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ABSTRACT OF THE DISSERTATION 
 
 

The effects of brain state and behavioral relevance on 

sensory representations in awake mouse auditory cortex 

 
 

by 
 
 

Pei-Ann Lin 
 
 

Doctor of Philosophy in Neurosciences 
 
 

University of California San Diego, 2019 
 
 

Professor Jeffry S. Isaacson, Chair 
 

 Sensory representations in the brain are constantly modulated by a variety of factors 

such as brain state and behavioral context. This dissertation seeks to build a deeper 

understanding of how our brains accurately represent the world around us by utilizing two-

photon calcium imaging of awake mouse auditory cortex during passive listening and learning. I 

begin with an overview of the anatomical organization of primary auditory cortex (A1) projection 

neurons. By using spectrally-distinct retrograde tracers, I labeled projection populations from A1 

to three functionally distinct brain regions: caudate putamen, inferior colliculus, and contralateral 

A1. By visualizing the distribution of and overlap between each tracer, I found that the spatial 

organization of these projection populations were markedly distinct, and labeled neurons rarely 

projected to more than one target region. These results suggest that A1 projections are 

organized in a manner that is conducive to target-relevant information transfer. Next, I 

functionally characterized projections from the lateral amygdala (LA), a structure implicated in 
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emotion processing, to secondary auditory cortex (A2). I observed that discriminative auditory 

fear conditioning (DAFC) bidirectionally modulates the strength of A2 amygdalar axon 

responses to the aversive (CS+) and neutral (CS-) tones. Additionally DAFC-related plasticity 

was not sufficient for immediately driving expression of discriminative fear behavior, suggesting 

that LA serves as a primary site of discriminative fear memory. Follow-up experiments 

characterizing the effects of DAFC on local A2 neurons are necessary in order to fully 

appreciate the significance of these preliminary findings. Finally, I investigated whether arousal 

state modulates A1 sensory representations. Pyramidal cell response strength and reliability 

increased with arousal, resulting in broader frequency tuning and stronger signal correlations. 

Although this increase in tuning overlap, in isolation, would be detrimental to frequency 

discrimination, nonlinear classifier decoding accuracy improves with arousal. To reconcile this 

discrepancy, I delved deeper into the effects of arousal on population activity and found that 

noise correlations decrease for cells that show stronger signal correlations and increase for cells 

that show weaker signal correlations as arousal increases. This divergence in correlations has 

been shown both theoretically and experimentally to improve stimulus discrimination. Taken 

together, arousal strengthens A1 layer 2/3 tone-evoked responses and modulates inter-

neuronal correlations in a nuanced manner that ultimately improves frequency discrimination. 
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CHAPTER 1:  Anatomical organization and response properties of A1 projection neurons 
 

Abstract 

Sensory information processed in the auditory cortex (AC) is directed to a variety of 

spatially and functionally distinct targets, including contralateral AC, amygdala, inferior 

colliculus, striatum, and thalamus. These areas play distinct roles in sound-guided behavior and 

cognition. However, it is unclear whether the organization of AC projections supports 

transmission of redundant auditory information to all target regions or transmission of specific 

aspects of auditory information to different target regions. To address this question, we used a 

retrograde tracer, cholera toxin B (CTB), conjugated to several different fluorescent markers to 

visualize and characterize the spatial overlap of AC projection subpopulations. We subsequently 

used two-photon calcium imaging to characterize the response properties of Layer 2/3 

projection subpopulations in primary auditory cortex (A1) of awake mice. 

Introduction 

Sensory processing in the brain requires coordination of information transfer across a 

variety of functionally distinct structures and cell types. To investigate the spatial and functional 

organization of AC projection neurons, we began by visualizing projections from A1 to 

downstream regions. Similar to other parts of the sensory cortices, the AC can be divided into a 

few major auditory subregions (Figure 1.1A). Intrinsic imaging through the skull of anesthetized 

mice (Figure 1.1B) allows for reliable identification of these subregions, including primary 

auditory cortex (A1, secondary auditory cortex (A2), and the anterior auditory field (AAF). We 

then injected a cell-filling tdT-tomato virus in A1, which allowed for visualization of axons 

departing A1 and terminating in downstream regions. Regions with significant input from A1 

included the ipsilateral medial geniculate nucleus of the thalamus (Figure 1.1C), the ipsilateral 

inferior colliculus (Figure 1.1D), the caudate putamen, the ventral posterior nucleus of the 

thalamus (Figure 1.1E), and contralateral A1 (Figure 1.1F). 
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Figure 1.1. A1 projections target many functional distinct downstream brain regions. (A) The 
major subregions and laminar organization of the auditory cortex (AC). Background image of 
coronal slice adapted from the Allen Brain Institute Mouse Atlas. (B) Auditory cortex subregions 
identified by intrinsic imaging.  (C) AAV-2.1-CAG-tdTomato injected unilaterally in each of three 
A1 tonotopic subregions. Tissue was fixed, sectioned and imaged on a confocal microscope. A1 
projections were observed in ipsilateral medial geniculate nucleus of the thalamus (MGN), (D) 
inferior colliculus (IC), (E) caudate putamen of the striatum (CPu), and ventral posterior nucleus 
of the thalamus (VPN). (F) Projections were also observed in contralateral A1 (cA1). A1 - 
primary auditory cortex; dA2 - dorsal secondary auditory cortex; vA2 - ventral secondary 
auditory cortex; TeA - temporal association cortex; rf - rhinal fissure. 
 

The projection targets of A1 are known to play a variety of distinct roles. For example, 

the caudate putamen is implicated in auditory processing (Guo et al., 2018; LeDoux et al., 1991) 

while projections from A1 to caudate putamen in rats are specifically thought to mediate 

decision making bias in an auditory discrimination task (Znamenskiy and Zador, 2013). 

Furthermore, A1 projections to the inferior colliculus have been reported to be both necessary 
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and sufficient for driving innate flight behavior in response to sudden, high-intensity noise (Xiong 

et al., 2015). While these studies address sensory responses of auditory cortex projections 

during active behavior, we hypothesize that tuning to pure tone frequency during passive 

listening may also differ between A1 projection subtypes. In fact, in vivo whole cell voltage 

clamp recordings in anesthetized rat A1 has revealed that AC layer V regular-spiking (RS) 

neurons exhibit much sharper frequency tuning and well-matched excitatory and inhibitory 

intracortical inputs compared to layer V intrinsic bursting (IB) neurons, which display early and 

unselective responses to a broad range of sound frequencies and have inhibitory inputs that are 

more narrowly tuned than their excitatory inputs (Sun et al., 2013). Additionally, RS and IB cells 

are morphologically distinct and are known to project to subcortical nuclei and contralateral 

cortex, respectively. 

While corticotectal, corticostriatal, and corticocortical cells in the visual cortex are known 

to exhibit differences in spatial organization, contrast thresholds, and tuning broadness for 

orientation and spatial frequency (Kim et al., 2015; Lur et al., 2016; Wang and Burkhalter, 

2013), knowledge about the manner in which A1 pyramidal cells are spatially distributed and the 

extent to which they encode and deliver distinct features of auditory processing to downstream 

structures remains incomplete. Thus, in this study, we use a combination of retrograde tracing 

and two-photon calcium imaging in order to further address these questions. 
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Results 

 We first investigated the spatial organization of A1 projection neurons by injecting the 

retrograde tracers CTB-488, CTB-555, CTB-647 in left A1, right caudate putamen, and right 

inferior colliculus (Figure 1.7A). After tissue fixation and slicing on a microtome, 100 um coronal 

slices were imaged using a Keyence epifluorescence microscope. Custom MATLAB GUIs were 

used for measuring laminar depth and dorsoventral location, and the Allen Brain Institute Mouse 

Atlas and stereotaxic coordinates were used to estimate the rostrocaudal location of each cell. 

Strikingly, very few labeled cells appeared to project to more than one of the three selected A1 

target regions (Figure 1.7B). Labeled projections appeared predominantly corticostriatal 

(58.8%), while labeled corticocortical projections (24.5%) outnumbered labeled corticotectal 

cells (16.6%). A three-dimensional rendering of each right AC cell’s location (Figure 1.7C) 

revealed markedly distinct distributions of each projection population along all three axis. As 

expected, corticotectal cells were confined to layer V of the AC, and corticocortical cells were 

limited to putative A1. Corticostriatal cells appeared to span the majority of AC, with higher 

density ventrally and rostrally. Taken together, these results suggest that the labeled cells are 

likely to be organized in a manner that is conducive to delivery of target-specific auditory 

information to downstream regions. 

 To investigate potential functional differences between projection cell types in A1, we 

next examined pure tone frequency tuning in A1 layer II/III corticocortical and corticostriatal cells 

(Figure 1.A). Mice expressing the calcium indicator GCaMP6s in all cortical excitatory cells were 

injected with CTB-555 in either left A1 or right caudate putamen prior to chronic imaging window 

implantation (Figure 1.8A-B). During a 1-2 week post-operative recovery period, mice were 

intrinsic imaged to identify right A1 and habituated to head fixation under a two-photon 

microscope. During each imaging session, randomly-ordered pure tones of 17 logarithmically-

spaced frequencies ranging from 2 kHz to 40 kHz and 3 sound pressure levels (30, 50, 70 dB) 
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were each presented from an electrostatic speaker positioned contralateral to the imaging field 

of view (Figure 1.8-A). 

 

Figure 1.2. A1 projection populations are spatially distinct and primarily target one downstream 
brain region. (A) Representative images of injection sites (left) and CTB-labeled AC projection 
subpopulations (right). CTB-488, CTB-555, and CTB-647 were injected in contralateral A1, 
ipsilateral CPu, and ipsilateral IC, respectively. (B) AC projection neurons rarely target more 
than one downstream region (n = 9852 cells; 1 mouse). (C) 3D reconstruction and relative 
frequency distribution of cells along each spatial dimension reveals distinctly distributed AC 
projection subpopulations. 
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 Imaged cells that appeared labeled with both CTB and GCaMP6s were assumed to be 

A1 projection neurons with known targets after confirming accurate targeting of CTB-555 

injections in fixed tissue (Figure1.8C). To ensure that the presence of CTB was not adversely 

affecting the health of A1 layer II/III pyramidal cells, we first quantified the percent of tone-

responsive cells in each imaging field of view (Figure1.8D). Both unlabeled cells and CTB-

labeled cells appeared to yield an approximately similar percentage of tone-response cells; 

thus, CTB is unlikely to significantly affect the health of neurons within 2-3 weeks of injection. 

 While visualization of tonal receptive fields (TRFs) for corticostriatal and corticocortical 

cells revealed cells tuned to a variety of characteristic frequencies (Figure 1.8E-F), the average 

TRF for both CTB-labeled populations and unlabeled populations appeared to be 

indistinguishable in shape and frequency tuning broadness. Using an equation for calculating 

lifetime sparseness, a measure of tuning broadness that is independent of TRF shape, the 

tuning broadness between corticostriatal, corticocortical, and unlabeled was indeed found to be 

highly similar (Figure 1.8G). Taken together, passive tuning to pure tone frequency does not 

differ between A1 excitatory corticostriatal and corticocortical cells despite their unique spatial 

distributions across the auditory cortex. 
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Figure 1.3. Pure tone frequency selectivity is indistinguishable between A1 layer 2/3 

corticostriatal and corticocortical projections. (A) Schematic for calcium imaging experiments. 
(B) Representative images of CTB-555 injection sites from two mice. (C) Representative 
calcium imaging fields of view. (D) Fraction of tone-responsive cells for CTB-labeled and 
unlabeled cell populations. (E) Average responses for a representative corticostriatal cell and 
(F) corticocortical cell. (G) Heatmaps of average tonal receptive fields. (H) Tuning broadness as 
measure by lifetime sparseness (Sp). 
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Discussion 

Our findings suggest A1 projections rarely target more than one of three labeled 

downstream regions and are thus organized in a manner that may support transmission of 

unique subsets of auditory information to functionally distinct areas of the brain.  However, our 

preliminary findings also indicate that frequency selectivity to pure tones is very similar for layer 

II/III corticostriatal and corticocortical projection neurons. Whether corticotectal cells would 

exhibit distinct frequency selectivity relative to other target-specific projection populations 

remains to be addressed, and although not explored in the current study, it is possible that 

responses to features of other auditory stimuli for corticostriatal and corticocortical cells would 

differ during passive listening. Additionally, sensory representations during active behavior (e.g. 

a discriminative auditory task) could be distinct for A1 projection neurons depending on their 

downstream targets. 

Finally, an advanced labeling technique called MAPSeq, which combines barcoding of 

thousands of projection neurons with unique RNA sequences and in situ hybridization of 

detection of mRNA, was recently developed to address the spatial organization of many 

projection neuron populations with high accuracy and at a much larger scale (Chen et al., 2018). 

