
UC Berkeley
UC Berkeley Previously Published Works

Title
On the Use of Outer Approximations as an External Active Set Strategy

Permalink
https://escholarship.org/uc/item/0jf9j9fp

Journal
Journal of Optimization Theory and Applications, 146(1)

ISSN
1573-2878

Authors
Chung, H.
Polak, E.
Sastry, S.

Publication Date
2010-07-01

DOI
10.1007/s10957-010-9655-8

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0jf9j9fp
https://escholarship.org
http://www.cdlib.org/

J Optim Theory Appl (2010) 146: 51–75
DOI 10.1007/s10957-010-9655-8

On the Use of Outer Approximations as an External
Active Set Strategy

H. Chung · E. Polak · S. Sastry

Published online: 12 February 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Outer approximations are a well known technique for solving semiinfinite
optimization problems. We show that a straightforward adaptation of this technique
results in a new, external, active-set strategy that can easily be added to existing soft-
ware packages for solving nonlinear programming problems with a large number
of inequality constraints. Our external active-set strategy is very easy to implement,
and, as our numerical results show, it is particularly effective when applied to dis-
cretized semiinfinite optimization or state-constrained optimal control problems. Its
effects can be spectacular, with reductions in computing time that become progres-
sively more pronounced as the number of inequalities is increased.

Keywords Outer approximations · Inequality constrained optimization · Active set
strategies

1 Introduction

There are important classes of optimal control and semiinfinite optimization prob-
lems, with a continuum of inequality constraints, arising in engineering design, that

Communicated by D.Q. Mayne.

The authors wish to thank Prof. Michael Saunders for his advice on warm start of NPSOL and
SNOPT, and to Prof. Rembert Reemtsen for supplying us with the Kautz filter example and data. We
are also grateful to our colleague Humberto Gonzalez for installing Tomlab and IPOPT on the
machine we used for this paper. This work was supported by ARO SWARMS (W911NF-0510219)
and ARO Phase II STTR (W911NF-06-C-0192).

H. Chung (�) · E. Polak · S. Sastry
Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA
94720-1770, USA
e-mail: hachung@eecs.berkeley.edu

E. Polak
e-mail: polak@eecs.berkeley.edu

S. Sastry
e-mail: sastry@eecs.berkeley.edu

mailto:hachung@eecs.berkeley.edu
mailto:polak@eecs.berkeley.edu
mailto:sastry@eecs.berkeley.edu

52 J Optim Theory Appl (2010) 146: 51–75

are characterized by the fact that only a small fraction of the constraints is active at a
solution. These include design of earthquake resistant structures, which sway during
an earthquake and are designed to remain linear for small to moderate earthquakes
and to have bounded, nonlinear, deformations for large earthquakes (see, e.g., [1, 2]),
robotic manipulator motion design (see, e.g., [3]), electronic filter design (see, e.g.,
[4]), and computer controlled vehicles [5]. Computer controlled vehicles represent
a particularly large and important class of applications for our proposed technique
because often the optimization computations must be performed in real time, fast
enough to keep up with the motion of the vehicle. Computer controlled vehicles,
using receding horizon control laws, include robotic carts that deliver parts and sup-
plies as the need arises on a factory floor [6], drone aircraft [7], and autonomous
automobiles [8]. The discretized optimal control problems associated with these ap-
plications are characterized by a large number of collision avoidance inequalities, few
of which are active. Thus, for example, if there are 16 craft involved and their trajec-
tories are discretized using 128 points, the resulting nonlinear programming problem
has (16 × 15/2) × 128 = 15,360 inequalities. The practical implementation of a re-
ceding horizon control law is critically dependent on the possibility of solving the
associated discretized optimal control problem within a time that is determined by
the speed of the moving craft. In the case of airplanes, that time is less than 10 sec-
onds, in the case of ships, it may be around 30 seconds. Our experience with typical
nonlinear programming packages such as SNOPT [9], NPSOL [10], KNITRO [11],
IPOPT [12], and Schittkowski SQP [13] is that they are not able to meet these com-
puting time requirements. The main reason being that they are unable to exploit the
structure of these discretized optimal control problems. A possible exception is CF-
SQP [14], which was designed with such problems in mind, and which contains an
active-set strategy.

The purpose of this paper is to explore the effectiveness of an adaptation of outer
approximations as an active-set strategy that can be added as a small preprocessor to
a standard nonlinear programming package for the solution of the above described
discretized optimal control and semiinfinite optimization problems. In our test exam-
ples we include both problems with very few active inequalities and problems with a
large number of active inequalities.

Outer approximations algorithms are a generalization of cutting plane meth-
ods [15] that are used to solve semiinfinite optimization problems of the form

(PY) min
x∈Rn

{f (x)|φ(x, y) ≤ 0, y ∈ Y }, (1)

where Y ⊂ R
m is compact (with m = 1 quite frequently) and f : R

n → R and
φ : R

n × R
m → R

q continuously differentiable. In the most elementary form, these
algorithms construct a sequence of finitely constrained problems of the form (see
[16])

(PYi
) min

x∈Rn
{f (x)|φ(x, y) ≤ 0, y ∈ Yi}, (2)

i = 0,1,2, The set Y0 ⊂ Y is arbitrary, and for i ≥ 1,

Yi+1 = Ŷi+1 ∪ Yi, (3)

J Optim Theory Appl (2010) 146: 51–75 53

with Ŷi+1 a finite subset of the active constraint set {arg maxy∈Y φ(x̂i+1, y)}, where
x̂i+1 is the solution of PYi

. It is straightforward to show that any accumulation point
x̂ of the optimizers x̂i is an optimizer of PY . Since the constraint set of PY is a subset
of the constraint set of PYi

, for all i, the naming of this approach “method of outer
approximations” is obvious.

In this paper, we show that a simple generalization of the above described outer ap-
proximations approach can be reinterpreted as an external active-set strategy for solv-
ing nonlinear programming problems with a large number of inequality constraints.
The generalization consists of applying only a finite number, Niter > 0, of iterations of
an optimization package to problem (2), and replacing the active set Ŷi+1, in (3), by a

subset of the ε-active set Yε(xi)(xi)
�= {y ∈ Y |φ(xi, y) ≥ ε(xi)}, where ε : R

n → R+.
Leineweber [17] used a similar strategy for solving the internal QP problem in his
SQP method, which accumulates ε-active sets. However, for each selection of the ac-
tive set, he solves the resulting approximating QP problem to completion, rather than
performing a finite number of iterations, as we do.

Not unexpectedly, our scheme is sensitive to the choice of the two parameters,
which appear in the scheme: the function ε : R

n → R+ and the positive integer Niter.
Empirically, we found that setting ε(xi) = max(maxy φ(xi, y),0), the maximum con-
straint violation at the current point xi , usually leads to good results. The choice of
Niter requires a trade-off between the cost of recomputing the maximum constraint
violation and the loss of efficiency due to using a value of Niter larger than one. The
selection of Niter may require some experimentation, and hence our scheme is most
valuable in applications where very similar problems are solved over and over again.
This is certainly the case in the design of earthquake resistant structures, industrial
filter design, and receding horizon control of various vehicles.

