decaratetting torus or
Klein-bottle, joining vertices decorated by the adjaceetes. Since the regular
neighborhood of a cutting Klein-bottle i has only one boundary component, the
cutting Klein-bottle decorates an edge with only one ends $hggests that such an
edge should be regarded as a ‘semi-edge’. Similarly, itlv@ltonvenient to regard
a Seifert-fibered piece (over a non-orientable hyperbageborbifold) containing
an essential Klein-bottle as a ‘semi-vertex’. For this ceasve shall think of the
underlying graph of the geometric decomposition as a grapfhsemi-objects. See
Definition 2.2.1 for a rigorous formulation.

2.2 Gluing geometrics

Gluing geometrics is the opposite procedure of the geomeé&tomposition. The
purpose of this section is to lay down some notations for éséaf our discussion.

Definition 2.2.1. A graph with semi-objectsor simply agraph is a finite CW 1-
complexA with a (possibly empty) subset of loop-edges markedeami-edges
and with a (possibly empty) subset of vertices markedeasi-vertices We shall
refer to other vertices and edgesesire-verticesaindentire-edgesrespectively. A
entire-edge has twends but a semi-edge has only one. Tveenceof a vertex

v is the number of distinct ends adjacentvto For a graphA, we denote its set
of vertices as Ver), and its set of edges as Edg( The set of ends-of-edges
Edg(A) is a branched two-covering of Edg) singular over all the semi-edges. The
covering transformation takes every ehtb its opposite end, of the same edge
thaté belongs to.

Definition 2.2.2. A preglue graph-of-geometrids a finite graph\, together with

an assignment of each vertexe Ver(A) to an oriented, compact, geometric 3-
manifold J, whose boundary consists of exactly incompressible tori compo-
nents, where, is the valence of/, and with an assignment of each end-of-edge



CHAPTER 2. PRELIMINARIES 7

o€ EEg(A) adjacent tov to a distinct componenk; of 9J, with the induced orien-
tation. We require a semi-vertex be assigned ) eontaining an embedded ori-
entable thickened-Klein-bottle, and an entire vertex [sgasto aJ, not as above.
Let J be the disjoint union of all,’s. We often ambiguously denote the preglue
graph-of-geometrics a&\(.7).

Definition 2.2.3. Two preglue graphs-of-geometrica,(7) and (\’, J’) are said
to beisomorphicif there is a homeomophis@ — 9, which compatibly (in an
obvious sense) induces a graph isomorphisr A’.

Definition 2.2.4. A gluing of a preglue graph-of-geometrica,(7) is an assign-
ment of each end-of-edgec Edg(A) to an orientation-reversing homeomorphism
¢s - Ts — T5between the tori assignedd@nd its the opposite erd up to isotopy,
such thatp; = ¢;* for any end-of-edgé. Let:

¢:09 - 309,

be the orientation-reversing involution defined by @&jls. We often denote the
gluing as¢, and denote the set of all gluings @,(7) as®(A, 7).

A gluing ¢ is said to benondegeneraté it does not match up ordinary-fibers in
any pair of (possibly the same or via semi-edges) adjacefdarsgbered pieces.

For any gluingg € ®(A, . J), there is a naturally associated oriented closed 3-
manifold N, from 7 obtained by identifying points ifJ with their images under
¢. Itis clear thatN, has the same geometric decomposition as prescribed,by)(
andg if and only if ¢ is nondegenerate, and in this cabkg,is by definition non-
geometric.

Let Mod(©9) be the special mapping class groupigf, consisting of isotopy
classes of component-preserving, orientation-presgrsatf-homeomorphisms of
09 . There is a natural (right) action of Ma@{) on ®(A, 7). In fact, abusing the
notations of isotopy classes and their representativesarfpr € Mod(©.J), and
¢ € O(A,J), one may defing” € ®(A, J) to be:

gT=1"ogor,

namely, ¢7)s = Tgl o ¢s o 75 for each end-of-edge € EEg(A), wherers € Mod(Tj)
is the restriction ofr on the torusTl;. It is straightforward to check that this is a
well-defined, transitive action.

Definition 2.2.5. Two gluingse, ¢’ € ®(A, J) are said to bequivalentf ¢’ = ¢*
for somer € Mod(09) that extends ovefy as a self-homeomorphism. Hence
equivalent gluings yield homeomorphic 3-manifolds.
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We close this section with a discussion of a special typesshehts in Mod{7),
called fiber-shearings. Recall that for an oriented tofuand a slopey c T,
the (right-handDehn-twistalongy is self-hnomeomorphisr®, € Mod(T) so that
D,({) = £ +<Z,y)y for any slopel, where(-, -) denotes the intersection form. Note
this does not depend on the directiomoffFor any integek, ak-times Dehn-twist
alongy is known as th&-times iteratiorDi.

Definition 2.2.6. Let (A, J) be a preglue graph-of-geometrics. We say an auto-
morphismr € Mod(@7) is afiber-shearingwith respect to 4, .7), if for each
end-of-edge € Edg(A) adjacent to a vertex, 7; € Mod(T;) is either the identity,
if J, is atoroidal, or &;-times Dehn-twist along the ordinary-fiber, whégels an
integer, ifJ, is Seifert-fibered. Théndexof 7 at a Seifert-fibered vertexis the

integer:
kK@= > ks,

seEdg)

whereEEg(v) denotes the set of ends adjacent.t&or any gluingp € ®(A, J), the
fiber-shearingpf ¢ underr is the gluingg™ € ®(A, 7).

Note that the index is additive for products of fiber-shegsin

Lemma 2.2.7.Fiber-shearings of the same index at all Seifert-fiberetiees yield
equivalent gluings.

Proof. It suffices to show that a fiber-shearing with zero index at all Sefiieered
vertices does not change the equivalence class of a gluihg. fdllows immedi-
ately from the fact that for any pair of boundary tétiT’ in a Seifert-fibered piece
J, there is a properly embedded annuhibounding a pair of ordinary-fibers, one
on each component. As the annulyss two-sided whenl is oriented, there is a
well-defined Dehn-twist od along this annulus, restricting to a right-hand Dehn-
twist onT and a left-hand Dehn-twist (i.e. the inverse of a right-hBthn-twist)
onT’. O



Chapter 3

Maps and geometrization

In this chapter, we introduce a general process that horastapmap between
3-manifolds to a position respecting the geometrizationthef target, known as
straightening Note that this process is nontrivial only if the target iher non-
geometric, or supports one of the geometiis H? x E! or SL,. In these cases,
straightening will allow us to study the local behaviour lo& tmaps from a hyper-
bolic geometric point of view. Our treatment here is an esi@m of the techniques
developed in [AL12]. In an unpublished paper of Matthew WiNihi] about di-
ameters of closed 3-manifolds, essentially equivalentn@sions was considered,
although in slightly diferent formulations. His idea inspired [AL12] and the gener-
alizations that we shall discuss in this chapter.

3.1 Straightening a map

Let M be an orientable closed 3-manifold, aNdbe an orientable closed prime
3-manifold. Supposé¢ : M — N is a map fromM to N. We triangulateM, and
geometrizeN, and homotopd to a nice position with respect to these structures,
as follows.

Take a minimal triangulation oM, namely, a finite 3-dimensional simplicial
complex structure oM with the fewest possible 3-simplices. We often denote
M® c M for thei-skeleton of\Vl, where 0< i < 3. The number of tetrahedra:

(M),

in this triangulation will be called thé&riangulation numberof M. HenceM®
contains exactly & M) triangles.
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SupposeN is an orientable closed prime 3-manifold. We often denogeuti-
derlying graph of the geometric decompositiorNbasA = A(N). Let:

T = |_| T. c N,
ecEdg(A)

be the union of cutting tori or Klein bottles & in its geometric decomposition,
and let:

U= |_| U, C N,

ecEdgA)

be a compact regular neighborhood7of Note U can be naturally identified as
the disjoint union of toriT;'s, wheres € Edg(A), and the complement iN of the
interior of U can be naturally identified with the disjoint union of the gesdric
pieces7. Making this identification, we have:

N = jUa'Ll Uu.

Let e > O be the Margulis constant @3, so every O< € < e is a proper
Margulis number ofd® (hence also oH?). For any 0< € < e, we may endow
N with a Riemannian metrip, that approximates its geometrization, namely, the
complete Riemannian 3-manifold:

(N, 0o),

satisfies the following requirements. For evétgeometric pieced, of N, (Jy, p.)
is isometric to the corresponding complete hyperbolic 3ufioéd J2°° with open
e-thin horocusps removed,; or J; is Seifert-fibered, 4, p,) is isometric to a corre-
sponding complet? x El-geometric 0iSL,-geometric 3-manifoldd®® with open
horizontale-thin horocusps removed. Here hgrizontalwe mean with respect to
the pseudo-metric pulled back from the metric on the hyderibase orbifold, so
for instance, a horizontak-thin horocusp means the preimageJ{i® of a e-thin
horocusp inD9%°, the base orbifold with the naturally induced Riemannianrimiet
We do not impose further conditions foy on the rest oiN.

Note that with the Riemanian metrig on N, one may speak of tharea for
any piecewise-linearly immersed CW 2-complex K — N, or for any integral
(cellular) 2-chain ofK. Specifically, note that for each hyperbollg there is an
area measure ofir}(J,) N K pulling back the hyperbolic area measureQnand
for eachH? x El-geometricl,, there is an area measure bri(J,) N K puling back
the horizontal-area measure dp (namely, the area pulled back from the base
orbifold). Thus, theareaof K with respect tof is known as the sum of the area
measures oK n f~1(J,) for all v € Ver(A), denoted as Ared(K)); and the area
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of an integral 2-chain oK is the sum of the areas of its simplices weighted by the
absolute values of their cigients.

We first homotopef to be piecewise linear so thdt'(7) c M becomes a
normal surface in minimal position with respect to the tgalation ofM, and that
f-}(U) c M is an interval bundle ovef~1(7"). Here minimal position means that
the cardinality off=%(7") N M® is minimized. Furthermore, we pull straighe
within eachJ, relative todJ,, with respect to the Riemannian metpg namely:

Lemma 3.1.1.1f ¢ > 0 is syficiently small, then the map f M — N can be
homotoped relative to (), so that {M@®) n J is ruled on each component of
the image of th@-simplices of M, and that the area of Mis at most2r7(M),
wherer(M) is the number of tetrahedra in the triangulation of M.

