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Abstract

Structure-Aware Methods in Large-Scale Computational Problems: Machine Learning,
Optimization, and Control

by

Salar Fattahi

Doctor of Philosophy in Engineering- Industrial Engineering and Operations Research

University of California, Berkeley

Associate Professor Javad Lavaei, Co-chair

Assistant Professor Somayeh Sojoudi, Co-chair

Within the realm of computational methods, there has been a long-standing trade-off be-
tween the scalability of different techniques and their optimality guarantees. However, most
of today’s systems—such as transportation, power, and brain networks—are large-scale and
safety-critical, thereby requiring both scalability and optimality guarantees. To address
these challenges, in this dissertation we develop structure-aware, scalable, and guaranteed
computational methods for the learning, optimization, and control of safety-critical systems.

In the first part of the dissertation, we consider two classes of machine learning problems,
namely graphical model inference and robust matrix recovery. First, we provide a massively-
scalable algorithm for the graphical model inference, where the goal is to reveal hidden
correlation structures of high-dimensional datasets. We introduce a graph-based method
that is capable of solving instances with billions of variables in less than an hour, signifi-
cantly outperforming other state-of-the-art methods. Next, we consider a class of nonconvex
and nonsmooth optimization problems in safe machine learning. We show that, despite
their nonconvexity, a large class of problems in robust matrix recovery is devoid of spurious
and sub-optimal solutions, thereby leading to the guaranteed success of fast local-search
algorithms.

The second part of the dissertation is devoted to different classes of network optimization
problems. In particular, we consider a class of generalized network flow problems that are
at the backbone of many modern interconnected systems, such as power, water, and gas
networks. Unlike many of its classical counterparts, the generalized network flow problem is
highly nonconvex due to the incorporation of nonlinear losses in its formulation. To address
this issue, we propose an efficient convex relaxation of the problem, and provide conditions
under which the proposed relaxation is exact. Next, we focus on a specialized network opti-
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mization problem in power systems, namely optimal transmission switching, where the goal
is to find the optimal topology of a power grid to minimize its cost of operation, while satisfy-
ing operational and security constraints in the network. The optimal transmission switching
is a NP-hard optimization problem with mixed-integer variables. However, by exploiting the
tree-like structure of realistic power grids, we introduce an strengthened formulation of the
problem that can be solved efficiently in practice.

The third part of the dissertation is concerned with the design of robust and distributed
control policies for dynamical systems with uncertain models. To this end, first we propose
a sparsity-exploiting technique for the efficient learning of a structured dynamical system,
based on a limited number of collected input-output sample trajectories from the system. In
particular, we quantify the sample complexity of the sparse system identification problem
in a high-dimensional setting, where the dimension of the system is significantly greater
than the number of available data samples. Given the estimated dynamics, our next goal is
to design a robust and distributed control policy for the system by taking into account the
uncertainty of its estimated model. We show that near-optimal distributed controllers can be
learned with logarithmic sample complexity and computed with near-linear time complexity.
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Chapter 1

Introduction

This dissertation focuses on developing data-driven and large-scale computational meth-
ods for modern interconnected and safety-critical problems. Today’s systems are complex
and large, often with a massive number of unknown parameters which render them doomed
to the so-called curse of dimensionality. The ever-growing and dynamic interconnections
between smart systems (such as smart grids and cities) have been a major impediment to
their safe and resilient operation. The goal of this dissertation is to identify, study, and
exploit the underlying hidden-but-useful structures of these large-scale and real-world prob-
lems with the goal of designing certifiable computational methods that, at the same time,
can be easily implemented and used in practice.

Our main goal is to strike a balance between two major paradigms, namely theory vs.
application of the computational methods, and their efficiency vs. accuracy. In particu-
lar, we will make use of cutting-edge techniques in learning, optimization, and control to
solve massive-scale problems that stem from real-life applications, with a special focus on
interconnected and safety-critical systems, such as power, transportation, and brain net-
works. Indeed, modern computational problems are complex and, consequently, most of the
available algorithms lean towards enhancing their efficiency or accuracy, at the expense of
sacrificing the other. We strive to develop structure-promoting algorithms that can provide
the best of both worlds. In particular, by taking advantage of application-specific structure of
the problem (such as sparsity, locality, low-rankness), our goal is to guarantee their efficient
solvability by developing practical algorithms, while ensuring the near-global optimality of
the obtained solutions.

In the following sections of this chapter, we first provide a general introductory overview
of the problems that are considered in this dissertation, as well as the challenges we may
face towards solving them. Next, we provide a brief summary of our contributions, together
with the relevant publications. We conclude this chapter by presenting the basic notations
that are used throughout the dissertation.
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1.1 Optimization as an Overarching Framework

A major part of this dissertation is devoted to solving optimization problems in the form
of

min
x∈Rn

f(x; θ) (1.1a)

subject to x ∈ X (θ) (1.1b)

where:

- x ∈ Rn is the targeted multivariate decision variable. For instance, it may capture the
amount of generations for different generators in a power system; it can correspond to
the unknown interactions between different brain regions in response to various physical
or mental activities; or it may indicate an optimal control policy for a dynamical
system.

- θ ∈ Rm is the exogenous vector that (directly or indirectly) captures the parameters
of the problem. For instance, it may include the generation capacities of different
generators in a power system; it may correspond to the functional MRI scans that are
collected from a brain network; or it can encapsulate specific parameters of a dynamical
system.

- f(x; θ) is the objective function in terms of x and parameterized by θ. For example, it
may correspond to the operational cost of a power system; it can capture the estimation
error of an inferred brain connectivity network; or it may be equivalent to some notion
of robustness in a dynamical system.

- X (θ) is the feasible set of the optimization problem (parameterized by θ), i.e., the set
of all feasible values that can be attributed to the decision variable x. The feasible set
X (θ) can be either explicitly characterized by a set of inequality or equality constraints,
or it may be given implicitly via a set of (noisy) observations from the problem. For
instance, it may correspond to different security and operational constraints in a power
system; it can correspond to various structural constraints on a brain connectivity
network; or it may capture certain communication constraints on the set of feasible
control policies for an interconnected dynamical system.

Evidently, our ultimate goal is to obtain a globally-optimal solution x∗ to (1.1) that uni-
versally minimizes the objective function f(x, θ) over all possible feasible points in X (θ).
However, as will be delineated later, depending on the complexity of the optimization prob-
lem, one may only hope to obtain a locally optimal solution1, or merely a feasible solution
without any guarantee on its local or global optimality.

1A solution x̄ is locally optimal if there exists ε > 0 such that f(x̄, θ) ≤ f(x, θ) for every x ∈ X (θ)∩B(x̄, ε),
where B(x̄, ε) is a Euclidean ball centered at x̄ with radius ε.
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As will be shown later in the dissertation, many real-world problems can be cast as
instances of (1.1). Before delving into the details of such problems, first we will present a
number of universal challenges in solving the aforementioned optimization problem.

1. Convexity vs. nonconvexity: It is a conventional wisdom that the complexity of solv-
ing an optimization problem is closely tied to its convexity. Roughly speaking, an
optimization problem is convex if it satisfies two conditions: 1) the objective func-
tion f(x, θ) is convex, i.e., the segment between any two points on the function lies
above the function2, and 2) the feasible set X (θ) is convex, i.e., any point on the
segment between any pair of feasible points is also feasible3. It is well-known that
convex optimization problems are theoretically easy to solve due to an equivalence be-
tween their local and global optimality conditions: any locally-optimal solution is also
globally-optimal. This important property enables different local-search algorithms to
solve (1.1) to global optimality. On the other hand, a nonconvex optimization may
possess multiple local/global solutions, any of which may be recovered and returned
as a candidate solution using our numerical algorithms.

However, a recent line of research reveals that a criterion solely based on “convexity vs.
nonconvexity” is not enough to characterize the difficulty of solving an optimization
problem. A case study that best exemplifies such phenomenon is the famous low-rank
matrix recovery problem, where the goal is to recover a low-rank matrix given a limited
number of (possibly noisy) observations. Due to the inherent nonconvexity of the
low-rank matrix recovery problem, the most commonly-used methods for solving this
problem are based on convex relaxation techniques, where the problem is relaxed into a
convex optimization problem (typically a semidefinite programming) in a lifted space,
where the number of variables is often significantly greater than that of the original
formulation. However, it has been recently observed that such convex relaxations
are not necessary to guarantee the recovery of a globally-optimal solution. In fact,
it is shown that, for different classes of low-rank matrix recovery problems, globally-
optimal solutions may be obtained via their nonconvex formulations much faster than
those obtained using convex relaxation techniques. This counter-intuitive observation
gives rise to two important points:

- The equivalence between local and global optimality by itself is not enough to
guarantee the efficient solvability of an optimization problem. In other words,
even if an algorithm is guaranteed to converge to a globally-optimal solution, it
may still have overwhelmingly high per-iteration complexity, thereby making it
prohibitive to use in practice.

- The convexity of an optimization problem is only a sufficient condition for the
absence of bad local minima. In other words, an optimization problem can be

2More formally, for any x, x̄ ∈ Rn and α ∈ [0, 1], the inequality f(αx + (1 − α)x̄, θ) ≤ αf(x, θ) + (1 −
α)f(x̄, θ) holds.

3More formally, for any x, x̄ ∈ X (θ) and α ∈ [0, 1], we have αx + (1− α)x̄ ∈ X (θ).
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(a) 3D Landscape (b) Level-sets

Figure 1.1: An instance of low-rank matrix recovery problem that is devoid of spurious local
solutions (see Chapter 3 for more details). a) 3D landscape of the function shows that it
has two globally-optimal minima without any spurious local minima, b) Level-sets of the
function reveal that the it is neither convex nor quasiconvex.

nonconvex, and yet, it may be devoid of spurious and undesirable local minima;
see Figure 1.1 for an example of such functions.

A key takeaway of the aforementioned observations is: Understanding the true com-
plexity of modern optimization problems requires rethinking convexity as a measure of
their difficulty ; a subject that is at the core of Chapter 3 of this dissertation.

2. Stochasticity: Thus far, our discussion was based on the assumption that we have a
full knowledge of the parameter vector θ of the optimization problem (1.1). Indeed,
such assumption is rarely valid in practice. For instance, the functional MRI scans can
only provide limited observations of the brain activity, and are often subject to random
noise. Similarly, the true model of a dynamical system is rarely known in practice and,
instead, it is estimated indirectly by analyzing its behavior in response to different
inputs. This indeed adds a new dimension to the complexity of solving (1.1): Not only
do we need to design efficient algorithms for solving (1.1), but we also need to infer
an accurate estimate θ̂ of θ based on a limited number of noisy observations/samples
{wi}Ni=1. More formally, our goal is to design an estimator θ̂ = φ(w1, . . . , wN) and solve
the following surrogate optimization problem:

min
x∈Rn

f(x; θ̂) (1.2a)

subject to x ∈ X (θ̂) (1.2b)
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Furthermore, our aim is to characterize the sample complexity of the above optimization
problem, i.e., the number of samples N that is required to guarantee the closeness of
the surrogate optimization problem (1.2) and its solutions to its true counterpart (1.1).
We will elaborate more on this connection in Chapters 3, 6, and 7 of the dissertation.

3. Robustness: As mentioned before, most of the problems that are considered in this
dissertation are motivated by safety-critical applications. In many cases, the relia-
bility requirements for a safety-critical system can be translated into some measure
of robustness of its corresponding optimization problem. For instance, suppose that,
instead of directly observing the true parameter θ, we know a priori that it belongs
to a pre-defined set of parameters Θ, i.e., θ ∈ Θ. Then, instead of estimating the
true parameter, one may take a more conservative approach of solving the following
optimization problem

min
x∈Rn

max
θ̃∈Rm

f(x; θ̃) (1.3a)

subject to x ∈ X (θ̃) (1.3b)

θ̃ ∈ Θ (1.3c)

which can be described as follows: Due to the unknown nature of the true parameter
θ, our goal is to pessimistically obtain a solution that is governed by a worst-case
parameter θ̃ ∈ Θ. Despite its favorable worst-case guarantees, it is not surprising that
the robust variants of optimization problems are often significantly harder to solve. In
Chapter 7, we will consider a special class of robust optimization problems that arise
in the distributed control of dynamical systems.

1.2 Summary of Contributions

The intelligent, efficient, and resilient operation of safety-critical systems is contingent
upon developments at different fronts of data analytics and computational methods, includ-
ing the scalability of the optimization techniques, their robustness against uncertainties, and
the efficiency in the learning methods. The dimensionality and complexity of modern safety-
critical problems is overwhelmingly high, often surpassing what existing methods can solve
in a reasonable amount of time. Throughout the dissertation, we show that exploiting the
underlying structure of real-world systems, such as their sparsity, locality, or low-rankness,
is a key game-changer in the pursuit of better computational methods. In this section, we
will briefly summarize the contributions of the dissertation.

Machine Learning

Chapters 2 and 3 of the dissertation are devoted to two classes of problems in safe machine
learning, namely sparse inverse covariance estimation and robust matrix recovery. These
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problems are extensively used in brain and transportation networks, safe recommendation
systems, and self-driving cars.

• Chapter 2: Graphical models are fundamental methods for obtaining interpretable
descriptions of large-scale datasets. For instance, in Neuroscience, it is known that
brain connectivity can be studied by inferring an associated graphical model based on
functional MRI measurements. As another example, graphical models can be used in
short- and long-term traffic flow prediction and control of intelligent transportation
systems (ITSs). At the heart of graphical model inference is sparse inverse covariance
estimation. The best known algorithms for sparse inverse covariance estimation have
time complexities on the order ofO(n4), making them prohibitive to solve massive-scale
instances of the problem. This is despite the fact that in high-dimensional settings,
the sample covariance matrix can be efficiently constructed in O(n2). The prohibitive
computational cost of the current solvers for sparse inverse covariance estimation mo-
tivated us to investigate the following question: Is it possible to design low-complexity
algorithms for sparse inverse covariance estimation?

In Chapter 2, we provide an affirmative answer to the above question. In particular,
we show that, under mild assumptions, a simple thresholding operation on the sample
covariance matrix reveals the sparsity pattern of the inverse covariance matrix. By
building upon this result, we prove that sparse inverse covariance estimation can be
solved to near-optimality in O(n2) time and O(n) memory complexities. Furthermore,
we show the graceful scalability of the proposed method on real-life functional MRI
data and traffic flows for transportation networks. In practice, our method obtains
accurate estimates of the inverse covariance matrix for instances with more than 3.2
billion variables in less than 30 minutes on a laptop computer, while other methods do
not converge within 4 hours.

• Chapter 3: A recent line of work has shown that a surprisingly large class of smooth-
but-nonconvex low-rank optimization problems—including matrix completion/sensing,
phase retrieval, and dictionary learning—has a benign landscape, i.e., every local solu-
tion is also global. Despite the nonconvexity of these problems, their benign landscape
implies that simple local-search algorithms are guaranteed to converge to a globally-
optimal solution, thus leading to significant computational savings and zero optimality
gap. In general, the validity of these results relies heavily on the smoothness of the
objective function. However, such smooth objective functions are not robust against
outliers, i.e., they cannot correctly identify and reject large-and-sparse noise values. In-
spired by this deficiency in existing methods, we studied the following open problem:
Does robust low-rank optimization in the presence of a nonsmooth objective function
still have a benign landscape?

In Chapter 3, we consider an important class of such problems, namely non-negative
robust principal component analysis (NRPCA), in which the goal is to exactly recover
the non-negative and low-rank component of a measurement matrix, despite a subset
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of the measurements being grossly corrupted with large noise values. We prove that
NRPCA has no spurious local minima under a set of necessary and sufficient conditions,
such as strict positivity of the true components, as well as the absence of bipartite
components in its sparsity graph. This implies that, despite the highly nonsmooth
and nonconvex nature of NRPCA (see Figure 1.1 for an illustrative example), simple
local search algorithms can efficiently recover its globally-optimal solution. By building
upon this result and leveraging contemporary techniques in random graph theory, we
provide probabilistic guarantees on the absence of spurious local minima under random
sampling and noise regime. In particular, we show that up to a constant factor of the
measurements could be corrupted by large amounts of noise without creating any
spurious local solution.

Network Optimization

Chapters 4 and 5 of the dissertation consider two classes of network optimization prob-
lems, namely generalized network flow and optimal transmission switching, with primary
applications in power systems.

• Chapter 4: Network flow problems play a crucial role in operations research with a
myriad of applications in assignment, electrical power, and production networks, to
name a few. Most of the classical results on the network flow problem are contingent
upon the lossless nature of the network. However, physical systems are lossy, where
the loss is often a nonconvex function of the flows. An example is power networks
where the loss over each line is given by a parabolic function due to Kirchhoff’s circuit
laws. Indeed, the accurate incorporation of these nonlinearities in the optimization of
such realistic network flow problems can ensure their cost-efficient and safe operation,
thereby leading to tremendous economic and environmental benefits.

In Chapter 4, we investigate optimization over lossy networks in the context of the
generalized network flow (GNF) problem. GNF aims to minimize the operational cost
of a lossy network by optimizing over the nodal injections subject to flow constraints.
Solving GNF to optimality is a daunting task due to the incorporation of nonlinear
losses in its formulation. However, we introduce an efficient convex relaxation of the
problem that incurs zero optimality gap. In particular, we prove that, under practical
conditions, the globally optimal cost and nodal injections can be efficiently obtained
by simply relaxing the nonconvex equality constraints to convex inequalities. Un-
like the computationally-expensive convexification techniques—such as sum-of-squares
(SOS)—that are based on lifting the problem to higher dimensions, our proposed con-
vex relaxation is defined over the original space of variables, making it suitable for the
real-time operation of lossy networks in realistic scales.

• Chapter 5: Optimal transmission switching (OTS) problem is a recently-developed
control paradigm to optimize the topology of the power networks with the goal of
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improving the dispatch of electricity, while satisfying physical and operational con-
straints. The nonlinear and mixed-integer nature of this problem has been the major
impediment to the scalability and reliability of its existing solvers.

In Chapter 5, we introduce an efficient bound strengthening method for solving the
OTS by leveraging the graph structure of the power systems. Our proposed method
leads to a 10-fold speedup in the solution time of the mixed-integer solvers for large-
scale power systems, including Polish networks.

System Identification and Control

Chapters 6 and 7 are devoted to the system identification and distributed control of
interconnected systems with unknown dynamics, with applications in the control of multi-
agent systems, such as self-driving cars.

• Chapter 6: With their ever-growing size and complexity, real-world dynamical sys-
tems are hard to model. Therefore, system operators should rely on efficient estima-
tion methods to identify the dynamics of the system via a limited number of recorded
input-output interactions. The area of system identification is created to address this
problem.

In chapter 6, our objective is to employ modern results on high-dimensional statistics
to reduce the sample complexity of a fundamental class of system identification prob-
lems in control theory, namely linear time-invariant (LTI) systems with perfect state
measurements. Our results are built upon the fact that, in many practical large-scale
systems, the states and inputs exhibit sparse interactions with one another, which in
turn translates into a sparse representation of the state-space equations of the system.
In particular, we propose a sparsity-promoting estimator that can correctly identify
the underlying structure of the system matrices with high probability, provided that
the length of the sample trajectory exceeds a threshold. Furthermore, we show that
this threshold scales polynomially in the number of nonzero elements in the system
matrices, but only logarithmically in the system dimensions. Finally, we present an
extensive case study on power systems to illustrate the performance of the proposed
estimation method.

• Chapter 7: The efficient operation of intelligent and dynamical infrastructures—such
as smart cities and grids—demands a shift from classical centralized control policies
toward efficient edge computing methods with distributed control schemes. The main
objective in distributed control problem is to design a hierarchy of interacting sub-
controllers with a prescribed structure—as opposed to the traditional unstructured
and centralized control architectures—for an interconnected system consisting of local
sub-systems.

Another challenge in the control of dynamical systems is uncertainty in their models.
The unknown nature of a dynamical system implies that any viable control policy
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should actively interact with the system to learn the model, and then make robust
decisions by taking into account the uncertainty of the learned model. Indeed, a
practical data-driven control framework should not have a “long interaction” with an
unknown system in the learning phase to avoid jeopardizing its safety, and it should
be efficient to design and implement. We address these challenges in Chapter 7, where
we introduce a robust and learning-based distributed control scheme for linear systems
that benefits from efficient sample and computational complexities. Our scheme only
makes a logarithmic number of interactions with the unknown system to learn the
model, and then designs a controller in near-linear time complexity.
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1.3 Notations

Scalars, vectors, matrices, and sets: Lowercase, bold lowercase and uppercase letters
are used for scalars, vectors and matrices, respectively (say x,x, X). The symbols Rd, Sd,
Sd+, and Sd++ are used to denote the sets of d×1 real vectors, d×d symmetric matrices, d×d
symmetric positive-semidefinite matrices, and d × d symmetric positive-definite matrices,
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respectively. The notations trace(M) and log det(M) refer to the trace and the logarithm
of the determinant of a matrix M , respectively. The notation M •N or 〈M,N〉 denote the
inner product between the matrices M and N of the same size. The (i, j)th entry of the
matrix M is denoted by Mij. The symbols M:j and Mj: indicate the jth column and row of
M , respectively. Given the index sets U and V , define MUV as the |U| × |V| submatrix of M
after removing the rows and columns with indices not belonging to U and V . Moreover, In
denotes the n×n identity matrix. The sign of a scalar x is shown as sign(x). The notations
|x|, ‖M‖1 and ‖M‖F denote the absolute value of the scalar x, the element-wise `1, and
Frobenius norm of the matrix M , respectively. The symbols |||M |||, |||M |||∞, and |||M |||1 are
used to denote its induced spectral, infinity, and `1/`1 norms, respectively. We will frequently
write M � 0 to mean M ∈ Sn+ and write M � 0 to mean M ∈ Sn++. Given a sparsity pattern
G ∈ {1, . . . , n}2, we define SnG ⊆ Sn as the set of n × n real symmetric matrices with this
sparsity pattern. Let PH(M) denote the projection operator from Sn onto SnH , i.e. by setting
all Sij = 0 if (i, j) /∈ H. The ceiling function is denoted as d·e. The cardinality of a discrete
set D is denoted as |D|0. Given a matrix M ∈ Sd, define

‖M‖1,off =
n∑
i=1

n∑
j=1

|Mij| −
n∑
i=1

|Mii|,

‖M‖max = max
i 6=j
|Mij|.

‖M‖∞ = max
i,j
|Mij|

Probability: For an event E , the notation P(E) is used to show the probability of its occur-
rence. For a random variable x, the symbol E{x} shows its expected value. The notation
x ∼ N (µ,Σ) implies that x is a random vector drawn from a Gaussian distribution with
mean vector µ and covariance matrix Σ. The notation xn

a.s.→ x is used to show that a se-
quence of random variables xn converges to x almost surely.

Functions: Given the sequences f1(n) and f2(n), the notation f1(n) . f2(n) or equivalently
f1(n) = O(f2(n)) means that there exists a number c1 ∈ [0,∞) such that f1(n) ≤ c1f2(n)
for all n ≥ 1. Similarly, the notation f1(n) & f2(n) or f1(n) = Ω(f2(n)) means that there
exists a number c2 > 0 such that f1(n) ≥ c2f2(n) for all n ≥ 1. The indicator function Ix≥α
takes the value 1 if x ≥ α and 0 otherwise. To streamline the presentation and whenever the
equivalence is clear by the context, we abuse notation and use boldface upper- and lower-case
letters to denote transfer matrices and vector-valued signals, respectively. The symbols H2

andH∞ are endowed with the standard definitions of the Hardy spaces, i.e., the class of holo-
morphic transfer functions on the open unit disk with bounded mean square and maximum
norms, respectively. Accordingly, let RH2 and RH∞ correspond to the restriction of these
spaces to the set of real, rational, and proper functions. For a transfer matrix M ∈ RH∞,
one can write M =

∑∞
τ=0M(τ)z−τ , where M(τ) is the τ th spectral component of M .
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Part I

Machine Learning
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Chapter 2

Closed-form Solutions for Sparse
Inverse Covariance Estimation

Sparse inverse covariance estimation is a popular method for learning the structure of
undirected Gaussian graphical models, which is commonly solved using an l1-regularized
Gaussian maximum likelihood estimator known as “Graphical Lasso” (GL). Despite the
convexity of the problem, its computational cost becomes prohibitive for large-scale instances.

The first objective of this chapter is to compare the computationally-heavy GL technique
with a numerically-cheap heuristic method that is based on simply thresholding the sample
covariance matrix. To this end, two notions of sign-consistent and inverse-consistent matrices
are developed, and then it is shown that the thresholding and GL methods are equivalent if:
(i) the thresholded sample covariance matrix is both sign-consistent and inverse-consistent,
and (ii) the gap between the largest thresholded and the smallest un-thresholded entries of
the sample covariance matrix is not too small.

By building upon this result, we prove that the GL—as a conic optimization problem—
has an explicit closed-form solution if the thresholded sample covariance matrix has an
acyclic structure. This result is then generalized to arbitrary sparse support graphs, where a
formula is found to obtain an approximate solution of GL. Furthermore, it is shown that the
approximation error of the derived explicit formula decreases exponentially fast with respect
to the length of the minimum-length cycle of the sparsity graph.

The developed results are demonstrated on synthetic data, as well as on massive real-
world datasets, such as functional MRI data, traffic flows for transportation systems, and
chemical networks. We show that the proposed method can obtain an accurate approxima-
tion of the GL for instances with the sizes as large as 80, 000× 80, 000 (more than 2 billion
variables) in less than 30 minutes on a standard laptop computer running MATLAB, while
other state-of-the-art methods do not converge within 4 hours.
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2.1 Introduction

There has been a pressing need in developing new and efficient computational methods
to analyze and learn the characteristics of high-dimensional data with a structured or ran-
domized nature. Real-world data sets are often overwhelmingly complex, and therefore it is
important to obtain a simple description of the data that can be processed efficiently. In an
effort to address this problem, there has been a great deal of interest in sparsity-promoting
techniques for large-scale optimization problems [57, 15, 26]. These techniques have become
essential to the tractability of big-data analyses in many applications, including data mining
[98, 192, 269], pattern recognition [267, 210], human brain functional connectivity [239],
distributed controller design [78, 82], and compressive sensing [47, 95]. Similar approaches
have been used to arrive at a parsimonious estimation of high-dimensional data. However,
most of the existing statistical learning techniques in data analytics are contingent upon the
availability of a sufficient number of samples (compared to the number of parameters), which
is difficult to satisfy for many applications [40, 76]. To remedy the aforementioned issues, a
special attention has been paid to the augmentation of these problems with sparsity-inducing
penalty functions to obtain sparse and easy-to-analyze solutions.

Graphical lasso (GL) is one of the most commonly used techniques for estimating the
inverse covariance matrix from a limited number of data samples [96, 21, 274].

2.2 Problem Formulation

Consider a random vector x = (x1, x2, ..., xn) with a multivariate normal distribution.
Let Σ∗ ∈ Sn+ denote the covariance matrix associated with the vector x. The inverse of
the covariance matrix can be used to determine the conditional independence between the
random variables x1, x2, ..., xn. In particular, if the (i, j)th entry of Σ−1

∗ is zero for two
disparate indices i and j, then xi and xj are conditionally independent given the rest of the
variables.

Definition 1. Given a symmetric matrix S ∈ Sn, the support graph or sparsity graph
of S is defined as a graph with the vertex set V := {1, 2, ..., n} and the edge set E ⊆ V × V
such that (i, j) ∈ V if and only if Sij 6= 0, for every two different vertices i, j ∈ V. The
support graph of S captures the sparsity pattern of the matrix S and is denoted as G(S).

Definition 2. Given a graph G, define G(c) as the complement of G, which is obtained by
removing the existing edges of G and drawing an edge between every two vertices of G that
were not originally connected.

Definition 3. Given two graphs G1 and G2 with the same vertex set, G1 is called a subgraph
of G2 if the edge set of G1 is a subset of the edge set of G2. The notation G1 ⊆ G2 is used to
denote this inclusion.
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The graph G
(
Σ−1
∗
)

(i.e., the sparsity graph of Σ−1
∗ ) represents a graphical model capturing

the conditional independence between the elements of x. Assume that Σ∗ is nonsingular and
that G

(
Σ−1
∗
)

is a sparse graph. Finding this graph is cumbersome in practice because the
exact covariance matrix Σ∗ is rarely known. More precisely, G

(
Σ−1
∗
)

should be constructed
from a given sample covariance matrix (constructed from N samples), as opposed to Σ∗. Let
Σ denote an arbitrary n × n positive-semidefinite matrix, which is provided as an estimate
of Σ∗. Consider the convex optimization problem

min
S∈Sn+
− log det(S) + trace(ΣS). (2.1)

It is easy to verify that the optimal solution of the above problem is equal to Sopt = Σ−1.
However, there are two issues with this solution. First, since the number of samples available
in many applications is small or modest compared to the dimension of Σ, the matrix Σ is
ill-conditioned or even singular. Second, although Σ−1

∗ is assumed to be sparse, a small
random difference between Σ∗ and Σ would make Sopt highly dense. In order to address the
aforementioned issues, consider the problem

min
S∈Sn+
− log det(S) + trace(ΣS) + λ‖S‖1,off , (2.2)

where λ ∈ R+ is a regularization parameter. This problem is referred to as Graphical
Lasso (GL). Intuitively, the term ‖S‖1,off in the objective function serves as a surrogate for
promoting sparsity among the off-diagonal entries of S, while ensuring that the problem is
well-defined even with a singular input Σ. Henceforth, the notation Sopt will be used to
denote a solution of the GL instead of the unregularized optimization problem (2.1).

While the `1-regularized problem (2.2) is technically convex, it is commonly considered
intractable for large-scale datasets. The decision variable is an n×n matrix, so simply fitting
all O(n2) variables into memory is already a significant issue. General-purpose algorithms
have either prohibitively high complexity or slow convergence. In practice, (2.2) is solved
using problem-specific algorithms. The state-of-the-art include GLASSO [96], QUIC [126],
and its “big-data” extension BIG-QUIC [125]. These algorithms use between O(n) and
O(n3) time and between O(n2) and O(n) memory per iteration, but the number of iterations
needed to converge to an accurate solution can be very large.

2.3 Related Work

Algorithms for GL. Algorithms for GL are usually based on some mixture of New-
ton [205], proximal Newton [125, 126], iterative thresholding [215], and (block) coordinate
descent [96, 248]. All of these methods suffer fundamentally from the need to keep track
and act on all O(n2) elements in the matrix variable S. Even if the final solution matrix
were sparse with O(n) nonzeros, it is still possible for the algorithm to traverse through a
“dense region” in which the iterate S must be fully dense. Thresholding heuristics have
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been proposed to address issue, but these may adversely affect the outer algorithm and pre-
vent convergence. It is generally impossible to guarantee a figure lower than O(n2) time
per-iteration, even if the solution contains only O(n) nonzeros. Most of the algorithms
mentioned above actually have worst-case per-iteration costs of O(n3).
GL and Thresholding. Recently, it has been empirically verified that a simple thresholding
of the sample covariance matrix reveals the true sparsity pattern of the optimal solution to
GL [238]. Despite its practical significance, the theoretical justification of this equivalence
was unclear. Another line of work has been devoted to studying the connectivity structure of
the optimal solution of the GL. In particular, [179] and [264] have shown that the connected
components induced by thresholding the covariance matrix and those in the support graph
of the optimal solution of the GL lead to the same vertex partitioning. Although this result
does not require any particular condition, it cannot provide any information about the edge
structure of the support graph and one needs to solve (2.2) for each connected component
using an iterative algorithm, which may take up to O(n3) per iteration [96, 21, 179].
GL with prior information. A number of approaches are available in the literature
to introduce prior information to GL (also known as restricted GL, or RGL). The paper
[72] introduced a class of RGL in which the true graphical model is assumed to have Laplacian
structure. This structure commonly appears in signal and image processing [182]. For
the a priori graph-based correlation structure described above, [112] introduced a pathway
graphical lasso method similar to RGL.

2.4 GL and Thresholding

Suppose that it is known a priori that the true graph G
(
Σ−1
∗
)

has k edges, for some given
number k. With no loss of generality, assume that all nonzero off-diagonal entries of Σ have
different magnitudes. Two methods for finding an estimate of G

(
Σ−1
∗
)

are as follows:

• Graphical Lasso: We solve the optimization problem (2.2) repeatedly for different
values of λ until a solution Sopt with exactly 2k nonzero off-diagonal entries are found.

• Thresholding: Without solving any optimization problem, we simply identify those
2k entries of Σ that have the largest magnitudes among all off-diagonal entries of Σ.
We then replace the remaining n2 − n − 2k off-diagonal entries of Σ with zero and
denote the thresholded sample covariance matrix as Σk. Note that Σ and Σk have the
same diagonal entries. Finally, we consider the sparsity graph of Σk, namely G(Σk), as
an estimate for G

(
Σ−1
∗
)
.

Definition 4. It is said that the sparsity structures of Graphical Lasso and thresholding are
equivalent if there exists a regularization coefficient λ such that G(Sopt) = G(Σk).

In this section, it is aimed to understand under what conditions the easy-to-find graph
G(Σk) is equal to the hard-to-obtain graph G(Sopt), without having to solve the GL.
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In particular, we derive sufficient conditions to guarantee that the GL and thresholding
methods result in the same sparsity graph. These conditions are only dependent on λ and
Σ, and are expected to hold whenever λ is large enough or a sparse graph is sought.

Definition 5. A matrix M ∈ Sn is called inverse-consistent if there exists a matrix
N ∈ Sn with zero diagonal elements such that

M +N � 0,

G(N) ⊆ (G(M))(c) ,

G
(
(M +N)−1)

)
⊆ G(M).

The matrix N is called inverse-consistent complement of M and is denoted as M (c).

The next Lemma will shed light on the definition of inverse-consistency by introducing
an important class of such matrices that satisfy this property, namely the set of matrices
with positive-definite completions.

Lemma 1. Any arbitrary matrix with positive-definite completion is inverse-consistent and
has a unique inverse-consistent complement.

Proof: Consider the optimization problem

min
S∈Sn

trace(MS)− logdet(S) (2.4a)

subject to Sij = 0, ∀(i, j) ∈ (G(M))(c) (2.4b)

S � 0, (2.4c)

and its dual

max
Π∈Sn

det(M + Π) (2.5a)

subject to M + Π � 0 (2.5b)

G(Π) ⊆ (G(M))(c) (2.5c)

Πii = 0, i = 1, ..., n. (2.5d)

Note that Πij is equal to the Lagrange multiplier for (2.4b) and every (i, j) ∈ (G(M))(c), and
is zero otherwise. Since the matrix M has a positive-definite completion, the dual problem
is strictly feasible. Moreover, S = In is a feasible solution of (2.4). Therefore, strong duality
holds and the primal solution is attainable. On the other hand, the objective function (2.4a)
is strictly convex, which makes the solution of the primal problem unique. Let Sopt denote
the globally optimal solution of (2.4). It follows from the first-order optimality conditions
that

Sopt = (M + Πopt)−1.
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This implies that

G(Πopt) ⊆ (G(M))(c)

G((M + Πopt)−1) ⊆ G(M)

M + Πopt � 0.

As a result, M ∈ Sn is inverse-consistent and Πopt is its complement. To prove the uniqueness
of the inverse-consistent complement of M , let Π denote an arbitrary complement of M . It
follows from Definition 5 and the first-order optimality conditions that (M+Π)−1 is a solution
of (2.4). Since Sopt is the unique solution of (2.4), it can be concluded that Π = Πopt. This
implies that M has a unique inverse-consistent complement. �

Remark 1. Two observations can be made based on Lemma 1. First, the positive-definiteness
of a matrix is sufficient to guarantee that it belongs to the cone of matrices with positive-
definite completion. Therefore, positive-definite matrices are inverse-consistent. Second,
upon existence, the inverse-consistent complement of a matrix with positive-definite comple-
tion is equal to the difference between the matrix and its unique maximum determinant
completion.

Definition 6. An inverse-consistent matrix M is called sign-consistent if the (i, j) entries
of M and (M +M (c))−1 are nonzero and have opposite signs for every (i, j) ∈ G(M).

Example 1 (An inverse- and sign-consistent matrix). To illustrate Definitions 5 and
6, consider the matrix

M =


1 0.3 0 0

0.3 1 −0.4 0
0 −0.4 1 0.2
0 0 0.2 1

 .
The graph G(M) is a path graph with the vertex set {1, 2, 3, 4} and the edge set

{(1, 2), (2, 3), (3, 4)}. To show that M is inverse-consistent, let the matrix M (c) be chosen as

M (c) =


0 0 −0.120 −0.024
0 0 0 −0.080

−0.120 0 0 0
−0.024 −0.080 0 0

 .
The inverse matrix (M +M (c))−1 is equal to

1
0.91

−0.3
0.91

0 0
−0.3
0.91

1 + 0.09
0.91

+ 0.16
0.84

0.4
0.84

0
0 0.4

0.84
1 + 0.16

0.84
+ 0.04

0.96
−0.2
0.96

0 0 −0.2
0.96

1
0.96

 .
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Observe that:

• M and M +M (c) are both positive-definite.

• The sparsity graphs of M and M (c) are complements of each other.

• The sparsity graphs of M and (M +M (c))−1 are identical.

• The nonzero off-diagonal entries of M and (M +M (c))−1 have opposite signs.

The above properties imply that M is both inverse-consistent and sign-consistent, and M (c)

is its complement.

Definition 7. Given a graph G and a scalar α, define β(G, α) as the maximum of ‖M (c)‖max

over all matrices M with positive-definite completions and with the diagonal entries all equal
to 1 such that G(M) = G and ‖M‖max ≤ α.

Consider the dual solution Πopt introduced in the proof of Lemma 1 and note that it is
a function of M . Roughly speaking, the function β(G, α) in the above definition provides an
upper bound on ‖Πopt‖max over all matrices M with positive-definite completions and with
the diagonal entries equal to 1 such that G(M) = G and ‖M‖max ≤ α. As will be shown
later, this function will be used as a certificate to verify the optimality conditions for the
GL.

Since Σ∗ is non-singular and we have a finite number of samples, the elements of the
upper triangular part of Σ (excluding its diagonal elements) are all nonzero and distinct with
probability one. Let σ1, σ2, ..., σn(n−1)/2 denote the absolute values of those upper-triangular
entries such that

σ1 > σ2 > ... > σn(n−1)/2 > 0.

Definition 8. Consider an arbitrary positive regularization parameter λ that does not belong
to the discrete set {σ1, σ2, ..., σn(n−1)/2}. Define the index k associated with λ as an integer
number satisfying the relation λ ∈ (σk+1, σk). If λ is greater than σ1, then k is set to 0.

Throughout this chapter, the index k refers to the number introduced in Definition 8,
which depends on λ.

Definition 9. Define the residue of Σ relative to λ as a matrix Σres(λ) ∈ Sn such that
the (i, j) entry of Σres(λ) is equal to Σij −λ× sign(Σij) if i 6= j and |Σij| > λ, and it is equal
to 0 otherwise. Furthermore, define normalized residue of Σ relative to λ as

Σ̃res(λ) = D−1/2 × Σres(λ)×D−1/2,

where D is diagonal matrix with Dii = Σii for every i ∈ {1, ..., d}.
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Notice that Σres(λ) is in fact the soft-thresholded sample covariance matrix with the
threshold λ. For notational simplicity, we will use Σres or Σ̃res instead of Σres(λ) or Σ̃res(λ)
whenever the equivalence is implied by the context. One of the main theorems of this chapter
is presented below.

Theorem 1. The sparsity structures of Σres and Sopt are equivalent if the following condi-
tions are satisfied:

• Condition 1-i: In + Σ̃res has a positive-definite completion.

• Condition 1-ii: In + Σ̃res is sign-consistent.

• Condition 1-iii: The relation

β
(
G(Σres), ‖Σ̃res‖max

)
≤ min

i 6=j
|Σij |≤λ

λ− |Σij|√
ΣiiΣjj

holds.

