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Abstract

Statistical Methods for Predicting Dengue Diagnosis using Clinical and LC-MS Data

by

Carolyn Louise Cotterman

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Alan E. Hubbard, Chair

Dengue virus is the most widespread arthropod-borne virus affecting humans, with as

many as 528 million annual infections each year. Of particular concern are the subset of

cases which develop into life-threatening dengue hemorrhagic fever, and those which further

progress into dengue shock syndrome. Non-invasive tools that accurately differentiate dengue

and its subtypes from other viral infections early in the disease progression are vital for timely

therapeutic intervention and supportive care. Unfortunately, such tools are sorely lacking.

Using liquid chromatography-mass spectrometry (LC-MS), we detect tens of thousands of

molecular features in serum, saliva, and urine of suspected dengue patients in Nicaragua.

We then use machine-learning methods to help identify candidate small molecule biomarkers

which, along with easily obtainable clinical data, predict dengue diagnosis and prognosis.

Our findings should aid in developing a low-cost diagnostic tool for use in the field.
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Introduction

0.1 Dengue background

The dengue fever virus (DENV) is an arthropod-borne RNA virus transmitted between

humans by mosquitoes. It is a leading cause of serious illness and death among children in

some Latin American and Asian countries [71], having rapidly expanded its global footprint

over the last 50 years in the absence of an effective licensed vaccine and vector control

strategy [54].

Symptoms and classifications: The World Health Organization (WHO) has tradi-

tionally classified dengue cases into three groups: dengue fever (DF), dengue hemorrhagic

fever (DHF), and dengue shock syndrome (DSS). Most dengue cases are non-severe, gener-

ally involving a high fever, muscle pain, and rash. However, some cases are more serious,

involving hemorrhagic fever and plasma leakage in the case of dengue hemorrhagic fever, and

possibly additionally involving hypotension or narrow pulse pressure in the case of dengue

shock syndrome. As many as 5% of severe dengue cases (DHF or DSS) are fatal, though

with proper medical care, this rate can be reduced to less than 1% [5]. Different signs and

symptoms appear at different times over the course of the illness, in some cases disappearing

and then re-emerging (Figure 1).

Global prevalence and transmission: In the past 50 years, the prevalence of dengue

has increased 30-fold; it is now endemic in 112 countries [39]. In 2010 there were an estimated

390 million dengue infections (95% credible interval 284 − 528 million). Ninety-six million

of these infections were “apparent cases” (95% credible interval 67− 136 million), meaning

sufficiently severe to modify a person’s regular schedule, such as attending school [3]. There

are an estimated 500, 000 hospitalizations for DHF/DSS each year [19], and an estimated

20, 000 deaths [40]. Dengue is spread primarily by Aedes aegypti mosquitoes, which primarily

live in tropical and subtropical climates; thus, dengue’s presence is mostly restricted to such

regions (Figure 2). Mosquitoes become infected when they feed on a human host during

the viraemia period. It then takes about ten days for the virus to pass from the mosquito’s
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0.1. DENGUE BACKGROUND

Figure 1: Clinical progression of illness (WHO, 2009 [75]).
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0.1. DENGUE BACKGROUND

Figure 2: Probability of occurrence of dengue infection within each 5 km x 5 km
square globally (Bhatt, 2013 [3]).

intestinal tract to its salivary glands, at which point the mosquito may spread the virus to

another human [19]. Human-to-human transmission of dengue can occur through shared

blood products, with other modes of transmission being unusual [59].

Virology: The dengue virus belongs to the flavivirus genus. Other members of this genus

include the yellow fever, West Nile, and Japanese encephalitis viruses. The dengue virus en-

codes three structural proteins and seven non-structural proteins (NS1, NS2A, NS2B, NS3,

NS4A, NS4B and NS5). There are four dengue serotypes, which share about 65% of their

genome – approximately the same amount of genetic overlap that the Japanese encephalitis

virus has with the West Nile virus. Despite these genetic differences, the dengue serotypes

share a nearly identical pathogenesis [19]. While infection with one serotype provides in-

creased future immunity from that serotype, it simultaneously increases the likelihood that

a subsequent infection with one of the other four serotypes will result in severe symptoms

through a process known as antibody dependent enhancement [39].

Prevention: Efforts to reduce the prevalence of dengue have focused on (a) the elim-

ination and incapacitation of the Aedes aegypti through genetic modification and habitat

reduction, (b) transmission reduction through the use of bed nets and insecticides, and (c)

vaccine development. No vaccine for dengue is yet commercially available, though progress

in recent years has accelerated dramatically, and there are now several candidates in clinical

trials. In the most advanced stage of development is a vaccine by Sanofi Pasteur that is

a tetravalent mixture of live attenuated viruses representing each serotype. This vaccine,
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0.1. DENGUE BACKGROUND

which requires three immunizations over a 12 month period, achieved moderate efficacy

(56%) in phase III clinical trials. Efficacy across serotypes varied widely, ranging from 35%

for serotype 2 to 78% for serotype 3 [8]. While vaccines will surely be part of the solution

going forward, it is clear that an effective defense against dengue will additionally require

other tactics, such as vector control.

Treatment: There is no cure for dengue, but we can dramatically improve health out-

comes through supportive care, such as oral or intravenous re-hydration, or blood transfusion

and oxygen for more severe cases [39]. It is thus critical to identify the patients who are

likely to benefit from hospital care.

Diagnostics: Commonly used tests for dengue all involve the use of blood (or plasma)

samples. In short, a diagnosis can be made by (a) detecting viral nucleic acid, (b) detecting

proteins encoded by the virus, or (c) detecting dengue-specific antibodies produced by the

host. The sensitivity of each approach is influenced by the duration of the patient’s illness

(Figure 3) as well as the patient’s history with dengue.

During the febrile phase, detection of viral nucleic acid in serum by means of reverse-

transcriptase–polymerase-chain-reaction (RT-PCR) is sufficient for a confirmatory diagnosis,

though such a test is rarely available in rural areas. RT-PCR works by transcribing RNA into

cDNA, which is then amplified by PCR. Amplification with PCR works by first physically

separating the double helix of the sample DNA through the application of heat, and then

using DNA polymerase to selectively amplify the target DNA by using primers (short DNA

fragments) containing sequences complementary to the target region.

Also during the febrile phase, a diagnosis can be achieved by detecting the virus-expressed

soluble nonstructural protein 1 (NS1). Though the sensitivity of diagnostic tests based on

NS1 detection can exceed 90% for primary infections, they are significantly lower (60 to 80%)

in secondary infections, reflecting an anamnestic serologic response due to a previous dengue

virus or related flavivirus infection [54]. NS1 detection can be done using an enzyme-linked

immunosorbent assay (ELISA) or the lateral-flow rapid test. ELISA involves attaching the

sample to a surface over which antigen-specific antibodies are applied, which will bind to the

antigen of interest; if the antibodies do not match with antigens in the sample, then they

will be washed away during a rinsing step. The added antibodies are linked to enzymes and

in the final step, a substance containing the enzyme’s substrate is added to produce a visible

signal, thus indicating the quantity of the antigens of interest in the sample.

Finally, a confirmatory diagnosis can be achieved via the detection of dengue-specific

anti-bodies (IgM or IgG) using ELISA or a lateral-flow rapid test. While these tests are

more widely available than RT-PCR, they require paired acute and convalescent samples for
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0.2. DISSERTATION OVERVIEW

a confirmatory finding: detection of IgM or IgG may be achieved as early as 4 days after

fever onset, but without a paired convalescent sample (with which changes in antibody con-

centration over time are determined), antibody detection yields only a presumptive diagnosis

[54].

No existing diagnostic tool is perfect when considering availability, sensitivity, and func-

tionality early in the disease progression.

0.2 Dissertation overview

This project was motivated by the quest for an accurate, inexpensive test for dengue fever

that could be easily implemented in a resource-limited setting early in a patient’s disease

progression. The ideal test would be non-invasive and would rapidly determine whether a

patient with flu-like symptoms is inflicted with the dengue virus, and whether s/he is likely

to experience dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). Such a

test would be highly useful, as patients likely to develop severe dengue (DHF or DSS) should

be kept in a clinical setting to reduce their risk of fatality, while patients with an ordinary

flu need not absorb limited hospital resources.

In the following chapters, we will explore the potential of clinical, lab, and liquid chro-

matography - mass spectrometry (LC-MS) data with the above goal in mind. Chapter 1

introduces the general statistical framework and methods that will be used throughout the

text. In Chapter 2, we explore the potential of clinical information for diagnosing dengue

and predicting severe dengue. Chapter 3 discusses the use of LC-MS data to distinguish

dengue patients from patients with non-dengue febrile illnesses, and explores methods for

extracting features from LC-MS data that correspond to known metabolites. Chapter 4

discusses methods for selecting a subset of features that maximize predictive power. These

methods bring us closer to developing a low-cost diagnostic test by identifying which fea-

tures should be targeted when obtaining all features would be prohibitively expensive or

logistically infeasible.

viii



0.2. DISSERTATION OVERVIEW

Figure 3: Laboratory diagnostic options for dengue (Simmons, 2012 [54]). A con-
firmatory diagnosis can be achieved during the febrile phase via the detection of dengue
viral components using RT-PCR, an often unavailable procedure. NS1 detection early in the
disease progression will also provide a confirmatory diagnosis, though with reduced sensitiv-
ity particularly for secondary infections. IgM or IgG seroconversion between paired acute
and convalescent samples is considered a confirmatory finding while detection of IgM or
IgG in a single specimen is less conclusive. Patients with secondary infections mount rapid
anamnestic antibody responses in which dengue virus–reactive IgG may predominate over
IgM.
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Chapter 1

Statistical Framework

This section defines terms and establishes the estimation framework that will be used

throughout the text.

1.1 Framework for loss-based estimation

Let X1, ...Xn be independent and identically distributed random variables with probability

distribution P0 such that Xi is the data collected on the ith patient, and is itself a vector of

random variables consisting of a J-dimensional set of covariates, Wi, and a binary outcome

Yi, which equals 1 if patient i has diagnosable dengue fever and equals 0 otherwise. The

probability distribution P0 is an element of a statistical model, M , which is a collection of

possible probability distributions P of X. That is, X = (W,Y ) ∼ P0 ∈ M and we have n

observations of X, denoted by X1, ...Xn.

A parameter Ψ is a map from a probability distribution or a family of probability dis-

tributions to the parameter space. Our true target parameter of interest, Ψ0, is a mapping

from the true probability distribution, P0, to the true target parameter value, ψ0. The true

target parameter can be expressed as the minimizer of the expected loss over the true data

generating distribution:

ψ0 = Ψ0(W ) = argmin
ψ

EP0 [L(X,ψ(W ))]

where the loss function, L, is a real-valued function of a parameter value ψ and an observation

X. Risk is defined as the expected value of L(X,ψ) with respect to probability distribution

P :

1



1.1. FRAMEWORK FOR LOSS-BASED ESTIMATION

Loss function, L(x, ψ)

0-1 loss
(i.e., misclassification)

I(ŷ 6= y)

Support vector machine loss
(i.e., hinge loss)

[1− tψ]+

Absolute loss |ψ − y|

Squared error
(i.e., quadratic)

(ψ − y)2

Exponential loss exp(−tψ)

Binomial negative log likelihood loss
(i.e., deviance, cross-entropy)

−(ylogψ+(1−y)log(1−ψ))

“Huberized” square hinge loss
−4tψ if tψ < −1

[1− tψ]2+ otherwise

Table 1.1: Useful loss functions for an estimate Ψ of a binary outcome Y .

Θ(ψ, P )≡
ˆ

L(x,ψ)dP(x)=EP [L(X,ψ)],

so ψ0 is the risk minimizer for a given loss function with respect to P0.

We estimate Ψ0 with the estimator Ψ̂, which is a mapping from the empirical distribution,

Pn, to our estimate of ψ0, denoted by ψn. In the context of our binary classification problem,

ψ0 and ψn will generally represent a vector of the patient risks of disease while y is a vector

of the actual patient disease outcomes and ŷ is the vector of predicted disease outcome,

generated by mapping ψn to {0, 1}, generally using some threshold value (so ψ0,ψn ∈ (0, 1)

while y,ŷ ∈ {0, 1}). For a binary outcome Y , the conditional expected value, E[Y |W ], of Y

given covariates W, is the population risk minimizer for the quadratic (i.e., L2), exponential,

hinge, and negative log likelihood loss functions. Other useful loss functions for binary

outcomes are listed in Table 1.1. Here, we also introduce the random variable T , defined as

2Y −1. Thus, T represents the patient outcome with 1 corresponding to a positive diagnosis

and −1 corresponding to a negative diagnosis. (Similarly, t and t̂ are rescaled versions of y

and ŷ, respectively.)

It is important to note that although the exponential loss, quadratic loss, and binomial

deviance yield the same solution when applied to the population joint distribution, they yield

different results for finite data sets. For binary classification, squared error loss is a partic-

ularly poor choice, as it penalizes algorithms for assigning very large risks (greater than

2



1.2. CROSS-VALIDATION FOR RISK ESTIMATION AND ESTIMATOR SELECTION

1) to observations with positive diagnoses and similarly penalizes the assignment of very

small risks to negative diagnoses. It also allows outliers undue influence on its overall fit.

The exponential loss, while attractive for computational purposes in the context of additive

modeling, also concentrates influence on outliers (e.g., observations with mis-measurements),

though to a lesser extent than does the squared error loss. The binomial deviance, support

vector loss (to be discussed), and Huberized square hinge loss are all good options for gen-

erating an estimator that is robust in noisy settings where the Bayes error rate is not close

to zero.

A good estimate of ψ0 should minimize the expected loss over an independent test sample,

also known as the generalization error. However, since we do not observe the true data

generating distribution, we will have to estimate the generalization error. We will do so

using cross validation, described below.

1.2 Cross-validation for risk estimation and estimator

selection

Cross-validation consists of dividing the available data (i.e., the learning set) into two sets:

a training set and a validation set. The main idea is that the training set is used to fit an

estimator while the validation set is used to assess (validate) the estimator’s performance.

There are several flavors of cross-validation. To describe them, we introduce some addi-

tional notation:

• Let Bn denote a split vector, (Bn(i) : i = 1, ..., n) ∈ {0, 1}n, to describe which observa-

tions of the learning set belong to the training set, and which belong to the validation

set. A realization of this vector assigns a value of 1 to Bn(i) if observation Xi is in the

validation set, and a value of 0 to Bn(i) if observation Xi is in the training set.

• Let P 0
n,Bn

and P 1
n,Bn

denote, respectively, the empirical distributions of the training and

validation sets.

• Let Ψ̂(Pn,B0
n
) denote the estimator of the parameter ψ based only on the training set.

• Let pn≡
∑

iBn(i)/n denote the proportion of observations in the validation sets.

The cross-validated risk estimator for the estimator Ψ̂ is:

θ̂pn,n ≡ EBnΘ(Ψ̂(P 0
n,Bn

), P 1
n,Bn

)

3



1.2. CROSS-VALIDATION FOR RISK ESTIMATION AND ESTIMATOR SELECTION

= EBn

ˆ
L(x, Ψ̂(P 0

n,Bn
))dP 1

n,Bn
(x)

= EBn

1

npn

∑
{i:Bn(i)=1}

L(Xi, Ψ̂(Pn,B0
n
)) (1.1)

The estimator, Ψ̂, with the lowest cross-validated risk is called the cross-validation selec-

tor, denoted by k̂pn,n. Thus, if we consider a collection of K learners Ψ̂k, k = 1, ...K in the

parameter space Ψ, then the cross-validation selector is defined as

k̂pn,n ≡ argmin
k

θ̂pn,n(Ψ̂k). (1.2)

The estimator that chooses this cross-validation selector is denoted Ψ̂k̂pn,n
. The different

flavors of cross-validation differ according to the particular distribution of the split vector Bn.

We will use V -fold cross-validation, which means that the learning set is randomly partitioned

into V mutually exclusive and exhaustive sets of approximately equal size. Each set is used,

in turn, as the validation set while the remaining V − 1 folds are used as the training set.

The cross-validated risk, then, is the average of the risks calculated using the V validation

sets.

Properties of the cross-validated risk

Before discussing the properties of the cross-validated risk, let us introduce some additional

terms and notation: For a given loss function, define the optimal risk θ as follows:

θ ≡ minψ

ˆ
L(x, ψ)dP0(x). (1.3)

Define the conditional risk, denoted θ̃n, as the risk of Ψ̂(Pn) with respect to true distribution

P0. That is:

θ̃n ≡ Θ(Ψ̂(Pn), P0) =

ˆ
L(x, Ψ̂(Pn))dP0(x). (1.4)

Note that the conditional risk depends on the data, X1, ...Xn on which ψn is based, and is

therefore a random parameter. The conditional risk for the estimator mapping Ψ̂ applied to

the cross-validation sets of size n(1− pn) is:

4



1.2. CROSS-VALIDATION FOR RISK ESTIMATION AND ESTIMATOR SELECTION

θ̃pn,n≡EBn

ˆ
L(x, Ψ̂(P 0

n,Bn
))dP0(x) (1.5)

Dudoit and van der Laan derive the consistency and asymptotic linearity result for the

cross-validated estimator θ̂pn,n of the conditional risk θ̃pn,n for estimators based on cross-

validation [17]. That is, they prove the following:

θ̂pn,n − θ̃pn,n =
1

n

n∑
i=1

(L(Xi,Ψ(P ))− θ) + oP (1/
√
n) (1.6)

This asymptotic linearity result allows us to apply the central limit theorem to de-

rive asymptotic confidence intervals for the conditional risk θ̃pn,n. Specifically, we define

the influence curve IC(X|P ) as L(X,Ψ(P )) − θ with expectation 0 and variance σ2 =

V ar[IC(X|P )] =
´
IC2(x|P )dP (x). Then

√
n(θ̂pn,n− θ̃pn,n)/σ converges in distribution to a

standard normal random variable as n→∞. To obtain an approximation of σ, we can use

the following resubstitution estimator:

σ2
n ≡
ˆ
IC2(x|Pn)dPn(x) (1.7)

where

IC(X|Pn) ≡ L(X, Ψ̂(Pn))−
ˆ
L(x, Ψ̂(Pn))dPn(x) (1.8)

Thus, an approximate asymptotic (1−α)100% confidence interval for the conditional risk is

given by

θ̂pn,n ± z1−α/2
σn√
n
, (1.9)

where Φ(z1−α/2) = 1− α/2, for the standard normal cumulative distribution function Φ().

Performance of the cross-validation selector

Define the “oracle” selector k̃n as the conditional risk minimizer under the true data-

generating distribution, P0, (i.e., the minimizer of θ̃n) among the K candidate learners.

Dudoit and van der Laan (2005 [17]) derive finite sample risk bounds and use them to

establish that the cross-validation selector (i.e., the minimizer of θ̂pn,n) performs asymptot-

ically as well (in terms of risk) as k̃n. Van der Laan, Dudoit, and Keles (2004) [65] provide

stronger convergence results for likelihood-based loss functions, which include the negative

log density loss and quadratic loss. These asymptotic results are derived under the assump-

tion that the size of the validation sets converges to infinity and therefore do not cover

5



1.2. CROSS-VALIDATION FOR RISK ESTIMATION AND ESTIMATOR SELECTION

leave-one-out cross-validation.

More specifically, the finite sample “oracle inequality” and corresponding asymptotic

implications from Van der Laan, Dudoit, and Keles (2004) are established by the following

theorem:

Theorem 1. Suppose that there exists ε > 0 and L < ∞ so that ε <

fk(X|Pn) < L a.s. for all k ∈ 1, ..., K. Let M1 = 2 log(L/ε) and M2 = 4L/ε.

For any δ > 0 we have

Eθ̃pn,n(k̂pn,n)− θ ≤ (1 + 2δ)
{
E(θ̃pn,n(k̃pn,n)− θ

}
+ 2c(M1,M2, δ)

1 + log(K)

npn

where

c((M1,M2, δ) = 2(1 + δ)2

(
M1

3
+
M2

δ

)
.

This finite sample result has the following asymptotic implications: If

log(K)

(npn){Eθ̃pn,n(k̃pn,n)− θ}
→ 0 for n→∞

then
Eθ̃pn,n(k̂pn,n)− θ
Eθ̃pn,n(k̃pn,n)− θ

→ 1 for n→∞.

Similarly, if

log(K)

(npn){Eθ̃pn,n(k̃pn,n)− θ}
→ 0 in probability for n→∞

then
θ̃pn,n(k̂pn,n)− θ
θ̃pn,n(k̃pn,n)− θ

→ 1 in probability for n→∞.

Theorem 1 establishes that the cross-validation selector k̂pn,n performs asymptotically as well

as the optimal benchmark selector k̃pn,n.

Van der Laan, Dudoit and Keles further show, through the following corollary, that if pn

converges to zero when the sample size n converges to infinity, then under given an additional

mild condition, it follows that k̂pn,n also performs asymptotically as well as the benchmark

selector, k̃n.

Corollary 1. Suppose that there exists ε > 0 and L < ∞ so that ε <

fk(X|Pn) < L a.s. for all k ∈ 1, ..., K.
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1.3. THE SUPER LEARNER

If pn → 0 holds, and for n→∞

θ̃n(k̃n)− θopt
θ̃pn,n(k̃pn,n)− θopt

→ 1 in probability (1.10)

then

θ̃pn,n(k̂pn,n)− θopt
θ̃n(k̃pn,n)− θopt

→ 1 in probability (1.11)

A sufficient condition for 1.10 to hold is that

(
nγ
(
θ̃n(k̃n)− θ

)
, (n(1− pn))γ

(
θ̃pn,n(k̃pn,n)− θ

))
D⇒ (Z,Z)

for some γ > 0 and random variable Z with P (Z > a) = 1 for some a > 0.

In particular, if we use single split cross-validation, then it suffices to assume

nγ
(
θ̃n(k̃n)− θ

)
D⇒ Z for some γ > 0 and P (Z > a) = 1 for some a > 0.

Theorem 1 establishes finite sample bounds for the expected value of the predictive loss,

i.e., the expected value of the difference between the conditional risks for the cross-validated

and oracle selectors, θ̃pn,n(k̂pn,n) − θ̃pn,n(k̃pn,n), for likelihood-based cross-validation. These

bounds imply convergence to zero in expectation and in probability of the predictive loss

at rate O(log(K)/npn). Theorem 2 of Dudoit and van der Laan (2005) establish that for

general loss functions, convergence is achieved at the slower rate O(log(K)/
√
npn).

1.3 The super learner

In the above sections, we established oracle results for the cross-validation selector. Now,

rather than restricting ourselves to choosing an estimator among our library of candidates,

we formulate a weighted combination of our candidates. This estimator is referred to as the

super learner and, as shown below, it performs asymptotically as well as the best possible

weighted combination of candidate learners [66].

Formulation of the super learner algorithm

In the process of finding the cross-validation selector, we calculated cross-validated pre-

dicted values of our n × 1 outcome vector Y for each candidate estimator, k, using the

estimator Ψ̂k(Pn,B0
n
) to predict values in the corresponding validation set. We denote these

7



1.3. THE SUPER LEARNER

cross-validated predicted values using the n × K matrix Z. We can now formulate a loss-

minimization problem as we did in the beginning of this chapter, but here we will use Z in

place of the original observed covariates, W . In other words, we wish to estimate a function,

denote it by Ψ̃, that gives us estimated values for Y using Z as input; if our loss function

is quadratic, then this amounts to estimating E[Y |Z]. Our function Ψ̃ could be formulated

a number of different ways, from using simple regression methods to using cross-validation

with a library of machine learning algorithms to find the cross-validation selector.

In this paper, I limit the functional form of Ψ̃ to Ψ̃(Z) = αZ where α is a vector of

weights, α = {α1, ..., αK}, such that the super learner is simply a convex combination of

candidate estimators. We estimate α by minimizing a chosen loss function over our observed

data, subject to the convexity constraint:

αn ≡ argmin
α

n∑
i=1

L(Yi − αZi) such that
K∑
k=1

αk = 1. (1.12)

Thus, our estimate of Ψ̃ is Ψ̃n(Z) = αn(Z).

Next, we re-train our K candidate estimators using the full data sample, X1, ...Xn, to

obtain estimators Ψ̂k(Pn) for k = 1, ...K. The super learner for new data X∗ based on the

observed data (i.e., Pn) is:

Ψ̂(Pn)(X∗) ≡ Ψ̃n(Ψ̂k(Pn)(X∗), k = 1, ..., K) (1.13)

While restricting Ψ̃ to a convex combination of the candidate learners is not required,

the oracle results for the super learner require a bounded loss function. Taking the convex

combination of learners is therefore appealing, as we are guaranteed to have a bounded loss

function so long as each algorithm in the library is bounded.

Finite sample result and asymptotics for the super learner

Define the marginal risk of the estimator Ψ̂(Pn) as the expectation of its conditional risk,

θ̃n, where the expectation is with respect to the true data generating distribution, P0, and

thus averages over the possible empirical distributions that can be drawn (recall that θ̃n is

affected by Pn through ψn’s reliance on Pn). The expected risk difference of Ψ̂(Pn) is the

marginal risk minus the minimal risk:

EP0d0(Ψ̂(Pn), ψ0) = EP0

ˆ
(L(X, Ψ̂n(Pn))− L(X,ψ0))dP0.

Judging performance using the expected risk difference, the super learner performs as

8



1.3. THE SUPER LEARNER

well as the oracle selector, up to a typically second order term. More specifically, as long

as the number of candidate learners is polynomial in sample size, the super learner has the

following properties [66]:

• In the typical situation in which the library of candidate learners does not contain a

correctly specified parametric model, then the super learner performs asymptotically

as well (up till the constant) as the oracle selector in terms of the risk difference.

• If a correctly specified parametric model is among the candidate learners, then the

super learner converges at rate O( log(n)
n

).

These results are a direct consequence of theorem 3.1 from van der Laan, Dudoit, and van

der Vaart (2006) [31], which establishes the oracle inequality for the cross-validation selector.

Polley, van der Laan, and Hubbard (2007) extend this oracle inequality to the super learner

with the following theorem [66], which uses the squared error loss function. Essentially,

the proof works by conceptualizing the selection of α analogously to the selection of any

other candidate estimator; by allowing the super learner to be an convex combination of the

candidates in our original library, we effectively just enlarge the library of candidates under

consideration and preserve the finite sample and asymptotic results of the cross-validation

selector.