Proof. To sketch the proof, pick a subdivision of the componentd 6\ (f1(Z/)u
M®) into the fewest possible triangles. First homotdpelative tof ~1(/), so that
the image of the sides of these triangles becomes geodesiieimcorrespond-
ing pieces. Then relatively homotogefurther, so that the image of these trian-
gles becomes ruled in their corresponding pieces. If welfpo, ase — 0, the
image of these triangles converges to geodesic (possilggragate) triangles in
hyperbolic pieces, and to horizonally-geodesic (possii@igenerate) triangles in
H? x El-geometric orSL,-geometric pieces (in the sense of being geodesic after
projecting onto the base orbifold). Moreover, for eachdgex of M@, all ex-
cept at most one triangle above contained in this 2-simpd=oimes degenerate in
the above sense, while the exceptional one has area atrmbists, for sifficiently
smalle > 0, the area oM@ can be bounded byr2M)x where 2(M) is the number
of 2-simplices oM@ with our notations. O

We shall say thaf : M — N is straightenedf it has been homotoped to a
position satisfying the conclusion of Lemma 3.1.1. Note {hwiocess depends on
the choice of the minimal triangulation &, and the Riemannian metrig¢ of N
for a suficiently smalle > 0, but for the sake of simplicity, we shall not mention
such a choice explicitly as long as it causes no confusion.

3.2 Local geometry of straightened maps

Let M be an orientable closed 3-manifold, aNdbe an orientable closed prime
3-manifold. Supposé : M — N is a straightened map froi to N.

By alocal region'W c N, we mean a connected compact 3-submanifolt of
whose boundary lies entirely iIN \ U, such that any component of the preimage
of W is a convex submanifold of the Riemmanian universal coved.oSuppose
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W c N is a local region, generic in the sense that(oW) intersectsM® in

general position, i.e. that any 2-simplexMf? is transversal té¢W underf. We
write M®) for f-Y(W) n M@, and M@, for f-1(0W) n M@. ThenM? has a
natural CW 2-complex structure, induced from the triangoiedf M, and Mgﬁy IS

a 1-subcomplex.

We are interested in two aspects of the local behaviof offer W. On one
hand, the local second relati®homology of M), M?) ) has a bounded generat-
ing set of relativeZ-cycles, (Lemma 3.2.1); and on the other hand, the domimatio
property can be inherited locally, yielding a surjectiontba second local relative
R-homology, (Lemma 3.2.2)

Lemma 3.2.1.If f : M — N is a straightened map, an@’ c N is a local
region, then there is aR-spanning set of (M2, M@ : R), in which the elements
are represented by relativB-cycles each W|th area bounded by2A(M)). Here

A(n) = 27"(9n? + 4n)x, and (M) is the triagulation number of M.

Proof. Let N be an open regular neighborhoodMf? in M@, Let Ky = M&)\
N, andKzy = (M@, U N)\ N. As Ha(Kay, Kgw; R) = Ha(MY), M(gg‘)v,R) via
an obvious quotient magqy, — M@, it suffices to find anR- -spanning set of
H.(Kyy, Ksw; R) represented by relativé-cycles of area at mo#(27(M)).

BecauseW is local andf is straightenedKy, is a finite union of Ghandles
(half-disks), thandles(bands),monkey-handleghexagons), and possibly a few
isolated diskgdisks whose boundary do not meet the 1-skeletad8). It is clear
that the number of monkey-handles is at most the number mhghses Z-(M), and
the union of 1-handles iy is an interval-bundle over a (possible disconnected)
graph. By fixing an orientation for each of them, the handlesthr isolated disks
give a CW-complex structure o+, in an obvious fashion. Le€.(Kqy, Ksyy),
Z.(Kay, Kyw), B.(Kqy, Ksyy) denote the fre&-modules of cellular relative chains,
cycles and boundaries, respectively. Note gy, Kyy) has a natural basis
consisting of the handles and the isolated disks.

To prove the lemma, it shices to find a generating set f@,(Kqy, Ksgw; Q)
whose elements are @»(Kqy, Ksw) < Co(Kqy, Kgyw) wWith bounded coféicients
over the natural basis. Decompdsg, as:

Kw = Sy U Eq LK,

whereS,y is the union of the isolated disk componelitsy, is the union of the com-

ponents that contain no monkey-handles, g is the union of the components
that contain at least one monkey-handle. &g/, Esy, K,,,, be the intersection of

Sy, Ew, K, with Ksy, respectively.
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Zo(Ky, Kow; Q) = Zo(Sw, Sow; Q) ® Zo(Ey, Egw; Q) ® Za(Ky, Kiyys Q).

It suffices to find bounded generating relatiecycles for the direct-summands
separately.

First, consideZ,(S+y, Ssiw; Q). Clearly, it has a generating set whose elements
are the isolated disks. Hence absolute value of th&icants over the natural basis
are boundeg 1 for every element of the generating set.

Secondly, consideZ,(E+y, Esw; Q). We show that it has a generating set
whose elements have dtieients boundec 2 in absolute value over the natural
basis. To see this, note thBt= E;, U D; U --- U Dg is a union of an-bundleE,
over a (possibly disconnected) graphtogether with 0-handleB;, 1 < i < s.
Note also thaKyqy N E; is an embeddedl -bundleE, . Now Z»(E,, E ; Q) can be
generated by all the relati&-cycles, in fact finitely many, of the following forms:

() A € Zo(E|, Es), where @, As) c (E, Es) is a subk-bundle which is an em-
bedded annulus; or (il + 2B, + R € Z»(E;,Es), where R,Ry),(R.R),) C
(Ei, Es) are subk-bundles which are embeddedolius strips, andKg, B;) c
(Ei, Ea) is a subk-bundle which is an embedded band joiniRgandR. More-
over, Z-(Eqy, Egw; Q) / Z2(E;, Es; Q) can be generated by the residual classes
represented by all the relativ&-cycles, in fact finitely many, of the following
forms: (i) D; + B, = Dy € Z»(Ew, Esw), WhereD;, D; are distinct 0-handles,
and B, By) c (E|, Ey) is a subt-bundle which is an embedded band joiniDg
and Dy; or (ii) 2Dj + 2B, + R € Zy(Ew, Esw), whereD; is a 0-handle, and
(R,Ry) c (Ei, Ey) is a subk-bundle which is an embeddeddYius strip, and
(Bi, Ba) € (Ei, Ea) is a subk-bundle which is an embedded band joining and
R. All these relativeZ-cycles together generai&,(Eqy, Esw; Q), and each of
them has ca@cients bounde& 2 in absolute value over the natural basis.

Finally, considerZ,(K,,, K., ; Q). We show that it has a generating set whose
elements have cdigcients boundeg 274(9t + 4) in absolute value over the natural
basis, where < 27(M) is the number of monkey-handles. We write the 1-handles of
K., asBi, -+, B, and the O-handles &, - - - , Dsin K/,,, and the monkey-handles

asFy,---,F. Pick a maximal union of 1-handlé§ so thatK| is homeomorphic
to a trivial | - bundle over a (possibly disconnected) graph. We writedtagonents
asKj g, -+, KJ,, wherep < 3t.

Letd : CZ(K’ ,K2) — Ci(KY,,, KD,) be the relative boundary operator. Then
Z2(K,,. Kiy, s Q) is by definition the solution space of:

oU =0,

forU € C2(KY,,, K,,,,; Q). We shall first solve the residual equati@d = 0 modulo
B1(K|,K},), then lift a set of fundamental solutions to solutionsdtf = 0 by
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adding chains fron®>(K/, K},). This set of solutions together with a generating set
of Z»(K(, K},; Q) will be a generating set d’>(Ky,,, K}, ; Q).
To solvedU = 0 moduloB, (K|, K ), we write:

t
U :ZrlXi Bi+zsyj DJ+ZZka.
i—1 =1 k=1

The topological interpretation U moduloB; (K], K},) is the total ‘contribution’
of the base element;, D;, F\’s to the fiber of each component Kf.

To make sense of this, on each compodé{rptof K/, we pick an oriented fiber
@, 1 <1 < p. Note thatCy (K[, Kj) = C1(K/ 1, K} )@ -- @ Co (K[ ), K, IO) and that:
Cl(K/’ K(;I) /Bl(K/s K:’)I) = Z$p’

generated by, -+ , ¢, mod B,(K|, K} ). The contribution ofg;, D;, Fx on ¢ is
formally the value 06B;, 9D;, 0F moduloB, (K|, K} ) on thel-th direct-summands.
In other words, we count algebraically how many componeintBpis parallel toy,

in K, and similarly fordDj, F. In this sense, on anyi, eachB; contributes 0 or
+2, eachD; contributes 0 or-1, and eachry contributes 01, +2 or +3. Letd be
the column vector of coordinates(- - - , X, Y1, ,Ys: 21, - , Z)", andg = r+s+t.
Let a, be the contribution of therth basis vector (corresponding to soBe D
or Fy) ong. Thus,a, are integers satifyingam| < 3,forl1<l<p,1<m<q,
andzlpzlla,m| < 3, for 1 < m < g. The residual equatiofiU = 0 mod8,(K[,K}))
becomes a linear system of equations:

A = 0,

whereA = (a,) is apx g integral matrix. Every column ok has at most 3 nonzero
entries, and the sum of their absolute values is at most 3afdurs to find a set of
fundamental solutions ové€) with bounded integral entries.

Picking out a maximal independent collection of equatibnecessary, we may
assumep equals the rank of over Q. We may also re-order the coordinates and
assume the firsp columns ofA are linearly independent ov€). Let A = (P, Q)
where P consists of the firsp columns andQ of the restq — p columns. Let

a= ( v\z’/ ) be the corresponding decomposition of coordinates. Therinlear

system becomeRv+ QW = 0. Basic linear algebra shows that a set of fundamental
solutions isv, = -P'Q&,, W, = &, where 1< n<qg-pand €, ,& p) is
the natural basis dR%P. We clear the denominator by letting) = —P*Qén =

det(P) €, whereP" is the adjugate matrix dP. The correspondingy,--- ,U;_ is
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a set of fundamental solutions ovérof the linear systent\d = 0 with integral
entries.

For each 1< n < q - p, U; has at mosp + 1 non-zero entries, and the absolute
value of the entries are all boundetl .hhdeed " has at mosp+ 1 non-zero entries
by the way we picked? andw;. To bound the absolute value of entries, note each
column of P has at most 3 nonzero entries whose absolute valuessnit is easy
to seg/det(P)| < 3P by an induction orp using column expansions. Similarly, the
absolute value of each entry Bf is at most 8%, and each column d® has at most
3 nonzero entries whose absolute value su8) so the absolute value of any entry
of —-P*Q s also< 3.

