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Abstract 
 

Anthropogenic Influences on Coastal and Tropical Biogenic Aerosols: Advancing 
Data-Science-Driven Chemical Analysis for Climate and Public Health 

 
by 
 

Emily Barnes Franklin 
 

Doctor of Philosophy in Civil and Environmental Engineering 
 

University of California, Berkeley 
 

Professor Allen H. Goldstein, Chair 
 
 

Human activity significantly impacts the quantities, properties, and formation 
mechanisms of aerosols derived from biogenically produced organic chemicals. In this 
work, new methods are developed to expand speciated analysis of complex mixtures, and 
these methods are applied to two classes of human-impacted ambient aerosols: coastal 
marine aerosol, and tropical organic aerosol. The organic composition of both marine and 
tropical organic aerosol are largely uncharacterized, with over 85% of individual species 
separated and catalogued in each data set not present in current mass spectral libraries. 
Previously utilized methods for quantifying and characterizing novel atmospheric 
organics rely on manual judgements by individual researchers and are therefore highly 
inefficient and subject to errors that are difficult to quantify but assumed to be significant. 
To address this challenge, in Chapter 2 this work presents Ch3MS-RF, a machine 
learning-based model for predicting the chemical characteristics and instrument response 
factors of novel atmospheric organics based on their mass spectral fragmentation pattern 
and chromatographic retention. Chemical properties successfully modeled by Ch3MS-RF 
include carbon number, oxygen/carbon ratio, average carbon oxidation state, and 
volatility. This model achieves significant improvements in quantification accuracy over 
previous methods and enables novel atmospheric organics to be visualized in important 
chemical properties spaces for atmospheric chemistry, including the volatility basis set 
and Kroll diagram. Chapter 3 investigates the composition of the organic fraction of sea 
spray aerosol over a mesocosm phytoplankton bloom experiment conducted using coastal 
sea water. Results indicate that anthropogenic pollutants, including personal care 
products, oils, and urban compounds, significantly contribute to the organic fraction of 
sea spray aerosol, and that biological activity can transform this carbon pool by 
producing new biogenic species and transforming anthropogenic compounds. Chapter 4 
focuses on a single class of anthropogenic coastal pollutants from the same experiment, 
the benzothiazoles. Benzothiazole is found to be emitted from ocean water in both gas 
and aerosol phases, and gas phase benzothiazole has the capacity to contribute to 
secondary aerosol formation when oxidized in the atmosphere. In the primary sea spray 
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aerosol, a diverse suite of benzothiazole-containing species are observed, in 
concentrations and speciations that are not reflective of those observed in the dissolved 
organic phase in seawater. Chapter 5 applies similar methods to aerosol samples collected 
at a semiremote field site in the central Amazon which is impacted by both fires and 
urban emissions. A high degree of interseasonal uniqueness was observed in secondary 
products formed in the atmosphere, indicating significant seasonal dependencies of 
secondary aerosol formation processes. Unique products observed under pristine 
conditions in the Amazonian wet season and fire impacted conditions in the dry season 
are not currently included in mass spectral libraries and are not replicated using common 
laboratory oxidation techniques, highlighting the importance of expanding chamber 
oxidation studies to simulate a wider range of ambient conditions to elucidate important 
ambient reaction mechanisms. A chemically speciated view of how human activity alters 
the properties of terrestrial tropical and marine aerosols will improve our mechanistic 
understanding of anthropogenic effects on aerosol properties, thereby improving our 
ability to predict selected aspects of aerosol-climate feedbacks to changing human 
behavior. 
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1 Introduction 
Atmospheric aerosols, suspensions of liquid or solid particulate matter in air, are a 

critical area of research to improve fundamental understanding of atmospheric chemistry, 
earth’s climate, and environmental factors impacting public health. Uncertainties in aerosol 
impacts on radiative forcing contribute the largest fraction to uncertainties in total radiative 
forcing since preindustrial conditions. Knowledge gaps in sources, transformation, and fate 
of ambient aerosols significantly impede climate models’ ability to quantify the current 
status of ambient radiative forcing and predict future changes.1  Additionally, ambient 
aerosols are associated with negative outcomes in public health including premature death 
and are the leading global environmental health risk as of 2019, surpassing other risks such 
as unsafe water and unsafe sanitation.2 Human emissions of pollutants into the environment 
impact ambient aerosols both directly and indirectly, as the emissions themselves can 
contribute to aerosol mass and properties, and the presence of pollutants can change the 
types of products formed compared to natural or biogenic aerosol formation mechanisms. 
In this work, human influences on two types of ambient aerosol, specifically coastal marine 
aerosol and tropical organic aerosol, are explored and chemically characterized. 
Knowledge gaps in each field are assessed, and new methodologies are developed to 
advance untargeted speciated organic analysis within atmospheric chemistry applications, 
all with the aim of advancing organic aerosol knowledge for chemistry, climate, and public 
health.  

1.1 Motivation: Aerosol Radiative Forcing 
Aerosols influence the energy balance of the earth’s atmosphere through both direct 

and indirect mechanisms.  Biogenic and naturally produced aerosols influence climate and 
earth’s radiative balance, and anthropogenic aerosols and anthropogenic perturbations to 
natural aerosols change how these processes occur, contributing to anthropogenic radiative 
forcing. These human impacts on earth’s energy balance via aerosol perturbations are 
termed “aerosol radiative forcing.”3 The direct mechanism by which aerosols impact 
radiative forcing is interactions between the aerosols and light and is highly dependent 
upon aerosol optical properties (color). Light colored aerosols such as sulfate and most 
organic aerosols reflect light and increase albedo, leading to a cooling effect, while dark 
aerosols such as black carbon absorb radiation and lead to warming. The extent to which 
different classes of anthropogenic aerosol emissions impact direct radiative forcing is 
accounted for differently across climate models, leading to uncertainties and disagreements. 
For example, some models attribute a positive radiative forcing effect to biomass burning 
aerosols, while others attribute a negative radiative forcing effect to these species,4 and the 
radiative properties of organic aerosol can change from reflective to absorptive due to the 
production of “brown” organic aerosol during oxidative ageing.5  

In addition to directly interacting with solar and terrestrial radiation, aerosols 
impact radiative forcing through their impacts on clouds, specifically through altering 
cloud radiative properties and lifetimes.6,7,5 Secondary marine aerosol, which is discussed 
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in full in “Marine Aerosols: Production and Anthropogenic Influences” was recently 
determined to play a dominant role in cloud formation over the ocean,8 rendering human 
impacts on secondary marine aerosol formation particularly relevant to radiative forcing 
through the aerosol indirect effect. The emissions and properties of natural aerosols under 
pre-industrial conditions, including sea spray aerosols and biogenic organic aerosol, are 
still incompletely understood and contribute significantly (on the order of 50%) to total 
uncertainties in aerosol indirect forcing.9 An improved understanding of aerosol 
composition and properties in environments at the boundary between human emissions and 
significant natural sources of aerosols adds to the body of knowledge required to improve 
projections and reduce uncertainties in how human alterations of natural aerosols impact 
climate.  

1.2 Motivation: Aerosol Impacts on Public Health 
Aerosols are also an important area of environmental engineering research because 

of their impacts on public health.  As of 2019, ambient particulate matter is the leading 
environmental health risk and a top 10 health risk overall, making it a more significant 
contribution to global health risks than unsafe water and sanitation and similar to metabolic 
health risks such as high cholesterol.2 Fine particulate matter, defined as the fraction of 
ambient aerosol particulates with an aerodynamic diameter less than 2.5 µm (PM2.5) or 1 
µm (PM1), depending on context, does not in most surface environments dominate aerosol 
mass, but it is the most important fraction for human health. Unlike coarse aerosols, which 
are due to their momentum trapped in the nose and throat, fine particulates are able to 
penetrate deep into lung tissue; this leads to inflammation of the lungs and oxidative stress, 
and exposes community members to any carcinogens, toxins, or otherwise hazardous 
constituents of the particulates themselves.10,11  These mechanistic insights into how 
aerosols impact lung tissue and exposure are confirmed by epidemiological exposure-
response studies, which find that aerosols elevate mortality and contribute to the millions 
of annual deaths attributable to air pollution.11,12  

Both tropical organic aerosol and coastal marine aerosol have been specifically 
identified as threats to public health, although through different mechanisms. Coastal sea 
spray aerosol can expose coastal communities to toxins and pollutants in coastal water, 
such as toxins from harmful algal blooms and carcinogens from wastewater discharge.13–

15  The importance of sea spray aerosol as an exposure route by which coastal communities 
are impacted by marine pollutants is difficult to establish epidemiologically as coastal 
communities are also likely to be exposed via consumption of fish, but it has been proposed 
as an important driver of cancer and poor respiratory outcomes in coastal regions.16 In 
tropical regions such as the Amazon rainforest, anthropogenic activity, specifically fires 
that are used to clear forest for agricultural uses, significantly alters ambient aerosol 
concentrations, often leading PM2.5 levels to exceed WHO guidelines.17–19 In the Amazon 
rainforest, fire activity is associated with thousands of premature deaths and is one of the 
key causes of respiratory hospitalizations for indigenous people.20,21 
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1.3 Challenges and Knowledge Gaps in Speciated Organic Aerosol 
Characterization 

To advance knowledge of how human emissions impact aerosol organic 
composition, this work employs techniques that separate the components of ambient 
organic aerosol material so that they can be structurally identified and characterized at an 
isomer-specific level.  Isomer-specific identification is critical to many atmospheric 
chemistry applications, as different isomers of a given molecule can vary significantly in 
important properties such as volatility, and structure-specific identification is critical in 
identifying reaction mechanisms.22,23 However, this approach is complicated by the 
extreme chemical complexity and novelty of organic aerosol material.  There are an 
estimated millions of unique gas and aerosol-phase atmospheric organic constituents, and 
this composition is extremely variable, even at a given fixed site.24,25 Recent efforts have 
achieved significant progress in approaching mass closure in tracing reactive carbon over 
multiple generations of oxidation using an ensemble of bulk and speciated measurements, 
but there has been far less progress towards isomer-specific mass closure.26–28 The majority 
of organic compounds separated and detected by chromatography-mass spectrometry 
techniques like the ones utilized in this work are not listed in commonly available mass 
spectral databases and have never been synthesized and made available as authentic 
standards, making them impossible to definitively identify.29,30 This remains true, despite 
the rapidly increasing size of the commonly available NIST/EPA/NIH mass spectral 
database, with on the order of tens of thousands of new spectra added between releases at 
intervals of less than 5 years.31  

A typical ambient organic aerosol sample analyzed using GCxGC-MS (two 
dimensional gas chromatography coupled with electron ionization mass spectrometry), the 
primary instrument utilized in this work, contains on the order of high hundreds to low 
thousands of unique organic compounds above detection limits, the vast majority of which, 
as discussed in chapters 3 and 5, cannot be definitively identified. A common simplification 
choice in addressing such complex mixtures is to restrict analysis to the fraction of 
compounds that can be definitively identified, or a selected subset of identifiable 
compounds. However, in cases where knowledge biases exist between groups, meaning 
that a disproportionate share of a given functionality or source group are identifiable, 
restricting analysis to identifiable constituents can bias speciated analysis of complex 
organic mixtures. To address this challenge and analyze its potential influence on the study 
of coastal and tropical organic aerosol, this work presents a model to allow unidentifiable 
organics to be chemically characterized and explores the composition and sources of 
unidentifiable atmospheric organics. Chapter 2 presents a new methodology for 
characterizing unidentifiable organic constituents measured in complex environmental 
mixtures. Chapters 3 and 5 present analysis of compositional and source-based knowledge 
biases in the organic composition of marine and tropical organic aerosol materials 
respectively, highlighting which sources and which types of organic products are observed 
in the environment but not included in current mechanistic representations of aerosol 
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chemistry to guide future laboratory experiments, synthesis efforts, and comparisons across 
field sites.  

1.4 Marine Organic Aerosols: Production and Anthropogenic Influences 
The ocean contributes to the global aerosol burden through both primary and 

secondary mechanisms. Sea spray aerosols (SSA) are particulates and droplets directly 
emitted from the ocean’s surface by wind shear and bubble bursting activity, while 
secondary marine aerosols (SMA) are produced from the oxidation of volatile organic 
compounds (VOCs) emitted from the ocean.32,33,34 While marine aerosols are by mass 
primarily inorganic due to the high salt content, the organic content of marine aerosols and 
the transfer of organic material from ocean to atmosphere plays an important role in marine 
atmospheric chemistry. The organic content of primary SSA forms a coating on the exterior 
of the salt core; as salt and organics have different cloud and ice nucleation properties, the 
presence and composition of the organic coating is important for cloud formation over the 
ocean.35–38 Marine organics are also transferred into the atmosphere in gas-phase through 
both volatilization and reactions at the ocean’s surface that produce volatile products.33,39,40 
When oxidized in the atmosphere, depending on their volatility and functionalization, these 
gasses can form low volatility products that form secondary aerosol material.32 When the 
organics contain sulfur, as is the case for the dominant single contributor to SMA material, 
dimethyl sulfide (DMS), both organic and sulfate SMA material is produced; while early 
investigations of SMA focused on DMS to the exclusion of other precursors, recent studies 
have found that other precursors play an important role in both the sulfate and total SMA 
emissions budgets.8,41,40 In Chapter 4, the gas-phase emissions of a common organic 
pollutant, benzothiazole, are reported, and its secondary marine aerosol formation potential 
is explored. This observation contributed to the work of Kilgour et al., 2022, which finds 
that this compound has the capacity to substantially contribute to the marine sulfur budget 
of polluted coastal systems.41 As previously noted, SMA plays a dominant role in cloud 
formation over the ocean, rendering an improved understanding of SMA precursor 
emissions from both clean and polluted marine environments critical for improving climate 
models.  

The ocean becomes enriched with organic material through both biogenic and 
anthropogenic mechanisms. Phytoplankton create organic biomass from CO2 through 
photosynthesis, and this organic material is transformed by the marine microbial loop, 
creating a significant and molecularly diverse source of organic material in ocean 
water.42,43 Human emissions also contribute to marine organic material, particularly in 
coastal and/or polluted environments; significant anthropogenic organic inputs include 
urban runoff and wastewater discharge, both of which are often enriched with personal care 
products, trash, and shipping pollution.44–46 These primary anthropogenic pollutants are 
subject to consumption and/or transformation by marine microbiology, producing 
biologically transformed organic products from originally anthropogenic carbon 
sources.47–49 In addition to the direct impacts of pollution on SSA and SMA precursor 
emissions, human activity also influences the organic composition of marine aerosols 
indirectly through impacts on marine biological activity.  Anthropogenic discharges of 
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fertilizer-enriched runoff and climate change-related changes in ocean temperatures and 
chemistry can induce intense phytoplankton blooms, which add significant quantities of 
organic material to ocean surface waters.43,50–54 An improved understanding of how 
biological activity influences marine aerosol composition and properties is therefore 
important, not only for improving knowledge of marine aerosol production under pristine 
or preindustrial conditions but also for characterizing and predicting how anthropogenic 
perturbations of marine microbiology are likely to influence atmospheric chemistry and 
public health. 

In Chapter 3, anthropogenic, biogenic, and biologically transformed constituents of 
primary sea spray aerosol are speciated and characterized from samples collected over a 
biological bloom mesocosm experiment to advance knowledge of how pollution and 
biology mediate the organic composition of SSA.  

1.5 Tropical Organic Aerosol: Production and Anthropogenic Influences 
 In densely forested environments such as the Amazon rainforest, fine aerosol 
material is dominated by organics.18,55,56 Much of this organic material is secondary in 
nature and originates from biogenic volatile organic compounds (BVOCs), meaning that 
gas-phase emissions from plant material are oxidized in the atmosphere to form secondary 
organic aerosol (SOA).57 While plants emit many VOCs of differing formulae and 
structures, biogenic SOA formation is dominated by isoprene, monoterpenes (a diverse 
group of terpenoids sharing a chemical formula of C10H16), and sesquiterpenes (also 
terpenoids, sharing a chemical formula of C15H24).58 Anthropogenic emissions alter the 
quantities and composition of organic aerosol in impacted regions through multiple 
mechanisms. Primary organic aerosol emissions, in particular from combustion sources, 
add primary aerosol material to the atmosphere, and anthropogenic emissions of volatile 
organic compounds contribute to SOA formation.59 Anthropogenic emissions also have 
indirect impacts on organic aerosol quantities and composition by altering, and in many 
contexts enhancing, the formation of biogenic SOA. The mechanisms by which these 
enhancements occur are incompletely understood, but are likely attributable to changes in 
partitioning due to anthropogenic increases in aerosol surface area, as well as changes in 
oxidation chemistry due to the introduction of anthropogenic oxidants that produce higher 
quantities of functionalized, low volatility products than would be formed under pristine 
conditions.60 

 In the Amazon rainforest, two types of anthropogenic influence have been observed 
and modeled to significantly contribute to organic aerosol; urban emissions, and fires.61,62 
While in many environments fires naturally occur and would not necessarily be defined as 
anthropogenic, in the Amazon basin, fires are considered to be nearly exclusively human 
caused. Frequent rain and high humidity conditions render natural fire ignition very 
unlikely, and fire is used as a deforestation method to clear land for cattle and other 
agricultural purposes.19,63,64 Fire activity is highest during the Amazonian dry season, and 
the high aerosol concentrations observed in the dry season are largely attributed to biomass 
burning sources.18 However, fires also emit high concentrations of NOx,65 and the extent 
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to which fires may contribute to alterations in biogenic SOA formation in the Amazonian 
dry season are incompletely understood. The air quality and atmospheric chemistry of the 
Amazon basin is also impacted by increasing urbanization. Formation of secondary organic 
aerosol in regions downwind of the city of Manaus has been extensively studied17,56,66–69 
and significant enhancements have been both modeled and observed,70 but these 
enhancements are incompletely mechanistically understood and are not currently well 
replicated with explicit molecular models.71 In Chapter 5, the influences of urban emissions 
and fires on submicron aerosol composition at a semiremote site in the central Amazon are 
investigated across both the wet and dry seasons to identify seasonally unique chemical 
signatures of anthropogenic influence and provide speciated compositional insights into 
how pollution-influences biogenic SOA products differ from their counterparts formed 
under pristine conditions.  

1.6 Structure of the Dissertation 
This work characterizes two types of ambient aerosols, both of which are naturally 

produced but significantly influenced by human emissions: coastal marine aerosols, and 
secondary organic aerosol from tropical forested environments.  To address the challenges 
posed by the high degree of complexity of ambient aerosol organic material, Chapter 2 
presents Ch3MS-RF, a machine learning based model capable of predicting properties of 
organic aerosol constituents that have been separated and detected but cannot be 
definitively identified. The chemical composition of coastal sea spray aerosol is 
investigated in Chapter 3, while the ocean-atmosphere transfer of a single class of marine 
organic pollutants, the benzothiazoles, is described in Chapter 4. Chapter 5 focuses on the 
organic aerosols in the Amazon rainforest, exploring how urban pollution plumes and 
smoke influences aerosol quantities and composition. Finally, Chapters 3 and 5 present 
quantitative analyses of the state of knowledge of different classes of aerosol constituents 
in coastal and tropical contexts respectively, highlighting priorities for future synthesis and 
chamber oxidation experiments.  Chapter 6 summarizes the major findings and outlines 
opportunities and priorities for future research, including additional developments of 
machine learning based data processing methodologies for atmospheric applications, 
priorities for marine pollution aerosolization monitoring, and priorities for chamber 
oxidation experiments that can replicate tropical aerosol formation conditions. Together, 
this work advances the state of knowledge on how human emissions impact aerosol organic 
properties in natural systems in order to identify potential threats to public health and 
advance the mechanistic understanding of anthropogenic impacts on aerosol radiative 
forcing. 
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2 Ch3MS-RF: A Random Forest Model for Chemical 
Characterization and Improved Quantification of 
Unidentified Atmospheric Organics Detected by 
Chromatography-Mass Spectrometry Techniques 

 
This work is adapted from: 
Emily B. Franklin, Lindsay D. Yee, Bernard Aumont, Robert J. Weber, Paul Grigas, Allen 
Goldstein, “Ch3MS-RF: A Random Forest Model for Chemical Characterization and 
Improved Quantification of Unidentified Atmospheric Organics Detected by 
Chromatography-Mass Spectrometry Techniques,” Atmospheric Measurement Techniques 
(2022) 
 

2.1 Abstract 
The chemical composition of ambient organic aerosols plays a critical role in driving their 
climate and health relevant properties and holds important clues to the sources and 
formation mechanisms of secondary aerosol material. In most ambient atmospheric 
environments, this composition remains incompletely characterized, with the number of 
identifiable species consistently outnumbered by those that have no mass spectral matches 
in the literature or NIST/NIH/EPA mass spectral databases, making them nearly impossible 
to definitively identify. This creates significant challenges in utilizing the full analytical 
capabilities of techniques which separate and generate spectra for complex environmental 
samples. In this work, we develop the use of machine learning techniques to quantify and 
characterize novel, or unidentifiable, organic material. This work introduces Ch3MS-RF 
(Chemical Characterization by Chromatography-Mass Spec Random Forest Modelling), 
an open-source R-based software tool for efficient machine-learning enabled 
characterization of compounds separated in chromatography-mass spec applications but 
not identifiable by comparison to mass spectral databases. A random forest model is trained 
and tested on a known 130 component representative external standard to predict the 
response factors of novel environmental organics based on position in volatility-polarity 
space and mass spectrum, enabling reproducible, efficient, and optimized quantification of 
novel environmental species. Quantification accuracy on a reserved 20% test set randomly 
split from the external standard compound list indicate that random forest modelling 
significantly outperforms the commonly used methods in both precision and accuracy, with 
a median response factor % error of -2% for modelled response factors compared to >15% 
for typically used proxy assignment-based methods. Chemical properties modelling, 
evaluated on the same reserved 20% test set as well as an extrapolation set of species 
identified in ambient organic aerosol samples collected in the amazon rainforest, also 
demonstrates robust performance. Extrapolation set property prediction mean absolute 
errors for carbon number, oxygen to carbon ratio (O:C), average carbon oxidation state 
( 𝑂𝑆௖തതതതത ), and vapor pressure are 1.8, 0.15, 0.25, and 1.0 (log(atm)), respectively. 
Extrapolation set Out-of-Sample R2 for all properties modelled are above 0.75, with the 
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exception of vapor pressure. While predictive performance for vapor pressure is less robust 
compared to the other chemical properties modelled, random forest-based modelling was 
significantly more accurate than other commonly used methods of vapor pressure 
prediction, decreasing mean vapor pressure prediction error to 0.24 (log(atm)) from 0.55 
(log(atm)) (chromatography-based vapor pressure prediction) and 1.2 (log(atm)) (chemical 
formula-based vapor pressure prediction). The random forest model significantly advances 
untargeted analysis of the full scope of chemical speciation yielded by GCxGC-MS 
techniques and can be applied to GC-MS as well. It enables accurate estimation of key 
chemical properties commonly utilized in the atmospheric chemistry community, which 
may be used to more efficiently identify important tracers for further individual analysis 
and to characterize compound populations uniquely formed under specific ambient 
conditions. 

2.2 Introduction 
Organic aerosols play a critical role in global radiative forcing and regional aerosol-

attributable public health concerns, making up a significant (20-90%) fraction of fine 
particulate matter around the globe.1 This organic material is highly complex in terms of 
chemical composition and constantly changing; Goldstein and Galbally, 2007 estimates the 
number of gas and aerosol-phase atmospheric organic constituents to lie in the millions, 
while Ditto et al., 2018 reports molecular level variability of 60-80% between consecutive 
samples collected at fixed sites for samples comprised of high thousands of resolvable 
species. While there has been significant progress towards achieving mass closure of 
atmospheric reactive carbon using an ensemble of both bulk and speciated measurement 
techniques over the past two decades, speciated and isomer identified mass closure remains 
challenging.4–6 A comprehensive review of the challenges and utility of different levels of 
molecular identification, Nozière et al., 2015, compares the utility of many types of 
incomplete identification of atmospheric organic compounds, but defines that “An organic 
compound is fully identified only if its molecular structure is entirely known, including its 
isomeric and spatial (stereo) configuration.” Important chemical information can be 
gleaned from formula-based identifications and bulk characterization, but isomer-specific 
identifications provide critical atmospheric chemistry-relevant insights. As described in 
Isaacman-Vanwertz and Aumont, 2021, different isomers of the same chemical formula 
vary over orders of magnitude in volatility and Henry’s constant, and by a factor of 2 in 
reactivity with the hydroxyl radical, all critical properties for characterization of aerosol 
formation and properties. Isomer specific identifications also play a crucial role in 
elucidation of important chemical reaction mechanisms.  

Gas chromatography coupled with electron ionization mass spectrometry (GC-MS) is 
a commonly utilized technique for isomer specific speciation of atmospheric constituents. 
Observed ambient species may be matched to authentic standards or mass spectral database 
entries by both retention index (chromatographic elution time relative to that of a series of 
alkanes) and mass spectrum. Two dimensional gas chromatography (GCxGC-MS), a 
methodologically similar technique which achieves advanced separation by passing 
compounds through multiple GC columns configured for different chemical properties, 
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increases the scope of isomer-specific identification by separating species that would 
coelute in single dimension GC-MS applications.9–11 However, a significant challenge of 
fully utilizing the data from these techniques is the novelty and diversity of the atmospheric 
constituents; most observed organic species have never been synthesized and are not in any 
mass spectral library and are therefore not directly identifiable from GC-MS or GCxGC-
MS techniques. Although the size of mass spectral libraries are rapidly increasing, with 
~30,000 new compounds added to the NIST/EPA/NIH mass spectral database between the 
2011 and 2014 versions (bringing the number of compounds catalogued in NIST14 EI 
library to ~250,000), the numbers of identifiable constituents in typical atmospheric 
samples remain low.12 As described in Hamilton et al., 2004, in an urban aerosol sample 
analyzed by GCxGC-MS, of >10,000 unique observed species, fewer than 2% were 
identifiable from authentic standard or mass spectral matching. Low numbers of matched 
relative to novel ambient species persist; Worton et al., 2017 finds that fewer than 35% of 
~500 compounds isolated from aerosol samples collected at a forested site match mass 
spectral database entries, while this work (as later described) finds that fewer than 10% of 
~1500 aerosol phase organic species can be matched to published spectra. As described in 
Worton et al., 2017, species that cannot be identified are often not included in GC-MS and 
GCxGC-MS-based analyses, meaning that the majority of acquired data is not fully utilized. 
Note that in accordance with the definition of complete molecular identification previously 
quoted from Nozière et al., 2015, “unidentified” compounds are from here on defined as 
any species that is not identifiable by comparison (on the basis of retention index and mass 
spectrum) to either authentic standards or mass spectral database entries of positively 
identified species. Pairing GC-EI-MS systems with complementary measurements such as 
chemical ionization (described in Bi et al., 2021) or switching to softer election ionization 
techniques (specifically through employing 14 eV vacuum ultraviolet rather than 
traditional 70 eV EI, intended to preserve sufficient precursor ion mass for formula 
identification, as described in Worton et al., 2017) can enable more separated but 
unidentified compounds to be characterized by formula identification, even where isomer-
specific identification remains elusive. That said, these instrumental configurations are rare, 
and fragmentation under 14 eV is still sufficiently significant to leave many species’ 
formulae not identifiable and therefore still uncharacterized.11 Recent efforts to embrace a 
larger fraction of the full complexity of chemical information yielded by highly speciated 
organic aerosol measurements (on the scale of low to mid 100’s of compounds) have 
categorized unidentified  species by likely source groups and chemical families through 
time series correlations with known tracer species15 or by manual group assignments by 
individual researcher judgements based on mass spectral features.16 These methods are 
difficult to standardize and reproduce and become prohibitively inefficient when pushing 
towards the full chemical complexity of speciated observations produced from typical 
atmospheric samples, which extend into the low to mid thousands of species. 

Quantification of unidentified compounds faces similar challenges.  Where possible, 
compounds in GC and GCxGC-MS are directly quantified by calibration curves of 
authentic standards, but direct quantifications are limited by standard expense and 
availability, even for species that can be positively identified. Compounds that cannot be 
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directly quantified, both in GCxGC-MS and in GC-MS, are most commonly quantified by 
assigning quantification factors from compounds resolved closely in chromatographic 
space, compounds that are identified as sharing chemical structures, or some interpolation 
of multiple nearby proxies.15–18 The errors associated with these assignments/choices are 
usually estimated from the range of quantification factors of close or chemically similar 
species and are assumed to be high (up to a factor of 2 depending on degree of certainty in 
assigning chemical class as described in Jen et al., 2019 and Liang et al., 2021). To our 
knowledge, this work presents the first quantitative error analysis of these techniques based 
on applying proxy quantification techniques to compounds with known quantification 
factors.  

Current manual characterization and quantification proxy-assignments are essentially 
an exercise of pattern recognition, as researchers use experience in analysing spectra and 
position in chromatographic space to categorize or otherwise characterize unidentifiable 
species. Given the scale of the novel compound characterization challenge (on the order of 
hundreds to thousands of species for a given sampling location using current methods), 
transitioning to automated characterization methods will be necessary to keep up with data 
acquisition, and will offer co-benefits in increased reproducibility and reduced 
susceptibility to researcher biases. Decision tree-based machine learning methods 
including gradient boosting and random forests have demonstrated robust performance in 
pattern recognition-based regression applications including nonlinear features across a 
wide range of fields.19,20 Random forests, a decision tree-based method which generates 
predictions based on a combination of diverse trees generated by randomized feature 
selection and resampling on a training data set,21 are particularly suited to this application 
and intended audience. They have demonstrated robust performance across a range of 
applications, including predictions of chemical properties22 and do not require extensive 
hyperparameter tuning to achieve high performance.20 In this work, we develop machine 
learning models, specifically based on the random forests methodology, that use  
chromatographic and mass spectral feature inputs to predict a diverse suite of chemical 
properties, including quantification factor in a TD-GCxGC-MS system, oxygen to carbon 
ratio (O:C), carbon number, average carbon oxidation state (𝑂𝑆௖തതതതത), and vapor pressure.  
Coinciding with this manuscript, we have released a repository template including an 
Rmarkdown notebook (https://github.com/ebarnesey/Ch3MS-RF) that enables users with 
general atmospheric chemistry background, who do not necessarily have special expertise 
in machine learning data science applications, to tailor our analysis for their specific use 
cases.  As such, robust performance evaluation and ease of applicability to a range of 
potential use cases are emphasized over extensive application-specific hyperparameter 
tuning.  

In summary, this work aims to provide the GC-MS and GCxGC-MS atmospheric 
chemistry community with tools to achieve the following objectives:  

1) Enable accurate chemical characterization of organic constituents separated in gas 
chromatographic space but not necessarily published (in mass spectral databases) 
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2) Improve the quantification accuracy for species that cannot be directly calibrated 
using authentic standards 

 

2.3 Instrumentation and Data 

2.3.1 Calibration Curves Using an External Standard Mixture of Authentic 
Standards 

A custom calibration standard mixture (referred to hereafter as “external standard”) 
was created containing ~130 unique authentic standards selected for maximal coverage of 
the compounds and compound classes typically observed in atmospheric regions with 
significant biogenic emissions, as well as influences from anthropogenic activities and 
biomass burning. The selection of these standard species was informed by previous work 
targeting similar sample types using the same instrumentation 9,15,23, and covers species 
including sugars, PAH’s, and both monoterpene and isoprene oxidation products. In 
addition to commercially available external standards, 6 sesquiterpene oxidation products 
were custom synthesized by collaborators (as described in Bé et al., 2019) for expanded 
coverage of potentially important chemical tracers. The full list of standard components 
can be found in Table 2.A1, and the standard property distribution in volatility-polarity 
space is illustrated in Figure 2.2. The standard was prepared from pure components 
immediately prior to sample analysis in 1:1 methanol:chloroform solution, replicating the 
methodology utilized in Zhang et al., 2018. Standards were introduced to the instrument 
by injecting onto tissuquartz filter material to maximize consistency between filter samples 
(organic aerosol also collected on tissuquartz filters) and calibration runs. At 5 points 
throughout sample analysis, 6-point calibration curves (5 loaded points and a zero point) 
were performed to determine the “quantification factors” (internal standard normalized 
signal/ng compound) of each external standard species. The internal standard, described in 
detail in section 2.3.1, is a solution of ~30 deuterated organics applied identically to all 
sample and calibration analysis runs to enable correction for instrument condition and 
matrix effects. For efficiency, outlier calibration points (significantly deviating from the 
slope of other points in the quantification factor, which are often caused by coelution with 
a contaminant) were removed. A minimum of 3 calibration points above the zero point was 
maintained to ensure robust quantification factors.  