Although the favorable outcome is plausible on an intuitive level, it does not ap-
pear to be possible to demonstrate theoretically that the modified outer approxima-
tions approach will result in substantial reductions of computing time. Nevertheless,
our numerical examples, drawn from real world applications, show that computing
times can be reduced by fairly large factors over the use of “native” optimization
packages. The pattern that emerges is that the effectiveness of our active-set strategy
increases as the fraction of constraints that are active at a solution decreases. Our
strategy is particularly effective when used with nonlinear programming solvers that
allow warm starts. Our present work follows our presentation of a related strategy [18]
for solving semiinfinite minimax problems using log-sum-exponential smoothing, as
well as a more closely related study involving optimal control problems [19], both of
which have proved to be equally effective.

In Sect. 2 we state our strategy in the form of an algorithm and provide a theoretical
justification for it, in Sect. 3 we present numerical results, and our concluding remarks
are in Sect. 4.

To conclude, the advantages of our active-set strategy are that it is very simple to
implement and that it often leads to a considerable reduction in computing time over
the use of standard optimization code in “native” form.

Notation We will denote elements of a vector by superscripts (e.g., xi) and elements

of a sequence or a set by subscripts (e.g., xk), and we set R+
�= {α ∈ R|α ≥ 0}.

54 J Optim Theory Appl (2010) 146: 51–75

2 Active-Set Strategy

Consider the inequality constrained minimization problem:

(Pq) min{f 0(x) | f j (x) ≤ 0, j ∈ q}, (4)

where x ∈ R
n, and q � {1, . . . , nq}. We assume that functions f j : R

n → R are at
least once continuously differentiable.

Next we define the index set qε(x) with ε ≥ 0 by

qε(x) � {j ∈ q | f j (x) ≥ ψ+(x) − ε}, (5)

where

ψ(x) � max
j∈q

f j (x), (6)

and

ψ+(x)
�= max{0,ψ(x)}. (7)

Definition 2.1 We say that an algorithm defined by a recursion of the form

xk+1 = A(xk), (8)

for solving inequality constrained problems of the form (4), is convergent if any ac-
cumulation point1 of a sequence {xi}∞i=0, constructed according to the recursion (8),
is a feasible stationary point for Pq .

Finally, we assume that we have a convergent algorithm for solving inequality
constrained problems of the form (4), represented by the recursion function A(·), i.e.,
given a point xk the algorithm constructs its successor xk+1 according to the rule (8).

Algorithm 2.1
Data: x0, ε : R

n → R+, Niter ∈ N.
Step 0: Set i = 0, Q0 = qε(x0)(x0).
Step 1: Set ξ0 = xi and perform Niter iterations of the form ξk+1 = A(ξk) on the
problem

(PQi
) min{f 0(ξ)|f j (ξ) ≤ 0, j ∈ Qi} (9)

to obtain ξNiter and set xi+1 = ξNiter .
Step 2: Compute ψ(xi+1).
if xi+1 is returned as a global, local, or stationary solution of PQi

and ψ(xi+1) ≤ 0,
then

STOP,

1A point x̂ is said to be an accumulation point of the sequence {xi }∞i=0, if there exists an infinite subse-

quence, indexed by K ⊂ N, {xi }i∈K , such that xi
K−→ x̂ as i

K−→ ∞.

J Optim Theory Appl (2010) 146: 51–75 55

else
Compute

Qi+1 = Qi ∪ qε(xi+1)(xi+1), (10)

and set i = i + 1, and go to Step 1.
end if

Lemma 2.1 Suppose that ε : R
n → R+, that the sequence {xi}∞i=0, in R

n, is such
that xi → x̂ as i → ∞, and that Q = ⋃∞

i=0 qε(xi)(xi) ⊂ q . For any x ∈ R
n, let

ψQ(x) = max
j∈Q

f j (x). (11)

If ψQ(x̂) ≤ 0, then ψ(x̂) ≤ 0.

Proof Since the set q is finite, there must exist an i0 such that Q = ⋃i0
i=0 qε(xi)(xi).

Since q0(xi) ⊂ Q for all i ≥ i0, it follows that ψ(xi) = ψQ(xi) for all i ≥ i0. Now,
both ψ(·) and ψQ(·) are continuous, and hence ψ(x̂) = limψ(xi) = limψQ(xi) =
ψQ(x̂). The desired result now follows directly. �

Lemma 2.2 Suppose that Q ⊂ q and consider the problem

PQ min{f 0(x)|f j (x) ≤ 0, j ∈ Q}. (12)

Suppose that x̂ ∈ R
n is feasible for Pq , i.e, f j (x) ≤ 0 for all j ∈ q .

(a) If x̂ is a global minimizer for PQ, then it is also a global minimizer for Pq .
(b) If x̂ is a local minimizer for PQ, then it is also a local minimizer for Pq .
(c) If x̂ is a stationary point for PQ, i.e., it satisfies the F . John conditions [20] (or

Theorem 2.2.4, p. 188 in [16]), then it is also a stationary point for Pq .

Proof Clearly, since x̂ is feasible for Pq it is also feasible for PQ.
(a) Suppose that x̂ is not a global minimizer for Pq . Then there exists an x∗ such

that f j (x∗) ≤ 0 for all j ∈ q and f 0(x∗) < f 0(x̂). Now, x∗ is also feasible for PQ

and hence x̂ cannot be a global minimizer for PQ, a contradiction.
(b) Suppose that x̂ is not a local minimizer for Pq . Then there exists a sequence

{xi}∞i=0 such that xi → x̂, f 0(xi) < f 0(x̂) and f j (xi) ≤ 0 for all i and j ∈ q . But this
contradicts the assumption that x̂ is a local minimizer for PQ.

(c) Since x̂ satisfies the F. John conditions for PQ, there exist multipliers μ0 ≥ 0,
μj ≥ 0, j ∈ Q, such that μ0 + ∑

j∈Q μj = 1,

μ0∇f 0(x̂) +
∑

j∈Q

μj∇f j (x̂) = 0 (13)

and
∑

j∈Q

μjf j (x̂) = 0. (14)

56 J Optim Theory Appl (2010) 146: 51–75

Clearly, x̂ also satisfies the F. John conditions for Pq with multipliers μj = 0 for all
j /∈ Q and otherwise as for PQ. �

Combining the above lemmas, we get the following convergence result.

Theorem 2.1 Suppose that the problem Pq has feasible solutions, i.e., there exist
vectors x∗ such that f j (x∗) ≤ 0 for all j ∈ q .

(a) If Algorithm 2 constructs a finite sequence {xi}ki=0, exiting in Step 2, with
i + 1 = k, then xk is a global, local, or stationary solution for Pq , depending
on the exit message from the solver defined by A(·).

(b) If {xi}∞i=0 is an infinite sequence constructed by Algorithm 2 in solving Pq . Then
any accumulation point x̂ of this sequence is feasible and stationary for Pq .

Proof (a) If sequence {xi}ki=0 is finite, then, by the exit rule, it is feasible for Pq and
it is a global, local, or stationary solution for PQi

. It now follows from Lemma 4, that
it is also a global, local, or stationary solution for Pq .

(b) Since the sets Qi grow monotonically, and since q is finite, there must exist
an i0 and a set Q ⊂ q , such that Qi = Q for all i ≥ i0. Next, it follows from the
fact that A(·) is convergent, that for any accumulation point x̂, ψQ(x̂) ≤ 0 and hence,
from Lemma 2.1 that ψ(x̂) ≤ 0, i.e., that x̂ is a feasible point for Pq . It now follows
from the fact that A(·) is convergent and Lemma 2.2 that any accumulation point x̂ is
stationary for Pq . �

Remark 2.1 In the numerical experiments presented in the next section, we set

ε(xi)
�= min{ψ+(xi),1}, (15)

to prevent Qi from including too many constraints.