However, although labeling of projection populations with CTB is known to underrepresent the 

cells of interest, CTB labeling still holds an advantage over both MAPSeq and retrograde viral 

labeling due to short expression lead time and minimal toxicity to cells. As such, the retrograde 

labeling methods in the current study remain a viable approach for the purposes of addressing 

sensory representations in select populations of projections in awake and behaving mice. 
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Experimental Procedures 

Animals. All procedures were in accordance with protocols approved by the UCSD 

Institutional Animal Care and Use Committee and guidelines of the National Institute of Health. 

Mice were acquired from Jackson Laboratories (C57BL/6 (Jax: 000664); Emx1-Cre x CaMKII-

tTA x Ai94 (Jax: 024115)) and housed in a room with a reversed light cycle. Experiments were 

performed during the dark period. Mice of both genders were used for experiment at postnatal 

ages of 8-16 weeks. 

Intrinsic imaging. Intrinsic signal images were acquired using a tandem lens 

macroscope and 12 bit, CCD camera (CCD-1300QF, VDS Vosskühler). Mice were first 

isoflurane-anesthetized and surgerized to expose the skull surrounding left auditory cortex. 

Images of surface vasculature were acquired using green LED illumination (540 nm) and 

intrinsic signals were recorded (27 Hz) using red illumination (615 nm). Each trial consisted of 1-

sec baseline followed by a 1-sec sound stimulus (70 dB pure tone with a frequency of 3, 10, or 

30 kHz, 20 trials for each frequency) and 30-sec inter-trial interval. Images of reflectance (R) 

were acquired at 1024 × 1024 pixels and downsampled to 512 × 512 pixels by bilinear 

interpolation. Images during the response period (0.5–2 sec from the sound onset) were 

averaged and divided by the average image during the baseline. Images were averaged across 

trials and Gaussian filtered. Mice were then immediately transferred to a surgical station for 

retrograde tracer injections. For calcium imaging of A1, intrinsic imaging signal was acquired 

through a chronically implanted window (methods below). 

Retrograde tracer injections. Cholera toxin B retrograde tracers (200-300 uL) CTB-

555, CTB-647, and CTB-488 were stereotaxically injected in right caudate putamen, right 

inferior colliculus and left A1, respectively. Mice were perfused ~4 days later.  

Histology. Perfused tissue was left in 4% PFA overnight and then cryoprotected in 30% 

sucrose for at least 24-48 hours. Tissue was frozen and sliced coronally (100 um) on a 

microtome and mounted on slides with DAPI to label all cells. 
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Figure 1.4. Basic functionality of the PL_cellDistances GUI for reconstructing the spatial 

distribution of neural populations. 
 

Three-dimensional reconstruction of projection neuron populations. A custom 

MATLAB GUI (PL_cellDistances) was created to quantify the spatial organization of the labeled 

projection populations. The user begins by manually selecting a channel of interest browsing for 

an image file (Olympus Fluoview .oib format) to quantify. Once the image is loaded and 

displayed in the GUI, the user can choose to adjust image contrast (top left, Figure 1.2) and pan 

around to look at specific regions of interest using a low magnification overview window (bottom 

left, Figure 1.2). 



 11 

 

Figure 1.5. Selection of cells in the PL_cellDistances GUI. 
 

 To select cells within the image, the user clicks the Select button in the GUI (Figure 1.3). 

The cursor will then appear as a cross in the main image window to allow the user to place a 

marker over each cell. Backspace on the keyboard allows for removal of markers in the reverse 

order with which they were placed, and Enter on the keyboard ends the selection and saves 

pixel coordinates for each selected cell. The Clear button in the GUI allows the user to reset 

selection and start over. 
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Figure 1.6. Demarcating landmarks in the PL_cellDistances GUI. 
 

Prior to calculating the laminar depth and distance from the rhinal fissure of each 

selected cell, the cortical tissue surface (pia) and the rhinal fissure must be marked by the user 

to calibrate each image (Figure 1.4). To draw a curve beginning at the dorsal edge of the rhinal 

fissure and running along the pia, the user must first click the Trace button in the GUI. 

Alternatively, the user may load a previously drawn curve by clicking Load Trace in the GUI. 
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Figure 1.7. Measuring each cell’s laminar depth and distance from the rhinal fissure in the 
PL_cellDistances GUI. 
 

Finally, to generate and save the laminar depth and chordal distance from the rhinal 

fissure of each cell, the user clicks the Measurements button in the GUI (Figure 1.5). Additional 

but optional analysis visualizations are available underneath the Measurements button, 

including two-dimensional reconstruction of cell locations, plotting of laminar distribution of cells, 

and plotting of dorsoventral distribution of cells. 

 

Quantifying overlap of projection populations. Another custom MATLAB GUI 

(PL_calculateOverlap) was created and used to quantify the overlap of CTB-expressing cell 

populations (Figure 1.6). The input to this GUI is a multi-channel .oib (Olympus Fluoview) file. 

The user can select up to 3 channels simultaneously to visualize the overlap between multiple 
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cell populations (4th channel is DAPI). The methods for selecting and measuring the spatial 

coordinates of cells with overlapping tracers is then completed in the same manner as in 

PL_cellDistances. 

 

Figure 1.8. Basic functionality of the PL_calculateOverlap GUI for visualizing cells with 

overlapping retrograde tracer signals. 
 

Sound stimuli. Auditory stimuli were delivered via a free-field electrostatic speaker 

(ES1; Tucker-Davis Technologies). For intrinsic and calcium imaging, speakers were calibrated 

over a range of 2-40 kHz to give a flat response (± 1 dB). For in vivo whole-cell recording, 

speakers were calibrated over a range of 4-60 kHz. Stimuli were delivered to the ear 

contralateral to imaging or recording. Auditory stimulus delivery was controlled by software 
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(Dispatcher; http://brodylab.org) running on MATLAB (MathWorks) communicating with a real-

time system (RTLinux). 

Chronic window implantation. Glass windows for calcium imaging were implanted as 

described previously (Kato et al., 2015). In summary, mice were anaesthetized with isoflurane 

and injected with dexamethasone (2 mg/kg) intraperitoneally. A custom stainless steel head-bar 

was glued to the skull. Muscle overlying the right auditory cortex was removed and a craniotomy 

(~2 × 3 mm) was made, leaving the dura intact. A glass window was placed over the craniotomy 

and secured with dental acrylic. Baytril (10 mg/kg) and buprenorphine (0.1 mg/kg) were injected 

before mice were returned to their home cages. 

Two-photon calcium imaging. GCaMP6s was excited at 920 nm (Mai Tai, Newport), 

and images (512 × 512 pixels covering ~500 × 500 μm) were acquired at 28.4 Hz with a 

commercial microscope (B-scope, Thorlabs) running Scanimage software using a 16× objective 

(Nikon). Two-photon imaging fields were aligned with the intrinsic signal imaging fields by 

comparing blood vessel patterns. Images were acquired from L2/3 (120–250 μm below the 

surface) at 2X zoom. 

Imaging analysis. Lateral motion was corrected by Suite2p phase correlation-based 

image alignment (Pachitariu et al., 2016). Regions of interest (ROIs) corresponding to visually 

identifiable cells were detected by Suite2p and manually refined, and pixels within each ROI 

were averaged to create a fluorescence time series Fcell_measured(t). To correct for neuropil 

contamination, ring-shaped background ROIs (starting at 2 pixels and ending at 8 pixels from 

the border of the ROI) were created around each cell ROI. From this background ROI, pixels 

that contained cell bodies or processes from surrounding cells were excluded. The remaining 

pixels were averaged to create a background fluorescence time series Fbackground(t). The 

fluorescence signal of a cell body was estimated as F(t) = Fcell_measured(t) – 0.9 × Fbackground(t). To 

ensure robust neuropil subtraction, only cell ROIs that were at least 3% brighter than the 

background ROIs were included. Sound-evoked responses were measured during one second 
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tone presentations. Cells were judged as significantly excited (inhibited) if they fulfilled two 

criteria: 1) dF/F had to exceed a fixed threshold value consecutively for at least 0.5 seconds in 

more than half of trials. 2) dF/F averaged across trials had to exceed a fixed threshold value 

consecutively for at least 0.5 seconds. Threshold for excitation (1.9 × standard deviation during 

baseline period) was determined by receiver operator characteristic (ROC) analysis to yield a 

90% true positive rate in receptive field measurements. Since inhibitory responses tend to be 

small in amplitude, the threshold for inhibition was set as half that for excitation (-0.95 × 

standard deviation) to increase detection sensitivity. Lifetime sparseness (Rolls and Tovee, 

1995; Willmore and Tolhurst, 2001), or Sp, was calculated as 

(1−{[∑j=1,Nrj/N]2/[∑j=1,Nr2
j/N]})/(1−1/N), where rj was the response peak amplitude of the cell to 

tone j, and N was the total number of tones. (1 – Sp) provides a measure of how much the 

response probability of a neuron was distributed equally among all tones (non-selective: 1 

− Sp = 1) versus attributable entirely to one tone (highly selective: 1 − Sp = 0). 
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CHAPTER 2:  The effects of discriminative auditory fear learning on amygdalocortical sensory 

representations 

Abstract 

Sensory representations in the brain are dynamically modulated by changes in 

behavioral relevance. In many areas of the brain including the auditory thalamus (MG), auditory 

cortex (AC), and amygdala, electrophysiology studies have revealed enhanced responses to a 

tone stimulus (CS+) that is conditioned by pairing with an aversive, unconditioned stimulus (US) 

such as a tail shock. Some studies have also reported a weakening of responses to an 

emotionally neutral tone stimulus (CS-) concurrent to or instead of enhanced CS+ responses. 

Within the complex circuitry that is engaged during discriminative auditory fear conditioning 

(DAFC), the secondary auditory cortex (A2) is uniquely poised as the recipient of direct 

projections from several areas of the brain that are thought to be required for discriminative fear 

retrieval: MG, primary auditory cortex (A1), and the lateral amygdala (LA). However, very little is 

known about what effects DAFC may have on sensory representations in A2 and whether those 

changes, if any, occur locally or reflect plasticity from upstream regions. To begin addressing 

this question, we utilized dual-channel, longitudinal calcium imaging of LA projections and A2 

somas in awake mouse auditory cortex layer 2/3 before and after DAFC. 

 

Introduction 

 Investigating the manner in which sensory representations are modulated by behavioral 

relevance is crucial for understanding how our brains represent the world around us and guide 

behavioral output. In a process termed habituation, repeated presentations of the same pure 

tone results in an increase in tone-evoked SOM-mediated inhibition and a decrease in tone-

evoked pyramidal cell excitation in primary auditory cortex (A1). Associating detection of the 

tone with reward (i.e. increasing the behavioral relevance of the stimulus) reverses these effects 

(Kato et al., 2015). In another related study, mice were presented with randomly interleaved 
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presentations of two frequency-modulated (FM) tones with distinct carrier frequencies. The first 

tone remained emotionally neutral (CS-) while each presentation of the second tone (the 

conditioned stimulus, or CS+) was paired and co-terminated with a tail shock (the unconditioned 

stimulus, or US). This discriminative auditory fear conditioning (DAFC) paradigm was found to 

require the auditory cortex (AC) during retrieval and resulted in selective SOM-mediated 

habituation of pyramidal cell responses to the CS- but not to the CS+ when tested in the 

absence of paired shocks (Gillet et al., 2018). Thus, an increase in the behavioral relevance of a 

sound stimulus, regardless of emotional valence, counteracts habituation in A1.  

The aforementioned studies employed two-photon calcium imaging of awake mouse A1 

and bear the distinct advantage of monitoring the activity of the same cortical neurons at single 

cell resolution over a period of days. However, it is important to note that the DAFC-related 

plasticity reported by these calcium imaging experiments differs from the plasticity reported by 

single unit recording studies, which have primarily tested CS-evoked activity during or 

immediately after conditioning and lack the ability to monitor the same cells during pre- and 

post-conditioning recording sessions. In these studies, a selective enhancement of responses to 

the CS+ is observed in AC as well as in the amygdala, a structure that plays a vital role in 

emotion processing (Bakin and Weinberger, 1990; Collins and Paré, 2000; Diamond and 

Weinberger, 1986; Ghosh and Chattarji, 2015; Goosens et al., 2003; Quirk et al., 1997; Repa et 

al., 2001; Weinberger and Diamond, 1987; Weinberger, 1997, 2004, 2015).  
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Figure 2.1. Lemnical and non-lemniscal pathways to the lateral amygdala (LA). The lateral 

amygdala receives information related to auditory fear conditioning indirectly via the lemniscal 

pathway (red arrows) and directly via the less tonotopic non-lemniscal pathway (blue arrows). In 

addition to receiving direct inputs from primary auditory cortex (A1) and the auditory thalamus 

(MG), secondary auditory cortex (A2) receives direct input from LA (purple arrow). MGd – dorsal 

medial geniculate; MGv – ventral medial geniculate; MGm – medial division of the medial 

geniculate; A1 – primary auditory cortex; A2 – secondary auditory cortex; LA – lateral amygdala. 