2.3.2 GoAmazon Field Data 
The ambient extrapolation data utilized in this work originates from the Green Ocean 

Amazon (GoAmazon) field campaign which was conducted in central Amazonia in 2014. 
This campaign and the collection of ambient filters for offline analysis are described in 
detail in Martin et al., 2016, 2017 and Yee et al., 2018. Briefly, the campaign was 
conducted at a semi remote site occasionally downwind of the city of Manaus and 
periodically impacted by smoke from biomass burning. The campaign spanned two 
intensive operating periods, one during the Amazonian wet season (February through 
March) and one during the dry season (August through early October). Submicron aerosol 
samples were collected on tissuquartz filters (Pallflex), stored in pre-baked foil, double 
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contained in sealed mylar bags, and frozen prior to analysis. The samples were analysed 
by TD-GCxGC-EI-ToF-MS, as described below.   

2.3.3 Instrumentation: TD-GCxGC-EI-ToF-MS 
Both external standard species (during calibration runs) and GoAmazon filter samples 

were analysed by thermal desorption two-dimensional gas chromatography coupled with 
electron ionization time-of-flight mass spectrometry (TD-GCxGC-EI-ToF-MS, hereafter 
abbreviated GCxGC-MS). This instrumentation is described in detail in Worton et al., 2017, 
and instrument specifics including sub-component models, column materials, and 
temperature settings are described in Franklin et al., 2021. For ambient filter samples, 0.4 
cm2 aliquots of filter material are directly introduced into the instrument. Standards are 
stored in solution and introduced by injection onto pre-baked quartz filter material. An 
internal standard (described in section 2.3.3.1) is applied on top of the sample or external 
standard filter aliquots immediately prior to analysis. Briefly, the instrument functions as 
follows: a thermal desorption oven heats filter material, causing analytes and standards to 
evaporate into a flow of helium. The desorbed components are focused on a cooled inlet 
system (Gerstel CIS), which at the end of the thermal desorption cycle is rapidly heated to 
simultaneously release all organic species onto the head of the first column. Compounds 
are separated by both volatility and polarity by two gas chromatography columns in 
sequence, with the transition of compounds from the first to the second column modulated 
by a cryogenic focus and rapid thermal release system. Separated analytes are ionized by 
70 eV electron ionization (EI) and detected by HR-ToF-MS (TOFWERK, EI-HTOF), with 
a resolving power of 4000 acquired at 100 Hz. While the mass spectra produced by this 
technique are high resolution, these high resolution mass spectra are converted to unit mass 
resolution spectra to increase the applicability of this technique to unit mass resolution 
techniques. The vertical (polar) axis of separation is extremely short relative to the 
horizontal (volatility) axis separation with a vertical stride length of 2.3 seconds compared 
to a retention time of ~ 1 hr for low volatility organics. As a result, GCxGC-MS deuterated 
alkane normalized retention indices are directly comparable to retention indices (or, with a 
linear conversion to non-deuterated retention indices, kovats indices) in single dimension 
GC-MS applications. This instrument’s volatility range spans approximately C13-C36 n-
alkane volatility equivalents, covering the atmospherically important transition regime 
between IVOC (intermediate volatility organic carbon) and LVOC (low volatility organic 
carbon) species. 

During the thermal desorption process, the carrier flow of helium is enriched with the 
derivatization agent MSTFA (n-methyl-n-trimethylsilyl-trifluoro-acetamide). This 
silylating reagent replaces the active hydrogen of polar OH groups with a trimethylsilyl 
group, -Si(CH3)3, a process which significantly enhances the recovery of polar organics. 
This approach is critical to increase the scope and degree of oxygenation of species 
recovered by thermal desorption-gas chromatography techniques 28. However, it poses 
some challenges for data interpretation for diverse, complex, and novel chemical mixtures, 
because in the case of many polar species, the compound that is separated and detected by 
the GCxGC-MS instrumentation has been chemically altered from the species that was 
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collected. This can create challenges in compound identification, as not all species have 
published derivatized spectra, as well as challenges for mapping chemical properties onto 
the GCxGC-MS space, as the volatility-polarity distributions of derivatized compounds do 
not directly reflect their underivatized properties.  

2.3.3.1 Internal Standard Normalization 
Both filter samples and external standard impregnated filters (for calibration curves) 

were doped with a custom 23 component deuterated internal standard covering the full 
range of volatility sensitivity and a broad variety of functional group types immediately 
prior to analysis. The internal standard enables normalization for matrix effects, 
configuration of retention indices relative to the elution times of a deuterated alkane series, 
and normalization for instrument condition drift for improved consistency and 
quantification accuracy throughout intensive instrument use. In prior methods, the 
selection of internal standard involved either1) assigning each analyte an internal standard 
nearest in chromatographic space (by retention times) or 2) manual assignment of analytes 
to their most chemically similar internal standards regardless of proximity in GCxGC space. 
Analyte signal would then be normalized (divided) by the signal of the selected internal 
standard obtained during the same chromatographic run. In a new approach employed in 
this work, in order to maximize the reliability and consistency of normalization across a 
large number of samples and complex sample media, internal standard signals were each 
normalized by their own mean signals (throughout the entire analysis period) to yield an 
indicator of self-normalized instrument sensitivity. Analyte  signal was then normalized by 
the mean self-normalized responses of the three closest internal standard species. This 
approach has multiple benefits. First, the responses of sample or external standard 
compounds are not artificially deflated or inflated due to their proximity to internal 
standard compounds that have higher or lower sensitivities based on their functional groups 
and derivatization. Second, this approach enables inclusion and utilization of incomplete 
data; in previous approaches, if an internal standard cannot be recovered in every sample 
it cannot be used for normalization, as this would create inconsistencies for the species that 
are otherwise assigned to that compound. Compounds at the very high and very low ends 
of the volatility space are chemically important but detectable at baseline low levels that 
can drop below limits of detection during periods of low sensitivity. Having to discard 
these species due to a few instances of missing corresponding internal standard data causes 
losses of valuable information. Finally, this approach decreases analysis sensitivity to any 
errors and noise in internal standard identification or isolation, as erroneously high or low 
individual internal standard responses are moderated by averaging with the other nearby 
internal standard species. Volatility-based sensitivity corrections, which can be achieved 
by raw internal standard normalization, were achieved in this work through normalization 
by an external standard-determined response curve, as described in “Featurization and 
Target Selection for Quantification Modelling.” 

2.4 Data Preparation and Featurization 
The analytical pipeline for data preparation through performance evaluation of this 

random forest modelling work is illustrated in Figure 2.1. The processes and decision 
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making around featurization, feature selection, and target selection for both chemical 
properties modelling and quantification modelling, as well as the curation of the training, 
test, and extrapolation data sets, is described below.  

2.4.1 Featurization, Feature Selection, and Target Selection 
As the aim of this work is to develop methods that can be applied to novel species not 

included in mass spectral databases, features utilized in this analysis rely solely upon the 
information readily available for unidentifiable species. Given the size and complexity of 
the intended use data suites, features must also be automatically generatable from the 
instrument data output and not rely upon any visual or manual categorization by researchers. 
In order to make these models more broadly useful to the atmospheric community, less 
common features produced by the GCxGC-MS instrumental setup (e.g. second dimension 
retention time and high resolution spectra) are not utilized for chemical properties 
modelling in order to increase the method’s applicability to single dimension GC-MS 
systems and instruments with lower resolution mass spectra.  

2.4.1.1 Mass Spectral Featurization 
The only chemical information directly produced by GCxGC-MS for unidentified 

organic species are their locations in GCxGC volatility-polarity space and mass spectra. 
These sources of information are therefore exclusively utilized in creating and selecting 
the features for chemical properties modelling. The retention index of each compound was 
directly utilized as a feature, but the mass spectra require interpretation in order to be used. 

The unit mass resolution spectra utilized in this analysis include each charged 
fragment represented by its measured mass to charge ratio (m/z) and a relative signal score 
out of 1000 (normalized by the most abundant fragment’s peak signal). EI is a high energy 
or “hard” ionization technique which typically leaves only a small fraction of molecular 
ions intact and creates positively charged ion fragments that are almost all singly charged, 
with any multiply charged ions at extremely low abundance. This means that the molecular 
formulae cannot generally be directly determined from the mass spectrum, even when the 
spectra are high resolution, and measured ions can be assumed to have a single charge. 
That said, the m/z of charged fragment ions yield useful information into chemical 
characteristics and functional groupings that can provide critical chemical information; for 
example, a peak at m/z=73 corresponds to a fragment of Si(CH3)3

+, a derivatization 
fragment which indicates that the ionized compound contained an OH group which was 
derivatized (see section 2.3.3). The mass differences between charged peaks also represent 
important pieces of information, as they can indicate losses of uncharged molecular 
fragments that similarly point to the structure and characteristics of the original compound. 
It is important to note that not all neutral mass differences between charged peaks can be 
interpreted as direct neutral losses as not all high m/z charged fragments directly fragment 
onto lower m/z charged fragments in a manner that can be directly interpreted from 
neutrally charged fragment losses. However, frequently occurring neutral differences may 
still hold value in reflecting a common coordination of neutral loss processes.  



22 

The greatest chemical information lies in features that exist in an intermediate range 
of occurrence frequency in the data set. A feature which appears in all the training species 
does not provide any useful information in predicting properties of the test species. Neither 
does a feature which is totally unique to a single species, as it does not provide any 
information on patterns which can be used to adjust prediction of properties for other 
species. This logic can be applied to mass spectral featurization; while it would be possible 
to convert every m/z to a feature and so input the entire raw mass spectrum of each 
compound as a series of features for the random forest model, this approach would be 
inefficient, open to error introduced by noise, and miss the important information provided 
by neutral mass differences between charged fragments.  

Multiple approaches for mass spectral featurization were tested to optimize the 
number of features and representation of features. Given the final choice in model structure 
(random forest, as described in section 4), inclusion of covarying features or more features 
than necessary did not introduce significant sources of error. Target-specific feature 
restriction based on importance is discussed in section 4. The final mass spectral 
featurization method selected for this analysis, a simplified adaptation of methodology 
described in Eghbaldar et al., 1998, was as follows: the top 5 charged fragments (mass 
spectral peaks) from each training set mass spectrum are selected. The mass differences 
between these 5 peaks (a maximum of 10 numbers, if all fragments occur at differently 
spaced m/z) were then compiled into a list of “neutral losses”. The charged fragment lists 
and the neutral loss lists of all training set external standard compounds were next 
combined in a frequency list, with each charged fragment or neutral loss quantified by 
frequency (how many compounds in the external standard test set exhibited that charged 
fragment or neutral loss among their top 5 peaks). The top 40 most common charged 
fragments and top 20 most common neutral losses were converted into features. The 
identities of these 40 most common fragments and 20 most common neutral mass 
differences (along with possible identities and notes) can be found in tables 2.A2 and 2.A3, 
respectively. The mass spectra of all training, test, and extrapolation set compounds were 
then simplified using the previously described method (top 5 peaks extracted and mass 
differences between those peaks calculated). Each m/z feature was assigned the normalized 
signal of that peak in the mass spectrum if the feature m/z was one of the top 5 peaks; 
otherwise, it was set to zero. Each neutral loss feature was assigned true or false for each 
compound depending on whether the neutral loss appeared in the mass differences between 
the 5 most significant peaks. An example mass spectral featurization for the example 
compound hexadecane can be found in Table 2.A4, and the mass spectral featurization 
process is included in the open-source R script accompanying this publication.  

2.4.1.2 Target Selection for Chemical Properties Modelling 
The goal of chemical properties modelling is to enable inclusion of “unidentified” 

species in aerosol organic analysis that has previously been restricted to species for which 
the identity or at least chemical formula is known. One way in which complex organic 
mixtures are visualized and analyzed is through orientation of observed species in chemical 
properties spaces that have been developed and broadly utilized in the field of aerosol 
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science. Two such spaces include the Volatility Basis Set (VBS 30) and the visualization 
by average carbon oxidation state and carbon number developed in Kroll et al., 2011, 
hereafter referred to as 𝑂𝑆௖തതതതത-nc space. Compounds can be plotted in VBS space by their O:C 
or 𝑂𝑆௖തതതതത  (average carbon oxidation state31) against some measure of volatility, either 
log(Vapor Pressure) or log(C0), where C0 is the pure component sub-cooled liquid vapor 
pressure in atm. In 𝑂𝑆௖തതതതത-nc space, compounds are plotted by their average carbon oxidation 
state (𝑂𝑆௖തതതതത) against carbon number. The ability to map novel or unidentifiable compounds 
in these spaces would provide critical information about the properties of the individual 
species, enable identification of groups of chemically distinct novel compounds deserving 
particular consideration, and more completely visualize the distribution of chemical 
characteristics for complex mixtures and potential routes of chemical transformation (e.g. 
oligomerization, functionalization, fragmentation) beyond the identifiable components. 
With these goals in mind, the properties selected to be the targets of these modelling efforts 
were number of carbons (nc), O:C, 𝑂𝑆௖തതതതത, and vapor pressure.  

Carbon number, O:C, and 𝑂𝑆௖തതതതത (based on the equation in Kroll et al., 2011) can all 
be directly calculated from chemical formula, which was known for each standard and 
ambient extrapolation compound (see section 2.4.2). Vapor pressure is not directly 
calculatable from chemical formula and not all identified compounds in the external 
standard and extrapolation data sets have reliable experimental vapor pressure 
measurements available, so structurally-based vapor pressure predictions are utilized 
instead. Isaacman-Vanwertz and Aumont, 2021 finds that of all structure-based vapor 
pressure prediction methods available, the average of predictions generated by the 
EVAPORATION,32 Nannoolal,33 and Simpol34 models yields the most accurate vapor 
pressure prediction. These methods were therefore utilized to predict the vapor pressures 
of all standard and extrapolation set compounds, and the average structurally predicted 
vapor pressures were utilized as the “true” vapor pressures for model training and 
evaluation. Seven of the external standard test set species and fifteen of the extrapolation 
set species were incompatible with the prediction capabilities of one or more of the three 
structural vapor pressure prediction methods (most frequently due to functional group types 
for which the models are not parameterized) and were therefore not utilized in performance 
analysis. Two additional potential targets, double bond equivalent and H:C ratio, were 
tested but failed to produce sufficiently robust property predictions.  

The final components of the chemical properties random forest models are as follows: 

Targets: Carbon number, 𝑂𝑆௖തതതതത, O:C, vapor pressure (structurally modelled) 

Features: Retention index, 40 feature representation of mass spectral charged 
fragments, 20 feature representation of neutral mass differences between charged 
fragments 

A table listing the entire set of input features for chemical properties modelling of 
the example compound Hexadecane can be found in table 2.A4, and the instrument-
produced mass spectrum for this species can be found in Figure 2.A1.  
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2.4.1.3 Featurization and Target Selection for Quantification Modelling 
Compound quantification factor is significantly and reliably related to retention 

index across all compound classes tracked, but this relationship is not linear and changes 
much more rapidly in some retention index windows than others. This phenomenon, caused 
by incomplete cold inlet trapping of species in the most volatile sensitivity region and 
incomplete thermal desorption of species in the least volatile sensitivity region, is 
illustrated in Figure A2 and is consistent with findings presented in Zhang et al., 2018. A 
variety of retention index corrections were tested, including the following: a) factorizing 
the retention indices of each compound (rounded to the nearest 100) and including as a 
feature in model training and testing, and b) normalizing (dividing) each compound by the 
raw signal of its nearest deuterated alkane internal standard, the method utilized in Zhang 
et al., 2018. Both methods however performed poorly in the 1600-1900 RI range, where 
response increases extremely rapidly with RI (Figure 2.A2). The most reliable 
normalization method and the method selected for this analysis was normalizing (dividing) 
all compound quantification factors by the average response curve for alkanes, defined by 
the combination of 2 best fit exponential curves, which intersect at RI ≈ 1950 as illustrated 
in Figure A2, and training on/predicting this normalized response factor rather than the raw 
quantification factor. The r2 of the exponential fit of individual calibration period 
quantification factors around the response curve in the volatile region is .77, while the r2 
of the curve describing the less volatile region is .65. Note that these fits take into account 
each quantification factor of each calibration window, and are therefore influenced by the 
variations in the measured quantification factors of the same compounds measured at 
different points throughout analysis. RI-normalized response factors were translated back 
to predicted quantification factors for performance evaluation, as other methods of 
quantification do not utilize this normalization method.  

Unlike in the case of chemical properties modelling, quantification modelling 
performance was significantly improved by inclusion of second dimension retention time 
information, and it was therefore included as a feature in response factor prediction. As a 
result, this approach in its current form is only usable by GCxGC-MS applications, but 
could be adapted to single dimension chromatography-mass spec.  

In this analysis, continuous measurement periods (consecutively collected samples) 
were analyzed in sequences bounded by calibration curve runs. To preserve the 
quantification continuity in these consecutive measurements and avoid step changes in 
calculated concentration that might occur due to switching between quantification factors, 
the two quantification factors bookending an analysis period are averaged to assign the 
quantification factors for samples run in that interval. To replicate this approach, the 
compound quantification factors were sequentially averaged to yield 5 quantification 
periods (the final calibration curve experienced an instrument failure, and the last 
calibration period is therefore based solely on the final curve). 

The mass spectral featurization is described in “Mass Spectral Featurization” above.  

The final components of the quantification model are as follows: 
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 Target: Normalized response factor (RI curve-normalized, calibration period 
averaged) 

 Features: Retention index, second dimension retention time, calibration period, 40 
feature representation of mass spectral charged fragments, 20 feature representation of 
neutral mass differences between charged fragments. 

2.4.2 Training, Test, and Extrapolation Set Curation 
To generate a training and test set from the external standard data, each external 

standard was assigned to a chemical group (alkane, sugar, PAH, etc), and the list of external 
standard compounds was randomly split 80:20 (80% of compounds in the training set, 20% 
in the test set) maintaining the ratios of different chemical groups. 200 possible splits were 
generated, and the split which demonstrated the greatest similarity in median retention 
index and median second dimension retention time between the test and training sets was 
selected to avoid potential extrapolation problems that might occur with a highly skewed 
distribution of test and training compounds across the GCxGC space. This process is 
documented in Supporting Information.  

The extrapolation set was curated from the compounds isolated from the GoAmazon 
samples by comparing the spectra and retention indices of compounds to the external 
standard and matches in the NIST14 mass spectral database. Of the ~1500 unique 
compounds identified across 11 template samples, 63 were determined to match external 
standard compounds and an additional 71 compounds were identifiable from the NIST 
library due to high (>80011) mass spectral match factor and retention index agreement with 
database entries. Based on number of silicon atoms in the assigned formulae from the NIST 
identification, each chemical formula was converted to its underivatized form. Only the 71 
compounds that were identifiable from the NIST library but not from external standards 
were included in the extrapolation set to ensure that performance metrics for the 
extrapolation set would not be skewed by the inclusion of species that may have been in 
the training data, and to ensure that the test set and extrapolation set performance 
evaluations would be entirely independent. The methodology described in this work cannot 
effectively extrapolate beyond the feature space of the training data set, and the identifiable 
organic compounds in the Amazonian aerosol samples are defined as an “extrapolation set” 
not because they test the abilities of the model to extrapolate beyond the feature space 
boundaries of the external standard training data, but because they represent the true range 
of individual isomer-specific identities observed in ambient samples. These compounds 
test the model’s ability to extrapolate property prediction beyond the compound groups 
included in the external standard and indicate whether the sample is sufficiently similar to 
the training data to make this approach appropriate for the target sample medium, as 
extremely high prediction inaccuracies indicate compound classes too dissimilar from the 
training data to be appropriately modelled using Ch3MS-RF. As illustrated in Figure 2.2, 
the distribution of training, test, and extrapolation set species utilized in this work 
effectively span the distribution of unknown compounds in GCxGC volatility-polarity 
space.  
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2.5 Model Selection, Training, and Tuning 
The number and complexity of input features and lack of clear linear relationships 

between target properties and input features in this analysis is well suited to a decision tree-
based analytical approach.19,20 Random forest and gradient boosting methods were both 
preliminarily tested for response factor prediction. Random forests demonstrated slightly 
better performance and was selected for this and additional methodological reasons, as 
follows.  Random Forests are more robust to overfitting than gradient boosting, which is a 
particular concern in this case given the small number of training compounds (~100) 
compared to the large numbers of novel environmental organics that are the intended 
subjects of unverifiable modelling. Additionally, random forests perform well using the 
default settings and do not require extensive tuning to achieve optimal performance 20. As 
the aim of this work is to produce models that the atmospheric science community, 
including non-experts in machine learning, can easily implement for novel compound 
analysis, this robustness and simplicity is a significant advantage. 

The training and tuning processes for chemical properties prediction are visualized in 
Figure 1. For each target property, the model was trained on the external standard training 
set data, the curation of which is described above. As previously referenced, random forests 
do not require extensive tuning, and for ease of use reasons most parameters were 
maintained at their default values. Tuning primarily focused on feature restriction. Feature 
restriction to enforce tree diversity (mtry) was optimized by 5-fold cross validation, with 
the mtry value that minimized mean absolute error (MAE) selected. Although random 
forest modelling is comparatively not influenced by the inclusion of features that do not 
contribute significant predictive capabilities, the inclusion of unnecessary features can 
contribute to overfitting of the training data which decreases prediction performance for 
the test and extrapolation data sets. To address this problem, the feature importance (a 
measure of increase in node purity when this feature is used in a split) of each input feature 
was extracted from the original predictive model. The importance metrics were normalized 
by the total importance of all features to generate a percent importance score for each 
feature. Importance distributions were highly skewed, with a relatively low number of 
features contributing the majority of decrease in node purity. Features that contributed less 
than 1% to the total importance score were removed, and the model was re-trained on only 
the important features.  Extrapolation set performance improvements from removal of low 
importance features was low, with an improvement in OSR2 (out of sample R2, defined in 
detail in section 2.6.1) on the order of 0-0.03. This indicates that this step is not crucial for 
chemical properties or quantification factor prediction. The cross validation-optimized 
mtry number, number of important features, and identity of important features for the 
chemical properties models (one optimized model per property predicted) are summarised 
in Table 2.1. For quantification modelling, mtry is optimized at 44 features and 46 features 
meet an importance criterion of >1 %. 
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2.6 Model Performance Evaluation 

2.6.1 Chemical Properties Modelling Performance 
Three performance metrics are utilized to evaluate target predictions for the four 

chemical properties models. The first, out-of-sample r2 (OSR2), provides a measure of how 
significantly a model improves upon a baseline assumption that all target property values 
are equal to the mean of those values in the training data. It approaches a maximum of 1 
for perfect predictions. The second metric, mean absolute error (MAE) provides the mean 
absolute prediction residual in the units of the target property. This metric is particularly 
important, as it provides a benchmark for prediction accuracy which can be translated into 
visualization and utilized to determine which applications are appropriate given prediction 
errors. The final performance metric, root mean square error (RMSE), is also a scale 
dependent error metric and provides the quadratic mean of prediction residuals. The 
equations for these metrics are provided below: 
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In this notation, for each test or extrapolation set compound i summed across a 
population of n compounds, Ti indicates the true value of the property being tested, Pi 
indicates the predicted value of that property, and 𝑅തT indicates the mean of the selected 
property in the training data set.   

The prediction performance for the tuned and trained chemical properties model are 
evaluated independently on both the external standard test set (Figure 2.3, Table 2.2) and 
the ambient sample extrapolation set (Figure 2.4, Table 2.3). Both of these performance 
evaluations are important for different reasons. The external standard contains many series 
of highly chemically similar species (for example alkane and carboxylic acid series), 
meaning that the test set is likely to be more chemically similar to the training set than a 
real distribution of ambient organic species would be. Performance evaluation on the 
extrapolation set therefore provides a more realistic assessment of likely prediction 
accuracies on the large number of novel ambient organic compounds that are the intended 
focus of this modelling effort. That said, prediction performance on the external standard 
test set also yields important information. The external standard is designed to cover the 
entire space of anticipated chemical features for the environmental samples and is therefore 
more diverse relative to the number of compounds included compared to the extrapolation 
set (which is primarily CHO-type compounds). Performance evaluation on the external 

(1) 

(2) 

(3) 
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standard test set therefore yields more information about model performance across a broad 
suite of compound classes. 

2.6.1.1 Test Set Performance Evaluation 
By all evaluation metrics applied (summarised in Table 2.2), performance for carbon 

number, O:C, carbon oxidation state, and log(VP) predictions on the external standard test 
set are robust. The O:C and carbon number predictions are particularly strong, with OSR2 
of .89 and .88 respectively and mean absolute errors of .072 element ratio units and 1.8 
carbon number units. For context, given the range in true values from O:C= 0-1 and carbon 
number = 4-31, both mean absolute errors are approximately 7% of the range of measured 
values. For 𝑂𝑆௖തതതതത  and vapor pressure, the mean absolute errors normalized by the 
measurement range are both approximately 12%. As illustrated Figure 2.3, this means that 
the distribution of predicted properties usefully and reliably reflects the distribution of true 
properties and indicates that the random forest-based model provides useful information 
that allows a wide range of compound classes to be reliably characterized based on mass 
spectrum and retention index. 

2.6.1.2 Extrapolation Set Performance Evaluation 
As discussed above, while the external standard test set provides useful information 

on model performance across a wide range of compound types, its performance is 
potentially inflated by high degree of chemical similarity between the training and test set 
compounds. Performance evaluation on the ambient sample extrapolation set is therefore 
likely a more accurate indicator of prediction performance on novel or uncatalogued 
species. Of the four properties modelled, the performances for carbon number prediction 
and carbon oxidation state remain consistent or slightly improve (carbon number OSR2 
increases to .93), while O:C and log(VP) prediction performances decrease, both in terms 
of OSR2 and MAE (Table 2.3).  

The weakest extrapolation set performance by far is vapor pressure prediction, which 
drops to an OSR2 of .68. The correlation between predicted and true properties is also the 
weakest (as illustrated in Figure 2.4), with particularly large prediction residuals for the 
highest volatility species. For example, the extrapolation set compound with the highest 
vapor pressure prediction error is 1,2-Benzenedicarboxylic acid, which has a retention 
index of <1400 making it more volatile than the most volatile internal standard compound. 
While this compound does not lie outside of the volatility and polarity boundaries of the 
external standards in GCxGC space, is significantly more volatile than any diacid 
compound in the standard mixture, and the influence of double derivitization on its true 
ambient volatility relative to the chromatographic elution time of its derivatized form may 
not have been appropriately captured. Unlike the other properties targeted in this analysis, 
vapor pressure is not directly calculable based on chemical formula and poses challenges 
for many techniques; as discussed in Isaacman-Vanwertz and Aumont, 2021, molecular 
structure plays an important role in volatility, which significantly limits the accuracy with 
which techniques that identify formula but not structure (typically chemical ionization 
techniques) can predict the true volatility of their measured components. A more complete 
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comparison between the random forest model’s performance in vapor pressure prediction 
compared to other techniques used throughout the field is therefore required to provide 
context for vapor pressure prediction errors in the ambient sample extrapolation set (further 
discussed below in section 2.6.1.3). 

For both O:C and 𝑂𝑆௖തതതതത  (which are highly related properties), extrapolation set 
prediction performance suffers at the high end of the oxygenation scale, although the 
performance reduction is far more pronounced for O:C prediction. This is due to the lack 
of highly oxygenated species in the external standard; random forest models do not 
extrapolate beyond the range of properties in the training data and therefore cannot predict 
O:C ratios of higher than 1.5 when that is above the maximum in the training data. The 
extraneously highly oxidized species for which O:C and 𝑂𝑆௖തതതതത prediction accuracy suffers 
lie almost exclusively in the most volatile region instrument sensitivity, where vapor 
pressure prediction inaccuracies have been previously described. As a result, extrapolation 
set property prediction for O:C, 𝑂𝑆௖തതതതത, and log(VP) were restricted to compounds above a 
retention index of 1500. As illustrated in Figure 2.A3 and Figure 2.2, the significant 
majority of ambient analytes were above the 1500 retention index threshold, justifying the 
decision to restrict prediction of these properties to the retention index window in which 
their performance is better optimized. In applying these techniques to the larger suite of 
novel species, maintaining these retention window restrictions is critical to avoid the 
introduction of significant sources of error.  

Given the strong and consistent performance of carbon number and 𝑂𝑆௖തതതതത predictions 
across the majority of the retention index space and between both test and extrapolation 
sets, the most robust visualization of chemical properties based on random forest 
predictions is likely to be in 𝑂𝑆௖തതതതത-nc space.31 Predicting the carbon numbers and 𝑂𝑆௖തതതതത of the 
known ambient compounds and superimposing the true and predicted property 
distributions in the 𝑂𝑆௖തതതതത-nc space highlights the strengths and weaknesses of chemical 
properties modelling.  To better represent the prediction capabilities of the full chemical 
space and the scope of information that would be provided for properties prediction on a 
complex sample including hundreds of individual species, all identifiable ambient 
compounds (including those that overlap with the external standard) were included in 
property prediction and visualization. As illustrated in Figure 2.5, the real and predicted 
chemical properties spaces for the ambient data set indicate both strengths and weaknesses 
for this application of chemically properties modelling. As noted earlier, random forest 
modelling does not extrapolate and has a tendency to underpredict property extremes. This 
is apparent in both the high 𝑂𝑆௖തതതതത region and the high carbon number regions of the 𝑂𝑆௖തതതതത-nc 
space, where high carbon oxidation states and high carbon numbers were each 
independently underpredicted. These errors could be moderated by adding more 
oxygenated species and higher carbon number species to the external standard, which 
would provide the model with more information to predict properties in these regions. In a 
context of extended continuity of analysis of similar sample media, this suggests an 
iterative approach in which the addition of new standards to a calibration mixture can be 
prioritized through analyzing the chemical features of poorly predicted compounds in the 
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sample media and adding new standards that replicate those features. Despite the prediction 
errors visualized in Figure 2.5, the overall shape of the true chemical properties space was 
extremely well represented by predictions. While conclusions based on the presence or 
absence of extremes in predicted properties would not be appropriate, analyses based on 
the relative distributions of populations of interest provides valuable insight comparable to 
other parameterizations of compound properties from incomplete knowledge.  

2.6.1.3 Vapor Pressure Modelling: Comparison to Prior Methods 
Chromatography using a non-polar column is intended to separate compounds by 

volatility and has been used to directly predict novel compound vapor pressures in previous 
studies.35 It is therefore important in this context to evaluate both how significantly random 
forest modelling improves upon simple linear modelling of volatility based on retention 
index as well as how this method compares to other parameterizations of vapor pressure. 
As illustrated in Figure 2.6 and Table 2.4, the log(VP) prediction residuals for random 
forest model predictions indicate that random forest-generated predictions are both more 
accurate and more precise than predictions by the linearized retention index method or 
from the Li et al., 201636 chemical formula-based parameterization, as they demonstrate a 
tighter distribution that is more centered around zero. The mean absolute error for random 
forest vapor pressure prediction is significantly lower than errors from both predictions 
based on retention index (t-test p value = .01) and predictions based on chemical formula 
(t-test p value = 3.1×10-5).  

2.6.2 Quantification Modelling Performance 
The approach for evaluating performance for quantification modeling requires slight 

alterations compared to property prediction. Although the random forest model predicts 
the residuals of quantification factors around the retention index response normalization 
curve (Figure 2.A2) rather than directly, these residuals are converted back to 
quantification factors for both the true and predicted properties for performance evaluation. 
This serves two purposes; first, other quantification methods do not use this retention 
index-based normalization so conversion to absolute prediction errors is necessary to 
compare methods, and second, a direct quantification error assessment provides more 
useful and applicable information about how significantly quantification errors could 
influence conclusions based on model-quantified data.  

The test set compounds were quantified using two alternative quantification methods, 
Manual or Closest proxy quantification (described in Liang et al., 2021, which utilizes a 
combination of both), to benchmark random forest model performance. Manual proxy 
quantification entails manually assigning a compound to a chemically similar external 
standard based on researcher judgement on what chemical class the unidentified compound 
would likely belong to based on some combination of location in GCxGC space and mass 
spectrum. This is the current preferred method for quantification of compounds that are not 
in the external standard and in theory should provide the most reliable results in cases 
where an extremely chemically similar standard is available, but it is highly inefficient and 
relies upon researcher judgement calls which are difficult to standardize. Closest proxy 
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quantification assigns each compound to its nearest external standard in GCxGC space, or 
to an average of the nearest standards within a set radius limitation. In this work, the 
average of the quantification factors of the 3 nearest standard species was used, as this 
demonstrated improved performance compared to single closest proxy quantification. This 
method is efficient, but it introduces potentially significant error by assigning species with 
different chemical characteristics (and therefore different quantification factors) the same 
response factor if they are sufficiently close in GCxGC space. Each test set compound was 
assigned to a proxy quantification factor from the training set based on each of these two 
methods, and each proxy compound’s quantification factor at each time point was 
substituted as a prediction of the test set compound’s quantification factor at that calibration 
window.  