An alternative to setting ε(x) = min{ψ(x), ε̄}, for some ε̄ > 0, is to set ε(x) =
const > 0, i.e., to use a fixed value. For our optimal control problem, it is possible to
find a const that yields better results than the ones we have presented, see [21]. How-
ever, finding such a const requires time-consuming experimentation. Unless one is
faced with a situation where a particular problem has to be solved over and over again
(with different initial conditions), we recommend the use of ε(x) = min{ψ(x), ε̄}, for
some ε̄ > 0.

3 Numerical Results

We will now present four numerical examples. The first involves the control of drones
(also known as unmanned aerial vehicles, or UAV’s), the second involves a Kautz
filter design, the third involves the computation of a minimum-time trajectory for a
2-link manipulator, and the fourth involves of the optimal control of a particle in a
plane.

J Optim Theory Appl (2010) 146: 51–75 57

The numerical experiments were performed using MATLAB V7.6 and TOMLAB
V7.1 [22] and using MATLAB V7.6 together with IPOPT 3.7 [12] with the linear
solver PARDISO 3.3 [23]. We used a desktop with two AMD Opertron 2.2 GHz
processors with 8 GB RAM, running Linux 2.6.28.

The TOMLAB optimization solvers tested in this paper were the Schittkowski
SQP algorithm with cubic line search [13], NPSOL 5.02 [10], SNOPT 6.2 [9], and
KNITRO [11].

It should be clear from the form of Algorithm 2.1, that our strategy benefits con-
siderably from the nonlinear programming solvers’ ability to use warm starts. Hence
it is desirable to use solvers with as extensive a warm start capability as possible, so
that one can transmit the last value of important information from the last iteration of
a solver on the problem PQi

as initial conditions for solving the problem PQi+1 . As
far as warm starts are concerned, SNOPT allows the user to provide initial variables,
their states, and slack variables. NPSOL allows the user to provide initial variables
and their states, Lagrange multipliers, as well as an initial Hessian approximation
matrix for quasi-Newton updates. conSolve, the TOMLAB implementation of the
Schittkowski SQP algorithm, allows the user to provide initial variables and an initial
Hessian matrix approximation. IPOPT allows the user to provide initial variables and
Lagrange multipliers. KNITRO allows the user to provide initial variables only and
hence its performance is not enhanced by the use of our method.

Since different algorithms use different stopping criteria, we evaluated the qual-
ity of their solutions using the optimality function θ defined in (2.2.9e) in [16], for
problems of the form (4), with all functions continuously differentiable. For conve-
nience, we reproduce this optimality function for problems of the form, below, with
all functions continuously differentiable.

θ(x) = − min
μ∈�0

nq

{

μ0γψ+(x) +
nq∑

j=1

μj [ψ+(x) − f j (x)]

+ 1

2δ

∥
∥
∥
∥
∥
μ0

nq∑

k=1

μj∇f j (x)

∥
∥
∥
∥
∥

2}

,

where γ = 1 and δ = 0.5 are parameters, and �0
nq

� {μ|μ ∈ R
nq+1
+ ,

∑nq

j=0 μj = 1}.
Note that θ(x) ≤ 0 for all x and is an estimate of the “cost-to-go”. Also, θ(x) = 0
if x satisfies the F. John optimality conditions. Values of θ(x) larger than −106 are
indicative of x being quite close to a local minimizer.

3.1 Control of Eight UAVs

First, we consider the problem of controlling eight identical UAV’s which are required
to fly, indefinitely, inside a circle in a horizontal plane, without incurring a collision,
for an indefinite period of time. Their controls over a given time horizon T are to
be determined by a centralized computer, to be used in a control scheme known as
Receding Horizon Control (see [24]).

For the sake of simplicity, we assume that each UAV flies at a constant speed v

and that the scalar control ui , for the i-th UAV determines its rate of heading angle

58 J Optim Theory Appl (2010) 146: 51–75

change in radians per second. The cost function for this problem is proportional to
the sum of the energy used by the UAV’s over the interval [0, T], i.e.,

f 0(u)
�=

8∑

i=1

∫ T

0

1

2
u2

i (τ)dτ, (16)

where u
�= (u1, u2, . . . , u8). The constraints, to be made explicit shortly, are those of

staying inside the circle and collision avoidance.
In order to state the optimal control problem as an end-point problem defined on

[0,1], we rescale the state dynamics of each UAV using the actual terminal time
T and augment the 3-dimensional physical state2 (x1

i , x2
i , x3

i) with a fourth compo-
nent, x4

i ,

x4
i (t)

�=
∫ t

0

T

2
u2

i (τ)dτ, (17)

which represents the energy used by the i-th UAV. The resulting dynamics of the i-th
UAV have the form

dxi(t)

dt
=

⎡

⎢
⎢
⎢
⎣

T v cosx3
i (t)

T v sinx3
i (t)

T ui(t)

T
2 ui(t)

2

⎤

⎥
⎥
⎥
⎦

� h(xi(t), ui(t)) (18)

with the initial state xi(0) given. We will denote the solution of the dynamic equa-
tion (18) by xi(t, ui), with t ∈ [0,1].

The optimal control problem we need to solve is of the form

min
u∈L8∞[0,1]

f 0(u)
�=

8∑

i=1

x4
i (1, ui) (19)

subject to two sets of constraints:

(a) Stay-in-a-circle constraints:

f i
bnd(t, ui)

�= x1
i (t, ui)

2 + x2
i (t, ui)

2 ≤ r2
bnd, ∀t ∈ [0,1], i = 1,2, . . . ,8, (20)

and
(b) Pairwise collision avoidance constraints:

f
(i,j)
ca (t, ui, uj)

�= (x1
i (t, ui) − x1

j (t, uj))
2 + (x2

i (t, ui) − x2
j (t, uj))

2 ≥ r2
ca,

∀t ∈ [0,1], i
= j, i, j = 1,2, . . . ,8. (21)

2(x1
i
, x2

i
) denotes the position coordinates of the i-th UAV on a plane, and x3

i
denotes the heading angle

in radian of the i-th UAV, respectively.

J Optim Theory Appl (2010) 146: 51–75 59

To solve this problem, we must discretize the dynamics. We use Euler’s method to
obtain

x̄i (tk+1) − x̄i (tk) = �h(x̄i(tk), ūi(tk)), x̄i(0) = xi(0), i = 0,1,2, . . . ,8,

(22)

with �
�= 1/N , N ∈ N, tk

�= k� and k ∈ {0,1, . . . ,N}. We use an over-bar to distin-
guish between the exact variables and the discretized variables. We will denote the
solution of the discretized dynamics by x̄i (tk, ūi), k = 0,1, . . . ,N , with

ūi
�= (ūi(t0), ū(t1), . . . , ūi (tN−1)). (23)

Finally, we obtain the following discrete-time optimal control problem:

min
ūi∈RN , i∈{1,...,8}

f̄ 0(ū)
�=

8∑

i=1

x̄4
i (1, ūi) (24)

subject to |ūi (tk)| ≤ b for k = 0,1, . . . ,N − 1 and i = 1,2, . . . ,8, the discretized dy-
namics of each UAV (22), and the discretized stay-in-a-circle and collision avoidance
constraints:

f̄ k
bnd,i (ū

i)
�= x̄1

i (tk, ūi)
2 + x̄2

i (tk, ūi)
2 ≤ r2

bnd, k ∈ {1, . . . ,N}, (25)

and

f k
ca,(i,j)(ūi , ūj)

�= (x̄1
i (tk, ūi) − x̄1

j (tk, ūj))
2 + (x̄2

i (tk, ūi) − x̄2
j (tk, ūj))

2 ≥ r2
ca,

k ∈ {1, . . . ,N}, i
= j, i, j = 1,2, . . . ,8. (26)

The total number of nonlinear inequality constraints in this problem is 8N(8−1)/2+
8N . Clearly, (24), (25), and (26) are a mathematical programming problem that is
distinguished from ordinary mathematical programming problems only by the fact
that adjoint equations can be used in the computation of the gradients of the functions.