Theorem 2. Assume P ((Y,X) ∈ Y×X ) = 1, where Y is a bounded set in R,

and X is a bounded Euclidean set. Assume that the candidate estimators map

into Y : P (Ψ̂j(Pn) ∈ Y , j = 1, ..., J) = 1.

Let v ∈ 1, ...V index a sample split into a validation sample V (v) ⊂ {1, ..., n}
and corresponding training sample T (v) ⊂ 1, ..., n (complement of V (v)), where

V (v) ∪ T (v) = {1, ..., n}, and ∪Vv=1V (v) = {1, ...n}. For each v ∈ {1, ...V },
let ψnjv ≡ Ψ̂j(PnT (v)), X → Y , be the realization of the jth estimator Ψ̂j when

applied to the training sample T (v).

For an observation i let v(i) be the validation sample observation i belongs to,

i = 1, ...n. Construct a new data set of n observations defined as: (Yi, Zi), where

Zi ≡ (ψnjv(i)(Xi) : j = 1, ..., J) ∈ YJ is the J-dimensional vector consisting

of the J predicted values according to the J estimators trained on the training

sample T (v(i)), i = 1, ...n.

Consider a regression model z → m(z|α) for E(Y |Z) indexed by a α ∈ A repre-

senting a set of functions from YJ into Y . Consider a grid (or any finite subset)

9



1.3. THE SUPER LEARNER

An of α-values in the parameter space A. Let Kn = |An| be the number of grid

points which grows at most at a polynomial rate in n : Kn < nq for some q <∞.

Let

αn ≡ argmin
α∈An

n∑
n=1

(Yi −m(Zi|α))2.

Consider the regression estimator ψn : X → Y defined as

ψn(x) ≡ m((ψjn(x) : j = 1, ..., J)|αn).

For each α ∈ A, define the candidate estimator Ψ̂α(Pn) ≡ m((Ψ̂j(Pn) : j =

1, ..., J)|α) : i.e.,

Ψ̂α(Pn)(x) = m((Ψ̂j(Pn)(x) : j = 1, ...J)|α).

Consider the oracle selector of α:

α̃n ≡ argmin
α∈An

1

V

V∑
v=1

d(Ψ̂α(PnT (v)), ψ0),

where

d(ψ, ψ0) = E0(L(X,ψ)− L(X,ψ0)) = E0(ψ(X)− ψ0(X))2.

For each δ > 0 we have that there exists a C(δ) >∞ such that

1

V

V∑
v=1

Ed(Ψ̂αn(PnT (v)), ψ0) ≤ (1+δ)E min
α∈An

1

V

V∑
v=1

d(Ψ̂α(PnT (v)), ψ0)+C(δ)
V log n

n
.

Thus, if

Eminα∈An

1
V

∑V
v=1 d(Ψ̂α(PnT (v)), ψ0)
logn
n

→ 0 as n→∞, (1.14)

10



1.4. ASSESSING PREDICTION ACCURACY

then it follows that the estimator Ψ̂αn is asymptotically equivalent with the oracle

estimator Ψ̂α̃n when applied to samples of size (1− 1/V )n:

1
V

∑V
v=1Ed(Ψ̂αn(PnT (v)), ψ0)

Eminα∈An

1
V

∑V
v=1 d(Ψ̂α(PnT (v)), ψ0)

→ 1 as n→∞.

If 1.14 does not hold, then it follows that Ψ̂αn achieves the (log n)/n rate:

1

V

V∑
v=1

Ed(Ψ̂αn(PnT (v)), ψ0) = O

(
log n

n

)
.

The discrete approximation Anof A used in the above theorem can be chosen such that

minimizing over An results in an asymptotically equivalent procedure to minimizing over

the whole set A. For example, if α is a Euclidean parameter and ||m(·|α1) −m(·|α2)||∞ <

C||α1−α2|| for some C <∞, where || · ||∞ denotes the supremum norm, then it follows that

for each δ > 0 we have that there exists a C(δ) <∞ such that

1

V

V∑
v=1

Ed(Ψ̂αn(PnT (v)), ψ0) ≤ (1 + δ)Emin
α∈A

1

V

V∑
v=1

d(Ψ̂α(PnT (v)), ψ0) + C(δ)
log n

n
,

where αn = argminα∈A
∑n

n=1(Yi −m(Zi|α))2. The other conclusions of the theorem 2 now

also apply [66].

By the argument presented in van der Vaart, Dudoit, and van der Laan (2006) [64], it

follows that by letting the number of cross-validation folds, V , converge to infinity at a slow

enough rate relative to n, then Ψ̂αn(Pn) performs asymptotically as well (up till a constant)

as the oracle applied to the full data sample, or it achieves the parametric rate of convergence

up till the log n factor.

1.4 Assessing prediction accuracy

The previous sections describe the construction of a so-called super learner to obtain pre-

dicted values for an outcome of interest. This section is concerned with measures of the

super learner’s accuracy and the construction of confidence intervals around these measures

of prediction accuracy. Properties of the super learner and of cross-validated risk estimators,

established above, will prove critical for confidence interval construction.
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1.4.1 Measures of prediction accuracy

We will use cross-validation on the super learner itself to estimate super learner’s performance

using various measures for binary outcomes, including the following:

1. Area under the ROC curve (i.e., AUC)1: P (Ψ̂(wi) > Ψ̂(wh)|yi = 1, yh = 0)

2. Sensitivity (i.e., true positive rate): P (I(Ψ̂(wi) > c)|yi = 1)

3. Specificity (i.e., 1-false positive rate): P (I(Ψ̂(wi) ≤ c)|yi = 0)

4. Error rate (i.e., misclassification rate): P (I(Ψ̂(wi) > c) 6= yi)

5. Positive predictive value (PPV): P (yi = 1|I(Ψ̂(wi) > c))

6. Negative predictive value (NPV): P (yi = 0|I(Ψ̂(wi) ≤ c))

7. Brier score (i.e., risk under quadratic loss): E(Ψ̂(wi)− yi)2)

Note that the sensitivity, specificity, error rate, positive predictive value and negative pre-

dictive value all depend on a threshold, c, to classify observations as 0 or 1 according to

the predicted risk of having a positive outcome. That is, if Ψ̂(wi) is greater than c, then

observation i is predicted to have a positive diagnosis, while if Ψ̂(wi) is less than c, then the

diagnosis is categorized as negative (i.e., our predicted value for yi is 0). The chosen value for

c will depend on one’s preference for balancing sensitivity with specificity, and the estimated

error rate will depend on both the value of c and the fraction of the validation data that has

a positive diagnosis.2 While the sensitivity and specificity of diagnostic tests are the most

widely reported, the positive predictive value (PPV) and negative predictive value (NPV)

are more useful when the goal is to inform medical decision-making: patients are generally

most interested in the probability that they have dengue, given their test result.

The area under the ROC curve (AUC) is an appealing performance measure, as it does

not require a specified diagnostic threshold, but indicates how well the estimator separates

those with a negative outcome from those with a positive outcome. If all of the cases have

higher predicted risk than the non-cases, then the AUC, which is equivalent to the Mann-

Whitney U statistic, will reach its maximum value of 1, indicating perfect discrimination.

Note, though, that AUC does not capture how well a model is calibrated. That is, AUC only

1ROC stands for receiver operating characteristic. The ROC curve is produced by plotting the false
positive rate on the x-axis and the true positive rate on the y-axis.

2If it is indeed worse to miss a true positive than it is to miss a true negative (or vice versa), then it
would be best to use a loss function to reflect such a preference when building your prediction algorithm.
This can be done by giving a larger weight to the dengue positive patients (or dengue negative patients).
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cares whether patients are properly ranked, not whether their predicted risks are accurate

beyond their ranking. In fact, all the other measures listed aside form the Bier score have

this weakness. Thus, we will also report the Brier score as an indication of how well our

models assign patient risk, particularly when models perform similarly by other measures

[11].

1.4.2 Confidence intervals for prediction accuracy estimates

In many estimation situations, we can quantify the uncertainty of our performance estimates

using (a) the non-parametric bootstrap and (b) influence-curve based methods. However,

because the super learner uses cross-validation to estimate Ψ0, the non-parametric bootstrap

will give incorrect inference. This is because the bootstrap involves re-sampling with replace-

ment to create each so-called bootstrap sample. Most bootstrap samples, then, will contain

some repeated observations. Thus, for most draws of Bn, the training set will contain some

of the same observations as the validation set. As a result, the learners which over-fit the

data will be unfairly favored, as their cross-validated risk will be overly optimistic and our

confidence bounds for our risk estimate will thus also be optimistic.

Meanwhile, as shown in the preceding section, the cross-validated risk estimator is con-

sistent and asymptotically linear for the conditional risk, so we can obtain asymptotic con-

fidence intervals if we can derive the estimator’s influence curve. Here, we illustrate this

process using cross-validated AUC as the target parameter. These results were established

by LeDell, Peterson, and van der Laan [32].

As introduced in section 1.4.1, the area under the ROC curve can be defined as follows:

P (Ψ̂(wi) > Ψ̂(wh)|yi = 1, yh = 0)

Or, equivalently

AUC(P0, ψ) = P0(ψ(W1) > ψ(W2)|Y1 = 1, Y2 = 0) (1.15)

where (W1, Y1) and (W2, Y2) are i.i.d. samples from P0. The empirical AUC is:

AUC(Pn, ψ) =
1

n0n1

n∑
i=1

n∑
h=1

I(ψ(Wh) > ψ(Wi))I(Yi = 0, Yh = 1) (1.16)

=
1

n0n1

n0∑
i=1

n1∑
h=1

I(ψ(Wh) > ψ(Wi)) (1.17)

where n0, n1 are the number of observations with Y = 0 and Y = 1, respectively.
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We will assume V -fold cross-validation for notational simplicity, though other types of

cross-validation will work as well (so long as the size of the validation set converges to

infinity). Drawing from the notation introduced previously, we assume that the split vector,

Bn, places mass 1/V on each of V random vectors, Bv
n = (Bv

n(i) : i = 1, ..., n), v = 1, ..., V

such that
∑

iB
v
n(i) ≈ n

V
∀v and

∑
v B

v
n(i) = 1∀i. For each Bv

n, we define ψBv
n

= Ψ̂(P 0
n,Bv

n
),

where P 0
n,Bv

n
is the empirical distribution of the observations contained in the vth training

set. The “true” cross-validated AUC, denoted R̃(Ψ̂, Pn), is thus

R̃(Ψ̂, Pn) = EBnAUC(P0, ψBn)

=
1

V

V∑
v=1

AUC(P0, ψBv
n
)

=
1

V

V∑
v=1

P0(ψBv
n
(W1) > ψBv

n
(W2)|Y1 = 1, Y2 = 0) (1.18)

where (W1, Y1) and (W2, Y2) are i.i.d. samples from P0. This is our target parameter, which

we will estimate with the V -fold cross-validated AUC estimator, denoted by R̂(Ψ̂, Pn) and

defined as:

R̂(Ψ̂, Pn) = EBnAUC(P 1
n,Bn

, ψBn)

=
1

V

V∑
v=1

AUC(P 1
n,Bv

n
, ψBv

n
)

=
1

V

V∑
v=1

1

nv0n
v
1

n∑
i=1

n∑
h=1

I(ψBv
n
(Wh) > ψBv

n
(Wi))× I(Yi = 0, Yh = 1)I(Bv

n(i) = Bv
n(h) = 1)

(1.19)

where nv1 and nv0 are the number of positive and negative samples in the vth validation

fold, respectively. So, whereas the “true” cross-validated AUC evaluates the performance

of each ψBv
n

over the true probability distribution P0, our estimate of the cross-validated

AUC evaluates the performance of ψBv
n

over P 1
n,Bv

n
– the empirical validation set of the

cross-validation fold v.

LeDell, Peterson, and van der Laan show that the influence curve for AUC(P 1
n,Bv

n
, ψBv

n
)

is
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ICAUC(P 1
n,Bv

n
, ψBv

n
)(Xi) =

I(Yi = 1)

Pn(Y = 1)
P 1
n,Bv

n
(ψBv

n
(W ) < x|Y = 0)|x=ψBv

n(Wi)

+
I(Yi = 0)

Pn(Y = 0)
P 1
n,Bv

n
(ψBv

n
(W ) > x|Y = 1)|x=ψBv

n(Wi)

−
{
I(Yi = 1)

Pn(Y = 1)
+

I(Yi = 0)

Pn(Y = 0)

}
AUC(P 1

n,Bv
n
, ψBv

n
) (1.20)

Therefore, an asymptotic .95 confidence interval for R̃(Ψ̂, Pn) is R̂(Ψ̂, Pn)± 1.96 σn√
n

where

σ2
n = EBnP

1
n,Bn

{
ICAUC

(
P 1
n,Bn

, ψBn

)}2
(1.21)

=
1

V

V∑
v=1

{
1

n

n∑
i=1

[
ICAUC(P 1

n,Bv
n
, ψBv

n
)(Xi)

]2
I (Bv

n(i) = 1)

}

Note that equation 1.20 follows from 1.8 and 1.21 follows from equation 1.7.

1.5 Candidate Estimators

As discussed, the super learner requires a finite collection of candidate estimators for the

parameter of interest. In this section, we provide brief descriptions of some of the candidate

estimators that we will use as input into the super learner. These include classification

trees, penalty-based estimators, support vector machines, and neural networks.3 Note that

many of these so-called “machine-learning” algorithms themselves strike a balance between

variance and bias by tuning a “complexity” parameter via cross-validation.

Nearest-neighbor classifiers

One of the most conceptually simple prediction methods is known as the k-nearest-neighbor

method. To implement it, a distance measure is required, often chosen to be the euclidean

distance. We then calculate the distance between each observation in the test set and each

observation in the training set, and give the test set observation the average of the outcome

values from its k nearest neighbors in the training set. The value of k is a complexity

parameter that can be fit using cross-validation.

3For more information on these methods, please see Hastie, Tibshirani and Friedman’s excellent text,
The Elements of Statistical Learning [21].
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The nearest centroid classifier also relies on a distance measure. Here, we simply calculate

the centroid of each class using the training data, where the centroid consists of the mean

values of each covariate. We then label each test observation according to the class of the

centroid to which it is closest.

Classification trees

Tree-based prediction methods segment the feature space into M rectangles, R1, ..., RM ,

and fit a simple prediction model in each rectangle (e.g., assign a constant value, cm, to

observations in rectangle Rm). In the case of our binary prediction problem, cm would

simply be the value of the majority class (0 or 1) in rectangle m. Three popular tree-based

methods are called CART, CHAID, and C4.5, though the term Classification and Regression

Trees (CART) is sometimes used more broadly refer to all three of these tree-based methods.

We will first describe CART (using the more restrictive definition of the term), and will then

describe CHAID and C4.5 by contrasting them to CART.

CART grows prediction trees using recursive binary splitting and then prunes them using

a complexity penalty chosen through cross-validation. To grow the tree, we first split the

feature space into two regions using a splitting variable j (i.e., the jth column of covariate

matrix W ), and a split value s (chosen among all values contained in the jth column of

W .) We choose j and s by searching across all possible values for them and selecting the

j, s combination that produces the largest drop in some measure of tree impurity. Node

impurity can be defined using any of the following measures, where p is the proportion of

observations in node m that have a positive diagnosis.

Misclassification error: 1−max(p, 1− p)
Gini index: 2p(1− p)
Cross-entropy or deviance: −(p log p)− (1− p) log(1− p)

Tree impurity is then the sum of the impurities of its nodes, weighted by the number of

observations contained in each node.4 Next, one or both of the regions created by the first

split are themselves split into two more regions. This process is continued until the criteria

of some stopping rule is met, such as when each node reaches a minimum size.

Once a tree is fully grown, it is time to prune it. We do so by successively collapsing

the internal node that produces the smallest increase in tree impurity, and continue until all

branches have been stripped. The full tree and each subtree produced during the pruning

process will now be analyzed using cross-validation and the subtree which minimizes the

4The Gini index and cross-entropy are preferable to the misclassification rate for growing trees, as they
better prioritize the production of pure nodes [21].
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cross-validated risk (for example, the misclassification rate) is the final CART tree.

The main differences between CHAID and CART are: (1) CHAID uses a p-value for from

a significance test to determine the desirability of a split (while CART uses the reduction

of an impurity measure), (2) CHAID searches for multiway splits (while CART splits each

node into just two groups at each stage), and (3) CHAID uses a statistical stopping rule

(while CART grows a full tree and then prunes it).

The main differences between C4.5 and CART are: (1) C4.5 searches for multiway splits

(while CART splits each node into just two groups at each stage), and (2) C4.5 prunes

trees using a single-pass algorithm based on the binomial distribution (while CART bases

its pruning decisions using a holdout dataset).

Random forests

Bagging, also known as bootstrap aggregation, is a technique used to reduce the variance of an

estimated prediction function by averaging predictions over a collection of bootstrap samples.

(For classification, a committee of trees each cast a vote for the predicted class.) Random

forests, developed by Leo Breiman [7], uses this technique of averaging over bootstrap samples

with regression trees, which are grown until the minimum node size is reached (and are not

pruned). But, importantly, as the trees are grown, only a random subset of predictors are

considered for each split. This reduces the correlation between trees and thus improves the

variance reduction relative to the variance reduction achieved with bagging, making random

forests considerably more successful than bagging trees in most data situations. Tuning

parameters for random forests include (1) the fraction of variables selected for consideration

at each split, (2) the number of trees grown, and (3) the minimum node size. Note that

if the number of relevant variables is small relative to the total number of variables, then

one should choose a reasonably large number for parameter (1). This consideration, though,

must be balanced by the reduction in correlation between trees that comes from choosing a

small value for this parameter.

Gradient boosted models (GBM)

Boosting, like bagging, involves combining the outputs from many “weak” classifiers into a

committee (or ensemble). Boosting, though, differs from bagging in some important ways

that ultimately make boosting a generally more effective technique for prediction. Essentially,

boosting involves fitting a simple classification algorithm5 (referred to as the base classifier)

5Boosting is not limited to classification problems, though classification is our focus.
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to repeatedly modified versions of the data. Specifically, in each iteration, the observations

that were misclassified by the classifier in the previous step are given greater weight, leading

to a classifier in the current step that prioritizes classifying these observations correctly.

The final prediction algorithm is a weighted combination of the fitted classifiers from each

iteration, where classifier weights are a function of the classifier’s error (based on the weighted

data used to fit each classifier), with more accurate algorithms receiving greater weight.

Boosting can be applied using various base classifiers and loss functions but is most often

used with trees. When the base classifier is a tree, the size of each tree becomes a meta-

parameter for the entire boosting procedure that can be estimated to optimize performance,

or chosen based on subject knowledge: note that the number of splits limits the number of

interaction effects contained in the model, with a single split stump covering main effects

only. Another meta-parameter is the number of boosting iterations. This is a complexity

parameter that, if set too large, can lead to over-fitting.

Penalized regression

Penalized regressions can improve prediction accuracy by reducing the variance of regression

prediction estimates by shrinking or setting some regression coefficients to zero. As discussed,

more “complex” methods tend to over-fit the data (high variance, low bias), while methods

that are too smooth will have reduced variance at the cost of increased bias. Here, we

will see how with penalized regressions we can tune a complexity parameter to strike an

optimal balance between variance and bias (within the regression framework) based on the

cross-validation prediction error.

Consider maximizing the log-likelihood of our data (or minimizing some loss function),

subject to a constraint on the size of the regression coefficients. Or, equivalently, our objective

is to maximize an objective function that is the log-likelihood minus a penalty where the

penalty grows with the size of the regression coefficients. While we can apply such penalties

to any linear regression model, we will illustrate their use with the logistic regression model

log

(
p(Y = 1|W = w)

1− p(Y = 1|W = w)

)
= β0 + βTw (1.22)

where β0 is the intercept parameter and β is a J-dimensional vector of parameters to estimate.

The log-likelihood of this logistic model can be written

`(β) =
N∑
i=1

[yi log p(Y = 1|W = wi; β0, β) + (1− yi) log(1− p(Y = 1|W = wi; β0, β]
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`(β) =
N∑
i=1

[
yi(β0 + βTwi)− log(1 + eβ0+βTwi)

]
. (1.23)

In regular logistic regression, we would estimate β0 and β by finding the values of these

parameters that maximize this likelihood equation. (Note that if J < N , then there is no

unique solution and regularization is not only a good idea for variance reduction purposes,

but necessary for estimation purposes.)

For the lasso, we instead solve

argmax
β0,β

{
N∑
i=1

[
yi(β0 + βTwi)− log(1 + eβ0+βTwi)

]
− λ

J∑
j=1

|βj|

}
(1.24)

where λ ≥ 0 is a complexity parameter that controls the amount of shrinkage, which we can

choose to minimize estimated prediction error using cross-validation.

We can generalize the lasso using the generic “Lq” penalty

argmax
β0,β

{
N∑
i=1

[
yi(β0 + βTwi)− log(1 + eβ0+βTwi)

]
− λ

J∑
j=1

|βj|q
}

(1.25)

where q = 0 corresponds to regression using the “best subset” of predictors, as the penalty

simply counts the number of nonzero parameters: q = 1 corresponds to the lasso, and q = 2

corresponds to ridge regression. Note that q = 1 is the smallest q such that the constraint

region is convex; using q < 1 makes the optimization problem much more difficult (see

chapter on methods for “best subset selection”, below). The L1 penalty of the lasso forces

coefficients to be zero for large values of λ, whereas ridge regression’s L2 penalty merely

shrinks the size of the regression coefficients towards zero for large values of λ without

eliminating predictors from the final prediction algorithm.

Rather than choosing between the lasso and ridge, we can incorporate both an L1 and L2

penalty, fitting an additional parameter that determines the relative weights given to each.

This results in the so-called elastic-net regression, introduced by Zou and Hastie in 2005

[79]. The elastic-net selects variables like the lasso while shrinking together the coefficients

of correlated predictors like ridge regression.

Discriminant analysis and nearest shrunken centroids

With a binary outcome, linear discriminant analysis (LDA) models the log-posterior odds

between class 0 and class 1 as a linear function of w, just as we do for logistic regression

(equation 1.22). However, the coefficients are estimated differently, resulting in different
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(though often similar) results. Specifically, LDA is fit by maximizing the full log-likelihood

based on the joint density Pr(W,Y = y), and relies on the assumption that the marginal

distributions of W within each class are multivariate Gaussian with a common covariance

matrix. In contrast, the logistic regression model leaves the marginal density of W as an

arbitrary density function while fitting the parameters of Pr(Y |W ) by maximizing the con-

ditional likelihood P (Y = y|W ). Thus, logistic regression has the appeal of relying on fewer

assumptions and being more robust to outliers. However, if the assumptions of LDA are

true, then it can estimate the parameters more efficiently (lower variance).

Relaxing LDA’s assumption of a common covariance yields quadratic discriminant anal-

ysis (QDA). Since QDA needs to estimate separate covariance matrices for each class, it is

more computationally intensive, with a dramatic increase in the number of parameters when

J is large.

Regularization offers a compromise between LDA and QDA by shrinking the separate

covariances of QDA toward a common covariance as in LDA. As in the case of logistic

regression, regularization can overcome the singularity issue that LDA suffers from when

J > N . Regularized discriminant analysis (RDA) can take a variety of forms, depending on

the type of covariance shrinking and whether the centroids are also shrunk.

The simplest form of regularization assumes that the features are independent within

each class (i.e., the within-class covariance matrix is diagonal). This method, known as

diagonal LDA, is equivalent to the nearest centroid classifier (with appropriate standard-

ization). By additionally shrinking the classwise mean toward the overall mean, for each

feature separately, we automatically drop out features not contributing to the class predic-

tions. This procedure, known as nearest shrunken centroids (NSC), is thus a powerful tool

for classification as well as a valuable tool for variable selection.

Support vector machines

A support vector machine (SVM) produces nonlinear boundaries between two (or more)

classes by constructing a linear boundary in a large, transformed version of the feature space

(using basis expansions such as polynomials or splines). It does so by solving the following

optimization problem:

argminβ0,β

N∑
i=1

[1− yi[h(wi)
Tβ + β0]+ +

λ

2
||β||2. (1.26)

As equation 1.26 reveals, SVMs use a hinge loss function and a 2-norm regularizer. The

hinge loss is an appealing loss function, as it penalizes more for estimates that generate an
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incorrect diagnosis, but also penalizes if the diagnosis is correct, but not by a large margin.

SVMs have the potential to achieve excellent predictive power, though can have difficulty

dealing with a large number of irrelevant inputs.

Neural networks

Neural networks extract linear combinations of the predictors as derived features, and then

model the outcome as a nonlinear function of these features. Here we describe the most

widely used neural net, known as the “single layer perceptron”, as described in Hastie,

Tibshironi, and Friedman (2009) [21]. Neural networks will be covered more extensively in

Chapter 3’s section on deep learning.

Neural networks apply to regression and to classification. For the sake of generality, we

describe the method for a K-class classification problem, illustrated in Figure 1.1, where

for regression we can set K = 1. For classification, each of the K output units Y1, ...YK

represents the probability of class k. Derived features Zm and the target Yk are modeled as

follows:

Zm = σ(σ0m + αTmW ),m = 1, ...,M (1.27)

Tk = β0k + βTk Z, k = 1, ..., K (1.28)

Yk = gk(T ), k = 1, ...K, (1.29)

where M is the number of so-called hidden neurons or units, Z represents the vector (Z1, Z2, ..., ZM),

T is the vector (T1, T2, ..., TK) and σ(v) is the activation function, commonly chosen to be

the sigmoid σ(v) = 1/(1 + e−v). By including a constant “1” as an additional input feature

in each layer, we capture the intercepts α0m and β0k. A final transformation of T is facili-

tated though the output function gk(T ), typically chosen as the softmax function for K-class

classification

gk(T ) =
eTk∑K
l=1 e

Tl

which guarantees positive estimates that sum to one. This is the same transformation

function used in multilogit regression.

Thinking of the Zm (also called hidden units) as a basis expansion of the original inputs,

the neural network is then simply a standard linear model, or linear multilogit model, using
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Figure 1.1: Schematic of a single hidden layer, feed-forward neural network with input layer
in yellow, hidden layer in pink, and output layer in blue. W0 and Z0 represent bias units,
corresponding to the intercept terms.

Z as input. The important twist is that the parameters of the basis functions (which we also

refer to as weights), and potentially the number of hidden units, are learned from the data.