A number of observations can be made based on Theorem 1. First note that, due to
Lemma 1, Condition (1-i) guarantees that In + Σ̃res is inverse-consistent; in fact it holds
when In + Σ̃res itself is positive-definite. Note that the positive-definiteness of In + Σ̃res is
guaranteed to hold if the eigenvalues of the normalized residue of the matrix Σ relative to λ
are greater than −1. Recall that λ ∈ (σk+1, σk) for some integer k and the off-diagonal entries
of In + Σ̃res are in the range [−1, 1]. In the case where the number k is significantly smaller
than n2, the residue matrix has many zero entries. Hence, the satisfaction of Condition (1-i)
is expected for a large class of residue matrices; this will be verified extensively in our case
studies on the real-world and synthetically generated data sets. Specifically, this condition
is automatically satisfied if In + Σ̃res is diagonally dominant. Conditions (1-ii) and (1-iii)
of Theorem 1 are harder to check. These conditions depend on the support graph of the
residue matrix Σ̃res and/or how small the nonzero entries of Σ̃res are. The next two lemmas
further analyze these conditions to show that they are expected to be satisfied for large λ.

Lemma 2. Given an arbitrary graph G, there is a strictly positive constant number ζ(G)
such that

β(G, α) ≤ ζ(G)α2, ∀ α ∈ (0, 1) (2.7)

and therefore, Condition (1-iii) is reduced to

ζ(G(Σres))× max
k 6=l
|Σkl|>λ

( |Σkl| − λ√
ΣkkΣll

)2

≤ min
i 6=j
|Σij |≤λ

λ− |Σij|√
ΣiiΣjj

.



CHAPTER 2. CLOSED-FORM SOLUTIONS FOR SPARSE INVERSE COVARIANCE
ESTIMATION 22

Lemma 3. Consider a matrix M with a positive-definite completion and with unit diagonal
entries. Define α = ‖M‖max and G = G(M). There exist strictly positive constant numbers
α0(G) and γ(G) such that M is sign-consistent if α ≤ α0(G) and the absolute value of the
off-diagonal nonzero entries of M is lower bounded by γ(G)α2. This implies that Condition
(i-ii) is satisfied if ‖Σ̃res‖max ≤ α0(G(Σres)) and

γ(G(Σres))× max
k 6=l
|Σkl|>λ

( |Σkl| − λ√
ΣkkΣll

)2

≤ min
i 6=j
|Σij |>λ

|Σij| − λ√
ΣiiΣjj

. (2.8)

For simplicity of notation, define r = maxi Σii
minj Σjj

and Σmax = maxi Σii. Assuming that

‖Σ̃res‖max ≤ α0(G(Σres)), Conditions (1-ii) and (1-iii) of Theorem 1 are guaranteed to be
satisfied if

ζ(G(Σres)) ≤ 1

r2
·

λ−σk+1

Σmax(
σ1−λ
Σmax

)2 , γ(G(Σres)) ≤ 1

r2
·

σk−λ
Σmax(
σ1−λ
Σmax

)2 , (2.9)

which is equivalent to

max {γ(G(Σres)), ζ(G(Σres))} ≤ 2

r2
·

σk−σk+1

Σmax(
2σ1−σk−σk+1

Σmax

)2 .

for the choice λ = σk+σk+1

2
. Consider the set

T =
{
|Σij|

∣∣ i = 1, 2, ..., n− 1, j = i+ 1, ..., n
}
.

This set has n(n−1)
2

elements. The cardinality of {σ1, ..., σn−1}, as a subset of T , is smaller
than the cardinality of T by a factor of n

2
. Combined with the fact that |σi| < Σmax for every

i = 1, ..., n(n−1)
2

, this implies that the term 2σ1−σn−1−σn
Σmax

is expected to be small and its square
is likely to be much smaller than 1, provided that the elements of T are sufficiently spread.
If the number (2σ1 − σn−1 − σn) is relatively smaller than the gap σn−1 − σn and k = O(n),
then (2.7) and as a result Conditions (1-ii) and (1-iii) would be satisfied. The satisfaction of
this condition will be studied for acyclic graphs in the next section.

2.5 Closed-form Solution: Acyclic Sparsity Graphs

In the previous subsection, we provided a set of sufficient conditions for the equivalence of
the GL and thresholding methods. Although these conditions are merely based on the known
parameters of the problem, i.e., the regularization coefficient and sample covariance matrix,
their verification is contingent upon knowing the value of β(G(Σres), ‖Σ̃res‖max) and whether
In + Σ̃res is sign-consistent and has a positive-definite completion. The objective of this part
is to greatly simplify the conditions in the case where the thresholded sample covariance
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matrix has an acyclic support graph. First, notice that if In + Σ̃res is positive-definite, it
has a trivial positive-definite completion. Furthermore, we will prove that ζ(supp(Σres)) in
Lemma 2 is equal to 1 when supp(Σres) is acyclic. This reduces Condition (1-iii) to the
simple inequality

‖Σ̃res‖2
max ≤ min

i 6=j
|Σij |≤λ

λ− |Σij|√
ΣiiΣjj

,

which can be verified efficiently and is expected to hold in practice (see Section ??). Then,
we will show that the sign-consistency of In + Σ̃res is automatically implied by the fact that
it has a positive-definite completion if supp(Σres) is acyclic.

Lemma 4. Given an arbitrary acyclic graph G, the relation

β(G, α) ≤ α2 (2.10)

holds for every 0 ≤ α < 1. Furthermore, strict equality holds for (2.10) if G includes a path
of length at least 2.

Lemma 4 is at the core of our subsequent arguments. It shows that the function β(G, α)
has a simple and explicit formula since its inverse-consistent complement can be easily ob-
tained. Furthermore, it will be used to derive approximate inverse-consistent complement of
the matrices with sparse, but not necessarily acyclic support graphs.

Lemma 5. Condition (1-ii) of Theorem 1 is implied by its Condition (1-i) if the graph
G(Σres) is acyclic.

Proof: Consider an arbitrary matrix M ∈ Sn with a positive-definite completion. It suffices
to show that if G(M) is acyclic, then M is sign-consistent. To this end, consider the matrix
Πopt introduced in the proof of Lemma 1, which is indeed the unique inverse-consistent
complement of M . For an arbitrary pair (i, j) ∈ G(M), define a diagonal matrix Φ ∈ Sn as
follows:

• Consider the graph G(M)\{(i, j)}, which is obtained from the acyclic graph G(M) by
removing its edge (i, j). The resulting graph is disconnected because there is no path
between nodes i and j.

• Divide the disconnected graph G(M)\{(i, j)} into two groups 1 and 2 such that group
1 contains node i and group 2 includes node 2.

• For every l ∈ {1, ..., n}, define Φll as 1 if l is in group 1, and as -1 otherwise.
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In light of Lemma 1, (M + Π)−1 is the unique solution of (2.4). Similarly, Φ(M + Π)−1Φ is
a feasible point for (2.4). As a result, the following inequality must hold{

trace(M(M + Πopt)−1)− logdet((M + Πopt)−1)

}
−
{

trace(MΦ(M + Πopt)−1Φ)− logdet(Φ(M + Πopt)−1Φ)

}
< 0.

It is easy to verify that the left side of the above inequality is equal to twice the product of
the (i, j) entries of M and (M+Π)−1. This implies that the (i, j) entries of M and (M+Π)−1

have opposite signs. As a result, M is sign-consistent. �

Definition 10. Define T (λ) as a n × n symmetric matrix whose (i, j)th entry is equal to
Σij + λ× sign(Sopt

ij ) for every (i, j) ∈ supp(Sopt), and it is equal to zero otherwise.

The next result of this chapter is a consequence of Lemmas 4 and 5 and Theorem 1.

Theorem 2. Assume that the graph supp(Sopt) is acyclic and the matrix D+T (λ) is positive-
definite. Then, the relation Eopt ⊆ E res holds and the optimal solution Sopt of the GL can be
computed via the explicit formula

Sopt
ij =


1

Σii

(
1 +

∑
(i,m)∈Eopt

(Σres
im)2

ΣiiΣmm−(Σres
im)2

)
if i = j,

−Σres
ij

ΣiiΣjj−(Σres
ij )2 if (i, j) ∈ Eopt,

0 otherwise,

(2.11)

where Eopt and E res denote the edge sets of G(Sopt) and G(Σres), respectively.

When the regularization parameter λ is large, the graph supp(Sopt) is expected to be
sparse and possibly acyclic. In this case, the matrix T (λ) is sparse with small nonzero
entries. If D + T (λ) is positive-definite and supp(Sopt) is acyclic, Theorem 2 reveals two
important properties of the solution of the GL: 1) its support graph is contained in the
sparsity graph of the thresholded sample covariance matrix, and 2) the entries of this matrix
can be found using the explicit formula (2.11). However, this formula requires to know the
locations of the nonzero elements of Sopt. In what follows, we will replace the assumptions
of the above theorem with easily verifiable rules that are independent from the optimal
solution Sopt or the locations of its nonzero entries. Furthermore, it will be shown that these
conditions are expected to hold when λ is large enough, i.e., if a sparse matrix Sopt is sought.

Theorem 3. Assume that the following conditions are satisfied:

• Condition 2-i. The graph supp(Σres) is acyclic.

• Condition 2-ii. In + Σ̃res is positive-definite.
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• Condition 2-iii. ‖Σ̃res‖2
max ≤ min

i 6=j
|Σij |≤λ

λ−|Σij |√
ΣiiΣjj

.

Then, the sparsity pattern of the optimal solution Sopt corresponds to the sparsity pattern of
Σres and, in addition, Sopt can be obtained via the explicit formula (2.11).

The above theorem states that if a sparse graph is sought, then as long as some easy-
to-verify conditions are met, there is an explicit formula for the optimal solution. It will
later be shown that Condition (2-i) is exactly or approximately satisfied if the regularization
coefficient is sufficiently large. Condition (2-ii) implies that the eigenvalues of the normalized
residue of Σ with respect to λ should be greater than -1. This condition is expected to be
automatically satisfied since most of the elements of Σ̃res are equal to zero and the nonzero
elements have small magnitude. In particular, this condition is satisfied if In + Σ̃res is
diagonally dominant. Finally, using (4.58), it can be verified that Condition (2-iii) is satisfied
if (

2σ1−σk−σk+1

Σmax

)2

σk−σk+1

Σmax

≤ 2

r2
. (2.12)

Similar to the arguments made in the previous subsection, (4.40) shows that Condition (2-iii)
is satisfied if 2σ1−σk−σk+1

Σmax
is small. This is expected to hold in practice since the choice of λ

entails that 2σ1 − σk − σk+1 is much smaller than Σmax. Under such circumstances, one can
use Theorem 3 to obtain the solution of the GL without having to solve (2.2) numerically.

Having computed the sample covariance matrix, we will next show that checking the
conditions in Theorem 3 and finding Sopt using (2.11) can all be carried out efficiently.

Corollary 1. Given Σ and λ, the total time complexity of checking the conditions in Theorem
3 and finding Sopt using (2.11) is O(n2).

Another line of work has been devoted to studying the connectivity structure of the
optimal solution of the GL. In particular, [179] and [264] have shown that the connected
components induced by thresholding the covariance matrix and those in the support graph
of the optimal solution of the GL lead to the same vertex partitioning. Although this
result does not require any particular condition, it cannot provide any information about
the edge structure of the support graph and one needs to solve (2.2) for each connected
component using an iterative algorithm, which may take up to O(n3) per iteration [96, 21,
179]. Corollary 1 states that this complexity could be reduced significantly for sparse graphs.

Remark 2. The results introduced in Theorem 1 can indeed be categorized as a set of “safe
rules” that correctly determine sparsity pattern of the optimal solution of the GL. These
rules are subsequently reduced to a set of easily verifiable conditions in Theorem 3 to safely
obtain the correct sparsity pattern of the acyclic components in the optimal solution. On
the other hand, there is a large body of literature on simple and cheap safe rules to pre-
screen and simplify the sparse learning and estimation problems, including Lasso, logistic
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regression, support vector machine, group Lasso, etc [103, 246, 90, 195]. Roughly speaking,
these methods are based on constructing a sequence of safe regions that encompass the optimal
solution for the dual of the problem at hand. These safe regions, together with the Karush—
Kuhn—Tucker (KKT) conditions, give rise to a set of rules that facilitate inferring the
sparsity pattern of the optimal solution. Our results are similar to these methods since we
also analyze the special structure of the KKT conditions and resort to the dual of the GL
to obtain the correct sparsity structure of the optimal solution. However, according to the
seminal work [195], most of the developed results on safe screening rules rely on strong
Lipschitz assumptions on the objective function; an assumption that is violated in the GL.
This calls for a new machinery to derive theoretically correct rules for this problem; a goal
that is at the core of Theorems 1 and 3.

2.6 Approximate Closed-form Solution: Sparse

Graphs

In the preceding subsection, it was shown that, under some mild assumptions, the GL has
an explicit closed-form solution if the support graph of the thresholded sample covariance
matrix is acyclic. In this part, a similar approach will be taken to find approximate solutions
of the GL with an arbitrary underlying sparsity graph. In particular, by closely examining
the hard-to-check conditions of Theorem 1, a set of simple and easy-to-verify surrogates will
be introduced which give rise to an approximate closed-form solution for the general sparse
GL. Furthermore, we will derive a strong upper bound on the approximation error and show
that it decreases exponentially fast with respect to the length of the minimum-length cycle
in the support graph of the thresholded sample covariance matrix. Indeed, the formula
obtained earlier for acyclic graphs could be regarded as a by-product of this generalization
since the length of the minimum-length cycle can be considered as infinity for such graphs.
The significance of this result is twofold:

- Recall that the support graph corresponding to the optimal solution of the GL is sparse
(but not necessarily acyclic) for a large regularization coefficient. In this case, the
approximate error is provably small and the derived closed-form solution can serve as
a good approximation for the exact solution of the GL. This will later be demonstrated
in different simulations.

- The performance and runtime of numerical (iterative) algorithms for solving the GL
heavily depend on their initializations. It is known that if the initial point is chosen
close enough to the optimal solution, these algorithms converge to the optimal solution
in just a few iterations [96, 126, 277]. The approximate closed-form solution designed
in this chapter can be used as an initial point for the existing numerical algorithms to
significantly improve their runtime.
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The proposed approximate solution for the GL with an arbitrary support graph has the
following form:

Aij =


1

Σii

(
1 +

∑
(i,m)∈Eopt

(Σres
im)2

ΣiiΣmm−(Σres
im)2

)
if i = j,

−Σres
ij

ΣiiΣjj−(Σres
ij )2 if (i, j) ∈ E res,

0 otherwise.

(2.13)

The definition of this matrix does not make any assumption on the structure of the graph
E res. Recall that Σres in the above formula is the shorthand notation for Σres(λ). As a
result, the matrix A is a function of λ. To prove that the above matrix is an approximate
solution of the GL, a few steps need to be taken. First, recall that—according to the
proof of Lemma 4—it is possible to explicitly build the inverse-consistent complement of the
thresholded sample covariance matrix if its sparsity graph is acyclic. This matrix serves as
a certificate to confirm that the explicit solution (2.13) indeed satisfies the KKT conditions
for the GL. By adopting a similar approach, it will then be proved that if the support graph
of the thresholded sample covariance matrix is sparse, but not necessarily acyclic, one can
find an approximate inverse-consistent complement of the proposed closed-form solution to
approximately satisfy the KKT conditions.

Definition 11. Given a number ε ≥ 0, a n × n matrix B is called an ε-relaxed inverse
of matrix A if A×B = In + E such that |Eij| ≤ ε for every (i, j) ∈ {1, 2, ..., n}2.

The next lemma offers optimality (KKT) conditions for the unique solution of the GL.

Lemma 6 ([238]). A matrix Sopt is the optimal solution of the GL if and only if it satisfies
the following conditions for every i, j ∈ {1, 2, ..., n}

(Sopt)−1
ij = Σij if i = j, (2.14a)

(Sopt)−1
ij = Σij + λ× sign(Sopt

ij ) if Sopt
ij 6= 0, (2.14b)

Σij − λ ≤ (Sopt)−1
ij ≤ Σij + λ if Sopt

ij = 0, (2.14c)

where (Sopt)−1
ij denotes the (i, j)th entry of (Sopt)−1.

The following definition introduces a relaxed version of the first-order optimality condi-
tions given in (2.14).

Definition 12. Given a number ε ≥ 0, it is said that the n × n matrix A satisfies the
ε-relaxed KKT conditions for the GL problem if there exists a n×n matrix B such that

• B is an ε-relaxed inverse of the matrix A.
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• The pair (A,B) satisfies the conditions

Bij = Σij if i = j, (2.15a)

|Bij − (Σij + λ× sign(Aij)) | ≤ ε if Aij 6= 0, (2.15b)

|Bij − Σij| ≤ λ+ ε if Aij = 0. (2.15c)

By leveraging the above definition, the objective is to prove that the explicit solution
introduced in (2.13) satisfies the ε-relaxed KKT conditions for some number ε to be defined
later.

Definition 13. Given a graph G, define the function c(G) as the length of the minimum-
length cycle of G (the number c(G) is set to +∞ if G is acyclic). Let deg(G) refer to the
maximum degree of G. Furthermore, define Pij(G) as the set of all simple paths between
nodes i and j in G, and denote the maximum of |Pij(G)|0 over all pairs (i, j) as Pmax(G).

Define Σmax and Σmin as the maximum and minimum diagonal elements of Σ, respectively.

Theorem 4. Under the assumption λ < σ1, the explicit solution (2.13) satisfies the ε-relaxed
KKT conditions for the GL with ε chosen as

ε = max

{
Σmax,

√
Σmax

Σmin

}
· δ · (Pmax(G(Σres))− 1) ·

(
‖Σ̃res‖max

)⌈ c(G(Σres))
2

⌉
, (2.16)

where

δ = 1 +
deg(G(Σres)) · ‖Σ̃res‖2

max

1− ‖Σ̃res‖2
max

+
(deg(G(Σres))− 1)

1− ‖Σ̃res‖2
max

, (2.17)

if the following conditions are satisfied:

• Condition 3-i. In + Σ̃res is positive-definite.

• Condition 3-ii. ‖Σ̃res‖2
max ≤ min

i 6=j
(i,j)6∈G(Σres)

λ−|Σij |√
ΣiiΣjj

.

The number ε given in Theorem 4 is comprised of different parts:

- ‖Σ̃res‖max: Notice that ‖Σ̃res‖max is strictly less than 1 and λ is large when a sparse
graph is sought. Therefore, ‖Σ̃res‖max is expected to be small for sparse graphs. Under
this assumption, we have 0 ≤ ‖Σ̃res‖max � 1.

- c(G(Σres)): It is straightforward to verify that c(G(Σres)) is a non-decreasing function of
λ. This is due to the fact that as λ increases, Σres(λ) becomes sparser and this results
in a support graph with fewer edges. In particular, if n ≥ 3, then c(G(Σres)) = 3 for
λ = 0 and c(G(Σres)) = +∞ for λ = σ1 almost surely.
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- Pmax(G(Σres)) and deg(G(Σres)): These two parameters are also non-decreasing func-
tions of λ and likely to be small for large λ. For a small λ, the numbers Pmax(G(Σres))
and deg(G(Σres)) could be on the order of O(n!) and O(n), respectively. However,
these values are expected to be small for sparse graphs. In particular, it is easy to
verify that for nonempty and acyclic graphs, Pmax(G(Σres)) = 1.

The above observations imply that if λ is large enough and the support graph of Σres is
sparse, (2.13) serves as a good approximation of the optimal solution of the GL. In other
words, it results from (2.16) that if supp(Σres) has a structure that is close to an acyclic
graph, i.e., it has only a few cycles with moderate lengths, we have ε ≈ 0. In Section ??,
we will present illustrative examples to show the accuracy of the closed-form approximate
solution with respect to the size of the cycles in the sparsity graph.

Consider the matrix A given in (2.13), and let µmin(A) and µmax(A) denote its minimum
and maximum eigenvalues, respectively. If λ = σ1, then A = D−1 (recall that D collects the
diagonal entries of Σ) and subsequently µmin(A) > 0. Since µmin(·) is a continuous function
of λ, there exists a number λ0 in the interval (0, 1) such that the matrix A (implicitly defined
based on λ) is positive-definite for every λ ≥ λ0. The following theorem further elaborates
on the connection between the closed-form formula and the optimal solution of the GL.

Theorem 5. There exists an strictly positive number λ0 such that, for every λ ≥ λ0, the
matrix A given in (2.13) is the optimal solution of the GL problem after replacing Σ with
some perturbed matrix Σ̂ that satisfies the inequality∣∣∣∣∣∣∣∣∣Σ− Σ̂

∣∣∣∣∣∣∣∣∣
2
≤ dmax(A)

(
1

µmin(A)
+ 1

)
ε, (2.18)

where dmax(A) is the maximum vertex cardinality of the connected components in the graph
G(A) and ε is given in (2.16). Furthermore, 2.18 implies that

f(A)− f ∗ ≤
(
µmax(A) + µmax(Sopt)

)
dmax(A)

(
1

µmin(A)
+ 1

)
ε, (2.19)

where f(A) and f ∗ are the objective functions of the GL evaluated at A and the optimal
solution, respectively.

As mentioned before, if a sparse solution is sought for the GL, the regularization coeffi-
cient would be large and this helps with the satisfaction of the inequality λ ≥ λ0. In fact,
it will be shown through different simulations that λ0 is small in practice and hence, this
condition is not restrictive. Under this circumstance, Theorem 5 states that the easy-to-
construct matrix A is 1) the exact optimal solution of the GL problem with a perturbed
sample covariance matrix, and 2) it is the approximate solution of the GL with the original
sample covariance matrix. The magnitudes of this perturbation and approximation error
are a function of dmax(A), µmin(A), µmax(A), µmax(Sopt), and ε. Furthermore, it should be
clear that A and ε are functions of λ and Σ (we dropped this dependency for simplicity of
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notation). Recall that the disjoint components (or the vertex partitions) of supp(A) satisfy
a nested property: given 1 ≥ λ1 > λ2 ≥ 0, the components of supp(A) for λ = λ1 are nested
within the components of supp(A) for λ = λ2 (see [179] for a simple proof of this statement).
This implies that dmax(A) is a decreasing function of λ. In particular, it can be observed
that dmax(A) = d if λ = 0 and dmax(A) = 1 if λ = σ1. Now, consider µmin(A), µmax(A), and
µmax(Sopt). First, note that if λ = σ1, then A = Sopt = D−1. Furthermore, it is easy to
verify that both A and Sopt are continuous functions of λ. Therefore, for large values of λ,
µmin(A), µmax(A), and µmax(Sopt) are expected to be close to 1/Σmax, 1/Σmin, and 1/Σmin,
respectively. In addition, as discussed earlier, ε is a decreasing function of λ and vanishes
when λ is large enough. Based on these observations, it can be concluded that the upper
bound presented in (2.18) is small if λ is chosen to be large.

Notice that although the aforementioned value of ε in (2.16) and the upper bound in
(2.18) were essential in the study of the effect of the sparsity of the support graph on the
accuracy of the presented closed-form solution, they are conservative in practice. These
numbers may be tightened significantly for specific sample covariance matrices. We will
further discuss the approximation error of the closed-form solution in Section 2.7.

Warm-start algorithm As delineated before, one of the main strengths of the proposed
closed-form solution is that it can be used as an initial point (warm-start) for the numerical
algorithms specialized for solving the GL. To this goal, the following warm-start procedure
is proposed.

Algorithm 1 Warm-start algorithm

1: input: data samples (x), and regularization coefficient (λ)
2: output: Solution of the GL (Sopt)
3: Obtain the residue matrix Σres based on Definition 9 and the closed-form solution A

from (2.13)
4: for each component i in G(Σres) do
5: if Conditions 2-i, 2-ii, 2-iii are satisfied then
6: Sopt[i]← A[i]
7: else
8: Find Sopt[i] by numerically solving the GL for component i with initial point A[i]
9: end if

10: end for

In the above algorithm, Sopt[i] and A[i] are the submatrices of Sopt and A corresponding to
the ith component of G(Σres). The warm-start algorithm is based on the key fact that the
GL decomposes over the disjoint components of G(Σres) [179, 264]. In particular, in the first
step, the warm-start algorithm obtains the residue matrix according to Definition 9. Next,
for every disjoint component of the residue matrix, if its support graph is acyclic and the
conditions of Theorem 3 are satisfied, then the corresponding component in Sopt is found
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using the closed-form solution (2.11). Otherwise, this closed-form solution is provided as
an initial point to a numerical algorithm, such as GLASSO and QUIC [96, 126], in order
to boost the runtime of solving the GL for the considered component. The results of the
warm-start algorithm will be evaluated in the next section.

Remark 3. The statistical analysis of the GL entails that λ should converge to zero as
the number of samples grows to infinity. It is worthwhile to mention that our results may
not be applicable in the high sampling regime, where λ is close to zero and consequently the
thresholded sample covariance matrix is dense. However, notice that the main strength of the
GL lies in the high dimensional-low sampling regime where n is much smaller than n and is in
the order of log d. Under such circumstances, the proposed explicit formula results in highly
accurate solutions for the GL. In fact, it will be shown through massive-scale simulations that
in practice, the required conditions on λ—such as the positive-definiteness of In + Σ̃res—for
the validity of the presented results are much more relaxed than the known conditions on λ
to guarantee the statistical consistency of the GL.

2.7 Numerical Results

In this section, we will demonstrate the effectiveness of the proposed methods on syn-
thetically generated data, as well as on real data collected from the brain networks and
transportation systems.

Case Study on Synthetic Data

Given a nonnegative number ω, consider an arbitrary sample covariance matrix Σ with
the following properties:

• Its diagonal elements are normalized to 1.

• The entries corresponding to an arbitrary spanning tree of supp(Σ) belong to the union
of the intervals [−0.85,−0.95] and [0.85, 0.95].

• The off-diagonal entries that do not belong to the spanning tree are in the interval
[−0.85 + ω, 0.85− ω].

The goal is to find conditions on λ, ω and the size of the covariance matrix such that Theorem
3 can be used to obtain a closed-form solution for the GL problem. One can choose the value
of λ to be greater than σn to ensure that the graph supp(Σres) is acyclic. In particular, if we
pick λ in the interval (σn, σn−1), the graph supp(Σres) becomes a spanning tree.

Select λ as 0.85 − ε for a sufficiently small number ε and consider Condition (2-ii) in
Theorem 3. One can easily verify that In + Σres is positive-definite if the inequality 1

deg(v)
>

(σ1 − λ)2 holds for every node v in supp(Σres), where deg(v) is the degree of node v. This
condition is guaranteed to be satisfied for all possible acyclic graphs if (deg(v))(0.95−0.85)2 <
1 or equivalently deg(v) ≤ 100 for every node v. Regarding Condition (2-iii), it can be
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Figure 2.1: The optimality gap between the closed-form and optimal solutions for the GL

observed that the relation (σ1 − λ)2 ≤ λ− σk+1 holds if (0.95− 0.85)2 < 0.85− (0.85− ω).
This implies that the inequality ω > 0.01 guarantees the satisfaction of Condition (2-iii) for
every acyclic graph supp(Σres). In other words, one can find the optimal solution of the GL
problem using the explicit formula in Theorem 3 as long as: 1) a spanning tree structure for
the optimal solution of the GL problem is sought, 2) the degree of each node in the spanning
tree is not greater than 100, and (3) the difference between σn−1 and σn is greater than 0.01.
Note that Condition (2) is conservative and can be dropped for certain types of graphs (e.g.,
path graphs). In practice, the positive-definiteness of In + Σres is not restrictive; we have
verified that this matrix is positive-definite for randomly generated instances with the sizes
up to n = 200, 000 even when deg(v) > 100.

Now, consider the following modifications in the experiment:

• The elements of Σ corresponding to a cycle of length n are randomly set to −0.8 or
0.8 with equal probability.

• The off-diagonal entries that do not correspond to the above cycle are in the interval
[−0.7, 0.7].

If λ is chosen as 0.75, then the graph supp(Σres) coincides with a cycle of length n. Further-
more, In + Σres is diagonally dominant and hence positive-definite for every n. Figure 2.1
shows the optimality gap of the proposed closed-form solution and its derived theoretical
upper bound (i.e. the left and right hand sides of (2.19), respectively) with respect to the
length of the cycle n in log-linear scale. (note that deg(G(Σres)) and Pmax(G(Σres)) in (2.19)
are both equal to 2). Two important observations can be made based on this figure.

• In practice, the performance of the derived closed-form solution is significantly better
than its theoretical upper bounds. In fact, this error is less than 10−6 when the length
of the minimum-length cycle is at least 6. The high accuracy of the closed-form solution
will become more evident in the subsequent case studies on large-scale problems.
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• It can be seen that the logarithm of the optimality gap is approximately a linear
function of the cycle length. This matches the behavior of the theoretical bounds
introduced in Theorems 4 and 5: the approximation error is exponentially decreasing
with respect to the length of the minimum-length cycle.

Case Study on Brain Networks

Consider the problem of estimating the brain functional connectivity network based on a
set of resting state functional MRI (fMRI) data collected from 20 individual subjects [254].
The data for each subject correspond to disjoint brain activities and are correlated due
to the underlying functional connectivity structure of the brain. In order to represent these
dependencies, each disjoint region of the brain can be considered as a node and the correlation
between two different regions can be resembled by an edge between the nodes. The data
set for each subject consists of 134 samples of low frequency oscillations taken from 140
different cortical brain regions. We construct a normalized sample covariance matrix by
combining the data sets of all 20 subjects (note that the data for each individual is limited
and not informative enough, but the combined data provides rich information about the
brain network). The goal is to use the GL to estimate the underlying functional connectivity
network of different regions of the brain based on the obtained 140× 140 sample covariance
matrix. We study the thresholded sample covariance matrix and the derived closed-form
solution for different values of the regularization coefficient in order to analyze their accuracy.

Figure 2.2a shows the number of edges in the sparsity graph of the thresholded sample
covariance matrix that belong to those connected components satisfying the conditions in
Theorem 3. The formula derived in this chapter is able to find the optimal values of the
entries of the solution corresponding to these edges. It can be observed that if λ is greater
than 0.51, then almost half of the edges in the sparsity graph of the optimal solution can be
found using the proposed explicit formula. This is due to the fact that the corresponding
entries in the residue matrix belong to the acyclic components of its sparsity graph and
satisfy the conditions of Theorem 3. Figure 2.2b depicts the number of nodes that belong to
the components (with sizes greater than 1) for which the corresponding submatrices of the
solution of the GL have an explicit formula. Note that those entries in the optimal solution
that correspond to isolated nodes are trivially equal to 0. Therefore, in order to better
reflect the significance of the derived solution, we have only considered the components with
at least two nodes. It can be observed that if λ is greater than 0.5, then the number of nodes
belonging to the components with explicit formula is greater than the number of those nodes
associated with inexact closed-form solutions. Figure 2.2c demonstrates the number of edges
in the sparsity graph of the optimal solution, together with the number of mismatches in the
edge sets of the sparsity graphs of the optimal and thresholded solutions. Notice that the
number of mismatches is less than 10% when λ is greater than 0.35 and is almost 0 when λ
is greater than 0.5.

Figure 2.2d shows the minimum eigenvalues of the optimal and closed-form approximate
solutions for different values of λ. The approximate solution is positive-definite when λ is
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Figure 2.2: The performance of the proposed closed-form solution for the brain network.
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greater than 0.37. This implies that λ0 in Corollary 5 is equal to 0.37. Figures 2.2e and 2.2f
depict the 2-norm of the approximation error (the difference between the optimal and closed-
form approximate solutions) and the similarity degree between these two solutions, which is
defined as

similarity degree =
trace(S̃opt × Ã)

‖S̃opt‖F × ‖Ã‖F
,

where S̃opt = Sopt − In and Ã = A− In. Subtracting the identity matrix from A and Sopt is
due to the observation that both matrices have diagonal entries close to 1 when the support
graph is sparse. This leads to an artificially inflated similarity degree between A and Sopt.
Therefore, in order to have a better assessment of the similarity between the closed-form and
optimal solutions, we measure the similarity between A and Sopt after softening the effect of
their diagonal entries. The similarity degree of 1 means that the optimal and approximate
solutions are exactly equal.

It can be observed that the approximation error is small and the similarity degree is high
for a wide range of values of λ. For instance, if λ is greater than 0.4, then the 2-norm of
the approximation error is less than 0.37 and the similarity degree is greater than 0.98. For
these values of λ, the number of edges in the sparsity graph of the optimal solution ranges
from 200 to 0. In all of these cases, the structure and values of the optimal solution can be
estimated efficiently, without solving the optimization problem numerically.

Case Study on Transportation Networks

In recent years, the problem of short- and long-term traffic flow prediction and control
has attracted much attention in Intelligent Transportation Systems (ITSs) [91]. Estimating
the correlation between the traffic flows on different links of a transportation network is one
of the crucial steps toward the traffic congestion control in the network; it can also serve as an
initial block in different traffic forecasting methods. Substantial research has been devoted to
extracting these dependencies and performing predictions based on the measured data (see
[273, 193] and the references therein). In this case study, the objective is to construct a sparse
matrix representing the conditional covariance between the traffic flows of different links in
the network. The data is collected from the Caltrans Performance Measurement System
(PeMS) database, which consists of traffic information of freeways on the a statewide scale
across California [43]. We consider the data measured by the stations deployed in District 3
of California, which is collected and aggregated every 5 minutes from 1277 stations during
March 6th to March 12th of the year 2017 (one-week interval). Due to the malfunctioning of
some of the detectors, a non-negligible portion of the traffic flows was missing from the raw
data set. Therefore, the following steps were taken before solving the GL problem in order
to obtain a useful representation of the raw data:

• Since 228 stations did not have sufficient number of measurements during the one-week
period, they were removed from the sampled data.
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Figure 2.3: The performance of the proposed closed-form solution for the transportation
network.

• In a few stations, the detectors did not measure the traffic flow for some periods of
time. For these data samples, we used a linear interpolation method to estimate the
missing values.

After performing the aforementioned data-cleaning steps, a 1049× 1049 normalized sample
covariance matrix was constructed from the combined 2016 data samples (288 samples for
each day of the week). In Figure 2.3, the accuracy of the thresholding technique and its
corresponding closed-form approximate solution is compared to the optimal solution of the
GL problem for different values of the regularization coefficient.

Since the number of entries in the upper triangular part of the sample covariance matrix
is large (roughly 550,000 entries), we have only considered large values of λ in order to obtain
a sparse solution for the GL. Figure 2.3a shows the number of edges in the sparsity graph
of the optimal solution, compared to the number of mismatches between the edge sets of
the sparsity graphs of the optimal and closed-form solutions. It can be observed that as
λ increases, the support graph of the optimal solution becomes sparser and the number of
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mismatches decreases. In particular, the number of mismatches is almost zero if λ is chosen
to be greater than 0.97. Figure 2.3b depicts the minimum eigenvalues of the optimal and
closed-form approximate solutions of the GL with respect to λ. The approximate solution
becomes positive-definite if λ is greater than 0.991. Furthermore, Figures 2.3c and 2.3d show
that, for those values of λ between 0.991 and 0.999, the 2-norm of the approximation error
is between 0.5 and 0.01, and that the similarity degree is greater than 0.99. For this range
of λ, the number of edges in the sparsity graph of the optimal solution is 7.82 to 7.40 times
higher the number of nodes.

Case Study on Large-Scale Data

In this case study, we evaluate the performance of the proposed closed-form solution on
massive randomly generated data sets. Given n (the dimension of each sample) and similar
to [126] and [275], a sparse inverse covariance matrix is generated for each test case according
to the following procedure: first, a sparse matrix U ∈ Rd×d is generated whose nonzero
elements are randomly set to +1 or −1, with equal probability. Then, the inverse covariance
matrix is set to UU> + 2I. Depending on the test case, the number of nonzero elements
in U is controlled so that the resulted inverse covariance matrix has approximately 5d or
10d nonzero elements. n = d/2 number of i.i.d. samples are drawn from the corresponding
multivariate Gaussian distribution in all experiments, except for the largest test case with
d = 80000. This instance has more than 3.2 billion variables and only n = 20000 samples are
collected to solve the GL due to the memory limitations. Furthermore, the regularization
coefficient is chosen such that the estimated solution has approximately the same number of
nonzero elements as the ground truth.

Table 2.1 reports the runtime of the closed-form solution, compared to two state-of-the-
art methods for solving the GL, namely QUIC [126] and GLASSO [96] algorithms, as well
as elementary estimator [271]. The GLASSO is the most widely-used algorithm for the
GL, while the QUIC algorithm is commonly regarded as the fastest available solver for this
problem. The elementary estimator is recently proposed in lieu of the GL to remove its
computational burden, while preserving its desired high-dimensional properties. We use the
source codes for latest versions of QUIC and GLASSO in our simulations. In particular,
we use the QUIC 1.1 (available in http://bigdata.ices.utexas.edu/software/1035/)
which is implemented in C++ with MATLAB interface. The GLASSO is downloaded from
http://statweb.stanford.edu/~tibs/glasso/ and is implemented in FORTRAN with
MATLAB interface. We implemented the elementary estimator and the proposed closed-
form solution in MATLAB using its sparse package. A time limit of 4 hours is considered in
all experiments. Table 2.1 has the following columns:

• n: The dimension of the samples.

• m: The number of nonzero elements in the true inverse covariance matrix.

• Closed-form: The runtime of the proposed method.

http://bigdata.ices.utexas.edu/software/1035/
http://statweb.stanford.edu/~tibs/glasso/
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n m Closed-Form QUIC-C QUIC-W GLASSO-C GLASSO-W Elem.

2000 9894 0.1 2.0 1.4 42.8 13.5 0.2

2000 20022 0.1 3.0 2.1 43.8 15.3 0.2

4000 20094 0.5 13.9 7.5 460.8 135.1 2.1

4000 40382 0.5 21.5 12.0 467.6 156.2 2.9

8000 40218 2.5 78.7 49.3 3675.1 1011.2 11.3

8000 79890 2.5 111.7 88.4 3784.3 1278.8 22.2

12000 60192 7.8 243.8 153.1 ? 3233.0 31.8

12000 119676 7.4 333.6 251.0 ? 3437.2 70.2

16000 80064 17.1 570.0 322.8 ? 6545.0 67.2

16000 160094 18.5 787.4 616.4 ? 9960.8 174.8

20000 99954 39.4 1266.5 539.4 ? ? 107.8

20000 200018 37.4 1683.8 1392.5 ? ? 211.5

40000 200290 495.4 ? ? ? ? ?

80000 401798 1450.4 ? ? ? ? ?

Table 2.1: The runtime of different methods for solving the GL.

• QUIC-C and GLASSO-C: The runtime of the QUIC and GLASSO without initializa-
tion.

• QUIC-W and GLASSO-W: The runtime of the QUIC and GLASSO using the warm-
start Algorithm 1.

• Elem.: The runtime of the elementary estimator.

In all of the test cases, the resulted closed-form solution is positive-definite and hence,
feasible. It can be seen that the proposed method significantly outperforms QUIC, GLASSO
and elementary estimator in terms of its runtime. In particular, the presented method is
on average 6, 36, and 951 times faster than elementary, QUIC, and GLASSO methods,
respectively, provided that they can obtain the solution within the predefined time limit.
Furthermore, for the cases where the GL can be solved to optimality using QUIC, the relative
optimality gap of the closed-form solution, i.e., (f(A)−f ∗)/f ∗, is 2.1×10−3 on average. For
the cases with d = 40000 and d = 80000, none of these methods converge to a meaningful
solution, while the proposed method can obtain an accurate solution in less than 30 minutes.
On the other hand, the warm-start Algorithm 1 accompanied by QUIC and GLASSO yields
up to 2.35 and 4.45 times speedups in their runtime, respectively. Moreover, the warm-start
algorithm doubles the size of the instances that are solvable using the GLASSO.