We set v = 0.5, rbnd = 4, rca = 1, T = 25, b = 1 and N = 64, resulting in 2304
nonlinear inequality constraints. The initial conditions and initial controls for each
UAV are set as

x1
0 = (2.5,2.5,π,0), x2

0 = (−2.5,2,−π/2,0),

x3
0 = (−2.5,−2.5,−π/4,0), x4

0 = (2,−2.5,π/2,0),

x5
0 = (2.5,0,π/2,0), x6

0 = (−2.5,0,−π/2,0),

x7
0 = (0,3,−3π/4,0), x8

0 = (0,−3,π/4,0),

ūi
0 = 1.25 × 10−111×N ∀i ∈ {1, . . . ,Na}, (27)

where 11×N represents a 1 × N vector whose elements are all ones. The numerical
results are summarized in Tables 1–3. In these tables, Ngrad, the total number of
gradient evaluations, and tCPU, the total CPU time for achieving an optimal solution
using Algorithm 2.1, are defined as follows:

60 J Optim Theory Appl (2010) 146: 51–75

Fig. 1 (Color online) Initial trajectories (dashed red) and optimal trajectories (solid blue). Bounding cir-
cular region is represented by the dotted blue circle

Ngrad =
iT∑

i=0

|Qi | × number of gradient function calls during i-th inner iteration,

tCPU =
iT∑

i=0

[
CPU time spent for the i-th inner iteration

+ CPU time spent for setting up the i-th inner iteration
]
. (28)

In the above, and in the tables, iT is the value of the iteration index i at which Al-
gorithm 2.1 is terminated by the termination tests incorporated in the optimization
solver used, and istab is the value of the index i at which |Q| is stabilized. Also, %nat,
the percentage of tCPU with respect to the computation time with the native algo-
rithm, i.e. using the solver with the full set of constraints (shown in the last row of
each table), and θ∗ � θ(x∗), the value of the optimality function at the minimizer x∗,
is used in tables.

Figure 1 shows the trajectories for a locally optimal solution for the eight UAV
problem. There are only 16 active constraints out of 2304 at the end. These are all as-
sociated with staying in the circle; there are no active collision avoidance constraints.
When properly adjusted, Algorithm 2.1 accumulates fewer than 90 constraints. Con-
sequently, the reduction in the number of gradient computations is huge.

In Table 1, the best result using Algorithm 2.1, with the Schittkowski SQP defining
the map A(·), was achieved with data set 3, which required about 1/3 of the CPU
time used by the native Schittkowski SQP algorithm. With NPSOL, the reduction
was more significant, and a locally optimal solution was obtained using about 1/12

J Optim Theory Appl (2010) 146: 51–75 61

Table 1 External active-set strategy with Schittkowski SQP, eight-UAV example

Data # Niter iT f 0 Ngrad |Q| istab tCPU %nat θ∗

1 10 37 8.0533 124384 281 31 1590.8 47.7 −1.04e-08

2 20 19 4.0969 70748 305 18 1117.2 33.5 −1.39e-08

3 30 16 3.1467 63622 189 15 1105.3 33.1 −1.41e-08

Native 1.7916 463104 2304 3337.8 100 −2.21e-06

Table 2 External active-set strategy with NPSOL, eight-UAV example

Data # Niter iT f 0 Ngrad |Q| istab tCPU %nat θ∗

1 10 13 1.7028 10709 115 10 129.5 8.1 −7.31e-11

2 20 11 1.7028 11212 91 9 145.8 9.2 −8.50e-09

3 30 9 1.7028 13606 86 9 169.6 10.7 −2.83e-14

Native 1.7916 237312 2304 1588.9 100 −8.90e-11

Table 3 External active-set strategy with SNOPT, eight-UAV example

Data # Niter iT f 0 Ngrad |Q| istab tCPU %nat θ∗

1 10 8 1.7028 2137 84 8 34.6 13.7 −2.28e-09

2 20 8 1.7028 2157 84 8 35.8 14.2 −3.71e-10

3 30 8 1.7028 2157 84 8 35.2 14.0 −3.71e-10

Native 1.7916 36864 2304 251.8 100 −7.48e-09

Table 4 External active-set strategy with IPOPT, eight-UAV example

Data # Niter iT f 0 Ngrad |Q| istab tCPU %nat θ∗

1 10 9 1.7028 2501 84 8 35.4 6.1 −8.08e-09

2 20 8 1.7028 2424 84 8 34.6 6.0 −8.08e-09

3 30 8 1.7028 2424 84 8 34.4 5.9 −8.08e-09

Native 1.7916 71424 2304 578.3 100 −8.39e-09

of the CPU time used by NPSOL with the full constraint set (data set 1 in Table 2).
When SNOPT was used as the map A(·) in Algorithm 2.1, the reduction about 1/7
was achieved with data set 1 in Table 3. In this example, IPOPT with Algorithm 2.1
showed the best performance in overall. The reduction about 1/16 was achieved with
data set 3 in Table 4.

To summarize, our overall fastest solution of the optimal control problem was
obtained using data set 3 with the IPOPT algorithm. This computing time was 1/98
of the time required by the native Schittkowski SQP, 1/7 of the time required by

62 J Optim Theory Appl (2010) 146: 51–75

Table 5 Result using the native
KNITRO, eight-UAV example Solver f 0 Ngrad tCPU θ∗

KNITRO 1.7916 94464 627.7 −2.43e-07

the native SNOPT, 1/16 of the time required by the native IPOPT, 1/18 of the time
required by the native KNITRO, and 1/46 of the time required by the native NPSOL.

It is also interesting to observe that in their native form, all the algorithms tested
computed the same local minimizer, but when enhanced with our active set procedure,
with the exception of the Schittkowski algorithm, all algorithms converged to a better
local minimizer. The values of θ∗, in Tables 1–4, show that it was not a case of the
native algorithms jamming near a local minimum.

Finally, comparing the result in Table 5 with those in Tables 1–4, we conclude that
on this problem, in native form, KNITRO is inferior to SNOPT and IPOPT, but better
than the others.

3.2 Design of Pink-Noise Kautz Filter of Even Order

This problem requires the computation of coefficients for a Kautz filter so as to get
a best fit to the desired profile, defined by the function F̃ (y), below. The best fit is
defined in terms of the solution of the semiinfinite minimax problem

min
x

max
y

∣
∣ log10(|H(x,y)|) − log10(F̃ (y))

∣
∣, x ∈ R

2N, y ∈ [ε1,1 − ε1], (29)

subject to the constraints

x2k−1 − x2k

1 − ε2
− (1 − ε2) ≤ 0,

−x2k−1 − x2k

1 − ε2
− (1 − ε2) ≤ 0, k = 1, . . . ,N, ε2 ∈ (0,1),

x2k − (1 − ε2)
2 ≤ 0, (30)

where

H(x,y) =
N∑

k=1

[

(xN+2k+1 pk(ei2πy − 1) + xN+2kqk(ei2πy + 1))

× 1

1 + x1ei2πy + x2ei4πy

k∏

l=1

x2l + x2l−1ei2πy + ei4πy

1 + x2l+1ei2πy + x2l+2ei4πy

]

, (31)

pk =
√

(1 − x2k)(1 + x2k − x2k−1)

2
,

qk =
√

(1 − x2k)(1 + x2k + x2k−1)

2
, (32)

J Optim Theory Appl (2010) 146: 51–75 63

and

F̃ (y) =
⎧
⎨

⎩

1√
2πy

, y ∈ [ε1,
1
2],

1√
2π(1−y)

, y ∈ [1
2 ,1 − ε1].