The standard performance metrics for quantification factor prediction using the random 
forest model, manual proxy quantification and closest proxy quantification, are compared 
in Table 2.5. The random forest model significantly outperforms both other methods; it has 
a relatively high OSR2 of .65 compared to negative OSR2 values for the two proxy methods 
(indicating that at least on average, assuming all test compounds have the same 
quantification factor as the average of all training set compounds would have performed 
better than proxy quantification). MAE and RMSE also indicate improved performance 
when using the random forest model over other methods. While these metrics provide 
useful information on model performance, they do not reveal why the performance 
(particularly of the proxy methods) is so poor and do not provide useful information to 
evaluate likely propagation of quantification errors. Unlike for the chemical properties 
modelling, for quantification modelling % error is a much more important metric than 
absolute error, because it translates directly to how significant total quantification error 
across a large suite of compounds is likely to be and provides insights into underlying 
biases in different methods. Figure 2.7 illustrates the quantification factor % error 
distributions of the three methods and demonstrates the improved performance of random 
forest modelled quantification predictions on three criteria. First, as illustrated by panel A, 
random forest modeling produces far fewer and less extreme outlier prediction errors that 
are orders of magnitude different from the true values. These result when a compound that 
the instrument is extremely insensitive to (which would have a true extremely low 
quantification factor) is assigned a moderate or high quantification factor. In practice the 
influence of these types of quantification inaccuracies is very limited as few ambient 
species that the instrument is this significantly insensitive to would occur above detection 
limits, but they could introduce errors nonetheless. Here it is important to keep in mind that 
each point represents a single quantification from a single calibration period; some outliers 
therefore indicate compounds that exhibited extremes in quantification factors during a 
single calibration period.  This was most common among standard compounds at the edges 
of the instrument’s sensitivity window, as these species are more significantly impacted by 
alterations in instrument performance. Second, as illustrated by Figure 2.7 panel B, the 
error distribution for the random forest model is significantly more centered around zero 
compared to either proxy model. Median random forest model quantification error is -2%, 
compared to 17% for closest proxy quantification and 19% for manual proxy quantification. 



32 

In practice, this indicates that over a large number of quantified species, random forest 
modeling is unlikely to introduce biased quantifications that might skew results, while the 
two proxy methods would likely inflate the apparent mass of novel compounds. Third, also 
illustrated by Figure 2.7 panel B (though less directly), random forest modeling produces 
prediction errors more tightly distributed around the median, meaning that the absolute % 
error distribution for random forest modelling also outperforms the two proxy methods. 
Median absolute % error for random forest model predictions is 37%, compared to 57% 
for the closest proxy method and 41% for the manually assigned proxy method. The 
average % error improvements from random forest modeling compared to both proxy 
methods are statistically significant (t-test p values both < .0004), but the median absolute % 
error distributions of the random forest and manually assigned proxy quantifications are 
not significantly different based on a Mood’s median test. The random forest and closest 
proxy method absolute % error distribution differences are statistically significant, with a 
Mood’s test p value of .001. While critical for contextualizing the potential impact of 
quantification errors on mass attribution of complex mixtures, a % error-based analysis of 
prediction accuracy is necessarily asymmetrical, as a predicted quantification factor can 
produce a minimum of -100 % error (the case if the predicted value were to be zero) but 
far more than +100% error if the quantification factor is significantly overpredicted. A 
symmetrical error analysis of log(predicted quantification factor/true quantification factor), 
illustrated in Figure 2.A4, is required to probe the frequency and dynamics of 
underprediction in greater depth.  Figure 2.A4 demonstrates that the random forest model 
is more prone to underprediction outliers, but continues to outperform the other methods 
in achieving a narrow error distribution centered at zero.   

A final benefit of random forest modeling-based quantification not captured in the 
performance metrics is the ability to utilize incomplete data. With proxy quantification, 
any standard compound that cannot be calibrated for at any point over the course of an 
analysis cannot be used, as the species that are calibrated by that compound would not be 
quantifiable during the window with missing calibration data. The random forest-based 
quantification method relies upon the entire external standard suite to inform corrections 
for instrument performance over time and can therefore produce robust quantification 
factor predictions even when individual standard calibration curves are missing for a 
particular calibration window. This allows for significantly greater flexibility in analysis, 
as compounds can be added to the external standard if they are observed in initial samples 
and still be usable to inform quantifications for periods before they were present.  

In summary, random forest quantification factor modelling significantly outperforms 
both closest proxy and manual proxy quantification methods. It is significantly more 
efficient than manual proxy modeling, exhibits fewer outliers of multi order of magnitude 
overestimations, produces an error distribution that is more centered around zero 
(preventing significant biases in total mass over large numbers of quantified and summed 
species), and exhibits improvements in absolute percent error of predictions. 
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2.6.3 Considerations for Adaptation Across Instruments and Methods 
The approach presented in this work prioritizes continuity between training, test, and 

sample data by exclusively training the model on data produced by a single instrument 
using a standardized methodology.  This approach was selected to ensure that the patterns 
identified by Ch3MS-RF modelling in the training data were as directly relevant as possible 
to the unidentifiable sample compounds of interest.  However, in some cases, accumulation 
of a representative external standard spanning the entire feature domain of unidentifiable 
compounds of interest may not be practical or possible.  Electron ionization (70 eV) mass 
spectrometry is an extremely well characterized and consistent technique, but 
chromatographic retention times and indices can vary.  In order for data produced by 
multiple instruments and techniques to be integrated within Ch3MS-RF, it is therefore 
important to establish the tolerance of prediction performance to drifts in retention index.   

To test sensitivity to retention index or retention time shifts across instruments and 
methods, the vapor pressure, carbon number, 𝑂𝑆௖തതതതത, and O:C of the external standard test set 
compounds were predicted using retention index inputs that were shifted from their 
observed retention indices. A broad range of shifts from -200 (indicating the equivalent of 
a two-carbon number shift, for example if in the test sample heptadecane were to elute at 
the time that pentadecane eluted in the training standard run) to +200 were tested (including 
-200, -150, -100, -50, -25, +25, +50, +100, +150, +200).  A new mean absolute error was 
calculated for each set of predictions based on the shifted retention indices and compared 
to the unshifted mean absolute error to calculate the % increase in mean absolute error as 
a function of test set retention index shift.  These results are visualized in Figure 2.8. The 
two measures of oxidation, 𝑂𝑆௖തതതതത and O:C were relatively insensitive to retention index 
shifts, as their mean absolute errors increased by less than 10% at a retention index shift of 
±200 and by < 5% within retention index shifts of ±100.  Carbon number and vapor 
pressure predictions were more sensitive to retention index shifts, as would be expected 
given that retention times are more directly physically related to these two properties.  At 
retention index shifts of + 200, mean absolute error of carbon number prediction increased 
by 44%, while a shift of -200 produced vapor pressure predictions that increased by 39%, 
both of which significantly decrease the utility of the produced predictions.  However, 
within retention index shifts of ±100, increases in vapor pressure and carbon number 
prediction errors are modest, with all calculated MAE % error increases < 10%, with the 
exception of a 12% increase in error for vapor pressure predictions at a retention index shift 
of -100.  Vapor pressure prediction in fact appears to slightly improve at shifts of +<25-50, 
but these improvements are extremely modest (<3%), are attributable to the generally 
higher uncertainties in vapor pressure prediction, and are not significantly different from 
predictions produced at a retention index shift of 0. Reported n-alkane normalized kovats 
indices of compounds within standardized column types (semistandard non-polar, standard 
non-polar, etc.) typically vary by <50, meaning that where methodologies allow test 
compound kovats or retention indices to be calculated, predictions utilizing training data 
from instruments and analysis protocols not used on the test samples are likely to be robust, 
particularly for O:C and  𝑂𝑆௖തതതതത. For methodologies that do not use internal standards and 
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that cannot otherwise easily yield kovats indices, protocols using similar columns and 
temperature ramps would likely produce retention times that could be substituted for 
retention indices in the Ch3MS-RF methodology. This approach would be usable across 
multiple instrumentations, provided it could be established that the retention times of any 
given compound produced by the training and test instrument drift by less than 1 carbon 
number equivalent.  

In summary, training and/or test data from multiple instruments and protocols can be 
combined to meet user needs, provided the following criteria are met: 1) the same 
ionization energy (typically 70 eV) is used 2) retention index or retention time drifts 
between instruments or protocols can be normalized to less than the difference of the 
elution time between two sequential linear alkanes (retention index drift of <100) 3) similar 
phase columns are used (semistandard nonpolar, standard nonpolar, etc) 4) samples and 
training data are consistently either derivatized or underivatized, and if derivatized use a 
consistent derivatization agent.  It is also important to keep in mind that the training data 
must span the anticipated feature space of the use data set, and that in cases of doubt this 
can be tested by adding extrapolation set compounds identified from the sample medium. 
For chemical properties modelling, this approach can be adapted from the GCxGC 
approach presented for any instrument using chromatography- electron ionization-mass 
spectrometry that has the capacity to yield at least unit resolution mass spectra and for 
which spectra can be sufficiently deconvoluted to yield clean analyte spectra. The model 
structure and provided sample code are highly flexible and could be utilized to predict any 
property of interest that might reasonably be expected to be reflected in the combination of 
compound mass spectra and chromatographic retention time, although performance 
evaluation is always important for ensuring that the patterns are sufficiently strong to 
enable accurate property prediction using Ch3MS-RF.  

2.7 Conclusions 
This work presents a new machine-learning based method for quantifying and 

predicting chemical properties of novel organic compounds observed in the atmosphere. 
Based on a relatively small combined training and test set of ~130 known compounds, we 
are able to predict the carbon numbers, vapor pressures, carbon oxidation states, and O to 
C ratios of ambient organic compounds with sufficient accuracy to usefully represent 
compound distributions in chemical property spaces that are important in atmospheric 
science. That these predictions are generated solely from retention indices and unit mass 
resolution mass spectra marks a significant step forward in ability to characterize the novel 
organic components of earth’s atmosphere based on measurements generated from a wide 
range of commonly available atmospheric instrumentation. In GCxGC-MS applications, 
these methods contribute significant improvements in both accuracy and analytical 
efficiency for novel compound quantification that enable users to perform untargeted 
analysis of the rich complexity of data generated by advances in instrumentation. While 
the untargeted analysis data science techniques described in this work have been developed 
for and tested on atmospheric applications, they are not structurally limited in scope and 
could be applied to a wide range of chromatographic-mass spectral data sets to enable 
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characterization of complex organic mixtures. The open-source R script published in 
supplement to this work is intended to provide a framework for groups throughout the 
atmospheric chemistry community to efficiently apply and adapt these methods to broadly 
enhance our ability to take advantage of the increasingly complex information provided by 
ever accelerating advances in environmental chemistry instrumentation.  
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2.10 Figures and Tables 

2.10.1 Figures 

 

Figure 2.1: Analytical pipeline for chemical properties modelling using a random forest model. ES 
indicates external standard; CV indicates cross validation 

 

Figure 2.2: Distribution of training, test, extrapolation, and unidentified sample compounds in two-
dimensional chromatographic chemical properties space 
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Figure 2.3: External standard test set true and predicted chemical properties from random forest 
modelling 

 

Figure 2.4: Ambient extrapolation set true and predicted chemical properties from random forest 
modelling 
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Figure 2.5: True versus predicted chemical properties distribution of ambient sample organic species 
within a Carbon Number v. Carbon Oxidation State space 

 

Figure 2.6: Vapor pressure prediction residuals (Log(VP), VP in atm) for vapor pressure predictions 
of the ambient extrapolation set based on formula-based parameterization (Li et al., 2016), linearized 
retention index-based modelling, and random forest modelling.  
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Figure 2.7: Quantification performance comparison between random forest model (orange) and two 
previously utilized quantification methods, specifically closest proxy quantification and manually 
assigned proxy quantification. Midline of boxes indicates sample median, while top and bottom 
indicate 25th and 75th percentiles. Linear “whiskers” extend to the least extreme values within 1.5 × 
the inner quartile range of the sample. Disconnected dots indicate sample outliers that fall beyond 
the whisker parameters.  

 

 

 

Figure 2.8:  % increases of mean absolute error in chemical property prediction as a function of shift 
in test set retention index relative to training set retention index. Retention indices are normalized to 
a linear alkane series, making an increment of 100 indicate the retention time differences between 
two linear alkanes separated by 1 carbon number.  
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2.10.2 Tables 
Table 2.1: Tuning parameters and important features for chemical properties prediction models. m/z 
indicates charged fragment features and n indicates neutral mass difference features. 

Property Model Optimized 
mtry 

Number of 
Important 
Features 

Important Features 

O:C  4 19 Retention index, m/z 41, m/z 43, m/z 45, 
m/z 57, m/z 69, m/z 73, m/z 74, m/z 75, 
m/z 103, m/z 113, m/z 147, m/z 189, m/z 
204, m/z 217, n 2, n 15, n 28, n 30 

Carbon Number  6 9 Retention index, m/z 41, m/z 45, m/z 55, 
m/z 57, m/z 73, m/z 99, n 14 

Average Carbon 
Oxidation State  

4 17 Retention index, m/z 41, m/z 43, m/z 45, 
m/z 55, m/z 57, m/z 69, m/z 73, m/z 75, 
m/z 91, m/z 93, m/z 117, m/z 119, m/z 
147, n 1, n 2, n 30 

Log(Vapor Pressure)  9 9 Retention index, m/z 55, m/z 73, m/z 75, 
m/z 129, m/z 145, m/z 147, n 3, n 30 

 

Table 2.2: Performance metrics for random forest-based modelling of chemical properties of the 
external standard test set. “Range of true properties” units in units of property: O:C in unitless 
atom#/atom#, Carbon Number in atom#, average carbon oxidation state in mean charge, and 
Log(Vapor Pressure) in Log(atm). 

Property Out of Sample R2 Mean Absolute 
Error 

Root Mean 
Square Error 

Range of True 
Properties 

O:C  .89 .072 .094 0-1 
Carbon Number  .88 1.8 2.4 4-31 
Average Carbon 
Oxidation State  

.79 .24 .33 (-2.1)- 0 

Log(Vapor 
Pressure)  

.82 .72 .93 (-12)-(-4.2) 

 

Table 2.3: Performance metrics for random forest-based modelling of chemical properties of the 
ambient aerosol sample extrapolation set. “Range of true properties” units in units of property: O:C 
in unitless atom#/atom#, Carbon Number in atom#, average carbon oxidation state in mean charge, 
and Log(Vapor Pressure) in Log(atm). 

Property Out of Sample R2 Mean Absolute 
Error 

Root Mean 
Square Error 

Range of True 
Properties 

O:C*   .78 .11 .17 0-1.5 
Carbon Number  .93 1.8 2.2 3-32 
Average Carbon 
Oxidation State*  

.80 .25 .37 (-2.1)- (1.5) 

Log(Vapor 
Pressure)*  

.68 1.1 1.4 (-13)- (-5.7) 

*Restricted to retention index > 1500  
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Table 2.4. Error distribution metrics random forest model, retention index linear model, and 
formula-based predictions of vapor pressure. All reported errors in units of log(VP(atm)). 

Vapor Pressure 
Prediction Method 

Mean Error Median Error Mean Absolute 
Error 

Median Absolute 
Error 

Random Forest 
Model 

.24 .21 1.1 .76 

Retention Index 
Linear Model 

.55 .52 1.5 1.1 

Formula-Based 
Parameterization 

1.2 1.3 2.0 1.3 

 

Table 2.5. Performance metrics for quantification factor prediction for three methods of unidentified 
compound quantification: random forest modelling, manually assigned proxy quantified, and closest 
proxy quantified. 

Quantification Method Out of Sample R2 Mean Absolute Error Root Mean Square 
Error 

Random Forest Model .65 .00085 .0021 
Manually Assigned 
Proxy Quantified  

-4.1 .0036 .0080 

Closest Proxy 
Quantified 

-1.8 .0026 .0059 

 

2.11 Supporting Information 
2.11.1 Appendix A: Supplementary Tables and Figures 
 

 

Figure 2.A1: Mass Spectrum of Hexadecane as measured by GCxGC-MS and featurized in table A2. 
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Figure 2.A2: Quantification factor normalization curve based on average response factors of alkanes  

 

Figure 2.A3: Normalized prediction residuals of carbon oxidation state and vapor pressure v. 
retention index for ambient data compound property predictions set, overlaid with compound 
number distribution over the retention index for ambient data set. The yellow highlighted region 
indicates compounds below a retention index of 1500. 
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Figure 2.A4: Quantification factor prediction errors expressed in Log(predicted quantification 
factor/true quantification factor) for test set quantification factors predicted by random forest model 
(orange), closest proxy, and manual proxy methods.  

Table 2.A1: External standard names, formulae (underivatized), retention indexes, split (training set 
versus test set), and manually assigned quantification proxies. 

Name Chemical 
Formula 

Retention 
Index*  

Split Manual Proxy 

12-OH C18 acid C18H36O3 2470 Train 
 

16-OH C16 acid C16H32O3 2429 Train 
 

2-ketoglutaric acid C5H6O5 1629 Train 
 

3-5-dimethoxyphenol C8H10O3 1525 Train 
 

4, 4 dimethoxy-
benzophenone 

C15H14O3 2293 Train 
 

4-hydroxybenzoic acid C7H6O3 1651 Test 2-ketoglutaric acid 

4-nitrocatechol C6H5NO4 1769 Train 
 

4-terpineol  C10H18O 1206 Train 
 

9H-florenone C13H8O 1778 Train 
 

a-amyrin C30H50O 3479 Train 
 

abietic acid C20H30O2 2468 Train 
 

anthraquinone C14H8O2 2017 Test xanthone 

benzophenone C13H10O 1664 Train 
 

beta-caryophyllene 
aldehyde 

C15H24O2 1715 Train 
 

beta-caryophyllinic acid C14H22O4 2060 Train 
 

beta-caryophyllonic acid C15H24O3 1931 Train 
 

beta-nocaryophyllinic 
acid 

C13H20O5 2127 Train 
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beta-nocaryophyllone 
aldehyde 

C14H22O3 1757 Train 
 

beta-nocaryophyllonic 
acid 

C14H22O4 1985 Train 
 

beta-sitosterol C29H50O 3406 Train 
 

bisabolol C15H26O 1770 Train 
 

borneol C10H18O 1254 Test nonanol 

C10 carboxylic acid C10H20O2 1479 Test dimethyl glutaric acid 

C10 diacid (sebacic 
acid) 

C10H18O4 1922 Train 
 

C12 diacid C12H22O4 2120 Test beta-caryophyllinic 
acid 

C13 acid C13H26O2 1776 Test vanillic acid 

C14 alkane C14H30 1422 Train 
 

C14 diacid C14H26O4 2317 Train 
 

C16 alkane C16H34 1626 Train 
 

C16 acid C16H32O2 2078 Train 
 

C17 alkane C17H36 1730 Test C17 alkane 

C17 acid C17H34O2 2177 Test linoleic acid 

C18 alkane C18H38 1830 Train 
 

C18 acid C18H36O2 2280 Train 
 

C19 alkane C19H40 1934 Test C20 alkane 

C20 alkane C20H42 2034 Train 
 

C21 alkane C21H44 2137 Train 
 

C22 alkane C22H46 2238 Train 
 

C22 acid C22H44O2 2684 Train 
 

C23 alkane C23H48 2341 Test C24 alkane 

C24 alkane C24H50 2443 Train 
 

C24 acid C24H48O2 2886 Train 
 

C25 alkane C25H52 2545 Train 
 

C26 alkane C26H54 2649 Train 
 

C26 acid C26H52O2 3088 Train 
 

C27 alkane C27H56 2750 Train 
 

C28 alkane C28H58 2852 Train 
 

C28 acid C28H56O2 3291 Train 
 

C29 alkane C29H60 2955 Train 
 

C30 alkane C30H62 3058 Train 
 

C31 alkane C31H64 3159 Test C30 alkane 

C32 alkane C32H66 3259 Train 
 

C33 alkane C33H68 3363 Train 
 

C35 alkane C35H72 3564 Train 
 

C7 acid C7H14O2 < 1400 Train 
 

C8 acid C8H16O2 1293 Train 
 

C9 acid C9H18O2 1381 Train 
 

C9 diacid (azelaic acid) C9H16O4 1822 Train 
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cholesterol C27H46O 3209 Train 
 

chrysene C18H12 2531 Train 
 

cis-vaccenic acid C18H34O2 2259 Train 
 

citronellol C10H20O 1338 Train 
 

cycloisolongifolene C15H24 1355 Test pyrocatechol 

DEET C12H17NO 1600 Train 
 

deoxycholic acid  C24H40O4 3347 Train 
 

dibenz(ah)anthracene C22H14 3280 Train 
 

dimethyl glutaric acid C7H12O4 1456 Train 
 

dodecyl benzene C18H30 1920 Train 
 

eicosanol C20H42O 2390 Train 
 

ergosterol C28H44O 3296 Train 
 

erythreitol C4H10O4 1528 Train 
 

FAME16 (methyl 
palmitate) 

C17H34O2 1957 Train 
 

FAME18 (methyl 
stearate) 

C19H38O2 2161 Train 
 

farnesol C15H26O 1832 Test bisabolol 

galactosan C6H10O5 1684 Train 
 

gamma dodecalactone C12H22O2 1709 Train 
 

glyceric acid  C3H6O4 1352 Train 
 

hexadecanamide C16H33NO 2212 Train 
 

hexadecanol C16H34O 1989 Train 
 

homosalate C16H22O3 2054 Test beta-caryophyllinic 
acid 

hydroquinone C6H6O2 1420 Train 
 

ionone C13H20O 1449 Train 
 

isoeugenol C10H12O2 1591 Train 
 

isopimaric acid C20H30O2 2385 Test C14 Diacid 

ketopinic acid C10H14O3 1530 Test pinonic acid 

levoglucosan C6H10O5 1726 Train 
 

linoleic acid C18H32O2 2245 Train 
 

lupeol C30H50O 3483 Train 
 

maltol C6H6O3 1316 Train 
 

mannosan C6H10O5 1706 Test galactosan 

MBTCA C8H12O6 1776 Train 
 

Me-OH-glutatric acid  C6H10O5 1623 Test 2-ketoglutaric acid 

monopalmitin C19H38O4 2628 Test monostearin  

monostearin C21H42O4 2788 Train 
 

nonanol C9H20O 1318 Train 
 

octadecanal  C18H36O 2056 Train 
 

octadecanol C18H38O 2191 Train 
 

octadecanone C18H36O 2031 Train 
 

oleic acid C18H34O2 2251 Train 
 



51 

palmitoleic acid C16H30O2 2056 Train 
 

p-anisic acid (4-
methoxybenzoic acid) 

C8H8O3 1544 Train 
 

pentadecanone C15H30O 1726 Test pinic acid, isomer 1 

perylene C20H12 2967 Train 
 

phthalic acid C8H6O4 1714 Train 
 

phthalimide C8H5NO2 1593 Train 
 

pinic acid, isomer 1 C9H14O4 1692 Train 
 

pinic acid, isomer 2 C9H14O4 1697 Train 
 

pinonic acid C10H16O3 1550 Test hexadecanamide 

pyrene C10H16 2171 Train 
 

pyrocatechol C6H6O2 1339 Train 
 

quinoline C9H7N 1278 Train 
 

resorcinol C6H6O2 1399 Test hydroquinone 

retene C18H18 2267 Train 
 

Sesquiterpene 1† C15H24 1404 Train 
 

Sesquiterpene 2† C15H24 1442 Test Sesquiterpene 3 

Sesquiterpene 3† C15H24 1449 Train 
 

Sesquiterpene 4† C15H24 1451 Train 
 

Sesquiterpene 5† C15H24 1471 Train 
 

Sesquiterpene 6† C15H24 1493 Train 
 

Sesquiterpene 7† C15H24 1537 Train 
 

Sesquiterpene 8† C15H24 1569 Train 
 

Sesquiterpene 9† C15H24 1610 Train 
 

sinapinaldehyde C11H12O4 2032 Train 
 

squalene C30H50 2868 Train 
 

stigmasterol C29H48O 3344 Test ergosterol 

syringaldehyde C9H10O4 1726 Test 9H-florenone 

syringic acid C9H10O5 1924 Test C10 diacid (sebacic 
acid) 

syringol C8H10O3 1418 Train 
 

threitol C4H10O4 1521 Test erythreitol 

triacetin C9H14O6 1362 Train 
 

tridecanal  C13H26O 1537 Train 
 

vanillic acid C8H8O4 1789 Train 
 

vanillin C8H8O3 1558 Train 
 

verbenone (-) C10H14O 1237 Train 
 

xanthone C13H8O2 1906 Train 
 

*Normalized by deuterated alkane standard series 

†Isomer identity undetermined, only quantification factor and properties related to 
chemical formula included in modelling 

Table 2.A2: 40 most common charged fragments featurized for mass spectral featurization, with 
possible formulae and implications of published peaks. 
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Fragment m/z Possible Formulae Notes 
41 C3H5+  
43 C3H7+, C2H3O+ Propyl group, ketone indicator 
45 CHO2 Carboxyl indicator, underivitized 
55   
56   

57 
C4H9+, C3H5O+ Signature alkane fragment, 

ketone/ester 
67   
69   
71 C4H7O+ Ketone/ester 

73 
Si(CH3)3+ Indicates derivatization and 

therefore presence of OH group 
74   
75   
77 C6H5+ phenyl 
79   
81   
83   
85   
91   
92   
93 C6H5O+ Oxygenated aromatics 
95   
99   
103   
105   
107   
109   
111   
113   
117   
119   
121   
129   
131   
132   
135   
145   
147   
189   
204 Si2C8H20O2+ Indicative of sugars 
217 Si2C9H21O2+ Indicative of sugars 

 

Table 2.A3: 20 most common neutral mass differences between charged peaks, selected for mass 
spectral featurization, with possible formulae and implications of commonly reported neutral losses. 

Neutral Loss/Mass Difference 
(amu) 

Probable Formulae/ 
Interpretation 

Notes 

1 Loss of H  
2   
3   
4   
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6   
8   
10   
11   
12   
13   
14   
15 CH3 Methyl 
16 O Alcohol- derivatization agent 

loss 
18   
20   
26   
27   
28 CO Carbonyl 
30   
42   

 

Table 2.A4. Full chemical properties modelling features for Hexadecane 

Feature Feature Class Feature Input 
Retention Index            
(d-alkane normalized) 

Chromatography 1627 

m/z 41 Mass Spectrum Common Fragment 238 
m/z 43 Mass Spectrum Common Fragment 512 
m/z 45 Mass Spectrum Common Fragment 0 
m/z 55 Mass Spectrum Common Fragment 144 
m/z 56 Mass Spectrum Common Fragment 116 
m/z 57 Mass Spectrum Common Fragment 999 
m/z 67 Mass Spectrum Common Fragment 0 
m/z 69 Mass Spectrum Common Fragment 0 
m/z 71 Mass Spectrum Common Fragment 757 
m/z 73 Mass Spectrum Common Fragment 0 
m/z 74 Mass Spectrum Common Fragment 0 
m/z 75 Mass Spectrum Common Fragment 0 
m/z 77 Mass Spectrum Common Fragment 0 
m/z 79 Mass Spectrum Common Fragment 0 
m/z 81 Mass Spectrum Common Fragment 0 
m/z 83 Mass Spectrum Common Fragment 0 
m/z 85 Mass Spectrum Common Fragment 519 
m/z 91 Mass Spectrum Common Fragment 0 
m/z 92 Mass Spectrum Common Fragment 0 
m/z 93 Mass Spectrum Common Fragment 0 
m/z 95 Mass Spectrum Common Fragment 0 
m/z 99 Mass Spectrum Common Fragment 0 
m/z 103 Mass Spectrum Common Fragment 0 
m/z 105 Mass Spectrum Common Fragment 0 
m/z 107 Mass Spectrum Common Fragment 0 
m/z 109 Mass Spectrum Common Fragment 0 
m/z 111 Mass Spectrum Common Fragment 0 
m/z 113 Mass Spectrum Common Fragment 89 
m/z 117 Mass Spectrum Common Fragment 0 
m/z 119 Mass Spectrum Common Fragment 0 
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m/z 121 Mass Spectrum Common Fragment 0 
m/z 129 Mass Spectrum Common Fragment 0 
m/z 131 Mass Spectrum Common Fragment 0 
m/z 132 Mass Spectrum Common Fragment 0 
m/z 135 Mass Spectrum Common Fragment 0 
m/z 145 Mass Spectrum Common Fragment 0 
m/z 189 Mass Spectrum Common Fragment 0 
m/z 204 Mass Spectrum Common Fragment 0 
m/z 217 Mass Spectrum Common Fragment 0 
loss of 1 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 2 Mass Spectrum Neutral Loss/Mass Diff. TRUE 
loss of 3 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 4 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 6 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 8 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 10 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 11 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 12 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 13 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 14 Mass Spectrum Neutral Loss/Mass Diff. TRUE 
loss of 15 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 16 Mass Spectrum Neutral Loss/Mass Diff. TRUE 
loss of 18 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 20 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 26 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 27 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
loss of 28 Mass Spectrum Neutral Loss/Mass Diff. TRUE 
loss of 30 Mass Spectrum Neutral Loss/Mass Diff. TRUE 
loss of 42 Mass Spectrum Neutral Loss/Mass Diff. FALSE 
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3 Anthropogenic and Biological Influences on the 
Organic Composition of Coastal Submicron Sea 
Spray Aerosol 

 

This work is adapted from: 
Emily B. Franklin, Sarah Amiri, Daniel Crocker, Clare Morris, Kathryn Mayer, Jonathan 
Sauer, Christopher Lee, Francesca Malfatti, Christopher D. Cappa, Timothy H. Bertram, 
Kimberly A. Prather, Allen H. Goldstein, “Anthropogenic and Biological Influences on 
the Organic Composition of Coastal Submicron Sea Spray Aerosol,” which is currently 
undergoing its second round of reviews from co-authors and will be submitted to 
Environmental Science and Technology in July 2022.  
 

3.1 Abstract 
The organic composition of coastal sea spray aerosol is important for both atmospheric 
chemistry and public health but remains poorly characterized. Coastal waters become 
enriched with organic material through both anthropogenic processes such as wastewater 
discharge and biological activity. Here we probe the chemical composition of the organic 
fraction of sea spray aerosol over the course of the 2019 SeaSCAPE mesocosm 
experiment, in which a phytoplankton bloom was facilitated in natural coastal water from 
San Diego, California. We apply untargeted two-dimensional gas chromatography to 
analysis of submicron nascent sea spray aerosol samples, reporting 754 unique organic 
species traced over a 19-day phytoplankton bloom experiment.  Categorization and 
quantitative compositional analysis reveal three major findings; first, that anthropogenic 
species made up 30% of total submicron nascent sea spray aerosol organic mass under 
pre-bloom condition. Second, biological activity drove large changes within the carbon 
pool, transforming primary anthropogenic chemicals and creating novel biogenic 
chemicals. Third, biogenic marine organics are underrepresented in mass spectral 
databases in comparison to marine organic pollutants. 

3.2 Introduction 
Sea spray aerosols (SSA), the salty particles and droplets emitted from waves and bubble 

bursting at the ocean’s surface, play an important role in atmospheric chemistry and climate 
over the ocean and in coastal areas. Sea spray aerosol organic content increases with 
decreasing aerosol size below an aerodynamic radius of 2.5 µm. Observations from field 
studies report values of the total submicron organic mass fraction ranging from 6%1 to 
23%2 of submicron aerosol mass. Sea spray aerosol organic content plays a critical role in 
marine atmospheric chemistry, as the organic content forms a film on the exterior of salt 
crystal cores in Salt-Organic Carbon type aerosols, which dominate submicron sea spray 
aerosol.3,4,5 Organic material has hygroscopicity, solubility, and ice nucleation-relevant 
properties that significantly differ from those of NaCl crystals, thus the organic content of 
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sea spray aerosols influences their atmospheric chemistry and climate impacts over the 
ocean.4,5 In addition to altering chemical properties, the organic content of SSA is 
important in coastal areas, as coastal communities can be exposed to toxins such as those 
produced by harmful algal blooms6,7 and hazardous marine pollutants.8 

Coastal ocean water becomes enriched with organic material through both natural 
biological processes and anthropogenic pollution. Biogenic sources of organic material 
include ocean micro algae, which convert CO2 to biomass that is either grazed by larger 
organisms or dies and is degraded by heterotrophic bacteria.9 Anthropogenic sources of 
organics include urban runoff, personal care products including suncreens, wastewater 
discharge, trash, and shipping pollution.10,11,12,13 In addition to directly producing new 
organic material through photosynthesis, marine microbes also produce biologically 
transformed products from biodegradation of terrestrial and anthropogenic organic 
precursors.14,15,16 Organic material is not evenly distributed throughout the ocean water 
column; surfactants, hydrophobic organics, and other organic constituents collect at the 
ocean’s surface to form a thin layer known as the sea surface microlayer (SSML).17–19 Both 
biogenic and anthropogenic organics can be significantly enriched in the SSML, and 
enrichment factors of common anthropogenic pollutants including phthalates, polycyclic 
aromatic hydrocarbons, and heavy metals can be as high as multiple orders of 
magnitude.19,20,21,22 The organic composition of sea spray aerosols, and in particular 
submicron film drops, is significantly influenced by the composition of the SSML, making 
the enrichment of some chemical classes in the SSML important in determining the organic 
composition of sea spray aerosol and the transfer of organic pollutants from ocean to 
atmosphere.23,22,9 

There has been significant recent progress in characterizing the organic content of sea 
spray aerosol, including multiple methods of fractional functional group analysis.9,24,25,26 
However, a large fraction remains uncharacterized, particularly at the compound-specific 
level. This work leverages a mesocosm experiment in which real coastal water was used to 
facilitate a bloom of naturally occurring phytoplankton and bacteria species to investigate 
how anthropogenic pollution and marine microbes influence the organic composition of 
submicron sea spray aerosol in a coastal context.  
 