LetUs, - ,Ug, € Ca(KY,, Ki, ) be the relative 2-chains corresponding to the
fundamental solutiond, - - - , t;_, respectively as obtained above. Then thgs

form a set of fundamental solutions &J) = 0 modB. (K|, K} ). To lift U; to a
solution ofdU = 0, notedU;, is theZ-algebraic sum of 1-simplices each parallel
to a fibery,. For a 1-simplexr parallel tog, coming fromoU/, we pick a sub-
bundle ofK[, which is an embedded band joiningandy,, and letL, € Co(K[, K))

be the relativeZ-chain which is the algebraic sum of all such dubundles. Slnce
each sub-bundle as a relativ&-chain has co@cient bounded by 1 in absolute
value over the natural basis, the absolute values dficamnts ofL, are bounded
<3.3°(p+1)=3"(p+1). LetU, = U: —L,, 1< n<q- p, thendU, = 0, with
codficients boundee 3P*1(p + 1) + 3P = 3P(3p + 4) in absolute value.

In other wordsJ,, € Za(K?,,, Ky, l<n<qg-p. Moreover,U,’s together
with a generating set aZ»(K|, K},; Q) generateZ»(K/,,, K, ; Q). SinceK| has
no monkey-handle, the no-monkey-handle case impliesZheK/, K} ; Q) has a
generating set of relativ&-cycles with cofficients bounded by 2 in absolute value.
Therefore, Z>(K/,,, K ,,; Q) has a generating set of relati¥ecycles, consisting of
U,’s and the generating set @h(K/, K 71> Q) as above, with cda@icients bounded by
3P(3p + 4) in absolute value. Remembpi< 3t, the absolute values of cieients
are bounded: 3*(3- 3t + 4) = 274(%t + 4).

Now a generating set df»(K+y, Ksw; Q) is obtained by putting together the
generating sets of its direct summangds(Sqy, Ssw; Q), Z2(Ew, Esw; Q), and
Z2(KY,, K, Q) as constructed above. It consists of relaieycles with co-
efficients bounded by 2(@t + 4) over the natural basis. In particular, they repre-
sent homology classes that genendi€K.,, Ksy; Q). Remember that the natural
basis ofC,(Kqy, Kgqy) consists of handles and isolated disks, whose total area is
bounded by 2r(M), (Lemma 3.1.1). Therefore, the generating set consistslof
ative Z-cycles with area bounded 27(%t + 4) - AreaKy) < A(2r(M)), where
A(n) = 27°(9r? + 4n)r. m
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Lemma 3.2.2.1f f : M — N is a straightened domination, afid’ c N is a local
region, then the induced homomorphism:

fl, - Hoy(M@, MZ,; R) > Ha(W.,0W; R),

is surjective.

Proof. We first decompose the homomorphismas:

Ha(M$), M%) R)

gl -

i f, o
HZ(M@),M(NZ\)@; R) —— Hz(M,MS\)@; R) —— Hy(N,N\W; R)

Ho(W,0W; R),
where the vertical isomorphisms are homology excisionse Admomorphism,

induced by the inclusion is surjective by the long exact segea of relative homol-
ogy:

i*
> Ha (M@, M5 R) = Ha(M, M, 0 R) — Ha(M.M®; R) — .

whereH,(M, M®; R) = 0. It sufices to showf, is surjective.
Because : M — N has nonzero degree, the commutative diagram:

. F
H3(N, N\ W; R) —— H(M, M. R)

! !

H3(N;R) ——  H3M;R),

implies thatf* is injective on the thirdR-codfticient relative cohomology.
Thus,

"PEET - * 2 .
£ T H (N NV W, R) = H(M, MZ 0 R),

is injective on all dimensions, following from the commuxatdiagram:
H(W: R)  xH¥(N, N\ W; R) —— H3(N, N\ W; R)

F| e e

H(M =M@, : R)x H¥ (M, M@ . : R) —— H3M, M@ : R),
N\W N\W N\W
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where the cup-product pairings are nonsingular and theémigst vertical homo-
morphism is injective. .

Therefore,f, : H.(M, M’(\IZ\)@; R) — H.(N, N\ ‘W; R) is indeed surjective on
all dimensions, and in particular, on dimension two as eesir O



18

Chapter 4

Preglue finiteness

In this chapter, we study finiteness of preglue graph-ofrgetacs under domina-
tion. In particular, we show that given an orientable clo8eahanifold M, then
there are at most finitely many possible homeomorphism tgpdSJ pieces that
could appear in a non-geometric prime 3-manifold domindgd/A. This result
was known due to Soma [Som00] and Boileau—Rubinstein—Wang [BRkd] our
treatment provides an alternative approach.

4.1 Short hyperbolic geodesics

In this section, we give a lower bound estimation for the targf geodesics in an
H3-geometric piece of the target, under the assumption of datioin. Note that
if N is an orientable closed prime 3-manifold, and iis a hyperbolic piece i,
then it follows from the Mostow-Prasad Rigidity Theorem ttie interior ofJ has
a unique complete hyperbolic metric of finite volume, up timetry. In this sense,
we may speak of geodesics in this piece.

Proposition 4.1.1. Suppose M is an orientable clos8dananifold, then there exists

a constan® > 0, depending only on M, satisfying the following. If M — N is

a domination, and J is aH*-geometric piece of N, then the length of every closed
geodesicin J is at least

Proof. Without loss of generality, we may assurhBas been straightened, with re-
spect to a minimal triangulation & and a Riemannian metrig of N approximat-
ing its geometrization for some ficiently small Margulis number > 0, (Lemma
3.1.1). Suppose is a closed geodesic i A theorem of Chun Cao, Frederick

Gehring and Gavin Martin says thatithas length < %—3( V2 -1), then there is an
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embedded tub¥ c M of radiusr with the core geodesig, such that:

V1-(4/V3) 1

sink(r) = w2

[CGM97]. This means i is very short, it lies in a very deep tubg In particular,
any meridian disk o¥ will have very large area.

Up to a small adjustment of the radius\éf we may assume the image of two
skeletonf (M®) intersect$)V in general position. Pickiny as the local regiol,
we apply Lemma 3.2.1 and see that the homomorpHismH,(M%), M@ - R) —
Ho(W,0W; R) would vanish if the area of the meridian disk of the tlbeavas
larger tharA(27(M)). This would violate the assumption thiis a domination by

Lemma 3.2.2. Therefore, the radiusf V must satisfy:

rsinkf(r) > A(2t(M)),

which implies a lower bound of the length pidepending only on the triangulation
numberr(M) of M. m]

4.2 Sharp cone angles

In this section, we give a lower bound estimation for the cangle of the base
orbifold in anH? x El-geometric orSL,-geometric piece of the target, under the
assumption of domination. Note thatNfis an orientable closed prime 3-manifold,
and if J is aH? x El-geometric orSL,-geometric piece i\, thenJ is a Seifert
fibered space over a hyperbolic base orbifold, and the cogle athany cone point
equals z divided by its order. In this sense, we may speak of angle 0é gmwints
on the base orbifold of this piece.

Proposition 4.2.1. Suppose M is an orientable clos&ananifold, then there exists
a constan® > 0, depending only on M, satisfying the following. If M — N is a
domination, and J is afi? x E'-geometric orSL,-geometric piece of N, then the
angle of every cone point on the base orbifold of J is at |éast

Proof. Without loss of generality, we may assurhbas been straightened, with re-
spect to a minimal triangulation & and a Riemannian metri¢ of N approximat-
ing its geometrization for some ficiently small Margulis number > 0, (Lemma
3.1.1). Suppose is the (geodesic) fiber over a cone point of the base orbifbld o
J. A result of Gavin Martin implies that for any complete hyipelic 2-orbifoldO
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with a cone point of angléqﬂ, there is an embedded cone centered at the point with
radiusr satisfying:
1
h¢) = ——,
cosh() 2 sm’(—;

which is optimal inS?(2, 3, q), (cf. [Mar96, Theorem 2.2]). Applying to the cone
point we are concerned about, the preimage of the embeddedrtd is a tubeV,
which will have very large radius if the cone is very sharpeTast of the proof is
a verbatim repeat of the second paragraph in the proof ofd3iopn 4.1.1. O

4.3 Finiteness of preglue graph-of-geometrics

In this section, we bound number of allowable preglue grafpgeometrics under
domination.

Theorem 4.3.1.Suppose M is an orientable clos&manifold. Then there are
at most finitely many isomorphically distinct preglue gragflgeometricgA, 7),
which admit a nondegenerate gluigge ®(A, J) yielding a3-manifold dominated
by M.

Remark4.3.2 Theorem 4.3.1 implies that M dominates a non-geometric prime
3-manifold N, then there are at most finitely many homeomorphism type$af J
pieces that can appearl This reproves [BRW, Theorem 1.1] modulo some easy
geometric cases. Moreover, the part of the argument abqarhglic pieces does
not appeal to the fact that is non-geometric, so it works for the geometric case as
well, reproving [SomO00, Theorem 1].

Proof. SupposeA, 7) is a preglue graph-of-geometrics with a nondegenerate glu
ing ¢ € ®(A,J) that yields a 3-manifoldN, dominated byM. As the Kneser—
Haken numbeh(M), namely i.e. the maximal possible number of components
of essential subsurfaces bf, bounds that ofN, (cf. [Wan91, Propositio 4]), the
number of edges oA is at mosth(M), and the number of vertices of is at most
h(M) + 1. Thus there are at most finitely many allowable isomorpltigmes ofA.
Note also that\, is by definition non-geometric. It fices to bound the number
of homeomorphism types of geometric pieces that can apgeaimaponents qff,
which are eitheH3-geometric off? x El-geometric.

Supposél is anH3-geometric piece dfl;. As N, is dominated by, the simpli-
cial volume ofN, is bounded by that df1. Itis a well-known result due to Teruhiko
Soma [Som81, Theorem 1] that the simplicial volume of a dd@&enanifold equals
the sum of the hyperbolic volumes of its hyperbolic piecdsudthe volume of is
bounded above by the simplicial volumelf Moreover, Proposition 4.1.1 implies
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that the length of the shortest geodesid ia bounded below in terms of the triangu-
lation number oM. It follows from the Jargensen—Thurston Theorem (cf. [Thu8
Theorem 5.12.1]) that there are at most finitely many allde/ddomeomorphism
types ofJ.

Supposel is anH? x E'-geometric piece oN,. It suffices to bound the num-
ber of allowable isomorphism types of the base orbit@ldApplying the Kneser—
Haken finiteness again, we see the genus and the number opoonte ofO are
both bounded above in termsiafM). Moreover, Proposition 4.2.1 implies that the
cone angles 0O are bounded below in terms of the triangulation numbeMof
Thus there are at most finitely many allowable isomorphispesyofO, and hence
finitely many allowable homeomorphism typesJofThis completes the proof.o
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Chapter 5

Gluing finiteness

In this chapter, we study finiteness of gluings under dornonator any given
preglue graph-of-geometrics. This will lead to the mainutesf the present disser-
tation, namely, that every orientable closed 3-manifolthohates at most finitely
many non-geometric prime 3-manifolds up to homeomorph(3imeorem 5.4.2).