Hemi coronal slice images acquired from Allen Brain Insitute adult mouse reference atlas. 

 

In fact, the role of the amygdala in auditory fear conditioning has been investigated far 

more extensively than any other structure thus far. Nevertheless, it has become increasingly 

apparent that fear memory encoding involves significant contributions from modality-specific 

thalamic nuclei, sensory cortices, and dorsal medial prefrontal cortex (Herry and Johansen, 

2014; LeDoux, 2000; Maren and Quirk, 2004). Despite the complexity of auditory fear memory 

circuitry (Figure 2.1-2), a combination of tracing, lesioning and electrophysiology studies have 

pinpointed the lateral amygdala (LA) as the first structure to receive and integrate sensory 

inputs representing the CS-, CS+, and US (Helmstetter and Bellgowan, 1994; LeDoux, 2000; 

LeDoux et al., 1990; Maren et al., 2001; Medina et al., 2002; Muller et al., 1997; Wilensky et al., 
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1999). Strong evidence for this conclusion is also provided by electrophysiology studies which 

report that the LA exhibits notably short latencies for associative plasticity within and across 

conditioning trials (<20 ms from sound onset and within 1-3 trials), and the observed latencies 

are on par with latencies reported in the auditory thalamus (MG) (Disterhoft and Olds, 1972; 

Olds et al., 1972; Quirk et al., 1997). On the other hand, conditioning-related response plasticity 

has been observed at longer latencies in the basolateral amygdala (BLA), central amygdala 

(CEA), and AC (Diamond and Weinberger, 1986; Li et al., 1996; Maren et al., 1991; Pascoe and 

Kapp, 1985; Quirk et al., 1997; Uwano et al., 1995). Within these structures, the secondary 

auditory cortex (A2) appears to play a unique role in the auditory fear pathway, serving as the 

sole recipient of direct inputs from the LA, MG, and A1 (Antunes and Moita, 2010; Ohga et al., 

2018; Yang et al., 2016) (Figure 2.1). Despite the central position of A2 in auditory fear memory 

circuitry, knowledge about the effects of DAFC on A2 cells and LA cells that specifically project 

to A2 remains incomplete. 

Here, we take advantage of dual channel and longitudinal two-photon calcium imaging in 

awake mouse A2 to investigate the effects of DAFC on amygdalar and cortical sound 

representations. Readouts of the autonomic nervous system including freezing behavior, heart 

rate, and pupil dilation are commonly used to monitor strength of fear memory, and these 

behaviors are known to be driven by projections from LA to CEA and then from CEA to various 

brainstem circuits (Davis, 1997; Goosens and Maren, 2001; Koutsikou et al., 2014; Medina et 

al., 2002) (Figure 2.2). For example, electrical stimulation of the central amygdala results in 

pupil dilation (Applegate et al., 1983; Davis, 1997; Ursin and Kaada, 1960), presumably via 

circuitry involving the locus coeruleus (McGinley et al., 2015; Szabadi, 2012). Furthermore, 

human pupillometry and fMRI studies have revealed a positive correlation between phasic pupil 

responses and activity in brain regions involved in fear learning, including the amygdala and 

anterior cingulate cortex (Leuchs et al., 2017). Since our imaging experiments necessitate head-
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fixation, we selected pupil dilation as a reliable and non-invasive metric for quantifying strength 

of DAFC fear memory in this study. 

 

Figure 2.2. Neural circuits engaged during auditory fear conditioning (Medina et al., 2002). CS – 

conditioned stimulus; US – unconditioned stimulus; LA – lateral amygdala; CE – central 
amygdala; CG – central grey; LH – lateral hypothalamus; PVN – paraventricular nucleus. 

 

We show that multi-day conditioning results in a selective decrease in response strength 

and increase in sparseness of representation for the CS-. Concurrently, we observed a selective 

increase in response strength and decrease in sparseness of representation for the CS+. We 

also find that this bidirectional associative plasticity in LA largely precedes the development of 

overt discriminative fear behavior. Furthermore, while the magnitude of pupil dilation and 

strength of tone-evoked activity were positively correlated throughout our experiments, 

correlation between pupil dilation and CS+ response strength was consistently weaker than the 
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correlation between pupil dilation and CS- response strength. Finally, a stronger correlation 

between pupil dilation and the strength of tone-evoked response strength did not become more 

apparent during the first retrieval, as would be expected if conditioned pupil dilation were to 

causally modulate LA CS-evoked activity. Thus, we conclude that any positive correlation in LA 

activity and pupil dilation cannot possibly be related to fear behavior acquisition and is instead 

likely to be attributable to general changes in brain state, such as arousal and attention. Taken 

together, our results suggest that while DAFC-related changes in amygdalocortical activity 

encode an associative fear memory that may play a large role in the emergence of robust 

expression of discriminative fear behavior, this plasticity is not sufficient for expression of the 

behavior itself. The effects of DAFC on local A2 neurons, which integrate direct input from MG, 

A1, and LA, remain to be determined by further experiments. 
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Results 

 

In addition to our interest in how DAFC modulates sensory representations in LA 

neurons that specifically target superficial AC, we were also curious to what degree and on what 

relative time scale any effects observed in amygdalocortical projections would be reflected in 

local A2 neurons. To this end, we first injected AAV2.9-Syn-GCaMP6s in LA and waited 2-3 

weeks for axonal GCaMP6s expression to begin manifesting in A2.  Mice were then 

anesthesized and underwent a craniotomy and injection of AAV2.1-Syn-jrGECO1a in right AC 

before implantation of a chronic imaging window (Figure 2.3A, left). GCaMP6s-labeled axons 

and jrGECO1a-labeled somas in A2 layer 2/3 were visible within 7 days of window implantation 

(Figure 2.3A, middle); however, mice were handled and habituated to the imaging setup for 8-10 

days after surgery before commencing DAFC experiments (Figure 2.3A, right). During imaging, 

an electrostatic speaker and high-speed camera were located contralateral to the imaging field 

of view (FOV) for tone presentation and pupillometry, respectively. In the absence of visible light 

during imaging, pupil dilations are difficult to consistently detect without artificially constricting 

the pupil to a steady baseline level. For this reason, a 590 nm amber LED optic fiber was 

located anterior of the imaging FOV and targeted at the animal’s left eye to constrict the pupil to 

approximately 50% of maximum dilation. To block the amber light from reaching the 

photomultiplier tubes used for acquisition of calcium indicator signals, the cement head cap of 

the mouse was painted with black nail polish, and an extensive system of blackout curtains was 

fashioned around the imaging stage. 

The speed at which a DAFC-related behavioral response is acquired presumably 

depends on the complexity and salience of the auditory stimuli as well as the conditioning 

protocol itself. Nevertheless, the precise relationships between rate of fear acquisition and 

protocol design factors including sound pressure level, sound duration, sound complexity, and 

innate behavioral relevance of sounds have not been systematically tested and remain poorly 
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defined. Furthermore, the aversiveness of the unconditioned stimulus (US), including its 

strength, duration, and the manner in which it is delivered, can greatly affect learning outcomes 

(Baldi et al., 2004; Laxmi et al., 2003). In our pilot behavior experiments, we observed that the 

number of conditioning days required to develop statistically significant, discriminative pupil 

dilation to the CS- and CS+ varied widely between 1 to 3 days, regardless of whether pure 

tones, frequency-modulated (FM), or amplitude-modulated (AM) tones were presented (data not 

shown). However, increasing the shock amplitude above 1 mA did not improve this variability 

and instead resulted in a notable tendency for mice to generalize fear across both stimuli. This 

effect was likely, in part, due to retrieval sessions occurring in essentially the same context as 

conditioning sessions. We would face significant limitations in differentiating the smells, 

textures, and visual cues of the imaging box as a result of the complex system of blackout 

curtains used to precisely block amber light from reaching the PMTs while maintaining well-

targeted illumination to constrict the pupil. Thus, we elected to proceed with pure tone stimuli 

paired with 0.5-1 mA tail shocks and accounted for variability in fear acquisition rate by using a 

DAFC protocol spanning 5 days (4 conditioning sessions). 

Individual mice first exhibited significant discriminative pupil dilation to the CS- and CS+ 

as early as the first retrieval session (1 mouse) and as late as the last retrieval session (1 

mouse) (Figure 2.3C1). Overall, 5 of 7 mice achieved significant discriminative behavior during 

the second retrieval session or earlier (Figure 2.3C2). Daily localization of the same subset of 

amygdalocortical projections and local A2 neurons is a substantial challenge in longitudinal 

imaging experiments. We accomplished this robustly and with reasonable confidence by 

aligning the imaging FOV for all retrieval days to a maximum projection of all images acquired 

during the first day of the DAFC protocol (Figure 2.3D). 

 

  



 26 

 
Figure 2.3. Discriminative auditory fear learning is acquired within 1-2 sessions of conditioning. 

(A) Left, AAV2.9-Syn-GCaMP6s is injected in the lateral amygdala (LA) 2-3 weeks prior to 
AAV2.1-Syn-jrGECO1a injection in auditory cortex (AC) and chronic window implantation. Right, 
a high-speed camera and electrostatic speaker are located contralateral to the imaging field of 
view for pupillometry and tone presentation, respectively. The mouse is head-fixed on a stage 
and fitted with a tail wire for delivering shocks during all imaging sessions. (B) Each day of 
imaging begins with either a habituation (day 1) or retrieval session when neither the CS- nor 
the CS+ are co-terminated with a tail shock, followed by a conditioning session when only the 
CS+ is co-terminated with a tail shock (C1) Quantification of pupil dilation to CS- and CS+ for a 
representative experiment in which learned discriminative fear behavior becomes apparent after 
two conditioning sessions (Mann-Whitney U test; P=0.0058 for retrieval2, P=0.0312 for 
retrieval3, P=0.0022 for retrieval4). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. (C2) 
Summary quantification of pupil dilation (N=7 mice; CS- and CS+ between 2-40 kHz, spaced 
0.54 – 1.08 octaves apart) reveals acquisition discriminative conditioned response after two 
conditioning sessions (paired t-test). Over multiple sessions of conditioning, the difference in 
pupil dilation in response to the CS- and CS+ does not significantly increase in magnitude (two-
way ANOVA; P=0.01 for stimulus identity, P=0.0002 for session number, p=0.5557 for 
interaction). (D) Representative maximum projection images of an A2 layer 2/3 calcium imaging 
field of view confirms successful imaging of the same set of axons and somas over 6 
consecutive days of imaging. 
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 The first day of DAFC began with a habituation session in which the CS- and CS+ (5 sec 

duration, 45±15 sec inter-trial interval) were both presented in randomly interleaved order, for a 

total of 5 to 10 repetitions and in the absence of the tail shock (US). Pure tone frequencies were 

selected empirically from a stimulus set of 50 dB pure tones between 2-40 kHz with the goal of 

maximizing cell responsiveness to both the CS- and CS+ prior to conditioning. For all 

experiments, the CS- and CS+ were spaced 0.54 to 1.08 octaves apart. After the habituation 

session, mice underwent their first conditioning session in which the CS- and CS+ were again 

presented in randomly interleaved order for 20 repetitions, and each CS+ tone was co-

terminated with a 2 second duration tail shock. Subsequent days of DAFC began with a retrieval 

session to test behavioral and cellular responses to the CS- and CS+ in the absence of the US, 

for a total of 5 to 10 repetitions. Finally, with the exception of the last day of imaging, the 

retrieval session was always followed by a conditioning session to reinforce fear learning, 

keeping in mind the possibility that some mice may exhibit slower learning than others (Figure 

2.3B). 