(33)

In order to transcribe this semiinfinite minimax problem into an ordinary minimax
problem, we discretize the set Y , and set it to be Y = {y1, y2, . . . , yNd

}. Note that the
discretization should be logarithmically spaced, since we are looking for the best fit
in the frequency domain. Next, to convert this minimax problem into a constrained
nonlinear programming problem, we introduce the slack variable x2N+1 ≥ 0, and
define

x̄ �
[

x

x2N+1

]

. (34)

Then the original minimax problem becomes the nonlinear programming problem

min
x̄

x2N+1 (35)

subject to constraints (30), and

−x2N+1 ≤ log10(|H(x,yi)|) − log10(F̃ (yi)) ≤ x2N+1, i = 1,2, . . . ,Nd. (36)

Most of the above nonlinear inequality constraints are active at a minimum.
For numerical experiments, we applied our algorithm only to nonlinear inequality

constraints (36), and took into account linear constraints (30) all the time. We set
ε1 = ε2 = 0.01, N = 20, and Nd = 63, which results in 2 × Nd = 126 nonlinear
inequality constraints. The initial condition is set as

x0 = 0.7 12N×1. (37)

When our algorithm is applied to nonlinear programming problems obtained by tran-
scription of minimax problems via the addition of an additional variable, say xn+1,
the initial value of xn+1 must be chosen so that the ε-active set of the equivalent
nonlinear programming problem is nonempty in the beginning. Otherwise, the solver
causes xn+1 → −∞ in the first inner iteration, which is useless.

For this example, we set up the initial value of the additional variable as follows:

x2N+1
0 = max

i=1,...,Nd

| log10(|H(x0, yi)|) − log10(F̃ (yi))|, (38)

which ensures that the ε-active set is not empty for any ε > 0.
The Kautz filter design is a highly ill-conditioned problem with many local min-

ima, which proved to be impossible to solve with two of the four solvers that we
were using. The Schittkowski SQP, failed and reported an error message, “Too large
penalty”, NPSOL failed and reported the error message “Current point cannot be im-
proved on.” SNOPT and IPOPT were able to solve the problem, but the computing
time was very long. KNITRO posted very good computing times, but converged to a
much inferior local minimum.

64 J Optim Theory Appl (2010) 146: 51–75

Table 6 External active-set strategy with Schittkowski SQP, Kautz filter design example

Data # Niter iT f 0 Ngrad |Q| istab tCPU %nat θ∗

1 10 17 1.073e-03 42157 122 11 57.3 −1.11e-06

2 20 40 1.026e-03 200497 120 16 256.2 −1.06e-07

3 30 19 1.104e-03 109642 114 11 139.5 −2.39e-07

Native 126

Table 7 External active-set strategy with NPSOL, Kautz filter design example

Data # Niter iT f 0 Ngrad |Q| istab tCPU %nat θ∗

1 10 118 5.133e-08 483171 126 22 601.6 −4.77e-09

2 20 109 3.713e-07 938074 126 17 1125.0 −8.21e-09

3 30 63 1.663e-06 727929 124 53 864.0 −2.43e-10

Native 126

Table 8 External active-set strategy with SNOPT, Kautz filter design example

Data # Niter iT f 0 Ngrad |Q| istab tCPU %nat θ∗

1 10 33 6.116e-07 155033 126 9 188.2 16.2 −4.03e-07

2 20 13 1.360e-05 111460 125 7 132.5 11.4 −4.25e-07

3 30 10 1.008e-05 119415 126 6 142.3 12.3 −3.19e-07

Native 2.413e-07 1011906 126 1158.5 100 −4.40e-06

Table 9 External active-set strategy with IPOPT, Kautz filter design example

Data # Niter iT f 0 Ngrad |Q| istab tCPU %nat θ∗

1 10 94 4.174e-08 125064 126 41 276.9 2.0 −5.02e-09

2 20 415 4.183e-08 1074624 126 414 2016.0 14.8 −5.12e-09

3 30 14 3.147e-07 47097 126 5 74.9 0.6 −4.98e-09

Native 5.136e-06 1581804 126 13585.8 100 −4.98e-09

Using Algorithm 2.1, with Schittkowski SQP and NPSOL as the map A(·), op-
timal solutions were found, as shown in Tables 6 and 7. Referring to Table 8, we
see that when used with SNOPT, Algorithm 2.1 achieved reductions in computation
time ranging from 84% to 89%, depending on the choice of the parameter Niter. The
reductions in computation time achieved by IPOPT were dramatic. With IPOPT, a
locally optimal solution was obtained using about 1/166 of the CPU time used by
IPOPT with the full constraint set as shown in Table 9.

J Optim Theory Appl (2010) 146: 51–75 65

Fig. 2 Desired profile F̃ (yi) (upper plot) and the error log10(|H(x,yi)|) − log10(F̃ (yi)) at a minimizer
(data set #1 in Table 8)

In the Kautz filter design, most of the constraints are eventually included in the
active set Qi (see the values of |Q| in the tables). In spite of this, when used with
SNOPT and IPOPT, our algorithm was able to reduce computation time, because
only a few constraints were active in the early iterations.

To summarize, Algorithm 2.1 enabled the Schittkowski SQP and NPSOL to find a
solution, and enhanced the performance of SNOPT and IPOPT. Finally, referring to
Fig. 2, which is a plot of log10 F̃ (yi), we see that from a practical point of view all
the designs obtained are very good, since the maximum errors, which are of the order
of 10−3 to 10−8 are very small relative to the desired reference filter values, which
are in the range of −0.2 to 0.7. The best accuracy of fit was obtained using enhanced
IPOPT.

The results obtained by KNITRO were fastest among the native algorithms, but
the quality of the solution was not as good.

3.3 Minimum-Time Trajectory Planning for a 2-Link Manipulator

Our last numerical example involves the computation of a minimum-time trajectory
for an 2-link (and two joint) manipulator [3], see Fig. 3. The end tip of the manipulator
is required to pass through 4 via points in the Cartesian 2-dimensional plane to which
the motion is confined. Using inverse kinematics, each via point can be converted
into a vector in the 2-dimensional joint-variable space. Following the convention in

66 J Optim Theory Appl (2010) 146: 51–75

Fig. 3 Configuration of a
two-link robot arm

[3], we introduce six via points in the 2-dimensional joint variable space:

qi � [qi
1, q

i
2]T , i = 0,1, . . . ,5, (39)

where q0, q2, q3, and q5 are the image, under inverse kinematics, of the given via
points in Cartesian space, while the via points q1 and q4 are free variables, which
must be added in order to guarantee continuity in velocity and acceleration, see [3].