3.3 Materials and Methods 
3.3.1 Experimental Campaign and Sample Collection:  

Samples analyzed in this work originate from the 2019 SeaSCAPE (Sea Spray Chemistry 
And Particle Evolution) experimental campaign organized by CAICE (the Center for 
Aerosol Impacts on Chemistry of the Environment) based at UCSD. This campaign is 
described in detail in Sauer et al., 2022.27 Briefly, water collected at Ellen Browning 
Scripps Memorial Pier (hereafter Scripps Pier) in La Jolla, California was transported into 
the Scripps Institute of Oceanography Hydraulics Laboratory wave channel facility 
(hereafter called the wave channel) which uses mechanically generated breaking waves to 
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generate realistic sea spray aerosol. Scripps Pier is located close to multiple potential 
sources of coastal pollution including a high use beach, multiple stormwater discharge 
points, and municipal wastewater treatment outflow.28 Nutrients were added to the natural 
costal water to induce a micro algae bloom and subsequent bacterial and viral blooms of 
the species naturally present within the coastal water. The chemical and biological 
properties of the water, including chlorophyll-a concentrations and abundance of 
phytoplankton, bacteria, and viruses, were  extensively monitored both before and 
throughout the bloom, as documented in Sauer et al. 2022.27 These indicators are visualized 
in Figure 3.S6. Phytoplankton enumeration methods are summarized in 3.SI.5. 

Collection of submicron aerosol samples for speciated organic analysis at this campaign 
has been previously described in Franklin et al., 2021.28 Briefly, submicron aerosols were 
collected on 47 mm quartz fiber filters (Pallflex Tissuequartz) using a custom designed 
humidity-controlled sequential sampler at a frequency of two samples per day (light 
synchronized, one “day” and one “night” sample per day). Samples were frozen (-18⁰C) 
for offline compositional analysis, as described below.  

3.3.2 Offline Sample Analysis  
Submicron aerosol samples collected at SeaSCAPE were analyzed for speciated organic 

composition by thermal desorption two-dimensional gas chromatography coupled with 
electron ionization high resolution time of flight mass spectrometry (TD-GCxGC-EI-HR-
MS, hereafter abbreviated to GCxGC-MS). This instrument separates and detects organic 
constituents collected on filter material as follows: organic constituents are thermally 
desorbed from filter material, separated by both volatility and polarity by two gas 
chromatography columns in sequence, and detected by an electron ionization (70 eV) high 
resolution time of flight mass spectrometer. This instrument is described in detail in 
Worton et al., 2017.29   

3.3.3 Data Analysis  
From the 38 samples collected, 754 unique organic compounds were compiled into a 

custom library of mass spectra and retention indices (position relative to the deuterated 
alkane series in the internal standard). The majority of these organics were identified in 
either the first sample or the sample corresponding with peak chlorophyll-a concentrations 
in the bulk water (see Figure 3.1 for chlorophyll-a trace). Using the custom mass spectral 
library, all 754 catalogued species were traced over the entire bloom. Each observation of 
each compound was normalized by the mean of the three nearest internal standard 
components to correct for drifts in instrument sensitivity over the analysis period and 
matrix effects, using methodology described in detail in Franklin et al., 2022.30 Finally, the 
mass spectrum of each compound was searched against the NIST-14 mass spectral 
database. Of the 754 compounds catalogued, 14% were identifiable by database match. 
Compounds were defined as “identifiable” if they produced a match factor >750 with an 
entry in the NIST14 mass spectral database and an approximate match with a retention 
index for that compound published in the database or the literature.  
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Quantification of detected and separated organics is described in detail in Supporting 
Information section 1 (3.SI.1). A representative external standard containing ~130 known 
components was analyzed in 6-point calibration curves immediately preceding and 
following sample analysis. Compounds present in both the sample and standard or with 
clear chemical proxies in the standard were directly quantified by the calibration curves of 
the external standard, while the quantification factors of all other species were predicted 
using Ch3MS-RF.30 Model performance and uncertainties of both modeled and directly 
calculated quantification factors are described and illustrated in 3.SI.1.  

Segments of the filter samples utilized for speciated organic analysis were also analyzed 
for total organic carbon to determine the fraction of collected organic material to which 
GCxGC-MS analysis is sensitive to.  Results indicate that 40±15% of collected submicron 
organic mass was recovered and quantified by GCxGC-MS analysis, consistent with prior 
applications of this methodology to organic aerosol collected in other contexts.31  Examples 
of previously characterized contributors to submicron sea spray aerosol organic 
composition to which this technique is not sensitive include polysaccharides and 
proteinaceous material.32,33 Methodological details and validation by complementary 
measurements are described in 3.SI.2.  

Compounds were grouped into clusters of similar temporal variability by dynamic time 
warping hierarchical clustering,34 as described in 3.SI.3. The 100 most abundant organics 
were grouped by cluster analysis, with results optimized by a 7-group solution as illustrated 
in Figure 3.S4 and Figure 3.S5. All other compounds detected with sufficient frequency 
for time series construction were assigned to the cluster with which they exhibited the 
highest Pearson correlation. Clusters were then categorized as anthropogenic (resulting 
from human emissions and not enhanced by biological activity), biogenic (enhanced by 
biological activity, either through direct production or biotransformation of previously 
existing species), or mixed (some combination of the two, or undetermined) influence 
through two methods: first, comparison of their mean cluster temporal profiles to indicators 
of biological activity, including chlorophyll-a concentrations and the abundances (cell/L) 
of microbes including phytoplankton phenotypes, heterotrophic bacteria, and virales; 
second, through a literature review of characteristic identifiable constituents within each 
cluster (Table 3.1). Justifications for these assignments are addressed in “Results and 
Discussion” below. The average temporal variability of each cluster relative to chlorophyll-
a and heterotrophic bacteria concentrations is illustrated in Figure 3.1, while Figure 3.2 
illustrates the mean Pearson correlation coefficient between each individual aerosol-phase 
organic and each biological activity or biomass indicator grouped by cluster. Finally, 
chemical properties of unidentifiable compounds, specifically average carbon oxidation 
state (𝑂𝑆௖തതതതത) and carbon number (nc) were predicted using Ch3MS-RF,30 as described in 
detail in 3.SI.6.   
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3.4 Results and Discussion 

3.4.1 Pre-Bloom Contributions of Anthropogenic Compounds to Submicron 
Aerosol Mass 

Over the first full day of analysis, 73% of the recovered organic carbon pool was 
attributed to compounds from anthropogenic clusters (Figure 3.3). Given the approximate 
organic material recovery rate of 40% (discussed in 3.SI.2), this implies that at least 30% 
of submicron organic material collected during this period is attributable to anthropogenic 
source material. Importantly, another 15% of the recovered carbon pool is attributed to 
mixed cluster categories that include anthropogenic compounds, as summarized in Table 
3.1, meaning that the total recovered mass fraction attributable to anthropogenic organics 
is greater than 73%. This anthropogenic material was highly diverse, consisting of over 
400 individual organic species, which is than half of total organic compounds catalogued 
and traced over the experimental bloom. Identities and dynamics of specific groups of 
interest are described below. 

One compound class within the anthropogenic fraction that substantially contributed to 
total recovered mass was a complex mixture of aliphatic material. This population can be 
seen in Figure 3.5 panel A as the tightly grouped distribution of low carbon oxidation state 
species in the nc range between 18 and 22.  While aliphatic material in marine environments 
can have both biogenic and anthropogenic sources, the aliphatic signature identified in the 
sea spray aerosol samples was identified as petrochemical rather than biogenic for three 
reasons. First, the oil signature was identified as petrochemical by comparison to ambient 
marine oil identified in analysis of the Deep Water Horizon oil spill, which was previously 
analyzed on the instrument utilized in this work and reported in Drozd et al., 2015.35 As 
described in the methodology of Tran et al., 1997, biogenic aliphatic material typically 
presents  as distinct products while oils from fossilized sources presents as an unresolved 
complex mixture, as was identified in this case. It should be noted that Tran et al, 1997 
identified aliphatic material in effluent into the ocean off the coast of San Diego as 
primarily terrestrial biogenic in origin, but this was due to a distinct product signature not 
observed in the sea spray aerosol samples collected in this study. Finally, as described in 
Crocker et al., 2022, the isotopic values of the submicron SSA samples collected at 
SeaSCAPE were significantly negative, indicating a high degree of anthropogenic 
influence.  While these negative isotope values cannot be attributed to any single 
compound or group of compounds, they lend credence to an anthropogenic/petrochemical 
source attribution for this product class. Potential sources of petrochemical aliphatic 
organics at the sampling location include wastewater discharge, urban runoff, and shipping, 
including from small research vessels launched from Scripps Pier.12,13 The potential of an 
influence from the natural petrochemical seeps at Coal Oil Point and Redondo Beach 
cannot be entirely ruled out, but they are unlikely to have contributed to the observed signal 
due to the location of the seeps relative to the sampling location (both seeps North of 
Scripps Pier, while the Southern California Eddy runs predominantly South to North along 
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the shoreline) and the distance of approximately 120 miles between Scripps Pier and the 
nearest seep.13 The petrochemical signal contributed approximately 20% of the total 
recovered anthropogenic signal and was almost entirely attributed to cluster Anthro1. 
Following the behavior of this cluster, the petrochemical aliphatic signal decreased rapidly 
in the transition period lagging peak chlorophyll, likely indicating that these species were 
consumed and/or transformed by one or more of the bacterial species which increased in 
concentration over the bloom.36  

Other identified and quantified organics which contributed to the anthropogenic mass 
fraction included compounds attributable to personal care products, as well as phthalates 
and PAH’s, both of which have been previously reported in sea spray aerosol originating 
from polluted ocean water.22  Sunscreen in particular stood out as an important potential 
source; 2-Ethylhexyl salicylate and a mixture of Homosalate isomers, both compounds that 
have been attributed to sunscreen pollution when identified in coastal waters,10,37,38 
accounted for >80% of the Antro2 cluster mass during the first day of analysis, which 
equated to 26% of the total anthropogenic organic mass and 19% of total recovered organic 
mass over the first day. While these compounds disappeared rapidly (Figures 3.1 and 3.3), 
which may have been attributable to volatilization or loss to surface films, their abundance 
at the beginning of the bloom is notable.  While the presence of sunscreen products in water 
collected adjacent to a popular surf beach is not surprising, to our knowledge their 
aerosolized emissions from the coastal ocean have not been previously reported, 
particularly in such significant quantities.  

Contributions of PAH’s to pollution in coastal regions, and in particular to SSML organic 
composition, have been described in a range of environments including Italy, American 
Samoa, Southern California, and even Antarctica,22,39,40,41 and enrichment of PAH’s in sea 
spray aerosol compared to both dissolved and SSML phases has also been previously 
described.22 In this work, 8 PAH’s were isolated and identified in nascent sea spray aerosol, 
all of which were assigned to group Anthro1, meaning they were observed in relatively 
high concentrations at the beginning of the experiment before rapidly declining during the 
transition period between peak chlorophyll-a and peak heterotrophic bacteria in the wave 
channel water. A full list of the PAH compounds observed in sea spray aerosol at 
SeaSCAPE is provided in supporting information Table 3.S4. These compounds 
contributed relatively little to the total anthropogenic carbon pool, making up 1.5% of the 
anthropogenic attributed mass collected over the first full day of analysis.  

In addition to those included in the previously described clustering and quantitative 
analysis, the following important anthropogenic compounds were observed. 
Benzophenone, another commonly reported sunscreen pollutant, was observed in the 
aerosol phase samples, but due to coelution with a contaminant was not able to be 
accurately traced and quantified. Five siloxanes were observed with temporal variability 
that would have placed them in either anthropogenic or mixed clusters, but they were not 
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included in the standard and were too chemically distinct for their quantification factors to 
be predicted by Ch3MS-RF and were therefore excluded from quantitative analysis.  

3.4.2 Evidence for Biological Transformation of Submicron Organic Carbon 
Pool 

Over the course of the SeaSCAPE experimental bloom, the submicron organic 
composition undergoes transformation from mostly anthropogenic to mostly biogenic. As 
described above, prior to the onset of the biological blooms, the contributions of 
anthropogenic organics to total submicron aerosol mass are up 73% of recovered organic 
mass compared to 15% mixed influence and 13% biogenic averaged over the first full day 
of sample collection. By the final day of the experiment however, the recovered carbon 
pool compositional breakdown has completely changed, and is comprised of 73% biogenic 
material, 19% mixed influence material, and only 8 % primary anthropogenic material. 
This transformation is illustrated in Figure 3.3. While the rapid loss of compounds in the 
Anthro2 cluster cannot be directly attributed to biological activity and contributes to the 
significance of differences between compositional indicators at the beginning and end of 
the bloom, the cumulative growth of the biogenic/biologically transformed compounds, in 
both absolute (Figure 3.S7) and relative (Figure 3.3) terms, demonstrates strong temporal 
connections to the progression of the biological bloom.   

The period of most rapid turnover corresponds to the window between August 3rd and 
August 5th, directly between the peaks in chlorophyll-a and heterotrophic bacteria 
concentrations and a predatory dinoflagellate grazing event (P. bipes) on diatoms. 
Although the correlations between the bulk water chlorophyll-a concentration and 
increases in both biogenic organic clusters are weak, as illustrated in Figure 3.2 there are 
stronger associations between the two clusters and the microbial abundances. Cluster 
Biogenic1 contains constituents that are positively correlated with concentrations of 
viruses, heterotrophic bacteria, microzooplankton, and diatom dominated aggregates, 
while cluster Biogenic2 contains constituents that are positively correlated with diatoms 
and diatom-dominated aggregates. Although negative correlations between bulk water cell 
concentrations and biogenic organic constituents in sea spray aerosols could reasonably 
occur for biogenic species released from cellular matrices, which would necessarily rise 
only as cells were destroyed, both assigned anthropogenic clusters and the primary mixed 
cluster, Mixed1, peak before all major microbiological subspecies and are therefore not 
experiencing this phenomenon. The timings and averaging periods of the biological cell/L 
and sea spray aerosol samples are also relevant. Water was collected for biological activity 
analysis in the mornings at approximately 8:00, while the aerosol “day” samples that were 
compared to the water-side measurements were collected continuously from 7:00-21:00. 
As a result, any lagging within a 14-hour time scale would be averaged out and present as 
a positive unlagged Pearson’s correlation. Given the complexities in the evolution of the 
phytoplankton, bacterial, and viral communities, the covariance between the temporal 
variability of different species, and the sensitivities of the aerosol-based measurements to 
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variables including pressure and temperature, positive correlations cannot be used to 
definitively propose causal relationships between individual microbial species and 
individual compounds. That said, the presence of relatively strong average correlation 
coefficients between compounds assigned to the biogenic source groups and negative or 
very weak correlations between the other source groups and species-specific biomass 
concentrations supports the assignments of the two biogenic clusters.   

There is additional molecular-level evidence for biological transformation of the 
submicron carbon pool. One identifiable constituent in cluster Biogenic1, phthalic 
anhydride, has been previously identified as a product of bacterial degradation of 
phthalates, which were observed in the anthropogenic clusters (Table 3.1). Additional 
identity-based analysis of the biogenic fraction is made difficult by the high proportion of 
biogenic compounds that are not identifiable by database match, as discussed below. 
Importantly, more commonly reported biogenic products including fatty acids were 
observed, but as summarized in Table 3.1 they followed temporal variability that more 
closely matched that of compounds with anthropogenic sources and were therefore 
assigned to a mixed influence cluster. The effects of the biological turnover on the 
distribution of mass in chemical properties space is visualized in Figure 3.4. Between the 
beginning of the bloom and the primary transition period between peak chlorophyll and 
peak heterotrophic bacteria (panels A and B), changes in property distribution can be 
observed, as anthropogenic aliphatic compounds with high nc and low 𝑂𝑆௖തതതതത are lost while 
lower carbon number and more oxidized mixed influence and biogenic species appear or 
increase in importance.  There is some evidence of the production of high carbon number 
slightly more oxidized products in the high carbon number biogenic compounds visible in 
panel B, some of which could be indicative of biotransformation products of the aliphatic 
signature, but it is important to note that previous studies have identified that GCxGC 
analysis is less sensitive to oxidized oil biodegradation products than to unoxidized 
precursors.42 Finally, on the last day of analysis (depicted in panel C), both anthropogenic 
and mixed influence compounds are diminished in comparison to two unidentifiable 
compounds in the cluster Biogenic1, discussed in greater detail below.  

3.4.3 Knowledge Bias Against Biologically Transformed and Produced 
Organics 

As previously noted, analysis of the biogenic influence clusters is made more difficult by 
the fact that the biogenic cluster organic mass pool is significantly under characterized 
compared to the anthropogenic and mixed fractions. As illustrated in Figure 3.5, over 50% 
of organic mass attributed to the anthropogenic and mixed influence clusters was 
attributable to compounds that could be identified by database match compared to less than 
15% of the summed biogenic clusters.  Given the transition from anthropogenic-dominated 
to biogenic-dominated organic carbon over the course of the bloom, this led to a consistent 
decrease in the fraction of organic material collected in each sample that could be 
identified, ranging from approximately 60% of the mass in the first sample to 25% in the 
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last (Figure 3.S8). This phenomenon is in part attributable to the presence and abundance 
of two compounds in cluster Biogenic 1 which dominated recovered mass at the end of the 
bloom, neither of which could be identified. The mass spectra of these two compounds, 
along with their n-alkane equivalent Kovats indices in a semistandard nonpolar column 
and predicted nc and  𝑂𝑆௖തതതതത are discussed in 3.SI.8. The spectra of these compounds will be 
made available through UCB-GLOBES (University of California, Berkeley Goldstein 
Library of Biogenic and Environmental Spectra) along with all other compounds traced 
over the SeaSCAPE bloom for use by the community in comparing field samples and 
identifying environmentally important species.   
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3.7 Tables and Figures 
 

 

Figure 3.1. Mean temporal profiles of nascent sea spray aerosol organic material clusters over the 
course of the 2019 SeaSCAPE mesocosm experiment. Panel A illustrates the clusters attributed to 
anthropogenic influences, panel B illustrates clusters attributed to biogenically influenced production 
processes, panel C illustrates clusters attributed to mixed influences, and panel D illustrates 
contextual biological activity markers measured in the wave channel water, specifically chlorophyll-a 
concentrations and heterotrophic bacteria cell concentrations.  The aerosol organic concentration 
time series of each compound is smoothed by 3-point moving average and z-scored, and all 
constituents assigned to an influence group are averaged to yield mean factor profiles.  
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Figure 3.2. Average Pearson correlation coefficients between constituents in aerosol-phase clusters 
and water-side biological activity indicators during the SeaSCAPe mesocosm experiment. 

 

Figure 3.3. Submicron sea spray aerosol carbon pool mass attribution to anthropogenic, mixed, and 
biogenic influence groupings from sea spray aerosol samples collected over the course of the 2019 
SeaSCAPE mesocosm experiment.NA indicates mass attributable to compounds that were too 
infrequently observed for assignment to time series grouping.  
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Figure 3.4. Chemical properties distributions in OSc-nc space and cluster assignments of speciated 
aerosol-phase organics detected on the first day (panel A), the middle of the bloom (panel B, daytime 
on August 4th) and the last day of sample collection (panel C). Marker size indicates mass 
concentration in ng/m3 scaled to the most abundant compound detected in the sample.  
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Figure 3.5. Fraction of nascent SSA organic mass (recovered by GCxGC) attributable to identifiable 
vs unidentifiable organic compounds averaged over the SeaSCAPE mesocosm experiment. 

Table 3.1. Identities, potential sources, and references describing representative identifiable 
constituents of temporal variability clusters used to group submicron nascent sea spray aerosol 
organic compounds catalogued and traced by GCxGC from samples collected at the SeaSCAPE 
mesocosm experiment.  

Cluster Representative 
Compound 

Potential Source(s) References 

Anthropogenic 
1 

7-Methyl-
benzanthracene 

PAH, incomplete 
combustion 

Manodori, 200643 
Wu, 201144 
Cross, 198745 4-Methyl-pyrene⁑ PAH, incomplete 

combustion 
Anthropogenic 
2 

Homosalate Sunscreen Tovar-Sanchez, 
201346; Bargar, 201538 

2-Ethylhexyl 
salicylate 

Sunscreen Mitchelmore, 201937 

Dibutyl phthalate Plasticizer Giam, 197847; 
Cincinelli, 200122 

Anthropogenic 
3 

Diethyl phthalate Plasticizer Polidoro, 201739 
2-Butenedioic acid, 
dibutyl ester 

Previously reported 
in polluted 
waterways, though 
source 
undetermined 

Dsikowitzky, 200448 

Biogenic 1 Dimethyl quinoline Marine biooil 
component* 

Madsen, 201749 

Biogenic 2 Phthalic anhydride Bacterial 
degradation of 
phthalates 

Wright, 202050 

Mixed 1 Benzothiazole Urban effluents Franklin, 202128 
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Palmitic Acid Marine 
microbiology 
(including diatoms) 

Tervahattu 2002, 
Kates 1966 

2,2,4-Trimethyl-1,3-
pentanediol 
diisobutyrate 

Plasticizer, 
commonly used in 
food packaging 

Kempf, 2009 

Mixed 2 Trimethyl quinoline Marine biooil 
component* 

Madsen, 2017 

Mixed 3 butylphthalimide Plasticizer, personal 
care product 
component 

Dionisio, 2018 

* Note that reference refers to products observed in biocrudes rather than direct products, 
and as such observed species could potentially be instrument thermal decomposition 
products of chemically distinct original bioproducts.  

⁑Note that references identify the prevalence and sources of the compound class PAH to 
which this compound belongs rather than identifying this species specifically. This 
compound has been reported in urban air pollution51 but has not been explicitly 
referenced in marine pollution literature to our knowledge.  

3.8 Supporting Information 
3.SI.1: Quantification: Methods, Performance, and Uncertainties 

Compounds directly quantified by authentic external standards using the GCxGC 
methodology described in this work have a quantification uncertainty of approximately 
10%.1–3 Quantification uncertainty for compounds quantified by Ch3MS-RF is 
summarized below.  

Performance Metric All Test Set Compounds Test Set Compounds,  > RI 
1500* 

OSR2 .17 .99 
Mean Average Error .013 .00069 
Root Mean Square Error .043 .00091 
Mean % error 12 % 8.8 % 
Median % error -18 % -18 % 
Absolute % error 
geometric mean 

32 % 28 % 

* Restriction of test set from all compounds to those with retention indices above 1500 
reduces the number of compounds utilized for performance evaluation from 23 to 19 

Table 3.S1. Performance metrics for random forest modelling of quantification factors through 
methodology described in Franklin, 20224 
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Figure 3.S1. Response normalization curve utilized for quantification factor modelling of 
unidentifiable compounds measured  over the course of the 2019 SeaSCAPE mesocosm experiment.  

 

Figure 3.S2. Comparison of true and predicted quantification factors for external standard 
compounds withheld from quantification model training and utilized for model validation.  
Coloration indicates predicted quantification factor % error, which directly propagates to potential 
quantification errors.  
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3.SI.2: Determination of Organic Carbon Recovery 

Segments of each filter sample and 4 field blanks collected during the SeaSCAPE 
mesocosm experiment and utilized for GCxGC analysis were analyzed for the mass 
concentrations of organic carbon and elemental carbon per unit filter area by the 
NIOSH87 protocol (described in Wu, 20165). As anticipated given the source, elemental 
carbon concentrations were below detection limits in all cases.  Organic carbon in the 
samples was determined by subtracting the geometric mean of organic carbon quantified 
from the field blanks. As quantification of individual species by GCxGC-MS modeling 
produces units of total organic mass rather than organic carbon, a correction from organic 
carbon to organic mass is required to determine what fraction of total collected organic 
carbon was observable by GCxGC.  The organic mass to organic carbon ratio was 
approximated by calculating the average organic mass to organic carbon ratios of all 
identifiable constituents within the SeaSCAPE sample, a set of 105 compounds.  The 
average organic mass to organic carbon ratio identified was 1.3, which is consistent with 
ranges reported in Russell et al., 2003.6 While there is some variability in the implied 
mass coverage, which may in part be due to changes in the organic mass to organic 
carbon ratio over the bloom, average mass coverage was identified to be 40 ± 15%,  with 
40% indicating the average and 15% indicating the standard deviation of mass coverage 
percentages calculated for each filter sample. This is consistent with findings reported in 
Zhang, 2018, which concluded that 39% of total submicron organic material collected in 
a terrestrial environment was recovered and quantified by GCxGC methodology highly 
similar to that described in this work.3 

Organic carbon quantification from analysis of the GCxGC was validated through 
comparison to organic carbon quantification from filters collected for carbon isotope 
analysis.  These samples were analyzed through combustion and CO2 production 
analysis, as described in Crocker et al., 2022.  Organic carbon quantification from the 
filter samples collected for GCxGC analysis are relatively consistent with organic carbon 
quantification from the carbon isotope filters, although they are on average approximately 
35% higher, as illustrated in Figure S3.  There are two potential explanations; first, the 
samples were collected from sampling ports at two different locations.  The GCxGC 
filters were collected closer to the breaking wave, which may have led to a higher 
concentration of submicron sea spray aerosol in this region.  Second, the carbon isotope 
filters were pumped down to vacuum prior to analysis, which may have led to loss of 
semivolatile organics. 
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Figure 3.S3. Organic carbon concentration of sea spray aerosol collected during the SeaSCAPE 
mesocosm experiment bloom 3 as quantified by NIOSH-870 analysis of filters utilized for GCxGC 
analysis and combustion analysis of a separate filter sample set collected for analysis of carbon 
isotopes (as described in Crocker et al., 2022).  

3.SI.3 Classification of Organic Compounds by Dynamic Time Warping Hierarchical 
Clustering 

The normalized time series of each compound was smoothed by 3 point moving average. 
This step was necessary to emphasize lasting trends over diurnal variability in clustering, 
in service of the research question investigating the lasting dynamics governing 
transformations of the sea spray aerosol carbon pool. Next, each compound’s smoothed 
time series was Z-scored, meaning each time point was subtracted by its own mean 
concentration over the campaign and divided by the standard deviation of smoothed time 
points. The top 100 compounds (by cumulative mass concentration over the entire 
bloom) were then separated from the rest and grouped by hierarchical clustering. 
Clustering was confined to these top abundance compounds for two reasons: first, to 
prioritize capturing the temporal dynamics of the compounds that dominate the 
submicron sea spray aerosol organic carbon, and second, because the other compounds 
are present at levels increasingly close to instrument detection limits, meaning their 
temporal variabilities are less precise due to decreasing signal to noise ratios. 100 was 
selected as the ideal split point, because the top 100 compounds accounted for ~90% of 
the mass and therefore achieved a balance of representing the majority of the mass 
distribution while avoiding potential biases due to signal to noise ratio issues with the 
least abundant compounds. Clustering was optimized at 7 clusters, as indicated by local 
minimization of the Modified Davies Bouldin Index (Figure S4).7 Below 4 clusters, all 
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compounds exhibiting rising and falling temporal variability were grouped together 
regardless of peak timing, and as coordination between concentration increases and 
specific events was an area of specific interest analysis for optimal clustering was 
restricted to 5 or more clusters. The Z-scored temporal profiles of the constituents in each 
factor are visualized in Figure S5. Next, compounds detected with sufficient frequency to 
enable timeline construction (defined as compounds identified above detection limits in 
greater than 20% of samples) were assigned to the cluster with which they correlated 
most positively through construction of a Pearson correlation matrix between each of 
these compounds (time series smoothed and Z-scored identically to the cluster profiles) 
and the mean profile of each cluster. This process accounted for an additional 482 
compounds.  The remaining compounds were quantified and included in analysis but not 
assigned to clusters. Their presence is visualized by the “NA” designation in Figure 3 and 
Figure S7 and does not contribute significantly to total organic mass. Source group 
assignment is discussed in “Results and Discussion”. The mean smoothed profiles of the 
7 clusters in comparison to indicators of biological activity are illustrated in Figure 1.  

 

Figure 3.S4. Silhouette indices of hierarchical clustering of 100 most abundant compounds from 
SeaSCAPE experimental bloom by number of clusters selected. 
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Figure S5. Z-scored time series of sea spray aerosol organic cluster constituents from nascent sea 
spray aerosol samples collected during the SeaSCAPE mesocosm experiment. Clusters were 
generated by dynamic time warping hierarchical clustering under optimized 7 group solution.  
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3.SI.4: Temporal Variability of Species-Specific Biological Concentrations at 
SeaSCAPE, Additional Figures 

 

Figure 3.S6. Concentration in bulk water (normalized to time series maximum) of microbiology and 
biological activity indicators over the SeaSCAPE mesocosm experiment.  

3.SI.5 Phytoplankton Enumeration 

50mL’s of bulk seawater were collected and poured into settlement chambers and settled 
for 24 hours prior to phytoplankton enumeration using the Utermöhl method under an 
Olympus IX-71 inverted microscope (Utermöhl, 1931).  Cells/L for each phytoplankton 
species (genus level) were calculated and then binned into functional phytoplankton types 
(PFTs).  Microzooplankton were also counted, and include tintinnids and other cilates to 
better identify grazing activities across the experiment .   
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Figure 3.S7. Temporal variability of submicron sea spray aerosol organic mass concentration 
recovered by GCxGC from samples collected at the SeaSCAPE mesocosm campaign, separated by 
the temporal variability cluster to which each compound is assigned.  

3.SI.6 Chemical Properties Modelling 

Two classes of chemical information were predicted for the unidentifiable compounds at 
SeaSCAPE: average carbon oxidation state (𝑂𝑆௖തതതതത) and carbon number (nc). All predictions 
were performed using Ch3MS-RF, which is described in Franklin et al., 2022. The 
external standard was randomly split (maintaining ratios of chemical functional group 
classes) into a training set consisting of 102 compounds and a test set of 24 compounds.  
An extrapolation set was curated from the 105 organic compounds detected in the 
SeaSCAPE aerosol samples that were identifiable by database match. Both mass 
spectrum and retention or kovats index matches were required for a compound to be 
included in the validation set. The chemical formulae of all of these compounds (both 
external standard and extrapolation set) are known and were parsed to create features of 
nc and 𝑂𝑆௖തതതതത, as described in Franklin et al., 2022. The random forest-based model was 
trained on the retention indices and featurized mass spectra (mass spectral featurization 
described in Franklin et al., 2022) of the external standard training set and tested on both 
the external standard test set and the extrapolation set of identifiable constituents in the 
SeaSCAPE aerosol samples.  Performance for nc prediction is summarized in Table S2 
and Figure S8 panels A and B, while performance for 𝑂𝑆௖തതതതത prediction is summarized in 
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Table S3 and Figure S8 panels C and D.  Prediction performance is strong and 
comparable to results described in Franklin et al., 2022, from which we conclude that 
property prediction accuracy is sufficient for useful visualization of all compound 
properties.  Sample compounds with known identities were assigned their true nc and 𝑂𝑆௖തതതതത 
values, while all other compounds were assigned their predicted properties as generated 
by the described models. The results of this property prediction in orienting sea spray 
aerosol compounds in 𝑂𝑆௖തതതതത-nc space are visualized in Figure 4.  