Table 2.2 compares the accuracy of the estimated inverse covariance matrix using different
methods. This table includes the following columns:
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Closed-Form Graphical Lasso Elementary
n m `F TPR FPR `F TPR FPR `F TPR FPR

2000 9894 0.41 0.71 0.00 0.41 0.71 0.00 0.40 0.63 0.00
2000 20022 0.50 0.59 0.00 0.65 0.59 0.00 0.49 0.34 0.01
4000 20094 0.39 0.83 0.00 0.38 0.84 0.00 0.37 0.76 0.00
4000 40382 0.48 0.74 0.00 0.48 0.75 0.00 0.48 0.54 0.00
8000 40218 0.36 0.92 0.00 0.35 0.93 0.00 0.33 0.87 0.00
8000 79890 0.45 0.87 0.00 0.44 0.88 0.00 0.44 0.71 0.00
12000 60192 0.33 0.96 0.00 0.32 0.97 0.00 0.30 0.93 0.00
12000 119676 0.43 0.93 0.00 0.41 0.94 0.00 0.42 0.81 0.00
16000 80064 0.32 0.97 0.00 0.30 0.98 0.00 0.28 0.96 0.00
16000 160094 0.42 0.95 0.00 0.40 0.96 0.00 0.40 0.86 0.00
20000 99954 0.31 0.99 0.00 0.30 0.99 0.00 0.28 0.96 0.00
20000 200018 0.41 0.96 0.00 0.39 0.97 0.00 0.39 0.89 0.00
40000 200290 0.28 1.00 0.00 ? ? ? ? ? ?
80000 401798 0.27 1.00 0.00 ? ? ? ? ? ?

Table 2.2: The accuracy of different methods for solving the GL.

• `F : The Frobenius norm of the difference between the true and estimated inverse
covariance matrices, normalized by the Frobenius norm of the true inverse covariance
matrix.

• TPR and FPR: The true positive rate (TPR) and false positive rate (FPR) defined as

TPR =
|(i, j) : i 6= j, Sij 6= 0, (Σ−1

∗ )ij 6= 0|0∣∣(i, j) : i 6= j, (Σ−1
∗ )ij 6= 0

∣∣
0

,

FPR =
|(i, j) : i 6= j, Sij 6= 0, (Σ−1

∗ )ij = 0|0∣∣(i, j) : i 6= j, (Σ−1
∗ )ij = 0

∣∣
0

,

where S corresponds to the explicit formula, the optimal solution of the GL, or the
elementary estimator.

It can be seen that, while the elementary estimator has slightly better estimation error,
its TPR is significantly outperformed by the those of the GL and closed-form solutions.
Furthermore, it can be seen that the closed-form estimator has almost the same accuracy
as the optimal solution of the GL. The superiority of the proposed closed-form solution
over the other methods becomes more evident in the larger instances, where it (almost)
exactly recovers the true sparsity pattern of the inverse covariance matrix and results in
small estimation error, while becoming the only viable method for estimating the inverse
covariance matrix.
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Appendix

2.A Omitted Proofs of Section 2.4

Proof of Theorem 1

Before presenting the proof of Theorem 1, consider the normalized GL, defined as

min
S∈Sn+
− log det(S) + trace(Σ̃S) +

∑
i 6=j

λ̃ij|Sij|, (2.20)

where Σ̃ is the normalized sample covariance, i.e., Σ̃ij =
Σij√
ΣiiΣjj

for every (i, j) ∈ {1, 2, ..., n}2

(also known as sample correlation matrix). Similarly, λ̃ij is defined as λ√
ΣiiΣjj

. Upon denot-

ing the optimal solution of the normalized GL as S̃, we consider the relationship between S̃
and Sopt. Recall that D is defined as a matrix collecting the diagonal elements of Σ.

Lemma 7. We have Sopt = D−1/2S̃D−1/2.

Proof. Notice that the GL (2.2) can be re-written as follows

min
S∈Sn+
− log det(S) + trace(Σ̃D1/2SD1/2) +

∑
i 6=j

λ|Sij|, (2.21)

where we have used the equality

trace(ΣS) = trace(D1/2Σ̃D1/2S) = trace(Σ̃D1/2SD1/2).

Upon defining
S̃ = D1/2SD1/2 (2.22)

and following some algebra, one can verify that (4.33) is equivalent to

min
S̃∈Sn+
− log det(S̃) + trace(Σ̃S̃) +

∑
i 6=j

λ̃ij|S̃ij|+ log det(D). (2.23)

Dropping the constant term in (2.23) gives rise to the normalized GL (2.20). Therefore,
Sopt = D−1/2S̃D−1/2 holds in light of 2.22. This completes the proof.
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Proof of Theorem 1. Note that, due to the Definition 9 and Lemma 7, Σ̃res and S̃ have
the same sparsity pattern as Σres and Sopt, respectively. Therefore, it suffices to show that
the sparsity structures of Σ̃res and S̃ are the same.

To verify this, we focus on the optimality conditions for optimization (2.20). Define M
as In + Σ̃res. Due to Condition (1-i) and Lemma 1, M is inverse-consistent and has a unique
inverse-consistent complement, which is denoted by N . First, will show that (M + N)−1 is
the optimal solution of (2.20). For an arbitrary pair (i, j) ∈ {1, ..., d}2, the KKT conditions,
introduced in Lemma 6, imply that one of the following cases holds:

1) i = j: We have (M +N)ij = Mii = Σ̃ii.

2) (i, j) ∈ G(Σ̃res): In this case, we have

(M +N)ij = Mij = Σ̃ij − λ̃ij × sign(Σ̃ij).

Note that since |Σij| > λ, we have that sign(Mij) = sign(Σ̃ij). On the other hand,

due to the sign-consistency of M , we have sign(Mij) = −sign
(

((M +N)−1)ij

)
. This

implies that
(M +N)ij = Mij = Σ̃ij + λ̃ij × sign((M +N)−1).

3) (i, j) 6∈ G(Σ̃res): One can verify that (M + N)ij = Nij. Therefore, due to Condition
(1-iii), we have

|(M +N)ij| ≤ β
(
G(Σ̃res), ‖Σ̃res‖max

)
≤ min

k 6=l
(k,l)6∈G(Σres)

λ− |Σkl|√
ΣkkΣll

= min
k 6=l

(k,l)6∈G(Σres)

λ̃kl − |Σ̃kl|.

(2.24)

This leads to

|(M +N)ij− Σ̃ij| ≤ |(M +N)ij|+ |Σ̃ij| ≤ min
k 6=l

(k,l)6∈G(Σres)

(
λ̃kl − |Σ̃kl|

)
+ |Σ̃ij| ≤ λ̃ij. (2.25)

Therefore, it can be concluded that (M +N)−1 satisfies the KKT conditions for (2.20)1. On
the other hand, note that G((M +N)−1) = G(Σ̃res). This concludes the proof. �

Proof of Lemma 2

To proceed with the proof of Lemma 2, we need the following lemma.

1The KKT conditions for the normalized GL are equivalent to (2.14) after replacing λ with λ̃ij
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Lemma 8. Consider a matrix M ∈ Sn with positive-definite completion. Assume that∣∣∣∣∣∣M (c)
∣∣∣∣∣∣

1
≤ η|||M − In|||1 and |||M − In|||1 < 1

η+1
, for some number η. The relation

∣∣∣∣∣∣M (c)
∣∣∣∣∣∣

1
≤ (1 + η)2 |||M − In|||21

1− (η + 1)|||M − In|||1
holds.

Proof. Note that M ∈ Sn has a positive-definite completion and hence, is inverse-consistent
due to Lemma 1. One can write∣∣∣∣∣∣(M − In) +M (c)

∣∣∣∣∣∣
1
≤ |||M − In|||1 +

∣∣∣∣∣∣M (c)
∣∣∣∣∣∣

1
≤ (η + 1)|||M − In|||1 < 1.

Therefore,

(M +M (c))−1 = (In + (M − In +M (c)))−1 + In − (M − In +M (c))

+ (M − In +M (c))2 ×
∞∑
i=0

(−M + In −M (c))i.

Since G((M +M (c))−1) ⊆ G(M), it can be concluded that the (i, j) entries of M (c) and

(M − In +M (c))2 ×
∞∑
i=0

(−M + In −M (c))i

are equal for every (i, j) ∈ G(M (c)). Since the (i, j) entry of M (c) is zero if (i, j) 6∈ G(M (c)),
we have ∣∣∣∣∣∣M (c)

∣∣∣∣∣∣
1
≤
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣(M − In +M (c))2

∞∑
i=0

(M − In +M (c))i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
1

.

Since 1-norm is sub-multiplicative, the above inequality can be simplified as

∣∣∣∣∣∣M (c)
∣∣∣∣∣∣

1
≤ (|||M − In|||1 +

∣∣∣∣∣∣M (c)
∣∣∣∣∣∣

1
)2 ×

∞∑
i=0

(|||M − In|||1 +
∣∣∣∣∣∣M (c)

∣∣∣∣∣∣
1
)i

=
(|||M − In|||1 +

∣∣∣∣∣∣M (c)
∣∣∣∣∣∣

1
)2

1− |||M − In|||1 − |||M (c)|||1
≤ (|||M − In|||1 + η|||M − In|||1)2

1− |||M − In|||1 − η|||M − In|||1
= (1 + η)2 |||M − In|||21

1− (η + 1)|||M − In|||1
.

This completes the proof.
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Proof of Lemma 2. Given an arbitrary graph G, consider a matrix variable M with 1’s
on the diagonal such that G(M) ⊆ G. The first objective is to find a matrix in terms of M ,
denoted by the matrix function N(M), satisfying the following properties

G
(
(M +N(M))−1

)
⊆ G,

G(N(M)) ⊆ G(c).

To this end, define the matrix function A(M) as

A(M) = (M +N(M))−1.

Observe that

• As long as A(M) exists and G(A(M)) ⊆ G, there is a continuously differentiable
mapping from A(M) to M because M can be found by setting those entries of A(M)−1

corresponding to the edges of G(c) to zero. Moreover, the Jacobian of this mapping has
full rank at M = In. Due to the inverse function theorem, the mapping from M to
A(M) exists and is continuously differentiable.

• Similarly, as long as A(M) exists and G(A(M)) ⊆ G, there is a continuously differen-
tiable mapping from A(M) to N(M).

• If M = In, then N(M) = 0.

It follows from the above properties that if M is sufficiently small, the function N(M)
exists and satisfies the following properties: (i) 0 = N(In), and (ii) N(·) is differentiable at
M = In. This implies that there are sufficiently small nonzero numbers η and α0 such that
|||N(M)|||1 ≤ η|||M − In|||1 whenever ‖M‖max ≤ α0. Now, it follows from Lemma 8 that

|||N(M)|||1 ≤ (1 + η)2 |||M − In|||21
1− (η + 1)|||M − In|||1

,

or

‖N(M)‖max ≤
(1 + η)2 × (deg(G))2

1− (η + 1)α0 × deg(G)
‖M‖2

max,

if ‖M‖max ≤ α0. The inequality (2.7) is satisfied for the number ζ defined as the maximum
of

(1 + η)2 × (deg(G))2

1− (η + 1)α0 × deg(G)

and the finite number

max

{
β(G, α)

α2

∣∣∣∣α ∈ (α0, 1)

}
.

This completes the proof. �
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Proof of Lemma 3

It can be easily verified that

(M +M (c))−1 = I − (M +M (c) − I) + (M +M (c))−1(M +M (c) − I)2.

This implies that, for a given pair (i, j) ∈ G, one can write(
(M +M (c))−1

)
ij

= −Mij +
(
(M +M (c))−1

)
i:

(
(M +M (c) − I)2

)
:j
, (2.27)

where
(
(M +M (c))−1

)
i:

and
(
(M +M (c) − I)2

)
:j

are the ith row and jth column of (M +

M (c))−1 and (M + M (c) − I)2, respectively. Based on (2.27), the (i, j) entries of M and
(M +M (c))−1 have opposite signs if

|Mij| >
∣∣∣((M +M (c))−1

)
i:

(
(M +M (c) − I)2

)
:j

∣∣∣ . (2.28)

To streamline the presentation, ‖M‖max is redefined as maxi,j |Mij| in the rest of the proof.
One can write∥∥(M+M (c)−I)2

∥∥
max
≤
∥∥(M−I)2

∥∥
max

+
∥∥∥(M (c)

)2
∥∥∥

max
+
∥∥M (c)(M−I)

∥∥
max

+
∥∥(M−I)M (c)

∥∥
max

≤ deg(G)α2 + (d− deg(G))ζ(G)2α4 + 2deg(G)ζ(G)α3

≤ 3deg(G) max{α2, ζ(G)α3}+ (d− deg(G))ζ(G)2α4

≤ Kα2, (2.29)

for some K that only depends on deg(G), ζ(G), and d. Furthermore, assume that

α ≤ 1

2deg(G)
√
ζ(G)

= α0(G). (2.30)

Note that
(M +M (c))−1 = I − (M +M (c) − I)(M +M (c))−1,

which implies that∥∥(M +M (c))−1
∥∥

max
= 1 + deg(G) max{α, ζ(G)α2}

∥∥(M +M (c))−1
∥∥

max
, (2.31)

where we have used the fact that G((M + M (c))−1) ⊆ G and hence, its maximum degree is
upper bounded by deg(G). (2.31), together with the assumption (2.30) implies that∥∥(M +M (c))−1

∥∥
max
≤ 1

1− deg(G) max{α, ζ(G)α2} ≤ 2. (2.32)

Combining (2.29) and (2.32) with (2.28) completes the proof. �
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2.B Omitted Proofs of Section 2.5

Proof of Lemma 4

Without loss of generality, assume that G is a tree. Note that if there are disjoint components,
the argument made in the sequel can be applied to each connected component of G separately.
Let dij denote the unique path between every two disparate nodes i and j in G. Furthermore,
define N (i) as the set of all neighbors of node i in G. Consider a matrix M with positive-
definite completion and with diagonal elements equal to 1 such that ‖M‖max ≤ α and
supp(M) = G. Let N be a matrix with the following entries

Nij =

{ ∏
(m,t)∈dij Mmt if (i, j) ∈ (G(M))(c),

0 otherwise.
(2.33)

Moreover, define

Aij =


1 +

∑
m∈N (i)

M2
mi

1−M2
mi

if i = j,
−Mij

1−M2
ij

if (i, j) ∈ G(M),

0 otherwise.

(2.34)

The goal is to show that the matrix N is the unique inverse-consistent complement of M .
First, note that supp(N) = (supp(M))(c) and supp(M) = supp(A). Next, it is desirable to
prove that (M +N)−1 = A or equivalently (M +N)A = I. Upon defining T = (M +N)A,
one can write

Tii =
n∑

m=1

(Mim +Nim)Ami = 1 +
∑

m∈N (i)

M2
mi

1−M2
mi

−
∑

m∈N (i)

M2
mi

1−M2
mi

= 1.

Moreover, for every pair of nodes i and j, define Dij as
∏

(k,t)∈dij Mkt if i 6= j and as 1 if
i = j.

Consider a pair of distinct nodes i and j. Let t denote the node adjacent to j in dij (note
that we may have t = i). It can be verified that

Tij =
n∑

m=1

(Mim +Nim)Amj = Dij

1 +
∑

m∈N (j)

M2
mj

1−M2
mj

−Dit

(
Mtj

1−M2
tj

)
−

∑
m∈N (j)
m6=t

Dim
Mmj

1−M2
mj

. (2.35)

Furthermore,

Dij = DitMtj,

Dim = DitMtjMjm, ∀ m ∈ N (j), m 6= t. (2.36)
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Plugging (2.36) into (2.35) yields that

Tij = DitMtj

 1

1−M2
tj

+
∑

m∈N (j)
m6=t

M2
mj

1−M2
mj

−Dit

(
Mtj

1−M2
tj

)
−DitMtj

∑
m∈N (j)
m 6=t

M2
mj

1−M2
mj

= 0.

Hence, T = I. Finally, we need to show that M + N � 0. To this end, it suffices to prove
that A � 0. Note that A can be written as I +

∑
(i,j)∈G L

(i,j), where L(i,j) is defined as

L
(i,j)
rl =


M2
ij

1−M2
ij

if r = l = i or j,
−Mij

1−M2
ij

if (r, l) = (i, j),

0 otherwise.

Consider the term xTAx for an arbitrary vector x ∈ Rn. One can verify that

xTAx =
n∑
i=1

x2
i +
∑

(i,j)∈G

xTL(i,j)x

=
n∑
i=1

x2
i +
∑

(i,j)∈G

(
M2

ij

1−M2
ij

)
x2
i +

(
M2

ij

1−M2
ij

)
x2
j−
(

2Mij

1−M2
ij

)
xixj. (2.37)

Without loss of generality, assume that the graph is a rooted tree with the root at node n.
Assume that each edge (i, j) defines a direction that is toward the root. Then, it follows
from (2.37) that

xTAx =x2
n +

∑
(i,j)∈G

x2
i +

(
M2

ij

1−M2
ij

)
x2
i +

(
M2

ij

1−M2
ij

)
x2
j −

(
2Mij

1−M2
ij

)
xixj

=x2
n +

∑
(i,j)∈G

(
1

1−M2
ij

)
x2
i +

(
M2

ij

1−M2
ij

)
x2
j −

(
2Mij

1−M2
ij

)
xixj

=x2
n +

∑
(i,j)∈G

(xi −Mijxj)
2

1−M2
ij

≥ 0.

Therefore, M + N � 0 and subsequently M + N � 0 (because it is invertible). Hence,
according to Definition 5 and Lemma 1, the matrix N is the unique inverse-consistent com-
pliment of M . On the other hand, it follows from the definition of N that ‖N‖max ≤ α2

and consequently β(G, α) ≤ α2. Now, suppose that G includes a path of length at least
2, e.g., the edges (1, 2) and (2, 3) belong to G. By setting M12 = M23 = α and choosing
sufficiently small values for those entries of M corresponding to the remaining edges in G,
the matrix M becomes positive-definite with a trivial positive-definite completion and we
obtain ‖N‖max = α2. This completes the proof. �
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Proof of Theorem 2

To prove this theorem, first consider the following matrix

Ŝij =


1 +

∑
(i,m)∈Eopt

(Σ̃res
im)2

1−(Σ̃res
im)2 if i = j,

−Σ̃res
ij

1−(Σ̃res
ij )2 if (i, j) ∈ Eopt,

0 otherwise.

(2.38)

In what follows, we will show that Ŝ = S̃, where S̃ is the optimal solution for the normalized
GL. This, together with Lemma 7 implies that (2.11) is indeed optimal for the GL.

First, note that there exists a matrix N such that S̃−1 = M +N , where M is defined as

Mij =

 Σ̃ij + λ̃ij × sign(S̃ij) if (i, j) ∈ supp(S̃),
1 if i = j,
0 otherwise.

(2.39)

Clearly, supp(S̃) = supp(M). Furthermore, M = In + T̃ (λ), where (i, j)th entry of T̃ (λ) is
equal to Σ̃ij + λ̃ijsign(Sopt

ij ) for every (i, j) ∈ supp(Sopt) and it is equal to zero otherwise.

Subsequently, M = D−1/2(D + T (λ))D−1/2 and hence, D + T (λ) � 0 implies M � 0. By
combining N = (S̃)−1 −M with (2.39) and exploiting the optimality conditions in (2.14),
one can verify that supp(N) ⊆ (supp(M))(c) and supp(S̃) = supp ((M +N)−1) ⊆ supp(M).
Therefore, according to Lemma 1, the matrix N is the unique inverse-complement of M .
Moreover, since M is sign-consistent, the equation sign(Mij) = −sign(S̃ij) holds for every
(i, j) ∈ supp(S̃). This leads to the relations sign(Σij) = −sign(S̃ij) and

Mij = Σ̃res
ij , (2.40a)

|Σ̃ij| > λ̃ij, (2.40b)

for every (i, j) ∈ supp(S̃). Part 1 of the theorem is an immediate consequence of (2.40b).
On the other hand, based on the argument made in the proof of Lemma 4, the matrix N
can be obtained as

Nij =

{ ∏
(m,t)∈dij Mmt if dij 6= ∅ and (i, j) ∈ (supp(M))(c) ,

0 otherwise,
(2.41)

where dij denotes the unique path between nodes i and j in supp(S̃) if they belong to the
same connected component in supp(S̃), and dij is empty if there is no path between nodes
i and j. Similar to the proof of Lemma 4, one can show that (2.11) is equal to (M +N)−1.
This completes the proof of the second part of the theorem. �
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Proof of Theorem 3

Based on Lemmas 4 and 5, the conditions introduced in Theorem 1 can be reduced to
conditions (2-ii) and (2-iii) in Theorem 3 if supp(Σres) is acyclic and therefore, Eopt = E res.
Moreover, suppose that M is set to In + Σ̃res, and that the matrices N and A are defined
as (2.33) and (2.34), respectively. Similar to the proof of Theorem 1, it can be verified
that (2.38) satisfies all the KKT conditions for the normalized GL (2.20). Therefore, due to
Lemma 7, (2.11) is the unique solution of the GL. The details are omitted for brevity. �

Proof of Corollary 1

Given Σ and λ, the matrix Σres can be computed in O(n2). Moreover, Condition (2-i)
in Theorem 3 can be checked using the Depth-First-Search algorithm, which has the time
complexity of O(n2) in the worst case [6]. If the graph is cyclic, Theorem 3 cannot be
used. Otherwise, we consider Condition (2-ii). For matrices with acyclic support graphs, the
Cholesky Decomposition can be computed in O(n), from which the positive-definiteness of
the matrix can be checked [252]. The complexity of checking Condition (2-iii) is equivalent
to that of finding its left and right hand sides, which can be done in O(n) and O(n2),
respectively. Finally, since (2.11) can be used only if the support graph of Σres is acyclic, one
can easily verify that the complexity of obtaining Sopt using (2.11) is at most O(n). This
completes the proof of Corollary 1. �

2.C Omitted Proofs of Section 2.6

This section is devoted to proving approximation bounds for the derived closed-form solu-
tion when the acyclic assumption on the support graph of the thresholded sample covariance
matrix is not necessarily acyclic. The shorthand notations c, deg, Pij and Pmax will be used
instead of c(G(Σres)), deg(G(Σres)), Pij(G(Σres)) and Pmax(G(Σres)), respectively. First, the
approximation error of the closed-form solution for the normalized GL will be analyzed.
Then, the result will be generalized to the GL via the key equality in Lemma 7.

Proof of Theorem 4

To prove Theorem 4, the first step is to generalize the definition of the matrix N in (2.41)
and show that this generalized matrix is an approximate inverse-consistent complement of
In + Σ̃res. Without loss of generality, assume that supp(Σres) is connected. If there are
disjoint components in supp(Σres), the argument made in the sequel can be used for every
connected component due to the decomposition rule for the GL (see [179]). Let M be equal
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to In + Σ̃res. Consider the matrix N as

Nij =


∑

dij∈Pij

∏
(m,t)∈dij Mmt if (i, j) ∈ (supp(M))(c) ,∑

dij∈Pij\{(i,j)}
∏

(m,t)∈dij Mmt if (i, j) ∈ (supp(M)) ,

0 otherwise.

(2.42)

It can be verified that M +N = R, where

Rij =

{ ∑
dij∈Pij

∏
(m,t)∈dij Mmt if i 6= j,

1 if i = j.
(2.43)

For each simple path between the pair of nodes i and j, define its length as the multiplication
of the entries of M corresponding to the edges of the path. Based on this definition, Rij is
equal to the sum of the lengths of all nonidentical simple paths between nodes i and j in
supp(M). Denote dsij as any shortest path between nodes i and j in supp(M) (recall that
supp(M) is unweighted), and let Rs be given by

Rs
ij =

{ ∏
(m,t)∈dsij

Mmt if i 6= j,

1 if i = j.

Note that Rs collects the length of the shortest path between every two nodes in supp(M).
The following lemmas are crucial to prove Theorem 4.

Lemma 9. Given two nodes i and j in G(Σres), suppose that Pij\dsij is non-empty. Then,
the length of every path dij in Pij\dsij is at least dc/2e.

Proof. Consider a path dij in Pij\dsij. The subgraph dij ∪dsij has a cycle. Since the length of
this cycle is at least c, the segment of this cycle that resides in dij should have the length of
at least dc/2e; otherwise dsij is not the shortest path between the nodes i and j. This implies
that the length of dij is at least dc/2e.

Lemma 10. Let M be equal to In + Σ̃res. The inequalities∣∣Rij −Rs
k′jMik′

∣∣ ≤ (|Pij|0 − 1)
(
‖Σ̃res‖max

)d c
2
e
, (2.44a)∣∣Rkj −Rs

k′jMik′Mik

∣∣ ≤ (|Pkj|0−1)
(
‖Σ̃res‖max

)d c
2
e−1

(2.44b)

hold if i 6= j, where k′ is the node adjacent to i in dsij and k ∈ N (i)\k′.

Proof. First, we show the validity of (2.44a). Due to (2.43), one can write

Rij = Rs
ij +

∑
dij∈Pij\dsij

∏
(m,t)∈dij

Mmt. (2.45)
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If Pij\dsij is empty, then the equation Rij = Rs
k′jMik′ and therefore (2.44a) hold. Now,

assume that Pij\dsij is not empty. Due to Lemma 9, we have

−
(
‖Σ̃res‖max

)d c
2
e
≤

∏
(m,t)∈dij

Mmt ≤
(
‖Σ̃res‖max

)d c
2
e
,

for every dij ∈ Pij\dsij. The above inequalities, together with (2.45) and the equation

Rs
ij = Rs

k′jMik′ , result in (2.44a). To prove (2.44b), define d̂kj as dsij ∪ {(i, k)} (note that d̂kj
is not necessarily equal to dskj). It yields that

Rkj = Rs
ijMik +

∑
dkj∈Pkj\d̂kj

∏
(m,t)∈dkj

Mmt. (2.46)

In light of Lemma 9, the length of every path dkj ∈ Pkj\d̂kj is lower bounded by dc/2e − 1.
This implies that

−
(
‖Σ̃res‖max

)d c
2
e−1

≤
∏

(m,t)∈dij

Mmt ≤
(
‖Σ̃res‖max

)d c
2
e−1

, (2.47)

for every dkj ∈ Pkj\d̂kj. Combining Rs
ijMik = Rs

k′jMik′Mik with (3.39) and (2.47) leads to
the inequality (2.44b).

Lemma 11. The following inequality holds

deg

1− ‖Σ̃res‖2
max

≤ δ,

where δ defined as (2.17).

Proof. The proof is straightforward and is omitted for brevity.

Proof of Theorem 4 Consider the normalized GL and define the following explicit formula
for Ã

Ãij =


1 +

∑
(i,m)∈Eopt

(Σ̃res
im)2

1−(Σ̃res
im)2 if i = j,

−Σ̃res
ij

1−(Σ̃res
ij )2 if (i, j) ∈ E res,

0 otherwise.

(2.48)

Let M be equal to In + Σ̃res. Furthermore, define

ε̃ = δ · (Pmax(G(Σres))− 1) ·
(
‖Σ̃res‖max

)⌈ c(G(Σres))
2

⌉
.
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In order to prove the theorem, we use the matrix N defined in (2.42), and first show that
M +N is an ε̃-relaxed inverse of Ã and that the pair (Ã,M +N) satisfies the ε̃-relaxed KKT
conditions.

Consider the matrix T defined as T = Ã(M +N) and recall that M +N = R. One can
write

Tii =
n∑

m=1

ÃimRmi =

1 +
∑

m∈N (i)

Mim
2

1−Mim
2

− ∑
m∈N (i)

Mim

1−Mim
2Rmi. (2.49)

Note that since {(m, i)} ∈ Pmi for every m ∈ N (i), we have

Rmi = Mmi +
∑

dmi∈Pmi\{(m,i)}

∏
(r,t)∈dmi

Mrt.

If Pmi\{(m, i)} is empty, then Rmi = Mmi and Tii = 1. Otherwise, since the length of the
minimum-length cycle is c, the length of every path dmi ∈ Pmi\{(m, i)} is at least c − 1.
This yields that

Mmi − (|Pmi|0 − 1)
(
‖Σ̃res‖max

)c−1

≤ Rmi ≤Mmi + (|Pmi|0 − 1)
(
‖Σ̃res‖max

)c−1

. (2.50)

Combining (2.50) and (2.49) leads to

|Tii − 1|≤(|Pmi|0 − 1)
(
‖Σ̃res‖max

)c−1

 ∑
m∈N (i)

Mim

1−Mim
2

≤deg(Pmax − 1)
‖Σ̃res‖cmax

1− ‖Σ̃res‖2
max

≤ ε̃,

(2.51)
where the last inequality is due to Lemma 11 and the fact that d c

2
e ≤ c for c ≥ 3. Now,

consider Tij for a pair (i, j) such that i 6= j. We have

Tij =
n∑

m=1

ÃimRmj =

1 +
∑

m∈N (i)

Mim
2

1−Mim
2

Rij −
∑

m∈N (i)

Mim

1−Mim
2Rmj. (2.52)

According to Lemma 9, one can write

Rs
m′jMim′ − (|Pij|0 − 1)

(
‖Σ̃res‖max

)d c
2
e
≤ Rij ≤ Rs

m′jMim′ + (|Pij|0 − 1)
(
‖Σ̃res‖max

)d c
2
e
,

(2.53a)

Rs
m′jMim′Mim−(|Pmj|0−1)

(
‖Σ̃res‖max

)d c
2
e−1

≤Rmj

≤Rs
m′jMim′Mim+(|Pmj|0−1)

(
‖Σ̃res‖max

)d c
2
e−1

,

(2.53b)
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where m′ is the node adjacent to i in dsij and m ∈ N (i)\m′. Note that if N (i)\m′ is empty,

then Rij = Rs
m′jMim′ and Rmj = Rs

m′jMim′Σ̃
res
im. In this case, an argument similar to the

proof of Lemma 4 can be made to show that Tij = 0. Now, assume that N (i)\m′ is not
empty. One can write

|Tij − Fij|
(a)
= |Tij|

(b)

≤ ε̃, (2.54)

where

Fij =

 1

1−Mim′
2 +

∑
m∈N (i)\m′

Mim
2

1−Mim
2

Rs
m′jMim′ −

Mim′

1−Mim′
2R

s
m′j

−
∑

m∈N (i)\m′

Mim
2

1−Mim
2R

s
m′jMim′Mim.

Note that the relation (a) can be verified by the fact that Fij = 0 and the inequality (b) is
obtained by combining (2.52) with (2.53a) and (2.53b). The inequalities (2.51) and (2.54)
imply that M +N is an ε̃-relaxed inverse of Ã.

Now, it will be shown that the pair (Ã,M + N) satisfies the ε̃-relaxed KKT conditions.
Note that Mii + Nii = Mii = Σ̃ii and, hence, (2.15a) is satisfied. To prove (2.15b), since
sign(Ãij) = −sign(Mij) = −sign(Σ̃ij), it can be concluded that

Mij +Nij = (Σ̃ij − λ̃ij × sign(Σij)) +Nij = (Σ̃ij + λ̃ij × sign(Ãij)) +Nij,

for every (i, j) such that i 6= j and Ãij 6= 0. Due to the definition of N and the fact that

(i, j) ∈ supp(M), we have |Nij| ≤ (Pmax − 1)
(
‖Σ̃res‖max

)c−1

. Hence,

|Mij +Nij − (Σ̃ij + λ̃ij × sign(Ãij))| ≤ ε,

for every (i, j) such that i 6= j and Ãij 6= 0. Therefore, the pair (Ã,M +N) satisfies (2.15b).
Finally, consider a pair (i, j) such that i 6= j and Ãij = 0. One can write

Mij +Nij = Rs
ij +

∑
dij∈Pij\dsij

∏
(m,t)∈dij

Σ̃res
mt.

If Pij\dsij is empty, a set of inequalities similar to (2.24) and (2.25) can be obtained to prove
(2.15c). Now, assume that Pij\dsij is not empty. The length of dsij is at least 2 since there

is no direct edge between nodes i and j. Hence, |Rs
ij| ≤ ‖Σ̃res‖2

max. Furthermore, due to
Lemma (9), the length of every path dij ∈ Pij\dsij is at least dc/2e. This leads to

|Mij +Nij| ≤ ‖Σ̃res‖2
max + (Pmax − 1)

(
‖Σ̃res‖max

)d c
2
e

≤ min
k 6=l

(k,l)6∈G(Σres)

(λ̃kl − |Σ̃res
kl |) + (Pmax − 1)

(
‖Σ̃res‖max

)d c
2
e

≤ λ̃ij − |Σ̃res
ij |+ (Pmax − 1)

(
‖Σ̃res‖max

)d c
2
e
,
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where the last inequality follows from Condition (2-ii) in the theorem. Therefore,

|Mij+Nij−Σ̃ij|≤|Mij+Nij|+|Σ̃ij| ≤ λ̃ij − |Σ̃res
ij |+ |Σ̃res

ij |+ (Pmax − 1)
(
‖Σ̃res‖max

)d c
2
e

≤ λ̃ij + ε̃.

This shows that (Ã,M+N) indeed satisfies the ε̃-relaxed KKT conditions for the normalized
GL. Finally, we consider the explicit solution A defined as (2.13). The following statements
hold:

1. the matrix D1/2(M +N)D1/2 is ε-relaxed inverse of A. To see this, note that

A
(
D1/2(M +N)D1/2

)
= D−1/2ÃD−1/2D1/2(M +N)D1/2

= D−1/2TD1/2

= In + E,

where ‖E‖max ≤
√

Σmax

Σmin
ε̃ ≤ ε.

2. The pair (A,D1/2(M + N)D1/2) satisfies the ε-relaxed KKT conditions. Note that it
is already shown that (Ã,M +N) satisfies the following inequalities

(M +N)ij = Σ̃ij if i = j, (2.55a)∣∣∣(M +N)ij −
(

Σ̃ij + λ̃ij × sign(Ãij)
)∣∣∣ ≤ ε̃ if Ãij 6= 0, (2.55b)∣∣∣(M +N)ij − Σ̃ij

∣∣∣ ≤ λ̃ij + ε̃ if Ãij = 0. (2.55c)

Replacing M + N with D1/2(M + N)D1/2 and modifying (2.55) accordingly, one can
verify that (A,D1/2(M+N)D1/2) satisfies ε-relaxed KKT conditions for the GL, where

ε = max

{
Σmax,

√
Σmax

Σmin

}
ε̃.

This completes the proof. �

Proof of Theorem 5

Due to Theorem 4, the equation

D1/2(M +N)D1/2 = A−1 + A−1E (2.56)
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holds for every λ greater than or equal to λ0, where ‖E‖max ≤ ε. Since the pair (A,D1/2(M+
N)D1/2) satisfies the ε-relaxed KKT conditions, it follows from (2.56) that

(A)−1
ij = Σij − (A−1E)ij = Σ̂ij if i = j, (2.57a)

(A)−1
ij = Σij + tijε− (A−1E)ij︸ ︷︷ ︸

Σ̂ij

+λ× sign(Aij) if Aij 6= 0, (2.57b)

Σij + sijε−(A−1E)ij︸ ︷︷ ︸
Σ̂ij

−λ ≤ (A)−1
ij ≤ Σij + sijε−(A−1E)ij︸ ︷︷ ︸

Σ̂ij

+λ if Aij = 0, (2.57c)

for some numbers tij and sij in the interval [−1, 1]. To complete the proof, it suffices to show
that the matrix F defined as

Σij − Σ̂ij = Fij =


−(A−1E)ij if i = j,
tijε−(A−1E)ij if Aij 6= 0,
sijε−(A−1E)ij if Aij = 0

(2.58)

satisfies the inequality |||F |||2 ≤ dmax (1/µmin(A) + 1) ε. To this end, it is enough to prove
that |||A−1E|||2 ≤ (dmax/µmin(A))ε, since |||F − A−1E|||2 ≤ dmax(A)ε. One can write∣∣∣∣∣∣A−1E

∣∣∣∣∣∣
2
≤
∣∣∣∣∣∣A−1

∣∣∣∣∣∣
2
|||E|||2 ≤ dmax(A)

∣∣∣∣∣∣A−1
∣∣∣∣∣∣

2
‖E‖max =

(
dmax(A)

µmin(A)

)
ε,

which shows the validity of (2.18).
Next, we prove the inequality (2.19). The following chain of inequalities hold

− log det(A) + trace(Σ̂A) + λ‖A‖1,off = − log det(A) + trace(ΣA) + λ‖A‖1,off︸ ︷︷ ︸
f(A)

+ trace((Σ̂− Σ)A)

(a)

≤ − log det(Sopt) + trace(Σ̂Sopt) + λ‖Sopt‖1,off

= − log det(Sopt) + trace(ΣSopt) + λ‖Sopt‖1,off︸ ︷︷ ︸
f∗

+ trace((Σ̂− Σ)Sopt),

where (a) is due to the fact that A is optimal for the GL with the perturbed sample covari-
ances. This implies that

f(A)− f ∗ ≤ trace((Σ̃− Σ)(Sopt − A))

≤
∣∣∣∣∣∣∣∣∣Σ̃− Σ

∣∣∣∣∣∣∣∣∣
2
(
∣∣∣∣∣∣Sopt

∣∣∣∣∣∣
2

+ |||A|||2)

≤
(
µmax(A) + µmax(Sopt)

)
dmax(A)

(
1

µmin(A)
+ 1

)
ε.

�
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Chapter 3

Global Guarantees on Robust Matrix
Recovery

This chapter is concerned with the non-negative rank-1 robust principal component anal-
ysis (RPCA), where the goal is to recover the dominant non-negative principal components
of a data matrix precisely, where a number of measurements could be grossly corrupted with
sparse and arbitrary large noise. Most of the known techniques for solving the RPCA rely
on convex relaxation methods by lifting the problem to a higher dimension, which signifi-
cantly increase the number of variables. As an alternative, the well-known Burer-Monteiro
approach can be used to cast the RPCA as a non-convex and non-smooth `1 optimization
problem with a significantly smaller number of variables. In this work, we show that the
low-dimensional formulation of the symmetric and asymmetric positive rank-1 RPCA based
on the Burer-Monteiro approach has benign landscape, i.e., 1) it does not have any spurious
local solution, 2) has a unique global solution, and 3) its unique global solution coincides
with the true components. An implication of this result is that simple local search algo-
rithms are guaranteed to achieve a zero global optimality gap when directly applied to the
low-dimensional formulation. Furthermore, we provide strong deterministic and probabilis-
tic guarantees for the exact recovery of the true principal components. In particular, it is
shown that a constant fraction of the measurements could be grossly corrupted and yet they
would not create any spurious local solution.

3.1 Introduction

The principal component analysis (PCA) is perhaps the most widely-used dimension-
reduction method that reveals the components with maximum variability in high-dimensional
datasets. In particular, given the data matrix X ∈ Rm×n, where each row corresponds to
a data sample with size n, the goal is to recover its most dominant component under the
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rank-1 spiked model1

X = βuv> + S (3.1)

where β determines the signal-to-noise ratio, S is the additive noise matrix, and u and v
are two unknown unit norm vectors. If the data matrix X is symmetric (for instance, it
corresponds to a sample covariance matrix), then (3.1) can be modified as

X = βvv> + S (3.2)

Depending on the nature of the noise matrix, different methods have been proposed in the
literature to recover the principal components from (partial) observations of X. The problem
of recovering β, u, and v under a Gaussian and sparse noise is conventionally referred to as
PCA and robust PCA (or RPCA), respectively.

The properties of both PCA and its robust analog have been heavily studied in the liter-
ature and their applications span from quantitative finance to health care and neuroscience
([128, 48, 39]). Recently, a special focus has been devoted to further exploiting the prior
knowledge on the principal components, such as sparsity ([286]) and nonlinearity ([110]).
Accordingly, one such knowledge appearing in different applications is the non-negativity of
the principal components ([189]). In this scenario, one needs to solve the PCA or the RPCA
under the additional constraints u,v ≥ 0. While the non-negative PCA has been recently
studied in [189], the main focus of our work is on its robust variant, where the noise matrix
is assumed to be sparse and the goal is the exact recovery of the non-negative vectors u and
v. Note that the non-negativity of principal components naturally arises in many real-world
problems. In what follows, we will present two classes of real-world applications for which
the non-negative RPCA is useful.