We will denote the joint vector motion by q(t) ∈ R
2. Let δ > 0 and let ti ∈ [δ,∞)

denote the time required for the manipulator to move from the i − 1-th via point to
the i-th via point. We define the interval vector T � [t1 · · · t5]T ∈ S, where S � {T ∈
R

5|ti ∈ [δ,∞), i = 1,2, . . . ,5}.
For i = 1,2, . . . ,5, let

σi =
i∑

j=1

tj (40)

and we set σ0 = 0.
Our objective is to minimize σ5.
We define the position, velocity, and acceleration vectors at i-th via point, i =

0,1, . . . ,5, by

q(σi) �
[
qi

1

qi
2

]

= qi, q̇(σi) � q̇i =
[
q̇i

1

q̇i
2

]

, q̈(σi) � q̈i =
[
q̈i

1

q̈i
2

]

. (41)

We assume that q̇0, q̇5, q̈0, and q̈5 are given.
We parameterize the joint trajectory, q(t), using ten cubic splines, two for each

time interval where the robot arm travels from via point qi to via point qi+1, defined
on the intervals [0, ti], of the following form

J Optim Theory Appl (2010) 146: 51–75 67

pi
k(t) � qi−1

k + q̇i−1
k t +

[
3

t2
i

(qi
k − qi−1

k) − 1

ti
(q̇i

k + 2q̇i−1
k)

]

t2

+
[

− 2

t3
i

(qi
k − qi−1

k) + 1

t2
i

(q̇i
k + q̇i−1

k)

]

t3, (42)

where i = 1,2, . . . ,5, k = 1,2, and t ∈ [0, ti]. For t ∈ [σi−1, σi], i = 1,2, . . . ,5, we
set

q(t) = pi(t − σi−1) = [pi
1(t − σi−1),p

i
2(t − σi−1)]T . (43)

To obtain a semiinfinite programming formulation in standard form, we need to nor-
malize (42) in order to define the problem on a fixed set [0,1], rather than variable
sets [0, ti]. Setting t = sti for s ∈ [0,1], (42) becomes

pi
k(sti) � qi−1

k + q̇i−1
k tis + [

3(qi
k − qi−1

k) − ti (q̇
i
k + 2q̇i−1

k)
]
s2

+ [−2(qi
k − qi−1

k) + ti (q̇
i
k + q̇i−1

k)
]
s3, (44)

where i = 1,2, . . . ,5, and k = 1,2.
The continuity in joint accelerations is enforced by the relations

p̈1
k(0) = q̈0

k , p̈5
k(t5) = q̈5

k , (45)

p̈i+1
k (0) = p̈i

k(ti), (46)

for all i = 1, . . . ,5 and k = 1,2. From (45), we can define the free variables q1
k and q5

k

as functions of unknown variables q̇1
k and q̇5

k . The remaining unknowns, q̇1
k , . . . , q̇5

k

can be obtained by solving a linear system of equations defined by (46), in terms of
the ti ’s. Therefore, pi

k(·) is parameterized in terms of T , i.e., pi
k(·) is now a function

of s and T . In [3], it was shown that the system of equations defining the pi
k(·) always

has a solution for any T ∈ S.
For i = 1,2, . . . ,5 and k = 1,2, with the time origin shifted to σi−1, the torque at

k-th joint in the i-th time interval, induced by the manipulator motion has the form

τ i
k(t) = Mk(p(t), ṗ(t), p̈(t)), t ∈ [0, ti], (47)

where p(t), ṗ(t), and p̈(t) are the joint position vector, the joint velocity vector, and
the joint acceleration vector respectively. τ i

k(t) is defined by (dependencies on t is
omitted below for simplicity)

τ i
1 = m2l

2
2(p̈i

1 + p̈i
2) + m2l1l2 cos(pi

2)(2p̈i
1 + p̈i

2)

+ (m1 + m2)l
2
1 p̈i

1 − m2l1l2 sin(pi
2)(ṗ

i
2)

2

− 2m2l1l2 sin(pi
2)ṗ

i
1ṗ

i
2 + m2l2 cos(pi

1 + pi
2)

+ (m1 + m2)l1g cos(pi
1),

τ i
1 = m2l1l2 cos(pi

2)p̈
i
1 + m2l1l2 sin(pi

2)(ṗ
i
1)

2

+ m2l2g cos(pi
1 + pi

2) + m2l
2
2(p̈i

1 + p̈i
2), (48)

68 J Optim Theory Appl (2010) 146: 51–75

where mk and lk denote the mass and the length of k-th link, and g is the gravitational
acceleration.

Since we have defined t = sti , it follows that dt = tids, and hence we have

ṗ(t) = dp(t)

dt
= 1

ti

dp(sti)

ds
,

p̈(t) = dṗ(t)

dt
= 1

t2
i

d2p(sti)

d2s
. (49)

If we assume that p(t) is expressed in terms of normalized cubic splines pi
k(s;T),

then we obtain that

τ i
k(s;T) = Mk

(

pi(s;T),
1

ti

dpi(s;T)

ds
,

1

t2
i

d2pi(s;T)

d2s

)

, s ∈ [0,1], (50)

where pi(s;T) = [pi
1(s;T), pi

2(s;T)]T . Also,

dτ i
k(s;T)

dt
= 1

ti

dτ i
k(s;T)

ds
= 1

ti

dMk(·)
ds

, s ∈ [0,1]. (51)

The minimum-time trajectory planning problem can now be formulated as a semi-
infinite optimization problem, as follows:

min
T ∈S

5∑

i=1

ti (52)

subject to

−ak ≤ τ i
k(s;T) ≤ ak, ∀s ∈ [0,1], (53)

−bk ≤ τ̇ i
k(s;T) ≤ bk, ∀s ∈ [0,1], (54)

for all k = 1,2, and all i = 0,1, . . . ,5. Constraints in (53) represent actuator torque
limits at each joints, and in (54) ‘jerk’ limits at each joints.

In [3], a hybrid algorithm specially designed to compute the global optimal solu-
tion of the above problem was used. In this paper, we discretize the above semiin-
finite programming problem and use nonlinear programming packages to obtain an
approximate solution.

We discretize the interval [0,1] into N subintervals, and define

sj = j

N
. (55)

Finally, the constraints involving the continuous variable s in (53) and (54) are
replaced by the set of discrete constraints:

J Optim Theory Appl (2010) 146: 51–75 69

−ak ≤ τ i
k(sj ;T) ≤ ak,

−bk ≤ τ̇ i
k(sj ;T) ≤ bk, (56)

for all i = 1,2, . . . ,5, j = 1,2, . . . ,N , and k = 1,2.
For numerical experiments, we use the parameter values in [3] (m1 = 15, m2 = 7,

l1 = 1, l2 = 0.5, a1 = 260, a2 = 50, b1 = 300, b2 = 200) except for the number of
given via points. We use only four via points (n = 4), and therefore the number of
variables is five. We set N = 8, and the number of nonlinear inequality constraints
is 320 (=N × (5) × number of nonlinear functional inequality constraints ×2). The
initial condition T0 is set to 5 · 15×1.

Tables 11–14 show our numerical results. Note that NPSOL failed to solve the tra-
jectory planning problem with the full set of constraints, hence %nat is not available.
However, enhanced by our procedure, NPSOL found an optimal solution. With the
enhanced Schittkowski SQP algorithm, the best result was achieved with data set 2,
which required about 1/7 of the CPU time used by the native Schittkowski SQP algo-
rithm. With the enhanced SNOPT algorithm, the best result was achieved using data
set 3, which required about 1/3 of the CPU time used by the native SNOPT algo-
rithm. Note the poor result for SNOPT for Niter = 10, in Table 13, which is caused by
the large setup cost for this problem. In Table 14, the best result using Algorithm 2.1,
with IPOPT, was achieved using data set 1, which required about 1/4 of the CPU
time used by the native IPOPT.