To fit a neural network with a fixed M , we must estimate the weights {α0m,αm; m =

1, 2, ...,M} and {β0k, βk; k = 1, 2, ...K}, which contain M(1 + J) and K(M + 1) elements,

respectively. We can estimate these weights by minimizing a chosen loss function over the

training data. This can be done using gradient descent (called back-propagation in this

setting), though other methods are faster. Of course, we know that minimizing our loss

function over the training data leads to over-fitting. Regularization can be employed to

combat over-fitting through the introduction of a penalty term to our objective function.

For example, rather than minimizing the training set’s empirical loss, we can minimize this

loss plus λ [
∑

km β
2
km +

∑
ml σ

2
ml], where the tuning parameter λ is determined via cross-

validation. Complicating the minimization problem is that the error function is non-convex,

with different starting values leading to different local minima. One option is to take the

solution that yields the lowest (penalized) error after trying a variety of starting configura-

tions; a potentially better approach is to use the average predictions over the collections of

networks.

It is most common to choose a reasonably large number for M and allow regularization

to shrink hidden layer weights to avoid over-fitting. M is typically chosen somewhere in the

range of 5 to 100. Of course, we can once again use cross-validation to select a value of M
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among a set of options. Since we have two free parameters to select (M and λ), we would

search over the unique combinations of M and λ, selecting the combination that minimizes

the cross-validation test error.

Single-layer neural nets, as described above, are extraordinarily flexible.6 In practice,

however, adding layers often improves performance by increasing the ease at which nonlinear

terms are captured. Neural nets with multiple layers are discussed in the section on Deep

Learning in Chapter 3.

1.6 Summary of estimation procedure

In this chapter, we have described a procedure for estimating an ensemble learner and eval-

uating its performance. The procedure consists of the following steps:

• Step 1: Choose a full data loss function to represent the desired measure of performance

and define the parameter of interest as the risk minimizer for this loss function. Map

the full data loss function into an observed data loss function having the same expected

value and leading to an efficient estimator of this risk. (See van der Laan and Robins

[67] for details).

• Step 2: Create a finite collection of candidate estimators for the parameter of interest.

• Step 3: Use cross-validation to assess the performance of each candidate estimator.

• Step 4: Find the convex combination of the candidate estimators that minimizes cross-

validated risk.

• Step 5: Fit each candidate learner to the full data. The super learner is the convex

combination (established in step 4) of these learners.

• Step 6: Assess prediction accuracy of the super learner.

In the process of establishing our estimation framework, we have introduced the notation

summarized in Table 1.2.

6In fact, single-layer neural nets can approximate any function arbitrarily well. That is, given some
desired level of accuracy η > 0 and an arbitrary function f(w), we can find a neural network with output
g(w) such that |g(w) − f(w)| < η for all inputs w by choosing large enough M. (This universality theorem
was proven in Cybenko, 1989 [13] with other groups proving closely related results.)
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Symbol Definition

X Data matrix (X = (W,Y ))

W Vector of J predictor variables (i.e., covariates)

Y Binary outcome variable (i.e., diagnosis), coded 0, 1

T Binary outcome variable (i.e., diagnosis), coded −1,+1

P0 True data distribution (X ∼ P0)

Pn Empirical data distribution

Ψ0 True target parameter (mapping from P0 to ψ0)

ψ0 Value of true target parameter (in context of prediction, ψ0 is a function
while ψ0(xi) ∈ (0, 1) is a number indicating patient i’s risk of disease).

Ψ̂ Estimator of the true target parameter (mapping from Pn to ψn)

ψn Estimate of ψ0 (in context of prediction, ψn is a function).

ŷ Predicted diagnosis, ŷ = I(ψn(x) > c) ∈ 0, 1 for some constant c.

t̂ Predicted diagnosis, t̂ = 2ŷ − 1 ∈ −1,+1

θ Optimal risk (i.e., risk of ψ0 with respect to P0)

θ̃n Conditional risk (i.e., risk of ψn with respect to P0, where ψn is based on all
n observations in training data).

θ̃pn,n Conditional risk (i.e., risk of ψn with respect to P0, where ψn is based on
cross-validation training sets of size n(1− pn).)

θ̂pn,n Cross-validated estimator of θ̃pn,n(i.e., risk of ψn with respect to Pn, where
ψn is based on cross-validation training sets of size n(1− pn) and risk is
calculated using corresponding validation sets of size npn.)

k̃n The minimizer of θ̃n, among the candidate learners.

k̃pn,n The minimizer of θ̃pn,n, among the candidate learners.

k̂pn,n The “cross-validated selector,” defined as the minimizer of θ̂pn,n, among the
candidate learners.

Table 1.2: Notation
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Chapter 2

Prediction using Clinical Data

2.1 Introduction and definition of terms

In this chapter, we will use the statistical foundation presented above to create prediction

algorithms that target the diagnosis and prognosis of dengue using data from 3,578 pediatric

patients in Nicaragua collected over a ten year period. As 90% of the world’s severe dengue

cases occur in children under age 15, it is an important population to examine [39]. We

will present results for algorithms which aim to reduce statistical risk with no constraint on

model complexity or variable costs, as well as algorithms which attempt to strike a balance

between complexity, costs, and risk reduction.

Before proceeding, let us define our diagnostic terms and abbreviations, also presented in

table 2.1. All patients in our sample are suspected dengue patients, which means that they

had an acute fever (at least 37.5◦C) or history of fever less than 7 days and displayed at least

one of the WHO’s criteria for suspected dengue if hospitalized, or at least two of the WHO’s

criteria if not hospitalized. Additionally, suspected dengue patients must not have an initial

alternative non-dengue diagnosis. A patient is considered dengue positive (DENV) if one or

more of the following criteria were met: (a) dengue viral RNA was detected by RT-PCR,

(b) dengue virus was isolated, (c) seroconversion of dengue virus-specific IgM was detected

by MAC-ELISA in paired acute and convalescent samples, (d) there was at least a four-fold

increase in antibody titer specific to dengue virus, measured using Inhibition ELISA in paired

acute and convalescent samples. Patients who tested DENV-negative are classified as OFI

(other febrile illness) patients while those who tested positive are further classified as having

Dengue Fever (DF), Dengue Hemorrhagic Fever (DHF), or Dengue Shock Syndome (DSS) in

accordance with the 1997 (“traditional”) WHO criteria, summarized in Table 2.1. A newer

WHO classification scheme segments dengue-positive disease states into Dengue without
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Warning Signs, Dengue with Warning Signs, and Severe Dengue, as defined in Table 2.1.

While this newer classification scheme is more easily implemented by physicians, it is less

indicative of the pathophysiology of the disease by not distinguishing, for example, patients

with plasma leakage from those without [41]. Thus, our analysis will use the traditional

WHO classification scheme.

Throughout this chapter, we categorize clinical predictors into three groups: basic, lab,

and costly. The basic category includes clinical information that can be cheaply and easily

obtained at virtually any care facility (e.g., presence of skin rash, cough, pulse, temperature);

the lab category includes information obtained from a blood or urine analysis that requires no

more than a microscope or other relatively inexpensive piece of equipment (e.g., cholesterol,

white blood cell count, albumina concentration); the costly category includes information

obtained via ultrasound, X-ray, or other expensive piece of equipment (e.g., RT-PCR) and

is thus available in only resource-rich settings (e.g., interstitial fluid, spleen enlargement,

gallbladder wall thickening).

2.2 Literature on dengue prediction with clinical fea-

tures

While a number of studies have examined clinical features associated with dengue [48] and

severe dengue [76], fewer have developed predictive models with validated performance mea-

sures for dengue diagnosis and prognosis, and no study has exploited the power of the super

learner algorithm for such purposes. The list of covariates that we examine is also uniquely

expansive, enabling us to address questions of variable importance not previously explored.

In tables 2.2 and 2.3, we summarize the predictive model literature, restricting to studies

with a reasonably transparent methodology, at least 20 patients in each comparison group,

and which use (or at least may have used) cross-validation or another method involving

an independent test set to assess prediction accuracy. When a study included multiple

approaches, we list the most successful among them. Disappointingly, only one study (Tuan,

2015) included confidence intervals around its performance estimates.

Clinical features-based diagnostic algorithms for DENV have been mainly developed us-

ing logistic regressions and decision trees (Table 2.2), though Tuan recently explored the

potential of random forests, finding that its performance was not measurably different from

that of logistic regression [62]. Using basic clinical features and lab measurements, logistic re-

gression models have yielded cross-validated AUC estimates as high as .93 [49] while decision

trees, which are more user-friendly in a clinical setting, have achieved similarly impressive
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Term Definition
Suspected dengue Acute fever plus at least two of the following: (1) headache, (2)

retro-orbital pain, (2) myalgia, (3) leukopenia, (4) arthralgia, (5)

rash, (6) hemorrhagic manifestations, (7) hospital admission.

Dengue-positive (DENV) Laboratory-confirmed dengue case

Other febrile illness (OFI) Suspected dengue but not dengue-positive

Dengue Fever (DF) Dengue-positive without DHF or DSS

Dengue hemorrhagic fever (DHF) Dengue-positive plus all of the following: (1) fever of history of

acute fever lasting 2 - 7 days, occasionally biphasic (2)

hemorrhagic manifestations (positive tourniquet test; petechia,

equimosis, purpura or bleeding from mucosa, gastrointestinal

tract, injection sites or other locations; hematemesis/melena), (3)

thrombocytopenia (≤ 100, 000 platelets/mm3), (4) evidence of

plasma leakage due to increased vascular permeability.

Dengue shock syndrome (DSS) DHF plus (1) hypotension for age or narrow pulse pressure (≤ 20

mmHg) and (2) one of: rapid and weak pulse; cold, clammy skin,

restlessness.

Dengue without Warning Signs Dengue-positive with 2 of the following: (1) nausea or vomiting,

(2) Rash, (3) aches and pains, (4) leukopenia, (5) positive

tourniquet test.

Dengue with Warning Signs Dengue without Warning Signs plus any of the following: (1)

abdominal pain or tenderness, (2) persistent vomiting, (3) clinical

fluid accumulation, (4) mucosal bleeding, (5) lethargy,

restlessness, (6) liver enlargement ¿ 2 cm, (7) increase in HCT

concurrent with rapid decrease in platelet count (laboratory).

Severe Dengue Dengue without Warning Signs plus at least one of the following:

(1) severe plasma leakage leading to shock and/or plasma leakage

leading to fluid accumulation with respiratory distress, (2) severe

bleeding as evaluated by clinician, (3) severe organ involvement

(Liver: AST or ALT ≥ 1000; impaired consciousness; failure of

heart and other organs).

Table 2.1: Disease classifications
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cross-validated AUC estimates [60]. (Or course, we cannot tell how future performances of

these models on new data will compare using only the point estimates provided.) Tuan’s

2015 study was the only one to consider day of illness for diagnosing DENV; surprisingly, it

was not selected by his predictor selection methods, though he did not test its interaction

with other covariates (aside from implicitly when implementing CART).

Studies that distinguish OFI and DF patients from DHF/DSS patients (Table 2.3) fall

into two categories: those that only use data from patients who have not yet satisfied the

DHF/DSS definition at the time of measurement (resulting in an algorithm that is prognostic

in nature), and those which use data from all patients, even those which have already satisfied

the DHF/DSS definition at the time of sample collection (resulting in an algorithm that is

diagnostic in nature). Algorithms in the latter category are not useful for guiding clinical

management, but can be useful for disease surveillance by offering an alternative to disease

classification methods that rely on expensive and often unavailable tools (e.g., to precisely

apply the WHO’s DHF criteria, a chest X-ray is needed to ascertain pleural effusion). For

diagnostics, Potts finds that he can distinguish between OFI/DF and DHF pediatric patients

in Thailand with 77% sensitivity and 86% specificity using only three measurements (platelet

count, aspartate aminotransferase, and hematocrit), selected from a set of 11 candidate

predictors using forward step-wise additions in a logistic regression framework [49].

For the prognosis of dengue, Potts developed a decision tree model that predicted whether

suspected dengue patients would go on to develop DSS, as opposed to being classified as OFI

or DF, with 97% sensitivity and 48% specificity (where a misclassification cost ratio of 1:10

severe dengue vs. non-severe was used in order to prioritize sensitivity). This model used

four laboratory features collected during the first 72 hours of fever onset: white blood cell

count, percent monocytes, platelet count, and hemocrit level [47]. Lee similarly approached

the prognostics problem by developing a decision tree, though he took the OFI patients out

of the equation, instead focusing on distinguishing eventual DF from eventual DHF patients

[33]. His prediction results were very similar to those of Potts, achieving 100% sensitivity

and 46% specificity when applying the algorithm to his test data. Of the 38 basic and lab

variables considered, Lee used the three found to be significant from multivariate analysis

and which remained in the decision tree model after applying standard stopping and pruning

criteria: history of bleeding, urea levels, and total protein levels. Thus, both Lee and Potts

used variables that themselves define DHF/DSS in their prognostic model. (This is allowed

since none of the patients yet qualified as DHF/DSS at the time of data collection.) Tanner

also implemented a decision tree approach for predicting the development of severe dengue,

though he used a simpler definition by classifying patients as having “severe dengue” if their
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platelet count was less than 50,000/mm3on days 5 to 7 of illness. He also used a different

set of candidate predictors by including, in addition to the standard clinical features, the

crossover threshold value of real-time RT-PCR (Ct) and the presence of anti-dengue IgG

antibodies using patient samples acquired during the first 72 hours of fever onset. These

indicators were both selected by the decision tree’s stopping and pruning criteria. Though

Tanner achieved respectable results (78% sensitivity and 80% specificity) with a simple

decision tree involving just three variables, real-time RT-PCR is not widely available, thus

limiting the usefulness of his prognostic algorithm. Strikingly, none of the studies to the

authors’ knowledge that distinguish OFI and DF patients from DHF/DSS patients use day

of illness as a candidate covariate. This is particularly surprising given that many dengue

and severe dengue symptoms vary substantially by day of illness [5, 76], with day of illness

therefore seeming to be an important interaction term to consider.
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Method Data Performance
Reference

Statistical

model and

objective

Predictors

considered

Predictors in final

model

Patient

location

and age

range

Time of

sample

collection

(Days since

fever onset)

Outcome

groups and

sample sizes

sensitivity

(%)

specificity

(%)
AUC

Decision tree

(C4.5) for

diagnosis

15 basic + 24
lab +

1 costly

7 chosen via tree

stopping and pruning

criteria

Adults in

Singapore

and Vietnam

0 - 3
OFI(836),

DENV(364)
71 90 .88

Tanner &

Schreiber,

2008 [60]

Logistic regression

for diagnosis

2 basic +

9 lab

5 chosen via forward

step-wise additions

Children in

Thailand
0 - 3

OFI(613),

DENV(614)
82 91 .93

Potts,

2010a [49]

Logistic regression

for diagnosis
36 basic

6 chosen via

univariate analysis,

backward and

forward step-wise

selection

Adults in

Singapore
0 - 2

OFI(233),

DENV(148)
74a 79a .82a

Chadwick,

2006 [9]

Logistic regression

for diagnosis

36 basic + 18

lab

6 chosen via

univariate analysis,

backward and

forward step-wise

selection

Adults in

Singapore
0 - 2

OFI(233),

DENV(148)
84a 85a .92a

Chadwick,

2006 [9]

Logistic regression

for diagnosis
13 basic + 6 lab

3 chosen via stability

selection

Children in

Vietnam
0 - 3

OFI(4015),

DENV(1692)

75

[73 - 77]

76

[75 - 78]
.83

Tuan,

2015 [62]

Random Forests

for diagnosis
13 basic + 6 lab

19 (no selection

procedure)

Children in

Vietnam
0 - 3

OFI(4015),

DENV(1692)

87

[83 - 87]

81

[58 - 85]

.81

[.71 - .87]

Tuan,

2015 [62]

Table 2.2: DENV diagnosis results in the literature
aNo mention of using a validation set to obtain performance measures – results may be optimistic.
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Method Data Performance
Reference

Statistical

model and

objective

Predictors

considered

Predictors in final

model

Patient

location

and age

range

Time of

sample

collection

(Days since

fever onset)

Outcome

groups and

sample sizes

sensitivity

(%)

specificity

(%)
AUC

Decision tree

(CHAID) for

prognosis

24 basic + 14

lab

3 chosen via

multivariate

regressions and tree

pruning

Adults in

Singapore

3 - 7 (5th-95th

percentile)

DF(1855),

DHF(82)
100 46 NA

Lee,

2009 [33]

Logistic regression

for prognosis

23 basic + 14

lab

4 chosen via

multivariate

regressions

Adults in

Singapore

3 - 7 (5th-95th

percentile)

DF(1855),

DHF(82)
98a 60a .89a

Lee,

2008 [34]

Logistic regression

for diagnosis

2 basic +

9 lab

6 chosen via forward

step-wise additions

Children in

Thailand
0 - 3

DF(386),

DHF(228)
77 81 .86

Potts, 2010a

[49]

Decision tree

(CART) for

prognosis

2 basic +

9 lab

4 chosen via tree

stopping rules

Children in

Thailand
0 - 3

OFI/DF(1193),

DSS(37)
97 48 NA

Potts,

2010 [47]

Logistic regression

for diagnosis

2 basic +

9 lab

3 chosen via forward

step-wise additions

Children in

Thailand
0 - 3

OFI/DF(999),

DHF(228)
77 86 .91

Potts,

2010a [49]

Decision tree

(C4.5) for

prognosis

15 basic +

24 lab +

1 costly

3 chosen via tree

stopping and pruning

criteriab

Adults in

Singapore
0 - 3

“non-severe”

(55),

“severe”

(106)c

78 80 .83

Tanner &

Schreiber,

2008 [60]

Table 2.3: Severe dengue classification results in the literature
aNo mention of using a validation set to obtain performance measures – results may be optimistic.
bFinal criteria included (a) the crossover value (Ct) or the real-time RT-PCR for dengue viral RNA, (b) the presence of anti-dengue IgG antibodies, and (c) platelet count.
cDengue cases were classified as “non-severe” if platelet count>50,000/mm3 on days 5 to 7 of illness.
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Infectious disease researchers have demonstrated considerable interest in developing bet-

ter tools for dengue diagnosis and prognosis, and some have had significant success using

easy or moderately easy to obtain clinical information. Still, day of illness as a covariate for

the prognosis of severe dengue has not yet been examined and nor have indicators obtained

via ultrasound and x-ray equipment. Ensemble learning methods have also not yet been fully

utilized for prognostics nor for diagnostics1, and there remains a dearth of studies conducted

using data from outside of Asia. Our study, therefore, fills a significant gap in the literature.

2.3 Methods

2.3.1 Data description

Data collection overview

Our data contains repeated measurements for 3,578 suspected dengue patients in Managua,

Nicaragua, collected from September 2004 to April 2015. This data comes from two main

sources: (a) an ongoing prospective cohort study [29], and (b) a cross-sectional hospital-based

study [41]. Both studies were approved by the Institutional Review Boards of the University

of California at Berkeley, the Nicaraguan Ministry of Health, and the International Vaccine

Institute in Seoul, Korea. Parents or legal guardians of all subjects provided written informed

consent while subjects over the age of five provided verbal assent.

For the prospective cohort study, children aged 2 to 9 were recruited through home-to-

home visits in District II of Managua, a low-to-middle income area with a population of

approximately 62,500 [5]. Children were eligible to remain in the study until their 15th

birthday, or until they moved from the study area, with additional two year-olds enrolled

each year. Medical information was obtained from the Health Center Socretes Flores Vivas

(HCSFV), a public health clinic that is the primary source of care for District II. All study

participants were encouraged to seek medical care at HCSFV, free of charge, upon the first

sign of illness. Those who met the WHO criteria for suspected dengue (acute fever plus at

least 2 of items 1 - 6 listed in table 2.1) and lacked an alternative febrile-illness diagnosis

were treated as possible dengue patients. At HCSFV, clinical information was obtained for

suspected dengue patients on a daily basis, with complete blood counts (CBC) completed

every 48 hours. If these patients displayed any sign of alarm, they were transfered to the

Infectious Disease Ward of the Hospital Infantil Manual de Jesus Rivera (see hospital-based

1Some machine-learning algorithms for variable selection were explored by Ju and Brasier [24] for the
prediction of DHF, though they only had 13 DHF patients in their sample.
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study description, below).

The hospital-based study involves the collection of detailed clinical information of pos-

sible dengue patients who were admitted to the Hospital Infantil Manual de Jesus Rivera

(HIMJR), the national reference children’s hospital in Managua, Nicaragua. We used the

data collected for children between 6 months and 15 years old who came to HIMJR with a

fever or history of fever for fewer than 7 days and who additionally displayed at least one

of the following: headache, arthralgia, myalgia, retro-orbital pain, positive tourniquet test,

petechia, or signs of hemorrhaging. Additional exclusion criteria included: (a) episodes with

an alternative febrile illness diagnosis, (b) children weighing less than 8 kg, (c) children 6

years of age or older displaying signs of altered consciousness at the time of recruitment,

(d) episodes already captured by the clinic (cohort) study described above. Most clinical

information was obtained for inpatients every 12 hours, with a Complete Blood Count, blood

chemistry, x-ray and ultrasound data collected on a daily basis for a minimum of three days.

Between 14 and 21 days after symptom onset, a blood sample was again taken and analyzed

as part of a convalescent follow-up. For outpatients, clinical data was collected once per day

using a less comprehensive form than that which was used for inpatients.

Data preparation

Data cleaning was done in R [50], with biologically infeasible values removed from both the

descriptive statistics and all analyses presented below. Clinical values were standardized

before conducting the machine-learning analyses, as the penalized regression methods are

not equivariant under scaling. We consistently standardized variables using the full data

(hospital plus cohort patients) so that algorithms are applied in a consistent manner to the

training and test sets.

Variable descriptions

The health clinic recorded patient information using “Case Report Form A” of Appendix A

(translated from Spanish to English); the more detailed information gathered for hospital

inpatients was recorded using “Case Report Form B” of Appendix A (also translated). Nearly

all information recorded for clinic patients was also recorded for hospital patients but not vice

versa. Among the variables not collected at the clinic are indicators necessary for determining

disease severity; as a result, initial disease severity diagnosis for the clinic patients is unknown

and we will thus be unable to use these observations for our prognostic work.

As mentioned, repeated measurements were recorded for each patient-episode. However,

since our goal is to develop a diagnostic and prognostic algorithm that is applicable to
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Binary Categorical Continuous Total

Demographics 1 0 1 2
General signs and symptoms 22 1 7 30

General indicators of hemorrhaging 13 1 0 14
Blood and urine counts (lab) 0 1 8 9

Blood chemistry (lab) 0 0 17 17
Ultrasound and X-ray 7 0 3 10

Total 43 3 36 82

Table 2.4: Overview of clinical variables available for hospital patients.

patients upon arrival to a health facility, we consider only clinical information collected

during the first clinical consultation (occurring within the first 12 hours of the patient’s

arrival) as input in our prediction methods.

Tables 1 through 5 of Appendix B describe all 82 variables extracted from these forms that

we have available for our analyses. This set of variables excludes those which had ten or fewer

non-missing values in the hospital data and those which had zero variation. Serotype is only

applicable to DENV patients and is thus used only for the disease severity prediction analysis,

not for OFI vs. DENV prediction; all other variables are used for both our diagnostic and

prognostic analyses. Table 2.4 gives an overview of our variable types. We have easy-to-

collect variables (those which require minimal time and equipment), moderately-difficult-to-

collect variables (those which a resource-limited setting could still reasonably acquire), and

difficult-to-collect variables (those that require special equipment unlikely to be available in a

resource-limited setting). Demographics, general signs and symptoms, and general indicators

of hemorrhaging are considered easy-to-collect; blood and urine lab variables are considered

moderately-easy-to-collect; and ultrasound and X-ray variables are considered difficult-to-

collect. For cohort patients, we have demographic information (age and gender), 25 of the

30 general signs and symptoms indicators, 8 of the 14 general indicators of hemorrhaging,

all 9 blood and urine count variables (which also includes serotype), and none of the blood

chemistry, ultrasound or x-ray information. (Detailed information on variable availability is

in Appendix B.)

Descriptive statistics

The HILMR data contains 1,658 patient-episodes while the HCSFV contains 4,218. Un-

like the HILMR data, the HCSFV contains unique person identifiers with which we can

distinguish repeated visits from the same individual. These visits are generally separated

by one or more years, thus representing distinct patient illness episodes. We will use the
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Initial Diagnosis
Final Diagnosis

Overall
OFI DF DHF DSS

Suspected DF 657 745 104 19 1525
Suspected DHF 15 0 79 15 109
Suspected DSS 1 0 0 1 24

Overall 673 745 183 57 1658

Table 2.5: Initial and final diagnoses of hospital patients.

4,218 patient-episodes from the clinic, which were generated by 2,609 patients, as a test set

with which to evaluate our diagnostic algorithm’s power to distinguish OFI from DENV in

a different clinical setting. For the remainder of this paper, we will generally use “patient”

in place of “patient-episode” to simplify wording.

Table 2.5 indicates our sample sizes for our diagnostic and prognostic analyses using

hospital data. For diagnosing dengue, we use data from all 1,618 suspected dengue patients,

985 of which ended up with a confirmed dengue-positive diagnosis. Our analysis involving the

prognosis of severe dengue uses only the 868 dengue-positive patients who were not already

displaying severe dengue symptoms at the time of sample collection, 123 of which ended up

with a severe dengue diagnosis. The clinic data is used solely as a test set for validating our

diagnostic model for distinguishing OFI from DENV patients. For this purpose, we use all

4,218 patient-episodes, 582 of which resulted in a confirmed dengue diagnosis.

Initial data tended to be collected earlier in the disease progression for clinic patients

than for hospital patients, with the hospital receiving on average sicker patients, some of

whom were referred by other health facilities around Nicaragua. About a third of patients

came to the hospital five or more days after fever onset (Figure 2.1). Thus, many of the

patients with severe dengue were already displaying severe dengue symptoms upon arrival,

with the likelihood of presenting with severe dengue symptoms increasing as a function of

time since fever onset (Figure 2.2), as expected given the known clinical progression of severe

dengue (Figure 1).

Of the confirmed dengue-positive cases with known serotype, approximately half tested

as serotype 3 with the remaining cases equally divided between serotypes 1 and 2. The

immune response test revealed that about half of dengue-positive cases were first-time dengue

infections. Please see Figures 7 through 12 in Appendix B for distributions of all other

predictors.