1. Non-negative matrix factorization: Extracting the dominant principal component of
a symmetric or asymmetric data matrix appears in many applications and the examples are
ubiquitous. For instance, an important problem in astronomy is the recovery of non-negative
astronomical signals from the covariance matrix of photometric observations ([213]). The
measured data samples are prone to sparse and random outliers. Similarly, one can extract
moving objects from video frames via non-negative matrix factorization by treating the
background as the dominant low-rank component in the video frames and the moving object
as sparse noise (the non-negativity of the data is due to the non-negative values of the
pixels) ([156, 46]). We will conduct a case study on this application later in this chapter.

2. Gene networks: Gene activities can be captured by the samples collected from different
organs, and are described by multi-spiked models ([155]):

X = X0 +
k∑
i=1

u(i)v
>
(i) (3.3)

1There are more general models under which the PCA is shown to be useful (see [131] for more details).
We use the rank-1 spiked model since it fits into our framework and is often used as a baseline to evaluate
the performance of the PCA.
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where (i, j)th entry of X measures the strength of the participation of gene i in sample j and
X0 is an offset. Furthermore, k is the number of the gene-block, and u(i) and v(i) measure the
participation of different genes and samples in the ith gene-block. The participation vectors
are non-negative and the measurements can be subject to malfunctioning of the measurement
tools. Therefore, the problem of obtaining u(i) and v(i) can be cast as a non-negative RPCA
with multiple principal components.

The seminal work by [46] proposes a sparsity promoting convex relaxation for the RPCA
that is capable of the exact recovery of u and v. Upon defining W = uv>, the convex
relaxation of the RPCA is defined as

min
W∈Rm×n

‖W‖∗ + λ‖PΩ(X −W )‖1 (3.4)

where ‖W‖∗ is the nuclear norm of W , serving as a penalty on the rank of the recovered
matrix W , and ‖ · ‖1 is used to denote the element-wise `1 norm. Furthermore, PΩ(·) is
the projection onto the set of matrices with the same support as the measurement set Ω.
Therefore, upon defining S = X−W as the corruption or noise matrix, ‖PΩ(X−W )‖1 plays
the role of promoting sparsity in the estimated noise matrix. After finding an optimal value
of W , the matrix can then be decomposed into the desired vectors u and v, provided that
the relaxation is exact. Notice that the problem is convexified via lifting from n+m variables
on (u,v) to nm variables on W . Despite the convexity of the lifted problem, its dimension
makes it prohibitive to solve in high-dimensional settings. To circumvent this issue, one
popular approach is to resort to an alternative formulation, inspired by [41] (commonly
known as the Burer-Monteiro technique):

min
u∈Rm+ ,v∈Rn+

‖PΩ(X − uv>)‖1 (3.5)

Despite the non-convexity of (3.5), its smooth counterpart (with or without non-negativity
constraints) defined as

min
u∈Rm,v∈Rn

‖PΩ(X − uv>)‖2
F︸ ︷︷ ︸

g(u,v)

(3.6)

has been widely used in matrix completion/sensing and is known to possess benign global
landscape, i.e., every local solution is also global and every saddle point has a direction with
a strictly negative curvature ([31, 101, 100]). This will be stated below.

Theorem 6 (Informal, Benign Landscape ([100])). Under some technical conditions, a regu-
larized version of (3.6) has benign landscape: every local minimum is global and every saddle
point has a direction with a strictly negative curvature.

In particular, both symmetric and asymmetric matrix completion (or matrix sensing)
under dense Gaussian noise can be cast as (3.6) and in light of the above theorem, they
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have benign landscape. However, it is well-known that such smooth norms are incapable of
correctly identifying and rejecting sparse-but-large noise/outliers in the measurements.

Despite the generality of Theorem 6 within the realm of smooth norms, it does not address
the following important question: Does the non-smooth and non-negative rank-1 RPCA (3.5)
have benign landscape?

The Issue with the Known Proof Techniques

To understand the inherent difficulty of examining the landscape of (3.5), it is essential
to explain why the existing proof techniques for the absence of spurious local minima in
matrix sensing/completion cannot naturally be extended to their robust counterparts. In
general, the main idea in the literature behind proving the benign landscape of matrix
sensing/completion is based on analyzing the gradient and the Hessian of the objective
function. More precisely, for every point that satisfies ∇g(u,v) = 0 and does not correspond
to a globally optimal minimum, it suffices to find a global direction of descent d such that
vec(d)>∇2g(u,v)vec(d) < 0, where vec(d) is the vectorized version of d and ∇2g(u,v) is the
Hessian of g(u,v). Such a direction certifies that every stationary point that is not globally
optimal must be either a local maximum or a saddle point with a strictly negative direction.
However, this approach cannot be used to prove similar results for (3.5) mainly because the
objective function of (3.5) is non-differentiable and, hence, the Hessian is not well-defined.
This difficulty calls for a new methodology for analyzing the landscape of the robust and
non-smooth PCA; a goal that is at the core of this work.

3.2 Overview of Contributions

In this work, we characterize the landscape of both the symmetric non-negative rank-1
RPCA defined as

min
u∈Rn+

‖PΩ(X − uu>)‖1 +Rβ(u)︸ ︷︷ ︸
freg(u)

(SN-RPCA)

and its asymmetric counterpart defined as

min
u∈Rm+ ,v∈Rn+

‖PΩ(X − uv>)‖1 +Rβ(u,v)︸ ︷︷ ︸
freg(u,v)

(AN-RPCA)

In particular, we fully characterize the stationary points of these optimization problems,
under both deterministic and probabilistic models for the measurement index Ω and the
noise matrix S. The functions R(u) and R(u,v) are regularization functions that prevent
the solutions from blowing up; roughly speaking, they penalize the points whose norm is
greater than β, but do not change the landscape otherwise. The exact definitions of these
regularization functions will be presented later in Section 3.5.
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Remark 4. The focus of this chapter is on the symmetric and non-symmetric RPCA under
the rank-1 spiked model. A natural extension to this model is its rank-r variant:

X = UV > + S (3.7)

where U :=
[
u1 · · · ur

]
∈ Rm×r

+ and V :=
[
v1 · · · vr

]
∈ Rn×r

+ are non-negative matrices
encompassing the r principal components of the model (the symmetric version can be defined
in a similar manner). Furthermore, similar to the rank-1 case, S is a sparse noise matrix.
Under this rank-r spiked model, the aim of the non-negative rank-r RPCA is to recover the
non-negative matrices U and V given a subset of the elements of the noisy measurement
matrix X. In Section 3.8, we will elaborate on the technical difficulties behind this extension.
In addition, we will provide some empirical evidence to support that the developed results
may hold for the general non-negative rank-r RPCA with r ≥ 2.

Definition 14. Given the set Ω, two graphs are defined below:

- The sparsity graph G(Ω) induced by Ω for an instance of (SN-RPCA) is defined as a
graph with the vertex set V := {1, 2, ..., n} that includes an edge (i, j) if (i, j) ∈ Ω.

- The bipartite sparsity graph Gm,n(Ω) induced by Ω for an instance of (AN-RPCA) is
defined as a graph with the vertex partitions Vu := {1, 2, ...,m} and Vv := {m+ 1,m+
2, ...,m+ n} that includes an edge (i, j) if (i, j −m) ∈ Ω.

Furthermore, define ∆(G(Ω)) and δ(G(Ω)) as the maximum and minimum degrees of the
nodes in G(Ω), respectively. Similarly, ∆(Gm,n(Ω)) and δ(Gm,n(Ω)) are used to refer to the
maximum and minimum degrees of the nodes in Gm,n(Ω), respectively.

Definition 15. The sets of bad/corrupted and good/correct measurements are defined
as B = {(i, j)|(i, j) ∈ Ω, Sij 6= 0} and G = {(i, j)|(i, j) ∈ Ω, Sij = 0}, respectively.

Based on the above definitions, the sparsity graph is allowed to include self-loops. For
a positive vector x, we denote its maximum and minimum values with xmax and xmin, re-
spectively. Furthermore, define κ(x) = xmax

xmin
as the condition number of the vector x. The

first result of this chapter develops deterministic conditions on the measurement set Ω and
the sparsity pattern of the noise matrix S to guarantee that the positive rank-1 RPCA has
benign landscape. Let u∗ and (u∗,v∗) denote the true principal components of (SN-RPCA)
and (AN-RPCA), respectively.

Theorem 7 (Informal, Deterministic Guarantee). Assuming that u∗,v∗ > 0, there exist
regularization functions R(u) and R(u,v) such that the following statements hold with over-
whelming probability:

1. (SN-RPCA) has no spurious local minimum and has a unique global minimum that
coincides with the true component, provided that G(G) has no bipartite component
and

κ(u∗)4∆(G(B)) . δ(G(G)) (3.8)
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2. (AN-RPCA) has no spurious local minimum and has a unique global minimum that
coincides with the true components, provided that Gm,n(G) is connected and

max
{
κ(u∗)4, κ(v∗)4

}
∆(Gm,n(B)) . δ(Gm,n(G)) (3.9)

Theorem 7 puts forward a set of deterministic conditions for the absence of spurious
local solutions in (SN-RPCA) and (AN-RPCA) as well as the uniqueness of the global
solution. Notice that no upper bound is assumed on the values of the nonzero entries
in the noise matrix. The reasoning behind the conditions imposed on the minimum and
maximum degrees of the nodes in the sparsity graph of the measurement set is to ensure the
identifiability of the problem. We will elaborate more on this subtle point later in Section 3.5.
Furthermore, we will show later in this chapter that some of the conditions delineated in
Theorem 7—such as the strict positivity of u∗ and v∗, as well as the absence of bipartite
components in G(G) for (SN-RPCA)—are also necessary for the exact recovery.

The second main result of this chapter investigates (SN-RPCA) and (AN-RPCA) under
random sampling and noise structures. In particular, suppose that each element (in the
symmetric case, each element of the upper triangular part) of S is nonzero with probability
d. Then, for every (i, j), we have

Xij =

{
u∗i v

∗
j with probability 1− d

arbitrary with probability d
(3.10)

Furthermore, suppose that every element of X is measured with probability p. In other
words, every (i, j) belongs to Ω with probability p. Finally, we assume that the noise and
sampling events are independent.

Theorem 8 (Informal, Probabilistic Guarantee). Assuming that u∗,v∗ > 0, there exist
regularization functions R(u) and R(u,v) such that the following statements hold with over-
whelming probability:

1. (SN-RPCA) has no spurious local minimum and has a unique global minimum that
coincides with the true component, provided that

p &
κ(u∗)4 log n

n
, d .

1

κ(u∗)4
(3.11)

2. (AN-RPCA) has no spurious local minimum and has a unique global minimum that
coincides with the true components, provided that

p &
κ(w∗)4n log n

m2
, d .

r

κ(w∗)4
(3.12)

where w∗ =
[
u∗> v∗>

]>
, r = m/n, and n ≥ m.
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A number of interesting corollaries can be obtained based on Theorem 8. For instance, it
can be inferred that the exact recovery is guaranteed even if the number of grossly corrupted
measurements is on the same order as the total number of measurements, provided that u∗max

u∗min

is uniformly bounded from above.
In addition to the absence of spurious local minima and the uniqueness of the global

minimum, the next proposition states that the true solution can be recovered via local
search algorithms for non-smooth optimization.

Proposition 1 (Informal, Global Convergence). Under the assumptions of Theorem 7 and 8,
local search algorithms converge to the true solutions of (SN-RPCA) and (AN-RPCA) with
overwhelming probability.

Starting from Section 3.2, we will delve into the detailed analysis of the symmetric and
asymmetric non-negative RPCA. In particular, we will analyze (SN-RPCA) and (AN-RPCA)
under different deterministic and probabilistic settings and provide formal versions of The-
orems 7 and 8.

Preliminaries

A directional derivative of a locally Lipschitz and possibly non-smooth function h(x)
at x in the direction d is defined as

h′(x,d) := lim
t↓0

h(x + td)− h(x)

t
(3.13)

upon existence. Based on this definition, ū is directional-minimum-stationary (or D-
min-stationary) for (SN-RPCA) if f ′(ū,d) ≥ 0 for every feasible direction d, i.e., a direction
that satisfies di ≥ 0 when ui = 0 for every index i. Similarly, ū is directional-maximum-
stationary (or D-max-stationary) for (SN-RPCA) if f ′(ū,d) ≤ 0 for every feasible d. Fi-
nally, ū is directional-stationary (or D-stationary) for (SN-RPCA) if it is either D-min-
or D-max-stationary1.

Every local minimum (maximum) ū should be D-min (max)-stationary for f(u). On the
other hand, ū cannot be a D-stationary point if f(u) has strictly positive and negative direc-
tional derivatives at that point. In that case, ū is neither local maximum nor minimum. A
solution to a minimization problem is referred to as spurious local (or simply local) if there
exists another feasible point with a strictly smaller objective value; a solution is globally
optimal (or simply global) if no such point exists.

1Note that the notion of D-stationary points is often used in lieu of D-min-stationary in the litera-
ture. However, we use a slightly more general definition in this chapter to account for the local maxima
of (SN-RPCA).
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Finally, a vertex partitioning of a non-empty bipartite graph is the partition of its
vertices into two groups such that there exist no adjacent vertices within each group.

3.3 Related Work

Non-convex and Low-rank Optimization

A considerable amount of work has been carried out to understand the inherent difficulty
of solving low-rank optimization problems both locally and globally.

Convexification: Recently, there has been a pressing need to develop efficient methods for
solving large-scale nonconvex optimization problems that naturally arise in data analytics
and machine learning ([69, 227, 36, 279, 199]). One promising approach for making these
large-scale problems more tractable is to resort to their convex surrogates; these methods
started to receive a great deal of attention after the seminal works by [65] and [44] on the
compressive sensing and have been extended to emerging problems in machine learning, such
as fairness ([199]), robust polynomial regression ([184, 173]), and neural networks ([14]), to
name a few. Nonetheless, the size of today’s problems has been a major impediment to the
tractability of these methods. In practice, the dimension of the real-world problems is over-
whelmingly large, often surpassing the ability of these seemingly efficient convex methods to
solve the problem in a reasonable amount of time. Due to this so-called curse of dimension-
ality, the common practice is to deploy fast local search algorithms directly applied to the
original nonconvex problem with the hope of converging to acceptable solutions. Roughly
speaking, these methods can only guarantee the local optimality, thus exposing themselves
to potentially large optimality gaps. However, a recent line of work has shown that a sur-
prisingly large class of nonconvex problems, including matrix completion/sensing ([31, 101,
100, 284]), phase retrieval ([242]), and dictionary recovery ([243]) have benign global land-
scape, i.e., every local solution is also global and every saddle point has a direction with a
strictly negative curvature (see [53] for a comprehensive survey on the related problems).
More recently, the work by [280] has introduced a unified framework that shows the benign
landscape of nonconvex low-rank optimization problems with general loss functions, pro-
vided that they satisfy certain restricted convexity and smoothness properties. This enables
most of the saddle-escaping local search algorithms to converge to a global solution, thereby
resulting in a zero optimality gap ([102]).

Benign landscape: As mentioned before, it has been recently shown that many low-rank
optimization problems can be cast as smooth-but-nonconvex optimization problems that
are free of spurious local minima. These methods heavily rely on the notion of restricted
isometry property (RIP)—a property that was initially introduced by [45] and has been used
ever since as a metric to measure a norm-preserving property of the objective function. In
general, these methods have two major drawbacks: 1) they can only target a narrow set of
nearly-isotropic instances ([278]), and 2) their proof technique depends on the differentiability
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of the objective function; a condition that is not satisfied for non-smooth norms, such as `1.
To the best of our knowledge, the work by [134] is the only one that studies the landscape of
the `1 minimization problem, where the authors consider the tensor decomposition problem
under the full and perfect measurements. Our work is somewhat related to [168] that derives
similar conditions for the absence of spurious local solution of the non-negative rank-1 matrix
completion but for the smooth Frobenius norm minimization problem.

PCA with prior information: With an exponential growth in the size and dimensionality
of the real-world datasets, it is often required to exploit the additional prior information in
the PCA. In many real-world applications, prior knowledge from the underlying physics of
the problem—such as non-negativity ([189]), sparsity ([286]), robustness ([46]), and nonlin-
earity ([110])—can be taken into account to perform more efficient, consistent, and accurate
PCA.

Numerical algorithms for non-smooth optimization: Numerical algorithms for non-
smooth optimization problems can be dated back to the work by Clarke on the extended
definitions of gradients and directional derivatives, commonly known as generalized deriva-
tives ([54]). Intuitively, for non-smooth functions, the gradient in the classical sense seize
to exist at a subset of the points in the domain. The Clarke generalized derivative is intro-
duced to circumvent this issue by associating a convex differential to these points, even if
the original problem is non-convex. In the domain of unconstrained non-smooth optimiza-
tion, earlier works have introduced simple algorithms that converge to approximate Clarke-
stationary points ([107, 51]). More recent methods take advantage of the fact that many
non-smooth optimization problems are smooth in every open dense subset of their domains.
This implies that the objective function is smooth with probability one at a randomly drawn
point. This observation lays the groundwork for several gradient-sampling-based algorithms
for both unconstrained and constrained non-smooth optimization problems ([42, 61]). As
mentioned before, a sub-gradient method has been recently proposed by [163] for solving the
RPCA, where the authors prove linear convergence of the algorithm to the true components,
provided that the initial point is chosen sufficiently close to the globally optimal solution.

Comparison to the Existing Results on RPCA

Similar to the non-convex matrix sensing and completion, most of the existing results on
the RPCA work on a lifted space of the variables via different convex relaxations and they
do not incorporate the positivity constraints in the problem. In what follows, we will explain
the advantages of our proposed method compared to these results.

Positivity constraints: In the present work, we show that the positivity of the true com-
ponents is both sufficient and (almost) necessary for the absence of spurious local solutions.
We use this prior knowledge to obtain sharp deterministic and probabilistic guarantees on
the absence of spurious local minima for the RPCA based on the Burer-Monteiro formu-
lation. For instance, we show that up to a constant factor of the measurements can be
grossly corrupted and yet they do not introduce any spurious local solution. Considering the
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fact that these results heavily rely on the positivity of the true components, it is unclear if
similar “no spurious local minima” results hold for the general case without the positivity
assumption. The statistical properties of these types of constraints have also been shown to
be useful in the classical PCA by [189], where the authors show that by imposing positiv-
ity constraints on the principal components, one can guarantee its consistent recovery with
smaller signal-to-noise ratio. It is also worthwhile to mention that the incorporation of the
non-negativity/positivity constraints in the low-rank matrix recovery can be traced back to
some earlier works on the non-negative matrix factorization problem ([156, 124]).

Computational savings: Similar to the convexification techniques in nonconvex optimiza-
tion, most of the classical results on the RPCA relax the inherent non-convexity of the
problem by lifting it to higher dimensions ([46, 50, 283, 127]). In particular, by moving from
vector to matrix variables, they guarantee the convexity of the problem at the expense of
significantly increasing the number of variables. In this work, we show that such lifting is not
necessary for the positive rank-1 RPCA since—despite the non-convexity of the problem—it
is free of spurious local solutions and, hence, simple local search algorithms converge to the
true components when directly applied to its original formulation.

Sharp guarantees with mild conditions: In general, most of the existing results on
RPCA for guaranteeing the recovery of the true components fall into two categories. First, a
large class of methods rely on some deterministic conditions on the spectra of the dominant
components and/or the structure of the sparse noise ([127, 50, 272]). For instance, the
works by [127, 50] require the regularization coefficient to be within a specific interval that is
defined in terms of the true principal components. Furthermore, the algorithm proposed
by [272] requires prior knowledge on the density of the sparse noise matrix. Although
being theoretically significant, these types of conditions cannot be easily verified and met
in practice. With the goal of bypassing such stringent conditions, the second category of
research has studied the RPCA under probabilistic models. These types of guarantees were
popularized by [46, 266] and they do not rely on any prior knowledge on the true components
or the density of the noise matrix. However, their success is contingent upon specific random
models on the sparse noise or the spectra of the true components, neither of which may be
satisfied in practice.

In contrast, the method proposed here does not rely on any prior knowledge on the true
solution, other than the availability of an upper bound on the maximum absolute value of
the elements in the principal components2. Furthermore, unlike the previous works, our
results encompass both deterministic and probabilistic models under random sampling.

2Note that in most cases, these types of upper bounds can be immediately inferred by the domain
knowledge; see e.g. our discussion on the moving object detection problem.
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3.4 Base Case: Noiseless Non-negative RPCA

In this section, we consider the noiseless version of both symmetric and asymmetric non-
negative RPCA. While not entirely obvious, the subsequent arguments are at the core of our
proofs for the general noisy case. In the noiseless scenario, (SN-RPCA) is reduced to

min
u≥0

∑
(i,j)∈Ω

|uiuj − u∗iu∗j |︸ ︷︷ ︸
f(u)

(P1-Sym)

For the asymmetric problem (AN-RPCA), the solution is invariant to scaling. In other
words, if (u,v) is a solution to (AN-RPCA), then (1

q
u, qv) is also a valid solution with

the same objective value, for every scalar q > 0. To circumvent the issue of invariance
to scaling, it is common to balance the norms of u and v by penalizing their difference.
Therefore, similar to the works by [100, 282, 272], we consider the following regularized
variant of (AN-RPCA):

min
u≥0,v≥0

‖PΩ(X − uv>)‖1 + α|u>u− v>v|︸ ︷︷ ︸
fasym(u,v)

(3.14)

for an arbitrary constant α > 0 (note that the positivity of α is the only condition required
in this work). To deal with the asymmetric case, we first convert it to a symmetric problem
after a simple concatenation of variables. Define w = [u> v>]>, w∗ = [u∗> v∗>]>, and
Ω̄ = {(i, j)|(i, j−m) ∈ Ω}. Based on these definitions, one can symmetrize (3.14) as follows:

min
w≥0

∑
(i,j)∈Ω̄

|wiwj − w∗iw∗j |+ α

∣∣∣∣∣
m∑
i=1

w2
i −

m+n∑
j=m+1

w2
j

∣∣∣∣∣︸ ︷︷ ︸
fsym(w)

(P1-Asym)

To simplify the notation, we drop the subscript from fsym(w) whenever there is no ambiguity
in the context.

Deterministic Guarantees

Symmetric case: First, we introduce deterministic conditions to guarantee a benign
landscape for (P1-Sym).

Theorem 9. Suppose that u∗ > 0 and G(Ω) has no bipartite component. Then, the following
statements hold for (P1-Sym):

1. It does not have any spurious local minimum;

2. The point u = u∗ is the unique global minimum;
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3. In the positive orthant, the point u = u∗ is the only D-stationary point.

Additionally, if G(Ω) is connected, the following statements hold for (P1-Sym):

4. The points u = u∗ and u = 0 are the only D-min-stationary points;

5. The point u = 0 is a local maximum.

The above theorem has a number of important implications for (P1-Sym): 1) it has no
spurious local solution, 2) u = u∗ is its unique global solution, and 3) every feasible point
u > 0 such that u 6= u∗ has at least a strictly negative directional derivative. Additionally,
if G(Ω) is connected, the feasible points of (P1-Sym) with zero entries either have a strictly
negative directional derivative or correspond to the origin that is a local maximum with a
strictly negative curvature. Therefore, these points are not local/global minima and can be
easily avoided using local search algorithms.

To prove Theorem 9, we first need the following important lemma.

Lemma 12. Suppose that G(Ω) has no bipartite component and u∗ > 0. Then, for every D-
min-stationary point u of (P1-Sym), we have u[c] > 0 or u[c] = 0, where u[c] is a sub-vector
of u induced by the cth component of G(Ω).

Now, we are ready to present the proof of Theorem 9.

Proof of Theorem 9: We prove the first three statements. Note that Statement 5 can be
easily verified and Statement 4 is implied by Lemma 12 and Statement 3.

Suppose that u 6= u∗ is a local minimum. Note that if ui = 0 for some i, Lemma 12
implies that u[c] = 0 for the cth component that includes node i. However, a strictly positive
perturbation of u[c] decreases the objective function and, therefore, u cannot be a local
minimum. Hence, it is enough to consider the case u > 0. We show that u cannot be
D-stationary. This immediately certifies the validity of the first three statements. First, we
prove that

min
k∈Ωi

u∗k
uk
≤ ui
u∗i
≤ max

k∈Ωi

u∗k
uk

(3.15)

for every i ∈ {1, · · · , n}, where Ωi = {j|(i, j) ∈ Ω}. By contradiction and without loss of
generality, suppose that ui/u

∗
i > maxk∈Ωi u

∗
k/uk for some i. This implies that uiuj > u∗iu

∗
j

for every j ∈ Ωi. Therefore, a negative or positive perturbation of ui results in respective
negative or positive directional derivatives, contradicting the D-stationarity of u. With no
loss of generality, assume that the sparsity graph G(Ω) is connected (since the arguments
made in the sequel can be readily applied to every disjoint component of G(Ω)) and that the
following ordering holds:

0 <
u∗1
u1

≤ u∗2
u2

≤ · · · ≤ u∗n
un

(3.16)

Therefore, due to (4.13), we have

0 <
u∗1
u1

≤ min
k∈Ωi

u∗k
uk
≤ ui
u∗i
≤ max

k∈Ωi

u∗k
uk
≤ u∗n
un

(3.17)
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for every i ∈ {1, · · · , n}.
Since u 6= u∗, there exists some index t such that ut 6= u∗t . This implies that u∗n/un > 1;

otherwise, we should have u∗n/un ≤ 1. This together with (4.54), implies that u∗t/ut < 1 and
ut/u

∗
t > 1, which contradicts (4.20). Now, define the sets

T1 =

{
i|u
∗
i

ui
=
u∗n
un
, 1 ≤ i ≤ n

}
(3.18)

T2 =

{
j|uj
u∗j

=
u∗n
un
, 1 ≤ j ≤ n

}
(3.19)

Moreover, define the set N = V \(T1 ∪ T2) and let d be

di =


ui
un

if i ∈ T1

− ui
un

if i ∈ T2

0 if i ∈ N
(3.20)

Define a perturbation of u as û = u + dε where ε > 0 is chosen to be sufficiently small.
Next, the effect of the above perturbation on different terms of (P1-Sym) will be analyzed.
To this goal, we divide Ω into four sets

1. (i, j) ∈ Ω and i, j ∈ T1: In this case, since ui < u∗i and uj < u∗j , one can write

|ûiûj − u∗iu∗j | = u∗iu
∗
j − ûiûj = u∗iu

∗
j −

(
ui+

ui
un
ε

)(
uj+

uj
un
ε

)
= |uiuj − u∗iu∗j | −

(
2uiuj
un

)
ε−

(
uiuj
u2
n

)
ε2 (3.21)

where we have used the assumption u∗,u > 0.

2. (i, j) ∈ Ω and i, j ∈ T2: In this case, since ui > u∗i and uj > u∗j , one can write

|ûiûj − u∗iu∗j | = ûiûj − u∗iu∗j =

(
ui−

ui
un
ε

)(
uj−

uj
un
ε

)
− u∗iu∗j

= |uiuj − u∗iu∗j | −
(

2uiuj
un

)
ε+

(
uiuj
u2
n

)
ε2 (3.22)

where we have used the assumption u∗,u > 0.

3. (i, j) ∈ Ω, i ∈ N , and j ∈ T1 ∪ T2: According to the definitions of T1 and T2, we have

ui
u∗i

<
u∗n
un
,

u∗i
ui

<
u∗n
un

(3.23)

Now, if j ∈ T1, one can write

ui
u∗i

<
u∗j
uj

=⇒ uiuj < u∗iu
∗
j (3.24)
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which implies that

|ûiûj−u∗iu∗j | = u∗iu
∗
j − ûiûj = u∗iu

∗
j −ui

(
uj +

uj
un
ε

)
= |uiuj−u∗iu∗j |−

(
uiuj
un

)
ε (3.25)

Similarly, if j ∈ T2, one can verify that

|ûiûj − u∗iu∗j | = |uiuj − u∗iu∗j | −
(
uiuj
un

)
ε (3.26)

4. (i, j) ∈ Ω, i ∈ T1, and j ∈ T2: In this case, note that

|ûiûj − u∗iu∗j | =
∣∣∣∣(ui +

ui
un
ε

)(
uj −

uj
un
ε

)
− u∗iu∗j

∣∣∣∣ ≤ |uiuj − u∗iu∗j |+(uiuju2
n

)
ε2 (3.27)

The above analysis entails that—unless N and the subgraphs of G(Ω) induced by the
nodes in T1 or T2 are empty—f ′(u,d) > 0 and f ′(u,−d) < 0, implying that u cannot be
D-stationary. On the other hand, these conditions enforce G(Ω) to be bipartite, which is a
contradiction. This completes the proof. �

Next, we show that u∗ > 0 is almost necessary to guarantee the absence of spurious local
minima for (P1-Sym).

Proposition 2. Assume that u∗ ≥ 0 and that u∗ 6= 0 with u∗i = 0 for some i. Then, upon
choosing Ω = {1, . . . , n}2\{(i, i)}, (P1-Sym) has a spurious local minimum.

The above corollary shows that if u∗ is non-negative with at least one zero element, even
in the almost perfect scenario where the set Ω includes all of the measurements except for one,
it may not be free of spurious local minima. The next corollary shows that the assumption
on the absence of bipartite components in G(Ω) is also necessary for the uniqueness of the
global solution.

Proposition 3. Given any vector u∗ > 0 and set Ω, suppose that G(Ω) has a bipartite
component. Then, the global solution of (P1-Sym) is not unique.

Proof. Without loss of generality, suppose that G(Ω) is a connected bipartite graph. For
any vector u∗ > 0, the solution u = u∗ is globally optimal for (P1-Sym). Suppose that the
bipartite graph G(Ω) partitions the entries of u into two sets V1 and V2 such that un ∈ V1.
Based on some simple algebra, one can easily verify that, for a sufficiently small ε > 0, the
solution

ûi ←
{
ui + ui

un
ε if i ∈ V1

ui − ui
un+ε

ε if i ∈ V2
(3.28)

is also globally optimal for (P1-Sym).
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Remark 5. Suppose that u∗ is a globally optimal solution of (P1-Sym) and that G(G) in-
cludes a bipartite component. Then, according to Proposition 3, the part of u∗ whose elements
correspond to the nodes in this bipartite component can be perturbed to attain another globally
optimal solution, thereby resulting in the non-uniqueness of the global solution. On the
other hand, the connectedness assumption is required to eliminate the undesirable stationary
points on the boundary of the feasible region. Roughly speaking, the elements of the vector
variable u corresponding to different disconnected components can behave independently from
each other, giving rise to spurious D-stationary points in the problem. To elaborate, recall
that u[c] is a sub-vector of u induced by the cth component of G(G). Based on Lemma 12, the
D-stationary points restricted to each disjoint component of G(G) are either strictly positive
or equal to zero. Therefore, upon having two disconnected components c1 and c2, the points

u′ =
[
u∗[c1]> 0

]>
and u′′ =

[
0 u∗[c2]>

]>
are indeed D-stationary points of (SN-RPCA),

thereby resulting in spurious stationary points.

Asymmetric case: Next, we consider (3.14) in the noiseless scenario by analyzing its sym-
metrized counterpart (P1-Asym). Based on the construction of Ω̄, the corresponding sparsity
graph G(Ω̄) is bipartite. On the other hand, according to Proposition 3, the existence of a
bipartite component in G(Ω̄) makes a part of the solution invariant to scaling, which subse-
quently results in the non-uniqueness of the global minimum. The additional regularization
term in (P1-Asym) is introduced to circumvent this issue by penalizing the difference in the
norms of u and v.

Theorem 10. Suppose that w∗ > 0 and G(Ω̄) is connected. Then, the following statements
hold for (P1-Asym):

1. The points w = 0 and w with the properties ww> = w∗w∗> and
∑m

i=1w
2
i =

∑m+n
j=m+1w

2
j

are the only D-min-stationary points;

2. The point w = 0 is a local maximum;

3. In the positive orthant, the point w with the properties ww> = w∗w∗> and
∑m

i=1 w
2
i =∑m+n

j=m+1 w
2
j is the only D-stationary point.

Remark 6. Notice that, unlike the symmetric case, Theorem 10 requires the connectedness
of G(Ω̄). This is due to the additional regularization term in (AN-RPCA). In particular,
similar arguments do not necessarily hold for the disjoint components of G(Ω̄) because of the
coupling nature of the regularization term.

Probabilistic Guarantees

Next, we consider the random sampling regime. Similar to the previous subsection, we
first focus on the symmetric case.
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Symmetric case: Suppose that every element of the upper triangular part of the matrix
u∗u∗> is measured independently with probability p. In other words, for every (i, j) ∈
{1, 2, ..., n}2 and i ≤ j, the probability of (i, j) belonging to Ω is equal to p.

Theorem 11. Suppose that n ≥ 2, u∗ > 0, and p ≥ min
{

1, (2η+2) logn+2
n−1

}
for some constant

η ≥ 1. Then, the following statements hold for (SN-RPCA) with probability of at least
1− 3

2
n−η:

1. The points u = u∗ and u = 0 are the only D-min-stationary points;

2. The point u = 0 is a local maximum;

3. In the positive orthant, the point u = u∗ is the only D-stationary point.

Before presenting the proof of Theorem 11, we note that the required lower bound on p
is to guarantee that the random graph G(Ω) is connected with high probability. This implies
that Theorem 9 can be invoked to verify the statements of Theorem 11. It is worthwhile
to mention that the classical results on Erdös-Rényi graphs characterize the asymptotic
properties of G(Ω) as n approaches infinity. In particular, it is shown by [74] that with
the choice of p = logn+c

n
for some c > 0, G(Ω) becomes connected with probability of at

least Ω(e−e
−c

) as n → ∞. In contrast, we introduce the following non-asymptotic result
characterizing the probability that G(Ω) is connected and non-bipartite for any finite n ≥ 2,
and subsequently use it to prove Theorem 11.

Lemma 13. Given a constant η ≥ 1, suppose that p ≥ min
{

1, (2η+2) logn+2
n−1

}
and n ≥ 2.

Then, G(Ω) is connected and non-bipartite with probability of at least 1− 3
2
n−η.

Proof of Theorem 11: The proof immediately follows from Theorem 9 and Lemma 13. �

Similar to the deterministic case, we will show that both assumptions u∗ > 0 and p &
log n/n are almost necessary for the successful recovery of the global solution of (P1-Sym).
In particular, it will be proven that relaxing u∗ > 0 to u∗ ≥ 0 will result in an instance that
possesses a spurious local solution with non-negligible probability. Furthermore, it will be
shown that the choice p ≈ log n/n is optimal—modulo log n-factor—for the unique recovery
of the global solution.

Proposition 4. Assuming that u∗ ≥ 0 with u∗i = 0 for some i ∈ {1, . . . , n} and that
p < 1, (P1-Sym) has a spurious local minimum with probability of at least 1− p > 0.

Proof. Suppose that u∗ ≥ 0 and there exists an index i such that u∗i = 0. The proof of
Proposition 2 can be used to show that excluding the measurement (i, i) gives rise to a
spurious local minimum. This occurs with probability 1− p. The details are omitted due to
their similarities to the proof of Proposition 2.
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Proposition 5. Given any u∗ > 0, suppose that np → 0 as n → ∞. Then, the global
solution of (P1-Sym) is not unique with probability approaching to one.

Asymmetric case: Consider (3.14) under a random sampling regime, where each element
of u∗v∗> is independently observed with probability p. Next, the analog of Theorem 11 for
the asymmetric case is provided.

Theorem 12. Suppose that n,m ≥ 2, w∗ > 0, and p ≥ min
{

1, (m+n)((1+η) log(mn)+1)
(m−1)(n−1)

}
for

some constant η ≥ 1. Then, the following statements hold for (P1-Asym) with probability of
at least 1− 2(mn)−η − 4(mn)−2η:

1. The points w = 0 and w with the properties ww> = w∗w∗> and
∑m

i=1w
2
i =

∑m+n
j=m+1w

2
j

are the only D-min-stationary points;

2. The point w = 0 is a local maximum;

3. In the positive orthant, the point w with the properties ww> = w∗w∗> and
∑m

i=1 w
2
i =∑m+n

j=m+1 w
2
j is the only D-stationary point.

Before presenting the proof of Theorem 12, we note that G(Ω̄) no longer corresponds
to an Erdös-Rényi random graph due to its bipartite structure. Therefore, we present the
analog of Lemma 13 for random bipartite graphs.

Lemma 14. Given a constant η ≥ 1, suppose that p ≥ min
{

1, (m+n)((1+η) log(mn)+1)
(m−1)(n−1)

}
and

m,n ≥ 2. Then, G(Ω̄) is connected with probability of at least 1− 2(mn)−η − 4(mn)−2η.

Proof of Theorem 12: The proof immediately follows from Theorem 10 and Lemma 14. �
Before proceeding, we note that, similar to the classical results on the Erdös-Rényi

graphs, there are asymptotic results guaranteeing the connectedness of a random bipartite
graph as a function of p. In particular, [220] shows that G(Ω̄) is connected with probability

approaching to 1 as m + n → ∞, provided that p ≥ 3
(
1 + m

n

)−1 (n+m) log(n+m)
nm

. Lemma 14
offers another lower bound on p that matches this threshold (modulo a constant factor),
while being non-asymptotic in nature. In particular, it characterizes the probability that the
random bipartite graph is connected for all m,n ≥ 2.

3.5 Extension to Noisy Positive RPCA

In this section, we will show that an additive sparse noise with arbitrary values does not
drastically change the landscape of the RPCA. In other words, a limited number of grossly
wrong measurements will not introduce any spurious local solution to the positive RPCA.
The key idea is to prove that the direction of descent that was introduced in the previous
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section is also valid when the measurements are not perfect, i.e., when they are subject to
sparse noise. To this goal, consider the following problem in the symmetric case:

min
u≥0

∑
(i,j)∈Ω

|uiuj −Xij|︸ ︷︷ ︸
f(u)

(3.29)

where
X = u∗u∗> + S (3.30)

is the matrix of true measurements perturbed with sparse noise. Similarly, consider the
following problem for the asymmetric case:

min
u≥0,v≥0

∑
(i,j)∈Ω

|uivj −Xij|+ α

∣∣∣∣∣
m∑
i=1

u2
i −

n∑
j=1

v2
j

∣∣∣∣∣ (3.31)

where α is an arbitrary positive number. After symmetrization, (3.31) can be re-written as

min
w≥0

∑
(i,j)∈Ω̄

|wiwj − X̄ij|+ α

∣∣∣∣∣
m∑
i=1

w2
i −

m+n∑
j=m+1

w2
j

∣∣∣∣∣︸ ︷︷ ︸
f(w)

(3.32)

where
X̄ = ww> + S̄ (3.33)

for X̄ ∈ R(n+m)×(n+m) and

S̄ =

[
0 S
S> 0

]
(3.34)

Furthermore, define B̄ = {(i, j) : (i, j) ∈ Ω̄, S̄ij 6= 0} and Ḡ = {(i, j) : (i, j) ∈ Ω̄, S̄ij = 0} as
the sets of bad and good measurements for the symmetrized problem, respectively. In this
work, we do not impose any assumption on the maximum value of the nonzero elements of S.
However, without loss of generality, one may assume that u∗u∗>+S > 0 and w∗w∗>+S̄ > 0;
otherwise, the non-positive elements can be discarded due to the assumptions u∗ > 0 and
(u∗,v∗) > 0. In fact, we impose a slightly more stronger condition in this work.