 
 

Figure 2.4. Responses of example A2 somas before and after multi-session discriminative 

auditory fear conditioning. (A1) CS+ responsive soma. (A2-3) CS- responsive somas. 
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Due to our observation that, on average, significant discriminative pupil dilation 

manifested only after 2 conditioning sessions, we expected stimulus-specific changes in LA and  

A2 activity to appear approximately concurrent to the second retrieval session. Interestingly, 

while overt changes in the activity of some local A2 somas were observed to first appear during 

the second retrieval session (Figure 2.4), the plasticity observed in amygdalocortical axons 

seemed to robustly and predominantly appear during the first retrieval session (Figure 2.5). As 

predicted by previous electrophysiological studies of DAFC-related short-term plasticity, we 

observed LA axons and A2 somas that exhibited selective increase in responses to the CS+ 

(Figure 2.4A1, Figure 2.5A3-5), as well as ones that exhibited selective decrease in responses 

to the CS – (Figure 2.4A2-3, Figure 2.5A1). Additionally, DAFC also appeared to result in 

suppression of responses to the CS- or CS+ in some cases (Figure 2.5A2, A4). 
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Figure 2.5. Responses of example amygdalocortical axons before and after multi-session 

discriminative auditory fear conditioning. (A1) CS- responsive axon. (A2) CS+ responsive axon 

exhibiting suppression during retrieval. (A3) CS+ responsive axon exhibiting gradually stronger 

and shorter-latency excitation during retrieval. (A4) Axon exhibiting stronger responses to the 

CS+ and increased suppression to the CS- during retrieval. (A5) Axon exhibiting stronger 

responses to both the CS- and CS+ during retrieval. 
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 We then quantified z-scored responses in two ways to assess whether DAFC resulted in 

changes in amygdalocortical activity: integral during the tone period serves as a measure of 

sustained response strength and peak during the tone period serves as a measure of transient 

response strength. Due to a low sample size for tone-responsive A2 somas (n = 10 cells), we 

focused all further analysis on the amygdalocortical axons (n = 867 cells). Despite the broad 

spectrum of effects observed in individual axons, the overall effect of DAFC on amygdalocortical 

axon activity is a selective increase in sustained response strength to the CS+ (Figure 2.6A, top 

right; Figure 2.6B, bottom) and a selective decrease in transient response strength to the CS- 

(Figure 2.6B, top). The increase in CS+ sustained response strength relative to that of 

habituation was statistically significant (two-way ANOVA; P<0.0001 for stimulus identity; 

P=0.025 for session number; P=0.0735 for interaction) after one conditioning session, while the 

decrease in CS- transient response strength was statistically significant (two-way ANOVA; 

P<0.0001 for stimulus identity; P=0.0891 for session number; P=0.0593 for interaction) after 

three conditioning sessions. Taken together, DAFC results in selective, bidirectional changes in 

tone-evoked response strength in amygdalocortical projections, with CS+ associative plasticity 

occurring relatively faster than CS- associative plasticity.  

 Next, we explored the overall sparseness of CS- and CS+ amygdalocortical 

representations and observed a significant interaction effect between stimulus identity and 

session number (two-way ANOVA; P=0.0497), indicating that the divergence in sparseness of 

CS- and CS+ representations varied through multiple days of conditioning. Finally, to determine 

if the observed changes in response strength and sparseness of representations could 

contribute to improved discrimination between the CS- and CS+, we measured % of cells with 

significantly different CS- and CS+ responses and standardized Euclidean distance between 

CS- and CS+ responses during habituation and each retrieval session (Figure 2.6D). As 

expected, the discriminability of population CS- and CS+ responses increased with conditioning 

(Friedman’s ANOVA, Discriminating cells P=0.05, Std. Euclidean distance P=0.0136). 
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Figure 2.6. DAFC mediates bidirectional effects on CS- and CS+ response strength and 

sparseness of representations. (A) Mean raw traces of LA axon (top) and A2 soma (bottom) 

responses to the CS- and CS+ during habituation and retrieval sessions.  Cells deemed to be 

responsive to either the CS- or the CS+ (Wilcoxin rank sum test, see Experimental Procedures) 

during any habituation or retrieval session were included in this analysis. (B) Z-scored traces 

were quantified by peak during the tone period as a measure of transient response strength, 

and by integral during the tone period as a measure of sustained response strength. CS+ 

sustained response strength increased relative to that of habituation (two-way ANOVA; 

P<0.0001 for stimulus identity; P=0.025 for session number; P=0.0735 for interaction) during the 

first retrieval session (post-hoc multiple comparisons; p=0.0474), while CS- transient response 

strength decreased (two-way ANOVA; P<0.0001 for stimulus identity; P=0.0891 for session 

number; P=0.0593 for interaction) during the third (post-hoc multiple comparisons; P=0.0449) 

and fourth (post-hoc multiple comparisons; P=0.033)  retrieval sessions. (C1) Major categories 

of tone-responsive axons include those that are excited by only the CS-, only the CS+, or both, 

and those that are suppressed by only the CS- or only the CS+. (C2) Sparseness of CS- and 

CS+ representations become increasingly divergent with DAFC (two-way ANOVA; P<0.0001 for 

stimulus identity; P=0.8015 for session number; P=0.0497 for interaction).  (D) Top, 

standardized Euclidean distance increases (Friedman’s ANOVA; P=0.0136) with DAFC. 

Bottom, the %age of tone-responsive cells with significantly different responses to the CS- and 

CS+ increases with conditioning (Friedman’s ANOVA, P=0.05). 
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To assess whether DAFC also induced short-term plasticity in amygdalocortical cells, we 

evaluated the average CS- and CS+ responses during early trials  (first 5 of 20 presentations)  

compared to late trials (last 5 of 20 presentations) of the first conditioning session (Figure 2.7). 

Onset-locked responses to the CS- and CS+ did not appear to change significantly between 

these time frames. Interestingly, offset-locked CS- responses exhibited a tendency to decrease 

in magnitude while offset-locked CS+ responses exhibited a tendency to increase in magnitude.  

 

 
Figure 2.7. Amygdalocortical tone onset responses are not significantly different early in the first 

conditioning session relative to late in the session. (A) For each axon, each of the first 5 

responses to the CS- and CS+ were averaged together and compared to the average waveform 

of the last 5 responses to the CS- and CS+. 

 

Lastly, we wondered how closely amygdalocortical response strength might correlate 

with pupil dilation on a trial-by-trial basis, given our intriguing observations that enhancement of 

CS+ response strength precedes significant discriminative pupil dilation by at least 24 hours. 

During the first retrieval, CS+ response strength increased and pupil dilations became apparent 

in response to both the CS- and CS+. If response strength and magnitude of pupil dilation were 

to form any sort of causal relationship, we would expect correlation between the two to increase 

significantly after the first conditioning session. In fact, neither correlation between magnitude of 

pupil dilation and CS- response strength nor correlation between magnitude of pupil dilation and 
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CS+ response strength increased between habituation and the first retrieval (Figure 2.8). 

Additionally, the correlation between pupil dilation and CS+ response strength was consistently 

weaker than the correlation between pupil dilation and CS- response strength. Taken together, 

these results confirm dissociation of DAFC-related LA plasticity and conditioned fear behavior, 

and the overall positive correlation between response strength and pupil dilation is likely due to 

general changes in arousal or attention throughout the conditioning protocol. 

 

 
Figure 2.8. Amygdalocortical response strength and magnitude of pupil dilation are positively 

correlated. Each data point is the population mean sustained response strength during each 

CS- or CS+ trial (n=867 cells; N = 7 mice). Development of conditioned pupil dilations after the 

first conditioning session does not appear to significantly increase correlation between CS- and 

CS+ response strength and pupil dilation (retrieval1). Conversely, development of stronger CS+ 

responses after the first conditioning session does not significantly increase correlation between 

CS+ response strength and pupil dilation (retrieval1). Finally, correlation between CS+ response 

strength and pupil dilation appears consistently weaker than the correlation between CS- 

response strength and pupil dilation. Thus, no causal relationship is likely to exist between 

amygdalocortical activity and pupil dilation; however the observed positive correlation during all 

imaging sessions is likely attributable to general changes in arousal and attention.  
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Discussion 

 

 By tracking the tone-evoked activity of the same subset of A1 layer 2/3 amygdalocortical 

axons before and after DAFC, we found that responses to the CS+ became more sustained 

while responses to the CS- weakened. Additionally the sparseness of CS+ representation 

decreased while the sparseness of CS- representation increased after conditioning. Thus, 

DAFC results in significant improvement to the discriminability between amygdalocortical CS- 

and CS+ representations. To the best of our knowledge, our findings are novel and are the first 

report of selective and bidirectional plasticity in LA to AC projections after DAFC. However, our 

results are also entirely consistent with the DAFC-related effects reported from single unit 

recordings in adult cats (Collins and Paré, 2000). This electrophysiology study is comparable to 

ours in terms of multi-day DAFC protocol design and monitoring of activity in LA over several 

days; however, there are several significant factors that distinguish the impact of their results 

from those reported here. First, the sample size of the unit recording study is relatively small (72 

cells from 4 animals). Second, it is impossible to discern the downstream structure or structures 

within the auditory fear pathway that the recorded cells project to. Finally, as is true with all 

extracellular recording studies, the subset of cells recorded during each retrieval session are 

highly unlikely to be the same across each day of recordings. 

An interesting aspect of our findings is that the DAFC-related changes in LA activity 

precede the emergence of overt discriminative fear behavior by roughly one conditioning day. 

While this dissociation between conditioned behavior and conditioning-related LA plasticity is 

surprising, several previous studies have reported similar findings, albeit on shorter timescales.  

In one electrophysiology study, an increase in LA responses to the CS+ was observed within 

just a few pairings of CS with US, but the conditioned freezing response did not emerge until 

several trials later (Repa et al., 2001). Additionally, some LA neurons maintained enhanced 

firing to the CS+ after extinction of the fear response. Conditioning-related response plasticity in 
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secondary auditory cortex of adult cats also precedes the expression of conditioned pupil 

dilation by many trials (Diamond and Weinberger, 1986). Finally, an impressive and 

comprehensive unit recording study in rats provides compelling evidence that the LA stores a 

bonafide CS-US associative fear memory despite complete dissociation from conditioned 

behavioral responses (Goosens et al., 2003). In this study, rats underwent DAFC as well as 

contextual fear conditioning before testing in either a neutral context or the conditioned context. 

If post-conditioning enhancement of CS+ responses is simply a non-associative result of 

conditioned fear behavior expression rather than a specific association between the CS and the 

US, then CS- responses would be enhanced when rats are tested for retrieval in the conditioned 

context. On the contrary, the expression of conditioned fear behavior did not result in 

enhancement of CS- responses. Furthermore, reversible pharmacological inhibition of CEA 

eliminated conditioned freezing behavior without affecting post-DAFC enhancement of CS+ 

responses. Thus, expression of conditioned fear behavior is not necessary or sufficient for 

inducing an enhancement in LA CS+ responses. In conclusion, our findings are consistent with 

an existing model which proposes that the LA is a primary site of discriminative fear memory 

storage and may play a significant role in the subsequent emergence of conditioned fear 

behavior. 

Our next experiments will be aimed at determining whether the dissociation we observed 

between expression of discriminative fear behavior and conditioning-related plasticity in LA is 

reflected in the activity of local A2 layer 2/3 neurons, where direct inputs from A1, MG, and LA 

are integrated. Based on our preliminary findings, we would conclude that LA projections to A2 

are unlikely to innervate CEA and drive expression of fear behavior directly. However, the fact 

that optogenetic silencing of LA to A2 projections blocks retrieval of non-discriminative (no CS- 

included in protocol) auditory fear memory (Yang et al., 2016) suggests that information transfer 

along this pathway may also be required for retrieval of DAFC fear memory. Additionally, 

induction of long-term potentiation (LTP) in A2 to LA projections that carry CS+ information is 
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sufficient for inducing conditioned fear behavior, and de-potentiation of the same connections 

impairs memory recall (Kim and Cho, 2017; Nabavi et al., 2014). Taken together, we imagine a 

model of DAFC circuitry in which A2 is a crucial driver of conditioned fear behavior expression 

through discriminability in the activity of its direct projections to LA. In this model, LA input to A2 

is a necessary complement to the CS- and CS+ representations encoded by MG and A1, 

especially because DAFC does not seem to result in enhancement of CS+ responses in A1 

(Gillet et al., 2018). In order to test this proposed model, we plan to combine longitudinal 

calcium imaging with optogenetic manipulations during retrieval to investigate how DAFC affects 

sensory representations in A2 layer 2/3 neurons and whether those changes are encoded 

locally or are inherited from specific upstream regions.  
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Experimental Procedures 

 Animals. Mice between 8 and 16 weeks of age of both genders were used for all 

experiments. Mice were acquired from Jackson Laboratories (C57BL/6 (Jax: 000664)) and 

housed in a room with a 12:12 reversed light cycle. Experiments were performed during the 

dark period. Mice had no prior history of experimental procedures that could affect the results. 

All procedures were in accordance with protocols approved by the UCSD Institutional Animal 

Care and Use Committee and guidelines of the National Institute of Health. 

 Amygdala viral Injection. Three weeks prior to chronic window implantation, mice were 

stereotaxically injected in right lateral amygdala (2.1 mm behind bregma, 4.35 mm right of the 

midline, and 4.5 mm deep) with 200 uL of AAV2.9-Syn-GCaMP6s (UPenn Vector Core) diluted 

1:40 with sterile PBS, at a rate of 25 nL/min. The surgical site was sutured and mice were 

returned to home cages for recovery. 