Table 10 Result using the
native KNITRO, Kautz filter
design example

Solver f 0 Ngrad tCPU θ∗

KNITRO 1.032e-04 122220 156.18 −4.42e-05

Table 11 External active-set strategy with Schittkowski SQP, robot arm example

Data # Niter iT f 0 Ngrad |Q| istab tCPU %nat θ∗

1 10 10 2.2830 693 10 10 67.2 19.6 −2.15e-13

2 20 11 2.2830 924 11 11 44.6 13.0 −8.55e-14

3 30 11 2.2830 1011 11 11 49.6 14.5 −2.75e-14

Native 2.2830 28800 320 341.8 100 −4.45e-014

Table 12 External active-set strategy with NPSOL, robot arm example

Data # Niter iT f 0 Ngrad |Q| istab tCPU %nat θ∗

1 10 13 2.2830 811 12 13 35.8 −2.77e-13

2 20 10 2.2830 644 10 10 30.0 −2.51e-13

3 30 10 2.2830 698 10 10 32.4 −2.19e-13

Native 320

70 J Optim Theory Appl (2010) 146: 51–75

Table 13 External active-set strategy with SNOPT, robot arm example

Data # Niter iT f 0 Ngrad |Q| istab tCPU %nat θ∗

1 10 152 2.2830 14773 15 152 622.1 380.1 −4.52e-09

2 20 17 2.2830 2609 10 17 103.5 63.2 −5.72e-09

3 30 10 2.2830 1203 10 10 51.9 31.7 −5.72e-09

Native 2.2830 14720 320 163.6 100 −1.47e-13

Table 14 External active-set strategy with IPOPT, robot arm example

Data # Niter iT f 0 Ngrad |Q| istab tCPU %nat θ∗

1 10 11 2.2830 415 10 11 24.2 34.7 −2.94e-09

2 20 11 2.2830 593 10 11 29.6 42.4 −2.94e-09

3 30 11 2.2830 718 10 11 35.5 50.9 −2.94e-09

Native 2.2830 6080 320 69.7 100 −8.92e-09

3.4 Optimal Control of a Quadratically Constrained Particle

This is a convex problem, which was inspired by the Problem 11.5.7 of [25]. The
problem is to control the motion of a particle in a plane under a constant force field,
subject to control and trajectory constraints. The motion of the particle is described
by the following differential equation.

d

dt

⎡

⎢
⎢
⎣

x1(t)

x2(t)

x3(t)

x4(t)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

x2(t)

u1(t) + d1
x4(t)

u2(t) + d2

⎤

⎥
⎥
⎦ , (57)

where (x1, x3) denotes the position coordinates of the particle, (x2, x4) the velocity
vector, u1 and u2 are control inputs, and d1 and d2 are constant disturbance force
elements in x1 and x2 directions as shown in Fig. 4. The cost functions f 0(·) is
defined by

f 0(u) = 1

2

∫ T

0
[u2

1(τ) + u2
2(τ)]dτ, (58)

where u
�= (u1, u2). The constraints are

x2
2(t) + x2

4(t) ≤ v2
max, (59)

ul
1 ≤ u1(t) ≤ uu

1,

ul
2 ≤ u2(t) ≤ uu

2, (60)

J Optim Theory Appl (2010) 146: 51–75 71

Fig. 4 Control of a particle on a
plane under a constant force
field

Table 15 Result using the
native KNITRO, robot arm
example

Solver f 0 Ngrad tCPU θ∗

KNITRO 2.2830 5440 80.5 −1.62e-05

and

x2
1(t)

a2
+ x2

3(t)

b2
≤ 1,

x2
1(t)

b2
+ x2

3(t)

a2
≤ 1 (61)

for all t ∈ [0, T], where a > b > 0. Note that this is a linear-quadratic optimal control
problem with linear and quadratic constraints, and hence it is convex.

The continuous-time optimal control problem described above was converted to
a discrete-time, finite-dimensional optimal control problem using the discretization
procedure used in Sect. 3.1. In our numerical experiments, we set d1 = 0.3, d2 = 0.3,
ul

1 = ul
2 = −2, vmax = 2, uu

1 = uu
2 = 2, a = 5, b = 3, and T = 10. The time 0 ≤

t ≤ T was discretized into N = 128 intervals. In the numerical experiments, we kept
the box constraints (60) in the computations all the time, and applied our algorithm
only to nonlinear constraints, discretized versions of (59) and (61), since our main
interest is to reduce the computation time by excluding computationally expensive
inactive constraint gradients from the computation. Therefore N ×3 = 384 nonlinear
constraints were considered in the following numerical experiments. As initial values,
we used x0 = (0,0,0,0) and u0 = −0.5 × 12×N .

In Table 16, the best result using the enhanced Schittkowski SQP was achieved
with data set 1, which required about 1/7 of the CPU time used by the native Schit-

72 J Optim Theory Appl (2010) 146: 51–75

Table 16 External active-set strategy with Schittkowski SQP, particle example

Data # Niter iT f 0 Ngrad |Q| istab tCPU %nat θ∗

1 10 2 3.1198e-01 190 12 2 3.6 14.1 −4.68e-10

1 20 2 3.1198e-01 421 13 2 6.6 25.9 −2.76e-10

1 30 2 3.1198e-01 517 13 2 8.9 34.9 −2.09e-09

Native 3.1198e-01 7296 384 25.5 100 −1.70e-10

Table 17 External active-set strategy with NPSOL, particle example

Data # Niter iT f 0 Ngrad |Q| istab tCPU %nat θ∗

1 10 2 3.1198e-01 209 11 2 2.1 3.1 −1.84e-12

2 20 2 3.1198e-01 268 13 2 2.5 3.8 −5.16e-16

3 30 2 3.1198e-01 268 13 2 2.5 3.7 −5.16e-16

Native 3.1198e-01 24192 384 67.4 100 −6.47e-12

Table 18 External active-set strategy with SNOPT, paricle example

Data # Niter iT f 0 Ngrad |Q| istab tCPU %nat θ∗

1 10 2 3.1198e-01 276 13 2 2.3 3.6 −6.17e-08

1 20 2 3.1198e-01 276 13 2 2.3 3.6 −6.17e-08

1 30 2 3.1198e-01 276 13 2 2.3 3.6 −6.17e-08

Native 3.1198e-01 21888 384 62.4 100 −6.42e-10

Table 19 External active-set strategy with IPOPT, particle example

Data # Niter iT f 0 Ngrad |Q| istab tCPU %nat θ∗

1 10 2 3.1198e-01 126 13 2 1.4 7.1 −9.11e-09

2 20 2 3.1198e-01 190 13 2 2.0 9.9 −9.14e-09

3 30 2 3.1198e-01 190 13 2 2.0 10.0 −9.14e-09

Native 3.1198e-01 5760 384 19.8 100 −9.14e-09

tkowski SQP algorithm. With enhanced NPSOL, the reduction was more significant,
and a locally optimal solution was obtained using about 1/33 of the CPU time used
by the native NPSOL (data set 1 in Table 17). With enhanced SNOPT, about 1/27 of
the time used by the native SNOPT was required, irrespective of the choice on the
parameter Niter in Table 18. With enhanced IPOPT, about 1/14 of the time used by
the native SNOPT was used, with data set 1 in Table 19.