Assumption 1. There exists a constant c ∈ (0, 1] such that Sij + u∗iu
∗
j > cu∗

2

min and S̄ij +

w∗iw
∗
j > cw∗

2

min for (3.29) and (3.32), respectively.

Identifiability

Intuitively, the non-negative RPCA under the unknown-but-sparse noise is more chal-
lenging to solve than its noiseless counterpart. In particular, one may consider (3.29) as a
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variant of (P1-Sym) discussed in the previous section, where the locations of the bad mea-
surements are unknown; if these locations were known, they could have been discarded to
reduce the problem to (P1-Sym). If the measurements are subject to unknown noise, one of
the main issues arises from the identifiability of the solution. To further elaborate, we will
offer an example below.

Example 2. Suppose that X(ε) = (e1 + 1ε)(e1 + 1ε)>, where e1 is the first unit vector and
1 is a vector of ones. Assuming that Ω = {1, ..., n}2, one can decompose X(ε) in two forms

X(ε) = (e1 + 1ε)(e1 + 1ε)>︸ ︷︷ ︸
u∗1u∗1

>

+ 0︸︷︷︸
S1

(3.35a)

X(ε) = 11>ε2︸ ︷︷ ︸
u∗2u∗2

>

+ e1e
>
1 + 1e>1 ε+ e11

>ε︸ ︷︷ ︸
S2

(3.35b)

For every ε > 0, both S1 and S2 can be considered as sparse matrices since the number of
nonzero elements in each of these matrices is at most on the order of O(n). However, unless
more restrictions on the number of nonzero elements at each row or column of S are imposed,
it is impossible to distinguish between these two cases. This implies that the solution is not
identifiable.

In order to ensure that the solution is identifiable in the symmetric case, we assume that
∆(G(B)) ≤ η · δ(G(G)) for some constant η ≤ 1 to be defined later. Roughly speaking,
this implies that at each row of the measurement matrix, the number of good measurements
should be at least as large as the number of bad ones. Similar to the work by [101, 100], we
consider the regularized version of the problem, as in

min
u≥0

∑
(i,j)∈Ω

|uiuj −Xij|+R(u)

︸ ︷︷ ︸
freg(u)

(P2-Sym)

where R(u) is a regularizer defined as

R(u) = λ

n∑
i=1

(ui − β)4 Iui≥β (3.36)

for some fixed parameters λ and β to be specified later. Similarly, one can define an analogous
regularization for (3.32) as

min
w≥0

∑
(i,j)∈Ω̄

|wiwj − X̄ij|+ α

∣∣∣∣∣
m∑
i=1

w2
i −

m+n∑
j=m+1

w2
j

∣∣∣∣∣+R(w)

︸ ︷︷ ︸
freg(w)

(P2-Asym)
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with

R(u) = λ

m+n∑
i=1

(wi − β)4 Iwi≥β (3.37)

for some fixed parameters λ and β to be specified later. Note that the defined regularization
function is convex in its domain. In particular, it eliminates the candidate solutions that are
far from the true solution. Without loss of generality and to streamline the presentation, it
is assumed that u∗max = w∗max = 1 in the sequel.

Lemma 15. Consider the parameter c defined in Assumption 1. The following statements
hold:

- By choosing β = 1 and λ = n/2, any D-stationary point u > 0 of (P2-Sym) satisfies
the inequalities (c/2)u∗

2

min ≤ umin ≤ umax ≤ 2.

- By choosing β = 1 and λ = (m + n)/2, any D-stationary point w > 0 of (P2-Asym)
satisfies the inequalities (c/2)w∗

2

min ≤ wmin ≤ wmax ≤ 2.

Deterministic Guarantees

In what follows, the deterministic conditions under which (P2-Sym) and (P2-Asym) have
benign landscape will be investigated. The results of this subsection will be the building
blocks for the derivation of the main theorems for both symmetric and asymmetric positive
RPCA under the random sampling and noise regime. Note that the analysis of the landscape
will be more involved in this case since the effect of the regularizer should be taken into
account.

Symmetric case: Recall that, for the sparsity graph G(Ω), ∆(G(Ω)) and δ(G(Ω)) corre-
spond to its maximum and minimum degrees, respectively.

Theorem 13. Suppose that

i. u∗ > 0;

ii. δ(G(G)) > (48/c2)κ(u∗)4∆(G(B));

iii. G(Ω) has no bipartite component.

Then, with the choice of β = 1 and λ = n/2 for the parameters of the regularization function
R(u), the following statements hold for (P2-Sym):

1. It does not have any spurious local minimum;

2. The point u = u∗ is the unique global minimum;

3. In the positive orthant, the point u = u∗ is the only D-stationary point.
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Additionally, if G(Ω) is connected, the following statements hold for (P2-Sym):

4. The points u = u∗ and u = 0 are the only D-min-stationary points;

5. The point u = 0 is a local maximum.

Asymmetric case: Theorem 13 has the following natural extension to asymmetric prob-
lems.

Theorem 14. Suppose that

i. w∗ > 0;

ii. δ(G(Ḡ)) > (48/c2)κ(w∗)4∆(G(B̄));

iii. G(Ḡ) is connected.

Then, with the choice of β = 1 and λ = (m + n)/2 for the parameters of the regularization
function R(w), the following statements hold for (P2-Asym):

1. The points w = 0 and w with the properties ww> = w∗w∗> and
∑m

i=1w
2
i =

∑m+n
j=m+1w

2
j

are the only D-min-stationary points;

2. The point w = 0 is a local maximum;

3. In the positive orthant, the point w with the properties ww> = w∗w∗> and
∑m

i=1 w
2
i =∑m+n

j=m+1 w
2
j is the only D-stationary point.

Proof. The proof is omitted due to its similarity to that of Theorem 13.

Probabilistic Guarantees

As an extension to our previous results, we analyze the landscape of the noisy non-
negative RPCA with randomness both in the location of the samples and in the structure
of the noise matrix. Suppose that for the symmetric case, with probability d, each element
of the upper triangular part of X is independently corrupted with an arbitrary noise value.
In other words, for every (i, j) with i ≤ j, one can write

Xij =

{
u∗iu

∗
j with probability 1− d

arbitrary with probability d
(3.38)

Furthermore, similar to the preceding section, suppose that every element of the upper
triangular part of X = u∗u∗> + S is independently measured with probability p. The
randomness in the location of the measurements and noise is naturally extended to the
asymmetric case by considering the symmetrized X̄ and S̄ defined in (3.33) and (3.34),
respectively.

Symmetric case: First, the main result in the symmetric case is presented below.
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Theorem 15. Suppose that

i. n ≥ 2,

ii. u∗ > 0,

iii. d < 1
(144/c2)k(u∗)4+1

,

iv. p > (1740/c2)κ(u∗)4(1+η) logn
n

,

for some η > 0. Then, with the choice of β = 1 and λ = n/2 for the parameters of the
regularization function R(u), the following statements hold for (P2-Sym) with probability of
at least 1− 3n−η:

1. The points u = u∗ and u = 0 are the only D-min-stationary points;

2. The point u = 0 is a local maximum;

3. In the positive orthant, the point u = u∗ is the only D-stationary point.

To prove Theorem 15, first we present the following lemma on the concentration of the
minimum and maximum degrees of random graphs.

Lemma 16. Consider a random graph G(n, p). Given a constant η > 0, the inequality:

P
(

∆(G(n, p)) ≥ max

{
3np

2
, 18(1 + η) log n

})
≤ n−η (3.39)

holds for every 0 < p ≤ 1. Furthermore, we have

P
(
δ(G(n, p)) ≤ np

2

)
≤ n−η (3.40)

provided that p ≥ 12(1+η) logn
n

.

Remark 7. Note that since the degree of each node in G(n, p) is concentrated around np with
high probability, one may speculate that ∆(G(n, p)) and δ(G(n, p)) should also concentrate
around np for all values of p and hence the inclusion of 18(1 + η) log n in (3.39) may seem
redundant. Surprisingly, this is not the case in general. In fact, it can be shown that if p =
1/n (and hence np = 1), there exists a node whose degree is lower bounded by log n/log log n
with high probability. This explains the reasoning behind the inclusion of 18(1 + η) log n in
the lemma.

Proof of Theorem 15: In light of Lemma 13, the bounds on p and d guarantee that
G(G) is connected and non-bipartite with probability of at least 1 − 3

2
n−430(1+η). There-

fore, the proof is completed by invoking Theorem 13, provided that the second condition
of Theorem 13 holds. Define the events E1 =

{
∆(G(B)) ≤ max

{
3npd

2
, 18(1 + η) log n

}}
and
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E2 =
{
δ(G(G)) ≥ np(1−d)

2

}
. Observe that Lemma 16 together with the bounds on p and d

results in the inequalities

P (E1) ≥ 1− n−η (3.41a)

P (E2) ≥ 1− n−144η (3.41b)

This in turn implies that the events E1 and E2 occur with probability of at least 1 − n−η −
n−144η. Conditioned on these events, it suffices to show that

np(1− d)

2
>

48

c2
κ(u∗)4 max

{
3npd

2
, 18(1 + η) log n

}
(3.42)

in order to certify the validity of the second condition of Theorem 13. It can be easily veri-
fied that the assumed upper and lower bounds on p and d guarantee the validity of (3.42).
Therefore, a simple union bound and the fact that n−η > 3

2
n−430(1+η) imply that the condi-

tions of Theorem 13 are satisfied with probability of at least 1− 3n−η. �

A number of interesting corollaries can be derived based on Theorem 15.

Corollary 2. Suppose that p is a positive number independent of n and d . log n/n. Then,
under an appropriate choice of parameters for the regularization function, the statements of
Theorem 15 hold with overwhelming probability, provided that κ(u∗) . (n/ log n)1/4.

Corollary 2 implies that, roughly speaking, if the total number of measurements is suf-
ficiently large (i.e., on the order of n2), then up to factor of n log n bad measurements with
arbitrary magnitudes will not introduce any spurious local solution to the problem. Under
such circumstances, the required upper bound on the ratio between the maximum and the
minimum entries of u∗ will be more relaxed as the dimension of the problem grows.

Corollary 3. Suppose that p is a positive number independent of n and that d . nε−1 for
some ε ∈ [0, 1). Then, under an appropriate choice of parameters for the regularization
function, the statements of Theorem 15 hold with overwhelming probability, provided that
κ(u∗) . n(1−ε)/4.

Corollary 3 describes an interesting trade-off between the sparsity level of the noise and
the maximum allowable variation in the entries of u∗; roughly speaking, as κ(u∗) decreases, a
larger number of noisy elements can be added to the problem without creating any spurious
local minimum. The next corollary shows that a constant fraction of the measurements can
be grossly corrupted without affecting the landscape of the problem, provided that κ(u∗) is
uniformly bounded from above.

Corollary 4. Suppose that p and d are positive numbers independent of n and that d <
1

(144/c2)+1
. Then, under an appropriate choice of parameters for the regularization function,

the statements of Theorem 15 hold with overwhelming probability, provided that κ(u∗) ≤(
1−d

(144/c2)d

)1/4

.
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Asymmetric case: The aforementioned results on the symmetric positive RPCA under
random sampling and noise will be generalized to the asymmetric case below.

Theorem 16. Define r = m/n and suppose that

i. n ≥ m ≥ 2,

ii. w∗ > 0,

iii. d < r
(144/c2)κ(w∗)4+r

,

iv. p > (1740/c2)κ(w∗)4(1+η)n logn
m2 ,

for some η > 0. Then, with the choice of β = 1 and λ = (m+n)/2 for the parameters of the
regularization function R(u), the following statements hold for (P2-Sym) with probability of
at least 1− 10n−η:

1. The points w = 0 and w with the properties ww> = w∗w∗> and
∑m

i=1w
2
i =

∑m+n
j=m+1w

2
j

are the only D-min-stationary points;

2. The point w = 0 is a local maximum;

3. In the positive orthant, the point w with the properties ww> = w∗w∗> and
∑m

i=1 w
2
i =∑m+n

j=m+1 w
2
j is the only D-stationary point.

To prove Theorem 16, we derive a concentration bound on the minimum and maximum
degree of the random bipartite graphs. Define G(m,n, p) as a bipartite graph with the vertex
partitions Vu = {1, · · · ,m} and Vv = {m+ 1, · · · ,m+ n} where each edge is independently
included in the graph with probability p.

Lemma 17. Consider a random bipartite graph G(m,n, p). Given a constant η > 0, the
inequality

P
(

∆(G(m,n, p)) ≥ max

{
3np

2
,
18(1 + η)n log n

m

})
≤ 2n−η (3.43)

holds for every 0 < p ≤ 1. Furthermore, we have

P
(
δ(G(m,n, p)) ≤ mp

2

)
≤ 2n−η (3.44)

provided that p ≥ 12(1 + η) log n/m.

Proof of Theorem 16: The bounds on p and d indeed guarantee that G(Ḡ) is connected
with overwhelming probability. Based on this fact, the result of Lemma 17 and the proof of
Theorem 15 can be combined to arrive at this theorem. The details are omitted for brevity. �
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Remark 8. The presented probability guarantees for RPCA share some similarities with
those derived for noisy matrix completion in [100, 101]. In particular, according to Theo-
rems 15 and 16 and similar to the results of [100, 101], the probability of having a spurious
local solution decreases polynomially with respect to the dimension of the problem. Further-
more, similar to our work, the required lower bound on the sampling probability p in [100,
101] scales polynomially with respect to the condition number of the true solution. Finally, for
non-symmetric noisy matrix completion problem, [100] shows that the required lower bound
on p scales as logn

m
. Comparing this dependency with the one introduced in Theorem 16, it

can be inferred that our proposed lower bound is higher by a factor of n
m

; this is not surprising
considering the fundamentally different natures of these problems.

3.6 Global Convergence of Local Search Algorithms

So far, it has been shown that the positive RPCA is free of spurious local minima.
Furthermore, it has been proven that the global solution is the only D-stationary point in
the positive orthant. The question of interest in this section is: How could this unique
D-stationary point be obtained? Before answering this question, we will take a detour and
revisit the notion of stationarity for smooth optimization problems. Recall that x̄ is a sta-
tionary point of a differentiable function f(x) if and only if ∇f(x) = 0 and, under some mild
conditions, basic local search algorithms will converge to a stationary point. Therefore, the
uniqueness of the stationary point for a smooth optimization problem immediately implies
the convergence to global solution. Extra caution should be taken when dealing with non-
smooth optimization. In particular, the convergence of classical local search algorithms may
fail to hold since the gradient and/or Hessian of the function may not exist at every iteration.
To deal with this issue, different local search algorithms have been introduced to guarantee
convergence to generalized notions of stationary points for non-smooth optimization, such
as directional-stationary (which is used in this chapter) or Clarke-stationary (to be defined
next).

For a non-smooth and locally Lipschitz function h(x) over the convex set X , define the
Clarke generalized directional derivative at the point x̄ in the feasible direction d as

h◦(x,d) := lim sup
y→x
t↓0

h(y + td)− h(y)

t
(3.45)

Note the difference between the ordinary directional derivative h′(x,d) and its Clarke gen-
eralized counterpart: in the latter, the limit is taken with respect to a variable vector y that
approaches x̄, rather than taking the limit exactly at x̄. The Clarke differential of h(x) at x̄
is defined as the following set ([54]):

∂Ch(x̄) := {ψ|h◦(x,d) ≥ 〈ψ,d〉, ∀d ∈ Rn such that x + d ∈ X} (3.46)
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where X is the feasible set of the problem. A point x̄ is Clarke-stationary (or C-stationary)
if 0 ∈ ∂C(x̄), or equivalently, h◦(x̄,d) ≥ 0 for every feasible direction d. It is well known
that C-stationary is a weaker condition than the D-min-stationarity. In particular, every
D-min-stationary point is C-stationary but not all C-stationary points are D-min-stationary.

On the other hand, although some local search algorithms converge to D-min-stationary
points for problems with special structures ([60]), the most well-known numerical algorithms
for non-smooth optimization—such as gradient sampling, sequential quadratic programming,
and exact penalty algorithms—can only guarantee the C-stationarity of the obtained solu-
tions ([42, 61, 80]). Therefore, it remains to study whether the global solution of the positive
RPCA is the only C-stationary point. To answer this question, we need the following two
lemmas.

Lemma 18. The following statements hold:

- If h : X → R and g : X → R are continuously differentiable at x̄ ∈ X , then (h +
g)◦(x̄,d) = h◦(x̄,d) + g◦(x̄,d) for every feasible direction d.

- If h : X → R is continuously differentiable at x̄ ∈ X , then h◦(x̄,d) = h′(x̄,d) for every
feasible direction d.

Proof. Refer to the textbook by [54].

Lemma 19. Let h1(x), h1(x), ..., hm(x) : X → R be continuous and locally Lipschitz func-
tions at x̄ ∈ X . Define

h(x) = max
1≤i≤m

hi(x) (3.47)

and let I(x̄) be the set of indices i such that h(x̄) = hi(x̄). Then,

h◦(x̄,d) ≤ max
i∈I(x̄)

h◦i (x̄,d) (3.48)

for every feasible direction d.

Proof. Consider a feasible point y ∈ B(x̄, ε) ∩ X , where B(x̄, ε) is the Euclidean ball with
the center x̄ and radius ε. First, we prove that I(y) ⊆ I(x̄) for sufficiently small ε > 0.
Notice that hi(x̄) < hj(x̄) for every i ∈ I(x̄) and j ∈ {1, ...,m}\I(x̄). Therefore, due to the
continuity of hi(·) for every i ∈ {1, ...,m}, it follows that there exists ε̄ > 0 such that hi(y) <
hj(y) for every y ∈ B(x̄, ε) ∩ X with 0 < ε < ε̄. This implies that I(y + td) ⊆ I(y) ⊆ I(x̄)
for every y ∈ B(x̄, ε) ∩ X and every feasible direction d with sufficiently small ε > 0 and
t > 0. Now, note that

h(y + td)− h(y) = max
i∈I(y+td)

hi(y + td)− hi(y) ≤ max
i∈I(x̄)

hi(y + td)− hi(y) (3.49)
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This implies that

h◦(x̄,d) = lim sup
y→x
t↓0

h(y + td)− h(y)

t
≤ max

i∈I(x̄)

lim sup
y→x
t↓0

hi(y + td)− hi(y)

t

 = max
i∈I(x̄)

h◦i (x̄,d)

(3.50)

This completes the proof.

Based on the above lemmas, we develop the following theorem.

Theorem 17. Under the conditions of Theorem 13 and assuming that G(Ω) is connected,
the global solution and the origin are the only C-stationary points of the symmetric positive
RPCA. A similar result holds for the asymmetric positive RPCA.

Proof. Without loss of generality, we only consider the symmetric case. At a given point u,
the function f(u) is locally Lipschitz and can be written as

f(u) =
∑

(i,j)∈Ω

max{uiuj −Xij,−uiuj +Xij} = max
σ∈M

fσ(u) (3.51)

where M is the class of functions from Ω to {−1,+1} and fσ(u) is defined as

fσ(u) =
∑

(i,j)∈Ω

σ(i, j)(uiuj −Xij). (3.52)

Hence,
freg(u) = R(u) + max

σ∈M
fσ(u) (3.53)

Notice that each function fσ(u) is differentiable and locally Lipschitz for every σ ∈ M. By
contradiction, suppose that there exists u ≥ 0 such that u 6∈ {u∗, 0} and 0 ∈ ∂Cfreg(u).
Furthermore, define I(u) as the set of all functions σ ∈ M for which fσ(u) = f(u). Using
the proof technique developed in Theorem 13, one can easily verify that there exists a
feasible direction d such that f ′σ(u,d) + R′(u,d) < 0 for every σ ∈ I(u). By invoking
Lemma 18 for every σ ∈ I(u), it can be concluded that f ◦σ(u,d) + R◦(u,d) < 0. This,
together with Lemma 19, certifies that f ◦reg(u,d) < 0, hence contradicting the assumption
0 ∈ ∂Cfreg(u).

3.7 Numerical Results

In this section, we demonstrate the efficacy of the developed results in different ex-
periments. To this goal, first we briefly introduce the recently developed sub-gradient
method [163] that is specifically tailored to non-smooth and non-convex problems, such
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as those considered in this chapter. The main advantage of the sub-gradient algorithm com-
pared to other state-of-the-art methods is its extremely simple implementation; we present
a sketch of the algorithm for solving the non-symmetric positive RPCA in Algorithm 23 (the
symmetric version can be solved using a similar algorithm with slight modifications).

Algorithm 2 Sub-gradient algorithm

1: Initialization: Strictly positive initial point w>0 =
[
u>0 v>0

]>
and step size µ0

2: for k = 0, 1, . . . do
3: set dk as a sub-gradient of freg(u0,v0) defined in (AN-RPCA)
4: set µk according to a geometrically diminishing rule such that wk − µkdk is strictly

positive
5: set wk+1 = wk − µkdk
6: end for

It has been shown in [163] that, under certain conditions on the initial point w0, the initial
step size µ0, and the update rule for µk, the iterates w0,w1, . . . converge to the globally
optimal solution at linear rate, provided that w0 is sufficiently close to the optimal solution.
The closeness of w0 to w∗ is required partly to avoid becoming stuck at a spurious local
minima. This requirement can be relaxed for the positive RPCA due to the absence of
undesired spurious local solutions, as proven in this chapter. It is also worthwhile to mention
that, even though we use the sub-gradient algorithm to solve the positive RPCA, it will be
shown in Section 3.6 that the results of this chapter guarantee that a large class of local-search
algorithms converge to the globally optimal solution of (SN-RPCA) or (AN-RPCA).

All of the following simulations are run on a laptop computer with an Intel Core i7 quad-
core 2.50 GHz CPU and 16GB RAM. The reported results are for a serial implementation
in MATLAB R2017b.

Exact Recovery:

To demonstrate the strength of our results, we consider thousands of randomly generated
instances of the positive rank-1 RPCA with different sizes and noise levels. In particular,
the dimension of the instances ranges from 10 to 100. For each instance, the elements of u∗

are uniformly chosen from the interval [0, 2]. Note that u∗ will be strictly positive with prob-
ability one. Furthermore, each element of the upper triangular part of the symmetric noise
matrix S is set to 2 with probability d and 0 with probability 1− d. Figure 3.7.1a shows the
performance of randomly initialized sub-gradient method for the symmetric positive rank-1
RPCA. We declare that a solution is recovered exactly if ‖uu>−u∗u∗>‖F/‖u∗u∗>‖F ≤ 10−4.
For each dimension and noise probability, we consider 100 randomly generated instances of

3We present is a slightly modified version of the sub-gradient algorithm in [163] to ensure the positivity
of the iterates.
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Figure 3.7.1: The performance of the sub-gradient method for RPCA.

the problem and demonstrate its exact recovery rate. The heatmap shows the exact recovery
rate of the sub-gradient method, when directly applied to (SN-RPCA). It can be observed
that the algorithm has recovered the globally optimal solution even when 35% of the entries
in the data matrix were severely corrupted with the noise. In contrast, even a highly sparse
additive noise in the data matrix prevents the sub-gradient method from recovering the true
solution, when applied to the smooth problem (3.6). Figure 3.7.1b shows the graceful scal-
ability of the sub-gradient algorithm when applied to (SN-RPCA). It can be seen that the
algorithm is highly efficient. In particular, its average runtime varies from 0.88 seconds for
n = 100 to 43.20 seconds for n = 1000.

The Emergence of Local Solutions

Recall that u∗ and v∗ are both assumed to be strictly positive. In what follows, we will il-
lustrate that relaxing these conditions to non-negativity gives rise to spurious local solutions.
Consider an instance of the symmetric non-negative rank-1 RPCA with the parameters

u∗ =
[
1 1 0

]>
, S = 0, Ω = {1, 2, 3}2\{(3, 3)} (3.54)

Notice that u∗ consists of two strictly positive and one zero entries. Furthermore, this is a
noiseless scenario where Ω consists of all possible measurements except for one. To examine



CHAPTER 3. GLOBAL GUARANTEES ON ROBUST MATRIX RECOVERY 84

Figure 3.7.2: The distance between the recovered and true solutions for RPCA.

the existence of spurious local solutions in this example, 10000 randomly initialized trials of
the sub-gradient method is ran and the normalized distances between the obtained and true
solutions are displayed in Figure 3.7.2. Based on this histogram, about 20% of the trials
converge to spurious local solutions, implying that they are ubiquitous in this instance. This
experiment shows why the positivity of the true solution is crucial and cannot be relaxed.
We formalized and proved this statement in Section 3.4.

Moving Object Detection

In video processing, one of the most important problems is to detect anomaly or moving
objects in different frames of a video. In particular, given a video sequence, the goal is
to separate the nearly-static or slowly-changing background from the dynamic foreground
objects ([59]). Based on this observation, [46] has proposed to model the background as a
low-rank component, and the dynamic foreground as the sparse noise. In particular, suppose
that the video sequence consists of df gray-scale frames, each with the resolution of dm× dn
pixels. The data matrix X is defined as an asymmetric dmdn × df matrix whose ith column
is the vectorized version of the ith frame. Therefore, the moving object detection problem

can be cast as the recovery of the non-negative vectors u ∈ Rdmdn
+ and v ∈ Rdf

+ , as well as
the sparse matrix S ∈ Rdmdn×df , such that

X ≈ uv> + S (3.55)

Note that the background may not always have a rank-1 representation. However, we will
show that (3.55) is sufficiently accurate if the background is relatively static. Furthermore,
notice that when the background is completely static, the elements of v should be equal
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Figure 3.7.3: The performance of the sub-gradient method in the moving object detection
problem.

to one. However, this is not desirable in practice since the background may change due to
varying illuminations, which can be captured by the variable vector v. Each entry of X
is an integer between 0 (darkest) and 255 (brightest). To ensure the positivity of the true
components, we increase each element of X by 1 without affecting the performance of the
method.

The considered test case is borrowed from the work by [247]4 and is a sequence of video
frames taken from a room, where a person walks in, sits on a chair, and uses a phone. We
consider 100 gray-scale frames of the sequence, each with the resolution of 120× 160 pixels.
Therefore, X, u, and v belong to R19,200×100

+ , R19,200
+ , and R100

+ , respectively. Figure 3.7.3
shows that the sub-gradient method with a random initialization can recover the moving
object, which is in accordance with the theoretical results of this chapter.

3.8 Discussions on Extension to Rank-r

So far, we have characterized the conditions under which the non-negative rank-1 RPCA
has no spurious local solution. However, the following question has been left unanswered:
Can these results be extended to the general non-negative rank-r RPCA?

4The video frames are publicly available at https://www.microsoft.com/en-us/research/project/

test-images-for-wallflower-paper/.

https://www.microsoft.com/en-us/research/project/test-images-for-wallflower-paper/
https://www.microsoft.com/en-us/research/project/test-images-for-wallflower-paper/
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As a first step toward answering this question and similar to our analysis in the rank-1
case, we consider the noiseless symmetric non-negative rank-r RPCA defined as

min
U∈Rn×r+

f(U) = ‖PΩ(U∗U∗> − UU>)‖1 (P1-Sym-r)

Indeed, a fundamental roadblock in extending the results of Section 3.4 to (P1-Sym-r) is
the implicit rotational symmetry in the solution: given a rotation matrix R and a solution
Ũ to (P1-Sym-r), ŨR is another feasible solution with f(ŨR) = f(Ũ), provided that ŨR
is a non-negative matrix. In the rank-1 case, this does not pose any problem since R = 1
is the only possible value. However, for the general rank-r case with r ≥ 2, this rotational
symmetry undermines the strict positivity assumption of the true components. In particular,
even if the true solution U∗ is strictly positive, there exists a rotation matrix R such that
U∗R is non-negative with at least one zero entry. This in turn implies that Lemma 12 and, as
a consequence, the technique used in Theorem 9 may not be readily extended to the rank-r
cases.

Despite the theoretical difficulties in extending the presented results to the general rank-r
instances, we have indeed observed—through thousands of simulations—that in general, the
sub-gradient method introduced in Section 3.7 successfully converges to a solution U that
satisfies UU> = U∗U∗>, even if the measurement matrix is corrupted with a surprisingly
dense noise matrix. To illustrate this, we consider randomly generated instances of the
problem with the dimension n = 100 and the rank r ∈ {2, 3, 4, 5}. For each instance, the
elements of U∗ are uniformly chosen from the interval [0.5, 2.5]. Furthermore, each element
in the upper triangular part of the noise matrix S is set to 2 and 0 with probabilities
d and 1 − d, respectively. For each rank r and the noise probability d, we consider 500
independent instances of the problem and solve them using the randomly initialized sub-
gradient method. Similar to Subsection 3.7, we assume that a solution is recovered exactly if
‖UU> − U∗U∗>‖F/‖U∗U∗>‖F ≤ 10−4. Figure 3.8.1 demonstrates the ratio of the instances
for which the sub-gradient method successfully recovers the true solution. As illustrated in
this figure, d can be as large as 0.30, 0.28, 0.26, and 0.25 to guarantee a success rate of at
least 90% when r is equal to 2, 3, 4, and 5, respectively.

This empirical study suggests that one of the following statements may hold for the
positive rank-r RPCA: (1) it is devoid of spurious local minima, or (2) its spurious local
minima can be escaped efficiently using the sub-gradient method. Further investigation of
this direction is left as an enticing challenge for future research.
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Appendix

3.A Omitted Proofs of Section 3.4

Proof of Lemma 12

Without loss of generality and for simplicity, we will assume that G(Ω) is connected since
the proof can be readily applied to each disjoint component of G(Ω). Consider a point u ≥ 0
with uk = 0 for some k. Consider Ωk = {j|(k, j) ∈ Ω} and note that it is non-empty due
to the assumption that G(Ω) is connected and non-bipartite. Furthermore, if there exists
r ∈ Ωk such that ur > 0, a positive perturbation of uk will result in a feasible and negative
directional derivative. Therefore, suppose that ur = 0 for every r ∈ Ωk. Similarly, one can
show that if ut > 0 for some t ∈ Ωr and r ∈ Ωk, then u has a feasible and strictly negative
directional derivative. Invoking the same argument for the neighbors of the nodes with the
zero value, one can infer that u = 0. This completes the proof. �

Proof of Proposition 2

Suppose that u∗ ≥ 0 and there exists an index i such that u∗i = 0. Without loss of
generality, assume that i = 1 and u∗j > 0 for every j ≥ 2. Next, we will show that u defined
as u1 = β > 0 and uj = 0 for j ≥ 2 is a local minimum of (P1-Sym). Consider the perturbed
version of u as

û1 ← β + ε1 (3.56)

ûj ← εj ∀j ∈ {2, ..., n} (3.57)

for sufficiently small |ε1| and ε2, ..., εn ≥ 0. Upon defining Ω = {1, ..., n}2\{(1, 1)}, one can
write

f(u) =
n∑
j=2

u∗j
2 +

n∑
j,k=2,j 6=k

u∗ju
∗
k (3.58)

f(û) =
n∑
j=2

u∗j
2−ε2j+

n∑
j=2

(β + ε1)εj +
n∑

j,k=2,i 6=j

|u∗ju∗k − εjεk| ≥ f(u) + β

n∑
j=2

εj−
(

n∑
j=1

εj

)2

+ ε21

(3.59)
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It is easy to verify that there exist constants ε̄1 > 0 and ε̄ > 0 such that for every −ε̄1 ≤
ε1 ≤ ε̄1 and 0 ≤∑n

j=2 εi ≤ ε̄, we have

β
n∑
j=2

εi −
(

n∑
i=1

εi

)2

+ ε21 ≥ 0 (3.60)

and hence f(û) ≥ f(u). This implies that u is a local minimum for f(u). �

Proof of Theorem 10

First, we present a number of lemmas that are crucial to the proof of this theorem.

Lemma 20. Suppose that G(Ω̄) is connected and w∗ > 0. Then, for every D-min-stationary
point w, we have w > 0 or w = 0.

Proof. The proof is omitted due to its similarity to that of Lemma 12.

Lemma 21. Suppose that G(Ω̄) is connected and w∗ > 0. Then,
∑m

i=1 w
2
i =

∑m+n
j=m+1w

2
j

holds for every D-stationary point w > 0 of (P1-Asym).

Proof. By contradiction, suppose that
∑m

i=1w
2
i 6=

∑m+n
j=m+1w

2
j for a D-stationary point w >

0. Without loss of generality, suppose that
∑m

i=1w
2
i >

∑m+n
j=m+1w

2
j and consider the following

perturbation of w

ŵi ←
{
wi − wiε if 1 ≤ i ≤ n
wi + wiε if n+ 1 ≤ i ≤ n+m

(3.61)

For (i, j) ∈ Ω̄, one can write

|ŵiŵj − ŵ∗i ŵ∗j | = |(wi − wiε)(wj + wjε)− ŵ∗i ŵ∗j | = |wiwj − ŵ∗i ŵ∗j |+ wiwjε
2 (3.62)

Therefore, we have

f(ŵ)− f(w) ≤ −2α

(
m∑
i=1

w2
i −

m+n∑
j=m+1

w2
j

)
ε+O(ε2) (3.63)

This implies the existence of strictly positive and negative directional derivatives, thus re-
sulting in a contradiction. This completes the proof.

Lemma 22. G(Ω̄) has a unique vertex partitioning.

Proof. By contradiction, suppose that there exist two different vertex partitions (S, T ) and
(S̄, T̄ ) for G(Ω̄). Since G(Ω̄) is a connected bipartite graph, S̄ is not equal to S or T , and
therefore, S ∩ S̄ and T ∩ T̄ are not empty. Now, it is easy to observe that the nodes in
S ∩ S̄ can only be connected to those in T ∩ T̄ and, similarly, the nodes in T ∩ T̄ can only be
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connected to those in S ∩ S̄. Therefore, unless (S ∩ S̄) ∪ (T ∩ T̄ ) includes all the nodes, the
graph will be disconnected, contradicting our assumption. On the other hand, this implies
that S ∩ S̄ = S and T ∩ T̄ = T , contradicting the assumption that (S, T ) and (S̄, T̄ ) are
different.

Proof of Theorem 10. For a D-min-stationary point w, note that if wi = 0 for some index i,
then Lemma 20 implies that w = 0, which can be easily verified to be a local maximum. We
assume that w∗ satisfies

∑m
i=1w

∗2
i =

∑m+n
j=m+1w

∗2
j , which can be ensured by an appropriate

scaling of u∗ and v∗ while keeping u∗v∗> intact. Now, it suffices to show that for a D-
stationary point w > 0, we have w = w∗. This proves the validity of the statements of the
theorem.

By contradiction, suppose that w > 0 with w 6= w∗ is a D-stationary point. In what
follows, we will construct directions with strictly positive and negative directional derivatives
at this point. Similar to the proof of Theorem 9, one can show that

0 <
w∗1
w1

≤ min
k∈Ω̄i

w∗k
wk
≤ wi
w∗i
≤ max

k∈Ω̄i

w∗k
wk
≤ w∗m+n

wm+n

(3.64)

for every 1 ≤ i ≤ m + n. By contradiction, suppose that wi 6= w∗i for some index i. First,
note that w∗m+n/wm+n > 1; otherwise, it holds that w∗m+n/wm+n ≤ 1 and wi/w

∗
i > 1, which

contradict with (3.64). Define

T u1 =

{
i|w

∗
i

wi
=
w∗m+n

wm+n

, 1 ≤ i ≤ m

}
, T u2 =

{
i|wi
w∗i

=
w∗m+n

wm+n

, 1 ≤ i ≤ m

}
T v1 =

{
i|w

∗
i

wi
=
w∗m+n

wm+n

,m+ 1 ≤ i ≤ m+ n

}
, T v2 =

{
i|wi
w∗i

=
w∗m+n

wm+n

,m+ 1 ≤ i ≤ m+ n

}
(3.65)

and

Nu = {1, . . . ,m}\(T u1 ∪ T u2 ) (3.66a)

N v = {m+ 1, . . . ,m+ n}\(T u1 ∪ T u2 ) (3.66b)

Furthermore, define d̄ as

d̄i =



wi
wm+n

− wiγ if i ∈ T u1
−wiγ if i ∈ Nu

− wi
wm+n

− wiγ if i ∈ T u2
wi

wm+n
+ wiγ if i ∈ T v1

wiγ if i ∈ N v

− wi
wm+n

+ wiγ if i ∈ T v2

(3.67)

where

γ =

∑
i∈Tu1

wi −
∑

i∈Tu2
wi −

∑
i∈T v1

wi +
∑

i∈T v2
wi

wn
∑m+n

i=1 wi
(3.68)
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Similar to the symmetric case, we show that if T u1 ∪ T v1 is non-empty, then f ′(w, d̄) < 0 and
f ′(w,−d̄) > 0, which contradicts the D-stationarity of w. We will only show f ′(w, d̄) < 0
since f ′(w,−d̄) > 0 can be proven in a similar way. Define a perturbation of w as ŵ = w+dε
where ε > 0 is chosen to be sufficiently small.

First, we analyze the regularization term in (P1-Asym). One can write∣∣∣∣∣
m∑
i=1

ŵ2
i −

m+n∑
j=m+1

ŵ2
j

∣∣∣∣∣≤
∣∣∣∣∣
m∑
i=1

w2
i −

m+n∑
j=m+1

w2
j

+ 2

∑
i∈Tu1

wi
wm+n

−
∑
i∈Tu2

wi
wm+n

−
∑
i∈T v1

wi
wm+n

+
∑
i∈T v2

wi
wm+n

 ε

− 2γ

(
m∑
i=1

wi +
m+n∑
i=m+1

wi

)
ε

∣∣∣∣∣+ (
1

wn
+ γ)2

(
m+n∑
i=1

wi

)
ε2 (3.69)

Now, according to the definition of γ, one can easily verify that

2

∑
i∈Tu1

wi
wm+n

−
∑
i∈Tu2

wi
wm+n

−
∑
i∈T v1

wi
wm+n

+
∑
i∈T v2

wi
wm+n

 ε− 2γ

(
m∑
i=1

wi +
m+n∑
i=m+1

wi

)
ε=0

(3.70)
This together with Lemma 21, reduces (3.69) to∣∣∣∣∣

m∑
i=1

ŵ2
i −

m+n∑
j=m+1

ŵ2
j

∣∣∣∣∣ ≤ (
1

wn
+ γ)2

(
m+n∑
i=1

wi

)
ε2 (3.71)

To analyze the first term of (P1-Asym), similar to our previous proofs, we will divide the set
Ω̄ into different cases (4 cases to be precise) and analyze the effect of the defined perturbation
in each case. For the sake of simplicity and to streamline the presentation, we only report
the final inequalities for these cases:

1. If (i, j) ∈ Ω̄ and (i, j) ∈ (T u1 × T v1 ) ∪ (T u2 × T v2 ), then

|ŵiŵj − w∗iw∗j | ≤ |wiwj − w∗iw∗j | −
2wiwj
wm+n

ε+ wiwj

(
1

w2
m+n

− γ2

)
ε2 (3.72)

2. If (i, j) ∈ Ω̄ and (i, j) ∈ (Nu × (T v1 ∪ T v2 )) ∪ ((T u1 ∪ T u2 )×N v), then

|ŵiŵj − w∗iw∗j | ≤ |wiwj − w∗iw∗j | −
wiwj
wm+n

ε+ wiwj

(
γ

w2
m+n

− γ2

)
ε2 (3.73)

3. If (i, j) ∈ Ω̄ and (i, j) ∈ (T u1 × T v2 ) ∪ (T u2 × T v1 ), then

|ŵiŵj − w∗iw∗j | ≤ |wiwj − w∗iw∗j |+ wiwj

(
γ

wm+n

− γ
)2

ε2 (3.74)



CHAPTER 3. GLOBAL GUARANTEES ON ROBUST MATRIX RECOVERY 92

4. If (i, j) ∈ Ω̄ and (i, j) ∈ Nu ×N v, then

|ŵiŵj − w∗iw∗j | ≤ |wiwj − w∗iw∗j |+ wiwjγ
2ε2 (3.75)

Based on the above inequalities and due to the fact that G(Ω̄) is connected, one can easily
verify that Nu ∪ N v should be empty; otherwise, w has a strictly negative (and positive)
directional derivative. Based on the same reasoning, the graph induced by T u1 ∪T v1 or T u2 ∪T v2
should be empty. Therefore, G is bipartite with the components T u1 ∪T v1 and T u2 ∪T v2 . Now,
based on Lemma 22, (T u1 ∪ T v1 , T u2 ∪ T v2 ) induces the same vertex partitioning as (Vu, Vv)
(without loss of generality, assume that T u1 ∪ T v1 = Vu and T u2 ∪ T v2 = Vv). This implies that

w1

w∗1
= · · · = wm

w∗m
=
w∗m+1

wm+1

= · · · = w∗m+n

wm+n

> 1 (3.76)

Therefore,
m∑
i=1

wi >
m∑
i=1

w∗i ,
m+n∑
i=m+1

w∗i >
m+n∑
i=m+1

wi (3.77)

Together with the assumption
∑m

i=1w
∗
i =

∑m+n
i=m+1w

∗
i , this implies that

m∑
i=1

wi >
m+n∑
i=m+1

wi (3.78)

which, according to Lemma 21, contradicts the D-stationarity of w. This completes the
proof. �

Proof of Lemma 13

To prove this lemma, first we provide a lower bound on the probability of G(Ω) being
connected. Define Ck as the number of connected components with exactly k vertices in
G(Ω). Then, one can write:

P(G(Ω) is connected) = 1− P

dn/2e⋃
k=1

{Ck > 0}

 = 1− P(C1 > 0)−
dn/2e∑
k=2

P(Ck > 0) (3.79)

where dn/2e denotes the smallest integer that is greater than or equal to n/2. Next, we
provide an upper bound on P(Ck > 0) for every k ∈ {2, . . . , dn/2e}. We have

P(Ck > 0) ≤ E{Ck} =
∑

X⊆[1:n],|X |=k

E{IX} (3.80)
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where IX is an indicator random variable taking the value 1 if the subgraph GX (Ω) of G(Ω)
induced by the set of vertices in X is an isolated connected component of G(Ω), and it takes
the value 0 otherwise. On the other hand, note that GX (Ω) is connected if and only if it
contains a spanning tree. Therefore, one can write

E{IX} = P(GX (Ω) has a spanning tree)

≤
∑
T ⊂Kk

P(T belongs to GX (Ω))

≤ kk−2pk−1 (3.81)

where Kk is a complete graph over k vertices and T is a spanning tree. The last inequality
is due to the fact that the number of different spanning trees in Kk is equal to kk−2 ([114]).
Combining the above inequality with (3.80) results in

P(Ck > 0) ≤
(
n

k

)
kk−2pk−1(1− p)k(n−k)

≤
(ne
k

)k
kk−2e−pk(n−k)

≤ 1

k2
e−pk(n−k)+k logn+k

≤ 1

k2
e−

k(n−1)
2 (p− 2 logn+2

n−1 ) (3.82)

where the second inequality is due to the relations
(
n
k

)
≤
(
ne
k

)k
and (1−p)k(n−k) ≤ e−pk(n−k).