5.1 Distortions in a gluing

In this section, we introduce the notion of distortion measputhe complexity of a
nondegenerate gluing. There are distortions at vertices of along edges oA,
which, roughly speaking, measure the local obstructiorxtereling the geometry
beyond the corresponding pieces, or across the correspmpaditing tori or Klein
bottles, respectively.

Let (A, ) be a preglue graph-of-geometrics, and ®(A, . J) be a nondegen-
erate gluing. Remember that in this situation, the assatB@anifoldN, is non-
geometric, and every geometric pietef N, is a component off with nonempty
tori boundary, and supports either the geomét#yor the geometry? x E*.

We first introduce a natural positive-semidefinite quadriim:

qy - H1(8J, R) — R,

onHi(0J; R), for each geometric piecéc 7, as follows.

If Jis H3-geometric, the interior of has a unique complete hyperbolic metric
of finite volume, so we denote the cusped hyperbolic 3-m&hde J%°. Then the
induced conformal structures on the cusps entig(@J; R) with a canonical norm.
Specifically, lete > 0 be a s#iciently small Margulis number dfi, so that the
compacte-thick part of J9¢° removes only horocusps df°. Then the boundary
of e-thick part is a disjoint union of torT* L --- 1 T9 with induced Euclidean
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metrics, canonical up to rescaling forfBaiently smalle. We rescale the Euclidean
metric on eaclT! so that the shortest simple closed geodesid bhas length 1.
This rescaled metric induces a Euclidean metric on the waeovering ofT/,
and hence defines a canonical positive-definite quadratic §g; via the naturally
induced inner product oH,(T!; R). We define the positive-definite quadratic form
q;0nH1(0J;R) = Hi(TL, R)@ - - - @ Hy(TY% R) to be the direct sum of the quadratic
forms on its components.

If Jis H? x E'-geometric, it is a Seifert fibered space over a hyperbolgeba
orbifold 0. Let p : n1(J) — m(O0) be the naturally induced homomorphism,
where m,(0) is the fundamental group in the orbifold sense. For any asmp
nentT c 0J, we regardr,(T) as a subgroup of,(J), so we may first define
forany ¢ € Hy(T;Z) = n1(T) that g7(£) equals the square of the divisibility of
p(¢) € m1(0) it p(¢) is nontrivial, and equals zero @(¢) is trivial. This extends
to a unique positive-semidefinite quadratic fosmon H.(T; R) which vanishes on
the ordinary-fiber dimension. We define the positive-sefimde quadraticy; on
H1(0J; R) by summing up the quadratic forms on its components.

These local quadratic forms allows us to define a positiexte quadratic
form q, associated to a nondegenerate glulng®(A, ):

Definition 5.1.1. SupposeA, [J) is a preglue graph-of-geometrics, ahd ®(A, . J)
is a nondegenerate gluing. For any end-of-edlgeEdg(A), letv, v’ be the vertices
adjacent t& and its opposité, respectively. For any € H,(Ts; R), we define:

0s(£) = a3,(0) + ay, (#5(2))-

Note that this is also well-defined whén= 5, and that this is positive-definite as
is nondegenerate. We define the positive-definite quadratitq, on:

Hi0T;R) = ) Hu(TsR),

seEdg(r)

to be the direct sum of the quadratic forms on its componéige thaty, depends
only on the equivalent class ¢f

We are now ready to introduce the notion of distortions of adegenerate
gluing. Recall that for any freg-moduleV of finite rankn > 0, and a quadratic
formgonVis =V ®; R overR, the discriminant:

AV, q) eR,

is the determinant of the associated bilinear form o¥er a (hence any) basis \¢f
Whenyg is positive-definite, it equals the square of the volume eftldimensional
flat torusVg / V with the Euclidean structure & induced froma.
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Definition 5.1.2. Let ¢ € ®(A, J) be a gluing, and le¢ € Edg(A) be an (entire or
semi) edge. We define tleverage distortior{or simply, thedistortion) of ¢ along
eas:

Pe(¢) = A(Hu(T5 2), a)"
whered is an end ok. Note the definition does not depend on the choice of the end.

Definition 5.1.3. Let ¢ € ®(A,J) be a gluing, and let € Ver(A) be a vertex of
valencen,. Supposa, > 0. If vis an entire-vertex, we define thgerage distortion
(or simply, thedistortion) of ¢ atv as:

ZP) = A(0.Ho(3, 035 2), 00

whered.H,(J,, dJy; Z) denotes the image d¢i,(Jy, dJy; Z) in H1(0.J; R) under the
natural boundary homomorphism.\is a semi-vertexJ), is Seifert-fibered with a
non-orientable base orbifold. Lé} be the double covering af, corresponding to
the centralizer of its ordinary-fiber, and fgton Hl(ajv; R) be the direct sum of the
quadratic forms on each componety(T; R) pulled back fromy,, whereT c 8J,.
We define:

2U9) = A(0.Ho(3, 03, Z). G5)™ .
We also definez,(¢) = 0if n, = 0.

Remark5.1.4 Note the definition of average distortion along entire edcpes be
restated in a similar fashion if one takes a compact reg@ayhiorhoodi/(, of T,
in place of the role ofl, above, becaus& H,(Ue, 0U., Z) = H,(T;s) is a canonical
isomorphism. One can also restate the definition of averegertion along semi-
edges.

5.2 Gluing with bounded distortions

In this section, we show a finiteness result that there ang fonitely many home-

omorphically distinct orientable closed irreducible 3mifalds obtained from non-
degenerate gluings of a preglue graph-of-geometrics waitinded distortions. This
is an immediate consequence of the following:

Proposition 5.2.1. Let (A, J) be a preglue graph-of-geometrics. For any>CO0,
there are at most finitely many distinct nondegenerate giune ®(A, J) up to
equivalence, such that,(¢) < C for every vertex & Ver(A), and thatZe(¢) < C
for every edge € Edg().
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We prove Proposition 5.2.1 in the rest of this section. Oratsgy is as fol-
lows: using distortion along edges, we bound the allowahléngs up to fiber-
shearings (Definition 2.2.6); then using the distortioneifest-fibered vertices, we
shall bound the allowable indices of fiber-shearings, anmttééhe allowable glu-
ings up to equivalence. This will prove Proposition 5.2.1.

Firstly, we show that distortion along edges bounds nonaegde gluings up
to fiber-shearings. This follows from a general fact aboust®d sum of positive
semi-definite quadratic forms. Although we shall only apiblg rank two case of
Lemma 5.2.3 in our estimations, it might be worth pursuingtie Imore generality
for certain independent interest.

The following an easy fact in linear algebra will be usedrate

Lemma 5.2.2.Let V be a freez-module of finite rank n- 0, and g be a positive-
definite quadratic form on= V ®; R. For any C> 0, and any intege® < k < n,

there are at most finitely many rank-k submodules W of V withdtb&iminant
AW q) < C.

Proof. Fix a basisey,--- ,e, of V. It suffices to prove for the Euclidean fortg
induced by the fixed basis as an orthonormal basis, sinceahéegeneracy en-
suresA(W, qo) < 4 - A(W. q) for somed > 0 depending only. Note that rankk
submodules o¥ are in bijection with rank-1 submodules ofV, represented by
primitive elementsv € AV up to sign. AsAkV has a natural inner product with a
standard orthonormal bagis, A --- A€, |1 < i1 <--- <ix < n}, forany+w e AkV
representingV, the well-known Cauchy-Binet formula implies:

AW, q0) = IIW]%,

where||-|| is the norm induced from the inner product structure wAis an integral
linear combination of the basis vectors, there are at mogelinrmany primitive
w’'s satisfying|jw|| < C. O

Let V be a freeZ-module of finite rankn > 0. The special linear group =
SL(V) acts naturally (from the right) on the space of quadratim®onVg, namely,
any t € I' transforms a quadratic formpinto the compositiomr. We write the
stabilizer ofq in T" asI’,. We say a quadratic formphasrational kernelwith respect
to the latticeV c Vg, if the kernelUg of (the associated bilinear form aof)in Vg
intersects/ in a lattice (i.e. a discrete cocompact subgrodp} Ug.

Lemma 5.2.3.With notations above, let ¢ be two positive-semidefinite quadratic
forms on \% overR with rational kernels with respect to V. Note that the value of
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A(V, go+q) depends only on the double-coBgtT . Then for any C> 0, there are
at most finitely many distinct double-cosEts T, of I', such that the discriminant:

0<ANV,q0+¢q) <C.

Proof. We denote the unit-balls @fandq’ asB andB’, respectively. The unit-ball
B, of qo + ¢ is clearly contained im~1(B) N B'. WhenA(V,qo + ¢’) > 0, B, is
compact, buB or B’ may be noncompact if or ¢’ are degenerate.

We claim that for anyC > 0, there exists some compact subset:

KCVR,

such that for any- € I' with 0 < A(V, qo + ¢) < C, there is some’ € I, such that
the unit-ballB,. of q(o7’) + ¢’ is contained irK.

To prove this claim, we need to understand the actioh,of Let U, be the
kernel of¢’, of dimensionk’, and letU’ = U}, NV be the sublattice intersecting
V. As ¢ has rational kernel)’ also has rank’, andV splits asU’ & L’ for some
sublatticel.” of rankn—-k’. Pick a basig?, - -- , ¢, of U” and a basig,, , ,--- , &, of
L". Hence they form a basis ®. NowI',, has a free abelian subgrolip generated
by the ‘elementary shearingg; € I', defined forany ki <k’,andk’ +1 < j <n,
by the identity on all the basis vectors except for:

€ =&+

In particular,II fixes the subspadg,. Moreover,I';, has a natural subgroup iso-
morphic to SLU’), acting on theJ;, factor while fixing thel [, factor. In fact, these
two subgrops generate a finite-index normal subgroup,ofvhich is a semidirect
productIl” = SL(U’).