Figure 2.3 summarizes the number of variables available (i.e., non-missing) per patient.

Clearly, we will need find an alternative to dropping patients with missing values (not a

single patient has zero missing values). Figures 13 through 15 in Appendix B summarize
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Figure 2.1: Timing of sample collection for cohort and hospital patients.
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Figure 2.2: Presentation of hospital patients with eventual severe dengue diagnosis.
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Figure 2.3: Availability of clinical variables per patient-episode

missingness per variable: 38 variables are never missing for any of the hospital patients

while 10 variables are never missing across the combined hospital and clinic data. In the

next section we will describe our imputation method that allows us to keep all patients and

all variables in the analysis.

2.3.2 Prediction algorithms, missingness handling, variable im-

portance, and statistical inference

Prediction algorithms

We employ prediction algorithms of various levels of intricacy, from the super learner (high

intricacy, high accuracy) to classification trees (low intricacy, low accuracy). We refer the

reader to Chapter 1 for details on these prediction algorithms and their properties. We

used Python’s scikit-learn module [44] to implement the algorithms in our super learner

library, employing grid searches using 5-fold cross-validated AUC to choose optimal tuning

parameters. Additional details on our implementation of each algorithm are provided in Ta-

ble 2.6. Super learner’s coefficients are estimated using sequential least squares programming
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Name Details

Mean Assigns most frequent outcome to all observations.
CART Decision tree classifier with maximum depth chosen via CV.
Centroids Nearest centroid classifier using euclidean distance.

LDA+shrinkage
Linear discriminant analysis with optimal shrinkage determined using
the Ledoi-Wolf lemma [53].

Gradient Boost

Gradient boosted trees in which maximum depth, minimum number of
samples required for a split, and minimum number of samples required
to be at a leaf node are determined with CV. We build 100 trees and
consider all predictors for each split.

Adaboost
Implementation of the Adaboost-SAMME algorithm [20] with 500
decision tree classifiers.

Random Forests
Random forests with 500 trees built using Gini impurity to measure the
quality of split. We consider p features for each possible split where p is
determined using CV.

N.Neighbor
N-nearest neighbors using euclidean distance with number of neighbors
and the weights they are given (uniform or inversely proportional to
distance) chosen via CV.

Logit-L1
L1-penalized logistic regression with the complexity parameter chosen
via CV.

Logit-L2
L2-penalized logistic regression with the complexity parameter chosen
via CV.

Elastic Net
Regularized logistic regression using a combination of the L1 and L2

penalties. The weight given to each penalty term is determined via CV.

SVM-L2
Support vector machine using the squared hinge loss with the
complexity parameter on the L2 penalty term fit via CV.

Super Learner
Weighted combination of the above algorithms where weights are
determined via CV with the negative log likelihood loss.

Table 2.6: Algorithm implementations

to minimize the negative log likelihood, also using 5-fold cross-validation.

Note that we use a total of three embedded cross-validation steps to obtain super learner

prediction results: we cross-validate the super learner itself, and within each fold of this outer-

most cross-validation step we fit the super learner which involves running each algorithm

inside of a cross validation step. Finally, the algorithms that have tuning parameters are

run using cross-validation every time they are fit to a training set. So, using 5-fold cross-

validation each time means that at the inner most level we are using 4
5
× 4

5
× 4

5
= 64

125
, or about

half of all observations, to fit the data and 4
5
× 4

5
× 1

5
= 16

125
, or about 13% of all observations,

to judge the performance of our tuning parameter values.
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Missingness Handling

Missing values in our data typically occur for three reasons: (1) unavailable equipment, (2)

different intake forms for inpatient and outpatients, (3) physician deemed the test to be

irrelevant. Due to reasons (2) and (3), our missingness is therefore not random. While this

fact complicates the causal interpretation of variable effects, our inference with regards to

conditional prediction accuracy remains valid.

To examine the meaningfulness of the missingness mechanisms in our data, and to exploit

these mechanisms for improved prediction accuracy, we employ an imputation indicator

method as follows. Let us decompose the vector Wi into covariates W1i and W2i such that

we can represent the full data structure as X = (W1,W2, Y ). Furthermore, suppose we do

not have W2 for a certain subset of patients. Let ∆2i equal one if patient i is observed

(non-missing) W2 covariates, and equal to zero otherwise. Define W ∗
2 as being equal to W2

when ∆2 = 1 and being equal to E(W2|W1) when ∆2 = 0. We estimate E(W2|W1) using R’s

Random Forests package [36] (the super learner would be a viable alternative) to get our

so-called imputed values. Specifically, we train random forests using observations for which

∆2 = 1 (with W1 serving as our predictors) and then use this fitted model to predict W2 for

the observations that lack an observed W2 value. We can now proceed with our prediction

analysis using our new predictor set consisting of W1, ∆2, and W ∗
2 , or can also go further

by additionally incorporating an interaction between ∆2 and W ∗
2 . Including the interaction

term allows the effect of W ∗
2i on Yi to differ according to whether or not W ∗

2i was imputed

for patient i. Since our problem is a prediction problem (not a causal inference problem),

including ∆2 and the ∆2W
∗
2 interaction is a modeling decision that will not affect the validity

of our inference with regards to the conditional risk, but could give us a superior prediction

performance.

Variable Importance

In the context of statistical prediction, we can conceptualize the “importance” of the jth

variable various ways. At the two extremes, we have the following importance measures:

1. The effectiveness of variable j at predicting the outcome without using any other co-

variates.

2. Prediction performance with variable j relative to prediction performance without vari-

able j, keeping all other covariates in the equation.

Clearly, if various covariates are highly correlated with one another and also highly correlated

with the outcome, then they will be classified as very important under the first measure
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and less important under the second. In contrast, a variable that is correlated with the

outcome and not with other variables will appear to increase in relative importance under

the second measure as compared to the first. Since each measure provides different and

useful information, we provide both. Specifically, to measure the effectiveness of variable

j at predicting the outcome in isolation of other covariates, we simply run Super Learner

with variable j as the only predictor, and report the corresponding cvAUC. (To do this, we

modify our library of algorithms to include those appropriate for univariate analysis: linear

discriminant analysis, for example, is included without shrinkage, and CART is included

while random forests is not.) For the second measure, we run Super Learner with and without

variable j (using our full library of algorithms) and report the difference in cvAUC (full model

minus restricted model such that larger positive values indicate greater significance). Finally,

we provide two variable importance measures based on Random Forests, both of which give

us relative importance. One is based on the decrease in prediction accuracy when vector j

is randomly permuted in the out-of-bag samples (the “RF - Permutation” method) and the

other is based on the gini index improvements across all tree splits involving variable j (the

“RF - Gini” method). Both of these measures are somewhere between measures (1) and (2)

in terms of measuring the importance of a variable in isolation of other predictors, and net of

the predictive power of the other predictors. Details of these methods are found in Chapter

4.

2.4 Results

2.4.1 Distinguishing DENV from OFI

Findings based on hospital data

Using all available clinical features with imputed values in place of missings, super learner

achieves a cross-validated area under the curve (cvAUC) of .87 [95% confidence interval: .86−
.87], with the gradient boosting and random forest algorithms performing similarly (Table

2.7). The simple CART algorithm achieves a cvAUC of .67 [95% confidence interval:.66−.68]

– substantially lower than the more sophisticated algorithms. Included in our algorithm list

is also the simple mean function, which assigns the most dominant label to all observations

regardless of covariate values. In our data, there are more DENV than OFI patients; thus,

the mean function assigns DENV to everyone and therefore achieves a perfect sensitivity

with specificity zero and an overall error rate of 41%. Super learner, meanwhile, achieves

an overall error rate of 21% with a negative predictive value of 73% and positive predictive
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value of 84% when using the threshold value c (discussed in Chapter 1.4.1) which minimizes

the error rate.

Method NPV PPV Error Rate Sensitivity Specificity MSE AUC 95% CI AUC

Super Learner 0.74 0.85 0.19 0.81 0.79 236 0.86 0.88 0.87

Gradient Boost 0.76 0.82 0.20 0.84 0.73 241 0.86 0.87 0.86

Random Forests 0.77 0.79 0.22 0.86 0.67 256 0.85 0.86 0.86

Logit-L2 0.76 0.79 0.22 0.85 0.67 313 0.83 0.85 0.84

Logit-L1 0.76 0.79 0.22 0.86 0.66 265 0.83 0.84 0.84

LDA+shrinkage 0.75 0.77 0.24 0.86 0.62 278 0.82 0.83 0.83

AdaBoost 0.70 0.77 0.26 0.81 0.64 412 0.80 0.82 0.81

SVM-L2 0.73 0.79 0.23 0.83 0.69 381 0.74 0.77 0.76

N.Neighbor 0.67 0.72 0.29 0.83 0.53 333 0.73 0.75 0.74

CART 0.71 0.73 0.27 0.85 0.55 326 0.72 0.74 0.73

Centroids 0.55 0.79 0.35 0.56 0.79 579 0.66 0.69 0.67

Mean NA 0.59 0.41 1.00 0.00 673 0.48 0.52 0.50

Table 2.7: Cross-validated performance measures of algorithms using all available clinical
features, OFI vs. DENV analysis. The positive predictive value (PPV), negative predic-
tive value (NPV), error rate, sensitivity and specificity are based on the threshold value c
(discussed in Chapter 1.4.1) which minimizes the error rate.

Including imputation indicators only marginally affects results (compare blue and yellow

bars in Figure 2.42), indicating that either missingness is uncorrelated with outcome, or that

missingness provides information that is largely redundant with the information provided

by other covariates. To get a sense for how informative missingness is, we ran super learner

using only imputation indicators and no actual clinical information (gray bars in Figure 2.4).

Doing so gave us a cross-validated AUC of .65 [.64 − .66] with super learner; missingness

is not completely random, but neither is it a substitute for clinical information. Since the

missingness mechanism in our particular hospital setting is unlikely to generalize to new

datasets, we opt to exclude imputation indicators from the remaining analyses in order to

develop a diagnostic algorithm that is more likely to be useful in other contexts. (And even

if we instead care only about our algorithms’ expected performance for diagnosing future

patients in the HILMR facility where the missingness mechanism remains constant, our

results reveal that little to nothing is to be gained by including the imputation indicators.)

Not all algorithms are fairly treated if we judge them purely by cvAUC, as our scikit-learn

implementations of the support vector machine (SVM-L2) and nearest centroid methods give

predicted class membership (dengue or not-dengue), as opposed to predicted probabilities of

2Figures presented throughout this section and in subsequent sections were produced using Python’s

Matplotlib library [23].
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Figure 2.4: Cross-validated AUCs and corresponding 95% confidence intervals for various
algorithms with and without missing value indicators, OFI vs. DENV analysis.
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dengue. As a result, their cross-validated ROCs (and corresponding AUCs) are effectively

based on only three points since all critical values between 0 and 1 give the same classifications

and therefore the same true positive and false positive rates (Figure 2.5).3 Indeed, we see that

the support vector machine compare favorably to other well-performing algorithms when we

look at the measures from the first five columns of Table 2.7, yielding an overall error rates

of 23%.

Interestingly, the most costly variables (i.e., those obtained using ultrasound and x-rays)

add negligible predictive value when used in conjunction with the less expensive variables

(super learner’s cvAUC remains at .87 after eliminating the costly variables, Figure 2.6). In

fact, super learner’s cvAUC fell only a small amount (down to .85) when we additionally

eliminate the covariates that were not collected in at the health clinic. However, we do

find that the moderately expensive lab variables collected in both the clinic and hospital

settings contain useful information for prediction: super learner’s cvAUC estimate drops to

.77 when we remove all lab variables from our predictor set, using only our basic variables

for prediction.

Within each of the three main variable categories (basic, lab, and costly), some variables

are clearly more helpful for predicting dengue diagnosis than are others (Figure 2.7). Four lab

variables stand out as being particularly important: white blood cell count, platelet count,

Aspartate aminotransferase (AST), and Alanine aminotransferase (ALT). Indeed, using just

these four lab variables in combination with the basic signs and symptoms gives us a cross-

validated AUC of .86 [.85− .86] using the super learner algorithm — results indistinguishable

from those generated using all basic and lab variables (as well as all basic, lab, and costly

variables). Note, though, that by selecting variables using importance measures based on the

full data, we are guilty of over-fitting; more principled methods for obtaining a best subset

of predictors within the cross-validation step will be covered in Chapter 4.

Results using cohort data

We now investigate the degree to which our fitted algorithms are applicable in a different

patient setting: using the final fitted algorithms developed in the previous section with the

covariates present in the cohort data, we predict dengue diagnosis for the cohort patients.

If both samples contain patients drawn randomly from the same population, then the super

learner performance should not suffer when fit to one dataset and tested on another. Neither

should performance suffer with infinitely large samples drawn from different populations so

3Note that when all we have to work with is predicted class membership, then the AUC corresponds to
the [non-weighted] mean of the true positive rate and the true negative rate.
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Figure 2.5: Cross-validated ROCs (and corresponding AUCs) of algorithms using all available
clinical features, OFI vs. DENV analysis.
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Figure 2.6: Cross-validated AUCs and corresponding 95% confidence intervals for various
predictor subsets and algorithms, OFI vs. DENV analysis.
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Figure 2.7: Variable importance measures for OFI vs. DENV analysis. Basic variables ap-
pear in green, lab variables in blue, and costly variables in purple. Cross-validated AUC
values (for super learner methods) have been scaled by 100, with 50 representing “no im-
portance” for the univariate analysis (dotted line) and 0 representing “no importance” for
other methods (solid line). 47
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long as the two patient samples contain overlapping patient characteristics and so long as

the relationship between patient characteristics and outcome is the same in both samples.

However, we have, of course, finite samples drawn from two different patient populations. In

this situation we can therefore expect some loss of performance brought but an effectively

smaller training set, as the effective size of the training set is conceptually related to the size

of the relevant overlapping patient population.

Indeed, algorithms trained on the hospital data do significantly worse at predicting out-

comes for the cohort data (pink bars in Figure 2.8) than they do at predicting outcomes for

additional hospital patients using cross-validation (dark blue bars in Figure 2.8). For the

same reason, cross-validated results based on only the cohort data are superior to the results

obtained by fitting to the hospital data and testing on the cohort data (compare red bars to

pink bars in Figure 2.8.)

Combining the hospital and cohort data together generates better cross-validated results

than analyses based on either dataset alone; apparently sample size was a limiting factor for

our machine-learning algorithms fit to the cohort and to the hospital data separately. We

additionally find that including a sample indicator (cohort or hospital) has almost no effect

on the prediction results of our high-performance estimators and in fact confuses some of

our weaker learners; apparently the relationship between the covariates and outcome does

not differ substantially between the cohort and hospital data (purple bars in Figure 2.8).
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Figure 2.8: Performance comparisons (cvAUC) using different patient sample combinations
for training and testing. All results are from using just the 42 covariates applicable to the
OFI vs. DENV analysis that are collected in both the clinic and hospital settings.

49



2.4. RESULTS

2.4.2 Predicting DHF/DSS

While distinguishing dengue patients from those with a different febrile illness is important

for a variety of reasons, it is arguably more important from a clinical care perspective to

identify the patients that will develop DHF or DSS. Here, we present results from two

approaches. In the first, we consider all 1,525 suspected dengue patients who did not display

DHF/DSS symptoms during the first hospital consultation and try to determine who will

develop DHF/DSS using the same predictor sets as we did for the OFI vs. DENV analysis.

In the second approach, we use data from the 868 hospital patients who tested as dengue-

positive but who did not display DHF/DSS symptoms during the first hospital consult, and

predict which of these patients will develop DHF/DSS. In this latter analysis, we use the

same predictors as we did for the OFI vs. DENV analysis, but with the addition of dengue

serotype. This latter analysis would be applicable in care facilities that are already able

to distinguish OFI from DENV patients, while the former assumes no prior knowledge of

dengue status. In this section, we will refer to DHF and DSS as “severe dengue” (not to be

confused with the updated WHO definition of severe dengue).

We find that our ability to distinguish severe dengue cases from other cases (OFI or

DF) is approximately as good as our ability to distinguish OFI from DENV cases. Since

only 8% of our patients developed severe dengue, many algorithms achieved their minimal

error rate by assigning OFI/DF to all patients (Table 2.8). Using the full set of clinical

predictors, super learner was in fact unable to get the misclassification rate lower than 8%.

But misclassification rate does not tell the whole story: in looking at sensitivity and AUC, we

find that super learner far outperforms many algorithms. Gradient boosting, L1-penalized

logistic regression, and random forests are not far behind.

Similar trends are found with our DF vs. DHF/DSS analysis in terms of the relative

success of our various algorithms (Table 2.9). Our AUCs for this analysis are overall slightly

lower than for our other two analyses, possibly because it was easier for our algorithms to

distinguish OFI patients from DHF/DSS patients than it was to separate DF from DHF/DSS

patients (or OFI from DF for that matter). In other words, the OFI vs. DENV and OFI/DF

vs. DHF/DSS contained some low hanging fruit that the DF vs. DHF/DSS analysis did

not get to pick. Indeed, the easily classified negatives appear to be driving the higher AUCs

for the OFI/DF vs. DHF/DSS analysis, as this analysis actually provides lower sensitivity

(17% vs. 26%) for a specificity that is only slightly higher (99% vs. 98%) compared to the

DF vs. DHF/DSS analysis (this phenomena can also be seen through examination of the

ROCs in Figures 2.11 and 2.12).

Including imputation indicators does not affect super learner’s performance to any mea-
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Method NPV PPV Error Rate Sensitivity Specificity MSE AUC 95% CI AUC

Super Learner 0.93 0.60 0.08 0.17 0.99 91 0.87 0.89 0.88

Gradient Boost 0.93 0.56 0.08 0.12 0.99 95 0.86 0.88 0.87

Logit-L1 0.94 0.52 0.08 0.28 0.98 94 0.85 0.87 0.86

Random Forests 0.92 0.64 0.08 0.06 1.00 95 0.85 0.87 0.86

Logit-L2 0.92 NA 0.08 0.00 1.00 421 0.84 0.86 0.85

AdaBoost 0.92 0.50 0.08 0.01 1.00 365 0.82 0.84 0.83

LDA+shrinkage 0.92 NA 0.08 0.00 1.00 111 0.79 0.82 0.80

CART 0.92 NA 0.08 0.00 1.00 102 0.72 0.77 0.74

Centroids 0.92 NA 0.08 0.00 1.00 324 0.69 0.75 0.72

N.Neighbor 0.92 0.50 0.08 0.02 1.00 112 0.66 0.71 0.69

SVM-L2 0.92 NA 0.08 0.00 1.00 129 0.59 0.67 0.63

Mean 0.92 NA 0.08 0.00 1.00 123 0.47 0.53 0.50

Table 2.8: Cross-validated performance measures of algorithms using all available clinical
features, OFI/DF vs. DHF/DSS analysis. The positive predictive value (PPV), negative
predictive value (NPV), error rate, sensitivity and specificity are based on the threshold
value c (discussed in Chapter 1.4.1) which minimizes the error rate.

Method NPV PPV Error Rate Sensitivity Specificity MSE AUC 95% CI AUC

Super Learner 0.89 0.64 0.13 0.26 0.98 85 0.82 0.85 0.83

Logit-L1 0.89 0.59 0.13 0.31 0.97 87 0.80 0.83 0.82

Gradient Boost 0.88 0.69 0.13 0.16 0.99 89 0.80 0.83 0.81

Random Forests 0.88 0.67 0.13 0.18 0.99 88 0.80 0.82 0.81

LDA+shrinkage 0.89 0.52 0.14 0.26 0.96 100 0.76 0.79 0.78

AdaBoost 0.86 0.71 0.14 0.04 1.00 210 0.75 0.78 0.76

Logit-L2 0.89 0.51 0.14 0.25 0.96 225 0.74 0.78 0.76

CART 0.86 NA 0.14 0.00 1.00 94 0.70 0.75 0.72

Centroids 0.86 NA 0.14 0.00 1.00 211 0.67 0.73 0.70

N.Neighbor 0.86 0.50 0.14 0.01 1.00 102 0.66 0.71 0.69

SVM-L2 0.86 NA 0.14 0.00 1.00 128 0.60 0.68 0.64

Mean 0.86 NA 0.14 0.00 1.00 123 0.46 0.54 0.50

Table 2.9: Cross-validated performance measures of algorithms using all available clinical
features, DF vs. DHF/DSS analysis. The positive predictive value (PPV), negative predic-
tive value (NPV), error rate, sensitivity and specificity are based on the threshold value c
(discussed in Chapter 1.4.1) which minimizes the error rate.
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surable degree (compare blue and yellow bars in Figures 2.9 and 2.10), though we again

find evidence that missingness is informative (gray bars in Figures 2.9 and 2.10). As with

the OFI vs. DENV analysis, we exclude missing value indicators from subsequent analyses

involving DHF/DSS prediction in order to improve the applicability of our results to other

clinical settings.

Cross-validated ROCs again reveal additional information regarding the behavior of our

algorithms (Figures 2.11 and 2.12). As before, our support vector machine and nearest

centroid algorithms assign class labels rather than probabilities. We also note that CART’s

ROC contains few distinct kinks, indicating that many observations are assigned the same

likelihood of DHF/DSS. That is, tree depth is relatively low. Indeed, our cross-validated

CART procedure tends to choose a tree depth of 1 (after testing all depths from 1 to 20) for

our severe dengue analyses.

We find that neither the most costly variables nor the other variables collected exclusively

in the hospital improve predictions when used in conjunction with the less expensive variables

(Figures 2.13 and 2.14). But once again, the moderately expensive lab variables collected in

both the clinic and hospital settings contain useful information for prediction: super learner’s

cvAUC estimate drops to .80 and .75 when we remove all lab variables from our predictor

set in the OFI/DF vs. DHF/DSS and in the DF vs. DHF/DSS analyses, respectively.

Our clinical variables rank similarly in their importance for predicting severe dengue as

compared to their importance for distinguishing OFI from DENV patients (Figures 2.15

and 2.16): temperature, rash, the tourniquet test, liver enlargement, and petechiae are still

among the most important general signs and symptoms, while platelet count, white blood

cell count, AST, and albumin concentration continue to be among the most important lab

variables. Our most remarkable finding is that using the super learner with platelet count

alone generates an AUC of .80 and .76 for our OFI/DF vs. DHF/DSS and DF vs. DHF/DSS

analyses, respectively – approximately the same AUC as we get when using all general signs

and symptoms. Platelet count is also the only variable whose presence has a measurable

impact on the performance of the super learner even when all other 80 variables are included

in our analysis (see the “variable drop” measurements in Figures 2.15 and 2.16). In contrast,

white blood cell count was the one variable that appeared to provide unique information for

the OFI vs. DENV analysis beyond that provided by the other clinical indicators (Figure

2.7).
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Figure 2.9: Cross-validated AUCs and corresponding 95% confidence intervals for various
algorithms with and without missing value indicators, OFI/DF vs. DHF/DSS analysis.
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Figure 2.10: Cross-validated AUCs and corresponding 95% confidence intervals for various
algorithms with and without missing value indicators, DF vs. DHF/DSS analysis.
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Figure 2.11: Cross-validated ROCs (and corresponding AUCs) of algorithms using all avail-
able clinical features, OFI/DF vs. DHF/DSS analysis.
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Figure 2.12: Cross-validated ROCs (and corresponding AUCs) of algorithms using all avail-
able clinical features, DF vs. DHF/DSS analysis.
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Figure 2.13: Cross-validated AUCs and corresponding 95% confidence intervals for various
predictor subsets and algorithms, OFI/DF vs. DHF/DSS analysis.
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Figure 2.14: Cross-validated AUCs and corresponding 95% confidence intervals for various
predictor subsets and algorithms, DF vs. DHF/DSS analysis.
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Figure 2.15: Variable importance measures for OFI/DF vs. DHF/DSS analysis. Basic vari-
ables appear in green, lab variables in blue, and costly variables in purple. Cross-validated
AUC values (for super learner methods) have been scaled by 100, with 50 representing “no
importance” for the univariate analysis (dotted line) and 0 representing “no importance” for
other methods (solid line). 59
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Figure 2.16: Variable importance measures for DF vs. DHF/DSS analysis. Basic variables
appear in green, lab variables in blue, and costly variables in purple. Cross-validated AUC
values (for super learner methods) have been scaled by 100, with 50 representing “no im-
portance” for the univariate analysis (dotted line) and 0 representing “no importance” for
other methods (solid line). 60
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2.5 Conclusions

We have tested our ability to diagnose dengue and to predict dengue’s severe manifestations

across an array of model specifications. We have found that clinical information is strongly

predictive of dengue diagnosis and of severe dengue prognosis with complex algorithms yield-

ing significantly better results than simpler algorithms (e.g., Super Learner versus CART).

Expensive clinical information (e.g., ultrasound and X-ray measurements) does not add much

information beyond that provided by less expensive clinical data. In contrast, moderately

expensive lab results do significantly improve predictions (particularly white blood cell count

for diagnosing dengue and platelet count for predicting severe dengue).
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Chapter 3

Feature Extraction and Prediction

using LC-MS Data

This chapter explores methods for using Liquid chromatography – mass spectrometry (LC-

MS) data to diagnose suspected dengue patients. The assumption here is that we have

unrestricted access to LC-MS data and wish to explore its full potential. (In Chapter 4 we

will restrict ourselves to using a small subset of LC-MS features.)

3.1 Background

Liquid chromatography – mass spectrometry is an analytical chemistry technique that com-

bines the physical separation capabilities of liquid chromatography (LC) with mass analysis

capabilities of mass spectrometry (MS). It is a powerful technique for the identification

of a wide range of molecules, including proteins, lipids, salts, and metabolites [45, 35].

Metabolomics and lipidomics have already proven useful for diagnostic purposes in a variety

of settings [14, 18, 69], but there is still much to be learned through the application of this

field of research to dengue fever.

LC-MS laboratory procedure

There are six parts to the typical LC-MS laboratory process: quenching, extraction, reconsti-

tution, chromatography, ionization, and assessment of mass. Here we describe each of these

steps. Afterwards, we will describe methods for analyzing and interpreting the resulting

data.

1. Liquid chromatography:
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(a) Quenching: The biological sample is quenched to stop the metabolic pathways of

the cells from continuing to function in order to capture the desired cell state for

analysis. Quenching is generally done using a mixture of water and methanol.