 

Figure 3.S8. Predicted versus true chemical properties for Ch3MS-RF-enabled chemical property 
prediction of the following: A) Carbon number, as tested on the external standard test set; B) Carbon 
number, as tested on the extrapolation set of identifiable organic constituents at SeaSCAPE; C) 
Average carbon oxidation state, as tested on the external standard test set; D) Average carbon 
oxidation state, as tested on the extrapolation set of identifiable organic constituents at SeaSCAPE 
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Data Set Performance Metric Performance 
External Standard Test Set OSR2 .96 

RMSE 1.4 
MAE 1.1 
R2 .96 

SeaSCAPE Identifiable 
Organics Extrapolation Set 

OSR2 .80 
RMSE 2.3 
MAE 1.6 
R2 .84 

Table 3.S2. Performance metrics for carbon number prediction using Ch3MS-RF, described in 
Franklin et al., 20224. OSR2 refers to the out-of-sample r2, MAE refers to the mean average error, 
RMSE refers to the root mean square error. All performance metric equations are defined in 
Franklin et al., 2022.  

Data Set Performance Metric Performance 
External Standard Test Set OSR2 .93 

RMSE .18 
MAE .11 
R2 .93 

SeaSCAPE Identifiable 
Organics Extrapolation Set 

OSR2 .69 
RMSE .34 
MAE .25 
R2 .72 

Table 3.S3. Performance metrics for average carbon oxidation state prediction using Ch3MS-RF, 
described in Franklin et al., 20224. OSR2 refers to the out-of-sample r2, MAE refers to the mean 
average error, RMSE refers to the root mean square error. All performance metric equations are 
defined in Franklin et al., 2022.  

3.SI.7 Sea Spray Aerosol PAH observations, supplemental table 

Compound Average Concentration over 1st day of analysis 
(ng/m3) 

Chrysene 2.0 
Benz[a]anthracene, 7-methyl- .52 
Pyrene, 4-methyl- .50 
Phenanthrene, 2,3,5-trimethyl- .49 
Phenanthrene, 1,7-dimethyl- .35 
Anthracene, 1,4-dimethyl .19 
Phenanthrene, 2,3-dimethyl- .17 
Pyrene .03 

Table 3.S4. Speciation of polycyclic aromatic hydrocarbons (PAH’s) identified in nascent sea spray 
aerosol during the SeaSCAPE mesocosm experiment, along with their mass concentrations in 
sampled air averaged over the first full day of analysis.  
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3.SI.8 Unidentifiable organic compounds, supplemental figures 

 

Figure 3.S8. Fraction of total submicron sea spray aerosol organic mass attributable to identifiable 
compounds over time throughout the SeaSCAPE bloom. 

 

Figure 3.S9. 70 eV EI mass spectrum of unidentifiable biogenic organic compound A, observed in 
SeaSCAPE experimental bloom. This compound was observed at an equivalent kovats index (n-
alkane equivalent) of 1417 using a semistandard nonpolar column. Predicted properties: nc = 11, 𝑶𝑺𝒄തതതതത 
= -1.2 
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Figure 3.S10. 70 eV EI mass spectrum of unidentifiable biogenic organic compound B, observed in 
SeaSCAPE experimental bloom. This compound was observed at an equivalent kovats index (n-
alkane equivalent) of 1503 using a semistandard nonpolar column. Predicted properties: nc = 11, 𝑶𝑺𝒄തതതതത 
= -.93 
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4 Atmospheric Benzothiazoles in a Coastal Marine 
Environment 

 
This work is adapted from: 
 Emily B. Franklin, Michael R. Alves, Alexia N. Moore, Delaney B. Kilgour, Gordon A. 
Novak, Kathryn Mayer, Jon Sauer, Robert J. Weber, Duyen Dang, Margaux Winter, 
Christopher Lee, Christopher D. Cappa, Timothy H. Bertram, Kimberly A. Prather, Vicki 
H. Grassian, Allen H. Goldstein, “Atmospheric Benzothiazoles in a Coastal Marine 
Environment” Environmental Science &Technology (2021) 
 

4.1 Abstract 

Organic emissions from coastal waters play an important but poorly understood role in 
atmospheric chemistry in coastal regions. A mesocosm experiment focusing on facilitated 
biological blooms in coastal seawater, SeaSCAPE (Sea Spray Chemistry and Particle 
Evolution), was performed to study emission of volatile gases, primary sea spray aerosol, 
and formation of secondary marine aerosol as a function of ocean biological and chemical 
processes.  Here we report observations of aerosol-phase benzothiazoles in a marine 
atmospheric context with complementary measurements of dissolved-phase 
benzothiazoles. Though previously reported dissolved in polluted coastal waters, we report 
the first direct evidence of the transfer of these molecules from seawater into the 
atmosphere. We also report the first gas-phase observations of benzothiazole in the 
environment absent a direct industrial, urban, or rubber-based source. From the identities 
and temporal dynamics of the dissolved and aerosol species, we conclude that the presence 
of benzothiazoles in the coastal water (and thereby their emissions into the atmosphere) is 
primarily attributable to anthropogenic sources. Oxidation experiments to explore the 
atmospheric fate of gas-phase benzothiazole show that it produces secondary aerosol and 
gas-phase SO2, making it a potential contributor to secondary marine aerosol formation in 
coastal regions and participant in atmospheric sulfur chemistry. 

4.2 Introduction 
Coastal oceans are often enriched with organic species from both biogenic and 

anthropogenic sources.  Biogenic sources include phytoplankton, which convert CO2 to 
ocean biomass that is then transformed by the microbial loop.1,2  Direct anthropogenic 
sources of marine organics in seawater include wastewater discharge and urban runoff 
(often enriched with personal care products), trash, and shipping pollution.3,4,5  
Phytoplankton blooms occur naturally, but also can be induced by anthropogenic discharges 
of fertilizer enriched runoff, and can be enhanced by climate change induced perturbations to ocean 
temperatures and chemistry.6,7,8,9  Ocean-derived organic species can be transferred from the 
ocean to the atmosphere through two major mechanisms, both of which can influence 
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atmospheric chemistry over the ocean.  The first of these produces sea spray aerosol (SSA) 
from bubble bursting and wind shear at the surface.10 The second method involves the 
emission of volatile organic compounds (VOC)s from the ocean surface, either through 
volatilization or interfacial reactions producing volatile products.11,12,13 

The composition and properties of organic material emitted from the ocean are important 
areas of atmospheric research, as they influence marine atmospheric chemistry and public 
health. Salt and organics have different cloud and ice nucleation properties, meaning that 
organic enrichment of SSA is important for climate.14,15,16,17  Marine VOCs oxidize in the 
atmosphere, where they can form secondary marine aerosols (SMA).18  Recent laboratory 
and field studies have suggested that SMA may play a significant role in cloud formation 
over the ocean,19,20 making the emission and oxidation processes of marine volatile 
organics a critical area of atmospheric chemistry research. Organic enriched marine 
aerosols are also a growing area of concern in public health, as they can expose coastal 
communities to marine toxins and pollutants, including biogenic toxins from harmful algal 
blooms, pesticides, and phthalates.21,22,23 

Production of plasticizers, pharmaceuticals, pesticides, and more, over the course of the 
last century, has led to a portion of dissolved organic matter (DOM) in marine ecosystems 
being classified as anthropogenic dissolved organic carbon (ADOC).24 The 100,000+ 
commercialized synthetic compounds produced by humans have been continually 
increasing in both number and concentration in many environments.25,26 These human-
produced compounds tend to be hydrophobic, and for the most part, have completely 
unknown breakdown by-products, toxicities, and fates in the environment.27,28  Though 
there is no study to our knowledge that has reported total anthropogenic DOM 
concentrations in coastal waters near populated areas, it is expected that this number will 
be greater than the < 1 uM, or 0.05 to 1% of total DOM, reported for water collected from 
the open ocean due to the more concentrated coastal inputs and sources.24,29 The 
hydrophobic fraction of these species will be highly concentrated at the surface of the 
ocean, joining biogenically formed molecules in a 1 to 100 µm thick region known as the 
sea surface microlayer (SSML).30 Many studies have shown that the ocean surface is a 
source of organic material for both SSA and SMA, significantly contributing to the overall 
chemistry and properties of these aerosols.31,32,15,33,13,34 

Benzothiazoles are a class of anthropogenic pollutants that have been previously reported 
in a variety of freshwater and coastal aquatic environments, including the southern 
California coast,35,36,37,38,39,40 but they are also produced biogenically from select marine 
microbiological species.41,42 Benzothiazole (hereafter BT) (C7H5NS) is an aromatic 
heterocyclic organic compound containing both sulfur and nitrogen. Benzothiazoles are 
here defined as compounds containing a benzothiazole moiety. Benzothiazoles are high 
production volume chemicals used in a wide range of industrial and consumer products, 
with significant sources including rubber production, leather and paper production, 
antifreeze, herbicides, textiles, and plastics.35 They are found in both urban runoff and 
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wastewater, with urban runoff frequently the more concentrated of the two source groups.43 
A review of the ranges of measured concentrations of dissolved BT and 2-
(Methylthio)benzothiazole in stormwater runoff and wastewater effluent at sites along the 
southern California coast (ranging from 0.05 to 0.5 µg/L for BT and 0.04 to 0.3 µg/L for 
2-(Methylthio)benzothiazole) can be found in Zeng et al., 2004.40  Benzothiazoles have 
been observed in the dissolved-phase in a variety of coastal marine settings and used as 
tracers of wastewater discharge.38,40,37,36 This compound class is a growing area of concern 
in both marine ecosystem and public health; benzothiazole derivatives from rubber 
leachates are toxins hazardous to marine microbiology, and various benzothiazoles are 
human dermal sensitizers, endocrine disruptors, carcinogens, and genotoxins.35,44,45,46  

In this study, we investigate the transfer of benzothiazoles from coastal water into the 
atmosphere through a controlled mesocosm study.  While dissolved benzothiazoles have 
been reported in the water in a variety of coastal regions, we report observations of 
benzothiazoles in sea spray aerosols and emitted VOCs, showing for the first time that 
polluted coastal oceans likely emit these chemicals to the atmosphere.  Furthermore, we 
explore the atmospheric oxidation and aerosol formation potential of gas-phase BT, which 
has implications for air quality in both polluted coastal regions and urban or industrial 
centers in which benzothiazoles are most concentrated (Figure 4.S1).   

4.3 Materials and Methods 
Experimental Campaign, Sample Collection, and Online Analysis 
The results from this study derive primarily from Sea Spray Chemistry And Particle 

Evolution (SeaSCAPE) 2019, a collaborative mesocosm experiment described in Sauer, 
Mayer, and Lee et al., 2021.47 Coastal water (12,000 L) from Ellen Browning Scripps 
Memorial Pier (hereafter Scripps Pier) in La Jolla, California was transported into an 
indoor wave chamber facility (hereafter referred to as the wave channel), in which 
mechanically generated waves break on an artificial beach to create realistic primary sea 
spray aerosols.  The natural coastal water was amended with nutrients to initiate an algal 
bloom of the naturally existing phytoplankton species, including three bloom experiments, 
replicating methodology described in Wang et al., 2015.48 Water from the wave channel 
was diverted through an inert glass and Teflon chamber forming an isolated sampling 
vessel (ISV), allowing analysis of gas-phase marine emissions.  This analysis focuses on 
the third algal bloom experiment, which lasted 20 days from July 24th to August 12th, 
2019 and is described in detail in Sauer, Mayer, and Lee et al., 2021.47  

Periodically over the course of the bloom, water from the SeaSCAPE channel was 
collected for offline analysis of headspace gasses (described below) and of extracted DOM 
chemical composition (also described below). One water sample directly from Scripps Pier 
was collected on July 23rd for DOM extraction and analysis of dissolved analytes under 
ambient conditions. Submicron aerosol samples from the channel were collected on quartz 
fiber filters (Pallflex Tissuequartz) using a custom designed automated sequential sampler. 
Additional sample collection and storage details can be found in Supporting Information 
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section 3 (4.SI.3). ISV VOCs were collected on custom triple bed sorbent tubes (Camsco).  
2 L samples were collected every 2-3 days during the early stages of the bloom and 1-2 
times per day during peak biological activity. Sorbent tube material and sampling details 
can be found in 4.SI.1 and 4.SI.4.  VOCs both within the ISV and in the channel were 
additionally measured by Vocus proton-transfer-reaction time-of-flight mass spectrometer 
(Vocus PTR-TOF by Aerodyne/Tofwerk).47  Following the conclusion of SeaSCAPE, the 
Vocus was relocated to the end of the Scripps Pier for ambient coastal VOC sampling. A 
full description of Scripps Pier VOC sampling can be found in 4.SI.5.   

Collection and extraction of marine DOM was performed using solid-phase extraction 
(SPE) by PPL resin (Bond Elut, Agilent), following methods previously characterized in 
Dittmar et al., 2008 and described in detail in 4.SI.6.49  

Offline Analysis 
A high resolution Orbitrap spectrometer equipped with a modified Atmospheric Pressure 

Chemical Ionization source (APCI-Orbitrap, ThermoFisher) was used to detect VOCs in 
the headspace of collected water during the SeaSCAPE campaign in a method adapted 
from Roveretto and coworkers in 2019.50  Operational details can be found in 4.SI.7.  

Aerosol filters, DOM, and VOC sorbent tubes were all analyzed by thermal desorption 
two-dimensional gas chromatography coupled with electron ionization time of flight mass 
spectrometry (TD-GCxGC-ToF-MS) on two separate instruments covering differing 
volatility ranges. DOM and aerosol samples were analyzed on GCxGC A, while VOC 
sorbent tubes were analyzed on GCxGC B (details in 4.SI.2).  DOM and aerosol samples 
were normalized by internal standard and derivatized to enhance recovery of polar 
organics.  TD-GCxGC methodology is described in detail in Worton et al. 2017, and details 
specific to this analysis can be found in 4.SI.9.51  

From SeaSCAPE samples, 754 unique aerosol organics and 991 unique DOM organics 
were compiled into libraries of mass spectra and retention indices (internal standard 
normalized position in the volatility dimension) were catalogued.   Of these unique organic 
species, 12 SSA organics and 6 DOM organics were identified as benzothiazoles based on 
matches and similarities to authentic standards and species catalogues in the NIST-14 mass 
spectral database according to 4 classes of identification certainty (see Table 3.1). Each 
observed benzothiazole was assigned to a benzothiazole external standard chemical proxy 
for quantification based on exact match or chemical similarity and proximity in GCxGC 
space.  Proxy assignments and additional details can be found in 4.SI.11. 

Benzothiazole Oxidation Study 
To complement the mesocosm study and better understand the atmospheric fate of gas-

phase BT, we used a Potential Aerosol Mass Oxidation Flow Reactor (PAM-OFR) in a 
separate laboratory oxidation study to produce BT oxidation products. PAM-OFR 
operation and calibration details can be found in 4.SI.16. BT was introduced into the PAM-
OFR through two methods; in the first, liquid BT dissolved in a methanol carrier was 
introduced in a plug injection experiment at a constant exposure setting. In the second, a 
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BT permeation tube continuously introduced gas-phase BT at different OH concentrations 
(2.9, 3.5, and 4.9 days equivalent ageing).  Particle formation and size distributions, SO2 

production, and HSO4
- production from the BT oxidation experiments were all monitored 

(4.SI.16).   
Reported herein we show that BT and benzothiazole-moiety compounds are not just 

present in sea spray aerosols but also show an ability to form secondary aerosols using an 
oxidative flow reactor to simulate photochemical aging. 

4.4 Results and Discussion 
Gas-Phase Benzothiazole Observations 
In the early stages of the SeaSCAPE experiment, a significant and unexpected peak was 

observed to correspond to C7H5NSH+ (BT) by APCI-Orbitrap headspace VOC analysis. 
Gas-phase BT and its isomeric identity was confirmed using the Orbitrap’s tandem mass 
spectrometry capabilities and the clear observation of the benzene and cyclic ring 
(containing the nitrogen and sulfur) fragments. This peak’s identity was later confirmed 
and quantified by offline TD-GCxGC-ToF-MS analysis of sorbent tube samples collected 
from the SeaSCAPE ISV (14 eV and 70 eV EI spectra illustrated in SI Figure 4.S2). Time 
resolved measurements of the ion corresponding to gas-phase benzothiazole were obtained 
by the Vocus throughout SeaSCAPE. A quantitative comparison of GCxGC and Vocus 
benzothiazole and summed monoterpene ISV measurements is in SI (Figure 4.S4); while 
absolute quantities measured by each instrument differ, variability over the SeaSCAPE 
bloom and relative abundances of significant observed gases agree, with R2 of 0.91 and 
0.98 for benzothiazole and summed monoterpenes respectively. 

Gas-phase benzothiazole has been reported in atmospheric measurements in the contexts 
of freshly shredded rubber,35 urban traffic, and coal burning in a region with plastic 
production,52 but emissions of gas-phase benzothiazole from coastal waters are, to our 
knowledge, a novel finding. As benzothiazole is a common anthropogenic contaminant 
that could potentially be added if the water were mishandled, we confirmed the presence 
of benzothiazoles in the collected coastal water absent perturbations from transport into the 
SeaSCAPE wave channel. Benzothiazole was consistently found in all monitored phases 
(dissolved, aerosol, and gas) (Table 4.1; Figure 4.1), and dissolved-phase concentrations 
did not increase between the first sample (collected directly at Scripps Pier) and the next 
DOM sample, collected from the channel two days following transport.  Additionally, the 
ion corresponding to gas-phase BT was observed by the Vocus PTR-MS at the end of 
Scripps Pier directly following the SeaSCAPE experimental campaign, confirming that 
gas-phase BT is present in the local coastal marine atmosphere. End-of-pier BT 
concentrations averaged 2.5 ppt (compared to a detection limit of 0.5 ppt for a 10 s 
averaging time, averaged over the entire ~1 month measurement period), and SeaSCAPE 
ISV concentrations (as quantified by GCxGC) averaged 53 ppt. Given the elevated water 
temperature, enclosed conditions, and low gas-phase flow rate of the SeaSCAPE ISV 
(described in Sauer, Mayer, and Lee et al., 2021), absolute gas-phase ISV concentrations 
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exceeding ambient concentrations at the end of the pier is indicative of emissions to the 
gas-phase.47  

Previously reported Henry’s law constants for BT (KH’, estimated from vapor pressure 
and solubility in Reddy et al 1997, predicted from structure through various methods as 
reported in Sander 2015, and predicted from structure based on HENRYWIN v. 3.10, EPA 
EPI Suite) range from 1.5×10-5 to 2.6×10-4 (dimensionless gas over liquid, converted 
assuming 25 °C).53,54 Under the aqueous concentration (0.29 µg/L at day 1 sampling time, 
as shown in Table 1) and temperature conditions observed at SeaSCAPE, this would imply 
a maximum equilibrium gas concentration of BT between 0.7 and 12 ppt, a factor of 75-
4.4 below the average concentrations observed in the ISV (53 ppt). A simplified 
partitioning experiment using benzothiazole and reference species dissolved in simplified 
simulated sea water in concentrations mirroring those identified in the SeaSCAPE DOM 
(described in SI.10) did not detect benzothiazole above a detection limit of 10 ppt, 
supporting the conclusion that observed gas-phase concentrations of benzothiazole in the 
SeaSCAPE ISV cannot be adequately explained by ideal air water partitioning governed 
by Henry’s law. This implies that some ocean-atmosphere transfer mechanism other than 
idealized aqueous partitioning plays an important role in gas-phase BT emissions.  It should 
also be noted that the lowest reported Henry’s law constant of BT, that reported by 
HENRYWIN v. 3.10, EPA EPI Suite, is the most commonly referenced value across 
popular chemical information repositories (such as PubChem and ChemSpider) and has 
been used to assume negligible volatilization of benzothiazole from organic rich aquatic 
systems (wastewater), rendering this finding of elevated benzothiazole emissions from real 
organic-rich aquatic systems particularly important.55 

Aerosol and DOM Benzothiazole Observations and Comparisons 
In addition to BT, a suite of larger compounds containing a benzothiazole moiety were 

observed in both the aerosol and dissolved phases (Table 1).  BT accounts for 50% of the 
total mean benzothiazole carbon pool in the aerosol phase and is the second most 
significant contributor to dissolved benzothiazoles at 43% of the mean DOM benzothiazole 
carbon pool.  DOM BT concentrations measured directly at the pier (0.29 ± 0.15 ug/L), 
reported in Table 1, fall within reported ranges of observed BT in freshwater aquatic 
environments along the southern California coast, which range from 0.05 to 0.5 µg/L.40  2-
(Methylthio)benzothiazole, a commonly reported tracer species for benzothiazoles 
originating from waste water or runoff,40,43 is the most abundant benzothiazole species 
observed in the dissolved phase at 47% of mean DOM benzothiazole carbon pool. Butyl-
benzothiazole, a species not previously reported in environmental measurements and 
present at near detection limit levels in the dissolved phase, contributes the second highest 
fraction of the aerosol benzothiazole carbon pool (37%), while 2-
(Methylthio)benzothiazole contributes the third highest fraction at 6%.   

The time series of gas and aerosol-phase benzothiazoles provide valuable insights into 
likely sources and transfer processes governing marine benzothiazole emissions (Figure 
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4.1). Prior to August 5th, a key biological transition period between peak chlorophyll and 
peak heterotrophic bacteria during which many key biogenic gases peak (as illustrated in 
SI Figure 4.S3), gas and aerosol-phase BT are highly correlated (R2 = 0.78). In both phases, 
BT begins relatively low before increasing (by a factor of 5 in the gas phase and a factor 
of 3 in the aerosol phase) to a peak in the afternoon through night of July 30th, after which 
it declines, back to initial concentrations for the aerosol phase and to approximately double 
initial concentrations in the gas phase. There is no clear temperature, biological, or 
perturbation-based explanation for the July 30th peak, but in the gas phase it is observed 
for BT across all instruments and sampling strategies (GCxGC, Vocus PTR-ToF, and 
APCI-Orbitrap) and is common to an array of anthropogenic gases, as illustrated in SI 
Figure 4.S3. After August 5th however, the BT traces of the two phases are loosely 
anticorrelated with an R2 of 0.11.  As previously noted, the composition and thickness of 
the sea surface microlayer has been observed, modeled, and demonstrated to play an 
important role in the transfer of marine gases.11,34 Changes in SSML composition and 
characteristics during the second half of the bloom, described in Crocker et al., 2021, could 
therefore at least partially explain the lack of correlation in this period.56  

Although there are some similarities between the temporal variability of benzothiazoles 
and biological indicators (specifically chlorophyll-a concentrations in the bulk water), the 
time series of both gas and aerosol-phase benzothiazoles are much more similar to 
anthropogenic species than to any known biogenic products.  In the aerosol phase, the total 
benzothiazole carbon pool time series is strongly correlated across the entire bloom (R2 = 
0.85, see SI Figure 4.S8) with that of tetradecamethyl-cycloheptasiloxane (more commonly 
known as D7), an anthropogenic species attributable to personal care products,57 
wastewater,58 and sewage, and also observed to bioaccumulate in marine ecosystems.59  In 
the gas phase, BT also displays similar temporal dynamics to anthropogenic species (SI 
Figure 4.S3), specifically benzophenone (a common sunscreen and personal care product 
component)60 and naphthalene (a polycyclic aromatic hydrocarbon (PAH), previously 
identified as a coastal marine contaminant off the Southern California coast and likely 
originating from some combination of petroleum and combustion sources).61  While the 
correlations between BT and benzophenone and naphthalene are not strong (R2 = 0.25 and 
0.35 respectively), they are far stronger than the correlations with any of the known 
biogenic gases; the R2 of the correlations between BT and isoprene, DMS, and beta-
cyclocitral are all below 0.005. While there may be some degree of biogenic contribution 
to observed atmospheric benzothiazoles, there is no compelling evidence for such a source 
in the temporal variability. A full discussion of potential sources and justification for a 
conclusion of a dominant anthropogenic origin based on additional chemical indicators can 
be found in the following section. 

One observed aerosol-phase species deserving particular attention is butyl-
benzothiazole.  Although butyl-benzothiazole sulphenamides are broadly characterized 
rubber vulcanization agents62 and butyl-benzothiazole has been synthesized in laboratory 
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environments, it has never to our knowledge been reported in the environment. During the 
bloom, butyl-benzothiazole decreases both in terms of absolute mass concentration and as 
a fraction of the total benzothiazole carbon pool and drives the majority of the decrease in 
the total aerosol-phase benzothiazole carbon pool.  To our knowledge there are no studies 
investigating the biodegradation of butyl-benzothiazole in marine settings, but this finding 
in conjunction with the significant observed aerosol levels indicates that butyl-
benzothiazole biodegradation may be an important environmental process. No identified 
benzothiazoles are observed to increase significantly as the aerosol benzothiazole carbon 
pool shrinks (see SI Figure 4.S7).  There are several probable contributions to this 
phenomenon. The biodegradation of butyl-benzothiazole has not been studied in marine 
contexts and its products may not have published mass spectra allowing them to be 
confirmed as benzothiazole biodegradation products.  Additionally, benzothiazole 
degradation products with published mass spectra may fall outside the TD-GCxGC’s 
sensitivity range, as biological degradation often produces  highly oxygenated species not 
amenable to GC analysis, as described in Nowak et al., 2018.63  Benzothiazoles may also 
bioaccumulate in the biological species within the channel, partition into suspended 
organic matter or onto the organic film on the wave channel surfaces, or decrease as a 
relative fraction of submicron organics emitted from bubble bursting processes due to 
changes in the structure and composition of the SSML.    

While the most abundant benzothiazole species are common to both dissolved and 
aerosol phases, unique isomers are observed in each and the relative distribution of 
common species differ (Figure 4.2), leading to a significant discrepancy between the 
solubility distributions of the benzothiazole carbon pools in the bulk and aerosol phases; 
bulk-phase benzothiazoles are more water-soluble, and less diverse in low solubility 
species, compared to aerosol-phase benzothiazoles (Figure 4.3). Of the 5 species observed 
in both phases, the low solubility (<15 mg/L) species are significantly enhanced as a 
fraction of the total benzothiazole carbon pool in SSA (Figure 4.S10). Solubilities in water 
are estimated from log Kow (WSKOW v. 1.41, EPA EPI Suite) with all alkyl benzothiazoles 
parameterized as equal in solubility to butyl-benzothiazole. The solubility distribution 
discrepancy is likely due to the concentration of low-solubility organics in the SSML64 and 
previously reported film-jet sea spray aerosol formation dynamics, which cause SSML 
organics to preferentially aerosolize into smaller aerosol particles from film drops.65,66,67 
The different benzothiazoles’ implications for climate and public health relevant properties 
of sea spray aerosol lie beyond the scope of this publication. However, the differing 
chemical distributions between dissolved and aerosol phases, in particular the abundance 
of low solubility benzothiazoles not observed in the bulk water, highlight that 
measurements of bulk-phase organics in ocean waters are imperfect indicators of which 
organic species enrich the submicron aerosol particles. This size population has the longest 
atmospheric lifetime, dominates the marine aerosol surface area distribution, and has the 
potential to be transported farthest inland.  This finding therefore has implications for 
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marine pollutant human exposure in coastal regions; marine pollutant monitoring focuses 
nearly exclusively on the bulk water, but as this study demonstrates, bulk water and 
aerosol-phase organic distributions and concentrations differ significantly, meaning that 
bulk water toxin measurements may not accurately reflect the sea spray aerosol 
concentrations of hazardous marine pollutants including carcinogens and respiratory 
irritants not reported in this work. 

Evidence for Anthropogenic Origin 
While benzothiazoles are high-volume industrial chemicals and are commonly studied 

as wastewater contaminants in coastal areas, there are also marine biogenic sources of 
benzothiazoles.41,42  Coupled with the early bloom increase in gas and aerosol-phase 
benzothiazole levels that cannot be explained by (do not correlate with) either the rising 
temperatures or indicators of biological activity (including chlorophyll-a concentrations, 
heterotrophic bacteria concentrations, and peaks in typical biogenic gases such as DMS 
and isoprene) (Figure 4.1), this necessitates a more nuanced investigation of the most 
probable origins of the benzothiazoles observed at the SeaSCAPE campaign and in ambient 
air at Scripps Pier.  Prominent among benzothiazoles in both dissolved and aerosol phases 
and observed in particularly high abundance in the dissolved phase was 2-
(Methylthio)benzothiazole, a known and commonly reported tracer of anthropogenic 
benzothiazoles originating from runoff or wastewater.40,68,35  Compared to other 
anthropogenic benzothiazole tracers, 2-(Methylthio)benzothiazole is relatively resistant to 
both photochemical and biological degradation, and is itself a biodegradation product of 
another commonly reported anthropogenic benzothiazole, 2-Mercaptobenzothiazole.69 
While multiple naturally occurring benzothiazoles have been characterized and reported, 
notably including several originating from the marine bacterium species Micrococcus sp.41, 
to our knowledge none (with the exception of BT) overlap with those observed in this 
study. Furthermore, the majority of reported biogenic benzothiazoles contain hydroxy 
groups, a functional group that is notably absent from all benzothiazole species observed 
in the dissolved and aerosol phases.41,70 On the water collection day for SeaSCAPE bloom 
3 (July 23 2019), the coastal current near San Diego ran from north to south at ~0.3 m/s 
(SCCOOS HR radar online mapping, documented in Harlan et al. 2010)71, which would 
have transported the wastewater from the nearest up-current wastewater discharge point, 
Oceanside Outfall, to Scripps Pier on a timescale of 36 hours (see SI Figure 4.S5).  While 
enrichment of benzothiazoles from the Oceanside Outfall is certainly a potential 
contributing factor, given distance and dilution more local sources also merit consideration.   
As illustrated in SI Figure 4.S6, there are multiple runoff, storm drain, and residential use 
discharge points along the beach surrounding the Scripps Pier sampling location, all of 
which could have washed road residues enriched in benzothiazoles into the coastal waters.  

Finally, when compared to confidently identified biogenic and anthropogenic gas 
species, the temporal profile of gas-phase BT is more similar to those of multiple positively 
identified anthropogenic species than to any positively identified biogenic species or 
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biological indicators, as illustrated in SI Figure 4.S3 and previously noted in greater detail. 
The temporal evolution of a suite of anthropogenic gases suggests that some process related 
to the establishment of thermal, physical, and chemical equilibrium within the wave 
channel and ISV caused a lagged peak in some anthropogenic VOCs compared to bulk 
water temperatures and is not indicative of a significant source of benzothiazole within the 
wave channel.  The identification of known tracers of anthropogenic benzothiazole 
pollution, multiple logical local sources of anthropogenic benzothiazole runoff, similarity 
in benzothiazole and some other known anthropogenic VOC temporal profiles, and 
absence of known biogenic benzothiazoles all lead to the conclusion that the source of 
benzothiazoles in the SeaSCAPE and Scripps Pier studies is primarily anthropogenic in 
nature.  Scripps Pier lies within the San Diego Scripps State Marine Conservation Area, a 
relatively clean and protected area of coastline.  Given this, the results from this study may 
be considered a relatively conservative lens into the extent to which these anthropogenic 
marine contaminants may influence the composition of aerosol and gas-phase emissions in 
coastal areas.    

Benzothiazole Oxidation and Secondary Aerosol Formation 
In order to better understand the eventual fate of atmospheric benzothiazole in both 

coastal marine and urban settings, we investigated the atmospheric oxidation and aerosol 
formation potential of gas-phase BT in a controlled laboratory oxidation experiment.  
When a plug of BT (62 ug in 5 uL of MeOH or 1%) was oxidized in the PAM-OFR to an 
equivalent 5 days of atmospheric aging, secondary aerosol formed, as illustrated by the 
new particle formation event in Figure 4.4. From this experiment, we produced a 
cumulative mass of 7.2 µg of aerosol during the plug injection experiment. Further 
experiments are necessary to determine the aerosol yield of BT under typical atmospheric 
conditions, but these results suggest it could be significant. Products formed from this 
aging, analyzed using previously described HESI Orbitrap mass spectrometry, primarily 
include reduced nitrogen and CHON species, with aerosol sulfur primarily in the form of 
sulfuric acid as shown in the identified molecular species listed in SI Table S4.  In the 
second previously described benzothiazole oxidation experiment, in which a constant 
source of gas-phase benzothiazole from a perm tube diluted to 12.8 ppb was oxidized at 
three aging equivalents ranging from 2.9 to 4.7 days, both aerosol and SO2 production were 
observed to increase with oxidative aging over this range, as illustrated in SI Figure 4.S11. 
Aerosol mass concentrations ranged from 9 ± 2 µg/m3 at 2.9 days to  19 ± 2 µg/m3 at 4.7 
days, and produced SO2 concentrations ranged from .67 ± .08 ppb  at 2.9 days to 1.3 ± .12 
ppb at 4.7 days.  The aerosol size distributions peak near 20 nm particle diameter for all 
exposure experiments, indicating new particle formation from benzothiazole oxidation 
(Figure 4.S11). While conditions in the PAM-OFR do not directly mimic those of the 
ambient atmosphere, the results of the benzothiazole oxidation study indicate two things: 
first, gas-phase BT has the capacity to contribute to SMA (or more generally secondary 
aerosol) formation and second, BT oxidation has the capacity to form sulfur dioxide and 
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sulfuric acid in the atmosphere, possibly suggesting the presence of sulfate aerosol 
produced during BT oxidation. This finding has relevance for polluted coastal marine 
environments, in which both benzothiazole and other anthropogenic marine pollutants 
should be evaluated for their potential influence on the abundance and characteristics of 
secondary marine aerosol.  It also suggests implications for urban environments, in which 
benzothiazoles are highly abundant and may contribute to secondary organic aerosol 
formation and urban smog.    
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4.7 Tables and Figures 

  
Figure 4.1. Time series of biological activity indicators and water temperature (A) and 
atmospheric benzothiazoles (B) at SeaSCAPE 2019 bloom 3 experiment. Atmospheric 
benzothiazole concentrations are differentiated into gas phase BT from the dome (black 
circles) and submicron nascent sea spray aerosol phase benzothiazoles from the wave 
chamber (colored bars). Detailed discussion of uncertainties can be found in 
supplemental information. 
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Figure 4.2. Molecular distributions and molecular overlap (by mass) of benzothiazoles 
observed in DOM (left) and nascent sea spray aerosol (right) at SeaSCAPE 2019 
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Figure 4.3. Solubility distributions of benzothiazoles weighted by contribution to cumulative 
observed benzothiazole carbon pools in the dissolved (DOM) and aerosol (SSA)  phases. Number of 
individual species within each solubility bracket in each phase indicated by n. No solubility 
information for 3-Ethylbenzothiazolin-2-thione is available and it is therefore excluded from 
visualization.  