We fix a reference Euclidean metric Wa with the orthonormal bastg, - - - , &,
and denote the induced-dimensional volume measure on amdimensional sub-
space asu,. It will be also conventient to make the convention that tleeoz
dimensional volume of the origin is one. The volumeByfis proportional to the
reciprocal of the square root &V, go + ¢’), indeed:

Wn

B,) = ————,
ﬂn( ) A(\/, qo_ n q/)%

wherew, = r(%/:/z) is the volume of am-dimensional Euclidean unit-ball. Thus
the assumption & A(V, go + ¢’) < C is equivalent to:
Wn

\VC

< tn(By) < 0.
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Up to a composition by some in SL(U’) < 'y, we may first assume1(B) N
U, is bounded within a uniform distand®, > 0 from the origin. In fact, for any
o €T, we have:

Wn
VC

sou (c™1(B) N Uy) is bounded below in terms @. On the other hand,

< un(Bs) < (™ (B) NUR) - pinie(B' N (UR)Y),

Wy _ Wy
AU, q0):  A(e(U?),q)%

(e H(B) N Ug) =

andA(o(U’), q) further equals the discriminant of the embedded imagé’) of
o(U’) in the quotientv / U, with respect to the induced nondegenerate quadratic
form q. Thus, the uniform lower bound gf (c-*(B) N Uy) yields a uniform upper
bound ofA(c(U’), q). By Lemma 5.2.2, at most finitely many rakksubmodules
of V /U are allowed to be the imaggU’). Furthermore, if two imagesy(U’) and
o1(U’) coincide, the identification pulls back to be an isomorphis in SL(U’),

so thato;, = o7’ restricted toJ’. In other words, there are at most finitely many
o~1(B) N U} up to compositions by elements of $1) < I',. Hence they can be
bounded uniformly within a uniform distand®, > 0 from the origin.

Now we also pick a splitting/ = U @ L, and correspondingly pick a basis
&, ,&0f U and a basig,1,--- , &, of L, in a similar fashion as before. For any
o € I' with “’—v% < n(By) < 0o, wecanfindk+1 < j; < jp < -+ < jp < N, where
h=n-k-Kk, such thatJ; is transversal to the subspace:

o H(Ur @ Hg),

whereHg is spanned b¥j,,--- ,&j,.

Let o be as above. Up to a composition by sormen I1 < I, we may further
assumer~1(Ug ® Hg) N B’ bounded within a uniform distand®, > 0 from the
origin. In fact, we may find vectors:

m = Yiéi+ o+ Yeiée + &

for eachk’ + 1 < j < n, such that they; together span(Ur ® Hg). Noter;; fixes

n; whent # j, and changes only theth coordinate ofy; by +1. Thus, usingrz’
instead obr for somer’ € I1, we may assume that9Qy;; < 1 for all they;;’s above.
Let R > O be stfficiently large, so that every point i, N B" is bounded within
in the radiusk ball centered at the origin. Then every pointint(Ug @ Hg) N B’

is bounded within the radius/k’ + 1R ball centered at the origin, so we take this
radius as the unifornD, > 0. Note that for a dferento- € T" one may need to
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pick a diferent coordinate subspakly < Lg, (indeed, there could be up (6;“)
choices), but the constabt, > 0 depends only or’. Note also that this does not
affecto—*(B) N U}, which we have already taken care of.

Under the adjustment assumptions above, every vectds, can be written as
u +w, whereu' € o~1(B) N U, andw € o~1(Ug ® Hg) N B’ for some appropriate
Hg. Thus, for anyr € I' with 0 < A(qo+¢") < C, we have shown that there is some
7" e I'y so thatB, is bounded within the uniform radiu3; + D, ball centered at
the origin. Taking this uniform large ball & we have proved the claim.

To complete the proof of Lemma 5.2.3, observe that there rdfann positive
lower bound of the length of the short-axis of the ellipsBid provided thaB, is
bounded withirK. This is clear because the volumgB,,) is at Ieast“’—\/%. It follows
that for all sucho’s, (qo + ¢’)(&) is bounded by some uniform constant, for every
1 <t < n. Suppose:

o(é) = Xaé1+ -+ Xinén,

wherexy, - - - , Xin are integers. Becausevanishes restricted tdg and is nonde-
generate restricted tbg, we obtain a uniform upper bound for evexy, where
k+1<j<n, and 1<t < n. Hence at most finitely many integers are allowed to
be the the ca@cients of thet, 4, - - - , &, components. Moreover, whenever tug,

o1 coincide on these cdigcients, they dier only by a post-composition of some
7 € I', which preservebd) and induces the trivial action ovi/ U. Such ar belongs

to Fq, SOFqUo =I,071.

To sum up, we have shown that for everye I with 0 < A(qo + ¢') < C, every
left-cosetoT’, contains a representative so thigt is bounded in some uniform
compact seK, and that these representatives belong to at most finitehy eiatinct
right-cosetd ;0. This means there are at most finitely many distinct doubkets
[Ty O

Lemma 5.2.4.Let (A, J) be a preglue graph-of-geometrics. For any>Q0, there
are at most finitely many nondegenerate distinct gluings ®(A, J) up to fiber-
shearings, such thav.(¢) < C for every edge e Edg(A).

Proof. Let ¢ € ®(A,J) be a nondegenerate gluing satisfying the conclusion. For
any end-of-edgé € Edg(A), ¢; : T; — Tz induces the quadratic forry| =
ards + a3 on Hy(Ts; R), whereJ, J' are the pieces containinig, T;, respectively.
Pick a reference gluings : Ts — Tj, thengs = ys0 for someo € Mod(T;). Write

q = q3, andq’ = qy¢s, andl’ = Mod(Ts), thenqg, on Hy(Ts; R) equalsqo + o for
someo € I'. Clearly the stabilizef, of g in I' is nontrivial only if J is Seifert-
fibered, in which cas€, is generated by a Dehn-twist along an ordinary-fiber on
Ts; and the stabilizef’,, is nontrivial only if J’ is Seifert-fibered, in which case
Iy is generated by a Dehn-twist along an ordinary-fibeiTgmulled back onT
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via ys. By the assumption and the definition of edge distortid(Ts; Z), g0 +
q’) < C. Moreover,A(H1(Ts;Z), g0 + q') > 0 because is nondegenerate. Thus
Lemma 5.2.3 implies that there are at most finitely many adlo types ofs up
to fiber-shearings. A¢ : 09 — 0 is defined by all thes’s whereé € Edg(A),
we conclude there are at most finitely many nondegenerateggly up to fiber-
shearings, which have edge distortions all bounde@.by O

Next, we show that distortion at Seifert-fibered verticearms nondegenerate
fiber-shearings of a given gluing up to equivalence.

Lemma 5.2.5.Let (A, ) be a preglue graph-of-geometrics, and ®(A, J) be

a nondegenerate gluing. Suppose Wer(A) is a Seifert-fibered vertex. Then for
any C > 0, there exists some Kk 0, depending on C and, such that whenever
¢ is a fiber-shearing o with 2,(¢7) < C, the fiber-shearing index ) satisfies
k(1) < K.

Proof. There are two cases accordingvtbeing entire or semi.

Case 1 vis an entire-vertex, i.eJ, has an orientable base orbifold.

In this case, we pick consistent directions for all the fibarg,, and for any
end-of-edge adjacent tov, let A; be the directed slope oy c dJ,. Suppose the
valence ofvis n, > 0. It is not hard to see thatH,(J,,dJ,; Z) < H1(0Jy; R) has a
rank-(, — 1) submodule:

LV:{ Z 15 [ | Z l; =0, Wherel5eZ},

6eEdg) seEdg)
and that there is an element;:

] = D [usl € 8.Hy(3,,03;2),
s<Edg)

such that for eachi € E?fg(v), [us] € Hi(Ts, Z) and the intersection numbegrs, 15) =
m, wherem, > 0 is the least common multiple of the orders of cone-pointthen
base orbifold. Moreover,

For simplicity, we writeq, 7 for q,, a,-. Note thatq™ = q restricted taL,.
We estimate the value af over the cosetd,] + L, ® R of 9.H(Jy, Jay; R). For

any E] = Zéeéaig(\/) |5 [/16] € LV ® R1

0 (] + 1D = > aus] + (s + mks) [4]),

6eEdg)
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wherem, > 0 is as above, ank} is the Dehn-twist number ofy as in the definition
of fiber-shearings. We have:

D7 (s +mks) = mk,(),

seEdg()

so if |k,(7)| > K, there must be one erdd € EEg@l), such thatls- + mks| > K/n,.
Thus:

O Gl 1) 2l + (s + mis) [4:])
> Sl + Mk - a ()
K?ry
> SR,

wherer, = Min;_g5,¢) 9([45]) andR, = max; g5, a([us]) are constants depending
only onJ, and¢. Noter, > O because is nhondegenerate.
Now we have:

K2r,
2n,

246 = () int oGl + [61) > (s (Gt =R

[¢]leLy®R

whereA., = A(Ly, q) > 0 because is nondegenerate. In other words4f(¢*) <

C, we obtain an upperbourtd > 0 so that the absolute value of the fiber-shearing
indexk,(r) is bounded byK.

Case 2 vis a semi-vertex, i.eJ, has a non-orientable base orbifold.

In this case, lefl, be the double covering &k corresponding to the centralizer
of ordinary-fiber as in the definition of the vertex distortioThendJ, is a trivial
double covering 0bJ,, and every fiber-shearinge Mod(0J,) atv of indexk,(7)
lifts to a uniquer”e Mod(dJ,) of index (). As nowJ, is Seifert-fibered over
an orientable base orbifold, we reduce to the previous teseding the absolute
value of X,(r) by someK depending o€ andg. m|

Now we are ready to prove Proposition 5.2.1.

Proof of Proposition 5.2.1By Lemma 5.2.4, there are at most finitely many allow-
able types of gluings up to fiber-shearings. By Lemma 5.2.6eéxh allowable
fiber-shearing family¢*} ast € Mod(0.7) runs over all fiber-shearings whepas

a reference nondegenerate gluing, there are at most finithy allowable indices
of r at any Seifert-fibered vertex. Hence by Lemma 2.2.7, thexr@most finitely
many distinct nondegenerate gluings up to equivalencelwaitinded distortions at
all vertices and along all edges. m|
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The reader may have noticed that distortion at atoroidalii*-geometric) ver-
tices are not used in the proof of Proposition 5.2.1. We clbsesection with the
following lemma, which provides some reason behind.

Lemma 5.2.6.Let (A, ) be a preglue graph-of-geometrics, ancWer(A) be a
vertex of valence ) corresponding to an atoroidal piecg & . Then for any
gluing¢ € (A, ),

2p)<C [ [] Zo©

seEdg)

whereédvg(v) denotes the ends-of-edges adjacent to v, gnjldenotes the edge
containing the end-of-edgg and C > 0 is some constant depending only on the
topology of J.

Proof. We simply rewriteJ, asJ, andn, asn. Write the submodulé.H>(J,4J; Z)
of H1(dJ; Z) asW, and the subspacktH,(J, dJ; R) of H,(dJ; R) asWg. From the
definition, we havey, > q;, both positive-definite omi,(dJ; R), so the unit-ball
B, of g4 is contained the (compact) unit-b&} of q;. It suffices to show for some
Co > 0 independent a,

AW, q4) < Co - A(H1(8J; Z), ay).