Furthermore, the last inequality is due to k ≤ (n+1)/2. Now, upon choosing p ≥ (2η+2) logn+2
n−1

for some η > 0, one can write

P(Ck > 0) ≤ 1

k2
e−ηk logn =

1

k2
(n−η)k (3.83)

Revisiting (3.79), one can also verify that

P(C1 > 0) ≤ n(1− p)n−1 ≤ e−p(n−1)+logn ≤ n−η (3.84)

provided that p ≥ (η+1) logn
n−1

, which is implied by p ≥ (2η+2) logn+2
n−1

. Combining this bound
with (3.79), one can write

P(G(Ω) is connected) ≥ 1− n−η −
dn/2e∑
k=2

1

k2

(
n−η
)k

≥ 1− n−η − 1

4

n−2η

1− n−η

≥ 1−
(

1 +
1

4(nη − 1)

)
n−η

≥ 1− 5

4
n−η (3.85)
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where we have used the assumption n ≥ 2 and η ≥ 1. Finally, given the event that G(Ω)
is connected, it is non-bipartite if it has at least one self-loop. Therefore, the probability of
G(Ω) being non-bipartite is lower bounded by 1− (1− p)n. This implies that

P(G(Ω) is connected and non-bipartite) ≥
(

1− 5

4
n−η
)

(1− (1− p)n)

≥
(

1− 5

4
n−η
)(

1− e−np
)

≥
(

1− 5

4
n−η
)(

1− e−(n−1)p
)

≥
(

1− 5

4
n−η
)(

1− e−2n−(2η+2)
)

≥ 1− 3

2
n−η (3.86)

This completes the proof. �

Proof of Proposition 5:

To prove Proposition 5, we present another important result on Erdös-Rényi random
graphs.

Lemma 23 ([74]). Assuming that np → 0 as n → ∞, the following properties hold with
probability approaching to one:

- G(n, p) is acyclic.

- The size of every component of G(n, p) is O(log n).

Proof of Proposition 5: Assuming that np → 0, Lemma 23 implies that G(Ω) is the union
of disjoint tree components, each with the size of at most O(log n). In what follows, we will
show that, with probability approaching to one, G(Ω) has at least a bipartite component
without any self loops. This, together with Proposition 3, will immediately conclude the
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proof. One can write

P(G(Ω) has a bipartite comp.)
(a)

≥ P(G(Ω) has a tree comp. without self loops)

≥ P(every comp. is a tree with size O(log n))

× P(no self-loop in at least one comp|every comp. is a tree with size O(log n))

(b)
= P(every comp. is a tree with size O(log n))

× P(no self-loop in at least one comp|every comp. has the size O(log n))

≥P(every comp. is a tree with size O(log n))

× (1− P(every comp. has self-loops|every comp. has the size O(log n)))

≥P(every comp. is a tree with size O(log n)︸ ︷︷ ︸
A

)

× (1− P(there are at least Ω(n/ log n) self-loops︸ ︷︷ ︸
B

)) (3.87)

where (a) is followed by the fact that every tree is bipartite, and (b) is followed by the fact
that the self-loops are included in the graph independent of other edges. Based on Lemma 23,
we have P(A) → 1 as n → ∞. Now, we only need to show that P(B) → 0 as n → ∞. One
can easily verify that

P(B) ≤
(

n
n

logn

)
p

n
logn ≤ (e log n)

n
logn p

n
logn (3.88)

where the second inequality follows from the relation
(
n
k

)
≤
(
ne
k

)k
. Replacing p = o(1/n)

gives rise to

lim
n→∞

P(B) ≤ lim
n→∞

(ep log n)
n

logn = 0 (3.89)

Together with (4.6), this implies that G(Ω) will have a bipartite component without self
loops with probability approaching 1. �

Proof of Lemma 14

We take an approach similar to the proof of Lemma 13. First, recall that {Vu, Vv} with
Vu = {1, . . . ,m} and Vv = {m+ 1, . . . ,m+ n} is a vertex partitioning of the bipartite graph
G(Ω̄). Define Ck,l as the number of connected components with exactly k vertices from Vu
and l vertices from Vv. To simplify the presentation and without loss of generality, we assume
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that m and n are even. One can write:

P(G(Ω̄) is connected) = 1− P

dm/2e⋃
k=0
k+l 6=0

dn/2e⋃
l=1

{Ck,l > 0}


≥ 1− (P(C1,0 > 0) + P(C0,1 > 0))−

dm/2e∑
k=1

dn/2e∑
l=1

P (Ck,l > 0) (3.90)

First, we provide an upper bound on P (Ck,l > 0) for k = 1, . . . , dm/2e and l = 1, . . . , dn/2e.
Similar to the proof of Lemma 13, one can write

P(Ck,l > 0) ≤ E{Ck,l} =
∑

Xu⊆[1:m],|Xu|=k
Xv⊆[m+1:m+n],|Xv |=l

E{IXu,Xv} (3.91)

where IXu,Xv is an indicator random variable taking the value 1 if the subgraph GXu,Xv(Ω̄) of
G(Ω̄) induced by the set of vertices in Xu ∪ Xv is an isolated connected component of G(Ω̄),
and it takes the value 0 otherwise. On the other hand, we have

E{IXu,Xv} = P(GXu,Xv(Ω̄) has a spanning tree)

≤
∑
T ⊂Kk,l

P(T belongs to GXu,Xv(Ω̄))

≤ kl−1lk−1pk+l−1 (3.92)

where Kk,l is a complete bipartite graph over two sets of vertices with the sizes k and l, and
T is a spanning tree. The last inequality is due to the fact that the number of different
spanning trees in Kk,l is equal to kl−1lk−1 ([114]). Therefore, one can write

P(Ck,l > 0) ≤
(
m

k

)(
n

l

)
kl−1lk−1pk+l−1(1− p)k(n−l)+l(m−k)

≤
(me
k

)k (ne
l

)l
kl−1lk−1e−p(k(n−l)+l(m−k))

≤ 1

kl

(
k

l

)l−k
e−p(k(n−l)+l(m−k))+k logm+l logn+(k+l)

≤ 1

kl
e−p(k(n−l)+l(m−k))+(k+l)(log(mn)+1) (3.93)

where we used the relation
(
k
l

)l−k ≤ 1 in the last inequality. Next, we show that the following
inequality holds:

k(n− l) + l(m− k) ≥ (k + l)
(m− 1)(n− 1)

m+ n
(3.94)
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To this goal, note that

k(n− l) + l(m− k) ≥ (k + l)
(m− 1)(n− 1)

m+ n

⇐⇒ k(m+ n)(n− l) + l(m+ n)(m− k) ≥ (k + l)(m− 1)(n− 1)

⇐⇒ (k + l)mn+ kn(n− 2l) + lm(m− 2k) ≥ (k + l)(m− 1)(n− 1)

⇐⇒ kn(n− 2l) + lm(m− 2k) ≥ −nk −ml − (n− 1)l − (m− 1)l (3.95)

where the last inequality holds due to l ≤ (n+1)/2 and k ≤ (m+1)/2, which in turn implies
that kn(n− 2l) + lm(m− 2k) ≥ −nk −ml. Combining (3.94) and (3.93) leads to

P(Ck,l > 0) ≤ 1

kl
e−(k+l)

(m−1)(n−1)
m+n (p− (m+n)(log(mn)+1)

(m−1)(n−1) ) (3.96)

Upon choosing p ≥ (m+n)((1+η) log(mn)+1)
(m−1)(n−1)

for some η ≥ 1, one can write

P(Ck,l > 0) ≤ 1

kl

(
(mn)−η

)(k+l)
(3.97)

On the other hand, it is easy to verify that

P(C0,1 > 0) ≤ n(1− p)m ≤ e−pm+logn ≤ (mn)−η

P(C1,0 > 0) ≤ m(1− p)n ≤ e−pn+logm ≤ (mn)−η (3.98)

provided that p ≥ (1+η) log(mn)
m

and p ≥ (1+η) log(mn)
n

, both of which are guaranteed to hold

with the choice of p ≥ (m+n)((1+η) log(mn)+1)
(m−1)(n−1)

. Combining (3.98), (3.97), and (3.90) results in

P(G(Ω̄) is connected) ≥ 1− 2(mn)−η −
dm/2e∑
k=1

dn/2e∑
l=1

1

kl

(
(mn)−η

)(k+l)

≥ 1− 2(mn)−η − 4(mn)−2η (3.99)

where we have used the assumptions m,n ≥ 2 and η ≥ 1. This completes the proof. �

3.B Omitted Proofs of Section 3.5

Proof of Lemma 15

We present the proof for the symmetric case (the proof for the asymmetric case follows
directly after symmetrization and the fact that the penalty on the norm difference is zero
at the positive D-stationary points). First, we prove that umax ≤ 2. It suffices to show that
umax ≤ max{2β,

√
2n/λ}. This, together with the choice of β and λ, implies umax ≤ 2. To

this goal, we only need to verify that umax > 2β implies umax ≤
√

2n/λ. By contradiction,
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suppose that umax >
√

2n/λ. In what follows, it will be shown that u has strictly positive
and negative directional derivatives, thereby contradicting its D-stationarity. Consider a
perturbation of u as û = u− emaxε for a sufficiently small ε > 0, where emax is a vector with
1 at the location corresponding to umax and 0 everywhere else. One can write

freg(û)− freg(u) ≤
(

n∑
i=1

ui

)
ε+ λ

(
(umax − ε− β)4 − (umax − β)4

)
=

(
n∑
i=1

ui

)
ε− 4λ(umax − β)3ε+O(ε2)

(a)

≤
(

n∑
i=1

ui −
λ

2
u3

max

)
ε+O(ε2)

≤
(
numax −

λ

2
u3

max

)
ε+O(ε2) (3.100)

where (a) is due to the fact that umax ≥ 2β implies umax − β ≥ umax/2. (3.100) together
with umax >

√
2n/λ, implies that −emax is a direction with a negative directional derivative.

Similarly, it can be shown that emax is a direction with a positive directional derivative. This
contradicts the D-stationarity of u and, hence, umax ≤ max{2β,

√
2n/λ}.

Next, we aim to show that (c/2)u∗
2

min ≤ umin. By contradiction, suppose that there exists
an index i such that (c/2)u∗

2

min > ui. Now, since ui < 1, we have Iui≥β = 0 due to the choice
of β. Consider the terms in freg(u) that involves ui:∑

j∈Ωi

|uiuj −Xij| =
∑
j∈Gi

|uiuj − u∗iu∗j |+
∑
j∈Bi

|uiuj − (u∗iu
∗
j + Sij)| (3.101)

Considering the fact that umax ≤ 2, one can verify the following inequality for every (i, j) ∈ G:

uiuj < cu∗
2

min ≤ u∗
2

min ≤ u∗iu
∗
j (3.102)

A similar inequality holds for (i, j) ∈ B:

uiuj < cu∗
2

min

(a)

≤ u∗iu
∗
j + Sij (3.103)

where we have used Assumption 1 for (a). Therefore, a positive and negative perturbation
of ui results in negative and positive directional derivatives at u, thereby contradicting the
D-stationarity of this point. �

Proof of Theorem 13

The next lemma is crucial in proving Theorem 13.
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Lemma 24. Suppose that the assumptions of Theorem 13 hold and define

s(u) = −
∑

(i,j)∈B
i,j∈T1

2uiuj
un

+
∑

(i,j)∈B
i,j∈T2

2uiuj
un

+
∑

(i,j)∈B
i∈T1∪T2,j∈N

uiuj
un︸ ︷︷ ︸

fB(u)

+
∑

(i,j)∈G
i,j∈T1

2uiuj
un

+
∑

(i,j)∈G
i,j∈T2

2uiuj
un

+
∑

(i,j)∈G
i∈T1∪T2,j∈N

uiuj
un︸ ︷︷ ︸

fG(u)

+
∑
i∈T2

4ui(ui − 1)3

un
Iui≥1︸ ︷︷ ︸

fR(u)

(3.104)

where the sets T1 and T2 are defined as (4.24) and (4.29), respectively. Then, for every
D-stationary point u > 0 such that u 6= u∗, the following inequalities hold with the choice of
β = 1 and λ = n/2:

- freg(û)− freg(u) ≤ −s(u)ε+O(ε2) for û = u + dε and a sufficiently small ε > 0.

- freg(û)− freg(u) ≥ s(u)ε−O(ε2) for û = u− dε and a sufficiently small ε > 0.

where d is defined as (3.20).

Proof. To prove this lemma, first we show the validity of (4.20). By contradiction, suppose
that (4.20) does not hold. Without loss of generality, assume that there exists an index i
such that ui/u

∗
i > u∗n/un (the case with ui/u

∗
i < u∗1/u1 can be argued in a similar way). This

implies that uiuj > u∗iu
∗
j for every (i, j) ∈ Ω. Define û = u−eε for a sufficiently small ε > 0,

where e is a vector with ek = 1 if k = i and ek = 0 otherwise. One can write

freg(û)− freg(u) ≤ −
(∑
j∈Gi

uj

)
ε+

(∑
j∈Bi

uj

)
ε+ λ

(
(ui − ε− 1)4 − (ui − 1)4

)
Iui≥1

≤ −
(∑
j∈Gi

uj

)
ε+

(∑
j∈Bi

uj

)
ε

≤ −cu
∗2
min

2
δ(G(G)) + 2∆(G(B)) (3.105)

where Gi = {j|(i, j) ∈ G} and Bi = {j|(i, j) ∈ B}. The second inequality is due to the
fact that ((ui − ε− 1)4 − (ui − 1)4) Iui≥1 is non-negative and the third inequality follows from
Lemma 15 and the definitions of δ(G(G)), ∆(G(B)). Based on the assumption of Theorem 13,
we have

δ(G(G))

∆(G(B))
>

48

c2
κ(u∗)4 =

48

c2u∗
4

min

>
4

cu∗
2

min

(3.106)

which implies (−cu∗2min/2)δ(G(G)) + 2∆(G(B)) < 0, and hence, −e is a direction with a
negative directional derivative. Similarly, it can be shown that e is a direction with a positive
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directional derivative. This contradicts the D-stationarity of u and hence (4.20) holds. Now,
we will show the correctness of the first statement. Similar to the proof of Theorem 9, one
can verify that∑

(i,j)∈Ω

|ûiûj −Xij| −
∑

(i,j)∈Ω

|uiuj −Xij| ≤ (fB(u)− fG(u))ε+O(ε2) (3.107)

Now, we only need to bound R(û)−R(u). To this goal, notice that if i ∈ T1, then ui < u∗i ≤ 1
due to the fact that u 6= u∗ and u∗i /ui = u∗n/un > 1. Therefore, Iui≥1 = 0 for every i ∈ T1.
This implies that

R(û)−R(u) =
∑
i∈T2

(
ui −

ui
un
ε− 1

)4

Iui≥1 −
∑
i∈T2

(ui − 1)4 Iui≥1

= −
∑
i∈T2

4ui(ui − 1)3

un
Iui≥1ε+O(ε2) (3.108)

A similar approach can be taken to prove the second statement of the lemma.

Lemma 25. Suppose that G(Ω) has no bipartite component and every entry of X is strictly
positive. Then, for every D-min-stationary point u of (P1-Sym), we have u[c] > 0 or
u[c] = 0, where u[c] is a sub-vector of u induced by the cth component of G(Ω).

Proof. The proof is similar to that of Lemma 12.

Proof of Theorem 13: Similar to the proof of Theorem 9, it suffices to show that none of the
points u > 0 with u 6= u∗ can be D-stationary. By contradiction, suppose that this is not the
case, i.e., there exists a D-stationary point u > 0 such that u 6= u∗. Consider the functions
fB(u) and fG(u) defined in Lemma 24. The main idea behind the proof is to show that the
term fG(u) always dominates fB(u). This, together with the non-negativity of fR(u), shows
that s(u) > 0 and hence, f ′reg(u,d) < 0 and f ′reg(u,−d) > 0, which is a contradiction. One
can bound each term in fB(u) and obtain

fB(u)≤ 1

un

(
2·∆(G(B))

2
|T1|u2

max+2·∆(G(B))

2
|T2|u2

max+
∆(G(B))

2
(|T1|+|T2|)u2

max

)
ε+O(ε2)

≤ 3

2un
∆(G(B))(|T1|+|T2|)u2

maxε+O(ε2)

≤ 6

un
∆(G(B))(|T1|+|T2|)ε+O(ε2) (3.109)
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where the last inequality follows from the fact that umax ≤ 2 due to Lemma 15. Next, we
derive a lower bound on fG(x):

fG(x) ≥ 1

un
· δ(G(G))

2
(|T1|+ |T2|)u2

minε+O(ε2)

≥ 1

un
· δ(G(G))

2
(|T1|+ |T2|)

c2u∗
4

min

4
ε+O(ε2)

=
c2u∗

4

min

8un
δ(G(G))(|T1|+ |T2|)ε+O(ε2) (3.110)

where the first inequality is due to the fact that the minimum value for fG(u) happens when
the neighbors of T1 ∪ T2 in G(G) all belong to the set N and their corresponding values in
uu> are all equal to u2

min. Furthermore, the second inequality is due to Lemma 13 and the
choice of β for R(u). Therefore, one can write

fB(x)− fG(x) ≤
(

6

un
∆(G(B))− c2u∗

4

min

8un
δ(G(G))

)
(|T1|+ |T2|)ε+O(ε2)

=
∆(G(B))c2u∗

4

min

8un

(
48

c2
κ(u∗)4 − δ(G(G))

∆(G(B))

)
(|T1|+ |T2|)ε+O(ε2). (3.111)

Therefore, the choice of (48/c2)κ(u∗)4 < δ(G(G))/∆(G(B)) implies that fB(x)− fG(x) < 0,
thereby completing the proof. �

Proof of Lemma 16

The degree of each node is equal to the summation of n independent Bernoulli random
variables, each with parameter p. Therefore, Chernoff bound yields that

P(deg(v) ≥ (1 + δ)np) ≤ e−npδ
2/3 (3.112a)

P(deg(v) ≤ (1− δ)np) ≤ e−npδ
2/3 (3.112b)

for every vertex v and 0 ≤ δ ≤ 1, where deg(v) is the degree of vertex v in the graph.
Therefore, a simple union bound leads to

P(∆(G(n, p)) ≥ (1 + δ)np) ≤ ne−npδ
2/3 = e−npδ

2/3+logn (3.113a)

P(δ(G(n, p)) ≤ (1− δ)np) ≤ ne−npδ
2/3 = e−npδ

2/3+logn (3.113b)

Setting δ = 1/2 and assuming that p ≥ 12(1 + η) log n/n for some η > 0, one can write

P
(

∆(G(n, p)) ≥ 3np

2

)
≤ n−η (3.114a)

P
(
δ(G(n, p)) ≤ np

2

)
≤ n−η (3.114b)



CHAPTER 3. GLOBAL GUARANTEES ON ROBUST MATRIX RECOVERY 102

Furthermore, p < 12(1 + η) log n/n leads to

P (∆(G(n, p)) ≥ 18(1 + η) log n) ≤ P
(

∆

(
G
(
n,

12(1 + η) log n

n

))
≥ 18(1 + η) log n

)
≤ P

(
∆

(
G
(
n,

12(1 + η) log n

n

))
≥ 3np

2

)
≤ n−η (3.115)

Combining (3.115) with (3.114a) and (3.114b) results in the desired inequalities. This com-
pletes the proof. �

Proof of Lemma 17

Define S = {1, ...,m} and T = {m + 1, ...,m + n}. Similar to the proof of Lemma 3.B,
one can write the following concentration inequalities:

P(max
v∈S
{deg(v)} ≥ (1 + δ)np) ≤ me−npδ

2/3 (3.116a)

P(min
v∈S
{deg(v)} ≤ (1− δ)np) ≤ me−npδ

2/3 (3.116b)

P(max
v∈T
{deg(v)} ≥ (1 + δ)mp) ≤ ne−mpδ

2/3 (3.116c)

P(min
v∈T
{deg(v)} ≤ (1− δ)mp) ≤ ne−mpδ

2/3 (3.116d)

which imply

P(∆(G(m,n, p)) ≥ (1 + δ)np) ≤ me−npδ
2/3 + ne−mpδ

2/3 ≤ 2e−mpδ
2/3+logn (3.117a)

P(δ(G(m,n, p)) ≤ (1− δ)mp) ≤ me−npδ
2/3 + ne−mpδ

2/3 ≤ 2e−mpδ
2/3+logn (3.117b)

Setting δ = 1/2 and assuming that p ≥ 12(1 + η) log n/m for some η > 0 results in

P(∆(G(m,n, p)) ≥ 3np

2
) ≤ 2n−η (3.118a)

P(δ(G(m,n, p)) ≤ mp

2
) ≤ 2n−η (3.118b)

Furthermore, if p < 12(1 + η) log n/m, one can write

P
(

∆(G(n, p)) ≥ 18(1 + η)n log n

m

)
≤ P

(
∆

(
G
(
n,

12(1 + η) log n

m

))
≥ 18(1 + η)n log n

m

)
≤ P

(
∆

(
G
(
n,

12(1 + η) log n

m

))
≥ 3np

2

)
≤ 2n−η (3.119)

This completes the proof. �
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Part II

Network Optimization
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Chapter 4

Convexification of Generalized
Network Flow

This chapter is concerned with the minimum-cost flow problem over an arbitrary flow
network. In this problem, each node is associated with some possibly unknown injection and
each line has two unknown flows at its ends that are related to each other via a nonlinear
function. Moreover, all injections and flows must satisfy certain box constraints. This
problem, named generalized network flow (GNF), is highly non-convex due to its nonlinear
equality constraints. Under the assumption of monotonicity and convexity of the flow and
cost functions, a convex relaxation is proposed, which is shown to always obtain globally
optimal injections. This relaxation may fail to find optimal flows because the mapping from
injections to flows is not unique in general. We show that the proposed relaxation, named
convexified GNF (CGNF), obtains a globally optimal flow vector if the optimal injection
vector is a Pareto point. More generally, the network can be decomposed into two subgraphs
such that the lines between the subgraphs are congested at optimality and that CGNF finds
correct optimal flows over all lines of one of these subgraphs. We also fully characterize
the set of all globally optimal flow vectors, based on the optimal injection vector found
via CGNF. In particular, we show that this solution set is a subset of the boundary of a
convex set, and may include an exponential number of disconnected components. A primary
application of this work is in optimization over electrical power networks.

4.1 Introduction

The area of “network flows” plays a central role in operations research, computer sci-
ence and engineering [105, 130]. This area is motivated by many real-word applications
in assignment, transportation, communication networks, electrical power distribution, pro-
duction scheduling, financial budgeting, and aircraft routing, to name only a few. Network
flow problems have been studied extensively since 1962 [94, 140, 6, 29, 30, 23, 70, 197, 106,
32]. The minimum-cost flow problem aims to optimize the flows over a flow network that is
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used to carry some commodity from suppliers to consumers. In a flow network, there is an
injection of some commodity at every node, which leads to two flows over each line at its
endpoints. The injection—depending on being positive or negative, corresponds to supply
or demand at the node. The minimum-cost flow problem has been studied thoroughly for a
lossless network, where the amount of flow entering a line equals the amount of flow leaving
the line. However, since real-world flow networks could be lossy, the minimum-cost flow
problem has also attracted much attention for generalized networks, also known as networks
with gain [130, 38, 104]. In this type of network, each line is associated with a constant
gain relating the two flows of the line through a linear function. From the optimization
perspective, network flow problems are convex and can be solved efficiently, unless there are
discrete variables involved [37].

There are important real-world flow networks that are lossy, where the loss is a nonlinear
function of the flows. An example is electrical power networks for which the loss over
each line (under fixed voltage magnitudes at both ends) is given by a parabolic function
due to Kirchhoff’s circuit laws [143]. The loss function could be much more complicated
depending on the power electronic devices installed on the transmission line. To the best
of our knowledge, there is no theoretical result in the literature on the design of efficient
algorithms for network flow problems with nonlinear flow functions, except in very special
cases. This chapter is concerned with this general problem, named Generalized Network Flow
(GNF). Note that the term “GNF” has already been used in the literature for networks with
linear losses, but it corresponds to arbitrary lossy networks in this work.

GNF aims to optimize the nodal injections subject to flow constraints for each line and
box constraints for both injections and flows. A flow constraint is a nonlinear equation
that relates the flows at both ends of a line. To solve GNF, this chapter makes the practical
assumption that the cost and flow functions are all monotonic and convex. The GNF problem
is still highly non-convex due to its equality constraints. However, a question arises as to
whether there is an efficient algorithm for finding globally optimal injections and flows for
GNF under the assumption that the GNF problem is feasible. In this work, we prove that
the answer to this question is affirmative for optimal injections (and optimal total cost), but
not necessarily optimal flows. More specifically, we provide a convex relaxation of GNF that
yields globally optimal injections.

Observe that relaxing the nonlinear line flow equalities to convex inequalities gives rise
to a convex relaxation of GNF. It can be easily seen that solving the relaxed problem may
lead to a solution for which the new inequality flow constraints are not binding. One may
speculate that this observation implies that the convex relaxation is not tight. However, the
objective of this work is to show that as long as GNF is feasible, the convex relaxation is
tight. We also generalize the above results to the case where, other than local constraints
over a line or at a node, there are global constraints relating the flows of different lines or
injections of different nodes.

Although the proposed convex relaxation always finds the optimal injections (and hence
the optimal objective value), it may produce wrong flows leading to non-binding inequalities.
The reason behind the failure of the convex relaxation in finding globally optimal flows is



CHAPTER 4. CONVEXIFICATION OF GENERALIZED NETWORK FLOW 106

that the mapping from flows to injections is not invertible. For example, it is known in the
context of power systems that the power flow equations may not have a unique solution [8].
Having found the globally optimal injection vector through the proposed convex relaxation,
we also study the possibility of finding optimal flows from the optimal injections. First, we
prove that if the optimal injection vector is a Pareto point in its feasible region, the convex
relaxation of GNF obtains globally optimal flows for GNF. Second, we show that whenever
the optimal injection vector lies on the boundary of its feasible region, the flow network
can be divided into two sub-networks such that: (i) the convex relaxation obtains optimal
flows over one sub-network, (ii) the lines between the two sub-networks are all congested at
optimality and the convex relaxation correctly identifies these lines. In other words, we relate
the possible failure of the convex relaxation in finding optimal flows for the whole network to
certain congested lines. Moreover, we fully characterize the set of all optimal flow vectors. In
particular, we show that this set may be infinite, non-convex, and disconnected, but belongs
to the boundary of a convex set.

Application of GNF in Power Systems

The operation of a power network depends heavily on various large-scale optimization
problems such as state estimation, optimal power flow (OPF), security-constrained OPF,
unit commitment, sizing of capacitor banks and network reconfiguration. These problems
are highly non-convex due to the nonlinearities imposed by laws of physics [121, 236]. For
example, each of the above problems has the power flow equations embedded in it, which are
nonlinear equality constraints. The nonlinearity of OPF, as the most fundamental optimiza-
tion problem for power systems, has been studied since 1962, leading to various heuristic
and local-search algorithms [49, 64, 187, 188, 203, 18, 206, 129, 175]. These algorithms suffer
from sensitivity and convergence issues, and more importantly they may converge to a local
optimum that is noticeably far from a global solution.

Recently, it has been shown in [151, 169] that the semidefinite programming (SDP)
relaxation is able to find a global or near-global solution of the OPF problem under a
sufficient condition, which is satisfied for IEEE benchmark systems, Polish Grid with more
than 3000 nodes, and many randomly generated power networks. The papers [240] and
[236] prove that the satisfaction of this condition is due to the passivity of transmission lines
and transformers. In particular, [236] shows that in the case where this condition is not
satisfied (see [158] for counterexamples), OPF can always be solved globally in polynomial
time (up to any finite precision) after two approximations: (i) relaxing angle constraints by
adding a sufficient number of actual/virtual phase shifters to the network, (ii) relaxing power
balance equalities to inequality constraints. OPF under Approximation (ii) was also studied
in [35, 276, 154] for distribution networks. The paper [153] studies the optimization of active
power flows over distribution networks under fixed voltage magnitudes and shows that the
SDP relaxation works without having to use Approximation (ii) as long as a practical angle
condition is satisfied.
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The idea of convex relaxation developed in [150] and [151] can be applied to many other
power problems, such as voltage regulation [145], energy storage [99], state estimation [262,
170], sensor placement [136], calculation of voltage stability margin [185], charging of electric
vehicles [237], security constrained OPF with possibly variable tap-changers and capacitor
banks [149, 169], dynamic energy management [143] and electricity market [152]. In the same
vein, [120] and [141] combine a convex relaxation of the power flow equations with iterative
approaches to reduce the complexity of the semidefinite programming and to address certain
problems in power systems that include discrete variables, such as unit commitment and
optimal transmission switching problems [81, 198]. Although the SDP relaxation has been
shown to be exact in several real-world examples, [158] demonstrates that this relaxation may
fail in some instances. To improve upon the SDP relaxation for such cases, [133] and [186]
use a hierarchy of semidefinite relaxations, known as Lasserre hierarchy [148], which obtain
global minima of the OPF problem at the expense of a higher computational complexity.
The paper [171] proves that in the case where the SDP relaxation is not exact, it still has a
low-rank solution whose rank is upper bounded by the treewidth of the power system plus
one.

Energy-related optimization problems with embedded power flow equations can be re-
garded as nonlinear network flow problems, which are analogous to GNF. The results derived
in this work for a general GNF problem lead to the generalization of the result of [154] to net-
works with virtual phase shifters. This proves that in order to use SDP relaxations for OPF
over an arbitrary power network, it is not needed to approximate power balance equalities
with inequality constraints (under a practical angle assumption).

4.2 Problem Formulation and Contributions

Consider an undirected graph (network) G with the vertex set N := {1, 2, ...,m} and the
edge set E ⊆ N ×N . For every i ∈ N , let N (i) denote the set of the neighboring vertices of
node i. Assume that every edge (i, j) ∈ E is associated with two unknown flows pij and pji
belonging to R. The parameters pij and pji can be regarded as the flows entering the edge
(i, j) from the endpoints i and j, respectively. Define

pi =
∑
j∈N (i)

pij, ∀i ∈ N (4.1)

The parameter pi is called “nodal injection at vertex i” or simply “injection”, which is equal
to the sum of the flows leaving vertex i through the edges connected to this vertex. Given an
edge (i, j) ∈ E , we assume that the flows pij and pji are related to each other via a function
fij(·) to be introduced later. To specify which of the flows pij and pji is a function of the
other, we give an arbitrary orientation to every edge of the graph G and denote the resulting

graph as
−→G . Denote the directed edge (arc) set of

−→G as
−→E . If an edge (i, j) ∈ E belongs to−→E , we then express pji as a function of pij.
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Definition 16. Define the vectors pn, pe and pd as follows:

pn = {pi | ∀i ∈ N} (4.2a)

pe = {pij | ∀(i, j) ∈ E} (4.2b)

pd = {pij | ∀(i, j) ∈
−→E } (4.2c)

(the subscripts “n”, “e” and “d” stand for nodes, edges and directed edges). The terms pn,
pe and pd are referred to as injection vector, flow vector and semi-flow vector, respectively
(note that pe contains two flows per each line, whereas pd includes only one flow per line).

Definition 17. Given two arbitrary points x,y ∈ Rn, the box B(x,y) is defined as follows:

B(x,y) = {z ∈ Rn |x ≤ z ≤ y} (4.3)

(note that B(x,y) is non-empty only if x ≤ y).

Assume that each injection pi and each flow pij must be within the pre-specified intervals

[pmin
i , pmax

i ] and [pmin
ij , pmax

ij ], respectively, for every i ∈ N and (i, j) ∈ −→E . We use the
shorthand notation B for the box B(pmin

n ,pmax
n ), where pmin

n and pmax
n are the vectors of the

lower bounds pmin
i ’s and the upper bounds pmax

i ’s, respectively.
This chapter is concerned with the following problem.

Generalized network flow (GNF) Problem:

min
pn∈B,pe∈R|E|

∑
i∈N

fi(pi) (4.4a)

subject to pi =
∑
j∈N (i)

pij, ∀i ∈ N (4.4b)

pji = fij(pij), ∀(i, j) ∈ −→E (4.4c)

pij ∈ [pmin
ij , pmax

ij ], ∀(i, j) ∈ −→E (4.4d)

where

1) fi(·) is convex and strictly increasing for every i ∈ N .

2) fij(·) is convex and strictly decreasing for every (i, j) ∈ −→E .

3) The limits pmin
ij and pmax

ij are given for every (i, j) ∈ −→E .

In the case where fij(pij) is equal to −pij for all (i, j) ∈ −→E , the GNF problem reduces to
the network flow problem for which every line is lossless. A few remarks can be made here:

• Given an edge (i, j) ∈ −→E , there is no explicit limit on pji in the above formulation of
the GNF problem because any such constraint can be equivalently imposed on pij.
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Figure 4.2.1: The graph G studied in Section 4.3.

• Given a node i ∈ N , the assumption of fi(pi) being monotonically increasing is moti-
vated by the fact that increasing the injection pi normally elevates the cost in practice.

• Given an edge (i, j) ∈ −→E , pij and −pji can be regarded as the input and output
flows of the line (i, j) traveling in the same direction. The assumption of fij(pij)
being monotonically decreasing is motivated by the fact that increasing the input flow
normally makes the output flow higher in practice (note that −pji = −fij(pij)).

Definition 18. Define P as the set of all vectors pn for which there exists a vector pe such
that (pn,pe) satisfies equations (4.4b), (4.4c) and (4.4d). The set P and P ∩B are referred
to as injection region and box-constrained injection region, respectively.

Regarding Definition 18, the box-constrained injection region is indeed the projection
of the feasible set of GNF onto the space for the injection vector pn. We express GNF
geometrically as follows:

Geometric GNF : min
pn∈P∩B

∑
i∈N

fi(pi) (4.5)

Note that pe has been eliminated in Geometric GNF. It is hard to solve this problem
directly because the injection region P is non-convex in general. This non-convexity can be
observed in Figure 4.2.2(a), which shows P for the two-node graph drawn in Figure 4.2.1.
To address this non-convexity issue, the GNF problem will be convexified next.

Convexified generalized network flow (CGNF) Problem:

min
Pn∈B,Pe∈R|E|

∑
i∈N

fi(pi) (4.6a)

subject to pi =
∑
j∈N (i)

pij, ∀i ∈ N (4.6b)

pji ≥ fij(pij), ∀(i, j) ∈ −→E (4.6c)

pij ∈ [pmin
ij , pmax

ij ], ∀(i, j) ∈ E (4.6d)
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(a) Injection region P for the GNF
problem given in (4.8)

(b) the set Pc corresponding to the
GNF problem given in (4.8)

Figure 4.2.2: The original and convexified injection regions.

where (pmin
ij , pmax

ij ) is defined as (fji(p
max
ji ), fji(p

min
ji )) for every (i, j) ∈ E such that (j, i) ∈ −→E .

CGNF has been obtained from GNF by relaxing equality (4.4c) to inequality (4.6c) and

adding limits to pij for every (j, i) ∈ −→E . One can write:

Geometric CGNF : min
pn∈Pc∩B

∑
i∈N

fi(pi) (4.7)

where Pc denotes the set of all vectors pn for which there exists a vector pe such that
(pn,pe) satisfies equations (4.6b), (4.6c) and (4.6d). Two main results to be proved in this
chapter are:

• Geometry of injection region: Given any two points pn and p̃n in the injection
region, the box B(pn, p̃n) is entirely contained in the injection region. A similar result
holds true for the box-constrained injection region.

• Relationship between GNF and CGNF: Using the above result on the geometry
of the injection region, we show that if (p∗n,p

∗
e) and (p̄∗n, p̄

∗
e) denote two arbitrary

solutions of GNF and CGNF, then p∗n = p̄∗n. Hence, CGNF always finds the correct
optimal injection vector for GNF. Moreover, (p̄∗n, p̄

∗
e) is a solution of GNF as well if

p∗n is a Pareto point in P . More generally, if p∗n resides on the boundary of P , but is
not necessarily a Pareto point, CGNF finds the correct optimal flows for a non-empty
subgraph of G.

Furthermore, the above results are generalized to an extended GNF problem, where
there are global constraints coupling the flows or injections of different parts of the network.
In particular, it is proved that the technique developed for the GNF problem works for
the extended GNF problem as well, provided that the coupling constraints are convex and
preserve a box-preserving property. Note that this work implicitly assumes that every two
nodes of G are connected via at most one edge. However, the results to be derived later
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are all valid in the presence of multiple edges between two nodes. To avoid complicated
notations, the proof will not be provided for this case. However, Section 4.3 will analyze a
simple example with parallel lines.

In what follows, we first provide a detailed illustrative example to clarify the non-
convexity issue and highlight some of the contributions of this chapter. The main results for
GNF and CGNF problems are developed in Sections 4.4 and 4.5, respectively. The set of all
optimal flow vectors is charaterized in Section 4.6. The generalization to the extended GNF
problem is provided in Section 4.7. Finally, the application of the developed methodology
in power systems is discussed in Section 4.8.