 

 

 

Figure 4.4. Nucleation of new particles from benzothiazole oxidation in PAM-OFR. Liquid 
benzothiazole dissolved in a methanol carrier (1% BT) is introduced at 5 minutes.  
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Table 4.1. Identities, solubilities, and concentrations of benzothiazoles observed at SeaSCAPE.  
Aerosol phase concentrations are reported as an average and standard deviation of concentrations 
over the full experimental campaign, while dissolved phase concentrations are reported from the 
initial pre-experiment sample for comparison to other ambient sampling measurements of 
benzothiazoles.  BQL indicates a species detected but present at below quantification limit levels.    

Compound Identity Solubility 
in Water 
(mg/L) 

Aerosol-Phase 
Mean 

Concentration 
[s.d.] (ng/m3) 

DOM-Phase 
Concentration- 7/23 

Ambient Sample 
(µg/L) 

BenzothiazoleA 1684 13 [4.7] .29 

Phenyl BenzothiazoleA† 8.804 .64 [.30] .0093 
2-(Methylthio) 
benzothiazoleA 

66.61 1.4 [.77] .96 

Butyl-BenzothiazoleC 12.8 9.2 [4.8] .017 
Alk-Benzothiazole (1)B 12.81 .59 [.44]  
Alk-Benzothiazole (2)B 12.81 .032 [.033]  
Alk-Benzothiazole (3)B 12.81 .028 [.031]  
Alk-Benzothiazole (4)B 12.81 .045 [.043]  
Alk-Benzothiazole (5)B 12.81 .0067 [.0071]   
2-o-TolylbenzothiazoleC 4.81 .012 [.0088]  

3-Methyl-3H-
benzothiazol-2-oneC 

1319  .31 

3-Ethylbenzothiazolin-2-
thioneD 

 .32 [.26]  

N-Ethyl-2-
BenzothiazoleamineD 

142.22 .17 [.043]  

R-MercaptobenzothiazoleE 0.050962 .030 [.021]  
R- 2(3H)-

BenzothiazoloneD 
23542 .032 [.039] .016 

A:  Isomer specific identification confirmed via authentic standard 
B: Series of alkyl benzothiazoles, identified via high (>750) match factor with spectrum 
of butyl-benzothiazole and location in GCxGC space. Based on kovats indices, likely C4-
C7 straight and branched chain alkyl benzothiazoles 
C: Identified via high (>800) match factor with NIST14 mass spectral database entry 
along with Kovats index matches from previous published isolation where available 
D: Classified as benzothiazole due to relatively high (>700, <800) NIST match factor 
with named benzothiazole or by high match factor but kovats index disagreement; novel 
compound without published mass spectra, tentatively identified as benzothiazole due to 
mass spectral indicators. 
E. Identity unknown, but based on mass spectrum assigned identity of R-
mercaptobenzothiazole, with R an unknown group likely containing heteroatom(s).  
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† Note that there are two distinct speciations of phenyl benzothiazoles observed between 
the two phases- 2-phenyl benzothiazole is observed in the aerosol phase, while an 
undetermined alternate phenyl benzothiazole isomer is observed in the dissolved phase. 
1. No predicted or experimental solubility values for C5+ benzothiazoles, therefore 
assigned solubility of butyl-benzothiazole 
2. Note that the exact identities of these species are unknown, but that the solubilities are 
those of the identified chemically similar benzothiazoles named in column 1 

4.8 Supporting Information 
4.SI.1: Sorbent Tube Details 

 Inert coated stainless-steel tubes with PTFE compression caps.  Packing 
materials: Tenax TA 60/80, Carbograph 1 60/80, Carboxen 1003 40/60 (Camsco, custom 
order). Conditioned for 4 hours at 320 °C, Markes tube conditioner. 

4.SI.2: GCxGC Materials and Methods 

 GCxGC A GCxGC B 
Thermal 
Desorption Unit 

Gerstel TDS-3 and TDSA2 Gerstel TDU 3.5 and MPS 

Thermal 
Desorption Temp 

320 °C 300 °C 

Cooled Inlet 
System Material 

Gerstel CIS4, quartz wool Gerstel CIS glass wool 

Cooled Inlet 
System 
Temperature 

Trapping Temperature: 30°C 
Release Temperature: 320°C 

Trapping Temperature: -150°C 
(Liquid Nitrogen cooled) 
Release Temperature: 300 °C 

Carrier gas  Helium, 2 ml min-1 Helium 2 ml min-1 

GCxGC Oven  Agilent 7890A Agilent 7890A 
GCxGC Column 
1 

Restek, Rxi-5Sil-MS,  
60m × .25mm × .25 µm 

Restek, Rtx-624,  
30m × .25mm × 1.4 µm 

GCxGC Column 
2 

Restek, Rtx-200MS,  
1m × .25mm × .25 µm 

Restek, Stabilwax,  
1.5m × .25mm × .5 µm 

Thermal 
Modulator  

ZOEX cryogenic dual-stage 
thermal modulator; guard 
coumn (Restek, Siltek, 1.5m 
× .25mm × 250 µm) 

ZOEX cryogenic dual-stage 
thermal modulator; guard column 
(Restek, Siltek, 1.5m × .25mm × 
250 µm) 

Modulation 
Period 

2.3 s 5 s 

GCxGC  Primary 
Oven (Column 1) 

Ramped from 40 to 320 °C at 
3.5 °C min-1 

Ramped from 35 to 215 °C at 
4 °C min-1, 6 minute hold time 



112 

GCxGC 
Secondary Oven 
(Column 2) 

Maintained at 15 °C warmer 
than column 1 

Maintained at 20 °C warmer than 
column 1 

Table 4.S1. GCxGC manufacturers and methods 

4.SI.3: Filter Sampling Description 

The sampled air was passed through a 2 m section of cooled copper tubing to condense 
and remove excess water and prevent sample saturation, a methodological approach 
described in Yee et al., 2018.1 Supermicron aerosols were excluded using a greaseless 
cyclone (BGI Mesa Labs), operated at 21.8 LPM to achieve a cut point of PM1. Filter 
changes  were coordinated with the SeaSCAPE grow light schedule to generate one 14 
hour “day” and 10 hour “night” sample per experiment day.  Post collection, filters were 
wrapped in baked foil (12 hours at 550 °C), individually sealed in mylar bags, 
secondarily sealed in plastic bags, and frozen immediately (within 1 hour).  Field blanks 
were collected before, after, and consistently throughout the bloom experiment at a rate 
of two field blanks every 5 days. Samples and blanks were stored primarily frozen and 
always below ambient temperatures prior to analysis in early 2020.  Two SeaSCAPE 
aerosol sample filters were analyzed within two months of collection, and comparison to 
their reanalysis during the full analysis period confirmed sample preservation in storage. 

4.SI.4: Sorbent Tube VOC Sampling Methods 

The sorbent tubes were inert coated stainless steel, packed with Tenax TA, Carbograph 1, 
and Carboxen 1003 (SilcoNertTM coated, CAMSCO). These three materials were selected 
to enable capture of C3-C20 organics while minimizing water retention.  All collections 
were performed at 100 sccm. Sorbent tubes were conditioned for 4 hours at 320°C prior 
to use, were stored frozen prior to sampling, and were frozen immediately post sample 
collection, with field blank, room air, zero air, and empty ISV samples collected for 
background and contamination analysis, consistent with best practices advanced in Sheu 
et al., 2018.2 Day (light) samples were collected at approximately 14:00 and night (dark) 
samples were collected at 04:00.  Background BT concentrations observed in blanks 
collected from the empty ISV and ISV air intake were negligible compared to 
concentrations observed under experimental conditions.  

4.SI.5: Pier VOCUS Sampling Methods 

Measurements of benzothiazole gas phase mixing ratios were made from the end of the 
Ellen Browning Scripps Pier Memorial Pier (hereon SIO Pier) at the Scripps Institution 
of Oceanography in La Jolla, CA, USA during the month of September 2019. The SIO 
Pier site has been regularly for studies of coastal ocean trace gas exchange (Kim et al., 
2014; Novak et al., 2019; Vermeuel et al., 2020). Benzothiazole was detected using the 
same Vocus PTR-TOF used in the SeaSCAPE study. The Vocus was housed in a 
temperature-controlled trailer at the end of the pier and sampled through a 19 m long 



113 

PFA inlet (0.625 cm backgrounds were determined by overflowing the full inlet line with 
dry ultrahigh purity nitrogen at the tip of the ambient sampling point. Instrument 
sensitivities to DMS were determined during ambient sampling by a two-point standard 
addition of a DMS gas standard (Praxiar, 5.08 ppm ± 5%) to the full sampling inlet every 
2.5 to 4 hours. Benzothiazole detection sensitivity relative to DMS was determined in the 
laboratory post campaign, and ambient benzothiazole sensitivities were determined by 
scaling the infield DMS calibration factors by the relative instrument sensitivity of DMS 
to benzothiazole. The SIO Pier experiences a characteristic sea-breeze circulation pattern 
during summer where winds are from the ocean at moderate windspeeds (0-6 m s-1) 
during daytime and are from land at night.  

4.SI.6: DOM Collection Methods 

In a methodology adapted from Dittmar et al. 20083, 20-L samples of water were 
collected into a cleaned polypropylene jug and immediately transferred to a nearby 
laboratory for extraction via SPE-PPL. All plasticware was cleaned using 3x methanol 
followed by a 3x Milli-Q water rinse before usage. The water was pumped through a 
series of filters: 10 micron, 0.7 micron, and 0.2 micron, using a peristaltic pump with 
PTFE-lined tubing at a rate of 100 mL/min. Backpressure and flowrate were kept to a 
minimum to prevent lysing of cells. Finally, the sample water was allowed to gravity 
filter through a pre-cleaned SPE-PPL cartridge at a rate of 3 drops/sec or less overnight. 
The sample was then washed and eluted with methanol three times and immediately dried 
down to solid. Samples were stored in a freezer at –18 °C. 

4.SI.7: Headspace Gas Analysis by APCI-Orbitrap-MS/MS 

Data was collected in positive mode, where the needle voltage was set to 4 kV, needle 
current at 5 mA, and vaporizer temperature at 150 °C. Sheath and auxiliary flow were set 
to zero. From the wave channel, 200 mL of surface water was collected and transferred 
into a 350 mL jacketed custom glass tube (Ace Glass Inc.) with quartz windows on each 
end. The surface area of the water sample in the tube was approximately 77 cm2. With a 
headspace of 150 mL, pure nitrogen gas was used as a carrier at a rate of 200 sccm. 
Temperature was regulated, at 20°C, and measured constantly to ensure minimal thermal 
variation (± 1°C) during the analysis. 

4.SI.8: Sorbent Tube Analysis – Dry Purging 

Sorbent tubes were dry purged in the sampling direction with ultrapure dry nitrogen to 
remove trapped water prior to offline analysis. Repeated tests in which sorbent tubes 
were loaded with relevant concentrations of target analyte standards, sampled humid air 
(produced by bubbled Milli Q water) at flowrates and intervals replicating those at the 
experimental campaign, and subjected to the dry purge protocol found no significant loss 
in benzothiazole recovery from dry purging. 

4.SI.9: DOM, Aerosol and VOC analysis by GCxGC- Methodological Details 
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DOM samples were reconstituted in methanol immediately prior to analysis and injected 
onto quartz fiber filter segments to maximize analytical consistency between aerosol and 
dissolved phase samples.  Both DOM and aerosol filter samples were doped with a 
custom blend of 23 deuterated internal standard compounds prior to analysis, allowing 
corrections for instrument condition and matrix effects across samples.  Broadly, both 
instruments thermally desorb samples from the sorbent tube or filter media, focus 
desorbed samples on a cooled inlet system (CIS, Gerstel), then simultaneously release all 
desorbed analytes into the GC oven. Instrument A employs online derivatization during 
thermal desorption with MSTFA (n-methyl-n-trimethylsilyl-trifluoro-acetamide), which 
replaces OH groups with O-(Si(CH3)3) to enhance recovery of polar organics. Next, 
analytes are separated by both volatility and polarity by two GC columns in sequence, 
with the first to second column transition modulated by cryogenic focus and rapid 
thermal release. Separated analytes from GCxGC A are ionized by 70 eV using EI and 
detected by HR-ToF-MS (Tofwerk), resolving power 4000 acquired at 100 Hz.  
Separated analytes from GCxGC B are ionized by both 14 eV and 70 eV EI (alternating 
in 40 milliseconds allowing analysis of all peaks at dual ionization energies) and detected 
by ToF-MS (Markes BenchToF) at a resolving power of 1000 acquired at 50 Hz.  These 
methods generate data for individual analytes separated in two chromatographic 
dimensions, and characterized by 70 eV EI mass spectra from GCxGC A and both 14 eV 
and 70 eV mass spectra from GCxGC B.  Methodological details and documentation for 
GCxGC A can be found in Worton et al. 20174, and thermal desorption unit and gas 
chromatography methods, component manufacturers, and column materials for both 
GCxGC instruments may be found in SI table S1.  Six-point calibration curves of custom 
external standard blends containing ~150 representative organic compounds were 
performed periodically throughout sample analysis for each sample medium class to 
maximize quantification accuracy. 

4.SI.10: Benzothiazole Partitioning Experiment 

To assess whether currently reported Henry’s constants for BT (all of which are predicted 
based on structure rather than experimentally measured) could be many orders of 
magnitude different from true partitioning behavior (thereby explaining the higher than 
predicted BT observations at SeaSCAPE), the following partitioning experiment was 
performed. A solution of α-pinene, limonene, and benzothiazole (0.4 ug/L each) in 
simplified simulated sea water (milli-Q with 35 g/L NaCl and .5 g/L NaHCO3) was 
mixed to simulate the observed aqueous phase concentration of benzothiazole in sampled 
water at SeaSCAPE.  This concentration was selected as it is similar to the observed 
dissolved concentration of benzothiazole at the initial water sampling period. 250 ml of 
this solution was bubbled with ultrapure dry nitrogen at 10 sccm for 200 minutes to 
generate 2 L samples (the same sample volume collected experimentally at SeaSCAPE) 
in a temperature monitored water bath as recommended in Lee at al., 2012.5 Samples 
were collected on sorbent tubes and analyzed on GCxGC B. Bubble height is ~20 cm and 
gas residence time in the headspace is estimated at 2 minutes, equal to the residence time 
in the offline orbitrap VOC analysis at SeaSCAPE. All measurements are made at 25 °C 
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and 978 mbar, and the bubbler is submerged in a water bath to maintain a constant 
temperature. Gas phase benzothiazole is not observed above detection limits (of 10 ppt) 
in any replicates. α-pinene and limonene are observed in the gas phase in significant 
quantities, though not equal to quantities that would indicate equilibrium partitioning.   
We therefore have insufficient evidence to propose significant differences between true 
and structurally predicted Henry’s constants for benzothiazole as the driving mechanism 
behind the unexpectedly high benzothiazole volatilization observed at SeaSCAPE.   

4.SI.11: Benzothiazole GCxGC Quantification and Uncertainties- Aerosol and DOM 

Aerosol and DOM proxies and uncertainties are described in table S2 below. 

Observed 
Benzothiazole 

Quantification 
Proxy 

Proxy 
Assignment 
Justification 

Aerosol 
Quantification 
Uncertainty 
(%) 

DOM 
Quantification 
Uncertainly 
(%)* 

Benzothiazole Benzothiazole Authentic 
Match 

10               60A 

2-Phenyl 
Benzothiazole 

2-Phenyl 
Benzothiazole 

Authentic 
Match 

10 30 

2-(Methylthio) 
benzothiazole 

2-(Methylthio) 
benzothiazole 

Authentic 
Match 

10 50B 

Butyl-Benzothiazole  2-(Methylthio) 
benzothiazole 

Closest in 
GCxGC; 
most 
chemically 
similar 

50 60 

Alk-Benzothiazole 1 2-(Methylthio) 
benzothiazole 

Closest in 
GCxGC; 
most 
chemically 
similar 

50  

Alk-Benzothiazole 2 2-(Methylthio) 
benzothiazole 

Closest in 
GCxGC; 
most 
chemically 
similar 

50  

Alk-Benzothiazole 3 2-(Methylthio) 
benzothiazole 

Closest in 
GCxGC; 
most 
chemically 
similar 

50  

Alk-Benzothiazole 4 2-(Methylthio) 
benzothiazole 

Closest in 
GCxGC; 
most 
chemically 
similar 

50  
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Alk-Benzothiazole 5 2-(Methylthio) 
benzothiazole 

Closest in 
GCxGC; 
most 
chemically 
similar 

50  

2-o-
Tolylbenzothiazole 

2-Phenyl 
Benzothiazole 

Closest in 
GCxGC; 
most 
chemically 
similar 

50  

2(3H)-
Benzothiazolone 

2-(Methylthio) 
benzothiazole 

Closest in 
GCxGC 

60 60 

3-
Ethylbenzothiazolin-
2-thione 

2-Phenyl 
Benzothiazole 

Closest in 
GCxGC 

60  

3-Methyl-3H-
benzothiazol-2-one 

2-(Methylthio) 
benzothiazole 

Closest in 
GCxGC 

60 60 

2-
Benzothiazolamine, 
N-ethyl- 

2-(Methylthio) 
benzothiazole 

Closest in 
GCxGC 

60  

Table S2. Benzothiazole GCxGC quantification proxies and uncertainties for all observed aerosol 
phase species 

A) DOM phase benzothiazole quantification is subject to unusually high uncertainties 
despite the availability of authenticated standard calibration curves due to a significant 
difference between the volatility distributions of the DOM phase sample matrix and the 
standard mix, leading to extreme matrix effects in the volatile region of the GCxGC 
chromatogram.  This is verified by order of magnitude increased recoveries of the most 
volatile internal standards in DOM sample analysis and does not influence the aerosol 
phase measurements.   

B) Measured 2-(Methylthio)benzothiazole in the pre-transport sample exceeds the 
maximum point of the calibration curves and is quantified through extrapolation of a 
quadratic calibration fit to account for observed exponential behavior at the high end of 
the 2-methylthiobenzothiazole internal standard normalized calibration curve.  This 
increases the quantification uncertainty of this species.  All other measured benzothiazole 
species for which 2-methylthiobenzothiazole serves as a quantification proxy lie within 
the linear lower bounds of the calibration curve for this species and are normalized by a 
linear quantification factor. 

*Quantification certainties for DOM phase species are generally reduced due to the 
increased number of preparation steps, and volatility distribution discrepancies between 
samples and standards coupled with the novelty of TD-GCxGC application to this sample 
medium. This increased uncertainty applies to absolute quantification accuracy 
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uncertainties but would be expected to apply comparably across individual compounds, 
and therefore does not apply to relative distribution precision.  

4.SI.12: Benzothiazole GCxGC Quantification and Uncertainties- Gas  

Gas phase benzothiazole is positively identified from exact GCxGC position and mass 
spectral match to an authentic benzothiazole standard (96% purity, Sigma Aldrich).  A 
liquid benzothiazole standard dissolved in methanol is introduced to sorbent tubes 
through a constant flow of ultrapure dry nitrogen using a Calibration Solution Loading 
Rig (CSLR, Markes) in five different mass loading levels, and these standard tubes are 
run in series to establish the ratio between mass of benzothiazole introduced to the VOC 
sorbent tube and detected analyte volume in GCxGC, also known as the quantification 
factor.  Uncertainty is estimated at 12% from the geometric mean of the percent 
differences between the quantification factor- predicted instrument volume at each 
calibration point and the observed instrument volumes at those points.  

4.SI.13: Cartoon Visualization of Benzothiazole Dynamics in a Coastal Marine Context 

 

Figure 4.S1. Annotated Table of Contents graphic illustrating transport and transformation 
processes leading to the presence of anthropogenic benzothiazoles in coastal marine atmospheres. 
Anthropogenic benzothiazoles are discharged into coastal waters, transported into the atmosphere 
through primary sea spray aerosol emissions and volatilization, and transformed through 
atmospheric oxidation.  

 

 

 

4.SI.14: Supporting Figures- SeaSCAPE Measurements and Context 
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A) 

 

B) 

 

Figure 4.S2. A) 14 eV EI spectrum of benzothiazole as identified by TD-GCxGC in samples at 
SeaSCAPE; B) 70 eV EI spectrum of benzothiazole as identified by TD-GCxGC in samples at 
SeaSCAPE 

 

 

 

 

 

Time Series of Representative Gases at SeaScape 



119 

 

Figure 4.S3. A) Z-scored water concentrations of biological activity indicators (Chlorophyll-a and 
heterotrophic bacteria) and z-scored wave channel water temperature; B) Z-scored gas phase time 
series of biogenic VOCs observed in the SeaSCAPE ISV; C) Z-scored gas phase time series of 
anthropogenic VOCs observed in SeaSCAPE ISV. All gas concentrations from GCxGC 
measurements, with the exception of DMS (supplied by Vocus) and isoprene (supplied by benzene 
CIMS, as described in Sauer and Mayer et al. 2021). Note that the increase in this population of 
anthropogenic compounds after initial water introduction is unexpected but consistently observed 
across instruments and does not correspond to any perturbation that could have introduced 
additional anthropogenic organic material into the wave channel.  
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Quantitative Comparison, VOCUS and GCxGC VOC measurements 

 

 Figure 4.S4. Quantitative comparison of gasses measured by both VOCUS and GCxGC in the ISV at 
SeaSCAPE bloom 3.  
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Oceanside Outfall and Currents Near Scripps Pier 

 

Figure 4.S5. Currents and locations of water sampling and Oceanside outfall on SeaSCAPE bloom 3 
water collection day, July 23 2019.  Current graphics from Southern California Coastal Ocean 
Observation System high frequency radar system website (https://sccoos.org/high-frequency-
radar/) 
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Wastewater and Municipal Storm Water Discharges near Scripps Pier 

 

Figure 4.S6. Map of La Jolla coast with locations of SeaSCAPE water sampling and Scripps Pier 
VOC sampling, residential small pipe outfall zones, and municipal storm drain outlets highlighted.  
Locations of water discharge points from Collins et al. 2008,6 underlying mapping from Google 
Earth.  
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Individual Time Series of Aerosol Phase Benzothiazoles at SeaSCAPE 

 

Figure 4.S7. Concentration time series of aerosol-phase benzothiazoles observed at SeaSCAPE, listed 
in order of increasing contributions to the total benzothiazole carbon pool 
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Sea Spray Aerosol D7 Siloxane and Benzothiazole Carbon Pool Time Series at 
SeaSCAPE 

 

Figure 4.S8. Aerosol-phase benzothiazole carbon pool (atmospheric concentration, red) time series in 
comparison to biological activity indicators (chlorophyll-a water concentration, green, and 
heterotrophic bacteria water concentration, blue) and abundant anthropogenic organic compound 
tetradecamethyl-cycloheptasiloxane  
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Fractional Changes in the Sea Spray Aerosol Benzothiazole Carbon Pool at SeaSCAPE 

 

Figure 4.S9. Time series of fractional contributions of observed benzothiazoles to total benzothiazole 
carbon pool. 
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Enrichment Analysis of Common Benzothiazoles in SSA and DOM Phases 

 

Figure 4.S10. Ratio of fractional contributions to the total benzothiazole carbon pool in the aerosol 
(SSA) phase compared to the dissolved (DOM) phase for benzothiazole compounds observed in both 
phases.  
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4.SI.15. Literature Review of Coastal Benzothiazole Observations 

Concentration Source Type Reference  
BT: .85 ug/L MTBT:  .17 Wastewater treatment 

influent, Berlin 1a 
Kloepfer 20057 

BT: .55 ug/L MTBT:  .44 Wastewater treatment 
effluent Berlin 1a 

BT: 2.26 ug/L MTBT: .55 Wastewater treatment 
effluent Beijing  

Summed benzothiazoles: 
74-25 ug/L 

Street runoff 

Household wastewater 
summed benzothiazoles 
(~40% of which is BT): 
1.7-2.2 ug/L 

 

BT: 1.21 ug/L  Moshassuck River (urban 
runoff) 

Reddy 19978 

BT: .378 ug/L Pawtuxet River (urban 
runoff) (Feb) 

BT:.940 ug/L Pawtuxet River (urban 
runoff) (May) 

BT: .819 ug/L Pawtuxet River (urban 
runoff) (Sept) 

BT: 10.5 ug/L MTBT: 39 
ug/L 

Untreated tannery 
wastewater 

Fiehn 19949 

BT: 99 ug/L MTBT: 115.5 
ug/L 

Anaerobic treated tannery 
(wastewater) 

BT: 5.5 ug/L MTBT: 24.5 
ug/L 

Aerobic treated tannery 
(wastewater) 

BT: .396 MTBT: .119 Dissolved, in Ballona creek 
(stormwater runoff) 

Zeng 200410 

BT: .06-2500 ug/L 
MTBT: .01-650 ug/L 

Surface waters from 
estuary in India 

Liao 201811  

Table 4.S3. Literature review of reported dissolved phase benzothiazoles in aquatic environments.  
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4.SI.16. Benzothiazole Oxidation Experiment Additional Information 

As previously described in Kang et al. , the PAM-OFR generates OH radicals using UV 
lights at 185 and 254 nm.12 The calibration for OH exposure was performed by 
introducing CO (1 ppm) into the PAM-OFR and measuring the decay in CO 
concentrations as a function of lamp voltage (results illustrated in figure S11). All 
described oxidation reactions are unseeded and therefore focus on particle nucleation 
rather than condensation onto seed aerosols within the OFR.13,14,15,16 BT was introduced 
to the PAM-OFR by either flowing 2.5 LPM of zero air over a BT permeation tube 
(VICI) heated to 37 °C or introducing an instant plug injection of 62 ug of BT (96% 
Sigma Aldrich) dissolved in 5 uL of HPLC grade methanol (Fisher Scientific). In the 
plug experiment, the production of particles was characterized using a Scanning Mobility 
Particle Sizer (SMPS, TSI Incorporated) following a benzothiazole injection at 5 minutes. 
A 2.5 LPM zero air flow was added to obtain 5 LPM through the PAM-OFR. A separate 
injection of pure methanol showed no formation of aerosol mass. The relative humidity in 
the PAM-OFR was maintained between 50-70%. The aerosol flow produced after the 
PAM-OFR was not dried and thus contained water. Measuring produced SO2 from the 
BT oxidation was carried out by using a 43iQ Sulfur Dioxide Analyzer (ThermoFisher 
Scientific). Carulite (Carus Inc.) and a 0.2 µm Teflon filter (Hach Company, 47mm) was 
used to scrub ozone and aerosol from the stainless-steel sampling lines before entering 
the SO2 analyzer.  During SO2 measurements, blanks were performed by either turning 
off the PAM UV lights (with BT) or by running the zero air through the PAM with lights 
kept on (without BT) and in both cases, SO2 levels were below ambient levels. In a 
continuous BT input oxidation experiment (using the permeation tube), the voltage on the 
PAM UV lights were changed to increase the equivalent days of aging by producing 
more OH radical. In this experiment, the voltage was increased to achieve an OH 
exposure of 3.8×1011 molecules cm-3s-1 (2.9 days equivalent ageing) then 4.6×1011 
molecules cm-3 s-1 (3.5 days equivalent ageing), then 6.1×1011 molecules cm-3s-1 (4.8 
days equivalent ageing). Particle production was not observed from introduction of BT 
into the PAM with lights off.  

In addition to SO2, HSO4- was also measured in PAM oxidation products. HSO4- was 
observed in a sample collected from bubbling the downstream PAM aerosol line into 
HPLC grade acetonitrile (Fisher Scientific) and then analyzing the contents using a direct 
injection heated electrospray ionization (HESI) Orbitrap (ThermoFisher Scientific) mass 
spectrometer. The sample was injected at 5 μL/min and peaks were detected in negative 
mode with the capillary voltage set to 3.0 kV and capillary temperature set at 325 °C. The 
HESI gases were set to: sheath at 15, auxiliary at 5, and sweep at 0 (arbitrary units) and 
was calibrated before analysis using a negative mode calibration mix (Pierce ESI Ion 
Calibration Solutions, Thermo Fisher Scientific). The background subtracted mass 
spectra data can be found in Supporting Information Table S4. 
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Table 4.S4. Background subtracted BZT oxidation products from PAM sampling line, bubbled into 
ACN for 60 mins. Mass spectra collected using Orbitrap in negative mode, formula matched signals 
shown here are above 2% relative intensity.   