Picking a basis oH1(0J; Z) as an orthonormal basis, we fix a reference inner prod-
uct of H1(0J; R). Denote the inducedri2dimensional volume measure ag, and
denote the induced-dimensional volume measure &k and onWy; aspu,. It
sufices to show for som€; > 0 independent o,

Hon(Byg) < Cp - un(Wr N By).

Note that:
Won

,UZn(Bqﬁ) = F pn(Wr N B¢) 'lln(§¢),

n

wherew, denotes the volume of am-dimensional Euclidean unit-ball, arig} is
the image of the orthogonal projection Bf to W+. Therefore, the last inequality
follows immediately because:

fn(By) < pn(By),

whereB; is the image of the orthogonal projection Bf to W*. The right-hand
side is finite, independent @t O
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5.3 Bounding distortions

In this section, we bound the distortions of a nondegeneayaieg under the as-
sumption of domination, namely:

Proposition 5.3.1. Suppose M is an orientable clos@dmanifold, and Iy is an
orientable closed irreducibl8-manifold obtained from a nondegenerate gluing
®(A, J) of a preglue graph-of-geometrig¢a, 7). Then there exists some £ 0,
such that if M dominates )\ then ,(¢) < C for every vertex e Ver(A), and
P(¢) < C for every edge e Edg(A).

The rest of this section is devoted to the proof of Propasifi3.1. The idea is
similar to the proofs of Propositions 4.1.1 and 4.2.1.

To start with, we reduce the proof to the case when the undegrlyraphA is
looplessandentire, namely, such that it contains no loop edges, and that there i
semi-edges or semi-vertices:

Lemma 5.3.2. If Proposition 5.3.1 holds under the assumption thais loopless
and entire, it holds in general as well.

Proof. The idea is tha\, as an ‘orbi-graph’, has a finite cover A — A of index
at most four which is loopless and entire. To be precise, sspp : M — N,
is a nonzero degree map. We rewrltg as N for simplicity. Take two copies
Xo, X1 Of the compact 3-manifold obtained by cuttihgalong a maximal disjoint
union of incompressible Klein-bottles, and glue each camegmb ofdX, to a unique
component oHX; according to the gluing pattern &f. Then we obtain a double
coverN’ of N, whose graph\’ is entire, (possibly disconnectedAfis itself entire).
Now cutN’ along the tori corresponding to the loop edgea fand glue two copies
of the resulting compact 3-manifold up according to thergjupattern ofN’. Then
we obtain a double covéi” of N’, whose grapl\” is loopless and entire,  (possibly
disconnected if\’ is already loopless). Pick a connected component’afand
rewrite asN. ThusN coversN of index at most four, and has a loopless entire graph
A. IndeedN may be regarded as the associated 3-manifltbr a nondegenerate
gluing ¢ € ®(A, ). Moreover, it is clear from the definition that distortioase
preserving passing to covers induced by the graph, nafefy) = Zw(¢), and
De(P) = Pqe(¢). However, sinceN is dominated by a (connected) cowdrof M
with index at most four, the distortions @fare bounded bg(M), wherec(M) > 0
is a constant guaranteed by the assumption. Note there lrérotely many such
M’s, sincenr;(M) is finitely generated. Le€ > O be the maximum among all
possiblec(M), asM runs over all the coverings &fl with index at most four. Thus
the distortions ofp are bounded b as well. m|
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Without loss of generality, we assumeis loopless and entire in the rest of this
section. To simplify the notations, we rewri asN in the rest of this subsection.
Let:

f:M—=N,

be a domination as assumed. kgt- 0 denote the Margulis constant&#.

For any stficiently small Margulis numbes with O < € < €3, by Lemma 3.1.1,
we may straighten the mafpvia homotopy, with respect to a minimal triangulation
of M and a Riemannian metrig. of N approximating its geometrization. We still
write the straightened map &s Remember thatl has the decomposition:

N=9 Uz U,

whereU are regular neighborhood of the cutting t@ri and components Qff
aree-thick or horizontallye-thick, dependint on whether they df&-geometric or
H? x E-geometric, respectively.

For each edge € Edg(A), let:

WeC N,

be the union oflf, together with the compaet-thin (or horizontales-thin) horo-
cusp neighborhoods of its adjacent pieces. Possibly aftertatrarily small shrink-
ing of ‘W, we may assume the union ®,’s is still a compact regular neighbor-
hood of 7, properly containingl{ whenevere < e3; and we may also assume
that f~2(0W,) intersectsM® in general positions. A4 is a loopless graph, each
‘W, is local, and deformation-retracts I@. Thus there is a quadratic form on
the subspacéd.Hx(We, dWe; R) of Hi(0W,; R), naturally induced from, on
Hi(Ts; R) ® Hi(T5; R), whered, 6 are the two ends oé. Furthermore, for each
vertexv € Ver(A), let:

W, CN,

be the union ofJ, together with all theW,'s wheree runs over edges adjacent
tov. As A is a loopless graph, eacW, is local, and deformation-retracts &.
Thus there is a quadratic form on the subspa¢&(W,, 0W,; R) of Hi(0W,; R),
naturally induced fromy, on H1(0J,; R).

TheseW,'s andW,’s are natural geometric objects associated with the geomet
ric decomposition oN. The following comparison plays the role of the meridianal
area estimation in the proofs of Propositions 4.1.1 and 4.2.

Lemma 5.3.3.For any vertex \e Ver(A), if j : (S,9S) — (W, dW,) is a properly
piecewise-linearly immersed oriented compact surfacey.the

Area(j(S)) > 4 (sinh(6—23) _sinh (g))- Jas(i.16S)).
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where [[dS] € d.Hy(W,,0W,;Z). The same holds for any edge=eEdg(A) in
place of v above.

Remark5.3.4 An easy computation in hyperbolic geometry yields that AGh
is the Euclidean length of the shortest geodesic on the layraf a hyperbolic
horocusp whose injectivity radius is at mesfrealized at points on the boundary).
Moreover, the right-hand side of the inequality may be repdsby(1 - 4 sinh §))-

q94(J:[0S]), if one takes mutually disjoint maximal horocusps instefthe Mar-
gulis horocusps in the definition d¥,. This follows because the length of shortest
geodesic on each componenif, in this case is at least 1, (cf. [Ada92]).

Proof. We only prove the vertex case, and the edge case is similar.
__Letv € Ver(A) be a vertex. Write Edg] for the edges adjacent &g and
Edg() for the two ends of an edge As A is looplesse € Edg{) has two ends
6,0, corresponding to the two componentsiéf, \ U, which we write asWs, W5
respectively. Supposg[dS] = 3 eckdqy) @er COrresponding to the direct-sum de-
composition:

Hi(0WR) = (P Hi(T&R).

ecEdg)

It follows from an easy calibration argument that the arealfe horizontal-area)
of j(S) N W; is at least 4 (sinh%) — sinh (§)) - \/as,(ee), for anys € Edg() and
anye € Edg{), whereJ; c J denotes the piece corresponding to the vertexehat
is adjacent to on the ery for the definition ofy;,). We have:

Area(s) = Y 4(sinh(%)—sinh(§))-\/qjd(ae)

e<Edgl) scEdge)

4(sinh(%)—sinh(§))-\/z D, aulad)

e<Edgl) seEdge)

W%

= 4(sinn ) -sinnQ))- | > asled

ecEdg)
= 4 (sinh &) —sinh f)) Jau(i.[8S])
B 2 G- (.16SD,
as desired. O
Lemma 5.3.5. For any vertex \e Ver(A), if as,- -, an IS a collection of elements

in 9,Hy(W,, 0W,; Z) spanningd.Hx(‘W,, 0W,; R) overR, then for at least one

1<k<m,
Vaglax) = Zu(9).

The same holds for any edged=dg(A) in place of v above.
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Proof. This is a Minkowski-type estimation for lattices. Withouosk of generality,
we may assume thatis minimal, and hence equal to the valence.dfonsider the
volume of the parallelogram spanned by this with respect to the inner product
induced byy, ond.Hx (W, 0W,; R), then clearly:

[ Vast@n = et can)l- \JA@HAWe0WoiZ).0,)
i=1

where det;, - - - , ap,) is the determinant regarding’s as column coordinate vec-
tors over a basis of.H,("W,,d9W,; Z), which is a nonzero integer and hence at
least one in absolute value. Thus,

v
[ Voot = JA@.HA Wy, 0W,:Z).05) = D)™

by the definition of vertex distortion. The lemma follows iradiately from this
estimation, and the edge case is similar. O

We are now ready to prove Proposition 5.3.1.

Proof of Proposition 5.3.1By Lemma 5.3.2, we may assunfeis loopless and
entire. RewriteN, asN Let:
f:M—=N,

be a domination as assumed. lgt> 0 denote the Margulis constant Bf. For

a suficiently small Margulis numbe¢ with O < € < &3, straighten the map via
homotopy with respect te > 0. We only prove the vertex case, and the edge case
is similar.

Letv € Ver(A) be a vertex. Takingy, asW, by Lemma 3.2.1, there is &R+
spanning set$y]. - -, [Sa] of Hy(M) . MY, ; R) represented by relati-cycles
each with area bounded By27(M)), whereA(n) = 27°(9n?+4n)r, and where (M)
is the triangulation number &fl. From the construction, these relat&ecycles can
be regarded as proper immersions of compact oriented sstfgc: (S;, 0S;) —

(W, 0W,), where 1< i <m. By Lemma 5.3.3,

A

€ et .
0 [0S]) < %(sinh(g)—smh(é)) . Arealji(S)

-1
< %(sinh(%)—sinh(%)) - AQr(M)),

forall 1 < i < m. Note thatj . [0Si] = 0.]i.[Si] € d.H(W,,dW,;Z) for all
1 <i < m. On the other hand, Lemma 3.2.2 implies that all jhp)S;]'s together
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spand.Hy(W,, 9W,; R) overR, asf is a domination. Thus, by Lemma 5.3.5,

€ o oeNt
Z9) < max Jay(ji.[0S]) < %1 (sinh ) - sinh €)) - A@r(M)).

As € > 0 can be arbitrarily small, we obtain:

A(2r(M))
where the right-hand side depends only Mn In fact, one can show/,(¢) <
A(27(M)) with the stronger estimation as mentioned in Remark 5.3.4. m|

5.4 Finiteness of gluings

To summarize our discussions so far, we have the followintgfiess of nondegen-
erate gluings as an immediate consequence of Propositidrisénd 5.3.1.:

Theorem 5.4.1.Suppose M is an orientable clos@eémanifold, and(A, ) is a
preglue graph-of-geometrics. Then there are at most finibeny equivalently
distinct nondegenerate gluings e ®(A,.J) yielding a3-manifold dominated by
M.