J Optim Theory Appl (2010) 146: 51–75 73

Table 20 Result using the
native KNITRO, particle
example

Solver f 0 Ngrad tCPU θ∗

KNITRO 3.1198e-01 15744 45.8 −1.86e-08

Table 21 Computation time comparison of solvers: C = conSolve, N = NPSOL, S = SNOPT, I = IPOPT,
K = KNITRO, NAT = Native, ENH = Enhanced

Example 3.1 Example 3.2 Example 3.3 Example 3.4

RANK NAT ENH NAT ENH NAT ENH NAT ENH

1 S I K C I I I I

2 I S S I K N C N

3 K N I S S C K S

4 N C N C S S C

5 C N

Finally, in Table 20, we display the results for the native form of KNITRO. We see
that on this problem, it is faster than native NPSOL and SNOPT. But slower than all
of our enhanced versions, and also slower than native Schittkowski SQP and IPOPT.

4 Conclusions

We have presented an external active-set strategy for solving nonlinear programming
problems with large numbers of inequality constraints, such as discretized semi-
infinite optimization and optimal control problems, using nonlinear programming
solvers. Our numerical results show that this strategy can result in considerable sav-
ings in computing time, with the computing time reduction depending on the fraction
of constraints active at a solution, as well as the choice of algorithm parameters. We
have tested the use of our strategy with four solvers and in the process produced a
comparative evaluation of these solvers, which we present in Table 21. IPOPT ap-
pears to give the best results with and without our strategy and would be our first
choice. However, the other algorithms that we tested are easily available via TOM-
LAB for use with MATLAB, while IPOPT has to be compiled from available blocks
of code for use with MATLAB.

To conclude, the advantages of our active-set strategy are that it is very simple
to implement and, at least as far as our numerical experiments indicate, it leads to a
considerable reduction in computing time over the use of standard optimization code
in “native” form.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

74 J Optim Theory Appl (2010) 146: 51–75

References

1. Bhatti, M.A., Pister, K.S., Polak, E.: Optimization of control devices in base isolation systems for
aseismic design. In: Leipholz, H.H.E. (ed.) Structural Control: Proceedings of the International Iutam
Symposium On Structural Control, pp. 127–138. North-Holland, Amsterdam (1980)

2. Polak, E., Meeker, G., Yamada, K., Kurata, N.: Evaluation of an active variable-damping-structure.
Earthquake Eng. Struct. Dyn. 23, 1259–1274 (1994)

3. Bianco, C.G.L., Piazzi, A.: Minimum-time trajectory planning of mechanical manipulators under dy-
namic constraints. Int. J. Control 75(13), 967–980 (2002)

4. Görner, S., Potchinkov, A., Reemtsen, R.: The direct solution of nonconvex nonlinear fir filter design
problems by a SIP method. Optim. Eng. 1, 123–154 (2000)

5. Durrant-Whyte, H., Pagac, D., Rogers, B., Stevens, M., Nelmes, G.: Field and service applications—
an autonomous straddle carrier for movement of shipping containers—from research to operational
autonomous systems. IEEE Robot. Autom. Mag. 14(3), 14–23 (2007)

6. Rembold, U., Lueth, T., Ogasawara, T.: From autonomous assembly robots to service robots for facto-
ries. In: Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems,
vol. 3, pp. 2160–2167 (1994)

7. Shim, D.H., Chung, H., Sastry, S.: Conflict-free navigation in unknown urban environments. IEEE
Robot. Autom. Soc. Mag. 13, 27–33 (2006)

8. Upcroft, B., Moser, M., Makarenko, A., Johnson, D., Donikian, A., Alempijevic, A., Fitch, R.,
Uther, W., Grøtli, E.I., Biermeyer, J., Gonzalez, H., Templeton, T., Srini, V.P., Sprinkle, J.: Darpa
urban challenge technical paper: Sydney-Berkeley driving team. Tech. rep., University of Sydney;
University of Technology, Sydney; University of California, Berkeley (June 2007)

9. Murray, W., Gill, P.E., Saunders, M.A.: SNOPT: An SQP algorithm for large-scale constrained opti-
mization. SIAM J. Optim. 12, 979–1006 (2002)

10. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: User’s guide for NPSOL 5.0: A Fortran pack-
age for nonlinear programming. Tech. Rep. SOL 86-2, Systems Optimization Laboratory, Department
of Operations Research, Stanford University (1998)

11. Byrd, R.H., Nocedal, J., Waltz, R.A.: KNITRO: An integrated package for nonlinear optimization. In:
di Pillo, G., Roma, M. (eds.) Large-Scale Nonlinear Optimization, pp. 35–59. Springer, Berlin (2006)

12. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search
algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

13. Schittkowski, K.: On the convergence of a sequential quadratic programming method with an aug-
mented Lagrangian line search function. Tech. rep., Systems Optimization Laboratory, Stanford Uni-
versity (1982)

14. Lawrence, C.T., Zhou, J.L., Tits, A.L.: User’s guide for CFSQP version 2.5: A C code for solving
(large scale) constrained nonlinear (minimax) optimization problems, generating iterates satisfying all
inequality constraints. Tech. Rep. TR-94-16r1, Institute for Systems Research, University of Maryland
(1997)

15. Cheney, E.W., Goldstein, A.A.: Newton’s method for convex programming and Tchebycheff approx-
imation. Numer. Math. 1, 253–268 (1959)

16. Polak, E.: Optimization: Algorithms and Consistent Approximations. Applied Mathematical Sci-
ences, vol. 124. Springer, Berlin (1997)

17. Leineweber, D.: Efficient Reduced SQP Methods for the Optimization of Chemical Processes De-
scribed by Large Sparse DAE Models. Fortschritt-Berichte VDI Reihe 3, vol. 613. VDI Verlag, Düs-
seldorf (1999)

18. Polak, E., Womersley, R.S., Yin, H.X.: An algorithm based on active sets and smoothing for dis-
cretized semiinfinite minimax problems. J. Optim. Theory Appl. 138(2), 311–328 (2008)

19. Chung, H., Polak, E., Sastry, S.S.: An external active-set strategy for solving optimal control prob-
lems. IEEE Trans. Automat. Contr. 54(5), 1129–1133 (2009)

20. John, F.: Extremum problems with inequalities as side conditions. In: Friedrichs, K.O., Neugebauer,
O.W., Stoker, J.J. (eds.) Studies and Essays: Courant Anniversary Volume, pp. 187–204. Interscience
Publishers, New York (1948)

21. Polak, E., Chung, H., Sastry, S.S.: An external active-set strategy for solving optimal control prob-
lems. Tech. Rep. UCB/EECS-2007-90, EECS Department, University of California, Berkeley (Jul
2007)

22. Holmström, K., Göran, A.O., Edvall, M.M.: User’s Guide for TOMLAB. Tomlab Optimization Inc.
(December 2006)

J Optim Theory Appl (2010) 146: 51–75 75

23. Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO.
J. Future Gener. Comput. Syst. 20(3), 475–487 (2004)

24. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Survey paper: Constrained model predic-
tive control: Stability and optimality. Automatica 36, 789–814 (2000)

25. Lewin, J.: Differential Games: Theory and Methods for Solving Game Problem with Singular Sur-
faces. Springer, Berlin (1994)

	On the Use of Outer Approximations as an External Active Set Strategy
	Abstract
	Introduction
	Active-Set Strategy
	Numerical Results
	Control of Eight UAVs
	Design of Pink-Noise Kautz Filter of Even Order
	Minimum-Time Trajectory Planning for a 2-Link Manipulator
	Optimal Control of a Quadratically Constrained Particle

	Conclusions
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