AC viral injection and chronic window implantation. Mice were anaesthetized with 

isoflurane and injected with dexamethasone (2 mg/kg) intraperitoneally. A custom stainless 

steel head-bar was glued to the skull. Muscle overlying the right auditory cortex was removed 

and a craniotomy (~2 × 3 mm) was made, leaving the dura intact. At each of 10-15 contiguous 

locations 275 um below the pial surface, 30 nL of AAV2.1-Syn-jRGECO1a (Addgene) virus was 

injected in at a rate of 10 nL/min. A glass window was placed over the craniotomy, sealed with 

Vetbond, and secured with dental acrylic. Baytril (10 mg/kg) and buprenorphine (0.1 mg/kg) 

were injected before mice were returned to their home cages for recovery. 

Mouse handling and habituation. Mice were handled for 5 minutes daily for the first 3 

days following window implantation. Then, mice were habituation to head fixation and a tail wire 

under a two-photon microscope for 2 hours a day for 5-7 days. 

 Intrinsic signal imaging. Intrinsic signal imaging was performed through chronic 

windows 1-3 days before calcium imaging to locate A2. Images were acquired using a tandem 

lens macroscope and 12 bit, CCD camera (CCD-1300QF, VDS Vosskühler). were acquired 
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using a tandem lens macroscope and 12 bit, CCD camera (CCD-1300QF, VDS Vosskühler). 

Mice were anesthetized with isoflurane. Images of surface vasculature through the chronically 

implanted window were acquired using green LED illumination (530 nm) and intrinsic signals 

were recorded (27 Hz) using red illumination (615 nm). Each trial consisted of a 1s baseline 

followed by a 1 s sound stimulus (70 dB pure tone with a frequency of 3, 10, or 30 kHz, 10-20 

trials per frequency) and a 30 s inter-trial interval. Images of reflectance were acquired at 1024 

X 1024 pixels (covering ~2.1 x 2.1 mm) and downsampled to 512 x 512 pixels by interpolation. 

Images during the response period (0.5-2 s from the sound onset) were averaged and divided 

by the average image during the baseline. Images were averaged across trials and Gaussian 

filtered. 

Discriminative auditory fear conditioning. Mice were head-fixed on a stage and fitted 

with a tail wire for delivering shock. Auditory stimuli were delivered via a free-field electrostatic 

speaker (ES1: Tucker-Davis Technologies). Stimuli were delivered to the ear contralateral to 

imaging or recording. Auditory stimulus and tail shock delivery was controlled by software 

(BControl; http://brodylab.org) running on MATLAB (MathWorks) communicating with a real-time 

system (RTLinux). Mice were presented with two 5-s pure tones, 0.54-1.08 octave apart. Tones 

(50 dB) were presented from a calibrated, free-field speaker (ES- 1, TDT) positioned 

approximately 5 cm from the left ear. An inter-trial interval (ITI) of 30–60 s (15 s jitter) separated 

tone presentations. During conditioning sessions, mice were given a 2 s tail shock (0.5-1 mA) 

that co-terminated with the presentation of one of the two tones (CS+). 

In vivo two-photon calcium imaging. Calcium imaging was performed within 2-3 

weeks following chronic window implantation. Two-photon imaging fields were aligned with the 

intrinsic signal imaging fields by comparing blood vessel patterns. GCaMP6s and jRGECO1a 

were excited at 1000 nm (Insight X3, Spectra Physics), and images (512 × 512 pixels covering 

~500 × 500 μm) were acquired at 30 Hz with a commercial microscope (B-scope, Thorlabs) 

http://brodylab.org/
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running Scanimage 5 software using a 16× objective (Nikon). Images were acquired from L2/3 

(120–250 μm below the surface) at 4X zoom.  

Imaging analysis. Image registration, ROI detection and refinement, data pre-

processing, and detection of significant sound-evoked excitation and suppression was 

completed using the MATLAB Suite2P/Pei2P pipeline as described in Chapter 4. Axon boutons 

with a cross-correlation value greater than 0.6 were assumed to be from the same axon and 

were analyzed as such. The cross-correlation threshold was identified empirically through 

visualization of boutons clustered with a wide range of correlation thresholds. Raw dF/F traces 

were z-scored prior to any further analysis. For each DAFC imaging session, the pairwise 

standardized Euclidean distance between the cells’ mean responses (integral dF/F) to the CS- 

and their mean responses to the CS+ was measured using the MATLAB function pdist2() and 

averaged together. Cells categorized as “discriminating” were ones which exhibited significantly 

different CS- and CS+ responses (Wilcoxin signed rank test P<0.01 for >80% of time points in 

at least one 0.5 s window across trials during presentation of CS- or CS+). 

Pupillometry. The eye contralateral to imaging or recording was monitored via a 

compact, high-speed camera (BFLY-U3-05S2M-CS, Point Grey) with 50 mm fixed focal lens 

(M5018-MP2, Computar). Pupil measurements were acquired via the open-source software 

Bonsai (bonsai-rx.org). 

Analysis of pupil data. Raw pupil diameter was smoothed using a moving average filter 

over a window of 1 sec, then normalized to the maximum value during a given imaging session 

or series of recordings from the same mouse. 

Histology. Perfused tissue was left in 4% PFA overnight and then cryoprotected in 30% 

sucrose for at least 24-48 hours. Tissue was frozen and sliced coronally (100 um) on a 

microtome and mounted on slides with DAPI to label all cells. 

 Quantification and statistics. All data are presented as mean ± SEM. Statistically 

significant differences between conditions were determined using standard parametric or 
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nonparametric tests in MATLAB. All n values refer to the number of cells except when explicitly 

stated that the n is referring to the number of mice. Experiments were not performed blind. 

Sample sizes were not predetermined by statistical methods, but were based on those 

commonly used in the field. 

 Data and software availability. The custom MATLAB code will be made available upon 

reasonable request.  
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CHAPTER 3:  Brain state modulates frequency tuning in primary auditory cortex 

Abstract 

Changes in arousal influence cortical sensory representations, but the effects of arousal 

on frequency tuning and discrimination in the auditory cortex remain unclear. Here we use two-

photon Ca2+ imaging in auditory cortex of awake mice to show that heightened arousal, as 

indexed by pupil dilation, broadens frequency-tuned activity of layer 2/3 pyramidal cells. 

Sensory representations are less sparse and the tuning of nearby cells more similar when 

arousal increases.  However, as arousal increases, mean shared trial-by-trial variability is 

reduced such that cell ensembles are better at frequency discrimination. 

 

Introduction 

Information processing in sensory cortex is modulated by changes in behavioral states 

such as those associated with arousal, attention or task engagement (Harris and Thiele, 2011a; 

Lee and Dan, 2012; McGinley et al., 2015b; Zagha and McCormick, 2014). Indeed, moment-to-

moment changes in arousal have strong effects on spontaneous and stimulus evoked firing 

activity in primary visual cortex (Ayaz et al., 2013; Bennett et al., 2013; Fu et al., 2014; Mineault 

et al., 2016; Niell and Stryker, 2010; Polack et al., 2013; Reimer et al., 2014; Vinck et al., 2015) 

and auditory cortex (McGinley et al., 2015a; Schneider et al., 2014; Zhou et al., 2014). In 

recordings from head-fixed mice, changes in arousal are typically assessed by measurements 

of pupil diameter or exploratory behavior such as locomotion, with increases in pupil diameter 

and bouts of running/walking indicating heightened arousal (McGinley et al., 2015a). 

Interestingly, the transition from quiet wakefulness to locomotion has different effects in visual 

and auditory cortex: walking/running increases stimulus-driven firing in V1 (Ayaz et al., 2013; 

Niell and Stryker, 2010; Polack et al., 2013; Saleem et al., 2013; Vinck et al., 2015)  and is 

associated with a decrease in sensory-evoked firing in A1 (McGinley et al., 2015a; Schneider et 

al., 2014; Zhou et al., 2014).  However, heightened arousal does not require movement and 
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recent work suggests that motor feedback signals to sensory cortex modulate activity differently 

than arousal tracked by pupillometry during quiet wakefulness (Schneider et al., 2014; Vinck et 

al., 2015). Despite the potential for arousal to regulate cortical sensory coding, the manner in 

which changes in brain state influence tuning properties in the auditory cortex remain 

incomplete, particularly when considering arousal on a finer continuum than a binary 

classification of active or inactive behavioral states. 

In this study, we use pupillometry and Ca2+ imaging to study how fluctuations in arousal 

in the absence of locomotion modulate frequency coding in A1 of head-fixed mice. Transitions 

from low to moderate and high arousal levels enhance the strength and reliability of responses 

to pure tones and increase the tuning broadness of L2/3 pyramidal cells. Although sensory 

representations become less sparse and signal correlations increase, heightened arousal 

reduces noise correlations and improves tone discrimination by cell populations.  
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Results 

We used transgenic mice (Emx-Cre/CamKII-tTA/Ai94(TITL-GCaMP6s)) and two-photon 

imaging to study responses to tones in A1 L2/3 pyramidal cells. Prior to recording, head-fixed 

mice were habituated to sitting quietly for prolonged time periods (1-2 hours) on a static 

platform. During imaging of A1 in the right hemisphere, mice sat on a passive treadmill that 

measured movement while a camera simultaneously monitored pupil dilation of the contralateral 

eye and blocks of pure tones (17 frequencies, 2 – 40 kHz, 1 s duration, 60 dB) were delivered 

via free-field speaker to the contralateral ear (Figure 3.1A). Over the course of single imaging 

sessions, pupil diameter routinely fluctuated between constricted and dilated states (Fig. 3.1B). 

Measurements were normalized to maximum pupil diameter for each recording. Under our 

recording conditions, mice were stationary for the vast majority of time and while sporadic 

locomotion bouts were nearly always associated with maximally dilated pupils, mice spent 

considerable time with pupils just as dilated while stationary (Figure 3.1B-C). As reported by 

previous studies (McGinley et al., 2015a; Schneider et al., 2014; Zhou et al., 2014), locomotion 

during hyperarousal resulted in a suppression of tone-evoked activity (Figure 3.2). For all 

experiments, we excluded from analysis the small number of tone trials during locomotion, 

thereby limiting our investigation to how different levels of arousal (indexed by pupil diameter) 

modulate cortical activity. 

 We examined the influence of arousal on tone-evoked responses by sorting tone trials 

by the mean pupil diameter during the tone period. While significant tone-evoked responses 

were rarely observed in individual cells when pupils were most constricted (1-20% of maximal 

diameter), the same tones elicited robust responses as pupil diameter increased (Figure 3.1D). 

This reflects the fact that both the amplitude and reliability of tone-evoked responses were 

strongly dependent on arousal. At best frequency (BF, defined as the frequency eliciting the 

strongest response in each cell averaged across all pupil diameters), the response strength and 

trial-to-trial reliability increased by more than 4-fold (Friedman’s ANOVA, Pstrength<0.0001, 
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Preliability<0.0001) when pupils were most dilated (81-100% vs. 1-20% maximal diameter (Figure 

3.1E1). These changes in response strength led to a marked increase (Friedman’s ANOVA, P% of 

tones<0.0001) in the broadness of frequency tuning in individual cells: the number of tones 

eliciting significant responses peaked at moderate arousal levels (41-60% of maximal pupil 

diameter, Figure 3.1E2). Similar results were obtained with analysis of lifetime sparseness 

(Friedman’s ANOVA, P(1-Sp)<0.0001), a measure that does not require thresholding responses 

(Figure 1.1E2). We next examined whether arousal modulates the shape of frequency tuning 

curves by centering cell responses at the low arousal BF, defined as the frequency eliciting the 

strongest response in each cell when averaged across all trials with 1-35% maximal pupil 

diameter (Figure 3.1F). Intriguingly, increases in arousal widened frequency tuning curves 

(n=119 cells; two-way ANOVA, Parousal<0.0001, Pfrequency<0.0001, Pinteraction<0.0001) in an 

asymmetric fashion: responses to frequencies higher than the low arousal BF were more 

strongly enhanced than responses to frequencies lower than the low arousal BF (Figure 3.1F). 