Finally, we obtain the following theorem, which is the massult of the present
dissertation as mentioned in the introduction:

Theorem 5.4.2.Every orientable close8-manifold dominates at most finitely many
homeomorphically distinct non-geometric pridwenanifolds.

Proof. Note that every orientable closed non-geometric prime &#ola is ob-
tained from a nondegenerate gluing induced from its geamdacomposition.
Because equivalent gluings yield homeomorphic 3-manifallde theorem is an
immediate consequence of Theorems 4.3.1 and 5.4.1. m]
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Chapter 6

Further results

In this chapter, we discuss consequences of Theorem 5.4.2.

6.1 Domination of bounded degree

In this section, we study finiteness for dominations of bathdegree.

Theorem 6.1.1.For any integer d> O, every orientable close8-manifold d-
dominates only finitely many homeomorphically distBrabanifolds.

The rest of this section is devoted to the proof of Theoreml6.We shall
focus on the case when the target is Seifert fibered, and ed¢dubat case to prove
Theorem 6.1.1.

We start by the following estimation of the size of torsiordandominations
of bounded degree, directly generalizing a lemma prewoabtained for the 1-
dominations, cf. [HLWZ02, Lemma 3], [WZ02, Lemma 3 (1)].

Lemma 6.1.2. For any integer d> O, if M is an orientable close®-manifold
d-dominating an orientable clos&dmanifold N, then:

[TorH:(N; Z)| < d-[Hi(M; Zy)| - |TorHy(M; Z),

whereTor denotes the submodule of torsion elements, and wherdenotes the
cardinality.

Proof. This follows from an easy algebraic topology argument. Sspp : M —
N is a map of degred (after approriately orientatiniyl andN), then the umkehr
homomorphism:

fi i H.(N; Z) — H.(M; 2),
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is known asf, (@) = [M] ~ f*(&) for a € H,(N; Z), wherea’e H3>*(N; Z) denotes
the Poincag dual ofa. It is straightforward to check. o f, : H.(N;Z) — H.(N;2)

is the scalar multiplication byl. In particular,d - TorH;(N; Z) is surjected by
fi(TorH1(N; Z)) < TorHy(M; Z). On the other hand, from the long exact sequence:

=5 Hi(N: Z) -5 Hy(N:; Z) —s Hy(N; Zg) — O,

we have ToH(N;Z)/d - TorHi(N;Z) < Hi(N;Zg). Note asf : M — N has
degreed, the image oH1(M; Zy) in H1(N; Z4) has index at modd. This gives our
inequality as desired. ]

The Seifert-fibered case was previously obtained wihaguals one, due to
Claude Hayat-Legrand, Shicheng Wang, Heiner Zieschang [HI®VIr the S3-
geometric case, and later due to Shicheng Wang, Qing Zhou A\@0the general
cases. Their techniques actually work in general wthengreater than one, using
the updated version of torsion size estimation above:

Lemma 6.1.3.For any integer d> 0, any orientable close8manifold d-dominates
at most finitely many Seifert fibered spaces.

Proof. We give a brief outline of the proof, cf. [HLWZ02, WZ02].

SupposeM is an orientable closed 3-manifotddominating a Seifert fibered
spaceN. We may focus on the case when the Euler clashl @ nonvanishing.
In fact, this happens exactly whe¥h supports one of the geometri€8, Nil or
SL,, according to the sign of. Other cases have already been covered by the
finiteness result of [BRW, Theorem 1.1] concerning JSJ piesagyua Kneser—
Haken finiteness argument. Furthermore, we may assumewvitigs of generality
that N has an orientable base orbifold, because every Seiferetibgpace has a
finite cover of index at most two with this property, and bess has only finitely
many homeomorphically distinct index two covers.

We shall denote an orientable closed Seifert fibered 3-rolaas:

s D1 bs
N - Z(gy bO’ al’ ] as)’

normalized so thas,g > 0 andbg are integers, and that© b, < a are coprime
integers for 1< i < s. When the base orbifold is orientable, it can be denoted as
Fy(as,--- ,as), which means the orientable closed surface of genusth cone-
points of ordelg;’s. The base orbifold has the Euler characteristic:

S
1
X:2_Zg_ E (1_5)’
i=1



CHAPTER 6. FURTHER RESULTS 39

and the Seifert fibration has the Euler class (as a ratiomabeu):
S
bi
e=—-by— —.
0 Z} 2
Whene s not vanishing, the torsion size in its first homology is:
S
[TorHi(N; 2) = lef - [ | &
i=1

As we have assumed thitfibers over an orientable base orbifold with nonva-
nishing Euler class, the rest of the proof falls into thresesaaccording to the sign
of y.

Wheny > 0, N supports thes3-geometry. It is an easy exercise to check that
such a manifold is covered by a lens space of index at mostréfact, we have
g=0ands< 3. For0< s< 2, Nis a lens space (possibly the 3-sphere). For
s = 3, Nis N is either a prism 3-manifol&(0; by, % % %), or of one of the types
2(g; bo, 2,2, %), 2(g; bo, £, 2, 2), or=(g; bo, 3, 2, 2). In each of these cases, there
is a cover of the base orbifold of order at most 60 with at mast ¢tone points.
ThusN is covered by a lens space of index at most 60. Applying therwoy trick
as above, we may assuriNds indeed a lens space, without loss of generality. As a
lens space has cyclic fundamental group, its order can bedsolby Lemma 6.1.2,
so there are only finitely many allowal\s up to homeomorphism.

Wheny = 0, N supports the Nil-geometry, and there are only finitely many
allowable values o§, g anda;’s by the formula ofy. For each possibility, there are
only finitely allowable values df;’s because & b; < g for 1 <i < s, and because
by can be bounded by the torsion-size comparison. Thus theratanost finitely
many homeomorphically distinéd’s with y = 0.

When y < 0, N supports theSL,-geometry. By Proposition 4.2.1 and the
Kneser—Haken finiteness, there are only a finite number afvalble isomorphism
types of the base orbifold &, which does not depend @h Thus by the covering
trick, we may assumal fibers over a closed orientable surface. In this case, it is
straightforward to check that the Euler number of the fibemisnteger whose ab-
solute value is bounded by the torsion-sizélefN), and hence is bounded in terms
of M andd. This yields the finiteness of allowable homeomorphism sypieN, so
we have completed the proof of Lemma 6.1.3. m]

Proof of Theorem 6.1.10ne may first reduce to the case when the target is irre-
ducible, because any orientable closed 3-manifold 1-datesany of its connected-
sum components in the Kneser—Milnor decomposition, andumrthe number of
connect-sum components in the target is bounded in termiseoKheser—Haken
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number of the source. Moreover, Theorem 5.4.2 reduces ditensént to the case
of geometric targets. THE3-geometric target case was proved by Teruhiko Soma
[SomO00, Theorem 1], (cf. Remark 4.3.2). The Sol-geometrgetiecase was proved
by Michel Boileau, Steve Boyer, and Shicheng Wang [BBWO08] usingjon poly-
nomials. We also remark that provided the upper bound of ingpegree, there

is an easy and direct argument bounding the number of allewabnodromies,
using the torsion-size estimation (Lemma 6.1.2). In theesas the rest six ge-
ometries, the target is a Seifert fibered space, so we may appima 6.1.3. This
completes the proof of Theorem 6.1.1 O

6.2 Domination relative to boundary

In this section, we consider extension of Theorems 5.4.26ahd to orientable
compact 3-manifolds with boundary. For two orientable cantB-manifoldsv
andN, and an integed > 0, N is said to bal-dominatedy M relative to boundary
if there exists a proper map: (M, M) — (N, dN) of degreed up to sign, namely,
that the induced homomorphism: Hi(M, 0M; Z) — Hi(N, dN; Z) can be identi-
fied as the scalar multiplication ly: Z — Z. We sayM dominates Nelative to
boundary ifM d-dominatesd\ for some integed > 0. Note that under domination,
N has nonempty boundary if and onlyM has nonempty boundary.

Theorem 6.2.1. Every orientable compac®-manifold with nonempty boundary
dominates only finitely many irreducible, afidrreducible 3-manifolds relative to
boundary, up to homeomorphism.

Theorem 6.2.2.For any integer d> 0, every orientable compa&manifold d-
dominates only finitely man§-manifolds relative to boundary, up to homeomor-
phism.

The rest of this section is devoted to the proof of Theorer@sléand 6.2.2.
The idea is to perform a ‘doubling trick’ to reduce to the e€ldsase, cf. [BRW,
Remark 4.7]. Recall that for an oriented compact 3-manifdidvith nonempty
boundary, thedoubleof M along boundary, denoted as DM, is the oriented
closed 3-manifolaM Uyy (—M), obtained from gluingM to its orientation-reversal
via the natural identification on the boundary. The doublarobrientable compact
3-manifold is the double of the 3-manifold picking an oregidn, so it is canonical
up to homeomorphism.

Lemma 6.2.3.1f Q is an irreducible g-irreducible, orientable compa&manifold
with nonempty boundary, thddbl(Q) is either non-geometric, or supports one of
the geometrie®l®, H? x E!, or E3, unless Q is homeomorphic to a ball.
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Proof. As Q is irreducible and-irreducible, DblQ) is irreducible as well. Sup-
pose DbIQ) is geometric. If DbIQ) is S*-geometric,0Q is necessarily a sphere
bounding a ball in DbIQ), soQ has to be a ball and DIJ)) is a sphere. The ir-
reducibility of Dbl(Q) excludes the possibility of the geometdy x EL. For the
geometries Nil, Sol, o6L,, the double DbIQ) could not support them since two-
sided incompressible subsurfaces in these cases would b tact, cutting along
tori in these cases results in Seifert fibered spaces withdsy, but if those were
Q, the double DbIQ) would be eitheil? x E*-geometric oi&3-geometric. O

In the statement of the following lemmareflectionof a 3-manifold is known
as an orientation-reversing self-homeomorphism whosarsgeguals the identity.

Lemma 6.2.4.1f Q is an irreducible g-irreducible, orientable compa&manifold
with nonempty boundary, then there are at most finitely maongdjply discon-
nected) incompressible subsurfacesDdfi(Q) up to homeomorphism @bl(Q),

which could be the fixed point set of a reflectioribal(Q).