4.3 Illustrative Example

In this subsection, we study the particular graph G depicted in Figure 4.2.1. This graph
has two vertices and two parallel edges. Let (p

(1)
12 , p

(1)
21 ) and (p

(2)
12 , p

(2)
21 ) denote the flows

associated with the first and second edges of the graph, respectively. Consider the GNF
problem

min f1(p1) + f2(p2) (4.8a)

s.t. p
(i)
21 =

(
p

(i)
12 − 1

)2

− 1, ∀i ∈ {1, 2} (4.8b)

−0.5 ≤ p
(1)
12 ≤ 0.5, −1 ≤ p

(2)
12 ≤ 1, (4.8c)

p1 = p
(1)
12 + p

(2)
12 , p2 = p

(1)
21 + p

(2)
21 (4.8d)

with the variables p1, p2, p
(1)
12 , p

(1)
21 , p

(2)
12 , p

(2)
21 , where f1(·) and f2(·) are arbitrary convex and

monotonically increasing functions. The CGNF problem corresponding to this problem can
be obtained by replacing (4.8b) with p

(i)
21 ≥ (p

(i)
12−1)2−1 and adding the limits p

(1)
21 ≤ 1.52−1

and p
(2)
21 ≤ 22 − 1. One can write:

Geometric GNF: min
(p1,p2)∈P

f1(p1) + f2(p2) (4.9a)

Geometric CGNF: min
(p1,p2)∈Pc

f1(p1) + f2(p2) (4.9b)

where P and Pc are indeed the projections of the feasible sets of GNF and CGNF over the
injection space for (p1, p2) (note that there is no box constraint on (p1, p2) at this point).
The green area in Figure 4.2.2(a) shows the injection region P . As expected, this set is
non-convex. In contrast, the set Pc is a convex set containing P . This set is shown in
Figure 4.2.2(b), which includes two parts: (i) the green area that is the same as P , (ii) the
blue area that is the part of Pc that does not exist in P . Thus, the transition from GNF to
CGNF extends the injection region P to a convex set by adding the blue area. Notice that
Pc has three boundaries: (i) a straight line on the top, (ii) a straight line on the right side,
(iii) a lower curvy boundary. Since f1(·) and f2(·) are both monotonically increasing, the
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(a) This figure shows the set Pc cor-
responding to the GNF problem given
in (4.8) together with a box constraint
(p1, p2) ∈ B for four different positions
of B

(b) this figure shows the injection re-
gion P for the GNF problem given
in (4.8) but after changing (4.8b) to
(4.10)

Figure 4.3.1: The injection regions with box constraints.

unique solution of Geometric CGNF must lie on the lower curvy boundary of Pc. Since this
lower boundary is in the green area, it is contained in P . As a result, the unique solution of
Geometric CGNF is a feasible point of P and therefore it is a solution of Geometric GNF.
This means that CGNF finds the optimal injection vector for GNF.

To make the problem more interesting, we add the box constraint (p1, p2) ∈ B to GNF
(and correspondingly to CGNF), where B is an arbitrary rectangular convex set in R2. The
effect of this box constraint will be investigated in four different scenarios:

• Assume that B corresponds to Box 1 (including its interior) in Figure 4.3.1(a). In this
case, P ∩ B = Pc ∩ B = φ, implying that Geometric GNF and Geometric CGNF are
both infeasible.

• Assume that B corresponds to Box 2 (including its interior) in Figure 4.3.1(a). In this
case, the solution of Geometric CGNF lies on the lower boundary of Pc and therefore
it is also a solution of Geometric GNF.

• Assume that B corresponds to Box 3 (including its interior) in Figure 4.3.1(a). In this
case, the solutions of Geometric GNF and Geometric CGNF are identical and both
correspond to the lower left corner of the box B.

• Assume that B corresponds to Box 4 (including its interior) in Figure 4.3.1(a). In this
case, P ∩B = φ but Pc ∩B 6= φ. Hence, Geometric GNF is infeasible while Geometric
CGNF has an optimal solution.

In summary, it can be argued that, independent of the position of the box B in R2, CGNF
finds the optimal injection vector for GNF as long as GNF is feasible.

Now, suppose that the relationship between p
(i)
21 and p

(i)
12 is governed by

p
(i)
21 =

(
p

(i)
12

)2

− 1, ∀i ∈ {1, 2} (4.10)
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instead of (4.8b). The injection region P in the case is depicted in Figure 4.3.1(b). As
before, we impose a box constraint (p1, p2) ∈ B on GNF, where B is shown as “Box” in the
figure. It is easy to show that the lower left corner of this box belongs to Pc and hence it
is a solution of Geometric CGNF. However, this corner point does not belong to Geometric
GNF. More precisely, Geometric GNF is feasible in this case, while its solution does not
coincide with that of Geometric CGNF. Hence, Geometric GNF and Geometric CGNF are
no longer equivalent after changing (4.8b) to (4.10). This is a consequence of the fact that
the function (p−1)2−1 is decreasing in p over the interval [−1, 1] while the function p2−1 is
not. This explains the necessity of the assumption of the monotonicity of fij(·) made earlier
in the chapter.

4.4 Geometry of Injection Region

In order to study the relationship between GNF and CGNF, it is beneficial to explore
the geometry of the feasible set of GNF. Hence, we investigate the geometry of the injection
region P and the box-constrained injection region P ∩ B in this part.

Theorem 18. Consider two arbitrary points p̂n and p̃n in the injection region P. The box
B(p̂n, p̃n) is contained in P.

The proof of this theorem is based on four lemmas, and will be provided later in this
subsection. To understand this theorem, consider the injection region P depicted in Fig-
ure 4.2.2(a) corresponding to the illustrative example given in Section 4.3. If any arbitrary
box is drawn in R2 in such a way that its upper right corner and lower left corner both lie in
the green area, then the entire box must lie in the green area completely. This can be easily
proved in this special case and is true in general due to Theorem 18. However, this result
does not hold for the injection region given in Figure 4.3.1(b) because the assumption of
monotonicity of fij(·)’s is violated in this case. The result of Theorem 18 can be generalized
to the box-constrained injection region, as stated below.

Corollary 5. Consider two arbitrary points p̂n and p̃n belonging to the box-constrained
injection region P ∩ B. The box B(p̂n, p̃n) is contained in P ∩ B.

Proof: The proof follows immediately from Theorem 18. �
The rest of this subsection is dedicated to the proof of Theorem 18, which is based on a

series of definitions and lemmas.

Definition 19. Define Bd as the box containing all vectors pd introduced in (4.2c) that

satisfy the condition pij ∈ [pmin
ij , pmax

ij ] for every (i, j) ∈ −→E .

Definition 20. It is said that pd is associated with pn, or vice versa, if (pn,pd) is feasible
for the GNF problem. Likewise, pe is associated with pn if (pn,pe) is feasible for the CGNF
problem.
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Definition 21. Given two arbitrary points p̄d, p̃d ∈ Bd, define M(p̄d, p̃d) according to the
following procedure:

• Let M(p̄d, p̃d) be a matrix with |N | rows indexed by the vertices of G and with |−→E |
columns indexed by the edges in

−→E .

• For every vertex k ∈ N and edge (i, j) ∈ −→E , set the (k, (i, j))th entry of M(p̄d, p̃d) (the
one in the intersection of row k and column (i, j)) as

1 if k = i
fij(p̄ij)−fij(p̃ij)

p̄ij−p̃ij if k = j and p̄ij 6= p̃ij
f ′ij(p̄ij) if k = j and p̄ij = p̃ij

0 otherwise

(4.11)

where f ′ij(p̄ij) denotes the right derivative of fij(p̄ij) if p̄ij < pmax
ij and the left derivative of

fij(p̄ij) if p̄ij = pmax
ij .

To illustrate Definition 21, consider the three-node graph
−→G depicted in Figure 4.4.1(a).

The matrix M(p̄d, p̃d) associated with this graph has the structure shown in Figure 4.4.1(b),

where the “*” entries depend on the specific values of p̄d and p̃d. Consider an edge (i, j) ∈ −→E .
The (j, (i, j))th entry of M(p̄d, p̃d) is equal to

fij(p̄ij)− fij(p̃ij)
p̄ij − p̃ij

, (4.12)

provided p̄ij 6= p̃ij. As can be seen in Figure 4.4.1(c), this is equal to the slope of the line
connecting the point (p̄ij, p̄ji) to the point (p̃ij, p̃ji) on the parameterized curve (pij, pji),
where pji = fij(pij). Moreover, f ′ij(p̄ij) is the limit of this slope as the point (p̃ij, p̃ji)
approaches (p̄ij, p̄ji). It is also interesting to note that M(p̄d, p̃d) has one positive entry,
one negative entry and m − 2 zero entries in each column (note that the slope of the line
connecting (p̄ij, p̄ji) to (p̃ij, p̃ji) is always negative). The next lemma explains how the matrix
M(p̄d, p̃d) can be used to relate the semi-flow vector to the injection vector.

Lemma 26. Consider two arbitrary injection vectors p̄n and p̃n in P, associated with the
semi-flow vectors p̄d and p̃d (defined in (4.2)). The relation

p̄n − p̃n = M(p̄d, p̃d)× (p̄d − p̃d) (4.13)

holds.

Proof: One can write

p̄i − p̃i =
∑
j∈N (i)

(p̄ij − p̃ij), ∀i ∈ N (4.14)
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Figure 4.4.1: An illustrative example for Definition 21.

By using the relations

p̄ji = fij(p̄ij), p̃ji = fij(p̃ij), ∀(i, j) ∈ −→E (4.15)

it is straightforward to verify that (4.13) and (4.14) are equivalent. �
Lemma 26 can be regarded as a generalization of the conventional node-edge adjacency

matrix used to describe the topology of the graph, which relates semi-flow vectors to injection
vectors. The next lemma investigates an important property of the matrix M(p̄d, p̃d).

Lemma 27. Given two arbitrary points p̄d, p̃d ∈ Bd, assume that there exists a nonzero
vector x ∈ Rm such that xTM(p̄d, p̃d) ≥ 0. If x has at least one strictly positive entry, then
there exists a nonzero vector y ∈ Rm

+ such that yTM(p̄d, p̃d) ≥ 0.

Proof: Consider an index i0 ∈ N such that xi0 > 0. Define V(i0) as the set of all vertices

i ∈ N from which there exists a directed path to vertex i0 in the graph
−→G . Note that V(i0)

includes vertex i0 itself. The first goal is to show that

xi ≥ 0, ∀i ∈ V(i0) (4.16)
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To this end, consider an arbitrary set of vertices i1, ..., ik in V(i0) such that {i0, i1..., ik} forms

a direct path in
−→G as

ik → ik−1 → · · · i1 → i0 (4.17)

To prove (4.16), it suffices to show that xi1 , ..., xik ≥ 0. For this purpose, one can expand
the product xTM(p̄d, p̃d) and use the fact that each column of M(p̄d, p̃d) has m − 2 zero
entries to conclude that

xi1 +
fi1i0(p̄i1i0)− fi1i0(p̃i1i0)

p̄i1i0 − p̃i1i0
xi0 ≥ 0 (4.18)

Since xi0 is positive and fi1i0(·) is a decreasing function, xi1 turns out to be positive. Now,
repeating the above argument for i1 instead of i0 yields that xi2 ≥ 0. Continuing this
reasoning leads to xi1 , ..., xik ≥ 0. Hence, inequality (4.16) holds. Now, define y as

yi =

{
xi if i ∈ V(i0)
0 otherwise

, ∀i ∈ N (4.19)

In light of (4.16), y is a nonzero vector in Rm
+ . To complete the proof, it suffices to show

that yTM(p̄d, p̃d) ≥ 0. Similar to the indexing procedure used for the columns of the matrix

M(p̄d, p̃d), we index the entries of the |−→E | dimensional vector yTM(p̄d, p̃d) according to the

edges of
−→G . Now, given an arbitrary edge (α, β) ∈ −→E , the following statements hold true:

• If α, β ∈ V(i0), then the (α, β)th entries of yTM(p̄d, p̃d) and xTM(p̄d, p̃d) (i.e., the
entries corresponding to the edge (α, β)) are identical.

• If α ∈ V(i0) and β 6∈ V(i0), then the (α, β)th entry of yTM(p̄d, p̃d) is equal to yα.

• If α 6∈ V(i0) and β 6∈ V(i0), then the (α, β)th entry of yTM(p̄d, p̃d) is equal to zero.

Note that the case α 6∈ V(i0) and β ∈ V(i0) cannot happen, because if β ∈ V(i0) and

(α, β) ∈ −→E , then α ∈ V(i0) by the definition of V(i0). It follows from the above results and
the inequality xTM(p̄d, p̃d) ≥ 0 that yTM(p̄d, p̃d) ≥ 0. �

Definition 22. Consider the graph G and an arbitrary flow vector pe. Given a subgraph Gs
of the graph G, define pe(Gs) as the flow vector associated with the edges of Gs that has been
induced by pe. Define pd(Gs), pn(Gs) and pi(Gs) as the semi-flow vector, injection vector
and injection at node i ∈ Gs corresponding to pe(Gs), respectively. Define also P(Gs) as the
injection region associated with Gs.

The next lemma studies the injection region P in the case where fij(·)’s are all piecewise
linear.

Lemma 28. Assume that the function fij(·) is piecewise linear for every (i, j) ∈ −→E . Con-
sider two arbitrary points p̂n, p̄n ∈ P and a vector ∆p̄n ∈ Rm satisfying the relations

p̂n ≤ p̄n −∆p̄n ≤ p̄n (4.20)
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There exists a strictly positive number εmax with the property

p̄n − ε∆p̄n ∈ P , ∀ε ∈ [0, εmax] (4.21)

Proof: In light of (4.20), we have ∆p̄n ≥ 0. If ∆p̄n = 0, then the lemma becomes
trivial as ε can take any arbitrary value. So, assume that ∆p̄n 6= 0. Let p̂e and p̄e denote
two flow vectors associated with the injection vectors p̂n and p̄n, respectively. Denote the

corresponding semi-flow vectors as p̂d and p̄d. Given an edge (i, j) ∈ −→E , the curve{
(pij, fij(pij)) | pij ∈ [pmin

ij , pmax
ij ]

}
(4.22)

is a Pareto set in R2 due to fij(·) being monotonically decreasing. Since (p̂ij, p̂ji) and (p̄ij, p̄ji)
both lie on the above curve, one of the following cases occurs:

• Case 1: p̂ij ≥ p̄ij and p̂ji ≤ p̄ji.

• Case 2: p̂ij ≤ p̄ij and p̂ji ≥ p̄ji.

(this fact can be observed in Figure 4.4.1(c) for the points (p̄ij, p̄ji) and (p̃ij, p̃ji) instead of
(p̂ij, p̂ji) and (p̄ij, p̄ji)). With no loss of generality, assume that Case 1 occurs. Indeed, if
Case 2 happens, it suffices to make two changes:

• Change the orientation of the edge (i, j) in the graph
−→G so that (j, i) ∈ −→E instead of

(i, j) ∈ −→E .

• Replace the constraint pji = fij(pij) in (4.4c) with pij = f−1
ij (pji), where the exis-

tence, monotonicity and convexity of the inverse function f−1
ij (·) is guaranteed by the

convexity and decreasing property of fij(·).

Therefore, suppose that

p̂ij ≥ p̄ij, p̂ji ≤ p̄ji, ∀(i, j) ∈ −→E (4.23)

or
p̂d ≥ p̄d (4.24)

First, consider the case p̂d > p̄d. In light of Lemma 26, the assumption p̂n ≤ p̄n can be
expressed as

M(p̂d, p̄d)× (p̂d − p̄d) = p̂n − p̄n ≤ 0 (4.25)

In order to guarantee the relation p̄n − ε∆p̄n ∈ P , it suffices to seek a vector ∆p̄d ∈ R|
−→
E |

satisfying the equations
p̄d − ε∆p̄d ∈ Bd (4.26)

and
M(p̄d, p̄d − ε∆p̄d)× (p̄d−(p̄d − ε∆p̄d)) = p̄n − (p̄n − ε∆p̄n) (4.27)
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(see the proof of Lemma 26), or equivalently

p̄d − ε∆p̄d ∈ Bd (4.28a)

M(p̄d, p̄d − ε∆p̄d)×∆p̄d = ∆p̄n (4.28b)

Consider an arbitrary vector ∆p̄d ∈ R|
−→
E | with all negative entries. In light of Definition 21,

the inequality p̂d > p̄d and the piecewise linear property of fij(·)’s, there exists a positive
number εmax such that

p̄d − ε∆p̄d ∈ Bd (4.29a)

M(p̄d, p̄d − ε∆p̄d) = M(p̄d, p̄d) (4.29b)

for every ε ∈ [0, εmax]. To prove the lemma, it follows from (4.28) and (4.29) that it is enough
to show the existence of a negative vector ∆p̄d satisfying the relation

M(p̄d, p̄d)×∆p̄d = ∆p̄n (4.30)

in which ε does not appear. Notice that since (4.30) is independent of ε, it can be chosen
sufficiently small so that (4.29a) is satisfied automatically. To prove this by contradiction,
assume that the above equation does not have a solution. By Farkas’ Lemma, there exists a
vector x ∈ Rm such that

xTM(p̄d, p̄d) ≥ 0, xT∆p̄n > 0 (4.31)

Since ∆p̄n is nonnegative, the inequality xT∆p̄n > 0 does not hold unless x has at least
one strictly positive entry. Now, it follows from xTM(p̄d, p̄d) ≥ 0 and Lemma 27 that there
exists a nonzero vector y ∈ Rm such that

yTM(p̄d, p̄d) ≥ 0, y ≥ 0 (4.32)

On the other hand, given an edge (i, j) ∈ −→E , since p̂ij ≥ p̄ij (due to (4.23)), the slope of
the line connecting the points (p̂ij, p̂ji) and (p̄ij, p̄ji) is more than or equal to f ′ij(p̄ij) (this is
implied by the fact that fij(·) is convex). This yields that

M(p̄d, p̄d) ≤M(p̂d, p̄d) (4.33)

Now, it follows from (4.24), (4.25), (4.32) and (4.33) that

0 ≥ yTM(p̂d, p̄d)× (p̂d − p̄d) ≥ yTM(p̄d, p̄d)× (p̂d − p̄d) ≥ 0 (4.34)

Thus,
0 = yTM(p̂d, p̄d)× (p̂d − p̄d) = yT (p̂n − p̄n) (4.35)

This is a contradiction because p̂n − p̄n is strictly negative and the nonzero vector y is
positive.
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So far, the lemma has been proven in the case when p̂d > p̄d. To extend the proof to the
case p̂d ≥ p̄d, define Er as the set of every edge (i, j) ∈ E such that

p̂ij 6= p̄ij (4.36)

(note that p̂ij = p̄ij if and only if p̂ji = p̄ji). Define also Gr as the unique subgraph of G
induced by the edge set Er. Let Nr denote the vertex set of Gr, which may be different from
N . It is easy to verify that

p̂d(Gr) > p̄d(Gr), (4.37a)

p̂n(Gr) ≤ p̄n(Gr)−∆p̄n(Gr) ≤ p̄n(Gr) (4.37b)

p̄i − p̂i = p̄i(Gr)− p̂i(Gr), ∀i ∈ Nr (4.37c)

Based on (4.37c), the relationship between ∆p̄n and the new vector ∆p̄n(Gr) is as follows:

∆p̄i =

{
∆p̄i(Gr) if i ∈ Nr

0 otherwise
, ∀i ∈ N (4.38)

In light of (4.37a) and (5.11), one can adopt the proof given earlier for the case p̂d > p̄d to
conclude the existence of a positive number εmax with the property

p̄n(Gr)− ε∆p̄n(Gr) ∈ P(Gr), ∀ε ∈ [0, εmax] (4.39)

Given an arbitrary number ε ∈ [0, εmax], we use the shorthand notation pn(Gr) and pn for
p̄n(Gr) − ε∆p̄n(Gr) and p̄n − ε∆p̄n, respectively. Let pe(Gr) and pe denote a flow vector
corresponding to the injection vectors pn(Gr) and pn, respectively. One can expand the
vector pe(Gr) into pe for the graph G as follows:

• For every (i, j) ∈ Er, the (i, j)th entries of pe and pe(Gr) (the ones corresponding to the
edge (i, j)) are identical.

• For every (i, j) ∈ E\Er, the (i, j)th entry of pe is equal to p̄ij (or p̂ij).

It is straightforward to observe that pn is associated with the designed vector pe and, there-
fore, the feasibility of pe implies that pn belongs to P . This completes the proof. �

The next lemma uses Lemma 28 to prove Theorem 18 in the case where fij(·)’s are all
piecewise linear.

Lemma 29. Assume that the function fij(·) is piecewise linear for every (i, j) ∈ −→E . Given
any two arbitrary points p̂n, p̃n ∈ P, the box B(p̂n, p̃n) is a subset of the injection region P.

Proof: With no loss of generality, assume that p̂n ≤ p̃n (because otherwise B(p̂n, p̃n)
is empty). To prove the lemma by contradiction, suppose that there exists a point pn ∈
B(p̂n, p̃n) such that pn 6∈ P . Consider the set{

γ

∣∣∣∣ γ ∈ [0, 1], p̃n + γ(pn − p̃n) ∈ P
}

(4.40)
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Note that p̂n ≤ pn ≤ p̃n, and that (4.40) describes the set of all γ’s for which p̃n+γ(pn−p̃n)
belongs to the segment between pn and p̃n. Denote the maximum of all those γ as γmax.
The existence of this number is guaranteed because of two reasons: (1) when γ is equal to
0, the point p̃n + γ(pn − p̃n) is equal to p̃n and belongs to P , (2) P is closed and compact.
Furthermore, notice that p̃n + γ(pn − p̃n) is equal to pn at γ = 1. Since pn 6∈ P by
assumption, we have γmax < 1. Denote p̃n + γmax(pn − p̃n) as p̄n. Hence, p̄n ∈ P and
p̂n ≤ pn ≤ p̄n (recall that γmax < 1). Define ∆p̄n as p̄n − pn. One can write:

p̂n ≤ p̄n −∆p̄n ≤ p̄n, p̂n, p̄n ∈ P (4.41)

By Lemma 23, there exists a strictly positive number εmax with the property

p̄n − ε∆p̄n ∈ P , ∀ε ∈ [0, εmax] (4.42)

or equivalently

p̃n + (γmax + ε(1− γmax))(pn − p̃n) ∈ P , ∀ε ∈ [0, εmax] (4.43)

Notice that
γmax + ε(1− γmax) > γmax, ∀ε > 0 (4.44)

Due to (4.43), this violates the assumption that γmax is the maximum of the set given
in (4.40). �

Lemma 29 will be deployed next to prove Theorem 18 in the general case.
Proof of Theorem 18: Consider an arbitrary approximation of fij(·) by a piecewise linear

function for every (i, j) ∈ E . As a counterpart of P , let Ps denote the injection region in
the piecewise-linear case. By Lemma 29, we have

B(p̂n, p̃n) ⊆ Ps (4.45)

Since the piecewise linear approximation can be made in such a way that the sets P and
Ps become arbitrarily close to each other, the above relation implies that the interior of
B(p̂n, p̃n) is a subset of P . On the other hand, P is a closed set. Hence, the box B(p̂n, p̃n)
must entirely belong to P . �

4.5 Convexified Generalized Network Flow

Using Theorem 18 developed in the preceding subsection, we study the relationship be-
tween GNF and CGNF below.

Definition 23. Consider an arbitrary set S ∈ Rn together with a point x ∈ S. The point x
is called “Pareto” if there does not exist another point y ∈ S that is less than or equal to x
entry-wise. x ∈ S is called an “interior point” if S contains a ball around this point. x ∈ S
is called a “boundary point” if it is not an interior point.
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To proceed with the results, the following mild assumption is required.

Assumption 2. There exists a feasible point (pn,pe) for the CGNF problem such that

pij > pmin
ij for every (i, j) ∈ −→E and pi < pmax

i for every i ∈ N .

Theorem 19. Assume that the GNF problem is feasible. Let (p∗n,p
∗
e) and (p̄∗n, p̄

∗
e) denote

arbitrary globally optimal solutions of GNF and CGNF, respectively. The following relations
hold:

1) p∗n = p̄∗n

2) (p̄∗n, p̄
∗
e) is a solution of GNF, provided that p∗n is a Pareto point in P.

�

In what follows, we first prove Part 2 of Theorem 19 and illustrate it in some examples
before proving Part 1.

Proof of Part 2 of Theorem 19: Define a new flow vector p̂e as

p̂ij = p̄∗ij, ∀(i, j) ∈ −→E (4.46a)

p̂ji = fij(p̄
∗
ij), ∀(i, j) ∈ −→E (4.46b)

Let p̂n denote the injection vector corresponding to p̂e. Since p̂ji = fij(p̄
∗
ij) for every (i, j) ∈

−→E , it can be concluded that p̂n ≤ p̄∗n = p∗n (the last equality follows from Part 1 of the
theorem). Since p∗n is assumed to be a Pareto point in P , we must have p̂n = p̄∗n and
therefore p̂e = p̄∗e. This implies that (p̄∗n, p̄

∗
e) is a feasible point for GNF and yet a global

solution for CGNF. As a result, (p̄∗n, p̄
∗
e) is a solution of GNF. �

Theorem 19 states that CGNF finds the optimal injections but not necessarily optimal
flows for GNF. Note that Part 1 of the theorem implies that the globally optimal injection
vector is unique. Two examples will be provided below to elaborate on Part 2 of Theorem 19.

Example 1: Consider the illustrative example explained in Section 4.3. It can be
observed in Figure 4.2.2(b) that every point on the lower curvy boundary of the feasible set
is a Pareto point. Therefore, if the box B defined by the lower and upper bound constraints
on p1 and p2 intersects with any part of the lower boundary of the green area, CGNF always
finds optimal flow vectors for GNF, leading to the equivalence of GNF and CGNF. �

Example 2: As stated before, a Pareto point lies on the boundary of the injection region.
A question arises as to whether the condition “Pareto point” can be replaced by “boundary
point” in Theorem 19. We will provide an example here to show that the optimal injection
being a boundary point does not necessarily guarantee the equivalence of GNF and CGNF.
To this end, consider the 4-node graph G depicted in Figure 4.5.1. This graph can be
decomposed into two subgraphs G1 and G2, where each subgraph has the same topology as
the 2-node graph studied in Example 1. Assume that the flow over the line (2, 3) is restricted
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Figure 4.5.1: The 4-node graph G studied in Example 2.

(a) Injection region of the subgraph G1 (b) Injection region of the subgraph G2

Figure 4.5.2: The injection regions and box constraints in Example 2.

to zero, by imposing the constraints pmin
23 = pmax

23 = pmin
32 = pmax

32 = 0. This implies that (2, 3)
is redundant, whose removal splits the graph G into two disjoint subgraphs G1 and G2. Let
(p∗n,p

∗
e) be an arbitrary solution of GNF. The vector p∗n can be broken down into two parts

as
p∗n = [p∗n(G1)T p∗n(G2)T ]T (4.47)

where p∗n(G1) and p∗n(G2) denote the optimal values of the sub-vectors [p1 p2]T and [p3 p4]T ,
respectively. Note that P(G1) and P(G2) could both resemble the green area in Figure
4.2.2(b). We make two assumptions here:

• Assumption 1: As demonstrated in Figure 4.5.2(a), the box constraints on p1 and p2

are such that p∗n(G1) becomes a Pareto point located on the lower boundary of P(G1).
In this case, it is guaranteed from Theorem 19 that if CGNF is solved just over G1, it
finds feasible flows for this subgraph.

• Assumption 2: As demonstrated in Figure 4.5.2(b), the box constraints on p3 and p4

are such that p∗n(G2) becomes an interior point of P(G2), corresponding to the lower
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left corner of the box. In this case, assume that if CGNF is solved just over G2, it may
not always find feasible flows for this subgraph (we will show it later in the chapter).

Since (2, 3) is not allowed to carry any flow, it is easy to show that CGNF solved over G
finds feasible flows for the lines between nodes 1 and 2, but may result in wrong flows for
the lines between nodes 3 and 4. Hence, CGNF and GNF are not equivalent. On the other
hand, it is straightforward to inspect that P is the product of two regions as

P = P(G1)× P(G2) (4.48)

Now, since p∗n(G1) is on the boundary of P(G1) but p∗n(G2) is in the interior of P(G2), it can
be deduced that

• p∗n is on the boundary of the injection region P .

• p∗n is not a Pareto point of the injection region P .

In summary, although p∗n is a boundary point for G, CGNF is not equivalent to GNF. This
is due to the connection of a well-behaved subgraph G1 to a problematic subgraph G2 via
a redundant link with no flow. It will be shown in Corollary 6 that whenever p∗n is on the
boundary of its injection region, there exists a non-empty subgraph of G for which the correct
(feasible and optimal) flows can be found via CGNF. �

Before presenting the proof of Part 1 of Theorem 19 in the general case, one special case
will be studied for which the proof is less involved. Observe that since (p̄∗n, p̄

∗
e) is a feasible

point of CGNF, one can write
p̄∗i ≥ pmin

i , ∀i ∈ N (4.49)

The proof of Part 1 of Theorem 19 will be first derived in the special case

p̄∗i = pmin
i , ∀i ∈ N (4.50)

Proof of Part 1 of Theorem 19 under Condition (4.50): (p∗n,p
∗
e) being a feasible point of

GNF implies that
p∗i ≥ pmin

i , ∀i ∈ N (4.51)

Equations (4.50) and (4.51) lead to
p̄∗n ≤ p∗n (4.52)

Define the vector p̃n as

p̃i =
∑

(i,j)∈
−→
E

p̄∗ij +
∑

(j,i)∈
−→
E

fij(p̄
∗
ij), ∀i ∈ N (4.53)

Notice that p̃n belongs to P , although it may not belong to B. It can be inferred from the
definition of CGNF that

p̃n ≤ p̄∗n (4.54)
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Since p̃n,p
∗
n ∈ P , it follows from Theorem 18, (4.52) and (4.54) that p̄∗n ∈ P . On the other

hand, p̄∗n ∈ B. Therefore, p̄∗n ∈ P ∩ B, implying that p̄∗n is a feasible point of Geometric
GNF. Since the feasible set of Geometric CGNF includes that of Geometric GNF, p̄∗n must
be a solution of Geometric GNF as well. The proof follows from equation (4.52) and the
fact that p∗n is another solution of Geometric GNF (recall that the objective function of this
optimization problem is strictly increasing). �

Before proving Part 1 of Theorem 19 in the general case, some ideas need to be developed.
Since fi(pi) can be approximated by a differentiable function arbitrarily precisely, with no
loss of generality, assume that fi(pi) is differentiable for every i ∈ N . Since CGNF is convex,
one can take its Lagrangian dual.

Lemma 30. Strong duality holds for the CGNF problem.

Proof: To prove the lemma, it suffices to show that Slater’s condition is satisfied or,
alternatively, there exists a feasible solution for the CGNF problem satisfying (4.6c) with
strict inequality. To this end, consider the feasible solution (pn,pe) introduced in Assumption
2. It is easy to verify that there exists a strictly positive number ε such that (p̄n, p̄e) is feasible
for the CGNF with strict inequality in (4.6c), where p̄ij = pij and p̄ji = pji + ε for every

(i, j) ∈ −→E and p̄n is associated with p̄e. �
Let λmin

i and λmax
i denote optimal Lagrange multipliers corresponding to the constraints

pmin
i ≤ pi and pi ≤ pmax

i . Assume that (p̄∗n, p̄
∗
e) is an optimal solution of the GNF problem.

Using the duality theorem, it can be shown that changing the objective function to∑
i∈N

fi(pi)− λmin
i (pi − pmin

i ) + λmax
i (pi − pmax

i ) (4.55)

would not affect the optimal solution [37]. Furthermore, it follows from the first-order
optimality conditions that

(p̄∗n, p̄
∗
e) = arg min

pn∈Rm,pe∈Be

∑
i∈N

λipi (4.56a)

subject to pi =
∑
j∈N (i)

pij, ∀i ∈ N (4.56b)

fij(pij) ≤ pji, ∀(i, j) ∈ −→E (4.56c)

pij ∈ [pmin
ij , pmax

ij ], ∀(i, j) ∈ E (4.56d)

where
λi = f ′i(p̄

∗
i )− λmin

i + λmax
i , ∀i ∈ N (4.57)
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Hence,

(p̄∗ij, p̄
∗
ji) = arg min

(pij ,pji)∈R2

λipij + λjpji (4.58a)

subject to fij(pij) ≤ pji, (4.58b)

pij ∈ [pmin
ij , pmax

ij ], (4.58c)

pji ∈ [pmin
ji , p

max
ji ] (4.58d)

for every (i, j) ∈ −→E .

Definition 24. Define V as the set of all indices i ∈ N for which λi ≤ 0. Define V̄ as the
set of all indices i ∈ N\V for which there exists a vertex j ∈ V such that (i, j) ∈ G (i.e., V̄
denotes the set of the neighbors of V in the graph G).

Since the objective function of the optimization problem (4.58) is linear, it is straightfor-
ward to verify that fij(p̄

∗
ij) = p̄∗ji as long as λi > 0 or λj > 0. In particular,

fij(p̄
∗
ij) = p̄∗ji, ∀(i, j) ∈ −→E , {i, j} 6⊆ V (4.59a)

p̄∗ij = pmin
ij , ∀(i, j) ∈ E , i ∈ V̄ , j ∈ V (4.59b)

If fij(p̄
∗
ij) were equal to p̄∗ji for every (i, j) ∈ −→E , then the proof of Part 1 of Theorem 19

was complete. However, the relation fij(p̄
∗
ij) < p̄∗ji might hold in theory if (i, j) ∈ −→E and

{i, j} ⊆ V . Hence, is important to study this scenario.

Proof of Part 1 of Theorem 19 in the general case: For every given index i ∈ V , the
term λi is nonpositive by definition. On the other hand, f ′i(·) is strictly positive (since
fi(·) is monotonically increasing), and λmin

i and λmax
i are both nonnegative (since they are

the Lagrange multipliers for inequality constraints). Therefore, it follows from (4.57) that
λmin
i > 0, implying that

p̄∗i = pmin
i , ∀i ∈ V (4.60)

Thus,
p∗i ≥ pmin

i = p̄∗i , ∀i ∈ V (4.61)

Let Gs denote a subgraph of G with the vertex set V ∪ V̄ that includes those edges (i, j) ∈ E
satisfying either of the following conditions:

• {i, j} ⊆ V
• i ∈ V and j ∈ V̄ .

Note that Gs includes all edges of G within the vertex subset V and those between the sets
V and V̄ , but this subgraph contains no edge between the vertices in V̄ . The first objective
is to show that

p∗i (Gs) ≥ p̄∗i (Gs), ∀i ∈ V ∪ V̄ (4.62)

To this end, two possibilities will be investigated:
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• Case 1) Consider a vertex i ∈ V . Given each edge (i, j) ∈ E , vertex j must belong to
V ∪ V̄ , due to Definition 24. Hence, p∗i (Gs) = p∗i and p̄∗i (Gs) = p̄∗i . Combining these
equalities with (4.61) gives rise to p∗i (Gs) ≥ p̄∗i (Gs).

• Case 2) Consider a vertex i ∈ V̄ . Based on (4.59b), One can write:

p̄∗i (Gs) =
∑

j∈V∩N (i)

p̄∗ij =
∑

j∈V∩N (i)

pmin
ij (4.63)

Similarly,

p∗i (Gs) =
∑

j∈V∩N (i)

p∗ij ≥
∑

j∈V∩N (i)

pmin
ij (4.64)

Thus, p∗i (Gs) ≥ p̄∗i (Gs).

So far, inequality (4.62) has been proven. Consider p̃n introduced in (4.53). Similar to (4.54),
it is straightforward to show that p̃i(Gs) ≤ p̄∗i (Gs) for every i ∈ V ∪ V̄ . Hence,

p̃n(Gs) ≤ p̄∗n(Gs) ≤ p∗n(Gs) (4.65)

On the other hand, p̃n(Gs) and p∗n(Gs) are both in P(Gs). Using (4.65) and Theorem 18 (but
for Gs as opposed to G), it can be concluded that p̄∗n(Gs) ∈ P(Gs). Hence, there exists a flow
vector p̂e(Gs) associated with p̄∗n(Gs), meaning that

p̄∗i (Gs) =
∑

j∈N (i)∩(V∪V̄)

p̂ij(Gs), ∀i ∈ V (4.66a)

p̄∗i (Gs) =
∑

j∈N (i)∩V

p̂ij(Gs), ∀i ∈ V̄ (4.66b)

p̂ji(Gs) = fij(p̂ij(Gs)), ∀(i, j) ∈ −→G s (4.66c)

Now, one can expand p̂e(Gs) to p̂e as

p̂jk =

{
p̂jk(Gs) if (j, k) ∈ Gs
p̄∗jk otherwise

, ∀(j, k) ∈ E (4.67)

Let p̂n denote the injection vector associated with the flow vector p̂e. Two observations can
be made:

1) p̂n is equal to p̄∗n.

2) Due to (4.59a), (4.66c) and (4.67), (p̂n, p̂e) is a feasible point of GNF.

This means that p̄∗n is the unique optimal solution of Geometric CGNF and yet a feasible
point of Geometric GNF. The rest of the proof is the same as the proof of Theorem 19 under
Condition (4.50) (given earlier). �
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Figure 4.5.3: Figures (a) and (b) show the feasible sets T (1)
c and T (2)

c , respectively. Figure (c)
is aimed to show that CGNF may have an infinite number of solutions (all points in the yellow
area may be the solutions of GNF).

Next example is provided to understand the reason why CGNF may fail to obtain a
correct flow vector associated with the optimal injection vector.

Example 3: Consider again the illustrative example studied in Section 4.3, correspond-
ing to the graph G depicted in Figure 4.2.1. Let T denote the projection of the feasi-
ble set of the GNF problem given in (4.8) over the flow space associated with the vector

(p
(1)
12 , p

(1)
21 , p

(2)
12 , p

(2)
21 ). It is easy to verify that T can be decomposed as the product of T (1) and

T (2), where

T (1) =

{
(p

(1)
12 , p

(1)
21 )

∣∣∣∣ p(1)
12 ∈ [−0.5, 0.5], p

(1)
21 =

(
p

(1)
12 − 1

)2

− 1

}
and

T (2) =

{
(p

(2)
12 , p

(2)
21 )

∣∣∣∣ p(2)
12 ∈ [−1, 1], p

(2)
21 =

(
p

(2)
12 − 1

)2

− 1

}
Likewise, define Tc as the projection of the feasible set of the CGNF problem over its flow
space. As before, Tc can be written as T (1)

c × T (2)
c , where T (i)

c is obtained from T (i) by
changing its equality

p
(i)
21 =

(
p

(i)
12 − 1

)2

− 1 (4.68)

to the inequality

p
(i)
21 ≥

(
p

(i)
12 − 1

)2

− 1 (4.69)

for i = 1, 2, and adding the limits p
(1)
21 ≤ 1.52 − 1 and p

(2)
21 ≤ 22 − 1. The sets T (1)

c and

T (2)
c are drawn in Figures 4.5.3(a) and 4.5.3(b). Given i ∈ {1, 2}, note that T (i)

c has two
flat boundaries and one curvy (lower) boundary that is the same as T (i). Consider the flow
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vector (p̄
(1)
12 , p̄

(1)
21 , p̄

(2)
12 , p̄

(2)
21 ) ∈ Tc defined as(

p̄
(1)
12 , p̄

(1)
21

)
=
(
0.5, (0.5− 1)2 − 1

)
,(

p̄
(2)
12 , p̄

(2)
21

)
=
(
−0.5, (−0.5− 1)2 − 1

) (4.70)

Define p̄1 = p̄
(1)
12 + p̄

(2)
12 and p̄2 = p̄

(1)
21 + p̄

(2)
21 . It can be verified that for every point (p̃

(1)
12 , p̃

(1)
21 )

in the green area of Figure 4.5.3(c), there exists a vector (p̃
(2)
12 , p̃

(2)
21 ) ∈ T (2)

c such that

p̄1 = p̃
(1)
12 + p̃

(2)
12 , p̄2 = p̃

(1)
21 + p̃

(2)
21 (4.71)

This means that if (p̄1, p̄2, p̄
(1)
12 , p̄

(1)
21 , p̄

(2)
12 , p̄

(2)
21 ) turns out to be an optimal solution of CGNF,

then (p̄1, p̄2, p̃
(1)
12 , p̃

(1)
21 , p̃

(2)
12 , p̃

(2)
21 ) becomes another solution of CGNF. As a result, although

Geometric CGNF has a unique solution (optimal injection vector), CGNF may have an
infinite number of solutions whose corresponding flow vectors do not necessarily satisfy the
constraints of GNF. �

So far, we have shown that CGNF always finds the optimal injection vector and optimal
objective value for the GNF problem. In addition, it finds the optimal flow vector if the
injection vector is a Pareto point. Now, we consider the case where the optimal injection
vector is not necessarily Pareto but lies on the boundary of the injection region. The objective
is to prove that the network G can be decomposed into two subgraphs G1 and G2 such that:
(i) the flows obtained from CGNF are optimal (feasible) for GNF for those lines inside G1

or between G1 and G2, (ii) the flows over the lines between G1 and G2 all hit their limits at
optimality.