Importantly, despite these arousal-dependent changes in the symmetry of tuning curves, the BF 

of individual cells remained stable (n1-35%=119 cells, n66-100%=186 cells, Kolmogorov-Smirnov 

test, P=0.9411, Figure 3.1F). Taken together, these results indicate that arousal strongly shapes 

the strength and reliability of tone evoked responses and broadens frequency tuning in A1 layer 

2/3 cells. 
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Figure 3.1. Arousal asymmetrically modulates frequency tuning of layer 2/3 pyramidal cells. (A) 
A high-speed camera and electrostatic speaker were located contralateral to the imaging FOV 
for pupillometry and tone delivery, respectively. (B) Top, 100 blocks of 17 60 dB pure tones, 
logarithmically spaced between 2 and 40 kHz, were presented during each imaging session. 
Middle, pupil diameter constantly fluctuates over a large range. Bottom, locomotion was tracked 
by a low-friction treadmill. (C) Locomotion only occurs during states of maximal pupil dilation, 
and mice primarily remained stationary during imaging due to extensive habituation with the 
setup. (D) Tone responses for a representative cell are modulated by arousal at preferred 
frequencies. (E1) Best frequency (BF) response strength and reliability monotonically increase 
with arousal (n=195 cells). BF was defined here as the frequency that evoked the strongest 
mean responses (integral dF/F) irrespective of arousal state. Response reliability for each cell 
during each arousal state was quantified as the mean pairwise, trial-by-trial Pearson’s 
correlation coefficient. Response strength and reliability were normalized to each cell’s 
corresponding low arousal (1-20% pupil max) mean value. (E2) Tuning broadness increases 
with arousal and was measured by either % of tones that evoked statistically significant 
responses or lifetime sparseness (Sp) subtracted from 1. (F) Left, tuning broadness is 
modulated asymmetrically by arousal (n=119 cells). BF was defined here as the frequency that 
evoked the strongest response (integral dF/F) during low arousal (1-35% pupil max). Cells that 
did not exhibit significant responses during low arousal were excluded. Middle inset, Best 
frequencies do not shift significantly between low (constricted, 1-35% pupil max) and high 
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(dilated, 66-100% pupil max) arousal (nlow=119 cells, nhigh=186 cells). Right, tuning curve for low 
arousal scaled to that of high arousal. 
 

 

Figure 3.2. Locomotion suppresses tone-evoked activity during hyperarousal. (A) Each cell’s 

response waveforms at BF were averaged together for each brain state (n=140 cells). Cells 
from experiments in which locomotion did not occur during tone presentations were excluded 
from this analysis. (B) Response strength (integral dF/F) at BF increases monotonically with 
arousal in the absence of locomotion, and locomotion during hyperarousal (81-100% pupil max) 
results in suppression of BF responses (n=140 cells; Student’s t-test; P=0.0058). 
  
 We next considered how arousal-dependent changes in pyramidal cell response 

properties contribute to sensory representations in A1. Consistent with the increases in 

response strength and tuning broadness, the fraction of cells in imaging fields (n = 8 fields, 5 

mice) responding to any of the presented tones was strongly dependent on the level of arousal 

(Friedman’s ANOVA, P<0.0001), Figure 3.3A-B). On average, the fraction of tone responsive 

cells increased from 3.05±0.65% during periods of lowest arousal (1-20% maximal pupil 

diameter) to 9.17±0.91% during moderate arousal (41-60% maximal diameter), and there was a 

slight reduction of responses during the periods of highest arousal (81-100% max diameter).  

These results indicate that arousal shapes the relative sparseness of sensory representations at 

the population level. 
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 How do the arousal-related changes in sensory representations we observe impact the 

ability of the L2/3 pyramidal cell population to discriminate tone frequencies? At face value, the 

reduction in sparseness of activated cells and broadening of frequency tuning should increase 

overlap in cell ensembles activated by individual tone frequencies. This implies that increases in 

arousal would degrade rather than improve the ability of A1 L2/3 to discriminate different tone 

frequencies. To address this issue, we analyzed inter-neuronal correlations that contribute to 

population coding: signal correlations (rsignal), a measure of tuning similarity between pairs of 

neurons and noise correlations (rnoise), a measure of how much the trial-to-trial response 

variability of a pair of neurons is correlated (Averbeck et al., 2006; Cohen and Kohn, 2011). 

Consistent with previous studies in auditory cortex (Downer et al., 2015; Issa and Wang, 2013; 

Rothschild et al., 2010; Winkowski and Kanold, 2013), mean rsignal and rnoise values were small 

and positive (n = 4938 cell pairs pooled from 8 experiments, Figure 3.3C1-2). Inter-neuronal 

correlations were also modulated bidirectionally by arousal (two-way ANOVA, Parousal<0.0001, 

Pcorrelations<0.0001, Pinteraction<0.0001). Across all tone-responsive cells, mean rsignal increased 

markedly as pupils became more dilated (Figure 3.3D1).  This indicates that the tuning of L2/3 

pyramidal cells became more similar as arousal increased, consistent with the notion that 

elevations in arousal could degrade frequency discrimination. However, for the same cell pairs, 

mean rnoise tended to fall as arousal increased (Figure 3.3D1).  Previous work has established 

that reducing rnoise should enhance sensory discrimination when cell pairs exhibit more similar 

tuning, but impair discrimination when tuning is more dissimilar (Averbeck et al., 2006; Cohen 

and Kohn, 2011; Downer et al., 2015; Gu et al., 2011; Jeanne et al., 2013). Thus, we performed 

a linear fit on the the rsignal values of each cell pair and found that while the majority of pairs 

increased (n=3086 cell pairs) in rsignal with arousal, there was a significant subset of pairs that 

decreased (n=1852 cell pairs) in rsignal with arousal. Intriguingly, we found that arousal-

dependent changes in rnoise were highly selective:  rnoise decreased specifically in cell pairs that 

became more similarly tuned (increase in rsignal) as arousal increased (two-way ANOVA, 
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Parousal<0.0001, Pcorrelations<0.0001, Pinteraction<0.0001, Figure 3.3D2). In contrast, rnoise increased 

specifically in cell pairs in which elevations in arousal led to a reduction in rsignal (two-way 

ANOVA, Parousal<0.0001, Pcorrelations=0.0664, Pinteraction<0.0001, Figure 3.3D3). Together, these 

relationships between rsignal and rnoise suggest that increases in arousal should enhance 

frequency discrimination by cell populations in L2/3.  

  To investigate the net effect of arousal-dependent changes in tone-evoked activity on 

frequency discrimination, we used a nonlinear classifier to assess layer 2/3 pyramidal cell 

representations of pure tones. The classifier was trained on 75% of tone trials (randomly 

selected) in a given experiment, with vectors containing the cells’ response strengths (integral 

dF/F) during each trial, paired with the tone frequency presented during each trial. The 

remaining 25% of tone trials were then used to test the classifier on accurately decoding which 

tone frequency was presented during each test trial when given only the cell’s response vector 

during that trial. We repeated the training and testing procedure 100 times. To specifically 

investigate the contribution of arousal-dependent changes in noise correlations on frequency 

encoding, the temporal order of responses was shuffled such that noise correlations were 

abolished while the frequency identity for each tone trial remained unchanged. As expected, the 

decoder performed above chance level (5.9%) independent of arousal state for both the 

unshuffled and shuffled datasets. More importantly, decoding accuracy improved significantly 

(Figure 3.3E) with increased arousal only when noise correlations were intact (two-way ANOVA 

with post-hoc multiple comparisons, Parousal=0.0008, Pdataset<0.0001, Pinteraction=0.1272). Thus, 

arousal-dependent changes in noise correlations strongly contribute to enhanced frequency 

discrimination with increased arousal.  
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Figure 3.3. Arousal decreases the sparseness of tone representations and modulates inter-

neuronal correlations in a manner that ultimately improves frequency discrimination. (A) 
Increased arousal results in emergence of additional tone-responsive cells (N=8 fields, 5 mice). 
Each box displays the same representative imaging FOV with tone-responsive neurons color-
coded by BF. BF was defined here as the frequency that evoked the strongest mean responses 
(integral dF/F) irrespective of arousal state. (B) The percentage of cells that are tone-responsive 
increases with arousal. Increased arousal results in (C1) broader signal correlation distributions 
and (C2) narrower noise distributions (n=4938 cell pairs). (D1) Mean signal correlations 
increase and mean noise correlations decrease with arousal (n=4938 cell pairs). (D2) The 
majority of cell pairs exhibit signal correlations that increase with arousal (n=3086 cell pairs) and 
noise correlations that decrease with arousal. (D3) Some cell pairs exhibit signal correlations 
that decrease with arousal (1852 cell pairs), and noise correlations for those pairs increase with 
arousal. (E) Nonlinear classifier analysis with a K-nearest neighbors algorithm (k=10, 
standardized Euclidean distance metric, 100 iterations) reveals significant improvement to 
decoding accuracy as arousal increases. This improvement is only apparent with noise 
correlations intact. Dotted line represents chance level. 
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Discussion 

We used a combination of pupillometry, locomotion tracking, and two-photon calcium 

imaging to describe the effects of arousal on frequency tuning and discrimination in awake 

mouse A1. In the absence of locomotion, increased arousal mediates an enhancement in 

response strength and reliability of layer 2/3 pyramidal cells that manifests as an asymmetrical 

increase in tuning broadness. An increase in tuning broadness with arousal was surprising for 

two reasons. First, previous studies of attention- or arousal-dependent receptive field plasticity 

in sensory cortices have reported more selective tuning to features. For example, the 

spectrotemporal response field (STRF) of A1 cells in awake ferrets become more narrowly 

tuned during attentional engagement in a task compared to during passive behavior (Atiani et 

al., 2009; Fritz et al., 2003). In the visual cortex, cortical desynchronization—a hallmark of 

increased arousal—results in smaller spatial receptive fields in V1 of anesthetized cats 

(Wörgötter et al., 1998). Finally, in a more recent study of V1 evoked activity, orientation tuning 

becomes more selective with pupil dilation (Reimer et al., 2014).  

The second reason an arousal-dependent increase in tuning broadness was unexpected 

is due to reports of optimal performance on discrimination tasks at intermediate to high arousal 

states (Yerkes and Dodson, 1908). From a theoretical perspective, increased tuning broadness 

results in an increase in the overlap of tone representations, which would be predicted to have a 

detrimental effect on frequency discrimination. However, we also observed changes in 

population activity that are predicted to improve frequency discrimination (Averbeck et al., 2006; 

Cohen and Kohn, 2011; Downer et al., 2015; Gu et al., 2011; Jeanne et al., 2013). With 

increasing arousal, noise correlations decrease for cell pairs that increase in signal correlations 

and noise correlations increase for cell pairs that decrease in signal correlations. Unsurprisingly, 

nonlinear classifier analysis revealed improved frequency discrimination with arousal. Thus, 

while increase in tuning broadness with arousal could, in isolation, negatively affect frequency 
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discrimination, a concurrent decrease in mean noise correlations provides a counterbalance that 

ultimately benefits discrimination. 

Positive noise correlations are inevitable in a network of neurons that receive common 

input. In order for mean noise correlations in the cortex to decrease, it is likely that excitatory 

and inhibitory inputs to a population become more correlated with arousal, thus resulting in 

negative noise correlations that counter-balance the positive noise correlations associated with 

common synaptic inputs (Harris and Thiele, 2011). Although this prediction has thus far only 

been verified theoretically in cortical networks (Renart et al., 2010), concurrent calcium imaging 

of layer 4 excitatory inputs and local inhibition in A1 layer 2/3 would be one potential approach 

to addressing this model experimentally. 

Finally, the synaptic mechanisms that underlie arousal-dependent modulation of 

frequency tuning in A1 remain to be determined. The asymmetric increase in tuning broadness 

observed in this study is not only intriguing but also provides a potential hint for the underlying 

mechanism. A recent study utilizing whole cell recording in awake mouse A1 has reported a 

unique process that is more prominent at high frequencies and contributes to lateral inhibition 

via SOM-mediated “network suppression” of recurrent activity (Kato et al., 2017). We 

hypothesize that arousal regulates the strength of tone-evoked activity by strongly gating this 

indirect network inhibition and are currently undertaking in vivo whole cell current clamp and 

voltage clamp recordings to address this possibility. 
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Experimental Procedures 

 Animals. Mice between 8 and 16 weeks of age of both genders were used for all 

experiments. Mice were acquired from Jackson Laboratories (Emx1-Cre (Jax: 05638), 

Ai94(TITL-GCaMPs)-D;CaMK2a-tTA (Jax: 024115)) and housed in a room with a 12:12 

reversed light cycle. Experiments were performed during the dark period. Mice had no prior 

history of experimental procedures that could affect the results. All procedures were in 

accordance with protocols approved by the UCSD Institutional Animal Care and Use Committee 

and guidelines of the National Institute of Health. 

  Chronic window implantation. Mice were anesthetized with isoflurane and injected 

with dexamethasone (2 mg/kg) intraperitoneally. A custom stainless steel headbar was glued to 

the skull. Muscle overlying the right auditory cortex was removed and a craniotomy (~2 X 3 mm) 

was made, leaving the dura intact. A glass window was placed over the craniotomy and secured 

with Vetbond and dental acrylic. Baytril (10 mg/kg) and buprenorphine (0.1 mg/kg) were injected 

subcutaneously before mice were returned to their home cages for recovery. 

Mouse handling and habituation. Mice were handled for 5 minutes daily for the first 3 

days following window implantation. Then, mice were habituation to head fixation on a treadmill 

under a two-photon microscope for 2 hours a day for 5-7 days. 