Proof. If Q is not a ball, DblQ) is Haken by the assumption. The conclusion
follows from the fact that Outf; (Dbl(Q))) has only finitely many finite subgroups
up to conjugacy [Zim86, Theorem 4.1], and uniqueness of tradomorphism
realization for involutions up to homeomorphisms, [Tol&€byrollary 1]. m|

Proof of Theorem 6.2.1Let M be an orientable compact 3-manifold with nonempty
boundary. Suppod¥ is an irreducibleg-irreducible, orientable compact 3-manifold
dominated byM relative to boundary. Then there is a naturally induced dami
tion of the same degree between the doubl&lcdnd the double oN. Applying
Theorem 5.4.2 for the non-geometric case and [BRW, Theoréinfdr. the geo-
metric cases, it follows from Lemma 6.2.3 that there are éiniyely many allow-
able homeomorphism types of DNI), under the assumption of domination. Fur-
thermore, Lemma 6.2.4 implies that there are hence onlelnihany allowable
homeomorphism types of. m]

Proof of Theorem 6.2.2Let M be an orientable compact 3-manifolds. Suppose
f : M — Nis ad-domination relative to boundary & onto an orientable compact
3-manifoldN. Cut N along a maximal unio® of mutually non-parallel disjoint
essential spheres aneessential disks into a disjoint union of compact compasient
Q. The number of components &f can be bounded in terms ™M by a Kneser—
Haken type argument, so there is an upper bound on the nurhbemponents of
Q.

For each componef@ c Q, let Q be the manifold obtained by filling up sphere
boundary-components with balls. Note tkais irreducible an@-irreducible. Thus
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exactly one of the following three possibilities holds:heit thatQ is homeomor-
phic to S3, soQ is a 3-sphere with finitely many disjoint balls removed; oatth

Q is closed with nontrivial fundamental group, so two copié€)are connected-
sum components of the Kneser—Milnor decomposition of Bjl(or thatQ has
nonempty boundary, so DI§}j is a connected-sum component of the Kneser—
Milnor decomposition of DbI{). Moreover, DbIN) is homeomorphic to the con-
nected sum of th€ or DbI(Q) in the latter two cases, respectively, together with
possibly a finite number ! x S2.

As DDbI(N) 1-dominates each of its connected-sum components vidipigc
Dbl(M) d-dominates eack) or Dbl(Q) as above. By Theorem 6.1.1, there are at
most finitely many allowable homeomorphism type<hér Dbl(Q). Furthermore,
if © has nonempty boundary, the finiteness of allowable homeginigm types of
DbI(Q) and Lemma 6.2.4 implies the finiteness of allowable homephism types
of Q as well. Thus the homeomorphism types@fand hence of), are always
bounded in terms d¥ andd.

Since the number of components@fand the number of allowable homeomo-
prhism types of components @ are both bounded in terms & andd, there are
only finitely many allowable homeomorphism typeshthat ared-dominated by
M relative to boundary, 8 was obtained by cuttinly along spheres and diskso

6.3 Integral homology sphere and mapping degree

It is in general dfficult to characterize the the degree set of maps between 3-
manifolds. Nevertheless, we attempt féeo a more comprehensive answer to Prob-
lem 1.1.1 for dominations onto integral homology 3-sphamekis section. It will
be natural to work in the oriented category, where the degfeemap becomes a
signed integer.

SupposeéM is an oriented closed 3-manifold. For any oriented closethBifold
N, denote thalegree sebf maps betweeM andN as:

Dum(N) = {deg(f)| f : M — N, deg(f) # 0}.

By an integral homology 3-sphere we mean a closed 3-maniféidse ho-
mology coincides with that 083, In particular, it is orientable. We denote the
orientation-preserving homeomoprhism classes of onemttegral homology 3-
spheres ag HS?, often abusing the notation of elementsZadS23 and that of their
representatives.

By a periodicsubset ofZ, we mean a subset invariant under the translation by
some positive integer.
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Theorem 6.3.1.Every oriented close@8manifold M dominates only finitely many
N e ZHS3, and the mapping degree sBi(N) is either finite, or an infinite,
periodic subset oZ with zero removed. The latter case happens if and only if
N = IT"#IT*™, where mn > O are integers, and wheré&l, I1 denote the ori-
ented Poincaré dodecahedral space and its orientativensal, respectively up
to a choice of orientation.

We prove Theorem 6.3.1 in the rest of this section. The fieitenofZHS?
targets was previously obtained by [BRW, Theorem 1.2], buth Witeorem 5.4.2
we have a quick argument:

Lemma 6.3.2.1f M is an oriented close8-manifold, then M dominates only finitely
many Ne ZHS3.

Proof. This follows from the same argument as that of Theorem 6dnte we
make the following two modifications in the proof of 6.1.3.rdtly, every Seifert
fibered integral homology 3-sphere either supportsShegeometry, fibering over
an orientable base orbifold, or supports 8¥egeometry, homeomorphic to either
S® or the Poinca® dodecahedral space. Thus we only needSihefibered case in
the argument of Lemma 6.1.3, and we do not need to pass toeadover to ensure
the orientable base. Secondly, we replace the torsion stzeaion by the trivial
fact that ToH,(N) = 0, instead of invoking Lemma 6.1.2. O

By a m;-surjectivemap, we mean a map : M — N which induces an epi-
morphism between the fundamental groups. The followingWamvas implicitly
proved in [SWWZ12, Section 3] for;-isomorphic self-maps of orientable closed
3-manifolds with only spherical prime factors, and earirefHLKWZ01] for the
prime indecomposable case. We give fiadent argument in slightly more general
context.

Lemma 6.3.3. Let L be an oriented closegtmanifold withr;(L) a free product of
finite groups. Then there exists a positive integer | such ttima following holds.
For anyr;-surjective map f. M — L from an oriented close8-manifold onto L

of degree ¢k Z, there exists a map, f M — L of degreg(d + nl), for every integer

n. Moreover, finduces the same epimorphism between the fundamental gasups
that of f.

Proof. Becauser;(L) is a free product of finite groups, it is virtually torsioreér.
Let L be a regular finite cover df corresponding to a torsion-free subgroup of
(L) of finite indexl.
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We first claim that anyr;-surjective mapf’ : M — L of degreed can be
modified to be a mag’ : M — L of degreed — I, inducing the same epimor-
phism between the fundamental groups. SupgoseM — L is such a map. Let
x 1 L - L be the regular covering above. Using the classification ofadifold
groups ensured by the Geometrizatidnis the connected sum of finitely many
copies ofS? x S. In other words, it is homeomorphically the double of a han-
dlebody, namely[ = Y U Y’ whereY andY’ are two oppositely oriented copies
of a compact handlebody, glued up along the boundary- 9Y’. We denote the
natural orientation-reversing reflection swappigndY’ aso : L — L. Possibly
after an isotopy of., we may assume(Y) to be embedded ih. Asf : M — L is
my-surjective, possibly after an isotopy BF, we may find an embedded handlebody
X ¢ M which maps homeomorphically onkgY). Moreover, restricted oX there
is alift f : X > L such thak o f = f. In particular,X is embedded a¥ via f.
Now modify the mapf to be the reflected embeddirfg : X — L, namely, such
that f” = o o f. This induces a modified mafj : M — L, such thatf’|y\x = f,
and thatf’|x = ko f. It is clear from the construction thét satisfies our claim.

Similarly, we may obtain another;-surjective mapf” : M — L of degree
d + 1, inducing the same epimorphism between the fundamentapgras that of .
With the notations above, suppo§d| : 9X x [0,1] — Y is a map of zero degree
relative to boundary homotopinfi,x to an orientation reversing homeomorphism.
For example, ifcy, - - - , ¢y is a collection of disjoint essential simple closed curves
ondX, bounding disjoint embedded disksYrunderf, we may take an orientation
reversing self-homeomorphism dX — dX that sends eaaty onto itself reversing
orientation. Thenf”| may be picked so thdt”lgxx = f while f’ "loxxqy = for.
RegardingdX x [0, 1] as a collar neighborhood 61X in X, with 9X x {0} asoX, we
may extendf”| as a mapf” : X — L which send$)X x [0,1] ontoY via f”| and
which sends the rest homeomorphically oto Now modify f to bef” : M — L
so thatf”|wx = f, and thatf”|x = ko f”. We see the degree 6f equalsd + I.

Iterating these two constructions we see that for eaetz, there is a mag, :

M — L of degreed+nl), inducing the same epimorphism between the fundamental
groups as that of. O

A mi-surjective map of nonzero degree is sometimes calleglsaantial domi-
nation Every domination factors canonically as an essential datian followed
by a finite covering up to homotopy. We denote the subsetygfN) consisting of
degrees of essential dominations asN), and denote the subset of,[N) of
degrees covering maps as (). Both of them could be empty. For a triple of
oriented closed 3-manifoldd, L, N, it is clear that the elementwise product:

CDL(N) - EDm(L) < Dm(N),
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consists of degrees of dominations factoringlvia

Proof of Theorem 6.3.1By Lemma 6.3.1M dominates only finitely many integral
homology 3-spheres. Suppobee ZHS?® is dominated byM. The argument of
Lemma 6.3.1 made clear that every Seifert fibered prime fadttl is eitherSL,-
geometric, or the Poincamdodecahedral space, unlésss itself S3. Note also that
an orientable Sol-geometric 3-manifold has nonvanis@igpomology, and hence
cannot be a prime factor of € ZHS3.

If a prime factorQ of N contains at least orié®-geometric piece, the simplicial
volume of Q is nonvanishing by the result of Soma [Som81]Qifis a nontrivial
graph manifold or isSL,-geometric, the Seifert volume is nonvanishing for some
finite cover ofQ by Brooks—Goldman [BG84] and Derbez—Wang [DWO09b]. In both
the cases abov®),(N) is a finite set.

We are left with the case when every prime factoiNois S3-geometric, hence
homeomorphic to the Poindadodecahedral space unlddss itself S3. In this
case, there are only finitely mahy, - - - , Ls coveringN, up to orientation-preserving
homeomorphism, which are essentially dominatetVbyn fact, if N is itself prime,
it has finitely many distinct covers up to orientation-presgy homeomorphism; if
N is not prime, every essential sphere lifts homeomorphjitalbe essential spheres
in the cover, so the index of the cover, and hence the numbssvalrs essentially
dominated byM, can be bounded by the Kneser—Haken numbéi ol herefore,

Du(N) = | J CDL(N) - EDu(L).
i=1

The size of each C[XN) is bounded by either the size #f(N) or the Kneser—
Haken number of;, so itis finite. By Lemma 6.3.3, Ef)(L;) is an infinite, periodic
subset ofZ with zero removed. Because any union of finitely many perisdis is
still periodic, we see in this case thay[N) is an infinite, periodic subset & with
zero removed. Indeed, the argument of Lemma 6.3.3 impligtstkie period can
be taken as 120, the order of the fundamental group of thecB@inlodecahedral
space. m|
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