(b) Extraction: The sample is mixed with a solvent and then run through a centrifuge

to separate out insoluble material, which is thrown away. The resulting liquid is

kept for analysis. Note that the particular solvent used influences the type and

quantity of compounds present in the resulting sample. Sometimes a two-phase

extraction process, involving two different solvents, is used.

(c) Reconstitution: A solvent is added to the liquid resulting from the extraction

process. This solvent, known as the mobile phase, is chosen to facilitate smooth

traveling through the LC elution column.

(d) Chromatography: The reconstituted sample is sent through the LC elution col-

umn, which itself contains a solvent known as the stationary phase. The purpose

of this step is to separate the molecules, thus reducing the total number of ana-

lytes entering the mass spectrometer at a given time, which in turn reduces the

competition for electric charges during the ionization stage and results in higher

mass-spectrometry resolution. The retention time (RT), also known as elution

time, refers to the time it takes for an analyte to pass through the LC system,

starting from the column inlet and ending with the mass spectrometer. An ana-

lyte’s retention time is influenced by its physiochemical characteristics and is one

of the inputs for compound identification. Specifically, retention time is deter-

mined by a combination of molecular size, charge, hydrophobicity, and specific

binding interactions. We can categorize modern LC into two sub-classes based on

the stationary phase and corresponding required polarity of the mobile phase:

i. Reverse phase liquid chromatography (RP-LC) is best suited for detecting

mildly polar compounds. It uses octadecylsilyl and related organic-modified

particles as stationary phase with pure or pH-adjusted water-organic mixtures

such as water-acetonitrile and water-methanol for the mobile phase.

ii. Normal phase liquid chromatography (NP-LC) is best suited for detecting

highly polar compounds. It uses materials such as silica gel as stationary

phase with neat or mixed organic mixtures for the mobile phase. This type

of chromatography is also known as hydrophilic interaction chromatography

(HILIC).

2. Mass spectrometry:
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Figure 3.1: Summary of LC-MS laboratory procedure. In the liquid chromatography step
(illustrated in blue), the time an analyte takes to travel through the diamond hybrid column
(or another type of LC column) is recorded as the retention time. In the mass spectrometry
step (illustrated in orange), the time taken for the ionized analyte to travel through the
electric field maps to the analyte’s mass-to-charge ratio.

(a) Ionization: Mass spectrometers work by converting the analytes coming out of

the LC elution column to a charged (ionized) state. There are many techniques

for ionization, with dual electrospray ionization (ESI) being the most widely used

ion source for biological molecules, though neutral and low polarity molecules

such as lipids may not be efficiently ionized by this method. When operated in

positive ion mode, ESI will charge molecules by adding protons; while operated

in negative ion mode, molecules are charged by removing protons.

(b) Assessment of mass: Ions and fragment ions produced during the ionization step

are analyzed using one of several techniques. A time-of-flight (TOF) analyzer

works by accelerating ions through a high voltage. The velocity of the ion, and

hence the time taken to travel down a flight tube to reach the detector, indicates

the mass-to-charge ratio (also known as the m/z value) of the ion.

A simplification of the above process is illustrated in Figure 3.1.

LC-MS Data interpretation

The above steps produce a large vector of tuples consisting of elution time, mass-to-charge

ratio, and corresponding abundance. From here, we would ideally like to estimate the abun-

dance levels of small molecule biomarkers (SMBs). Our task would be relatively simple if
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each SMB in our biological samples were to consistently map to a unique m/z - RT combina-

tion in a one-to-one fashion. But this is not the case. Instead, different molecules can map

to the same m/z and RT values (within the window of instrument measurement precision),

resulting in multiple possible identities for a given observed (m/z, RT) value [78]. Addi-

tionally, isotopes, adducts, charge state dispersion, competitive ionization, and degradation

products, which we describe below, further complicate the mapping from observed molecular

features (MFs) to the identities and quantities of SMBs in the original samples [28].

1. Isotopes: Atoms of a given chemical element can have different numbers of neutrons,

thus resulting in slightly different mass-to-charge ratios.

2. Adducts and clusters: Two or more distinct molecules can combine to form adducts

and clusters. For example, adduction of cations (e.g. M+NH4+, M+Na+, M+K+)

and anions (e.g. M+formate-, M+acetate-) can occur when salts are present.

3. Charge state dispersion: Larger molecules and molecules with several charge-

carrying functional groups such as proteins and peptides can exhibit multiple charging,

resulting in ions such as M+2H2+, M+3H3+ etc. Due to charge state dispersion, one

peptide species may register peaks at a series of m/z locations, with the distribution

across m/z locations not well-characterized.

4. Competitive ionization: The abundance of some SMBs will appear suppressed when

in the presence of SMBs that compete for ions. This could be a serious problem when

it comes to translating the results of an LC-MS analysis to a point of care diagnostic

(POC) test; we may think a particular SMB is suppressed in dengue patients when it

in is fact present in equal amounts across patients.

5. Degradation products: When exposed to stress brought by conditions such as as

changes in temperature or pH, compounds can degrade, resulting in degradation prod-

ucts.

In Chapter 3.3.1 we discuss approaches for translating raw LC-MS data into a profile of

SMBs. Due to the above complications, this process will not result in a definitive SMB list,

but rather a list of possible SMBs.

Literature on using LC-MS for dengue diagnostics

Prior studies have shown lipids to facilitate Flaviviridae viral entry, replication, and release

[22, 51, 77], but few metabolomic studies exist that describe the human host response to
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DENV [4, 12], and none to the author’s knowledge have used LC-MS data with machine-

learning algorithms to develop predictive models with validated performance measures for

dengue diagnostics.

3.2 Data description

Sample collection

Biological samples (urine, saliva, and serum) were collected from a subset of clinic and

hospital patients, with a preference for patients who arrived to the health facilities early

in their disease progression and for patients who developed severe dengue. In all, we ran

normal phase LC-MS (procedure described below) on 88 serum samples, 85 saliva samples,

and 80 urine samples. In addition, reverse phase LC-MS (also described below) was run on

90 serum samples. These sample sizes are large enough to be suggestive of LC-MS’s power

to distinguish patient disease states but too small to achieve definitive results.

About a third of the serum LC-MS samples came from patients who were eventually

determined to have an other febrile illness (OFI), about a third came from patients were

were diagnosed with non-severe dengue fever (DF), and about a third came from patients

eventually diagnosed with dengue hemorrhagic fever or dengue shock syndrome (DHF or

DSS). Just over half of the serum samples that came from severe dengue patients (those

with DHF or DSS) were from patients who were already displaying symptoms of severe

dengue at the time of sample collection (Tables 3.1 and 3.2).

Initial Diagnosis
Final Diagnosis

Overall
OFI DF DHF DSS

Suspected DF 29 29 8 5 71
Suspected DHF 0 0 7 5 12
Suspected DSS 0 0 0 5 5

Overall 29 29 15 15 88

Table 3.1: Serum samples used in normal phase LC-MS analysis for which final diagnosis is
known.

The saliva and urine samples came primarily from DF patients. Of the 85 saliva samples,

48 are from DF patients, 30 are from OFI patients, and 7 are from DHF/DSS patients.

Similarly, of the 80 urine samples, 44 are from DF patients, 29 are from OFI patients, and

7 are from DHF/DSS patients. With so few samples from severe dengue patients, we will

not be able to run a meaningful analysis on identifying severe dengue using saliva and urine
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Initial Diagnosis
Final Diagnosis

Overall
OFI DF DHF DSS

Suspected DF 32 30 9 3 74
Suspected DHF 0 0 5 3 8
Suspected DSS 1 0 0 7 8

Overall 33 30 14 13 90

Table 3.2: Serum samples used in reverse phase LC-MS analysis for which final diagnosis is
known.

samples, though we will proceed with an analysis to distinguish DENV (which we define to

include DF, DHF, and DSS) from OFI using these samples.

Despite efforts to collect samples early in the disease progression, about two-thirds of

our serum samples and about half of our saliva and urine samples were collected more than

72 hours after fever onset. It should also be noted that all of our DENV serum samples

were of serotype 2 so we will need to exercise caution in extrapolating results to other

serotypes. Meanwhile, most DENV saliva and urine samples are of serotype 1, with a

handful of serotypes 2 and 3.

Laboratory details

Different LC-MS laboratory procedures can result in very different molecular discoveries

(e.g., some procedures work best for lipid detection and others for sugar detection). The

procedures used in this study are optimized for the detection of metabolites – the end

products of cellular regulatory processes – while also allowing for the discovery of some

lipids.

Normal phase LC-MS: Serum samples were added to cold 100% methanol in a 1:3

ratio, vortexed for 1 minute, incubated at -20C for 20 minutes, and then centrifuge at

14,000 rpm for 20 minutes. The resulting supernatant was transferred to a new vial, dried

using a speed vacuum at room temperature for 45-60 minutes, and reconstituted in 100%

acetonitrile. The resulting mixture was then incubated at room temperature for 10 minutes,

vortexed for one minute, and centrifuged at 4C for 5 minutes at 14,000 rpm. Finally, 25µl

of the supernatant was transferred to a glass vial for LC-MS analysis.

Saliva samples were thawed at room temperature. Once in liquid state, samples were

centrifuged at 14,000 rpm for 20 minutes at 4C, and then 50µl of supernatant were collected

and placed in a new vial. 100µl of acetonitrile was added, and the vial was vortexed for

1 minute and placed at -20C for 10 minutes in order to precipitate proteins present in the

sample. It was centrifuged at 14,000 rpm at 4C for 5 minutes. Finally, 25µl of the supernatant
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Time Gradient

0.2 - 30 minutes 95% B to 50% B
30 - 35 minutes 50% B
35 - 40 minutes 50% B to 20% B
40 - 45 minutes 20% B to 95% B

Table 3.3: Liquid-chromatography gradient used for normal-phase analysis. Solvent A con-
sisted of water with 0.1% formic acid; solvent B consisted of acetonitrile with 0.1% formic
acid.

Scan rate 1.4 spectrum per second
Capillary voltage 4000 V
Drying gas (N2) 235C at 10 L/min

Nebulizer pressure 45 psi
Fragmentor 150 V

Skimmer 65 V
OctopoleRFPeak 750 V
Capillary pump Flow 40µl/min, pressure 400 bar
Binary pump Flow 0.4 ml/min, pressure 400 bar
Mass range 100-1700 Da
Calibrated <2 ppm mass accuracy

Table 3.4: Description of time of flight mass spectrometry parameter values, normal phase
analysis.

was transferred to a glass vial for LC-MS analysis.

Urine samples were normalized prior to analysis using a technique based on expected

creatinine levels in order to control for variation in patient hydration levels. After normal-

ization, 50 µl of the resulting mixtures were vortexed and centrifuged at 4C for 20 minutes at

14,000 rpm. Finally, 25 µl of the supernatant were transferred to a glass vial to be analyzed

by LC-MS.

A Cogent hydrophilic high performance liquid chromatography (HPLC) column type-C

silica diamond-hydride was used in conjunction with an Agilent 6520 Quadrupole time of

flight mass spectrometer. The chromatography gradient specified in table 3.2 was used with

20 minute column re-equilibrations between runs. The column was tuned, calibrated, and

cleaned after every 15 injections.

The mass spectrometer was coupled with dual electrospray ionization operated in positive

ion mode with a mass range of 100-1700 m/z calibrated to less than 2ppm mass accuracy.

The acquisition time spanned 45 minutes. Table 3.4 contains additional details regarding

the mass spectrometer set-up.
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Reverse phase LC-MS: Serum samples were extracted with 100µl of cold methanol

and vortexed for 15 seconds. The samples were then incubated for 12 hours at -80C, followed

by 30 minute centrifugation at 18,000xg. The supernatant was transferred to a new tube

and dried in a vacuum concentrator. Extracted samples were resuspended in 40µl of 50%

methanol, let stand at room temperature for 15 minutes, vortexed for 20 seconds, and

centrifuged for 30 minutes at 18,000xg to remove insoluble debris. The supernatant was

transferred to HPLC vials and stored at -80C prior to LC/MS analysis.

Samples were injected in randomized order on an Agilent 1290 HPLC system coupled to

an Agilent 6224 time-of-flight mass spectrometer [Santa Clara, CA, USA]. Samples were run

in positive ion mode. An Atlantis T3 C18 column (3µm particle size, 2.1x150mm, Waters

Millford, MA, USA) at a flow rate of 250 µl/min was used. The mobile phase was composed

of (A) water plus 0.1% formic acid and (B) 95% acetonitrile with 0.1% formic acid. A

linear gradient elution from 0% to 98% of substance B (spanning 0-13 minutes) and 98% of

substance B (spanning minutes 13-14) was applied. ESI source conditions were set as follows:

gas temperature 325C, drying gas 5 L/min, nebulizer 20psi, fragmentor 120 V, skimmer 50

V, and capillary voltage 4000 V. Mass spectral data were collected in profile and centroid

mode. The instrument ran in 2 GHz extended dynamic range mode with a range of 85 to

1700 m/z at a scan rate of 2 spectra/second.

Raw LC-MS data

Our normal phase laboratory procedure resulted in about 400 million intensity values per

patient sample, which can be visualized on a grid with axes specifying retention time and

mass-to-charge ratios (m/z values), as shown in Figure 3.2. Figure 3.3 summarizes raw LC-

MS data obtained from six different serum samples by showing the maximum intensity value

across the entire range of masses detected at each retention time.

3.3 Methods for extracting features from LC-MS data

We converted the raw HILIC data from machine binary format into mzML format using

msConvert [10] and read the resulting mzML files using the pymzML [1]. To analyze this

data, we employ biologically motivated methods that are specific to the LC-MS technology,

as well as more general methods that could be applied to a variety of datasets. The advantage

of the former methods is that they lend themselves to compound identification. The latter

methods could be advantageous if prediction accuracy with LC-MS data is our goal, rather

than the identification of compounds that do a good job discriminating between samples.
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Figure 3.2: Visual representation of HILIC data from one serum sample. Color intensity
indicates quantity of small molecules with the corresponding m/z and retention time values.

Figure 3.3: Chromatogram representation of raw LC-MS data. Each color represents a
different serum sample.
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Figure 3.4: Chromatogram representation of the LC-MS data displayed in Figure 3.3 after
baseline correction.

3.3.1 Industry standards: MZmine, Mass Hunter, and XCMS

Mass Hunter (provided by Agilent Technologies), MZmine [46, 26], and XCMS [55] are soft-

ware tools that use LC-MS data to surmise which small molecule biomarkers (SMBs) are

present in a given sample, and at what relative concentration. Each of these tools imple-

ments the following basic procedure, the specifics of which are determined according to user

specifications, which we specify below. Note that “scan” and “spectrum” refer to the m/z

and intensity values corresponding to one single retention time value.

Step 1: Baseline correction

The baseline correction is meant to correct intensity values by compensating for gradual

shifts (also known as “warping”) in the chromatographic baseline over time [6]. MZmine

implements asymmetric least squares to estimate the baseline for each scan using the R

package “ptw”. This involves finding an optimal polynomial to describe the warping by as-

signing different weights to the data points that are above and below an iteratively estimated

trendline. A smoothing parameter must be specified by the user. Using the total ion count

chromatogram, the corrected intensity values are the maximum of 0 and xoriginal(1− xbase
xmax

).

Figure 3.4 illustrates the same data shown in Figure 3.3 after implementing a baseline cor-

rection.
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Figure 3.5: Close-up of data (for one serum sample) after combining intensities of nearby
m/z values within each scan using a moving average filter.

Step 2: Filtering

The purpose of the filtering step is to remove noise by combining intensities of nearby m/z

values within each scan. Filtering options include: (i) moving average filter, (ii) Savitzky-

Golay filter, which involves performs a local polynomial regression to determine the smoothed

value for each point, and (iii) m/z resample filter. The m/z resample filter involves segment-

ing each scan into m/z bins with widths defined by the user. The mass of the new data point

will be in the middle of each m/z bin’s space and its intensity is the average of the intensity

of all the data points inside the bin.

Step 3: Peak detection

Peak detection involves further organizing our data into peak lists. To do this, we may

conduct three sub-steps: mass detection, chromatogram building, and chromatogram decon-

volution:

a. Mass detection The mass detection step results in a list of pairs of m/z and intensity

values for each scan. Options for this step include:

• Centroid mass detection: each signal above user-specified noise level is considered a
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Figure 3.6: Close-up of data (for one serum sample) after running the recursive threshold
peak detection algorithm. Identified peaks are colored red.

detected ion.

• Local maximum method: every local intensity maximum along the spectrum is con-

sidered a spectral peak provided it is above the user-specified noise level.

• Recursive threshold: user specifies the minimum and maximum allowable widths of

m/z peaks, as well as the minimum intensity level for a data point to be considered

part of the chromatogram (as opposed to noise). This algorithm initially looks at the

whole range of data points. If the m/z width of this range in not within the given width

limits, a minimum data point is found and used to split the range into two parts. The

same algorithm is then applied recursively on each part. Recursion continues until

all m/z ranges that fit into the given width limits are found. Final m/z values are

determined as local maxima of the identified m/z ranges. Figure 3.6 illustrates the

result of this recursive threshold method for mass detection.

• Wavelet transform mass detector: the Gaussian derivative wavelet, Mexican Hat wavelet,

or an alternative wavelet is fit to the data. The final m/z value of the ion is generally

calculated as an average of m/z values of surrounding data points weighted by their

intensity.
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Figure 3.7: Example chromatogram built by combining each scan’s peak list using the de-
scribed chromatogram building method. Contiguous pink regions are each considered to be
one peak (before deconvolution).

b. Chromatogram building Here, we process each scan’s peak list (i.e., the peaks found

in the “mass detection” step), beginning with the scan with the lowest RT value. Each scan’s

peaks are processed in the order of decreasing intensity. The current one-dimensional peak

(which has an associated m/z, rt, and intensity value) is compared to the spectral peaks of

the previous scan, and if it is within the m/z tolerance level of one of these peaks, then it is

connected to it. If no matching m/z value is found, then a new chromatogram is created with

the given m/z value. The connected peaks form two-dimensional strings of spectral peaks.

When all scans have been processed, the chromatograms that do not meet the user-specified

minimum time span and intensity requirements are eliminated from the final peak list. A

typical result of the chromatogram building process is illustrated in Figure 3.7.

c. Chromatogram deconvolution Chromatogram building generally results in peak

combinations that ought be split into multiple peaks in order to more closely correspond to

distinct SMBs. We have the following method options for implementing this deconvolution:

• Baseline cut-off deconvolution: after removing the lowest part of the chromatogram

according to a user-specified baseline level, remaining peaks are recognized if they meet

the minimum acceptable height (intensity) for a chromatographic peak and have an

RT width that is neither too narrow nor too wide.
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• Noise-amplitude deconvolution: similar to the baseline cut-off method, but the baseline

level is set individually for each chromatogram as follows: divide chromatogram into

bins of user-specified size and set the baseline intensity to the average intensity of the

bin with the highest number of data points.

• The “Savitzky-Golay” algorithm: the borders of individual peaks are detected using

the smoothed second derivative of the chromatogram curve.

• Local minimum search: individual peaks are separated at local minimal points.

• Wavelets: briefly, a series of wavelets with different scales is fit to the chromatogram.

Local maxima in the convolution results determine the locations of possible peaks.

When these candidate peak locations co-occur at multiple scales then the scale with

the strongest response indicates peak width. Given the candidate peak locations and

scales, peaks can then be reconstructed from the original chromatogram.1

After mass detection, peak convolution and deconvolution, each LC-MS run i (i = 1, ...N)

can be represented by a peak list:

Pi = {Pijc}; j = 1, ..., Ni, c = {mz, δmz, rt, δrt, height, area}

where Ni is the total number of peaks for run i and c is an index for values of each peak

pij: mz is the mean m/z value for data points within the peak, δmz is standard deviation of

m/z values within the peak, rt is retention time at the maximum intensity data point, δrt

is the lengths of the peak in time, height is the height of the peak, and area is the area of

the peak. Either a peak area or height can be used in further processing stages.

Step 4: Isotopic peak grouper

We can optionally run an isotopic peak grouper in order to filter out peaks that are likely

isotopes of other peaks. When an isotope pattern is found, only the highest isotope is

kept. More specifically, this procedure is implemented by processing the peak list in the

order of decreasing height. For each peak, we try to find the most appropriate charge state

by comparing the number of identified isotopes for each possible charge. For each charge

state, peaks that fit the m/z and RT distance limits are considered as isotopes. The charge

1Tautenhahn’s centWave [61], Du’s continuous wavelet transform method [15], and Nguyen’s GDWavelet
[42] are all wavelet-based methods for peak detection. Unlike some of the other algorithms, these meth-
ods provide some amount of shape-matching, which is appealing since ’true’ peaks are believed to have
characteristic shapes, not just characteristic heights and widths [15].

75



3.3. METHODS FOR EXTRACTING FEATURES FROM LC-MS DATA

state with the highest number of identified isotopes is selected, and the isotope pattern is

generated. Recall that the difference between neighboring isotopes is a single neutron. The

exact mass of 1 neutron is 1.008665 Da, but part of this mass is consumed as a binding

energy to other nucleons so the actual mass difference between isotopes depends on the

chemical formula of the molecule. Since MZmine does not know the formula at the time of

deisotoping, it assumes the default distance of 1.0033 Da, with user-defined tolerance (the

m/z tolerance parameter).

Step 5: Peak alignment and gap filling

Peaks are matched across LC-MS runs through a peak alignment procedure. This step will

result in an aligned peak list with a column for each LC-MS run and a row for each peak

that was matched in one or more of the original peak lists. Inside the cells will be intensity

values corresponding to the max height and/or area under the intensity curve. There are

several options for peak alignment:

• The “join aligner” begins by taking one peak from the peak list of one LC-MS run

and finding the closest match in the master peak list, which starts as an empty list. If

no good match is found (as determined by user-specified thresholds), then the peak is

added as a new entry in the master list. The closeness of a match between a candidate

peak and a peak from the master list (which may itself be composed of what had been

multiple distinct peaks) is defined as: k(mzcandidate − mzmean of peaks) + (rtcandidate −
rtmean of peaks), where k is a tuning parameter usually set to a large number to reflect

the fact that peaks from the same compounds usually match closely in m/z values but

often have substantial RT variation.

• The “RANSAC” (RANdom SAmple Consensus) algorithm, unlike the join aligner, is

able to handle non-linear deviation of the retention times among samples. For details

of MZmine’s implementation of RANSAC, see Pluskal 2010 [46].

The master peak list will inevitably have some empty cells (occurring when an LC-MS run

has no peak where other runs have a peak), which one may elect to fill. One of the simplest

methods to fill these gaps consists of taking the maximum intensity value from the original

data that falls within a user-specified range of the missing peak’s rt and m/z values; if there is

no registered intensity value within the specified range, then an intensity of zero is typically

assumed.
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Step 6: Normalization

The purpose of normalization is to eliminate intensity value variation between runs that

is unrelated to the biological processes of interest, and to convert multiplicative noise into

additive noise (variance-stabilizing transformation). Some options for normalization are as

follows. Note that each relies on a set of assumptions regarding the nature of measurement

and biological variability, and some of these methods can be used in combination with one

another.

• Total intensity normalization: This method forces all samples to have equal total

intensity by dividing each intensity value by a sample-specific normalization factor. The

assumption that the total concentration of metabolites does not vary across biological

samples is unlikely to be met, however, particularly for urine samples. This is thus not

a method that we will employ.

• Linear normalization: All peak heights are divided by (a) average peak height, (b)

average squared peak height, (c) max peak height, or (d) total raw signal. Each

column (raw data file) of the peak list is normalized separately. In other words, the

normalization factor is determined independently for each raw data file.

• Median fold change normalization: The median of the log fold changes of peak inten-

sities between samples is set to be approximately zero. In other words, we can choose

a target profile, pi′ , of intensity values pi′1...pi′J , and then scale the intensities of each

sample i∗ = 1, ..., N − 1 such that median(log(pi∗1
pi′1

), ..., log(pi∗J
pi′J

)) ≈ 0. This procedure

is justified if we believe the reasonable assumption that peaks which differ in intensity

level from sample to sample purely due to the effect of dilution will exhibit the same

fold changes. The dilution factor has been shown to be well estimated through this

method [68].

• Quantile normalization: Intensity values are adjusted such that all samples have iden-

tical post-adjustment peak intensity distributions, as measured by the chosen quan-

tiles. Thus, this method assumes that unwanted sample-to-sample variation is peak-

intensity-dependent and thus applies a scaling factor that varies across the range of

peak intensity values.

• Standard compound normalizer: standard compounds are injected into the samples

in known concentrations prior to the LC-MS analysis. Normalization can be done by

dividing each peak by the height of the peak of the known standard that is closest to

the peak needing to be normalized.
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Minimum peak height 600 counts
Allowed ion species +H and +Na

Isotope grouping performed
Peak spacing tolerance .0025 m/z; 7.0 ppm

Minimum height for compounds 3000 counts
Peak smoothing 0.2 times peak width

Compound ion threshold two or more

Table 3.5: Parameter values used for feature extraction with Mass Hunter.

Step 7: Peak Identification

Identification of peaks can be performed either by searching a custom database of m/z values

and retention times, or by connecting to an online resource such as PubChem [27], KEGG

[25], METLIN [56], or HMDB [72, 73, 74]. “Neutral mass” is the primary term for a database

search. Isotopic pattern similarity can be used as a second filter to select optimal candidates,

by comparing the ratios of the detected isotopes and matching isotopes from the predicted

isotopic pattern of the database compound. We will not bother with peak identification in

this chapter, but will discuss it further in Chapter 4.

Summary of industry procedure used with normal phase data

For the normal phase analysis, molecular features were extracted using Mass Hunter’s Qual-

itative analysis operated with the parameter values specified in Table 3.5 [70]. Features

extracted from Mass Hunter were further analyzed using Agilent’s Mass Profiler Pro pro-

gram (MPP). Using MPP, data was further filtered (using a 5000 count threshold), aligned

(using a retention time window width of .25 minutes and an m/z window of 15ppm + 2mDa),

and normalized to the 75th percentile. These steps resulted in 15,930 molecular features.

Lastly, features were eliminated if they were not found in at least 50% of samples for at least

one of our three main diagnostic groups (OFI, DF, and DHF/DSS) [70], which reduced the

number of molecular features to 744.