 Sound stimulus presentation. Auditory stimuli were delivered via a free-field 

electrostatic speaker (ES1: Tucker-Davis Technologies). For intrinsic and calcium imaging, 

speakers were calibrated over a range of 2-40 kHz to give a flat responses (± 1 dB). For in vivo 

whole-cell recording, speakers were calibrated over a range of 4-60 kHz. Stimuli were delivered 

to the ear contralateral to imaging or recording. Auditory stimulus delivery was controlled by 

software (BControl; http://brodylab.org) running on MATLAB (MathWorks) communicating with a 

real-time system (RTLinux). 

 Intrinsic signal imaging. Intrinsic signal imaging was performed through chronic 

windows 1-3 days before calcium imaging to locate A1. Images were acquired using a tandem 

http://brodylab.org/
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lens macroscope and 12 bit, CCD camera (CCD-1300QF, VDS Vosskühler). Mice were 

anesthetized with isoflurane. Images of surface vasculature through the chronically implanted 

window were acquired using green LED illumination (530 nm) and intrinsic signals were 

recorded (27 Hz) using red illumination (615 nm). Each trial consisted of a 1s baseline followed 

by a 1 s sound stimulus (70 dB pure tone with a frequency of 3, 10, or 30 kHz, 10-20 trials per 

frequency) and a 30 s inter-trial interval. Images of reflectance were acquired at 1024 X 1024 

pixels (covering ~2.1 x 2.1 mm) and downsampled to 512 x 512 pixels by interpolation. Images 

during the response period (0.5-2 s from the sound onset) were averaged and divided by the 

average image during the baseline. Images were averaged across trials and Gaussian filtered. 

 In vivo two-photon calcium imaging. Calcium imaging was performed within 2-3 

weeks following chronic window implantation. Two-photon imaging fields were aligned with the 

intrinsic signal imaging fields by comparing blood vessel patterns. GCaMP6s was excited at 950 

nm (Mai Tai, Newport) and images (512 x 512 pixels covering ~500 x 500 µm) were acquired 

with a commercial microscope (B-scope, Thorlabs) running ScanImage 4 software using a 16x 

objective (Nikon) at 28.4 Hz. Images were acquired from L2/3 (120-250 µm below surface) at 2X 

zoom while 60-100 blocks of 17 randomly-ordered pure tones (60 dB, 1 sec duration, 3 sec 

inter-trial interval, 2-40 kHz) were presented. Lateral motion was corrected using a phase 

correlation algorithm (https://github.com/cortex-lab/Suite2P). 

Imaging analysis. A cell response to a tone was classified as statistically significant if 

p<0.005 (Wilcoxin Rank Sum) for >85% of trial-pooled timepoints over any continuous 0.5 sec 

window during the 1 sec tone period, compared to a trial-pooled, 1 sec baseline period 

immediately preceding the tone period. A cell was classified as tone responsive if responses to 

at least two tones in at least two of five arousal states (20% bins from 0-100% pupil max) were 

statistically significant. To measure a cell’s strength of response to each tone frequency, the 

dF/F integral of the mean response of each cell during each arousal state was calculated and 

normalized to that of its mean response at low arousal (i.e. 1-20% pupil max). To measure a 

https://github.com/cortex-lab/Suite2P
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cell’s reliability of response to each tone frequency, the mean pairwise, trial-by-trial Pearson’s 

correlation coefficient during each arousal state was calculated and normalized to the reliability 

value obtained at low arousal. Tuning broadness for each cell was measured by calculating the 

% of tones that evoked statistically significant responses during each arousal state. Because % 

of tones is inherently a binary measure of responsiveness to each tone, tuning broadness was 

also quantified in terms of lifetime sparseness. Lifetime sparseness (Rolls and Tovee, 1995; 

Willmore and Tolhurst, 2001), or Sp, was calculated as (1−{[∑j=1,Nrj/N]2/[∑j=1,Nr2
j/N]})/(1−1/N), 

where rj was the response peak amplitude of the cell to tone j, and N was the total number of 

tones. (1 – Sp) provides a measure of how much the response probability of a neuron is 

distributed equally among all tones (non-selective: 1 − Sp = 1) versus attributable entirely to one 

tone (highly selective: 1 − Sp = 0). 

Analysis of population activity. Total correlations, defined as the sum of signal 

correlations and noise correlations, were quantified by first creating a trial-by-trial tone response 

vector for each arousal state for each cell. Each value within a response vector was calculated 

by taking the dF/F integral during the 1 second tone period of each trial. To calculate signal 

correlations, the temporal order of each cell’s responses to repeated presentations of each tone 

were shuffled within the cell’s response vector, abolishing noise correlations while maintaining 

trial-by-trial stimulus identity. Total and signal correlations were obtained by calculating the 

Pearson’s correlation coefficients for the unshuffled response vectors and shuffled response 

vectors, respectively, of pairs of cells from the same imaging session. A noise correlation value 

for each pair of cells from each imaging session was obtained by subtracting their signal 

correlation value from their total correlation value. To determine if arousal modulates noise 

correlations in a manner that is dependent on how arousal modulates tuning similarity, the mean 

noise correlations during each arousal state were calculated separately for pairs of cells with 

signal correlations that generally increased with arousal (slope > 0 using MATLAB function 
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polyfit()) and for pairs of cells with signal correlations that generally decreased with arousal 

(slope < 0). 

Decoder analysis. To test whether the effects of arousal improve population coding of 

tone frequency, a population response matrix for each tone trial was created from the response 

vectors for all cells within each imaging session. The population response matrices for a subset 

of randomly selected tone trials (75% of total trials) were used to train a K-nearest neighbors 

classifier (k = 10 trials; standardized Euclidean distance metric) before testing the performance 

of the classifier on the remaining 25% of tone trials. The % correctly decoded trials was 

calculated from 100 iterations of this process. 

Pupilometry and locomotion tracking. The eye contralateral to imaging or recording 

was monitored via a compact, high-speed camera (BFLY-U3-05S2M-CS, Point Grey) with 50 

mm fixed focal lens (M5018-MP2, Computar). Locomotion was monitored by a low friction, 

rodent-drive treadmill fitted with a rotary encoder (Janelia). Pupil measurements and velocity 

were acquired via the open-source software Bonsai (bonsai-rx.org). 

Analysis of pupil and locomotion data. Raw pupil diameter was smoothed using a 

moving average filter over a window of 1 sec, then normalized to the maximum value during a 

given imaging session or series of recordings from the same mouse. Locomotion epochs (non-

zero velocity for >0.5 s) during calcium imaging were excluded from analysis in order to 

specifically investigate the effects of arousal on tone-evoked responses. 

 Quantification and statistics. All data are presented as mean ± SEM. Statistically 

significant differences between conditions were determined using standard parametric or 

nonparametric tests in MATLAB. All n values refer to the number of cells except when explicitly 

stated that the n is referring to the number of mice. Experiments were not performed blind. 

Sample sizes were not predetermined by statistical methods, but were based on those 

commonly used in the field. 
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 Data and software availability. The custom MATLAB code will be made available upon 

reasonable request. 
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CHAPTER 4: Pei2P MATLAB analysis pipeline for longitudinal, dual channel Ca2+ imaging 

 

Overview 

Pei2P is a MATLAB analysis pipeline for longitudinal, dual channel calcium imaging 

experiments. Awake mice are head-fixed under a two-photon microscope and imaged over 

several sessions per day for several days. The Pei2P pipeline begins with image registration to 

correct for movement during imaging followed by semi-automated detection of regions of 

interest (ROIs), synchronization of behavior and imaging data, and detection of sound stimulus-

evoked excitation and suppression. The image registration portion of the code is adapted from 

Marius Pachitariu’s Suite2P 2016 release (UCL). Subsequent analysis scripts were written by 

Pei-Ann Lin, expanding upon MATLAB code written by Hiroyuki Kato (UNC) while completing 

his post-doc in the Isaacson lab. Scripts and documentation are not guaranteed to be free of 

mistakes—use at your own risk!  

 

Original Suite2P documentation: https://github.com/cortex-lab/Suite2P. 

Image Registration algorithmic details: https://www.biorxiv.org/content/10.1101/061507v2.full 

 

  

https://github.com/cortex-lab/Suite2P
https://www.biorxiv.org/content/10.1101/061507v2.full
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Installation 

1. Install MATLAB 2017a. 

2. Copy the entire Pei2P folder to your local MATLAB directory. 

3. Browse for the Pei2P folder in your directory by going to Set Path > Add with 

Subfolders… 

 

 

Note on MATLAB Versions 

All scripts in this package are verified as compatible with MATLAB 2017a but have not been 

fully tested on any older or newer versions. 
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Experiment database files 

For each step of the analysis pipeline, the “master” file calls a database (Table 4.1) by its 

filename. Save your database files in the “Step1_Databases folder of the Pei2P directory. 

Recommended Filename Description Database Example 

MouseID_IndividualSessions 

e.g. 
PL0404_IndividualSessions 

Each entry in this 

database will be a 
single imaging 
session. This 

database will be 
used for initial 

RIGID registration 

of images. 

i = 0; 
  

i = i+1; 
db(i).date           = '190417'; 
db(i).mouse_name     = 'PL0404'; 

db(i).region         = 'region1_L2'; 
db(i).sessions       = {'auditoryscreen1'}; 
  

i = i+1; 
db(i).date           = '190417'; 
db(i).mouse_name     = 'PL0404'; 

db(i).region         = 'region1_L2'; 
db(i).sessions       = {'habituation1'}; 
  

i = i+1; 
db(i).date           = '190417'; 
db(i).mouse_name     = 'PL0404'; 

db(i).region         = 'region1_L2'; 
db(i).sessions       = {'conditioning1'}; 
 

for i = 1:length(db) 
    db(i).gchannel = 1; % GCaMP is always Ch1 
end 

MouseID_AllSessions 
e.g. PL0404_AllSessions 

Each entry in this 
database will 

include all imaging 
sessions that 

need to be 

analyzed as one 
longitudinal 

experiment. This 
database will be 

used for NON-
RIGID registration 

of images. 

i = 0; 
  
i = i+1; 

db(i).date = {'190417','190418','190419','190420','190421'};          
db(i).mouse_name = 'PL0404'; 
db(i).region = 'region1_L2'; 

db(i).sessions = {{'auditoryscreen1','habituation1','conditioning1'},...                                               
{'auditoryscreen2','retrieval1','conditioning2'},...                                               
{'auditoryscreen3','retrieval2','conditioning3'}}; 

 
for i = 1:length(db) 
    db(i).gchannel = 1; % GCaMP is always Ch1 

end 

DatasetID_ProjectID 

e.g. LA-A2_AmygdalaProject 

Each entry in this 

database will be 
the AllSessions 

entry for a 

longitudinal 
experiment. This 
database will be 

used for analysis 
after both initial 
rigid registration 

and subsequent 
non-rigid 

registration have 

been completed. 

i = 0; 
 

i = i+1; 
db(i).date = {'190417','190418','190419','190420','190421'};          
db(i).mouse_name = 'PL0404'; 

db(i).region = 'region1_L2'; 
db(i).sessions = {{'auditoryscreen1','habituation1','conditioning1'},...                                               
{'auditoryscreen2','retrieval1','conditioning2'},...                                               

{'auditoryscreen3','retrieval2','conditioning3'}}; 
 
i = i+1; 

db(i).date = {'190402','190403','190404','190405'};          
db(i).mouse_name = 'CS0321'; 
db(i).region = 'region1_L2'; 

db(i).sessions = {{'auditoryscreen1','habituation1','conditioning1'},...                                          
{'auditoryscreen2','retrieval1','conditioning2'},...                                             
{'auditoryscreen3','retrieval2','conditioning3'}}; 

 
for i = 1:length(db) 
    db(i).gchannel = 1; % GCaMP is always Ch1 

end 

 

Table 4.1. Example Pei2P experiment database files.  
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Rigid image registration 

MotionCorrection_master 

When imaging awake mice, there is often translation in the x-y plane due to movement. 

Suite2P uses a phase correlation algorithm to correct for movement and align images across 

time. For dual channel experiments, raw tiffs will be split into separate .tif files for each channel 

prior to image registration. The copied (one-channel) or split (two-channel) raw tiffs are deleted 

after image registration is completed. Only one channel is used for image registration (default is 

channel 1), and the obtained image registration values are applied to correct for movement in 

both channels for two-channel experiments. 

Inputs 

- Directories, filepaths, and database filename should all be adjusted according to your 

system 

- Raw imaging data should be saved in tif format with the following folder structure: 

…\date\mouse_name\regionX_layerY\sessionname\*.tif 

Outputs 

- regop file (contains image registration values for motion correction) 

- correctedTiffs (folder of motion corrected tiffs for each functional imaging channel) 

- summovie100.tif (image stacks where each frame is 100 motion corrected raw 

frames summed together; ~3 seconds of data per frame when imaging at 30 fps) 

- maxproj.tif (max projection of summovie100.tif 

Runtime 

Performance clocked on IsaacsonPC7 for a dual channel, 500 frames/channel tif: 

- splitChannels: 21 seconds 

- MotionCorrection_pipeline: 20 seconds 

- createCorrected: 25 seconds  
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Non-rigid image registration 

MotionCorrection2_master 

When imaging awake mice across multiple sessions and days, there is often translation 

in the x-y plane that requires non-rigid motion correction (due to rotational and angular 

differences in head fixation position). Suite2P uses a phase correlation algorithm to correct for 

movement and align images across time after first splitting the FOV into equally sized 

subsections (default is a 5 by 5 grid). The maxproj.tif images obtained from running 

MotionCorrection_master are used for calculating image registration values across sessions in a 

longitudinal imaging experiment. For two-channel experiments, only one channel is used for 

image registration (default is channel 1), and the obtained image registration values are applied 

to correct for movement in both channels. 