Mass to 
charge ratio 
(m/z) 

Intensity 
(counts) 

Relative 
Intensity (to 
max signal) 

Delta (ppm) Composition [M-H]- 

83.02529 113643.3 54.36 2.41 C3 H3 O N2  
109.04080 99471 47.59 0.67 C5 H5 O N2  
96.96023 74536.9 35.66 1.32 H O4 S  

122.03610 61766.7 29.55 1.21 C5 H4 O N3  
124.05180 58808.5 28.13 1.08 C5 H6 O N3  
120.0570 39885.8 19.08 1.93 C6 H6 N3  

136.05180 34553.5 16.53 1.11 C6 H6 O N3  
121.05220 31968.9 15.29 1.9 C5 H5 N4  
132.0570 30341 14.51 1.71 C7 H6 N3  

148.05180 28371 13.57 1.12 C7 H6 O N3  
107.02520 27949.4 13.37 1.23 C5 H3 O N2  
91.03033 24650.8 11.79 1.78 C5 H3 N2  
92.02560 23525.3 11.25 1.99 C4 H2 N3  
95.02524 22736.5 10.88 1.63 C4 H3 O N2  

111.02010 21198.5 10.14 1.2 C4 H3 O2 N2  
123.05650 21170.8 10.13 1.03 C6 H7 O N2  
110.03620 20501 9.81 1.47 C4 H4 O N3  
121.04090 19691.2 9.42 1.23 C6 H5 O N2  
125.03580 19088.7 9.13 1.04 C5 H5 O2 N2  
133.05230 18620.1 8.91 2.11 C6 H5 N4  
163.06270 17925.2 8.58 1.11 C7 H7 O N4  
93.00962 17713.3 8.47 1.97 C4 H O N2  

108.02050 16848.6 8.06 1.08 C4 H2 O N3  
130.04140 16252.8 7.78 2.59 C7 H4 N3  
119.02530 15803.8 7.56 1.53 C6 H3 O N2  
98.02489 15720.9 7.52 1.37 C4 H4 O2 N  

134.03640 15519.6 7.42 3 C6 H4 O N3  
105.04600 15297.7 7.32 2.05 C6 H5 N2  
82.04126 14982.2 7.17 2.3 C3 H4 N3  
97.04087 12930.6 6.19 1.38 C4 H5 O N2  
82.03002 12848.3 6.15 2.25 C4 H4 O N  

150.06750 12649.3 6.05 1.12 C7 H8 O N3  
110.02490 12339.3 5.9 0.85 C5 H4 O2 N  
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138.06740 12336.3 5.9 1.07 C6 H8 O N3  
133.04090 12327 5.9 1.36 C7 H5 O N2  
116.02560 11853 5.67 1.85 C6 H2 N3  
123.02020 11771.3 5.63 1.27 C5 H3 O2 N2  
107.03670 11656.8 5.58 3.64 C4 H3 N4  
137.03580 11259.8 5.39 1.11 C6 H5 O2 N2  
114.01980 11237.8 5.38 1.08 C4 H4 O3 N  
89.02457 11176 5.35 1.73 C3 H5 O3  

118.04140 11134 5.33 2.5 C6 H4 N3  
149.04710 11012.9 5.27 1.4 C6 H5 O N4  
177.07830 10759.3 5.15 0.81 C8 H9 O N4  
120.02060 10681 5.11 1.83 C5 H2 O N3  
108.05680 9984.6 4.78 1.07 C5 H6 N3  
99.02018 9696.8 4.64 1.77 C3 H3 O2 N2  

113.03580 9548.8 4.57 0.99 C4 H5 O2 N2  
96.00926 9355.4 4.48 1.66 C4 H2 O2 N  

137.04710 8050.6 3.85 1.3 C5 H5 O N4  
162.06750 7830.4 3.75 1.06 C8 H8 O N3  
138.03110 7317.5 3.5 1.42 C5 H4 O2 N3  
81.04601 7308.3 3.5 2.32 C4 H5 N2  

152.04670 7268.5 3.48 1.24 C6 H6 O2 N3  
159.06790 6833 3.27 2.04 C8 H7 N4  
135.05650 6819 3.26 1.12 C7 H7 O N2  
175.06280 6818.1 3.26 1.38 C8 H7 O N4  
68.01439 6784.6 3.25 2.99 C3 H2 O N  

109.00450 6711.4 3.21 1.21 C4 H O2 N2  
160.05180 6486.3 3.1 1.3 C8 H6 O N3  
96.05689 6339.8 3.03 1.73 C4 H6 N3  

139.05150 6306.7 3.02 1.13 C6 H7 O2 N2  
164.04670 6143.2 2.94 1.17 C7 H6 O2 N3  
107.03820 6009.8 2.87 4.92 C6 H5 O N  
150.03110 6006.5 2.87 1.4 C6 H4 O2 N3  
86.02491 5973.8 2.86 1.82 C3 H4 O2 N  

126.03110 5816.7 2.78 1.3 C4 H4 O2 N3  
94.04125 5411.5 2.59 1.94 C4 H4 N3  

140.04680 5383.6 2.58 1.48 C5 H6 O2 N3  
112.04050 5143.5 2.46 0.85 C5 H6 O2 N  
147.06800 5105.3 2.44 2.89 C7 H7 N4  
134.07260 5034.4 2.41 1.35 C7 H8 N3  



131 

127.05140 4970 2.38 1.06 C5 H7 O2 N2  
115.03030 4949.8 2.37 1.5 C7 H3 N2  
144.05710 4836.7 2.31 2.34 C8 H6 N3  
115.04020 4832.8 2.31 1.14 C5 H7 O3  
146.07260 4761 2.28 1.67 C8 H8 N3  
117.01950 4750.6 2.27 1.2 C4 H5 O4  
104.02570 4742.3 2.27 2.41 C5 H2 N3  
146.03630 4660.8 2.23 2.14 C7 H4 O N3  

98.03613 4537.4 2.17 1.53 C3 H4 O N3  
84.00926 4530.3 2.17 1.83 C3 H2 O2 N  
94.02999 4472.8 2.14 1.61 C5 H4 O N  

 

 

 

Figure 4.S11. SO2 production from benzothiazole oxidation in PAM-OFR.  Benzothiazole is 
introduced via custom permeation tube at a constant concentration of 12.8 ppb. Error bars indicate 
standard deviation of observed concentrations for each observation at the given equivalent ageing 
exposure setting (n = 20). 
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Figure 4.S12. Size distributions of aerosols formed from oxidation of benzothiazole in a PAM-OFR 
under OH exposure conditions simulating 2.9, 3.5, and 4.7 days of oxidative ageing. 

 

Figure 4.S13. PAM-OFR calibration curve determined by CO loss at increasing OH exposures. 
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5 Chemical Signatures of Seasonally Unique 
Anthropogenic Influences on Organic Aerosol 
Composition in the Central Amazon 

. 

This work is adapted from:  

Emily B. Franklin, Lindsay D. Yee, Rebecca Wernis, Gabriel Isaacman-VanWertz, Nathan 
Kreisberg, Robert Weber, Suzane de Sá, Brett Palm, Weiwei Hu, Pedro Campuzano-Jost, 
Douglas A. Day, Antonio Manzi, Paulo Artaxo, Rodrigo A. F. De Souza, Jose Jimenez, 
Scot Martin, Allen H. Goldstein, “Chemical Signatures of Seasonally Unique 
Anthropogenic Influences on Organic Aerosol Composition in the Central Amazon.” This 
work is currently undergoing review with co-authors and is intended for submission to 
Atmospheric Chemistry and Physics in July 2022.   

5.1 Abstract 
Urbanization and human caused fires perturb the quantities and composition of fine 

organic aerosol material in the central Amazon, with significant ramifications for both 
radiative forcing and public health. These disturbances include not only direct emissions 
of primary aerosol material and precursors of secondary organic aerosol (SOA) from cities 
and fires, but also changes in the oxidation chemistry through which biogenic precursors 
form SOA.  While SOA formation in the tropics has been observed and modelled to 
increase in the presence of anthropogenic pollutants, the mechanisms by which these 
enhancements occur and implications for particle chemistry remain incompletely 
characterized. During the Green Ocean Amazon (GoAmazon) field campaign of 2014/5, 
submicron aerosol samples were collected at the “T3” Manacapuru rural site, located 70km 
downwind of urban Manaus. These samples were analysed for speciated organic 
composition using TD-GCxGC-EI-HR-ToF-MS (thermal desorption two-dimensional gas 
chromatography with electron ionization and vacuum ultraviolet time of flight mass 
spectrometry), which yielded a library of ~1300 unique organic compounds which were 
traced across both seasons. Compounds were then grouped based on similar temporal 
variability, and anthropogenically influenced compound clusters were extracted from 
background measurements.  These chemical signatures are compared between influence 
categories (urban plume vs. biomass burning) and between seasons (wet season vs. dry 
season) to establish season specific and source specific chemical profiles of influence.  
Between seasons, urban conditions produce consistently low carbon number high carbon 
oxidation state products compared to pristine and burning influenced conditions.  Dry 
season products associated with both background and burning conditions are significantly 
more oxidized than their wet season counterparts, but include diverse high carbon number 
products not typically predicted or reported as biogenic or biomass burning products. There 
is a high degree of season-to-season aerosol composition variability, with only 52% of 
compounds traced present above detection limits in both seasons. Wet season background 
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conditions produced a range of high carbon number relatively low carbon oxidation state 
products that were never observed in the dry season. The dry season produced unique 
highly oxidized high carbon number products that were exclusively observed in periods of 
particularly intense biomass burning activity.  Both of these populations may point to the 
importance of aqueous processing in Amazonian aerosol ageing processes, but further 
mechanistic insights are impeded by the limited degree of knowledge regarding product 
identities. Less than 12% of speciated and traced organic products are identifiable at an 
isomer specific level through matching to the NIST/EPA/NIH mass spectral database, and 
nearly all unique products observed were not identifiable. On a mass basis, unidentifiable 
organics are particularly important during strongly urban influenced periods of the wet 
season, when the fraction of GCxGC recovered organic mass attributed to unidentifiable 
organics rose to above 60%. These findings compositionally characterize anthropogenic 
influence on submicron organic aerosol in the tropics, identify key season to season 
differences in production signatures, and highlight high priority knowledge gaps in current 
speciated knowledge of ambient aerosol composition that are critical to improving 
understanding of how human emissions impact fine aerosol composition in the tropics. 

5.2 Introduction 
Human activities influence the composition and properties of ambient fine aerosol 

material under a broad array of conditions, with effects that are heavily dependent upon 
both the location and types of disturbances caused by humans and the composition and 
quantities of local natural emission sources.  In the central Amazon, two broad classes of 
human activities have been shown to perturb the quantities and characteristics of fine 
aerosols: urbanization, and biomass burning.1–4 These perturbations are important, because 
both have been demonstrated to significantly influence the radiative forcing,2,5,6 and 
biomass burning during the Amazonian dry season causes PM2.5 levels to frequently exceed 
WHO guidelines and has been associated with adverse public health outcomes for residents 
of the central Amazon.7,8 In the central Amazon, fires are nearly entirely anthropogenic in 
nature.  The high humidity frequent rainfall conditions make natural sources of fires 
extremely infrequent and unlikely, and fires are frequently set to clear land for soybean 
cultivation and cattle farming.7,9,10  While fires occur  throughout the year, burning activity 
is most intense during the dry season, which lasts from approximately August to October.3  
In addition to experiencing elevated biomass burning emissions, atmospheric residence 
times during the dry season are longer, which together contribute to dry season aerosol 
concentrations that are approximately an order of magnitude higher than the wet season, 
with a more oxidized bulk composition.3,4,11  

The Amazonian wet season, which typically lasts from late January to mid April, is 
characterized by frequent rain, less significant biomass burning activity, and extremely low 
particle concentrations.4,12 Because of the reduced influence from fires, perturbations from 
the more interseasonally consistent source of urban areas become more important during 
the wet season. In regions downwind of cities, urban emissions produce substantial changes 
in the composition and quantities of organic aerosol.4 The enhancement of organic material 
in Amazonian regions downwind of cities, and specifically the city of Manaus, has been 
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the subject of intensive study through varying combinations of models and 
observations.1,4,11,13–19 While some of the increased can be attributed to primary organic 
emissions from the city and formation of secondary aerosol material from anthropogenic 
organics,17 the formation of SOA from biogenic volatile organic compounds (BVOCs) are 
also found to increase under influence from the urban plume and thereby contribute to 
elevated aerosol formation.  The mechanisms driving these enhancements are incompletely 
characterized, and recent efforts to reproduce the enhancements using explicit molecular 
based models were not able to reproduce observed enhancements, although parameterized 
approaches have been more successful.1,13  This indicates that our current understandings 
of how urban emissions impact biogenic SOA formation at the compound-specific level do 
not adequately capture real ambient dynamics.  

The organic composition of the atmosphere is extremely complex, with the number of 
potential secondary and tertiary products that can theoretically be produced from well 
characterized reactive gas-phase precursors extending into the millions.20,21 This 
complexity makes identifying key reaction pathways, such as those producing urban 
influenced biogenic SOA enhancement in the Amazon, highly challenging.  Controlled 
laboratory experiments provide opportunities to better understand the complexity of 
ambient conditions by simplifying systems down to individual components which can 
enable the identification of key tracers of influence from a given precursor, but these 
controlled experiments are often conducted under conditions that are extremely dissimilar 
from reality. As reported in Porter et al., 2021, the vast majority of chamber oxidation 
experiments are carried out under conditions that are far drier, more concentrated, and more 
NOx impacted than the environments in which the vast majority of earth’s SOA is being 
formed, including the central Amazon. Aqueous processing, which occurs when 
semivolatile organics partition into droplets and undergo aqueous-phase chemical reactions, 
are a potentially important mechanism controlling the composition of secondary organic 
material, particularly under humid conditions,23 but the mechanisms by which aqueous 
processing alters the chemical fate of important precursors and the effects under ambient 
conditions in the Amazon remain incompletely characterized.  

The present study investigates the organic composition of submicron aerosol at a 
speciated isomer-specific level to achieve the following goals: first, to identify the 
compositional fingerprints of anthropogenic influence on aerosol composition and 
compare these influences across seasons, and second, to identify critical knowledge gaps 
between compounds catalogued in mass spectral databases and real ambient aerosol 
organic material produced under unique conditions that will when fully characterized add 
important mechanistic insights to understandings of anthropogenic perturbations of 
biogenic secondary aerosols.   
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5.3 Methods 

5.3.1 Green Ocean Amazon (GoAmazon 14/15) Field Campaign 
5.3.1.1 Site Description 

The Observations and Modelling of the Green Ocean Amazon (GoAmazon) 
experiment was an intensive multisite meteorology and atmospheric chemistry-focused 
field campaign carried out in the vicinity of Manaus, Brazil, located in the central Amazon.  
Measurements, including both flights and fixed site measurements, were conducted over 
the course of 2014 and 2015.  The broader objectives of the campaign, descriptions of all 
fixed measurement sites, and meteorological context are discussed in detail in Martin et al., 
2016. This work focuses on observations from the T3 field site, located 70 km from the 
city of Manaus and occasionally downwind of the city, depending on local meteorology 
and wind direction.  This site was also periodically impacted by fires, which are primarily 
attributable to anthropogenic deforestation.2,12 The measurements and analysis described 
below were restricted to two intensive operating periods (IOPs), during which intensive 
analysis by complementary specialized instrumentation suites was coordinated.  The first 
of these (IOP1) was conducted from February 1 to March 31 2014 and coincided with the 
Amazon’s wet season. The Amazon wet season is characterized by low particle 
backgrounds, frequent rain, and limited impact from fire activity. The second intensive 
operating period (IOP2) was conducted from August 15 to October 15 2014, coinciding 
with the dry season.  In the dry season, rain is less frequent, particle backgrounds are higher, 
and anthropogenic burning activity is significantly enhanced.2,9,10  

5.3.1.2 Filter Sample Collection and Selection 
During both IOP’s, submicron aerosol material was collected on filters (Pallflex 

Tissuequartz) using a custom designed sequential sampler (Aerosol Devices, Inc.) which 
excluded supermicron particles using a greaseless cyclone (BGI). Due to the high humidity 
conditions, reducing the relative humidity of sampled air was necessary to prevent water 
condensation onto the filter material.  This was achieved by sampling air through 2.6 m of 
2 cm ID copper tubing which was maintained below the dew point temperature of the trailer 
housing the sequential sampler, allowing excess water to be removed. The water condenser 
also reduced potential artifacts from I/SVOC condensation onto filter material, as 
semivolatiles preferentially condensed into the water trap and were removed. This sampler 
was previously described in Yee et al., 2018, which provides additional design details. 
Field blanks were collected in each filter holder of the sequential sampler weekly. Samples 
were immediately frozen following collection and were maintained frozen prior to analysis. 
During the wet season, filters were collected with approximately 12 hour time resolution, 
with “day” filters collected between 6:00 and 18:00 local time and “night” filters collected 
between 18:00 and 6:00 local time, with non-collection periods for filter replacement 
lasting not more than 15 minutes between samples. During the dry season, filters were 
collected with 4 hour time resolution. “Pre-dawn” filters were collected between 2:00 and 
6:00, “morning” filters were collected between 6:00 and 10:00, “mid-day” filters were 
collected between 10:00 and 14:00, “afternoon” filters were collected between 14:00 and 
18:00, “evening” filters were collected between 18:00 and 22:00, and “mid-night” filters 
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were collected between 22:00 and 2:00. Over 200 total filters were collected during both 
IOP’s. A selection of samples from each season were selected to coincide with data 
collection periods from key complementary instruments (described in “Supporting 
Measurements”), known periods of interesting atmospheric conditions including 
deposition of biomass burning material from Africa, and days that have been the subject of 
previous observational and observation-model comparison.3,4,11,13,14,16,18 In total, 54 
samples were selected from the wet season, spanning 27 days of measurements.   Selected 
samples spanned from February 8th to March 20th, and included a 15-day continuous 
measurement period from March 6th to March 20th. 129 samples were selected from the dry 
season, equating to 21.5 days of dry season coverage. Selected samples fell between 
September 8th and October 11th and included a 13-day continuous analysis period from 
September 18th to October 1st.   

5.3.2 Sample Analysis 
5.3.2.1 Offline sample analysis by thermal desorption two-dimensional gas 
chromatography coupled with high resolution time of flight mass 
spectrometry (TD-GCxGC-EI-HR-ToF-MS) 

All selected samples from both IOP’s of the GoAmazon campaign were analyzed for 
speciated organic composition using thermal desorption two-dimensional gas 
chromatography coupled with high resolution time of flight mass spectrometry (TD-
GCxGC-EI-HR-ToF-MS, hereafter abbreviated GCxGC). The instrumental configuration 
used in this work, including subcomponent manufacturers, column materials, and thermal 
methods is described in Franklin et al., 2021, and a complete methodological analysis of 
the instrument discussed in Worton et al., 2017.26 Briefly, this instrument functions as 
follows. First, aliquots of filter material of standardized areas were doped with an internal 
standard solution (described in Franklin et al., 2022) and introduced into the thermal 
desorption system. Using information about total organic mass loading during filter 
collection times from supplementary measurements by the AMS (see “Supporting 
Measurements”), the number of aliquots run was adjusted to maintain a relatively 
consistent total organic mass loading into the instrument.  The approach of varying filter 
area by loading was chosen because the filter collection time averaged organic aerosol 
concentrations at the study site varied over orders of magnitude, and a fixed sample size 
approach would have rendered the organic composition of biogenic background or pristine 
samples incompletely characterizable, as the majority of analytes would be below detection 
limits. In the thermal desorption unit, the filter material is heated to evaporate the organic 
constituents into a helium carrier gas flow.  The helium carrier gas is enriched with MSTFA 
(n-methyl-n-trimethylsilyl-trifluoro-acetamide) by headspace sweep over a pure liquid 
reservoir.  MSTFA is a derivitization agent which replaces the active hydrogen in analyte 
OH groups with Si-(CH3)3 groups to significantly improve recovery of polar organics. The 
derivatized and volatilized sample analytes are then focused on a cooled inlet system before 
being rapidly heated to simultaneously introduce all analytes to the head of the first GC 
column.  Analytes are then separated by two GC columns in sequence, the first using a 
semistandard nonpolar stationary phase to separate analytes by volatility while the second 
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uses a polar stationary phase to separate analytes by polarity.  The transition between first 
and second column is cryomodulated, with the effluent from the first column collected in 
guard column material cooled by a -80 ⁰C cold air jet before being simultaneously released 
to the second column by a hot jet in intervals of 2.1 seconds. The separated analytes are 
then detected by 70 eV EI HR-ToF-MS (Tofwerk, m/Δm 4000). This technique is sensitive 
to organic compounds between C13 and C26 n-alkane volatility equivalents.  

5.3.2.2 Compilation of a custom mass spectral library and timeline creation 
The raw data outputs from the GCxGC instrument were processed by GCimage, which 

performed automated baseline correction, “blob detection” (the 2-D equivalent of 1-D peak 
detection), and retention index configuration based on the elution times of a deuterated 
alkane series included in the internal standard solution. This produced processed sample 
summaries in which each detected organic is characterized by its first-dimension retention 
index, second dimension retention time, total ion chromatograph volume, and 70 eV EI 
mass spectrum. This output is visualized in Figure 5.1, in which a raw chromatograph from 
a burn impacted time in the wet season is overlaid with circles proportional in size to the 
volume of each detected compound and color coded, with red indicating sample 
compounds, yellow indicating internal standard compounds, and blue indicating 
compounds excluded from analysis due to their presence in field blanks.  A custom mass 
spectral library including the mass spectra and retention indices of unique Amazon organic 
aerosol analytes was compiled from 11 representative samples, summarized in Table 1. As 
the goal of this work is to trace as many unique analytes as possible over both seasons, 
library curation focused on maximizing template sample to template sample differences. 
Template samples were selected based on analysis provided in De Sá et al., 2018 & 2019 
combined with a visual assessment of the total ion chromatographs to identify the 
appearance of unique populations of compounds and cover a range of atmospheric 
conditions, including differing levels of urban and biomass burning influence and different 
times of day. In addition to the compounds identified in the 11 template samples, 15 
compounds not present in the template samples but observed in significant quantities at 
other times were added to the custom mass spectral library. The use of template images for 
custom mass spectral library curation and trace organic analysis in similar GCxGC 
applications has been previously described in Zhang et al., 2018.  

Initial library curation including the unique compounds observed across the 11 template 
samples and the 15 manually added compounds yielded an initial mass spectral library 
of >1500 unique organic species.  Using the NIST14 software, all samples were searched 
against this custom library, and timelines of each compound were created by tracing 
positive matches across all samples. After timeline creation, a number of low abundance 
compounds were removed from analysis due to low quality mass spectra and/or infrequent 
appearance above detection limits, yielding a final dataset of 1,325 unique organic 
compounds traced across both IOPs.  
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5.3.2.3 Analyte categorization: directly quantifiable, identifiable, and not 
identifiable 

Quantification and characterization of known and unidentifiable compounds observed 
in this dataset was the subject of new methodological developments, and the process of 
categorizing GoAmazon organic analytes is discussed in full in Franklin et al., 2022. 
Briefly, compounds were categorized as directly quantifiable, identifiable, and not 
identifiable as follows. A custom 130 component external calibration standard including a 
range of compounds previously observed under similar conditions and spanning a range of 
functional group types, volatilities, and polarities was run at various points throughout 
sample analysis to create calibration curves (discussed in full in “Quantification” below). 
The chromatographs of the external standard were searched against the custom Amazon 
sample library, revealing that of the 1325 traced compounds, 63 directly matched the 
external standard compounds.  These species were defined as “directly quantifiable.”  Next, 
the template libraries were searched against the NIST/NIH/EPA Main mass spectral 
database. Following methodology described in Worton et al., 2018, analyte compounds 
were defined as “identifiable” if they presented a high (>800) mass spectral match factor 
with the database entry and general agreement between compound retention indices listed 
in either the NIST/NIH/EPA database or reported in the literature. In restricting the 
“identifiable” compounds list to those which can be explicitly matched to fully isomerically 
characterized entries in mass spectral databases, this work adheres to the definition outlined 
in Nozière et al., 2015, which states  “An organic compound is fully identified only if its 
molecular structure is entirely known, including its isomeric and spatial (stereo) 
configuration.”  

5.3.2.4 Quantification 
Quantification of GoAmazon compounds, including a full list of compounds 

comprising the authentic calibration external standard, is described in depth in Franklin et 
al., 2022. At 5 points throughout the analysis of GoAmazon samples, the external 
calibration standard was analysed on the GCxGC instruments at 5 sequential mass loadings 
above a zero point to create 6 point calibration curves.  The external standard (stored at -
20⁰C in a solution of 1:1 methanol:chloroform) was introduced into the instrument by 
applying it to aliquots of baked tissuequartz filter material identical to that used for 
GoAmazon aerosol collection. The external standard doped aliquots were subsequently 
doped with internal standard solution at mass loadings identical to those used on aerosol 
filter samples before being introduced to the GCxGC instrument to maximize continuity 
between calibration curves and samples.  Each calibration standard and each sample 
analyte was assigned to its nearest 3 internal standard compounds within a set search radius, 
and its volume was then normalized by the relative volumes (meaning that the volume of 
each internal standard is normalized by its own average volume) of the three nearest 
internal standard compounds.  This step corrects for two phenomena that can complicate 
quantification in GCxGC. First, it corrects for matrix effects, which is when highly loaded 
samples produce artificially enhanced signal, and second, it corrects for changes in 
instrument condition. The slope of each calibration curve, in units of (ng external standard 
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run)/(internal standard normalized volume recorded) are then computed to yield a 
calibration factor for each external standard compound.  The 63 directly matched 
GoAmazon analyte compounds along with a selection of additional compounds that were 
identifiable, highly chemically similar to external standard compounds, and close to those 
compounds in GCxGC space were then quantified using either the quantification factor 
from the calibration run which occurred closest to the sample analysis run or the average 
of the two closest calibration runs in cases where two calibration curves bookended an 
analysis period. This approach has been used in a range of GCxGC applications,25,28,30,31 
and uncertainties are estimated at ± 10% for compounds directly quantified by external 
standard and ± 50% for proxy quantified compounds.  

The not identifiable compounds were quantified using Ch3MS-RF.27 Briefly, a random 
forest-based model was trained to predict compound quantification factors based on their 
mass spectra, position in GCxGC space (eg retention index and second dimension retention 
time), and when during the analysis period they were processed from the authentic 
calibration standard and using these patterns to predict what the quantification factor of a 
given unknown analyte should be at any point during the analysis window. Median random 
forest-based quantification factor prediction error (when tested on a reserved portion of the 
external standard not used in model training) was -2%, while the median absolute error was 
37%.  For both quantification methods, once a mass had been calculated for each sample 
run, that mass was scaled by the number of aliquots of filter material, the size of the 
collection area of the filter, the duration of sampling, and the sampling flow rate to yield a 
time averaged concentration of each organic in air.  

5.3.2.5 Chemical Properties Characterization 
Developed and originally described in Kroll et al., 2011,32 carbon number-average 

carbon oxidation state space diagrams, also known as “Kroll diagrams,” map compound 
properties based on how many carbon atoms the compound has in its ambient (not 
derivatized) state (nc)  and the estimated average carbon oxidation states of those 
compounds  (𝑂𝑆௖തതതതത).  This visualization is useful for multiple reasons.  First, different areas 
of Kroll diagram space are associated with different chemical properties.  For example, 
high carbon number (nc >20) high carbon oxidation state (𝑂𝑆௖തതതതത  > -1) compounds are 
typically water-soluble organic compounds, while other regions are associated with classes 
of secondary aerosol material produced by different degrees of atmospheric oxidation. 
Second, changes in the distribution of products throughout this space are indicative of 
important chemical processes during the atmospheric oxidation of organic material. For 
example, movement from low to high carbon numbers is indicative of oligomerization, 
movement towards higher carbon oxidation states while maintaining a consistent carbon 
number backbone is indicative of functionalization, while decreased carbon numbers 
coupled with increased carbon oxidation states are the product of fragmentation towards a 
final product of CO2.  

Both carbon number and average carbon oxidation state are readily extractable or 
calculable from chemical formulae.  For all identifiable compounds therefore, the formulae 
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of their identified standard or NIST/EPA/NIH database matches were converted to their 
underivatized forms and nc and 𝑂𝑆௖തതതതത were directly calculated.  For the not identifiable 
compounds Ch3MS-RF was used to predict nc and 𝑂𝑆௖തതതതത based on compound retention 
indices and mass spectra.  A full discussion of Ch3MS-RF, along with optimization and 
performance evaluation in predicting properties for sample compounds analyzed in this 
work, is presented in Franklin et al., 2022.27 When evaluated on the identifiable compounds 
that did not overlap with the compounds in the external calibration standard, mean absolute 
error for carbon number predictions was 1.8, while mean absolute error in average carbon 
oxidation state prediction was .25.  

5.3.2.6 Event source attribution by dynamic time warping hierarchical 
clustering 

The compounds identified and traced during the wet season were clustered by dynamic 
time warping hierarchical clustering, following a methodology previously described in 
Chapter 3. First, the 100 most abundant compounds were extracted from the rest in order 
to reduce the potential influence of signal to noise ratio in assigning cluster variability. 
These compounds were then grouped by dynamic time warping hierarchical clustering.33. 
Clustering of the wet season compounds was optimized by a 9 cluster solution based on a 
combined analysis of the silhouette index, the Davies-Bouldin index, and the modified 
Davies-Bouldin index.34–36  However, upon analysis of the components of each cluster, it 
was revealed that commonly reported tracers of biomass burning such as levoglucosan had 
been assigned to the same cluster as compounds such as phthalic acid. This indicates that 
relative to the high degree of variability among the background and biogenic compounds 
observed at the field site, the urban and biomass burning influences occurred during similar 
time frames, likely due to meteorology. To differentiate between the compounds associated 
with burning activity and those associated with urban emissions, all compounds assigned 
to the combined anthropogenic influence cluster were extracted and re-clustered. This 
yielded an optimized 4-cluster solution based on the Davies Bouldin and Modified Davies 
Bouldin indices. In this clustering scheme, all previously established burning and urban 
influence tracer compounds were assigned to distinct clusters. Combined with the 8 
undisputed clusters from the original analysis, this yielded a final solution of 12 optimized 
clusters of similar temporal variability in the wet season. For each cluster, an average time 
profile was calculated by averaging the z-scored abundance of each compound in the 
cluster at each point in time.  All of the additional traced compounds from the wet season 
were then evaluated for their Pearson correlation with each of the cluster profiles and 
assigned to the cluster with which they demonstrated the strongest (most positive) 
correlation.   

Clustering of the compounds observed in the dry season was performed using the same 
methodology previously described for the wet season. Clustering was optimized at a 10-
cluster solution based on minimization of the Modified Davies-Bouldin index. In the wet 
season, tracer compounds typically associated with urban and burning influence were not 
assigned to the same clusters, and as such additional sub-clustering was deemed 
unnecessary. Given the higher time resolution of dry season measurements and the 
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consistent diurnal profiles of urban and burning influence (urban influence typically 
peaking at night, biomass burning influence peaking during the day), steps were taken to 
ensure that background biogenic compounds were not assigned to either of these groups 
based only on sharing a similar diurnal profile.  This was achieved by normalizing the time 
series of each compound by its average abundance during each filter collection period and 
re clustering the 100 most abundant compounds.  When normalized by time of day, the 
compounds assigned to biomass burning and urban associated clusters (defined by 
literature review of identifiable components as described below) remained consistent, 
indicating that these compounds are significantly impacted by burning and urban influence 
events and do not only share typical diurnal variability.  

Clusters were assigned to groups of background/biogenic, urban influenced, or biomass 
burning influenced based on a combination of literature review of identifiable constituents, 
analysis of the correlation between mean cluster profiles and selected primary tracers of 
urban or biomass burning influence, and analysis of correlation between mean cluster 
profiles and AMS-PMF factors (described in “Supporting Measurements”).  Levoglucosan 
was selected as the primary biomass burning tracer, as it was observed in significant 
quantities and its utility as a tracer of burn activity has been widely characterized and 
utilized.37 Phthalic acid was selected as the primary urban influence tracer, as it has been 
identified as an urban tracer in a variety of contexts and its abundance peaked during 
periods previously identified as urban influenced in De Sá et al., 2018, 2019. A summary 
of selected identifiable organic constituents previously established as tracers of biogenic, 
urban, and biomass burning organic aerosol formation or emissions is presented in Table 
2. Importantly, this work groups compounds by temporal variability and event source 
rather than mass origin, meaning that biogenic secondary organic aerosol products whose 
production is significantly enhanced by the presence of anthropogenic oxidants or that are 
formed exclusively in the presence of those oxidants are defined as urban or burn 
influenced. In the wet season, three clusters were identified as urban influenced, two 
clusters were identified and biomass burning influenced, and seven were defined as 
background/biogenic. In the dry season, one cluster was identified as urban influenced, two 
clusters were identified and biomass burning influenced, and seven clusters were defined 
as background/biogenic. 

5.3.3 Supporting Measurements 
Several additional measurements were made at the T3 site that provide important 

context for the analysis presented in this work. Real-time particle phase bulk measurements 
were made by high resolution time-of-flight aerosol mass spectrometer (AMS, Aerodyne).  
These measurements are described in detail in De Sá et al., 2018, 2019. The aerosol mass 
spectrometer characterized the fractional contribution of organics, sulfate, nitrate, 
ammonium, and chloride to total submicron aerosol mass. In addition, the organic fraction 
was analysed using positive matrix factorization resolve factors and attribute organic mass 
to different compositional source groups.  Complementary speciated measurements of 
individual organics were conducted made by semi-volatile thermal desorption aerosol gas 
chromatograph (SV-TAG), as described in Yee et al., 2018. SV-TAG measures total (gas 
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+ particle) and particle concentrations of organics to identify the partitioning of 
semivolatile species between gas and aerosol phases.  

5.4 Results and Discussion 
5.4.1 Anthropogenic Perturbations of Aerosol Chemical Property 

Distributions 
Burning influenced, urban influenced, and background/biogenic compounds inhabit 

different though overlapping areas of chemical properties space. Each event source group 
contains a diverse group of species and the chemical property spaces of each population 
overlap, as is indicated by the overlapping standard deviation error bars in Figure 5.2. 
However, differences between property distributions of each population of compounds 
(both interseasonally and between event source groups in each season) are statistically 
significant (t-test p-values <.05), with the following exceptions. The wet and dry season 
urban influenced clusters are not significantly different in either dimension, and the average 
carbon numbers of wet season burning influenced and background/biogenic compounds 
are not significantly different.  