Summary of industry procedure used with reverse phase data

For the reverse phase analysis, the raw data files were processed for peak detection using

ProteoWizard MS Convert version 3.0.6478. Retention-time correction, chromatogram align-

ment and metabolite feature annotation were performed using XCMS software version 1.46

in R version 3.2.2 [55]. Feature extraction parameters were optimized using the IPO software

package [37]. The XCMS parameters were set as follows: centWave was used for metabolite
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feature detection [61] (m/z deviation=26.87 ppm, chromatographic peak width range = 9.92

– 45.5 seconds, signal to noise ratio threshold=5); retention-time correction was performed

using the obiwarp algorithm (profStep=0.592); and parameters for chromatogram alignment

were: mzwid=0.0614, minfrac=0.5, and bw=0.88. Related isotopic features were grouped

using the CAMERA software verson 3.2 [30]. This process resulted in 15,657 molecular

features among the serum samples.

3.3.2 Methods from outside of the LC-MS literature

In this section we discuss general methods (not just specific to LC-MS data) that exploit

the natural ordering of our data’s features (e.g., determined by retention times and mass-to-

charge ratios) to reduce the dimension of our raw LC-MS data before proceeding with our

various prediction algorithms.

Grid of summed intensities

One of the simplest methods for reducing the dimension of our raw data is to convert the

original H ×H ′ grid into a grid of dimension G×G′ (where G < H and G′ < H ′) by simply

summing the intensity values in our raw data that belong to each square on our G×G′ grid

(illustrated in Figure 3.8). We can do this for a variety of grid specifications, treating G and

G′ as tuning parameters that can be fit data-adaptively via cross-validation. The natural

extension to this grid of summed intensities method is to smooth the fit across regions.

The fused Lasso for Functional Data

We can conceptualize our raw data features wi(h, h
′) for sample i as being ordered according

to the index values h and h′. The fused lasso modifies the lasso penalty to take into account

the ordering of the features. In our 2-dimensional case it solves

argmax
β0,β

N∑
i=1

[
yi(β0 + βTwi)− log(1 + eβ0+βTwi)

]

− λ1

H∑
h=1

H′∑
h′=1

|βh,h′ | − λ2

H∑
h=1

H′∑
h′=2

|βh,h′ − βh,h′−1| − λ3

H∑
h=2

H′∑
h′=1

|βh,h′ − βh−1,h′ |
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Figure 3.8: The “grid of summed intensities” approach for feature extraction consists of
summing the intensities within each rectangle specified by the dotted green lines.
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where the first penalty encourages the solution to be sparse while the second and third

encourages it to be smooth over our covariate grid.

Deep learning

Deep learning is a class of machine learning algorithms that involve learning multiple levels of

data representation and abstraction using model architectures. Deep learning is very flexible,

with a huge number of options for model architectures. Here, we will first discuss the use of

the most widely used types of deep network – deep convolutional networks – and will then

describe some alternatives that could be better suited for particular LC-MS situations. This

discussion builds upon the introduction to neural nets provided in Chapter 1, and borrows

from the material presented in Michael Nielson’s online book [43].

Convolutional neural networks use an architecture that exploits the spatial structure of

data, making them a natural choice for classifying images or image-like data. Convolutional

neural nets use three basic ideas: local receptive fields, shared weights, and pooling.

In Figure 1.1 (of Chapter 1), each neuron was connected to every neuron in the adjacent

layers. To create a convolutional net, we will think of our data as a 2-dimensional grid of

input neurons, and we will make connections in small, localized regions of the input image.

For example, we can build a hidden neuron using just a 5 x 5 square of input neurons (known

as a local receptive field), representing LC-MS intensities for adjacent retention time and m/z

values. Each of these 25 input neurons will learn a weight, and the hidden neuron will learn

an overall bias as well. We can then slide the local receptive field over by one retention time

value (or by a larger stride) to connect to a second hidden neuron. This process can continue

until we have swept through the entire input image. If the input image is 28 x 28 pixels,

then there will be 24 x 24 units in the hidden layer (plus the bias term) since we can only

move the local receptive field 23 units before reading the edge of the input image.

A key feature of convolutional neural nets is that each of the 24 x 24 neurons belonging

to the hidden layer created by the method described above share the same set of 25 weights

and the same bias. This means that all neurons in the hidden layer detect the same pattern

of pixel values, just at different locations in the input image. As a result, convolutional

networks are well-suited for classifying images in which the object of interest may be located

in a variety of positions. The map from the input layer to the hidden layer is sometimes

called a feature map, kernel, or filter. A complete convolutional layer consists of multiple

feature maps, allowing for the detection of different kinds of localized features.

Directly following a convolutional layer, we can create a pooling layer, generated by

condensing the information from the convolutional layer. There are many ways to construct a

81



3.3. METHODS FOR EXTRACTING FEATURES FROM LC-MS DATA

pooling layer. One simple method, known as max-pooling, involves creating pooling units that

are each equal to the maximum activation value found in a defined region of the convolutional

layer’s feature maps. For example, we could take the maximum value found for each 2 x

2 square of each 24 x 24 feature map of the convolutional layer described above. If the

convolutional layer contains three feature maps, then this pooling method would result in a

pooling layer that is 3 x 12 x 12 neurons. Thus, pooling reduces the number of parameters

needed in later layers.

The final layer is one which is fully connected, just like we described when introducing

neural nets in Chapter 1 (i.e., there will be K x 3 x 12 x 12 connections between the pooling

layer and the output layer). The network can be trained using stochastic gradient descent

and back-propogation. Initializing all weights and biases to be 0 is an ad hoc procedure that

generally works well enough in practice. In our example, taking the number of layers and

units as fixed, there are (25 + 1) x 3 parameters to fit in going from the input layer to the

convolutional layer, plus another (12 x 12 x 3 + 1) x K in going from the pooling layer to

the output layer.

There are additional techniques that we can employ to potentially improve test set perfor-

mance. One strategy, known as the dropout technique, involves removing individual neurons

at random while training the network. This technique can reduce the tendency to over-fit by

producing a model that is more robust to the loss of individual pieces of evidence, reducing

reliance on what may be particular idiosyncrasies of the training data. An additional option

to improve test performance is to use an ensemble of networks, whereby each network castes

a “vote” to obtain a final predicted classification.

Two additional types of neural nets worth mentioning are recurrent neural nets and deep

belief nets. Convolutional neural nets are feed forward nets in that the activations of neurons

in later layers are completely determined by the activations of neurons in earlier layers.

Recurrent neural networks, in contrast, base the behavior of hidden neurons not just on the

activations in previous layers, but also at earlier times. In other words, the activation of a

neuron may depend on earlier inputs. This time-varying behavior make them particularly

well-suited for problems in natural language processing, and we can also imagine them being

useful for accounting for the temporal ordering in which biological samples are collected

and/or processed. The time-varying behavior unfortunately makes recurrent neural networks

difficult to train, though incorporating an idea known as long short-term memory units can

help. Deep belief nets are capable of both unsupervised and semi-supervised learning. That

is, they can learn useful features even when the training images are unlabeled. In the LC-MS

context, this feature could be useful if we had access to additional LC-MS data that lacked
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a diagnosis.

Deep learning has a huge amount of potential to maximize the diagnostic power of LC-

MS data. It does, though, have two main drawbacks: (1) the results are not interpretable

as SMBs, and (2) it generally requires a reasonably large amount of data.

3.4 Results using LC-MS data

Our results suggest that LC-MS data contains highly useful information for diagnostic pur-

poses. We must provide the caveat, however, that the results in this chapter are based on

very small samples so we cannot be sure of how well the observed results are indicative of

what one would find in different samples. Note that while we display error bars in the figures

throughout this chapter, these confidence intervals are determined according to the method

described in Chapter 1.2, which is based in asymptotic theory; with such a small sample size,

these error bars are unlikely to have the advertised 95% coverage. Thus, when we observe

differences in the performance of methods, we do not know exactly what the probability is

that in a new sample these same relative performances will be observed.

3.4.1 Distinguishing DENV from OFI

We are more successful at distinguishing dengue patients (DENV) from patients with other

febrile illnesses (OFI) when using LC-MS data from serum samples than we are when using

clinical information alone (Figure 3.9). Super learner achieved a cross-validated AUC of .90

when using only clinical data of the 88 patients for whom we had serum samples for normal

phase LC-MS analysis. In contrast, LC-MS data yielded a cross-validated AUC of about .98.

Prediction accuracy was similar when using LC-MS data alone, and when combining it with

clinical data. Prediction accuracy was also similar when using the super learner algorithm

with different LC-MS feature extraction methods, though the Mass Hunter feature extraction

method out-performed the grid of summed intensities method when using other prediction

methods such as Adaboost, Gradient Boost, and Random Forests (Figure 3.9). Note that all

results presented in Figure 3.9 are based on the same set of 88 samples. Thus, when using

clinical data alone, the Mass Hunter and intensity grid methods should yield identical results.

However, due to the stochastic nature of the machine-learning methods, slight differences in

results are observed.

Normal and reverse phase LC-MS results are very similar. Figure 3.10 suggests that

reverse phase LC-MS might perform slightly better than normal phase LC-MS, given that
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Figure 3.9: Cross-validated AUCs and corresponding 95% confidence intervals for various
algorithms, predictor sets, and LC-MS data processing methods, OFI vs. DENV analysis.
The same 88 serum samples were used for both analyses.
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the data on which reverse phase LC-MS was conducted appears somewhat noisier than the

data on which normal phase LC-MS was run (i.e., using only clinical information, prediction

results were better for the patients from whom samples were extracted for the normal phase

analysis), but differences appear insubstantial relative to the noise. Here we also observe

super learner being out-performed (as measured by cvAUC) by some of the competing al-

gorithms. Indeed, super learner cannot offer guarantees for such small sample sizes, as luck

plays a larger role.

LC-MS analysis appears less useful when run using saliva and urine samples as compared

to serum samples. In fact, the molecular features extracted using Mass Hunter from these

non-invasive samples appear significantly less useful for predicting dengue than clinical in-

formation (Figure 3.11). Interestingly, LC-MS data combined with clinical data generates

poorer prediction accuracy than clinical information alone. It is possible that the learners are

over-fitting to irrelevant features found in the LC-MS data and are thus better off without

access to such features. This problem may be mitigated by additional observations.

3.4.2 Identifying severe dengue cases

While we would ultimately like to predict which patients will experience severe dengue

(DHF/DSS), restricting our LC-MS analysis to include only those who were not yet display-

ing DHF/DSS symptoms at the time of sample collection leaves us with too few observations

to work with. Thus, we instead examine whether LC-MS is useful for distinguishing severe

dengue patients from the rest, irregardless of symptoms at the time of sample collection.

We find that the Mass Hunter feature extraction method does somewhat better than the

binned intensity approach, but clinical data out-performs LC-MS data regardless of how it

is processed. In fact, using LC-MS data in combination with clinical data does not improve

prediction results beyond what is achieved using clinical data alone (Figure 3.12).

There is some evidence that reverse phase LC-MS is more helpful for diagnosing severe

dengue than is normal phase LC-MS (Figure 3.13), with reverse phase results looking similar

to the results generated using only clinical information.

3.4.3 Diagnosis mislabeling investigation

Altering the diagnoses of observations for which we have poor predictive power will clearly

yield dishonest results if done without scientific justification. Our results presented through-

out this study take the DENV labeling in the original data as fact. However, of the approx-

imately 90 observations for which we have LC-MS data, one of them stands out as being
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Figure 3.10: Cross-validated AUCs and corresponding 95% confidence intervals for various
algorithms and predictor sets, OFI vs. DENV analysis. Serum samples used in the reverse
phase LC-MS (n=91) were taken from different patients than those used in the normal
phase LC-MS (n=88), resulting in substantially different performance results when using
only clinical information. 86
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Figure 3.11: Cross-validated AUCs and corresponding 95% confidence intervals for various
algorithms and predictor sets, OFI vs. DENV analysis. Samples used in the saliva analysis
(n=85) were taken from different patients than those used in the urine analysis (n=80),
resulting in different performance results when using only clinical information.
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Figure 3.12: Cross-validated AUCs and corresponding 95% confidence intervals for various
algorithms, predictor sets, and LC-MS data processing methods, OFI/DF vs. DHF/DSS
analysis. Patients were included even if DHF/DSS symptoms were observed at the time of
sample collection (n=88 serum samples).
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Figure 3.13: Cross-validated AUCs and corresponding 95% confidence intervals for various
algorithms and predictor sets, OFI/DF vs. DHF/DSS analysis. Samples used in the reverse
phase LC-MS (n=91) were taken from different patients than those used in the normal
phase LC-MS (n=88), resulting in different performance results when using only clinical
information. Patients were included even if DHF/DSS symptoms were observed at the time
of sample collection.
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consistently predicted to have a very low likelihood of being dengue-positive despite being

labeled as DF in the data. Based on the time in which this sample was collected, as well

as the fact that both clinical indicators and the metabolic features strongly predict this

observation to be OFI, we believe this observation was incorrectly labeled in the data. To

determine the impact of re-labeling this observation as OFI, we ran our three main analy-

ses using serum normal phase LC-MS data after making just this one label change. While

our previous results for predicting DENV were good, our new results are spectacular: using

clinical and LC-MS data, we are now able to achieve near perfect prediction – an error rate

of 1% corresponding to a 98% sensitivity and 100% specificity (Table 3.6).

Features Modify? NPV PPV Error Sensitivity Specificity AUC 95% CI AUC

Clinical only No 0.79 0.95 0.11 0.88 0.90 0.88 0.93 0.90

LC-MS only No 0.92 0.93 0.07 0.97 0.86 0.98 0.99 0.99

Clinical + LC-MS No 0.93 0.93 0.07 0.97 0.86 0.96 0.99 0.98

Clinical only Yes 0.83 0.91 0.11 0.91 0.83 0.90 0.94 0.92

LC-MS only Yes 0.97 0.97 0.03 0.98 0.93 0.99 1.00 1.00

Clinical + LC-MS Yes 0.97 1.00 0.01 0.98 1.00 0.99 1.00 1.00

Table 3.6: Cross-validated performance measures with and without modification of suspected
false positive observation, OFI vs. DENV analysis. The positive predictive value (PPV),
negative predictive value (NPV), error rate, sensitivity and specificity are based on the
threshold value c (discussed in Chapter 1.4.1) which minimizes the error rate.

3.5 Discussion

Our analysis reveals that LC-MS is a powerful tool for distinguishing dengue disease states.

Due to the small sample sizes, we were not able to conclude whether there is a significant

difference between the predictive powers of different LC-MS laboratory methods (reverse

phase versus normal phase), but our analysis is suggestive that serum samples contain more

useful information than do urine and saliva samples for the purpose of prediction, and that

LC-MS is more useful for diagnosing dengue (OFI versus DENV) than it is for distinguishing

severe dengue patients from other patients (OFI/DF versus DHF/DSS).

It is worth noting that the dengue-positive serum samples used in this analysis were all of

serotype 2. Without a more thorough investigation of which molecular features our analysis

is deeming important, we might be uncovering predictors that are specific to serotype 2 and

not more generally useful to other serotypes. Indeed the metabolomics study conducted by

Birungi et al. [4] found each serotype to have a distinct metabolic signature.
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It is also worth discussing the likely effect that the timing of our sample collection has

on our results. We have already discussed the changes in clinical symptoms over the course

of a dengue infection (Figure 1). It is no surprise, then, that the greatest metabolomic

differential between OFI and DENV patients occurs within the first 72 hours [12]. If our

samples had been collected earlier in the disease progression, we could therefore anticipate

additional power for distinguishing OFI from DENV patients, though possibly a reduction

in power for identifying severe dengue patients, as the symptoms of severe dengue grow more

severe on days 4 and 5.

While this section revealed the broad usefulness of LC-MS data for diagnosing dengue,

in the next chapter we will examine the number of metabolites that appear to be driving

our predictive power.
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Chapter 4

Selecting a Best Subset of LC-MS

Features

We now wish to identify a small subset of LC-MS features which, when used in combination

with clinical predictors, are most helpful for distinguishing patients in various disease states.

Since we wish to identify the molecular composition of these features to help pave the way

for a low cost diagnostic tool that will not require LC-MS, we use only the feature extrac-

tion methods that are biologically motivated (e.g., MZmine and Mass Hunter, discussed in

Chapter 3). While our focus is still on predicting whether a given patient has dengue or

severe dengue fever, we will also discuss the more basic problem of feature assessment in the

context of multiple hypothesis testing.

4.1 Literature

Most studies in the dengue prediction literature use either a battery of univariate tests,

regression trees (e.g., CART), or the coefficients of regression models to pick out both clinical

variables of relevance (Tables 2.2 and 2.3) and metabolites of importance [38, 14]. Ju and

Brasier [24] do use additional approaches, though only after first reducing their feature set

to 25 variables based on univariate t-test results.1 Furthermore, no paper to the author’s

knowledge apply dimension reduction strategies while controlling for the influence of other

features as we do.

1This paper was not included in Chapter 2’s literature review as it was based on only 51 observations
(38 DF and 13 DHF patient samples) and so did not meet our sample size criteria. Additionally, the
cross-validation procedure in this paper did not incorporate the initial dimension reduction procedure, thus
producing optimistic point estimates of the test error.
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4.2 Data description

All methods in this chapter are applied to the 88 serum samples described in Chapter 3. This

data contains 29 other febrile illness (OFI) samples, 29 non-severe dengue (DF) samples, and

30 severe dengue (DHF/DSS) samples (Table 3.1). We consider all 744 molecular features

extracted through the normal phase LC-MS procedure.

Clinical data comes from the hospital database described in Chapter 2, with missing

clinical features imputed as described in Section 2.3.2. We thus have clinical information

for 1,658 illness episodes, 673 of which are OFI, 745 of which are DF, and 240 of which are

DHF/DSS (Table 2.5).

4.3 Methods

4.3.1 Feature assessment and the multiple-testing problem

Scientists often wish to identify the genes, proteins, or metabolites whose abundance differs

between normal and diseased samples in order to learn about the disease and to develop tar-

gets for drug therapeutics. Thus, for completeness, we will discuss the traditional statistical

topic of multiple hypothesis testing and will examine the number of molecular features that

appear statistically significant for diagnosing dengue fever.

Using the most commonly applied test statistic – the two-sample t-statistic – for each

LC-MS feature wj, we get:

tj =
w̄2j − w̄1j

sej
(4.1)

where w̄1j is the mean value of wj across the N1 samples belonging to diagnostic group 1,

and w̄2j is the mean value of wj across the N2 samples belonging to diagnostic group 2. The

quantity sej is the standard error of differences of means. Assuming a common variance

across diagnostic groups, we can use the pooled within-group standard error:

sej = σ̂j

√
1

N1

+
1

N2

; σ̂2
j =

1

N1 +N2 − 2

(
N1∑
i

(wij − w̄1j)
2 +

N2∑
i

(wij − w̄2j)
2

)
(4.2)

A traditional approach for accessing the results of all 744 molecular features involves

computing a p-value for each feature using the t-distribution, which assumes that either the

features are normally distributed, or the sample size is large enough to invoke the central
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limit theorem. Since our sample size is small, it is particularly dangerous to assume normally

distributed parameter estimates and it is not necessary to do so: an appealing alternative

approach is to use the permutation distribution, which does not rely on such an assump-

tion. This approach consists of computing a test statistic tkj for each k permutation of the

diagnostic labels. So if we were to apply this method to the problem of distinguishing OFI

(n=29) patients from DENV patients (n=59), then we would calculate the test statistic for

K =
(

88
29

)
permutations of the diagnostic labels. The p-value for molecular feature j could

then be calculated as:

pj =
1

K

K∑
k=1

I(|tkj | > |tj|) (4.3)

In other words, the p-value for feature j is the fraction of test statistics generated by the

permutation of the diagnostic labels that are more extreme than tj. Of course,
(

88
29

)
is a large

number; rather than computing test statistics for all possible permutations, we could base

the p-value calculation on a random sample of, say, ten-thousand permutations.

Alternatively, we can pool the results for all molecular features in order to take advantage

of the fact that they are measured on the same scale and are similar in other ways. Our

p-value calculation then becomes:

pj =
1

JK

J∑
j′=1

K∑
k=1

I(|tkj′ | > |tj|) (4.4)

Relative to the approach described by Equation 4.3, this provides more granular p-values

without imposing an additional computational burden.

Using the set of p-values from Equation 4.4, we will test the hypotheses:

• H0j: disease state has no effect on molecular feature j

versus

• H1j: disease state has an effect on molecular feature j

for all j = 1, 2, ..., J features. We reject H0j at level α if pj < α. By construction, this means

that the probability of falsely rejecting H0j is α. Put another way, this test has a type-I

error equal to α.

But with so many hypothesis tests, we are also concerned about the overall error rate.

Two sensible measures of the overall error rate are the family-wise error rate (FWER) and

the false discovery rate (FDR). FWER is the probability of at least one false rejection while
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FDR is the expected proportion of falsely significant features. Using R to denote the number

of hypotheses that are rejected and V to denote the number of true null hypotheses that are

(falsely) rejected, the false discovery rate is then equal to E(V
R

) while the family-wise error

rate is Pr(V ≥ 1). We discuss each of these measures in more detail below.

The family-wise error rate depends on the correlation between tests. If the tests are

independent each with type-I error rate α, then the probability that at least one of these

tests is falsely rejected is (1− (1− α)J). If the tests have positive dependence (i.e., the fact

that test j was falsely rejected increases the probability that test k is falsely rejected), then

the FWER will be less than (1− (1− α)J).

The Bonferroni method is a very simple way of controlling the family-wise error rate,

though it is too conservative, especially for large J . The Bonferroni method consists of

lowering the p-value threshold by which we reject each null from α to α/J . This results

in an FWER that is equal to at most α. There are many alternative ways to adjust the

individual p-values to achieve an FWER of at most α. In particular, Dudoit et. al. (2002)

[16] presents methods that avoid the independence assumption.

The notion of a false discovery rate and a testing procedure to limit it was first introduced

by Benjamini and Hochberge (1995) [2]. This procedure, known as the Benjamini-Hochberg

(BH) procedure (Algorithm 4.1), bounds the FDR by a user-defined level α. The p-values on

which this method is based can be obtained from an asymptotic approximation to the test

statistic, or from a permutation distribution. If the hypotheses are independent, Benjamini

and Hochberge (1995) show that regardless of how many of the null hypotheses are true, and

regardless of the distribution of p-values when the null hypothesis is false, the BH procedure

results in an FDR that is at most α.

Algorithm 4.1 The Benjamini-Hochberg (BH) Method

1. Fix the false discovery rate α and let p(1) ≤ p(2) ≤ ... ≤ p(M) denote the ordered
p-values.

2. Define

L = max

{
j : p(j) < α · j

J

}
. (4.5)

3. Reject all hypotheses Hoj for which pj ≤ p(L), the BH rejection threshold.

A more intuitive approach for limiting the FDR could involve a direct plug-in estimate

of the FDR, as described in Algorithm 4.2 [21]. By choosing the cut-off, C, such that ˆFDR

is as desired, this approach is actually equivalent to using the permutation p-values in the
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BH procedure. The plug-in estimate is based on the approximation

E(V/R) ≈
E(V )

E(R)
(4.6)

and in general ˆFDR is a consistent estimate of FDR [57, 58]. Note that the numerator ˆE(V )

in Algorithm 4.2 actually estimates (J/J0)E(V ), since the permutation distribution uses J

rather than J0 null hypotheses (where J0 < J is the number of true null hypotheses among

J hypotheses tested). Hence a better estimate of FDR can be obtained if an estimate of J0

is available. Specifically, we could decrease our estimate ˆFDR by multiplying it by Ĵ0
J

. (The

most conservative estimate of FDR uses J0 = J .)

Algorithm 4.2 The Plug-in Estimate of the False Discovery Rate

1. Create K permutations of the data, producing t-statistics tkj for features j = 1, 2, ..., J
and permutations k = 1, 2, ..., K.

2. For a range of values of the cut-point C, let

Robs =
J∑
j=1

I(|tj| > C), ˆE(V ) =
1

K

J∑
j=1

K∑
k=1

I(|tkj | > C). (4.7)

3. Estimate FDR by ˆFDR =
ˆE(V )

Robs
.

The methods described above are based on the absolute value of the test statistic and

therefore apply the same cut-points to both positive and negative values of the test statistic.

But there is no theoretical justification for this symmetry. In fact, in some experiments

most or all of the differentially expressed molecular features may be in the positive (or in

the negative) direction. Thus, we will employ an approach that derives separate cut-points

for the two directions of differential expression. This approach is known as the significance

analysis of microarrays (SAM) procedure [63].

The SAM procedure is similar to the procedure described by Algorithm 4.2 insofar as

we also calculate a test statistic tj for each molecular feature and estimate attributes of

the distribution of tj under the null by generating permuted samples. Unlike previously,

however, we will choose a threshold band by which to evaluate our hypotheses. This process

is described in Algorithm 4.3.

The methods described above will give us a sense for the number of LC-MS features that

distinguish disease states when evaluated individually. But certainly it is possible for LC-MS

features to appear significant when examined in isolation, but insignificant when we control
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Algorithm 4.3 The SAM procedure

1. Calculate and rank the J test statistics t1, t2, ..., tJ to obtain the order test statistics
t(1) ≤ t(2) ≤ ... ≤ t(M).

2. Create K permutations of the data, producing t-statistics tkj for features j = 1, 2, ..., J
and permutations k = 1, 2, ..., K.

3. Calculate the expected order statistics from the permutations of the data:

t̃(j) =
1

K

K∑
k=1

tk(j)

where tk(1) ≤ tk(2) ≤ ... ≤ tk(J) are the ordered test statistics from permutation k.

4. Define a threshold ∆ and find the smallest positive t(j) such that |t(j) − t̃(j)| ≥ ∆,
and the largest negative t(j) such that |t(j) − t̃(j)| ≥ ∆. Call these values t1 and t2,
respectively.

5. Each molecular feature that has a tj value greater than t1 or less than t2 is considered
significant (for given ∆).

6. Estimate ˆFDR by estimating the number of (falsely) significant genes under the null
and dividing by the number of genes called significant.

7. Repeat steps 4 - 6 until desired ˆFDR is achieved.
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for other factors. In the next section, we describe methods that will inform the extent to

which LC-MS features provide unique information, both in combination with clinical data

and in combination with one another.

4.3.2 Subset selection

In previous chapters, we discussed some classification methods that build a model involving

only a subset of available features (e.g., elastic net logistic regression, nearest shrunken

centroids, fused lasso). We used these classification methods in order to reduce over-fitting

and to thus strike a proper variance-bias balance with the goal of reducing expected test

error.