Inputs 

- Directories, filepaths, and database filename should all be adjusted according to your 

system 

- CorrectedTiffs output by MotionCorrect_master 

Outputs 

- regop file (contains image registration values for motion correction) 

- correctedTiffs (folder of motion corrected tiffs for each functional imaging channel) 

- summovie100.tif for each experiment day and overall 

- maxproj.tif (max projection of the summovie100.tif) 

Runtime 

Performance clocked on IsaacsonPC7 for a dual channel, 500 frames/channel tif: 

- motionCorrect2_pipeline: 19 seconds 

- motionCorrect2_create_corrected: 25 seconds  
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Region of interest (ROI) detection 

ROI_Detection_master 

The most important parameter to set when performing ROI detection is the estimated 

diameter (parameters.diameter) of the ROIs you are seeking to detect. The optimal diameter 

can vary between different calcium indicators, ScanImage zoom factors, and cell compartments. 

Additional information about optimizing ROI detection parameters can be found in the original 

Suite2P documentation on Github. 

 

Inputs 

- Directories, filepaths, and database filename should all be adjusted according to your 

system 

- Binary file output by MotionCorrect2_master 

-  

Outputs 

- F_*.mat file containing stat, a structure including iscell label, ROI pixel indices, ROI 

signals, neuropil signals, etc.   
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ROI inspection, clustering, and refinement 

Suite2P ROI inspection (new_main_2ch) 

This GUI loads a F*.mat file and allows the user to visualize and reject ROIs detected by 

Suite2P. Instructions for using the GUI can be accessed by pressing the “DON’T PANIC” button 

upon loading the GUI. By clicking “Load plane”, user is prompted to select a F*.mat file and then 

a maxproj.tif file. Note that the code has been altered to show the max projection image for the 

experiment when keyboard shortcut (t) is activated. The processed ROIs are output as a 

F*_proc.mat file. 

ROI clustering by cross-correlation (autoClusterGUI) 

This GUI is adapted from Bill Connelly’s join_axon GUI 

(http://www.billconnelly.net/?p=471). Clustering ROIs is optional and typically only desirable 

when analyzing axons and dendrites. This GUI loads a F*_proc.mat file and allows the user to 

visualize and cluster ROIs using a threshold cross correlation value (R threshold). The 

recommended cutoff is 0.6 for axon bouton clustering. Filter width can be increased for more 

aggressive smoothing of data. Recommended filtering window is 1 to 1.5 s (30-45 frames at 30 

fps). The processed clusters are output as a F*_proc_clust.mat file. 

Conversion of ROI masks to polygons (processROIs_master) 

Suite2P and autoClusterGUI save ROIs as masks. In order to manually refine ROIs, the 

masks must be converted to polygons. Output is saved as cellbody_Suite2P_axons.roi or 

cellbody_Suite2P_somas.roi in the same directory as the F*_proc_clust.mat and F*_proc.mat 

files. 
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Final inspection of manual refinement of ROIs and Clusters (ROIandClusterInspect) 

This GUI allows for adding new ROIs, deleting ROIs, editing existing ROIs, and 

clustering ROIs. First, a maxproj.tif or summovie100.tif file is loaded by clicking “Browse”. Then, 

a cellbody_Suite2P_*.roi file is loaded to visualize ROI polygons. Individual ROIs can be 

selected from the GUI ROI list or by clicking on the ROI of interest in the image figure. Multiple 

ROIs can be selected using the Ctrl keyboard shortcut and clicking ROIs of interest in the GUI 

ROI list. Multiple selected clusters or ROIs can be clustered together by clicking the “Combine 

Clusters” button. 

After ROIs or clusters are manually refined, neuropil (“background”) ROIs must be 

created and saved by clicking the “Draw Background ROIs” button. Background ROI pixels are 

selected from an annulus formed around each ROI, excluding any pixels that are part of other 

ROIs.  Once the background ROIs appear (magenta outlines), click the “Fix BG ROIs” button. A 

background ROIs will turn green or yellow if enough non-ROI background pixels are detected 

around a given ROI. ROIs that are not surrounded by enough background pixels will turn red. 

The command window will list the ROIs that fall in this category. The user can then choose to 

select each of those ROIs, click the “Replace BG ROI” button, and draw a new polygon on the 

image figure to replace the insufficient background ROI. Increasing the outer radius of the 

background ROIs and re-drawing will typically result in fewer background ROIs rejected due to 

insufficient pixels. ROIs and background ROIs are saved as cellbody_channelX.roi. 

ROI Labels 

Once ROIs and background ROIs have been finalized and successfully saved, clicking 

the “Open ROI Label Maker” button will open a new GUI. In the label maker GUI, the user can 

again select ROIs or clusters one or more at a time, then select a label (e.g. PV+ cell) and click 

the “Apply Label” button. Labels are saved as labels_channelX.roilabel.  
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Signal detection 

Obtaining ROI fluorescence signals (Signal_Detection_master) 

Before extracting the fluorescence signal for each ROI and background ROI, overlapping 

regions are found and excluded by the function refineROIs. The fluorescence value at each 

timepoint is measured as the average pixel intensity across a given ROI mask. Note that even 

with parallel processing activated, the runtime of Signal_Detection_master can be significant 

depending on the number of available physical processor cores, number of ROIs or clusters, 

and the number of imaging frames. 
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Pre-analysis 

ScanImage Metadata (saveStackInfo) 

The function saveStackInfo extracts and stores the ScanImage framerate and number of 

channels for each imaging session. 

Ephus Sync Signals (createXSG) 

Ephus is the software used during data acquisition to sync imaging with stimulus 

presentation by recording the Dispatcher bitcode signal (trial initiation and sound starts) and 

ScanImage frame triggers simultaneously. For each imaging session, the function createXSG 

extracts the bitcode and frame trigger data stored in separate xsglog files and saves together as 

one data structure. 

Dispatcher Sound Trial Information (getTrialInfo) 

 Dispatcher is the software used to deliver stimuli during imaging experiments along with 

a bitcode signal to Ephus. The function getTrialInfo reads the sound information from the 

Dispatcher file and converts sounding timing into behavior frame numbers. 

Bonsai Behavior Data (getBehaviorData) 

 Bonsai is an open-source software (https://bonsai-rx.org/) used to acquire a variety of 

signals such as bitcode delivered from Dispatcher, images of the mouse’s pupil from a high-

speed USB camera, and mouse running velocity from an Arduino-interfaced rotary encoder. The 

function getBehaviorData reads the Dispatcher bitcode acquired by Bonsai and Ephus in order 

to synchronize behavior data with imaging and sound stimulus delivery. Outputs currently 

include pupil diameter and running velocity measured with a variety of metrics during each 

sound trial, the stimulus frequency set, and the stimulus sound pressure level set. If 

https://bonsai-rx.org/
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parameters.plotFigs is set to true, getBehaviorData will also output figures for pupil dilation and 

changes in running speed in response to sound stimuli. 

ScanImage Frametags (getFrameTags) 

 Occasionally, ScanImage drops frames during acquisition. The function getFrameTags 

iterates through the image files to make sure that the actual number of frames matches the total 

number of frames expected by reading frametags from the ScanImage metadata. Indexes for 

dropped frames are stored and saved to be excluded when concatenating raw traces across all 

image files for a given imaging session. 

Movement Detection (detectMovement) 

 Due to sharp fast movements by the mouse during imaging (i.e. during delivery of 

tailshock), some frames may be aligned incorrectly after image registration. The function 

detectMovement determines “jumpframes” by noting x-y offsets detected during image 

registration that are of high velocity (occurring over a low number of frame). Indexes for 

“jumpframes” are stored and saved to be excluded when concatenating raw traces across all 

image files for a given imaging session. 

Raw Traces (concatenateResults) 

 The raw traces for each ROI are concatenated together across all image files for a given 

imaging session by the function concatenateResults. Values at dropped frames and 

“jumpframes” are set to NaN. 

Processed Traces (processTraces) 

 To obtain final dF/F signals for each ROI, the function processTraces first subtracts out 

the majority of background neuropil signal (typically 90%) from the ROI signals. Then, a slow, 
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drifting baseline for each ROI signal is estimated by iterating through a process of excluding 

likely “active” periods of a trace and smoothing by filtering. Each raw ROI signal is then 

normalized to its respective estimated drifting baseline to obtain dF/F. 

 Cells that are very dim are then detected and rejected if the ratio of the estimated drifting 

baseline for an ROI to the estimated drifting baseline for its background ROI is not sufficiently 

large (default cutoff is 103%). Rejection labels are saved into new ROI label files. 
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Activity detection 

ActivityDetection_master 

In order to determine which ROIs are sound responsive, a Wilcoxin rank sum test is 

used to categorize whether an evoked response to a particular tone frequency includes 

significant excitation and/or suppression. The same procedure can also be used to determine 

whether an evoked response to a particular tone frequency is significantly different from that of 

another tone frequency.  

The Wilcoxin rank sum test assesses whether a baseline population of dF/F values is 

significantly different from a sufficient portion of the corresponding response population of dF/F 

values. In brief, the procedure is as follows: 

1. During a baseline period with equal duration to and immediately preceding a tone 

presentation period, all dF/F values are pooled across time and across trials. 

2. For each timepoint during the tone presentation period, the dF/F values across 

trials are pooled. If the p-value exceeds alphaVal (recommended value is 0.005 

to account for multiple comparisons) for a sufficient amount of non-consecutive 

time points (default is 85%) within a given response window (default is 0.5 s 

window), Criteria 1 is deemed as true for that response. 

3. For detecting excitation, if the trial-averaged dF/F trace during any window that 

met Criteria 1 exceeds the trial-averaged and time-averaged baseline value by 

more than a certain user-determined threshold (default is a dF/F value of 1), 

Excitation Criteria 2 is deemed as true for this response. If Criteria 1 and 

Excitation Criteria 2 are both true for a given a response, the ROI is deemed as 

excited by the presented tone. 
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4. For detecting suppression, if the trial-averaged dF/F trace during any window that 

met Criteria 1 is less than the trial-averaged and time-averaged baseline value by 

more than a certain user-determined threshold (default is a dF/F value of -1), 

Suppression Criteria 2 is deemed as true for this response. If Criteria 1 and 

Suppression Criteria 2 are both true for a given a response, the ROI is deemed 

as suppressed by the presented tone. 

5. If an ROI is significantly responsive to a certain amount of the set of presented 

tones (default is 30%), the ROI is deemed as sound responsive. 
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Tips for users 

 If planning on imaging the same FOV over more than one day, run rigid image 

registration (MotionCorrection_master) immediately after acquiring data for the first day’s 

imaging sessions. You will then be able to use the maxproj.tif files to help locate the 

same FOV (particularly the z-plane) on subsequent days of imaging. 

 For optimizing ROI detection, the expected diameter of ROIs is the most important 

parameter to set. This value varies with the ScanImage zoom factor and of course differs 

between detecting dendrites, boutons, and somas. 

 ROI detection does not perform well when combining non-continuous imaging 

experiments. The user should consider performing ROI detection over all imaging 

sessions excluding non-continuous imaging sessions and manually refining and adding 

ROIs that are present in the excluded sessions. 

 To save disk space, delete the correctedTiffs folders created for individual imaging 

sessions by MotionCorrect_master once MotionCorrect2_master output has been used 

to successfully register images across sessions. 
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Future Directions 

ROI Clustering 

For clustering axon boutons or dendritic branches, the Pei2P pipeline currently contains two 

options: clustering using a simple cross-correlation threshold value (autoClusterGUI) and 

manually clustering based on visualizing maxproj.tif or summovie100.tif (ClusterInspect). The 

large amount of time and effort to cluster using ClusterInspect is nearly prohibitive, so future 

users may want to explore additional quantitative methods for clustering or improving the speed 

of ClusterInspect. 

 

Signal Detection 

Currently, the runtime for Signal_Detection_master is significantly longer than that of Suite2P. 

Signal_Detection_master is used simply due to limited flexibility in refining ROIs in the Suite2P 

new_main_2ch GUI. Future users may want to add additional functionality to the Suite2P scripts 

in order to utilize faster extraction of fluorescence signal in Suite2P.  
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