As illustrated in Figure 5.2, urban influenced organics inhabit consistently lower carbon 
number and more oxidized regions of  the Kroll diagram compared to the other influence 
categories, with an average carbon number of 9.3 and average carbon oxidation state of 
-.49 in the wet season and an average carbon number of 9.2 and average carbon oxidation 
state of -.46 in the dry season. The urban influenced clusters are also most tightly grouped 
with respect to carbon number, with carbon number standard deviations of 2.7 and 2.8 (wet 
and dry season respectively), compared to standard deviations consistently > for all other 
groupings. This phenomenon is illustrated in the example sample distribution mappings 
provided in Panel B of figures 5.3 and 5.4; in both the wet season and the dry season, urban 
influence appears as a relatively tightly clustered group of species in the smallest and most 
oxidized corner of  𝑂𝑆௖തതതതത  – nc space.  Given the parameterization of precursor 
oligomerization, fragmentation, and functionalization outlined in Kroll et al., 2011, this is 
likely indicative of higher degrees of fragmentation in the secondary aerosol formation 
pathways forming these products, which could at least partially contribute to the 
phenomenon reported in Shilling et al., 2018, which found less organic aerosol mass 
enhancement from secondary aerosol formation than expected in the GoAmazon urban 
plume. The position of the average chemical properties of the both sets of urban attributed 
measurements also point to likely contributions from enhanced secondary aerosol 
production, specifically from monoterpenes.  At an average carbon number of slightly 
greater than 9, more than half of the products attributed to urban influence have 10 or fewer 
carbons, placing them within the chemical properties spaces of previously established 
oxidation pathways for monoterpenes in chamber conditions.32,38 Together, these 
observations indicate that the oxidant conditions in the urban plume shift biogenic 
precursor oxidation towards more oxygenated and lower carbon number products, and that 
these perturbation processes may play an important role in the fate of monoterpenes.    
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In contrast to the urban influenced compounds, biomass burning influenced products 
span a wide range of properties and demonstrate a significant interseasonal drift, with dry 
season burning products on average higher carbon number and more oxidized.  This is 
primarily attributable to a population of high carbon number oxidized compounds that are 
present in the dry season but not the wet season, as will be discussed in greater detail in 
Observations of Seasonally Unique Organic Aerosol Products. Some of these products are 
observable in the example property distribution of a biomass burning influenced sample 
from the dry season, illustrated in Figure 5.4 panel A. The burning influenced compound 
grouping contains a compositionally diverse suite of chemicals covering a particularly 
large range of carbon numbers, with carbon number standard deviations of 5.3 and 6.0 for 
the wet and dry seasons respectively.  This grouping includes products previously 
established as primary biomass burning products, two of which are listed in Table 5.2.  
These two well characterized primary products, a 6 carbon sugar, levoglucosan, and a 24 
carbon alkanoic acid, tetracosanoic acid, are illustrative of two disparate but consistently 
co-observed populations of biomass burning tracers, specifically low carbon number and 
highly oxidized sugars and high carbon number less oxidized alkanoic acids and 
hydrocarbons. Both groups can be seen in panel A of figures 5.3 and 5.4, in which 
levoglucosan is illustrated by the largest orange circle. In addition to these previously 
characterized primary products, there are a large number of burning attributed compounds 
falling inside the region of the Kroll diagram typically representative of secondary organic 
aerosol products,32 and despite the interseasonal shift both wet and dry seasons’ mean 
measures of biomass burning attributed aerosol properties fall within this region. As is 
discussed in Diversity, Properties, and Importance of Unidentifiable Organics these 
compounds are largely not identifiable by mass spectral database match and represent 
opportunities for additional investigation into speciated secondary aerosol production from 
biomass burning precursors.  

Background/biogenic compounds are by number the most diverse compound grouping, 
making of 40% of compounds traced in the dry season and 49% of compounds traced 
during the wet season and covering ranges of both carbon number and carbon oxidation 
state properties similar to those assigned to biomass burning source groups.  Similarly to 
the biomass burning compounds, the seasonal compositional spaces are significantly 
different largely due to a population of seasonally unique products; as discussed in 
Observations of Seasonally Unique Organic Aerosol Products and illustrated in panel A 
of figure 5.5, unique pristine products are observed in the dry season that are typically 
higher carbon number and relatively less oxidized, contributing to wet season 
background/biogenic products being higher carbon number and lower average carbon 
oxidation state compared to similarly categorized dry season products.   

Previous work has established that the bulk organic composition of Amazonian 
submicron organic aerosol ass assessed by AMS is more oxidized in the dry season than in 
the wet season.  While the composition of the urban influenced grouping remains 
statistically unchanged, the chemical distribution spaces of both biomass burning 
influenced and background/biogenic organic aerosol is significantly shifted towards more 
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oxygenated species.  While GCxGC analysis is not sensitive to the entire organic carbon 
pool and the compositional analysis presented in Figure 5.2 is not mass weighted, rendering 
the findings not directly comparable between speciated and bulk measurements, the general 
agreement between bulk and speciated observations highlights the utility of investigating 
speciated compositional shifts to better understand changes in bulk properties. Shifts in the 
non-mass weighted compositional distributions indicate that not only the relative 
abundance of products formed but the characteristics of products themselves play an 
influential role in interseasonal differences in atmospheric chemistry.   

5.4.2 Observations of Seasonally Unique Organic Aerosol Products 
Given that all samples were collected from the same location, the interseasonal 

consistency in the individual identities of submicron organic aerosol products detected was 
surprisingly low.  Of the 1,325 compounds traced, only 52% were observed in both seasons.  
31% of traced compounds were observed exclusively in the wet season, while 17% were 
observed exclusively in the dry season. This breakdown, along with the event source 
breakdown and chemical properties distributions of seasonally unique and commonly 
observed compounds, is illustrated in Figure 5.5. While some of the interseasonal 
differences may be attributable to limits of detection (meaning that some “seasonally 
unique” products may have been present in the other season but always below detection 
limits), this does not diminish the relevance of the unique products observed.  Importantly, 
species were only removed from analysis in early stages if they were not traceable in either 
season, and compounds were only classified as seasonally unique if they were never 
observed above detection limits in the other season.  A consistent limit of detection based 
on contribution to the total ion chromatograph was applied to all samples, making the 
assignments of seasonally unique products the most conservative assessment possible 
given instrumental limitations. 

Of the compounds exclusively observed in the dry season, most were attributed to 
biomass burning (75%), while 15% were attributed to urban influence and 10% attributed 
to background/biogenic sourced. By numbers, the wet season compounds were mostly 
attributed to background/biogenic sources (61%), while 25% were attributed to urban 
influence and 14% were attributed to biomass burning. A quantitative analysis of organic 
aerosol mass attributed to seasonally unique species during the ~2 week continuous 
analysis periods of each season (Figure 5.6) reveals the following findings.  Unique 
biomass burning attributed compounds (Figure 5.6 panel B) dominate the seasonally 
unique mass concentrations but are highly episodic, particularly at the beginning of the 
analysis period.  This is largely due to the significance and short duration of the appearance 
of the unique population of high carbon number oxidized compounds illustrated in the top 
row of Figure 5.5 panel C, which appeared only under particularly intense burning 
influenced conditions.  Based on their location in the Kroll diagram, these compounds are 
likely high carbon number water soluble organic carbon, which has been previously 
identified in biomass burning emissions and has been attributed to both primary 
emissions39 and atmospheric oligomerization processes, specifically aqueous-phase 
photooxidation.40 Potential explanations for the unique observations of these compounds 



148 

in the dry season include preferential loss of these products to wet deposition during the 
wet season, likely to be particularly important due to their solubilities, production 
timescales requiring the longer atmospheric residence times and greater light availability 
typical of the dry season compared to the wet season, or differences in primary emissions 
from differing combustion conditions.   

During the wet season, uniquely produced biomass burning products contributed 
relatively little to the observed organic mass compared to the urban influenced and 
background/biogenic groupings, as illustrated in Figure 5.6.  While the wet season unique 
urban influenced products exhibited relatively similar (though slightly higher carbon 
number) properties compared to the commonly observed urban influenced organics, the 
wet season background/biogenic grouping contains a population of highly compositionally 
distinct products.  These products, illustrated in the bottom row of Figure 5.5 Panel A, 
include a diverse group of high carbon number (< 15) relatively low carbon oxidation state 
species.  While previous work has identified the formation high carbon oligomers from 
aqueous processing of biogenic precursors in cloud droplets, the production of these 
products is predicted to increase with in the presence of elevated urban oxidant conditions, 
which is explicitly not the case for the compounds reported in this work.23 In fact, 5 of the 
highest carbon number, most oxidized members of this unique product group are 
anticorrelated with the urban plume tracer, producing Pearson correlation coefficients of 
< .4.  As discussed below in Diversity, Properties, and Importance of Unidentifiable 
Organics and mirroring the findings for the unique dry season biomass burning influenced 
products, the majority of these uniquely produces wet season biogenic species are not 
identifiable by database match, rendering father mechanistic insights into how these 
species are being produced beyond the scope of this work.  That said, the presence and 
properties of interseasonally unique organic aerosol components point to differences in 
secondary aerosol formation processes that could guide the needed conditions (humidity, 
temperature, concentrations) for future laboratory oxidation experiments to replicate 
previously unestablished oxidation processes.  

5.4.3 Diversity, Properties, and Importance of Unidentifiable Organics 
Of the organic aerosol constituents catalogued in this work, very few were identifiable 

by match to an authentic standard or entry in the NIST/NIH/EPA mass spectral databases.  
Despite the compositional differences previously described, this observation was highly 
consistent between seasons: 91% of compounds traced during the wet season were not 
identifiable, while 90% of compounds traced in the dry season were not identifiable.  Of 
the three influence categories described in this work, urban influenced organics were by 
numbers the least well known, with 95% of dry season and 96% of wet season compounds 
not identifiable by database match.  Burning associated compounds were consistently 
better known, with 85% of dry season and 82% of wet season biomass burning species 
available as standards or present in mass spectral databases, while the background/biogenic 
compounds fell in a middle ground, with 90% and 89% of wet season compounds 
identifiable, respectively. The properties of identifiable and not identifiable compounds in 
from each season segregated by event influence source are illustrated in Figure 5.7. Both 
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of the seasonally and compositionally unique populations described in Observations of 
Seasonally Unique Organic Aerosol Products, specifically the unique high carbon number 
dry season organics associated with biomass burning and the unique high carbon number 
wet season organics observed under background conditions were entirely not identifiable.  
The relevance of these species to the design of future oxidation experiments is discussed 
in Implications for Future Laboratory Studies below.  

The contributions of unidentifiable compounds to organic aerosol mass vary 
substantially, but are consistently dominant under wet season highly urban influenced 
conditions, as illustrated in Figure 5.8. During significantly urban influenced sampling 
periods, defined as times when the urban influence plume tracer was measured at > 1 
standard deviation above its mean, consistently > 60% of recovered aerosol mass was 
attributed to unidentifiable compounds. This observation agrees with and partially explains 
the findings reported in Mouchel-Vallon et al., 2020, which found that while model 
parameterizations using the volatility basis set were able to reproduce observed aerosol 
enhancements within the Manaus urban plume, explicit product modelling was not able to 
match the observed enhancement. While the chemical oxidation modelling is not limited 
to products catalogued in mass spectral databases, the significance of unidentifiable 
organics to total wet season submicron organic aerosol concentrations under urban 
influenced conditions highlights the following challenge in improving explicit modelling 
of these conditions.  Because the majority of individual urban influenced products cannot 
be identified and a dominant mass fraction (at least within the composition ranges to which 
GCxGC is sensitive) of organic material under urban influenced conditions is attributable 
to these unidentifiable compounds, the production mechanisms relevant to plume 
influenced secondary aerosol production cannot currently be structurally verified.  
Authentic synthesis and characterization of these products will significantly enhance 
mechanistic understandings of how urban perturbations of secondary aerosol formation 
occur, as will, as discussed below, future laboratory experiments.  

5.4.4 Implications for Future Laboratory Studies 
Replication of the unidentifiable products observed in Amazonian organic aerosol that 

are introduced here will play a critical role in expanding the scope of findings presented in 
this work.  While still highly complex, emissions of gas-phase reactive organic compounds 
are less complex and better characterized than their aerosol phase oxidation products.20,21,41 
As discussed in Diversity, Properties, and Importance of Unidentifiable Organics, the 
number and diversity of not identifiable products observed in this work is quite high; the 
time and effort required to synthesize new compounds is prohibitively high to provide a 
primary solution to improving characterization of these complex mixtures.  Laboratory 
oxidation experiments provide extremely valuable opportunities to advance understanding 
of these important compound populations; when aerosol produced from laboratory 
oxidation experiments is analyzed using the same instruments and protocols as ambient 
samples, unidentifiable compounds that are matched between experimental and ambient 
samples can be attributed to likely precursor sources and/or oxidation conditions.  However, 
in order for these comparisons to be useful, experiments must be conducted under 
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conditions that are sufficiently similar to those of the real atmosphere, and as discussed in 
Porter et al., 2021 this is usually not the case.  For this application humidity is likely to be 
particularly important, as most laboratory oxidation experiments are conducted under 
extremely low humidity conditions compared to the high humidity of the Amazon 
rainforest. Heterogeneous chemistry and aqueous-phase processing also deserve 
consideration, as aqueous-phase oligomerization has been previously reported and could 
potentially explain the not identifiable and seasonally unique high carbon number 
populations illustrated in Figure 5.5. The event source influence attributions and chemical 
properties distributions of chemically interesting compound populations such as those 
highlighted throughout this work can be utilized to design targeted laboratory oxidation 
experiments to improve mechanistic insights into the complexity of ambient aerosol 
formation. 

5.5 Conclusion 
In this work, we present a speciated isomer-specific analysis of the organic composition 

of submicron organic aerosol collected under a range of urban and biomass burning 
influenced ambient conditions over two seasons in a forested region of the Amazon 
rainforest. Based on this analysis, we conclude that oxidants from the Manaus plume 
influence the fate of biogenic precursors, producing more highly oxygenated products and 
shifting oxidation pathways towards more fragmentation compared to burning influenced 
and pristine conditions. We additionally report observations of interseasonally unique 
products, the most notable of which include high carbon number highly oxygenated 
biomass burning products in the wet season and high carbon number less oxidized products 
observed under pristine conditions in the wet season.  These findings indicate that different 
atmospheric conditions produce not only differing mixtures of secondary products but also 
entirely unique products, likely attributable to differences in atmospheric lifetimes and 
oxidant conditions. The absence of the uniquely observed organic species from mass 
spectral databases inhibits more precise mechanistic insights into how uniquely produced 
species are formed and highlights the importance of replicating real ambient oxidation 
conditions under laboratory settings and fully isomerically characterizing products of 
known precursors to better understand the processes underpinning interseasonal organic 
aerosol formation sensitivity to different anthropogenic perturbations.  Interseasonally 
common compounds are likewise incompletely characterized in mass spectral databases 
and all unidentifiable products substantially contribute to total submicron aerosol mass 
particularly under urban influenced wet season conditions.  As urbanization intensifies and 
atmospheric conditions evolve, mechanistic understandings of these and other processes 
critical to the composition and quantity of organic aerosol produced from the central 
Amazon will be critical for understanding and predicting potential impacts on public health 
and climate.  
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5.8 Tables and Figures 
 

 

Figure 5.1. GCxGC chromatogram,  of submicron organic aerosol collected at the T3 GoAmazon 
field site from 6:00-18:00 March 17, 2014.  Analytes are separated by both volatility and polarity 
with two GC columns in sequence, with decreasing volatility in the x dimension and increasing 
polarity in the y dimension. Circles indicate detected and traced compounds, with size proportional 
to compound volume. Red indicates detected and traced analytes, yellow indicates internal standards, 
and blue indicates field blank contaminations that were removed from analysis. Each detected 
compound is characterized by a structure-specific 70 eV EI mass spectrum, as illustrated for 
levoglucosan. 
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Figure 5.2. Summary of chemical properties of organic compounds speciated and traced over the wet 
and dry seasons of the GoAmazon field campaign. Marker positions indicate the unweighted average 
properties of each population of compounds in  Kroll diagram space, and error bars indicate the 
standard deviation of each property for each grouping. Compounds are assigned to event influence 
clusters of biomass burning (orange), urban plume influenced (grey) and background/biogenic 
(green). 
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Figure 5.3. Example compound properties distributions in Kroll diagram space for fire influenced 
(panel A), urban influenced (panel B), and pristine conditions (panel C) of submicron organic aerosol 
collected during the wet season of the 2014 GoAmazon field campaign. Each individual compound is 
represented by a circle whose size is proportional to its concentration.  
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Figure 5.4. Example compound properties distributions in Kroll diagram space for fire influenced 
(panel A), urban influenced (panel B), and pristine conditions (panel C) of submicron organic aerosol 
collected during the dry season of the 2014 GoAmazon field campaign. Each individual compound is 
represented by a circle whose size is proportional to its concentration.  
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Figure 5.5. Compositional analysis of seasonally unique (exclusively observed in either the wet or dry 
seasons) and commonly observed organic compounds from GCxGC analysis of submicron aerosol 
collected during the GoAmazon field campaign.  Panel A illustrates the properties distributions of 
wet season compounds in  𝑶𝑺𝒄തതതതത – nc space segregated by the event source clusters to which those 
compounds were assigned, with unique compounds indicated in blue and commonly observed 
products illustrated in purple. Panel B illustrates the fractional contribution of wet season unique, 
dry season unique, and consistently observed species to the total number of compounds traced. Panel 
C illustrates the properties distributions of dry season compounds in  𝑶𝑺𝒄തതതതത – nc space segregated by 
the event source clusters to which those compounds were assigned. 

 

 

Figure 5.6. Concentration time series of summed seasonally unique organic aerosol compounds 
observed in the GoAmazon field campaign during the continuous analysis periods of the wet season 
(Panel A, outlined in blue) and dry season (Panel B, outlined in red). Mass attributed to biomass 
burning event influence is indicated in orange, mass attributed to urban influence is indicated in 
grey, and mass attributed to background/biogenic species is indicated in green.  
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Figure 5.7. Chemical properties distributions in Kroll diagram space of identifiable (pink) and not 
identifiable (teal) organic compounds identified in submicron aerosol collected at the GoAmazon 
field campaign. Panel A illustrates compounds observed in the wet season, vertically segregated by 
attribution to burning influenced, urban influenced, and background/biogenic event source groups. 
Panel B illustrates compounds observed in the dry season, similarly vertically segregated.  
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Figure 5.8. Contributions of identifiable (pink) and not identifiable (teal) compounds to submicron 
organic aerosol concentration during the wet season during the GoAmazon field campaign in 2014. 
Days significantly impacted by emissions from the urban plume are outlined in black, with “plume 
influence” defined as periods when the urban influence tracer was measured at >1 standard 
deviation above its mean in the wet season. 

Table 5.1. Summary of template samples used in compilation of custom mass spectral library for 
GCxGC analysis of submicron organic aerosol samples collected in the GoAmazon field campaign. 

Season Sample Collection Period Description 
Wet 2/9/2014  6:00 – 18:00 Urban Impacted 
Wet 2/13/2014  6:00- 18:00 Low Pollution 
Wet 2/16/2014 6:00- 18:00 Low Pollution 
Wet 2/16/2014 18:00- 

2/17/2014 6:00 
Low Pollution 

Wet 3/9/2014 6:00-18:00 Urban and Burn Impacted 
Wet 3/14/2014 6:00-18:00 Urban and Burn Impacted 
Wet 3/17/2014 6:00-18:00 Urban Impacted 
Dry 9/8/2014 6:00-18:00 Low Pollution 
Dry 9/14/2014  2:00- 6:00 Urban Impacted 
Dry 9/23/2014  14:00 – 18:00 Burn Impacted 
Dry 9/27/2014  14:00 – 18:00 Burn Impacted 
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Table 5.2. Example identifiable tracer compounds assigned to source groups created from 
hierarchical clustering of GCxGC speciated analysis of submicron aerosol collected during the 
GoAmazon field campaign. 

Assigned Event Source 
Group 

Compound Notes Reference 

Biomass Burning Levoglucosan Cellulose 
combustion 

Bhattarai et al., 
2019 Simoneit et 
al., 1999 

Tetracosanoic 
acid 

 Oros and Simoneit, 
2001 

Urban Emissions Plume Phthalic Acid Oxidation product 
of polycyclic 
aromatic 
hydrocarbons 

Al-Naiema and 
Stone, 2017  
Al-Naiema et al., 
2020 

Azelaic acid Cooking aerosol 
tracer 

Wang et al., 2020 

Background/Biogenic Pinic Acid Monoterpene 
oxidation product 

Christoffersen et 
al., 1998 
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6 Conclusions and Future Work 
 

In this work, anthropogenic influences on two classes of natural aerosol, coastal marine 
aerosol and tropical organic aerosol, are compositionally characterized with an aim of 
contributing to the body of knowledge required to advance analysis and prediction of 
aerosol impacts on public health and climate.  Given the high degree of chemical 
complexity of organic aerosol composition, the development of new methodologies that 
take advantage of the full scope of information produced by advances in instrumentation 
was embraced, resulting in the development of the Ch3MS-RF model, which has broad 
applications throughout environmental chemistry.  In Chapter 1, the motivation of this 
work, namely the importance of organic aerosols for climate and public health, knowledge 
gaps in ambient organic aerosol source composition and environmental transformations, 
are described, and the current state of knowledge on marine and tropical biogenic aerosols 
are introduced. In Chapter 2, the Ch3MS-RF model is introduced, described, and evaluated, 
specifically for the application of predicting properties of tropical organic aerosol species. 
This model predicts atmospherically relevant properties of organic compounds based only 
on their mass spectra and retention indices, making it applicable data produced by widely 
utilized GC-MS instrumentation, as well as GCxGC-MS. This model is utilized in Chapters 
3 and 5 to investigate human influences on costal sea spray aerosol and tropical organic 
aerosol, respectively. The analysis of coastal sea spray aerosol presented in Chapter 3 finds 
that anthropogenic pollutants, in particular personal care products, oils, and PAHs, 
contribute substantially to the organic content of sea spray aerosol in coastal regions, but 
that microbiological blooms have the capacity to transform this organic content, producing 
biogenic and biologically transformed products that are largely missing from current mass 
spectral databases. Chapter 4 focuses on one specific class of anthropogenic marine 
pollutants, the benzothiazoles, and finds that these species are emitted from coastal waters 
in both gas and aerosol phases, emissions that cannot be fully characterized by or predicted 
from concentrations observed dissolved in ocean water. This chapter additionally explores 
the atmospheric oxidation chemistry of benzothiazole, finding that it has the capacity to 
contribute to secondary aerosol formation and the coastal marine sulfur budget. In Chapter 
5, anthropogenic influences on organic aerosol in the Amazon Rainforest are investigated 
during both the wet and dry seasons. Findings indicate that fires and urban pollution impact 
organic composition differently, but that urban influences on aerosol composition remain 
compositionally consistent season to season while fires produce seasonally unique and 
compositionally distinct compounds. In this final chapter of the dissertation, key 
opportunities for future advances in each of this work’s main research thrusts are outlined.  
The primary priorities suggested here include future developments of Ch3MS-RF and 
speciated atmospheric chemistry data science more generally, increased characterization 
of organic emissions from ambient and simulated polluted marine environments, and 
development of oxidation experiments to more closely simulate the conditions of ambient 
tropical oxidation chemistry to elucidate critical aerosol formation and ageing processes.  
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6.1 Expanded Applications of Machine Learning in Speciated Atmospheric 
Chemistry Data Analysis 

As is true for most complex environmental mixtures,1,2 the majority of compounds 
separated and detected from the marine and tropical organic aerosol material reported in 
Chapters 3 and 5 are not identifiable via comparisons to available mass spectral libraries. 
To address this challenge, in Chapter 2 this work presents Ch3MS-RF, a machine learning 
model for predicting the chemical properties of unidentifiable organic aerosol constituents. 
Four properties, specifically O:C ratio, volatility, average carbon oxidation state, and 
carbon number were modeled with success. Accurate prediction of these properties 
represents significant opportunities in atmospheric chemistry, as they allow compound 
populations to be represented and visualized in Kroll diagram3 and volatility basis set4 
feature spaces, which are broadly utilized in the atmospheric chemistry community and 
particularly useful for chemical modelling applications.5 Given that Ch3MS-RF predicts 
vapor pressures with greater accuracy than formula-based parameterizations, volatility 
basis set parameterizations using GC-MS and Ch3MS-RF are likely to be more accurate 
than those using methods that characterize organic composition by formulae, for example 
by soft ionization techniques.  

The number of properties that can be predicted by Ch3MS-RF is not limited to those 
included in Chapter 2 however, and future developments to explore predictive capabilities 
across additional property spaces represent significant opportunities for growth. For 
example, prediction of molecular weight when coupled with the established volatility 
prediction capabilities would enable compounds to be characterized by the molecular 
corridors framework developed and described in Li et al., 2016 and Shiraiwa et al., 2014.6,7 
This framework has been identified as particularly useful in tracing the evolution of 
secondary aerosol constituents from volatile precursors. Random forest modeling is not 
limited to continuous variable prediction; the methodology is adaptable to categorization, 
and with very limited adjustments could be used to identify groupings, for example by 
chemical functional groups (acid, aldehyde, aromatic, etc). While initial efforts at 
functional group categorization stalled at early stages due to challenges related to how 
compounds with multiple functional group types should be categorized, binary predictions 
of whether or not a given compound contains a functional group of interest have shown 
significant promise.  Successful implementation of functional group prediction would be 
useful for a variety of applications, including identifying oxidant-specific product classes 
and improving comparisons between chamber and ambient samples to yield additional 
information about the product classes that are currently not reproduced under controlled 
laboratory conditions, such as the seasonally unique Amazonian organic aerosol 
compounds discussed in Chapter 5.  

In addition to expanding the capabilities and applications of Ch3MS-RF, the 
atmospheric chemistry community can significantly benefit from adapting other chemistry 
focused machine learning and data science-focused platforms pioneered in other subfields. 
One highly applicable example of this is the Global Natural Products Social Molecular 
Networking (GNPS) platform, which was initially developed for metabolomics 
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applications and is based on a neural networking methodology.8 This tool goes beyond 
mass spectral matching for identification purposes to create associations or families of 
molecules based on spectral similarities. In atmospheric applications, this methodology 
could yield critical chemical categorization of unidentifiable atmospheric organics, 
including identifying groupings of products from a single precursor in the case of 
secondary aerosol formation or clusters of similarly sourced contributions to sea spray 
aerosol composition. This tool is likely to be of particular use in organizing and identifying 
key functional relationships within UCB-GLOBES, the database of ambient and 
experimentally produced organic compounds observed across space and time described in 
Chapters 3 and 5.  When combined with the time series based groupings utilized within 
this work, which group compounds by similar event sources, compositional groupings may 
enable future analysis to determine not only what events cause emissions of any given 
compound of interest but also the precursor or precursor class that contributed the mass. 
This capability would mark a significant step forward in speciated atmospheric organic 
analysis and increase the mechanistic insights that can be gained from ambient 
measurements. 

6.2 Marine Pollution Aerosolization in Coastal Environments 
 Chapters 3 and 4 describe the emissions of organic pollutants from the coastal ocean, 
with an emphasis on chemical composition of primary sea spray aerosol. Chapter 3, which 
focuses on a single pollutant class, the benzothiazoles, finds that the concentrations and 
speciation of organic pollutants observed in nascent SSA are not reflective of the dissolved 
organic phase. This supports previous literature, which has found that many organic 
pollutants become highly concentrated in the sea surface microlayer, which leads to 
significant enrichments in sea spray aerosol compared to bulk water.9–12 Walsh et al., 2017 
has proposed sea spray aerosols as an important route of exposure for coastal communities 
to become exposed to hazardous materials including pesticides, heavy metals and 
phthalates.13 However, as noted in that work, epidemiological evidence for aerosol 
exposure is difficult to establish due to the fact that coastal communities chronically 
exposed to coastal sea spray aerosol also often consume local fish, another well established 
and more easily monitored route of exposure.  Chronic human exposure to anthropogenic 
pollutants via sea spray aerosol inhalation is beyond the scope of this work and the chamber 
sea spray aerosol production methodology presented here. However, the findings presented 
in this work, particularly those discussed in Chapter 3, indicate that additional 
investigations of the mechanics of pollutant transfer to primary sea spray aerosol warrant 
future inquiry, as do ambient observations of sea spray aerosol composition in more 
polluted coastal contexts.  

A summary of hazardous marine pollutants that have been reported in coastal ocean 
water is presented in Table 1, along with the health impacts associated with chronic 
exposures to those pollutants. Some have been previously measured in sea spray aerosol, 
but measurements of the speciated organic composition of sea spray aerosol remain sparse, 
and investigations of the health effects of exposures to pollutants via sea spray aerosols 
even more so. For example, the disposal of large quantities of DDT off the coast of Los 
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Angeles has been identified as a significant source of pesticides to the ocean floor, leading 
to sediment contamination levels ~40 times those observed at highly impacted surface 
superfund sites.14 A speciated analysis of sea spray aerosol composition at the coast of Los 
Angeles or on the Channel Islands with pesticide and pesticide metabolite detection 
capabilities could yield critical context to the marine aerosol DDT exposure mechanism 
proposed in Walsh et al., 2017 and provide coastal communities with important health-
relevant information. Priorities for future sea spray aerosol organic analysis include 
pesticides, pharmaceuticals, and personal care products (including UV filters). Enrichment 
of the sea surface microlayer with anthropogenic compounds also has implications for 
marine microbiology and the emissions of biogenic compounds from the ocean, as the sea 
surface microlayer has its own biologically rich ecosystem.9 The interactions between 
anthropogenic pollutants and microbiology in the sea surface microlayer and resulting 
impacts on sea spray aerosol composition are an important area of future environmental 
engineering research, with implications for public health and atmospheric chemistry in 
coastal regions.  

Table 6.1. Classes of organic pollutants previously observed in coastal ocean water and/or sea spray 
aerosols, along with current public health concerns related to chronic exposure to those pollutants.  

Compound Class Observations in 
Coastal Oceans 
Water 

Observations in 
SSA 

Health Impacts 

PAHs Frias 201015, 
Manodori 200616 

Chapter 3, 
Cincinelli 200110 

Carcinogenic17 

Benzothiazoles Chapter 4, Liao 
201818 

Chapter 4, Chapter 
3 

Carcinogenic18 

Phthalates Walsh 201713 Chapter 3, 
Cincinelli 200110 

Endocrine 
disruptors19 

Pesticides Cox 1972, Frias 
201015 

 Carcinogenic, 
neurotoxic20 

UV Filters Tovar-Sanchez 
201321 

Chapter 3 Potential endocrine 
distruptors22 

Siloxanes Hong, 201423 Chapter 3  
Pharmaceuticals Gaw 201424  Antibiotic 

resistance 
(indirect), 
incompletely 
characterized25 

Heavy Metals Walsh 201713 Li 201826 Cognitive delays, 
neurocognitive 
disorders, 
behavioral issues, 
respiratory 
problems, cancer27 

PCB’s Frias 201015, 
Manodori 200616 

 Endocrine 
disruptor28 
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6.3 Reproducing Tropical Secondary Aerosol Formation and Perturbations 
in a Laboratory 
In Chapter 5, the influences of fires and urban emissions on organic aerosol in the 

central Amazon are traced and compositionally characterized, revealing shifts in product 
formation and seasonally unique compound populations formed under pristine and 
pollution impacted conditions. One key finding limiting the ability to gain additional 
mechanistic insights from the seasonally unique and source-specific species is the novelty 
of the uniquely produced products, which are largely not currently listed in mass spectral 
databases, making them nearly impossible to definitively identify.  Additional exploratory 
research has been conducted to attempt to expand characterization and source attribution 
of the unidentifiable compounds, specifically through analyzing aerosols produced by 
single precursor oxidation studies of monoterpenes and sesquiterpenes. The results of this 
comparative work are limited but informative; while many unidentifiable particle-phase 
compounds were formed in the chamber oxidation experiments, few overlapped with those 
produced in the Amazon samples. Specifically, only 48 out of 1378 unidentifiable spectra 
from the Amazon matched compounds produced by oxidation experiments utilizing alpha 
pinene, limonene, beta caryophyllene, and myrcene (each individually, not in conjunction), 
all of which are significant terpene emissions in the Amazon.29,30  None of the 
unidentifiable Amazon compounds reproduced in chamber oxidation experiments belong 
to the dry season unique high carbon number biomass burning group or the seasonally 
unique wet season biogenic populations highlighted in Figure 5.5.  

 Replicating unique compounds observed in ambient conditions through laboratory 
oxidation experiments is critical to gaining additional mechanistic insights into how 
secondary aerosol is formed in the atmosphere.  However, doing so requires replicating 
real ambient oxidation conditions in ways that can be difficult to achieve and are not 
commonly utilized. As discussed in Porter et al., 2021,31 the conditions typically used in 
controlled laboratory oxidation experiments are concentrated in a property space rarely 
seen in the atmosphere, namely dry, ‘room temperature,’ and highly concentrated with both 
precursors and oxidants. For the specific example of better replicating Amazonian 
conditions and reproducing unique anthropogenic perturbation-associated species, 
conducting experiments under high humidity conditions and expanding analysis into the 
role of aqueous processing are likely to prove particularly important. In coordination with 
the expanded data science methods described in section 6.1, designing chamber oxidation 
experiments to replicate ambient conditions of interest and analyzing products formed from 
those experiments identically to ambient samples will enable significant advances in our 
understanding of the processes by which human emissions alter biogenic secondary aerosol 
formation in the tropics.  
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