In contrast, we now wish to select features because we are up against practical constraints:

we cannot expect a low-cost point-of-care diagnostic test for dengue fever to involve the

collection of a full profile of metabolite information such as LC-MS provides. Therefore,

we wish to find a small subset of LC-MS features that, when used in combination with

the available clinical data, provide strong predictive power. If we had no computational

constraints, we could do this by simply trying all possible combinations of J ′ LC-MS features

and taking the combination that, when used with the clinical indicators, minimizes our test

error. But if we want the best combination of, say, 5 LC-MS features, then with a total of

744 predictors to choose from, we have
(

744
5

)
≈ 1.87 × 1015 combinations to try. Thus, we

will instead implement less computationally demanding methods. It should be noted that

while these methods may work well in practice, none are guaranteed to find the subset of

features that minimizes the test error.

We will employ a couple of different methods, specified by Algorithm 4.4, to select a subset

of LC-MS features while controlling for clinical features. For the first of these methods

(“Method 1”), we use data from our 88 patient-samples for which we have normal phase

LC-MS serum data. While controlling for patient clinical information, we choose a subset

of LC-MS features using one of the procedures described below. We then run prediction

models using clinical data plus the selected LC-MS features. To achieve an honest estimate

of prediction error, the entire described procedure will need to be embedded in a cross-

validation step, as indicated by Algorithm 4.4.

One weakness of the method described above is that it does not make use of the 1,570

observations for which we have clinical information but lack LC-MS information. For the

second method (“Method 2”), we begin by fitting the super learner model using these 1,570

observations that have clinical information but not LC-MS information. We then use this

fitted model (which only uses clinical predictors) to obtain predicted probabilities for each
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of the 88 patient-samples that has associated LC-MS data. These predicted probabilities

will then be treated as a variable in a new prediction problem that uses LC-MS information

to obtain a subset of J ′ LC-MS variables. While this method will allow us to identify

the molecular features (if any) that improve our prediction beyond what can be achieved

with clinical information alone, we note that, unlike Method 1, it does not allow us to

incorporate interactions between individual clinical indicators and LC-MS molecular features

when judging the importance of LC-MS features. A hybrid of these two methods (“Method

3”) consists of using the predicted probabilities from all clinical data in combination with

the clinical data for the LC-MS sample subset (n=88) when choosing a subset of LC-MS

features.

Algorithm 4.4 Framework for choosing “best” subset of LC-MS features.

1. Fit super learner using clinical data for all observations that lack LC-MS information.

2. Use fit from Step 1 to obtain predicted probabilities for each observation that has
LC-MS information.

3. Split data from Step 2 into V folds.

4. For v = 1 to V :

(a) Choose a subset of J ′ LC-MS variables using all observations from Step 2 except
for those in fold v. There are many options for doing this, and for each option
we could either use the LC-MS variables in conjunction with the data’s clinical
indicators (“Method 1”), the LC-MS variables with just the predicted probabilities
obtained in Step 2 (“Method 2”), or both (“Method 3”).

(b) Fit super learner using all observations from Step 2 except those in fold v. For
predictors, use the LC-MS variables selected in step 4a along with the clinical
indicators used in step 4a.

(c) Obtain predicted probabilities for fold v using fit from step 4b.

5. Access performance using predicted probabilities obtained in step 4c.

6. Compare to performance achieved by running step 4 but selecting zero LC-MS vari-
ables.

The methods described above all involve a variable selection procedure (Step 4a of Algo-

rithm 4.4). Here we describe some options for this procedure.
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Forward-stepwise variable selection

Forward stepwise variable selection, also known as the “greedy” approach, normally begins

with an empty model (e.g., the predicted outcome is an average of the outcomes in the

training set without regard to covariate values). In our case, though, we would begin with a

model that includes clinical predictors while excluding LC-MS features. One by one, each LC-

MS feature is considered for inclusion in the model, and the reduction in risk accompanying

that variable’s inclusion is calculated. The variable that brings the greatest risk reduction is

added to the model and the process is repeated until some stopping criteria is satisfied. While

there is no guarantee that this process will result in a subset of predictors that minimizes

our loss function, it does have the appealing property of working with any number of chosen

prediction routines, including super learner, such that we do not have to make assumptions

on the functional form of the relationship between our predictors and outcome.

Multivariable Adaptive Regression Splines (MARS)

MARS is an adaptive procedure for regression that uses expansions in piecewise linear basis

functions. The building strategy proceeds much like it does for forward stepwise logistic

regression. However, rather than just considering each predictor in its original form, we

consider the collection of basis functions with knots at each observed covariate value. When

evaluated for model inclusion, we further consider the product of each candidate basis func-

tion with each of the terms of the current model (i.e., all interactions are considered). At the

end of the model-building process, we generally have a large model that over-fits the data.

Thus, we employ a backward deletion process that, at each stage, consists of removing the

term which results in the smallest increase in risk. The final model size can theoretically

be determined using cross-validation, but the MARS procedure instead uses the generalized

cross-validation criterion, which strikes a balance between training risk and model complexity

without cross-validation’s computational burden.

L1-penalized logistic regression

We can run an L1-penalized logistic regression (as described in Chapter 1.5) with a complex-

ity parameter chosen such that our desired number of LC-MS variables are selected. One

weakness of this method is that it does not consider interaction terms unless the interaction

terms are explicitly entered in the feature list. While theoretically we could add all inter-

actions to our design matrix, a more targeted approach could consist of including just the

interactions identified by a separate procedure as being important (e.g., multiple additive
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regression trees is one option for building this list of interactions).

Heuristic clustering-based methods

Another approach to selecting the best subset of LC-MS features could involve clustering

the LC-MS indicators into C groups based on some correlation measure (e.g., k-means using

Euclidean distances). We could then take the feature within each of the C clusters that

best predicts our dengue outcome. Finally, by making C small enough, we can employ an

exhaustive search over all combinations of features to find the best subsets (e.g., try all
(
C
2

)
combinations to find best subset of 2 features, all

(
C
3

)
combinations to find best subset of 3

features etc.).

Tree-based relative importance measures

As described in Chapter 1.5, random forests builds trees using bootstrap samples. When

the bth tree is grown, we can pass the observations left out of the bth bootstrap sample

(the so-called out-of-bag samples) through the tree to obtain a prediction accuracy estimate,

much as we do in the cross-validation procedure. We can then permute the values of the jth

variable in the out-of-bag samples and again pass these observations through the bth tree

to obtain another prediction accuracy measurement. The difference between these accuracy

measurements is averaged across all trees to give a relative variable importance measurement

for each of the J predictors. Note that this importance measure is different from that which

would be obtained if we were to compare the model’s prediction accuracy with the jth

predictor versus without the jth predictor. (This is because other variables could be used

as surrogates if the model were refitted without predictor j; while useful for some purposes,

the danger with the refitting strategy is that predictors with high predictive power but also

high correlation with other variables would rank low in the variable importance measure.)

Alternatively, we can build a variable importance measure using the improvement in the

split-criterion (e.g., gini coefficient) attributable to the splitting variable at each split in

each tree. These improvements can be accumulated over all trees in the forest separately for

each variable. This importance measure easily applies to other tree-based methods, not just

to random forests. As with the out-of-bag permutation measure, the split-criterion-based

measure gives relative variable importance; thus, it is common to assign the largest a value

of 100 and then scale the others accordingly.
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Figure 4.1: Histograms, in blue, of the t-statistic comparing OFI versus DENV samples (left
graphic) and OFI/DF versus DHF/DSS samples (right graphic). Outlined in purple are the
histograms of the t-statistics from 10,000 permutations of the respective diagnostic labels.

4.4 Results

4.4.1 LC-MS feature significance

Our analysis supports the notion that a large number of the 744 LC-MS features are sta-

tistically significant, both for distinguishing OFI patients from DENV patients, and for

distinguishing severe dengue patients (DHF/DSS) from others (OFI/DF).

First, from Figure 4.1 it is clear that the test statistics (using Equation 4.1) are, on

average, much larger in absolute value when calculated using our data than when calculated

under the null distribution (generated using the permutation method).

Correspondingly, we find significantly lower p-values in our data than predicted by the

null distributions (Figure 4.2). Mirroring what we saw in Figure 4.1, the LC-MS data appears

to contain more features that are useful for predicting DENV than features that are useful

for predicting severe dengue. In fact, if we choose a false discovery rate of .20, then the

Benjamini-Hochberg method classifies about 320 features as “significant” for OFI versus

DENV prediction, but only about half as many for predicting severe dengue.

The significance analysis of microarrays (SAM) procedure with an FDR of .20 also clas-

sifies just over 300 features as significant for distinguishing OFI from DENV and about 150

features as significant for distinguishing OFI/DF patients from DHF/DSS patients (Fig-

ure 4.3). Given that we are only assessing the importance of 744 molecular features, both
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Figure 4.2: Plots of ordered p-values (blue dots) for OFI versus DENV analysis (left graphic)
and OFI/DF versus DHF/DSS analysis (right graphic). Molecular features with p-values
below the red dotted lines are considered significant by the Benjamini-Hochberg method
with an overall false discovery rate of .20. If no features were actually associated with
disease state, then p-values would be uniformly distributed between 0 and 1, as indicated by
green lines.

numbers are impressively large.

4.4.2 Prediction performance of subset methods

It is clear from the section above that the LC-MS data contains useful features for both

diagnosing dengue disease and for determining disease severity. In this section, we examine

the benefits of using LC-MS data in combination with clinical data, and examine whether

gains are achieved when a greater number of LC-MS features are used. To provide a basis of

comparison, we contrast the methods presented in Algorithm 4.4 with the method of taking

the LC-MS features that perform best according to a battery of univariate tests.

As expected, we find that choosing a “best subset” of LC-MS features using a method

that selects each feature in isolation from other data features (the “ttest” method) performs

worse than the method of choosing features in a manner that takes into account correlations

with other predictors (the “topRF”2 and “greedyRF”3 methods). Our OFI versus DENV

2Specifically, we took the top J ′ features using random forests’ gini importance measure.
3As the name implies, this procedure consists of choosing features in a forward step-wise fashion with

random forests whereby feature selection is based on cross-validated AUC.
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Figure 4.3: A plot of the ordered test statistics (vertical axis) versus the expected order
statistics (horizontal axis) from permutations of the data, OFI versus DENV analysis. The
two dotted lines are ∆ units away from the 45 degree line, illustrating the significance criteria
of the SAM procedure for an FDR of .20.
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Figure 4.4: A plot of the ordered test statistics (vertical axis) versus the expected order
statistics (horizontal axis) from permutations of the data, OFI/DF versus DHF/DSS analy-
sis. The two dotted lines are ∆ units away from the 45 degree line, illustrating the significance
criteria of the SAM procedure for an FDR of .20.
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analysis (Figure 4.5) also supports the notion that little is to be gained by adding LC-MS

features beyond the most predictive two or three; while our data is very noisy, prediction

accuracy does not appear to change to any measurable degree when we increase the number

of LC-MS features beyond three. Methods 1 and 3 tend to do somewhat better than Method

2, suggesting that interactions between LC-MS features and clinical features may be useful

for predicting dengue diagnosis, though we do not have enough data to obtain statistical

significance for this difference.

Results from the OFI/DS versus DHF/DSS analysis (Figure 4.6) tell a different story.

Here, the “topRF” and “greedyRF” procedures do not consistently outperform the “ttest”

procedure for variable selection, and Method 1 is often out-performed by the others. These

results are not actually surprising given that when it comes to severe dengue prediction, our

LC-MS features do not improve prediction accuracy beyond what is achieved using clinical

information alone (as seen previously in Figure 3.12). Thus, if none of the molecular features

seem to add detectably useful information, then the observed differences among the AUC

point estimates for our three procedures (“ttest”, ”topRF”, and “greedyRF”) is effectively

noise.

4.4.3 Compound identification

Peak identification methods using custom and online databases were discussed briefly in

Chapter 3.3. As mentioned, the mass measurement and retention time information coming

from an LC-MS experiment is typically not sufficient for conclusively determining the formula

of an unknown compound [52], though these methods can give us candidate small molecule

biomarkers. Tandem MS (also known as MS/MS) can then be used to help resolve some

of the ambiguity. This procedure consists of two or more stages of mass analysis applied

independently, giving a more precise estimate of mass. Typically, for a confirmatory analysis,

LC-MS/MS will be run using purchased “standards” containing a candidate small molecule

biomarker, and the resulting LC-MS/MS profile will be compared to the LC-MS/MS profile

achieved using the data sample(s) in question.

4.5 Discussion

Additional work is needed to both confirm the predictive power of the molecular features

that we have found to be useful in our data sample, and to identify which small molecule

biomarkers these molecular features represent. Beyond that, we will also need to think about
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Figure 4.5: Cross-validated AUCs for super learner run with clinical data and various num-
bers of LC-MS features using various feature selection methods, as described by Algorithm
4.4 for the OFI vs. DENV analysis. “M1” stands for “Method 1”, “M2” for “Method 2”
and “M3” for “Method 3”.
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Figure 4.6: Cross-validated AUCs for super learner run with clinical data and various num-
bers of LC-MS features using various feature selection methods, as described by Algorithm
4.4 for the OFI/DF vs. DHF/DSS analysis. “M1” stands for “Method 1”, “M2” for “Method
2” and “M3” for “Method 3”.
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the precision of a hypothetical point-of-care diagnostic test to detect a molecule of interest;

if it is only able to give a binary response as to whether a particular molecule is present in

one’s biological sample, without information on quantity, then we might want to run our

LC-MS analysis with dichotomized intensity values to reflect the concentration level that a

point-of-care test is likely to be able to detect.

Finally, it should also be noted that the signs and symptoms of severe dengue, such as

hemorrhaging, are not exclusively dengue symptoms. In particular, the Chikungunya virus

can cause similar symptoms and we in fact do observe patients who display the signs and

symptoms of severe dengue while not actually testing as dengue positive. Indeed if we instead

predict the signs and symptoms of severe dengue, rather than a DHF/DSS diagnosis, our

prediction accuracy may improve. The implication is that we are not necessarily detecting

the metabolites specific to the dengue virus and if this is one’s goal, then other methods

(such as viral isolation) are safer. On the other hand, predicting whether a patient is likely

to hemorrhage, regardless of diagnosis, may be of greater relevance in terms of patient care

and could serve as an alternative prognostic goal.
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General State Y N U Gastrointestinal Y N U Osteomuscular Y N U

Fever Loss of appetite Arthalgia

Weakness/asthenia Nausea Myalgia

Abnormally sleepy Difficulty eating Lumbalgia

Poor general state Vomiting (# in the last 12h ___ ) Neck pain

Unconscious Diarrhea Cutaneous

Restless and irritable Diarrhea with Blood Localized rash

Convulsions Constipation Generalized Rash

Hyptothermia Intermitent abdominal pain Ehtrythmatous rash

Lethargy Continuous abdominal pain Macular ash

Epigastric pain Papular rash

Oral intolerance Mottled skin

Headache Abdominal distension Flushed face

Stiff Neck Hepatomegaly ( ___ cm) Echymosis

Conjuctival infection Central cyanosis

Subconjuntival hemorrhage Jaundice

Retro orbital pain Dry tongue/mucosal surfaces

Bulging fontanelle Poor skin turgor

Conjuntival jaundice Reduced urine output Obese

Drinks avidly, thirsty Overweight

Sunken eyes Suspected problem

Erhythema Sunken fontanelle Normal

Sore throat Underweight

Cervical adenopathy Severely underweight

Exudate Urinary symptoms

Petechiae in mucosa Leucocyturia  ≥10 x Field IMC_______

Nitrites

Erythrocytes  ≥6xField

Cough Bilirubinuria

Rhinorrhea Breastfeeding

Nasal congestion Referred to pediatrician Vaccinations up-to-date

Ear ache Hospital referral Influenza vaccination

Nasal flaring Hospital referral for Dengue Vaccination date _________

Apnea Hospital referral for SARI

Rapid respiration ILI
Expiratory grunt SARI
Resting Stridor Other DOF
Chest indrawing New DOF___________

Wheezing

Rales Category:   [A]   [B]   [C]   [D]  [NA]   Change in category:   [Yes]   [No]
Hoarseness

Complete if Category A or B

Y N U Y N U S N D

Hemorrhagic manifestations Epistaxis/Nosebleed Hypermenorrhea

Positive tourniquet test Gingival bleeding Hematemesis

Petechiae ≥10 in PT Spontaneous Petechiae Melena

Petechiae ≥20 in PT Capillary refill > 2 seg. Hemoconcentration ( ___ %)

Cold skin and extremities Cyanosis

Paleness in extremities

Have you been hospitalized in the past year [Yes] [No], if Yes specify date and cause

Did you receive a blood transfusion in the past year [Yes] [No], if Yes specify date

Are you currently under medication [Yes] [No], if Yes specify

Did you take any other medication in the past 6 months [Yes] [No], if Yes specify

Digitation Stamp Physician and Supervisor Stamps

Renal

Atypical lymphocytes ____ % Date _____

CONSULTATION CHART: CHILD INTEGRAL CARE    STUDY CODE: __/__/__/__      DATE: ___ /___ /___

Head

Throat

Dehydration

Nutricional state

Consultation:[  ] Initial [  ] Followup [  ] Conv. Shift:[  ] Reg. [  ] Night [  ] Wkend  Time Consult______T Med._____°C 

DOS_______ DOF_______Last Day Fever________ am/pm  Last dose antipyretic___/___/___ Time:________ am/pm

FILE:__/__/__/__/__/__ NAME:____________________________________________ TIME:_________am/pm

Wt_____Kg  Ht_____Cm  Age____( d / m / a ) Sex M   F  B/P ______ Resp Rate _____ Heart Rate _____ Temp _____°C

Revised 29 June 2011 Version 10

Respiratory Symtoms
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Exams

CBC History and Physical Exam

Dengue Serology

Thick blood smear

Differential/extended smear

Urinalysis

EGH

Fecal Cytology

Rheumatoid factor

Albumin

AST/ALT

Bilirubin

CPK

Cholesterol

Influenza

Others

Treatment
Acetaminophen

Aspirin

Ibuprofen

Antibiotics

Penicillin

Amoxicillin

Dicloxacillin

Other:__________________

Furazolidone

Metronidazole/Tinidazole

Albendazole/Mebendazole

Iron Sulfate

ORS

Zinc Sulfate

IV fluids

Prednisone

Hydrocortisone IV

Salbutamol

Oseltamivir

Diagnosis

Plan   1. ___________________________________________________________

  2. ___________________________________________________________

  3. ___________________________________________________________

  4. ___________________________________________________________

Emer. Tele.____________________ Next Appt.:_________________

School: ______________________________________________________

Schedule of Classes:   [AM]   [PM]   [NA]

Physician and Supervisor Stamps

Digitation Stamp

Y N

Y N

 Revised 29 June 2011 Version 10

Position Code Time SignatureDate

Physician

Nurse

Supervisor
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Case Report Form

File: ________________________

Study Code: ________________________

YES

SIGNED ASSENT FORM

(For children >12 years)

VERBAL ASSENT

(For children >5 years)

NO

TYPE OF STUDY :

CONSENT FOR STUDY PARTICIPATION 

Prospective Hospital-based Study of Dengue Classification, Case Management

and Diagnosis in Nicaragua

DNA CONSENT

CONSENT FOR THE LONGITUDINAL STUDY

CONSENT TO STORE SAMPLES AFTER THE STUDY IS 

COMPLETED

Medical Supervisor Code, Signature, and Date:____________________________________

Physician Code, Signature, and Date:_____________________________________________

CLINICAL STUDY

WITHDRAWN

PDVI (CSSFV COHORT STUDY)

6/24/2011
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q
Female

Reason for Consultation

q Male q Fever

Date of Birth(DD/MM/YY) Age Date of Admission into Study Time:
q Malaise

years/months
Weight: Height:

q Headache

Date Admitted into Hospital:
Relation to q Ocular Pain

Name of Parent/Guardian:
Parent/Guardian: q Body Pain/Aches

Address: Neighborhood: q Mother q Rash

Telephone:
q Father q Bleeding

Department: City: Cell:
q Grandparent q Abdominal Pain

Nutricional Status
Malnourished Level 1 Malnourished Level 3 q Other Family Member q Diarrhea

Eutrophic
Malnourished Level 2 Overweight q Not a Family Member q Vomiting

Pacient Originates from:

q Abdominal Discomfort

q Primary public q Secondary Public q Loss of Consciousness

q Primary private q Secondary Private q Sleepy/Drowsy

q Primary provisional q Secondary provisional
Other Criteria:

q Lethargy

q Home q Other______ q Irritability

Transfer Motive: Health Unit that Referred: q Unconscious

Samples take upon admission q Red q Purple q Leucosep q Blue q Cough

Physician Code, Signature, and Date

Medical Supervisor Code, Signature, and Date

Date of Discharge: Care:
q Hospitalized (In-patient)

Weight at Discharge Number of Shock Episodes:

q Out-patient

Evolution: q Died in the Hospital, date and time:____________________  q Transferred to other hospital, details:_________________

q Total Recuperation q Died at Home, date and time:_________________________

q Incomplete Recuperation q Abandoned Reason Abandoned:___________________

Final Clinical Diagnosis

q Concomitant

q Chronic

Laboatory Diagnosis:
q Nosocomial

Diagnosis according to the Revised WHO Classification:

Samples taken upon Discharge:
q Red q Purple q Leucosep q Blue

Physician Code, Signature, and Date

Medical Supervisor Code, Signature, and Date

Date of Follow-up Visit: Health Status
q Healthy q Child did not attend visit

q Other:_____________________

Samples taken:

q Red q Purple q Leucosep q Blue

Physician Code, Signature, and Date

Medical Supervisor Code, Signature, and Date

1

Admission and General Information

Discharge Summary

If follow-up appointment is planned, date of appointment :

Other Diagnosis:
Type of other diagnosis:

Illnesses at time of                           

Referral:            Yes             No               

Pneumonia                                   

Nosocomial                                  

Sepsis                                     

If referred from another hospital, 

date of admission:

Name:

Days Hospitalized:

Study Code:

Criteria of Hospitalization:          (see 

reverse side of sheet and choose a number)

Follow-up Visit Summary

File No.:

Corresponding Health Unit

Weight at 

time of visit

6/24/2011
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Note: Print the reverse side of page

1.Children younger than 1 year

2. Pacients with DHF

3. Obesity

4. Oral intolerance

5.Associated with chronic pathologies

6.Dehydration (whichever level)

7.Signs of Shock

8.Restlessness or Weakening

9.Evidence of capillary leakage

10.Presence of Warning Signs

C) Extreme paleness

A) Temperature decrease below normal levels

Criteria for Hospitalization

B) Cold and clammy skin

C) Ascites

D) Oliguria

E) Tachycardia

F) Shortened pulse pressure (BP differential <20 mm Hg)

G) Hypotension

A) Hemoconcentration

B) Pleural effusion

H) Trombocitopenia < 100,000 mm3

G) Bleeding from any part of body

D) Marked decrease in frequency and amount of urine

C) Pain in Thorax

D) Hepatomegaly

E) Frequent Vomiting - Doesn't tolerate ORS

F) Dificulty Breathing

A) Sustained and Intense Abdominal Pain

B) Abdominal Distension

6/24/2011
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File No.________________ Study Code:________________

Date of Onset of Symptoms:_____/_____/_____ AM/PM Date of Onset of Fever:  _______/________/________ AM  /  PM

Date of last menstruation ______________________________

U Y N How many days? Pathologic Background

Fever q q q    1   2   3   4  5   6   7 Yes No

Peptic Ulcer q q

   1   2   3   4  5   6   7 Asthma q q

If affirmative, enter the date: _____/_____/_____ Anemia q q

Diabetes q q

Vomiting q q q    1   2   3   4  5   6   7 Allergy q q

If affirmative q only once Arterial Hypertension q q

How many times? q 2 or more Cardiac Disease q q

q continuous Kidney Disease q q

Tendency to vomit while drinking? q q q    1   2   3   4  5   6   7 Tuberculosis q q

While eating? q q q    1   2   3   4  5   6   7 Chronic Hepatitis q q

Cough q q q    1   2   3   4  5   6   7

If affirmative, is it bloody? q q q    1   2   3   4  5   6   7 Regular medications:

Common cold? q q q    1   2   3   4  5   6   7

Difficulty Breathing? q q q    1   2   3   4  5   6   7 Previos management

Loss of Appetite q q q    1   2   3   4  5   6   7 Yes No

If yes, still eating solids? q q q q q

If yes, still drinking liquids? q q q q q

Retroorbital pain q q q    1   2   3   4  5   6   7 q q

Abdominal pain q q q    1   2   3   4  5   6   7 q q

Osteomuscular pain q q q    1   2   3   4  5   6   7 q q

Articular pain q q q    1   2   3   4  5   6   7 q q

Irritability q q q    1   2   3   4  5   6   7 q q

Diarrhea q q q    1   2   3   4  5   6   7 Others:

Mucus in the feces? q q q    1   2   3   4  5   6   7

Blood in the feces? q q q    1   2   3   4  5   6   7 Medications

Has the paciente drank more water than usual? q q q    1   2   3   4  5   6   7 U No Yes

Mucosal bleeding Aspirine q q q

Gums q q q    1   2   3   4  5   6   7 Ibuprofen q q q

Nose q q q    1   2   3   4  5   6   7 Acetaminophen q q q

Hematemesis q q q    1   2   3   4  5   6   7 Diclofenac q q q

Melaena q q q    1   2   3   4  5   6   7 Antibiotics q q q

Vaginal q q q    1   2   3   4  5   6   7 Vitamin C q q q

Bleeding of the skin q q q    1   2   3   4  5   6   7 Multivitamin q q q

Rash q q q    1   2   3   4  5   6   7 Furosemide q q q

Physician Code, Signature, and Date

Medical Supervisor Code, Signature, and Date

2

Other:

Water

ORS

Tea

Milk

Juice

IV Rehydration

IV Blood

Clinical History

Other chronic disease:

Has the patient been without 

fever at any moment during this 

episode of fever? q q q

Revisado 24/06/08
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Case Report Form - Hospital Infantil Manuel de Jesús Rivera

Date: ______/______/_______ Date of Onset of Symptoms: ______/______/_______Use of 12 hours (circle as appropriate) : 6 AM  /  PM    to     6 PM  /  AM

File No.: ________________________ Study Code:__________________________ Age_________ years/months*

First and Last Names:_______________________________________________________________________ Date of defervescence:____

Male   /   Female Height___________cm Weight:______________ kg BSA

No

Principal Diagnosis

Concomitant q

Chronic q Nosocomial q

1 Specify (F) Strong and vigorous, (D) Weak and not vigorous, (A)Absent 3 Specify 1- Clear and Lucid 2- Restless 3- Lethargic
2
 Specify  "<2" seconds or ">2" seconds 4 Specify ( C ) Compensated (D) Uncompensated

* Si es menor de 1 año anotar la edad en meses

Treating Physician Code, Signature, and Date      _____________________________________________

Medical Supervisor Code, Signature, and Date     _____________________________________________ 1

Time taken:
Purple

Samples taken for Laboratory: No NoYes Yes

Leucosep q q

q q

q

Yes

S
h

o
c
k
 I
n

fo
rm

a
ti
o
n

q q

Blue

Red

Oxygen 

Saturation

Heart Rate

Cap. Refill
(2)

Hematocrit

Shock
(4)

Level of 

Conscious.
(3)

Number of 

Vomit

N
u
rs

e
 &

 P
h
y
s

Temperature

Code

Time

Pulse
(1)

Blood Pressure

V
it
a

l 
S

ig
n

s

Extremities

Warm and Pink

Distal coldness

Cold and 

clammy

Perif Cyanosis

Has urinated

Code &Signature

Diagnosis according to the Revised Classification

O
th

e
rs

Breathing Rate

Other Diagnosis

Vital Signs Report

To be Completed by Nurse/Physician

q

Dehydration

Oral Cyanosis

6/24/2011
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Case Report Form - Hospital Infantil Manuel de Jesús Rivera

File No.: Study Code:

Date: ______/______/_______ Use of 12 hours (circle as appropriate) : 6 AM  /  PM    to     6 PM  /  AM

Breathing Y N In the Previous 12 hours: Y N Bleeding Y N

Difficulty q q Shock q q Clinically significant? q q

Type of Breathing Time of Shock:     Petechiae q q

q Reg  q Irreg   q Shallow Signs of overhydration q q     Purpura q q

q Deep    q Dissociated Signs of dehydration q q     Ecchymosis/bruising q q

Cough q q Cardiovascular Y N     Hematoma q q

Pneumonia q q Edema q q     Hemoptysis q q

Ronchi q q Periorbital q q     Epistaxis/Nosebleed q q

Rales q q Facial q q     Gums q q

Wheezing q q Inferior Membranes q q     Melena q q

Pleural Effusion q q Hydrocele q q     Hematemesis q q

     Right q q Generalized q q     Hematuria q q

     Left q q Pitting q q     Subconjuntival q q

Intercostal Retractions q q Rash Y N     Vaginal q q

Thoracic Pain q q Cutaneous exanthem q q     Hipermenorrea q q

Abdomen Y N     Macular q q     Venopuncture q q

Abdominal Sensitivity q q      Papular q q Tourniquet Test
(5)

Abdominal Pain q q      Maculo papular q q Lymphadenopathy
(6)

Intermitant q q      Erythema q q Procedures Si No

Continuous q q      Measles-like q q Ventilation q q

Epigastralgia q q Facial flushing q q Dialysis q q

Abdominal Distension q q CNS Y N PVC q q

  Ascites q q Stiff neck q q Ascitic fluid drainage q q

  Icterus q q Meningismus q q Use of parenteral fluids

  Liver (cms) Lightheadedness 
(3)

q q      For Shock q q

  Spleen (cms) Lethargy q q      Rehydration q q

Drinks normally? q q Irritability q q     Maintenance/Warning Signs q q

Eats normally? q q Convulsions q q Use of Oxygen q q

Oral Intolerance q q Glasgow (O,V,M)     ___,___,___  (>5 years) Nebulized q q

Liquid Stools q q Blantyre (O,V,M)      ___,___,___ (<5years) Use of Inotropic drugs q q

Number of Liquid Stools Level of care(4) Medication for liver failure q q

Diuretic q q

Glasgow Scale (> 5 years)

Treating Physician Code, Signature, and Date______________________________

Medical Supervisor Code, Signature, and Date  _____________________________ Verbal: (1) Makes no sounds, (2) Incomprehensible sounds, (3) Inappropriate words, (4) Confused

(5) Oriented, converses normally
3 

For pacientes older than 5 years
4 

Level of clinical care: 1 Basic hospital care. 2 Intermediate care.

  3 Maximum care Blantyre Scale (< 5 years)
5 

Number of petechiae per sq. inch Ocular: (0) Fails to watch or follow, (1) Watches or follows
6 

Specify: (0) None (1) cervical (2) axilar (3) submandibular (4) inguinal (5) occipital Verbal: (0) No response, (1) Abnormal cry with pain, (2) Cries appropriately with pain

    (6) generalized Motora: (0) No response, (1) Withdraws from pain, (2) Localizes pain

2

Clinical Information

10 20

N

                                                                                                     To be Completed by Physician                                                                                                                                                                                                                       

Intensive Therapy                                       Infectology                              Other Area:                                                                                    

Motor: (1) Makes no movementes, (2) Extension to painful stimulo, (3) Flexion to painful stimuli, (4) 

Withdrawal to painful stimuli, (5) Localizes painful stimuli, (6) Obeys commands

Ocular: (1) Doesn't open eyes, (2) Opens in response to painful stimuli, (3) Opens on verbal 

command, (4) Opens spontaneously

Revisado 22/07/09
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Case Report Form - Hospital Infantil Manuel de Jesús Rivera

Laboratory and Office 2

File No.__________________________

Study Code: ___________________  Date: ______/______/___

Radiologic Signs Shock
Yes No

Echocardiogram Yes No Refractory liquids q q

Normal q q Crystalloids q q

Shortening fraction q q Colloids q q

% Refractory amines q q

LV end-diastolic diameter q q Recurrent 
1

q q

mL/m2d Prolonged
 2

q q

LV end-systolic diameter q q

mL/m2d

E Wave

A Wave

Ratio E/A

Cardiac Index q q

L/min/m2

Paracardial Effusion q q

Diameter:

Ventricular disfuntion q q

   Systolic:

Diastolic:

Time:

No. Phys./Rad.

Electrocardiogram Yes No

Normal q q

Rhythm

Cardiac Frequency

QRS Duration

PR

QTc

T Wave

ST-T

Time:
Treating Physician Code, Signature, and Date__________________________

No. Phys./Rad.
Medical Supervisor Code, Signature, and Date  ________________________

1 Pacient persists with warning signs although adequate liquids are given

2  Pacient persists with shock after 6 hours of treatment or doesn't improve after ≥ 60 ml/kg IV fluids are given.

4

Use of 12 hours (circle as appropriate) : 6 AM  /  PM    to     6 PM  /  AM

6/24/2011
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Case Report Form - Hospital Infantil Manuel de Jesús Rivera

Laboratory and Office Clinical Laboratory

Leukocytes

(x1,000)

Segmented (%)

File No.__________________________ Lymphocytes (%)

Study Code: ___________________  Date: ______/______/___ Monocytes (%)

Eosinophils (%)

Radiologic Signs
Platelets(x1,000)

Ultrasound Yes No Hematocrit (%)

Normal q q Hemoglobin(gr)

Vesicular Wall Thickening q q Atypical Lymphocytes (%)

   mm:  ESR (mm/s)

Perivesicular fluid q q Troponin

Hepatomegaly q q PT (s)

   mm: PTT (s)

Splenomegaly q q AST (UI)

   mm: ALT (UI)

Ascites q q Total Bilirubin (mg/dL)

Indirect Bilirubin(mg/dL)

Para/perirenal fluid q q Direct Bilirubin (mg/dL)

Pleural effusion q q Cholesterol (mg/dL)

   Right (Volume): HDL (mg/dL)

   Left (Volume): LDL (mg/dL)

Pericardial effusion q q LDH(uL)

   Volume: CPK (uL)

Pulmonary Edema q q Tot. Protein  (g/dL)

Time: Albumin (g/dL)

No. Phys./Rad.
Globulin (g/dL)

X-Rays
 8 PA  q  AP  q  PC  q No q Yes No Ratio A/G

Normal q q
Creatinine

(mg/dl)

Left pleural effusion q q K+ (mmol/dL)

Right pleural effusion q q Ca+ (mg/dL)

Pleural Effusion Index 
9 Na+ (mmol/dL)

Pulmonary Edema q q Cl- (mmol/dL)

Interstitial q q
Uroanalysis

Yes No

Alveolar q q   Urine test (7)

Pneumonia q q Microscopic hematuria

Cardiomegaly q q

Cardiac Index
ABG Yes No

Time: Resp. Acidosis q q

No. Phys./Rad. Resp. Alkalosis q q

Interpreted by:
Metab. Acidosis q q

Clinical Interpretation q q Metab. Alkalosis q q

Radiologic Interpretation q q
Treating Physician Code, Signature, and Date_______________________________

Medical Supervisor Code, Signature, and Date  _____________________________

3

7
  0= no blood 1= 10 erythrocytes 2= Hematuria 8 PA: Postero-Anterior,  AP: Antero-Posterior, PC: Pancoast

9 The largest diameter of pleural effusion, divided by the diameter of the right hemothorax, multiplied by 100. 

CC:

Use of 12 hours (circle as appropriate) : 6 AM  /  PM  to   6 PM  /  AM
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External Consultation Form

File No._______________________ Study Code : ________________

First and Last Names:____________________________________________________________ Date:______________________

Age_____years/months      Height:_______cm   Weight:______kg  BSA:_____m2   Diagnóstico probable en admision:   DF / DHF / DSS

Date of onset of symptoms (DD/MM/YY):_____/______/______AM / PM          Date of defervescence:_____

Breathing Y N U Shock Y N U Bleeding Y N U

Difficulty q q q Shock q q q Bleeding q q q

Respiratory Frequency Peripheral Cyanosis q q q Clinically significant? q q q

Type of Respiration Oral Cyanosis q q q     Petechiae q q q

q Reg  q Irreg   q Shallow Mottled skin q q q     Purpura q q q

q Deep    q Dissociated Distal coldness q q q     Ecchymosis/bruising q q q

Cough q q q Cardiovascular Y N U     Hematoma q q q

Pneumonia q q q Capillary Refill (s)
2     Hemoptysis q q q

Ronchi q q q Edema q q q     Epistaxis/Nosebleed q q q

Rales q q q    Periorbital q q q     Gums q q q

Wheezing q q q    Facial q q q     Melena q q q

Pleural Effusion q q q    Inferior membranes q q q     Hematemesis q q q

     Right q q q    Hydrocele q q q     Hematuria q q q

     Left q q q    Generalized q q q     Subconjuntival q q q

Intercostal Retractions q q q Pitting q q q     Vaginal q q q

Thoracic Pain q q q Rash Y N U     Hipermenorrea q q q

Abdomen Y N U Cutaneous exanthem q q q     Venopuncture q q q

Abdominal Sensitivity q q q     Macular q q q Tourniquet Test
(5)

Abdominal Pain q q q      Papular q q q Lymphadenopathy
(6)

Intermitant q q q      Maculo papular q q q General Information Y N U

Continuous q q q      Erythma q q q Fever q q q

Epigastralgia q q q      Measles-like q q q Retroorbital Pain q q q

Abdominal Distension q q q Facial flushing q q q Headache q q q

  Ascites q q q CNS Y N U Dehydration q q q

  Icterus q q q Stiff Neck q q q Hyporexia q q q

  Liver (cms) Meningismus q q q Urine (last 6 hours) q q q

  Spleen (cms) Lightheadedness 
(3)

q q q Myalgia q q q

Drinks normally? q q q Lethargy q q q Arthalgia q q q

Eats normally? q q q Irritability q q q Vital Signs

Oral Intolerance q q q Convulsions q q q Temperature

Liquid Stools q q q Glasgow (O,V,M)     ___,___,___  (>5 years) Cardiac Frequency

Number of Liquid Stools Blantyre (O,V,M)      ___,___,___ (<5years) Pulse
6

Vomiting
1

Presión Arterial

Treating Physician Code, Signature, and Date______________________________ Glasgow Scale (> 5 years)

Medical Supervisor Code, Signature, and Date  _____________________________
 1
 Specify (1) One occasion, (2) Two or more, (3) Continuous           

2
 Specify"<2" seconds or ">2" seconds

3 
For pacients older than 5 years

4 
Number of petechiae per sq. inch

5 Specify
: (0)None (1) cervical (2) axilar (3) submandibular (4) inguinal Blantyre Scale (< 5 years)

   (5) occipital  (6) generalized Ocular: (0) Fails to watch or follow, (1) Watches or follows
6
 Specify (F) Strong, (M) Moderate, (R) Rapid, (N) Impalpable Verbal: (0) No response, (1) Abnormal cry with pain, (2) Cries appropriately with pain

Motora: (0) No response, (1) Withdraws from pain, (2) Localizes pain 3

10 20

N

Clinical Information

Ocular: (1) Doesn't open eyes, (2) Opens in response to painful stimuli, (3) Opens on verbal command, (4) Opens 

spontaneously

Verbal: (1) Makes no sounds, (2) Incomprehensible sounds, (3) Inappropriate words, (4) Confused, (5) Oriented, converses 

normally

Motor: (1) Makes no movementes, (2) Extension to painful stimulo, (3) Flexion to painful stimuli, (4) Withdrawal to painful 

stimuli, (5) Localizes painful stimuli, (6) Obeys commands

6/24/2011
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Study Code: ___________

Use of 12 hours (circle as appropriate) : 6 AM  /  PM    to     6 PM  /  AM

Treating Physician Code, Signature, and Date    __________________________________

Medical Supervisor Code, Signature and Date     _________________________________

Type Code and Signature

Hospital Follow-up Form

IV or PO Drug Administration

Amount in CCTime

6/24/2011
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Case Report Form - Hospital Infantil Manuel de Jesús Rivera

File No.__________________________ Study Code : ___________________  

Date: ______/______/___

Ultrasound Y N

Ultrasound performed? q q Yes No Yes No Yes No

Normal q q
Performed?

q q q q q q

Vesicular Wall Thickening q q Normal q q q q q q

   mm:  
Left pleural effusion q q q q q q

Perivesicular fluid q q Right pleural effusion q q q q q q

Hepatomegaly q q Pleural effusion index
9

   mm:
Pulmonary edema q q q q q q

Splenomegaly q q Interstitial q q q q q q

   mm:
Alveolar q q q q q q

Ascites q q Pneumonia q q q q

Cardiomegaly q q q q

Para/perirenal fluid
q q

Cardiac Index

Pleural effusion q q Time:

   Right (Volume): No. Phys./Rad.

   Left (Volume):
Interpreted by:

Pericardial effusion q q Clinical Interpretation q q q q q q

   Volume: Radiologic Interpretation q q q q q q

Pulmonary Edema q q

Time:
Uroanalysis

Yes No

No. Phys/Rad. Performed? q q

ABG Yes No

Performed?
q q

Resp. Acidosis q q

Resp. Alkalosis q q

Metab. Acidosis q q

Metab. Alkalosis q q

Yes No

Red q q

Leucosep q q

PT (s)
Purple q q

PTT (s)
Blue q q

AST (ui)
Time taken

ALT (ui)

Treating Physician Code, Signature, and Date__________________________________

7
  0= no blood 1= 10 erythrocytes 2= Hematuria Medical Supervisor Code, Signature, and Date  ________________________________

8 PA: Postero-Anterior,  AP: Antero-Posterior, PC: Pancoast

9 The largest diameter of pleural effusion, divided by the diameter of the right hemothorax, multiplied by 100. 2

Cholesterol (mg/dL)

LDH (uL)

Troponin

Samples take for Lab.Globulin (g/dL)

Hemoglobin (gr) Albumin (g/dL)

Laboratory and Office

Na+ (mmol/dL)

ESR (mm/s)

Creatinine 
(mg/dl)

Clinical Laboratory

Eosinophils(%)

Platelets(x1,000)

Tot. Protein (g/dL)

Indirect Bilirubin

Lymphocytes (%)

Hematocrit (%)

CPK (uL)

Total Bilirubin

Cl- (mmol/dL)

Monocytes(%)

Use of 12 hours (circle as appropriate) : 6 AM  /  PM  to   6 PM  /  AM

Microscopic hematuria

PC PA AP

Leukocytes (x1,000)

Urine test 7

X-Rays
 8

Segmented (%)

CC:

Direct Bilirubin

K+ (mmol/dL)

Ca+ (mg/dL)

Atypical lymphocytes (%)

Ratio A/G

HDL (mg/dL)

LDL (mg/dL)
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Case Report Form - Hospital Infantil Manuel de Jesús Rivera

DATE Beginning of rotation; 6AM  or  6PM

Urine Vomiting

Total

Alimentation Feces Personnel

MANAGEMENT OF PACIENT WITH DENGUE - INFECTOLOGY DEPT.

TRACKING SHEET FOR ORAL INTAKE AND EXCRETIONS (FECES, URINE)

FOR 12-HOUR USE

Study Code

Type of 

formula

Amount 

ordered 

(cc)

Oral 

gavage 

or 

Amount 

taken 

(cc)

Normal 

(cc)

Abnorm

al (cc)

Treating physician code, signature and date

Medical resident code, signature, and date

Medical supervisor code, signature, and date

Amount 

(cc)

Amount 

(cc)

Signature Code

Time

Name of pacient: File No.

6/24/2011

133



Case Report Form - Hospital Infantil Manuel de Jesús Rivera

DATE Beginning of rotation; 6 AM  or 6 PM

Total

Calculated 

dose (cc/kg/h)

Inicial 

Hct Signature Code

PERENETERAL FLUIDS

(HEMODERIVATIVES / CRYSTALLIODS) FOR 12-HR USE

Completion 

time

Total Amount 

Absorbed (cc)

Final 

Hct

MANAGEMENT OF PACIENT WITH DENGUE - INFECTOLOGY DEPT.

PersonnelTime at 

inicial

Medical resident code, signature, and date

Medical supervisor code, signature, and date

Name of pacient: File No. Study code

Treating physician code, signature, and date

Type of 

liquids

6/24/2011
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Appendix B: Supplementary Tables

and Figures
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Appendix B

Name Category Type Description
In

cohort

Age Demographic continuous Patient age on day of consult 1

Gender Demographic binary Gender 1

Abdominal pain Gen. symptom binary Abdominal pain 1

Arthralgia Gen. symptom binary Joint pain 1

Ascites - observed General sign binary
Accumulation of fluid in peritoneal

cavity, observed without ultrasound
0

Chills Gen. symptom binary Chills 0

Cold extremities General sign binary Cold extremities 1

Cough Gen. symptom binary Cough 1

Cyanosis General sign binary
Blue or purple skin coloration due

to tissues lacking oxygen
1

Day of illness General continuous
Days since fever onset (day 1 is

first day of fever)
1

Diastolic blood pressure General sign continuous Minimum pressure in arteries 1

Difficulty breathing Gen. symptom binary Difficulty breathing 1

Headache Gen. symptom binary Headache 1

Heart rate General sign continuous Heart rate (beats per minute) 1

Jaundice General sign binary
Jaundice (indicator of hemoglobin

breakdown)
1

Liver enlargement General sign continuous Liver enlargement 1

Myalgia Gen. symptom binary Muscle pain 1

Pallor General sign binary Unhealthy paleness 1

Pleural effusion General sign binary Excessive fluid around lung 0

Poor appetite Gen. symptom binary Poor appetite 1

Poor capillary refill General sign binary
Takes ≥ 2 sec for color to return

capillary bed after applied pressure
1

Pulse General sign categorical
Strong, moderate, rapid, or not

palpable
0

Rash General sign binary Rash 1

Respiratory rate General sign continuous
Respiratory rate (breaths per

minute)
1

Retro-orbital pain Gen. symptom binary Pain behind eyes 1

Sore throat erythema Gen. symptom binary Sore throat 1

Sweating General sign binary Sweating 0

Systolic blood
pressure

General sign continuous
Peak pressure in arteries (when

ventricles contract)
1

Tachycardia General sign binary Rapid heart beat 1

Temperature General sign continuous Temperature (Celsius) 1

Vomiting General sign binary Vomiting 1

Table 1: Descriptions of basic clinical variables - demographics & general signs and symptoms
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Appendix B

Name Category Type Description In
cohort

Bleeding gums General - hemorrhagic binary Bleeding gums 1
Ecchymosis General - hemorrhagic binary Hematoma that is 1

centimeter or larger
1

Epistaxis General - hemorrhagic binary Nose bleeding 1
Hematoma General - hemorrhagic binary Localized collection of

blood outside the blood
vessels (encompasses

ecchymoses, petechiae, and
purpura)

0

Hematuria General - hemorrhagic binary Blood in urine 0
Hemetemesis General - hemorrhagic binary Vomiting of blood 1
Hemoptysis General - hemorrhagic binary Spitting up blood from

respiratory tract
0

Melena General - hemorrhagic binary Tarry feces caused by
upper gastrointestinal

bleeding

1

Petechiae General - hemorrhagic binary Red or purple spots on skin
that are less than 2 mm in

diameter

1

Purpura General - hemorrhagic binary Red or purple discoloration
on skin 2 mm - 1 cm in

diameter

0

Subconjuntival
bleeding

General - hemorrhagic binary Bleeding of the eyes 1

Tourniquet test General - hemorrhagic categorical Test of capillary fragility
by counting number of

petechiae resulting from
specific application of

blood pressure cuff

1

Vaginal bleeding General - hemorrhagic binary Vaginal bleeding 0
Venipuncture

bleeding
General - hemorrhagic binary Excessive bleeding from

puncture with needle
0

Table 2: Descriptions of basic clinical variables - general signs of hemorrhaging
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Appendix B

Name Category Type Description In
cohort

Eosinophil (%) Blood - count continuous Concentration of
eosinophils (a type of white

blood cell)

1

Granulocytes (%) Blood - count continuous Concentration of
granulocytes, a type of
white blood cell. Also

known as percent
neutrophils.

1

Hemoconcentration Blood - count binary Decreased fluid content of
blood

1

Hemoglobin (gr) Blood - count continuous Concentration of
hemoglobin, the component

of red blood cells that
carries oxygen

1

Lymphocytes (%) Blood - count continuous Combined concentration
three subtypes of white

blood cells

1

Monocytes (%) Blood - count continuous Concentration of
monocytes, a type of white

blood cell

1

Platelet count Blood - count continuous Blood platelet count (1,000
per mm3)

1

White blood cell count Blood - count continuous White blood cell count
(1000 per mm3)

1

Serotype Blood - virology categorical Serotype of dengue virus 1
Micro-hematuria Urine - count continuous Count of erythrocytes (red

blood cells in urine)
1

Table 3: Description of lab clinical variables - blood and urine counts and virology
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Appendix B

Name Category Type Description In
cohort

Albumin (g/dL) Blood - chemistry continuous The main protein in blood. 0
Albumin/Globulin

ratio
Blood - chemistry continuous Relevant to the kidney 0

ALT (IU) Blood - chemistry continuous Alanine aminotransferase
(ALT) - could indicate liver

inflammation

0

AST (IU) Blood - chemistry continuous Aspartate aminotransferase
(AST) - could indicate liver

inflammation

0

Atypical
lymphocytes (%)

Blood - chemistry continuous Atypical white blood cells 0

Cholesterol
(mg/dL)

Blood - chemistry continuous HDL+LDL+LDH 0

CPK MB (uL) Blood - chemistry continuous Level of creatine
phosphokinase (CPK)

0

CPK (uL) Blood - chemistry continuous Enzyme from heart and
muscle – indicates

breakdown of these tissues

0

Creatinine (mg/dl) Blood - chemistry continuous Well-functioning kidneys
should keep creatinine

levels low

0

Direct bulirubin
(mg/dL)

Blood - chemistry continuous Bi-product of metabolism
of the liver

0

Globulin (g/dL) Blood - chemistry continuous Concentration of globulin,
a major blood protein

0

HDL (mg/dL) Blood - chemistry continuous Concentration of
high-density lipoprotein

cholesterol

0

Indirect bilirubin
(mg/dL)

Blood - chemistry continuous Bi-product of metabolism
of the liver

0

LDH (uL) Blood - chemistry continuous Lactate dehydrogenase, an
enzyme which commonly
marks injury and disease

0

LDL (mg/dL) Blood - chemistry continuous Low-density lipoprotein
cholesterol

0

Total bilirubin
(mg/dL)

Blood - chemistry continuous Bi-product of metabolism
of the liver

0

Total protein
(g/dL)

Blood - chemistry continuous Combination of albumin
and globulin (low means
malnurishment or shock)

0

Table 4: Description of lab clinical variables - blood chemistry
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Appendix B

Name Category Type Description In
cohort

Ascitis - ultrasound Ultrasound binary Accumulation of fluid in
peritoneal cavity, indicated

by ultrasound

0

Esplenomegalia (mm) Ultrasound continuous Enlarged spleen 0
Fluid para/peri renal Ultrasound binary Fluid in or around the

kidney
0

Gallbladder (mm) Ultrasound continuous Gallbladder wall thickening 0
Hepatomegalia (mm) Ultrasound continuous Enlarged liver 0

Perivesicular fluid Ultrasound binary Fluid around cavities 0
Pulmonar edema Ultrasound binary Enlargement of the lungs

due to fluid build-up
0

Alveolar X-ray binary Pertaining to the lungs 0
Interstitial fluid X-ray binary Fluid in space between cells 0

Pneumonia X-ray binary Lung inflammation 0

Table 5: Description of costly variables

Figure 7: Age and gender distributions - hospital patients
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Appendix B

Figure 8: Basic clinical indicators - hospital patients
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Appendix B

Figure 9: Clinical indicators of hemorrhaging - hospital patients. We find that each of the
15 indicators of hemorrhaging are found in fewer than 5% of hospital patients, with the
exception of petechiae and the tourniquete test.
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Appendix B

Figure 10: Blood and urine counts - hospital patients
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Appendix B

Figure 11: Blood chemistry - hospital patients
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Appendix B

Figure 12: Ultrasound and X-ray indicators
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Appendix B

Figure 13: Counts of missing values among hospital patients - basic clinical variables
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Appendix B

Figure 14: Counts of missing values among hospital patients - blood and urine lab variables
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Appendix B

Figure 15: Counts of missing values among hospital patients - ultrasound and X-ray variables
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