Definition 25. Define G1 and G2 as the subgraphs of G induced by the vertex subsets N\V
and V, respectively.

Theorem 20. Assume that fi(·) is strictly convex for every i ∈ N . Let (p∗n,p
∗
d) and (p∗n, p̄

∗
d)

denote arbitrary globally optimal solutions of the GNF and CGNF problems, respectively. The
following relations hold:

p∗ij = p̄∗ij, ∀(i, j) ∈ N\V (4.72a)

p∗ji = p̄∗ji = pmax
ji , ∀(i, j) ∈ (N\V × V) ∩ E (4.72b)

Proof: Since every solution of GNF is a solution of CGNF as well (due to Theorem 19), the
points (p∗n,p

∗
d) and (p∗n, p̄

∗
d) are both solutions of CGNF. Now, it follows from the duality

theorem that (p∗n,p
∗
d) and (p∗n, p̄

∗
d) are both minimizers of (4.56) and (4.58). Since the

objective of (4.58) is linear and fi(·) is strictly convex, it can be concluded that:

• The optimization problem (4.58) has a unique solution as long as λ∗i > 0 or λ∗j > 0.

• (pij, pji) becomes equal to (pmin
ij , pmax

ji ) at optimality if λ∗i > 0 and λ∗j ≤ 0.
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• (pij, pji) becomes equal to (pmax
ij , pmin

ji ) at optimality if λ∗j > 0 and λ∗i ≤ 0.

Equations (4.72a) and (4.72b) follow immediately from the above properties. �

Corollary 6. Let (p∗n,p
∗
d) and (p∗n, p̄

∗
d) denote arbitrary globally optimal solutions of the

GNF and CGNF problems, respectively. If there exists a vertex i ∈ N such that p̄∗i > pmin
i ,

then p∗d and p̄∗d must be identical in at least one entry.

Proof: Consider a vertex i ∈ N such that p̄∗i > pmin
i . It follows from (4.57) that λ∗i

is positive. Now, Definition 25 yields that the subgraph G1 is nonempty. The proof is an
immediate consequence of Theorem 20. �

Definition 26. Consider a solution (p∗n,p
∗
d) of GNF. A line (i, j) ∈ E of the network G is

called “congested” if p∗ij is equal to pmax
ij or p∗ji is equal to pmax

ji .

Corollary 7. Let (p∗n,p
∗
d) and (p∗n, p̄

∗
d) denote arbitrary globally optimal solutions of the

GNF and CGNF problems, respectively. Assume that there exists a vertex i ∈ N such that
p̄∗i > pmin

i . If the network G has no congested line, then GNF and CGNF are equivalent, i.e.,
(p∗n,p

∗
d) = (p∗n, p̄

∗
d).

Proof: Due to the proof of Corollary 6, the setN\V is nonempty. On the other hand, since
the network G has no congested line by assumption, it can be concluded from Theorem 20
that (N\V × V) ∩ E is an empty set. Therefore, V must be empty, which implies the
equivalence of GNF and CGNF due to Theorem 20. �

4.6 Characterization of Optimal Flow Vectors

In this section, we aim to characterize the set of all optimal flow vectors for GNF, based
on the optimal injection vector found using CGNF. In particular, we will show that this set
could be nonconvex and disconnected. Before presenting the results, it is helpful to illustrate
the key ideas in an example.

Example 4: Consider the graph G depicted in Figure 4.6.1(a), which consists of two cycles
and four nodes. Let (p∗n,p

∗
e) denote an arbitrary solution of GNF, where p∗n is obtained

from CGNF and p∗e is to be found. The objective of this example is to demonstrate that all
optimal flows in the network can be uniquely characterized in terms of two flows. Consider
the unknown flows p∗12 and p∗13. One can write

p∗24 = p∗2 − f12(p∗12) (4.73a)

p∗34 = p∗3 − f13(p∗13) (4.73b)

p∗14 = p∗1 − p∗12 − p∗13 (4.73c)
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Figure 4.6.1: The 2-cycle graph and its feasible region in Example 4.

It follows from the above equations that all flows in the network can be cast as functions
of (p∗12, p

∗
13), and in addition (p12, p13) = (p∗12, p

∗
13) is a solution to the level-set problem

F (p12, p13, p
∗
1, p
∗
2, p
∗
3) = p∗4, where

F (p12, p13, p1, p2, p3) = f24 (p2 − f12(p12))

+ f34 (p3 − f13(p13))

+ f14 (p1 − p12 − p13)

(4.74)

is a convex function with respect to (p12, p13) but not necessarily monotonic. On the other
hand, the equations in (4.73) can be used to translate the box constraints on all flows to
certain constraints only on p∗12 and p∗13:

p̃min
12 ≤ p∗12 ≤ p̃max

12 (4.75a)

p̃min
13 ≤ p∗13 ≤ p̃max

13 (4.75b)

pmin
14 ≤ p∗1 − p∗12 − p∗13 ≤ pmax

14 (4.75c)

for some numbers p̃min
12 , p̃max

12 , p̃min
13 , p̃max

13 . Let C1 and C2 denote the sets of all points (p∗12, p
∗
13)

satisfying the level-set problem F (p∗12, p
∗
13, p

∗
1, p
∗
2, p
∗
3) = p∗4 and the reformulated flow con-

straints (4.75), respectively. The set of all optimal flow solutions (p∗12, p
∗
13) can be expressed

as C1 ∩ C2, where C1 is the boundary of a convex set (corresponding to F (·)) and C2 is a
polytope. As illustrated in Figure 4.6.1(b), C1 is the boundary of a convex set, and therefore
its intersection with a polytope (e.g., a box) could form up to 4 disconnected components.
In summary, the optimal flow vectors for GNF may constitute a nonconvex infinite set,
consisting of as high as 4 disconnected components. �

By following the argument used in Example 5, it is straightforward to show that if the
graph G is a tree, the optimal flow vector is unique and can be easily obtained from the
optimal injection vector p∗n. Hence, the main challenge is to deal with mesh flow networks.
To this end, consider an arbitrary spanning tree of the m-node graph G, denoted as Gt. Let
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pdt denote a sub-vector of the semi-flow vector pd associated with those edges of G that do

not exist in Gt. Recall that
−→G was obtained through an arbitrary orientation of the edges of

the graph G. With no loss of generality, one can consider Gt as a rooted tree with node m

as its root, where all arcs of
−→G are directed toward the root.

Lemma 31. There exist convex functions Fij : R|E| → R for all (i, j) ∈ −→E such that the
following statements hold:

1) Given every arbitrary feasible solution (pn,pe) of the GNF problem, the relations

pji = Fij(pdt, p1, p2, ..., pm−1), ∀(i, j) ∈ −→E (4.76)

are satisfied.

2) The function F (pdt, p1, p2, ..., pm−1) defined as∑
j∈N (m)

Fjm(pdt, p1, p2, ..., pm−1) (4.77)

is convex.

Proof: The proof is in line with the technique used in Example 4. The details are omitted
for brevity. �

Definition 27. Define C1 as the set of all vectors pdt satisfying the level-set problem
F (pdt, p

∗
1, p
∗
2, ..., p

∗
m−1) = p∗m. Also, define C2 as the set of all vectors pdt satisfying the

inequalities

pmin
ji ≤ Fij(pdt, p

∗
1, p
∗
2, ..., p

∗
m−1) ≤ pmax

ji , ∀(i, j) ∈ −→E (4.78)

Theorem 21. A flow vector p∗e is globally optimal for GNF if and only if

p∗dt ∈ C1 ∩ C2 (4.79a)

p∗ji = Fij(p
∗
dt, p

∗
1, p
∗
2, ..., p

∗
m−1), ∀(i, j) ∈ −→E (4.79b)

p∗ij = fji(p
∗
ji), ∀(i, j) ∈ −→E (4.79c)

Proof: The proof is based on Lemma 31 and the technique used in Example 4. The
details are omitted for brevity. �

Theorem 21 states that: (i) the set of optimal flow vectors can be characterized in terms
of the unique optimal injection vector as well as the flow sub-vector pdt, (ii) the set of optimal
flow sub-vectors p∗dt is the collection of all points in the intersection of C1 and C2. Moreover,
in light of Lemma 31, C1 is the boundary of a convex set. Although C2 was shown to be
a polytope in Examples 4 and 5, it is non-convex in general. Since C1 is the boundary of
a convex set, it occurs that the intersection of C2 with C1 may lead to as high as 2|E|−|N |+1

disconnected components, all lying on the boundary of a convex set (note that |E| − |N |+ 1
is the size of the vector pdt).
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4.7 Extended Generalized Network Flow

In this subsection, we generalize the results developed for the GNF problem to the case
where there are global convex constraints coupling the flows and/or injections of different
parts of the network, in addition to the local constraints over individual lines and at separate
nodes.

Definition 28. Consider a set of convex constraints gi(pn,pe) ≤ 0 for i = 1, 2, ..., k, which
are called coupling constraints. The extended GNF problem is defined as (4.4) subject to
this set of coupling constraints. Denote Pe as the set of all vectors pn for which there exists
a vector pe such that (pn,pe) is feasible for the extended GNF problem. The above set
of coupling constraints is referred to as box-preserving if its addition to the GNF problem
preserves the box property of the injection region, meaning that the box B(pn, p̃n) is contained
in Pe for every two points pn and p̃n in Pe.

Theorem 22. Consider the extended GNF problem with the coupling constraints gi(pn,pe) ≤
0 for every i ∈ {1, 2, ..., k}. This set of constraints is guaranteed to be box-preserving if either
of the following conditions is satisfied:

1) G is a tree and the function gi(pn,pe) is non-decreasing with respect to all entries of
pn and pe, for every i ∈ {1, 2, ..., k}.

2) The function gi(pn,pe) does not depend on pe and is non-decreasing with respect to all
entries of pn, for every i ∈ {1, 2, ..., k}.

Proof: The box-preserving property under Condition 2 follows from the fact that when-
ever the coupling constraints are non-decreasing functions of the injection vector, if pn sat-
isfies the constraints, any other injection vector p̃n with the property p̃n ≤ pn also satisfies
the constraints.

To prove the box-preserving property under Condition 1, it suffices to show that if G is a
tree, every flow pij can be written as a non-decreasing function of pn (then the proof follows
from Condition 2 of the theorem). Consider G as a rooted tree with an arbitrary node at

the root. Recall that
−→G was obtained through an arbitrary orientation of the edges of G.

Without loss of generality, assume that the directions of all edges are toward the root. Define
h as the depth of G (maximum distance of every leaf from the root). Assume that a node
with the distance t from the root is identified by it. First, we use induction to show that
the flows going toward the root can be written as non-decreasing functions of the injection
vector. We start with the farthest nodes from the root. For each node ih, one can write
pihih−1

= pih , which is non-decreasing in terms of the injection vector. Now, for every flow
pitit−1 with 0 ≤ t ≤ h− 1, one can write

pitit−1 = pit −
∑

(jt+1,it)∈E

fjt+1,it(pjt+1it) (4.80)
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By the induction hypothesis, pjt+1it can be written as a non-decreasing function of the injec-
tion vector. Therefore, (4.80) implies that the same statement holds for pitit−1 .

Now, we use another inductive argument to show that each flow going toward the leaves
can be written as a non-decreasing function of the injection vector. We start from the root
node. For every flow pi0i1 , one can write

pi0i1 = pi0 −
∑

(j1,i0)∈E
j1 6=i1

fj1,i0(pj1i0) (4.81)

which implies that pi0i1 is a non-decreasing function of the injection vector (note that this
property holds for pj1i0). For every flow pit−1it with 2 ≤ t ≤ h, one can verify that

pit−1it = pit−1 − f−1
it−1it−2

(pit−2it−1)−
∑

(j1,i0)∈E
jt 6=it

fjt,it−1(pjtit−1) (4.82)

The proof is completed by observing that

• f−1
it−1it−2

(·) is a decreasing function.

• pit−2it−1 is a non-decreasing function of the injection vector due to the induction hy-
pothesis.

• pjtit−1 is a non-decreasing function of the injection vector since its direction is toward
the root. �

In the rest of this subsection, we assume that the set of coupling constraints in the
extended GNF problem is box-preserving.

Corollary 8. Consider two arbitrary points p̂n and p̃n belonging to the box-constrained
injection region Pe ∩ B. The box B(p̂n, p̃n) is contained in Pe ∩ B.

Proof: The proof follows immediately from the definition of Pe and Definition 28. �
Define the extended CGNF problem as CGNF subject to the additional constraints

gi(pn,pe) ≤ 0 for i = 1, 2, ..., k. Note that this problem is convex.

Theorem 23. Assume that the extended GNF problem is feasible. Let (p∗n,p
∗
e) and (p̄∗n, p̄

∗
e)

denote arbitrary globally optimal solutions of the extended GNF and extended CGNF prob-
lems, respectively. The following relations hold:

1) p∗n = p̄∗n

2) (p̄∗n, p̄
∗
e) is a solution of the extended GNF problem, provided that p∗n is a Pareto point

in Pe.
Proof: The argument made in the proof of Theorem 19 can be adopted to prove this

theorem. The details are omitted for brevity. �
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Figure 4.8.1: An example of electrical power network.

4.8 Optimal Power Flow in Electrical Power Networks

In this subsection, the results derived earlier for the GNF and extended GNF problems
will be applied to power networks. Consider a group of generators (sources of energy), which
are connected to a group of electrical loads (consumers) via an electrical power network
(grid). This network comprises a set of lines connecting various nodes to each other (e.g., a
generator to a load). Figure 4.8.1 exemplifies a four-node power network with two generators
and two loads. Each load requests certain amount of energy, and the question of interest
is to find the most economical power dispatch by the generators such that the demand and
network constraints are satisfied. To formulate the problem, let G denote the flow network
corresponding to the electrical power network, where

• The injection pj at node j ∈ N represents either the active power produced by a
generator and injected to the network or the active power absorbed from the network
by an electrical load.

• The flow pjk over each line (j, k) ∈ E represents the active power entering the line (j, k)
from its j endpoint.

The problem of optimizing the flows in a power network is called “optimal power flow (OPF)”.
Let vi denote the complex (phasor) voltage at node i ∈ N of the power network. Denote

the phase of vi as θi. Given an edge (j, k) ∈ G, we denote the admittance of the line between
nodes j and k as gjk − ibjk, where the symbol i denotes the imaginary unit. gjk and bjk are
nonnegative numbers due to the passivity of the line. There are two active flows entering
the line (j, k) from its both ends. These flows are given by the equations:

pjk = |vj|2gjk + |vj||vk|bjk sin(θjk)− |vj||vk|gjk cos(θjk),

pkj = |vk|2gjk − |vj||vk|bjk sin(θjk)− |vj||vk|gjk cos(θjk)
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Figure 4.8.2: The feasible set of the active power flows in power systems.

where θjk = θj − θk. First, consider the distribution system where the underlying network
is a tree. For now, assume that |vj| and |vk| are fixed at their nominal values, while θjk is a
variable to be designed. If θjk varies from −π to π, then the feasible set of (pjk, pkj) becomes
an ellipse, as illustrated in Figure 4.8.2(a). It can be observed that pkj cannot be written as
a function of pjk. This observation is based on the implicit assumption that there is no limit
on θjk. Suppose that θjk must belong to an interval [−θmax

jk , θmax
jk ] for some angle θmax

jk . If the
new feasible set for (pjk, pkj) resembles the partial ellipse drawn in Figure 4.8.2(b), then pkj
can be expressed as fjk(pjk) for a monotonically decreasing and convex function fjk(·). This
occurs if

θmax
jk ≤ tan−1

(
bjk
gjk

)
(4.83)

It is interesting to note that the right side of the above inequality is equal to 45.0◦, 63.4◦

and 78.6◦ for
bjk
gjk

equal to 1, 2 and 5, respectively. Note that
bjk
gjk

is normally greater than 5

(due to the specifications of the lines) and θmax
jk is normally less than 15◦ and very rarely as

high as 30◦ due to stability and thermal limits (this angle constraint is forced either directly
or through pmin

jk and pmax
jk in practice). Hence, Condition (4.83) is practical. Furthermore,

each line of the power system can tolerate a certain amount of current in magnitude. One
can verify that the magnitude of the current on the line (j, k), denoted by ijk, satisfies the
equation

|ijk|2 = |yjk|
(
|vj|2 + |vk|2 − 2|vjvk| cos(θjk)

)
Therefore, an upper bound on |ijk| can be translated into a constraint on θjk, which can be
reflected in θmax

jk . By assuming that (4.83) is satisfied, there exists a monotonically decreasing,
convex function fjk(·) such that

pkj = fjk(pjk), ∀pjk ∈ [pmin
jk , p

max
jk ], (4.84)
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Figure 4.8.3: Linear transformation of active flows to reactive flows.

where pmin
jk and pmax

jk correspond to θmax
jk and −θmax

jk , respectively.
Given two disparate edges (j, k) and (j′, k′), the phase differences θjk and θj′k′ may

be varied independently in the distribution network. (4.84) implies that the problem of
optimizing active flows reduces to GNF. In this case, Theorems 18 and 19 can be used to
study the corresponding approximated OPF problem. As a result, the optimal injections for
the approximated OPF can be found via the corresponding CGNF problem. This implies
two facts about the conic relaxations studied in [151, 169, 240, 236, 158, 35, 276, 154, 153]
for solving the OPF problem:

• The relaxations are exact without using the concept of load over-satisfaction (i.e.,
relaxing the flow constraints). This is a generalization of the results derived in the
above papers (please refer to [153] for more details on this concept).

• Given the optimal injections, the optimal flows can be uniquely derived using the
method delineated in the proof of Theorem 22.

In addition to active power, voltage magnitudes and reactive power are normally optimized
in the OPF problem. In what follows, we generalize the above results to these cases.

Variable Reactive Power

In real-world power systems, different components of the network produce/consume re-
active power. Since reactive power has a direct impact on the operation of the power system,
this is often controlled in the OPF problem. To formulate the problem in this case, notice
that each line has two reactive flows entering from its both endpoints. These equations can
be described as

qjk = |vj|2gjk − |vj||vk|gjk sin(θjk)− |vj||vk|bjk cos(θjk),

qkj = |vk|2gjk + |vj||vk|gjk sin(θjk)− |vj||vk|bjk cos(θjk)
(4.85)

Each bus at the network has a limited capacity to absorb/produce reactive power. Upon
defining qi as the reactive power injection at node i (which is equal to the summation of
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outgoing reactive flows from node i), this limited capacity can be captured by the pre-
specified constraints qmin

i ≤ qi ≤ qmax
i . Therefore, reactive flows can be written as linear

functions of active flows based on the formula[
qjk
qkj

]
=

1

2bjkgjk

[
b2
jk − g2

jk b2
jk + g2

jk

b2
jk + g2

jk b2
jk − g2

jk

]
︸ ︷︷ ︸

Ajk

[
pjk
pkj

]
(4.86)

Figure 4.8.3 visualizes this linear transformation. Assume that G is a tree (corresponding to
a distribution network). Using (4.86), one can write the reactive power constraints in terms

of the active flows. It can be observed that as long as the practical condition
bjk
gjk
≥ 1 is satis-

fied for every line (j, k), the upper bound on the reactive power injection is a box-preserving
convex constraint. This is due to the fact that each reactive power injection can be writ-
ten as a linear and non-decreasing function of active flows (in light of (4.86)). This means
that if the lower bounds on the reactive power injections are small enough (no matter what
the upper bounds are), the OPF problem is reduced to the extended GNF problem with
box-preserving coupling constraints. In this case, Theorem 23 can be invoked to conclude
that the proposed convexification technique finds the optimal active-power injection vector.
Similar to the previous case, once the optimal active-power injection vector is found, the op-
timal active and reactive flows can be uniquely extracted. It is worthwhile to mention that
binding lower bounds on the reactive power injections may potentially destroy the exactness
of the extended GNF problem since these constraints may not preserve the box property of
the feasible region of the active-power injection vector.

Variable Voltage Magnitudes and Reactive Power

Consider the OPF problem with variable voltage magnitudes, namely vmin
i ≤ |vi| ≤ vmax

i

for every node i in G.

Definition 29. Given an arbitrary line (j, k) ∈ E, two numbers uj, uk ∈ R+, and an angle
θmax
jk ∈ R, define Pjk(uj, uk, θmax

jk ) as the set of all pairs (pjk, pkj) for which there exists an
angle −θmax

jk ≤ θjk ≤ θmax
jk such that (4.85) holds after replacing |vj| and |vk| with uj and uk,

respectively.

We make the following assumptions:

• The set Pjk(uj, uk, θmax
jk ) forms a monotonically decreasing curve in R2, for every line

(j, k) ∈ E and the pair (uj, uk) ∈ [vmin
j , vmax

j ]× [vmin
k , vmax

k ].

• For every [u1, ..., u|N |] ∈ [vmin
1 , vmax

1 ] × ... × [vmin
|N | , v

max
|N | ], the OPF problem under the

additional fixed-voltage-magnitude constraints |vi| = ui, i = 1, ..., |N | is feasible.

According to the first assumption, the upper bound on the angle difference between the
two endpoints of each line must ensure that only the Pareto front of the ellipse describing
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Bus 1 Bus 2

Bus 3

Figure 4.8.4: The three-bus power network studied in Section 4.8.

the relationship between pjk and pkj is feasible. Notice that for every fixed set of voltages,
(4.83) ensures that the first assumption is satisfied. Furthermore, the second assumption is
practical since for every node i, the limits vmin

i and vmax
i are normally chosen to be less than

5− 10% away from the nominal voltage magnitudes.
Observe that the OPF problem for distribution networks (or acyclic graphs G) can be

reduced to the GNF problem after fixing the magnitude of every voltage at its optimal
value. Since the CGNF is exact in this case, it can be shown that there is a second-order
cone programming (SOCP) relaxation of the OPF problem with variable voltage magnitudes
that is exact. This conic relaxation can be regarded as the union of the CGNF problems
with different fixed voltage magnitudes. The details can be found in [235]. Furthermore,
this conic relaxation is exact even in presence of reactive power constraints if the inequality
bjk
gjk
≥ 1 holds for every line of the network. The main reason is that the problem reduces

to the one studied in the preceding subsection after fixing the voltage magnitudes at their
optimal values.

OPF for General Networks

Given two different edges (j, k) and (j′, k′), the phase differences θjk and θj′k′ may not
be varied independently if the graph G is cyclic (because the sum of the phase differences
over a cycle must be zero). This is not an issue if the graph G is acyclic (corresponding to
distribution networks) or if there is a sufficient number of phase-shifting transformers in the
network. If none of these cases is true, then one could add virtual phase shifters to the power
network at the cost of approximating the OPF problem. The following simple example is
provided to further elaborate on the effect of this approximation.

Consider the three-bus network illustrated in Figure 4.8.4 with the node setN = {1, 2, 3},
the edge set E = {(1, 2), (2, 3), (3, 1)}, and the line admittances (y):

y12 = 0.275− 0.917i, y23 = 0.345− 0.862i, y31 = 0.4− 0.8i

In this network, the loads at buses 1 and 2 are fixed at the value 100MW, whereas the load
at bus 3 is flexible and can accept any amount of power in the range [10MW,20MW]. For



CHAPTER 4. CONVEXIFICATION OF GENERALIZED NETWORK FLOW 139

Figure 4.8.5: Feasible set P (blue area) and feasible set Ps (blue and green areas).

simplicity, assume that the voltages are fixed at their nominal values and we only consider the
active powers in the system. Furthermore, suppose that θmax

12 = 40◦, θmax
23 = 50◦ and θmax

31 =
20◦. Note that the angle constraint |θjk| ≤ θmax

jk can be regarded as the flow constraints
pjk, pkj ≤ pmax

jk = pmax
kj , where

pmax
12 = 71.29, pmax

23 = 90.89, pmax
31 = 37.21 (4.87)

There are two generators in the system, whose active power outputs are denoted as PG1

and PG2 . Figure 4.8.5 represents the projection of the feasible set of OPF onto the space of
the production vector (PG1 , PG2) in two cases: (i) with no phase shifter, (ii) with a virtual
phase shifter in the cycle. P is the feasible production region of (PG1 , PG2). Define Ps as the
projection of the feasible set of OPF problem onto the space for (PG1 , PG2) after removing
the angle constraint θ12 + θ23 + θ31 = 0. The set Ps is depicted in Figure 4.8.5, which has
two components: (i) the blue part P , and (ii) the green part created by the elimination of
the angle constraint. Four points have been marked on the Pareto front of Ps as a, b, c and
d. Notice that the Pareto front of Ps has three segments:

• Segment with the endpoints b and c: This segment “almost” overlaps the Pareto front
of P . Indeed, there is a very little gap between this segment and the front of P .

• Segment with the endpoints a and b: This segment extends the Pareto front of P from
the top.

• Segment with the endpoints c and d: This segment extends the Pareto front of P from
the bottom.

The gap between the Pareto front of P and a subset of the Pareto front of Ps with the
endpoints b and c can be unveiled by performing some simulations. For instance, assume
that f1(PG1) = PG1 and f1(PG2) = 1.2PG2 . Two OPF problems will be solved next:

• OPF without phase shifter: The solution is (P opt
G1
, P opt

G2
) = (144.27, 69.39) corresponding

to the optimal cost $227.53.
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• OPF with phase shifter: The solution is (P opt
G1
, P opt

G2
) = (145.56, 68.18) with θopt

12 +θopt
23 +

θopt
31 = 6.02◦ corresponding to the optimal cost $227.37.

Although the optimal value of the angle mismatch is not negligible, the optimal production
(P opt

G1
, P opt

G2
) has very similar values in the above cases. In other words, the optimal injections

obtained using the proposed convex problem are very close to the globally optimal solutions
of OPF. Notice that the flows obtained from the convex problem could be completely wrong
and one needs to pursue other techniques to find a set of optimal flows based on the obtained
optimal injections.

The aforementioned case study offers a visual and intuitive explanation of the effect of
virtual phase shifters on the optimal solution of the OPF problem and the Pareto front of
the injection region. However, there is a large body of work suggesting that the inclusion of
virtual phase shifters would have a small effect on the optimal solution of OPF in real-world
systems [236, 79, 166, 167, 141]. Hence, the conclusion of this part is that the OPF problem
with virtual phase shifters can be efficiently converted to an SOCP problem (under mild
assumptions), which leads to an approximate solution for OPF (to be later rectified in a
local-search solver) or can be strengthened via convex constraints accounting for omitted
phase cycle effects. For example, the paper [141] proposes a strengthened SOCP to solve
the OPF problem, which exhibits a great performance in many systems. The above result
implies that the success of the method developed in [141] is due in part to the fact that
the SOCP relaxation correctly convefixies the OPF problem with virtual phase shifters, and
therefore it eliminates some of the non-convexity of the original problem.

Several works in the literature indicate that the convex relaxation of the OPF and its
related problems, such as voltage regulation [145] and the state estimation [170], are exact in
most practical instances. This chapter explains the reasoning behind the effectiveness of these
methods by proposing a unified certificate on the exactness of these methods. In particular,
it shows that these methods are successful under various conditions because the optimal
solution belongs to the Pareto front of the feasible region and the proposed relaxations keep
this Pareto front intact. One main application of this work is in the design of efficient
algorithms for optimization over distribution networks, which is regarded as a key ingredient
of future power systems, named Smart Grids. As a future work, the convexification of the
GNF problem under a broader set of global coupling constraints (similar to the cycle effects
in OPF) will be investigated. Another future direction is to study the GNF problem in
the case where the injection and flow parameters are vectors of arbitrary dimensions, rather
than scalars. This case naturally appears in multi-phased power systems, where the nodal
injections (and line flows) are of dimension 1, 2 or 3. The machinery developed in this chapter
suggests that the GNF problem for such networks could be convefixied through the notion
of CGNF if certain monotonicity and box-preserving properties are satisfied. A detailed
analysis of these types of networks is left as future work.
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Chapter 5

An Efficient Method for Optimal
Transmission Switching

This chapter studies the optimal transmission switching (OTS) problem for power sys-
tems, where certain lines are fixed (uncontrollable) and the remaining ones are controllable
via on/off switches. The goal is to identify a topology of the power grid that minimizes
the cost of the system operation while satisfying the physical and operational constraints.
Most of the existing methods for the problem are based on first converting the OTS into
a mixed-integer linear program (MILP) or mixed-integer quadratic program (MIQP), and
then iteratively solving a series of its convex relaxations. The performance of these methods
depends heavily on the strength of the MILP or MIQP formulations. In this chapter, it is
shown that finding the strongest variable upper and lower bounds to be used in an MILP or
MIQP formulation of the OTS based on the big-M or McCormick inequalities is NP-hard.
Furthermore, it is proven that unless P = NP , there is no constant-factor approximation
algorithm for constructing these variable bounds. Despite the inherent difficulty of obtain-
ing the strongest bounds in general, a simple bound strengthening method is presented to
strengthen the convex relaxation of the problem when there exists a connected spanning
subnetwork of the system with fixed lines. With the proposed bound strengthening method,
remarkable improvements in the runtime of the mixed-integer solvers and the optimality
gaps of the solutions are achieved for medium- and large-scale real-world systems.

5.1 Introduction

In power systems, transmission lines have traditionally been considered uncontrollable
infrastructure devices, except in the case of an outage or maintenance. However, due to the
pressing needs to boost the sustainability, reliability and efficiency, power system directors
call on leveraging the flexibility in the topology of the grid and co-optimizing the production
and topology to improve the dispatch. In the last few years, Federal Energy Regulatory
Commission (FERC) has held an annual conference on “Increasing Market and Planning
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Efficiency through Improved Software” [88] to encourage research on the development of
efficient software for enhancing the efficiency of the power systems via optimizing the flexible
assets (e.g., transmission switches) in the system. Furthermore, The Energy Policy Act of
2005 explicitly addresses the “difficulties of siting major new transmission facilities” and
calls for the utilization of better transmission technologies [89].

Unlike in the classical network flows, removing a line from a power network may improve
the efficiency of the network due to physical laws. This phenomenon has been observed
and harnessed to improve the power system performance by many authors. The notion
of optimally switching the lines of a transmission network was introduced by O’Neill et
al. [198]. Later on, it has been shown in a series of papers that the incorporation of
controllable transmission switches in a grid could relieve network congestions [226], serve
as a corrective action for voltage violation [17, 216, 111], reduce system loss [16, 93] and
operational costs [116], improve the reliability of the system [117, 137] and enhance the
economic efficiency of power markets [115]. We refer the reader to Hedman et al. [118] for a
survey on the benefits of transmission switching in power systems. However, the identification
of an optimal topology, namely optimal transmission switching (OTS) problem, is a non-
convex combinatorial optimization problem that is proven to be NP-hard [157]. Therefore,
brute-force search algorithms for finding an optimal topology are often inefficient. Most of
the existing methods are based on heuristics and iterative relaxations of the problem. These
methods include, but are not restricted to, Benders decomposition [116, 137], branch-and-
bound and cutting-plane methods [92, 142], genetic algorithms [111], and line ranking [22,
97]. Recently, another line of work has been devoted to strong convexification techniques in
solving mixed-integer problems for power systems [172, 86, 83].

In this work, the power flow equations are modeled using the well-known DC approxi-
mation, which is the backbone of the operation of power systems. Despite its shortcomings
for the OTS in some cases [55], the DC approximation is often considered very useful for in-
creasing the reliability, performance, and market efficiency of power systems [118]. The OTS
consists of disjunctive constraints that are bilinear and nonconvex in the original formulation.
However, all of these constraints can be written in a linear form using the so-called big-M
or McCormick inequalities [25, 180]. This formulation of OTS is referred to as the linearized
OTS in the sequel. A natural question arising in constructing the OTS formulation is: how
can one find optimal values for the parameters of the big-M or McCormick inequalities? An
optimal choice for these parameters is important for two reasons: 1) they would result in
stronger convex relaxations of the problem, and hence, fewer iterations in branch-and-bound
or cutting-plane methods, and 2) a conservative choice of these parameters would cause nu-
merical and convergence issues [268]. Hedman et al. [117] point out that finding the optimal
values for the parameters of the linearized OTS may be cumbersome, and, therefore, they
impose restrictive constraints on the absolute angles of voltages at different buses at the
expense of shrinking the feasible region. Other studies [92, 198, 116] have also used similar
restrictive approaches to solve the linearized OTS.

In this work, it is proven that finding the optimal values for the parameters of the MILP
or MIQP formulations of the OTS using either big-M or McCormick inequalities is NP-hard.
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Moreover, it is shown that there does not exist any polynomial-time algorithm to approximate
these parameters within any constant factor, unless P = NP . This new result adds a new
dimension to the difficulty of the OTS; not only is solving the OTS as a mixed-integer
nonlinear program difficult, but finding a good linearized reformulation of this problem is
NP-hard as well. In order to maintain the reliability and security of the system, often a set of
transmission lines are considered as fixed and the flexibility in the network topology is limited
to the remaining lines. An implicit requirement is that the network should always remain
connected in order to prevent islanding. One way to circumvent the islanding issue in the
optimal transmission switching problem is to include additional security constraints in order
to keep the underlying network connected at every feasible solution [139, 201]. However, this
new set of constraints would lead to the over-complication of an already difficult problem.
Therefore, in practice, many energy corporations, such as PJM and Exelon, consider only a
selected subset of transmission lines as flexible assets in their network [1, 2].

In this chapter, it is proven that the OTS with a fixed connected spanning subnetwork
is still NP-hard but one can find non-conservative values for the parameters of the big-M or
McCormick inequalities in the linearized OTS without shrinking the feasible region or sac-
rificing the optimality of the obtained solution. In particular, a simple bound strengthening
method is presented to strengthen the linearized formulation of the OTS. This method can
be integrated as a preprocessing step into any numerical solver for the OTS. Despite its sim-
plicity, it is shown through extensive case studies on the IEEE 118-bus system and different
Polish networks that the incorporation of the proposed bound strengthening method leads
to substantial speedup in the runtime of the solver. Furthermore, it is shown that while
including additional constraints on the absolute values of the angles at different buses can
improve the runtime of the solver, it may steer away from the optimality; this conservative
approach can increase the operation cost by 7% for Polish networks.

5.2 Problem Formulation

Consider a power network with nb buses, ng generators, and nl lines. This network can
be represented by a directed graph, denoted by G(B,L), where B is the set of buses indexed
from 1 to nb and L is the set of lines whose directions are chosen arbitrarily and indexed
as (i, j) to represent a connection between buses i and j. Denote G = {1, 2, ..., ng} as the
set of generators in the system. Furthermore, let Ng(i) be the indices of generators that are
connected to bus i. Note that Ng(i) may be empty for a bus i. The variable pi corresponds
to the active-power production of generator i ∈ G and the variable θi is the voltage angle at
bus i ∈ B. For every (i, j) ∈ L, the variable fij denotes the active flow from bus i to bus
j. Consider the set of lines S ⊆ L that are equipped with on/off switches and define the
decision variable xij for every (i, j) ∈ S as the status of the line (i, j). Let ns denote the
cardinality of this set. We refer to the lines belonging to S as flexible lines and the remaining
lines as fixed lines. Notice that the decision variables pi, θi, and fij are continuous, whereas
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xij is binary. For simplicity of notation, define the variable vectors

p , [p1, p2, ..., png ]
>,

Θ , [θ1, θ2, ..., θnb ]
>,

f , [fi1j1 , fi2j2 , ..., finljnl ]
>,

x , [xi1j1 , xi2j2 , ..., xinsjns ]
>, (5.1)

where the lines in L are labeled as (i1, j1), ..., (inl , jnl) such that the first ns lines denote
the members of S. The objective function of the OTS is defined as

∑
i∈G gi(pi), where

gi(pi) takes the quadratic form gi(pi) = ai × p2
i + bi × pi with ai 6= 0 or the linear form

gi(pi) = bi × pi, for some numbers ai, bi ≥ 0. In this chapter, we consider both quadratic
and linear objective functions, which may correspond to system loss and operational cost
of generators. Every in-operation power system must satisfy operational constraints arising
from physical and security limitations. The physical limitations include the unit and line
capacities. Furthermore, the power system must satisfy the power balance equations. On the
security side, there may be a cardinality constraint on the maximum number of flexible lines
that can be switched off in order to avoid endangering the reliable operation of the system.
Let the vector d = [d1, d2, ...., dnb ]

> collect the set of demands at all buses. Moreover, define
pmin
i and pmax

i as the lower and upper bounds on the production level of generator i, and
fmax
ij as the capacity of line (i, j) ∈ L. Each line (i, j) ∈ L is associated with susceptance
Bij.

Using the above notations, the OTS is formulated as the following mixed-integer nonlinear
problem:

minimize
f ,x,Θ,p

∑
i∈G

gi(pi) (5.2a)

s.t. xij ∈ {0, 1}, ∀(i, j) ∈ S (5.2b)

pmin
k ≤ pk ≤ pmax

k , ∀k ∈ G (5.2c)

−fmax
ij xij ≤ fij ≤ fmax

ij xij, ∀(i, j) ∈ S (5.2d)

−fmax
ij ≤ fij ≤ fmax

ij , ∀(i, j) ∈ L\S (5.2e)

Bij(θi − θj)xij = fij, ∀(i, j) ∈ S (5.2f)

Bij(θi − θj) = fij, ∀(i, j) ∈ L\S (5.2g)∑
k∈Ng(i)

pk − di=
∑

(i,j)∈L

fij −
∑

(j,i)∈L

fji, ∀i ∈ B (5.2h)

∑
(i,j)∈S

xij ≥ r, (5.2i)

where

- (5.2b) states that the status of each flexible line must be binary;



CHAPTER 5. AN EFFICIENT METHOD FOR OPTIMAL TRANSMISSION
SWITCHING 145

- (5.2c) imposes lower and upper bounds on the production level of generating units;

- (5.2d) and (5.2e) state that the flow over a flexible or fixed line must be within the
line capacities when its switch is on, and it should be zero otherwise;

- (5.2f) and (5.2g) relate the flow over each line to the voltage angles of the two endpoints
of the line if it is in service, and it sets the flow to zero otherwise;

- (5.2h) requires that the power balance equation be satisfied at every bus;

- (5.2i) states that at least r flexible lines must be switched on.

The reasoning behind incorporating the minimum cardinality constraint (5.2i) in the
OTS is twofold:

• A small number of switching options is often essential to guarantee the practicality of
different methods and a cardinality constraint on the maximum number of switchable
lines is imposed to ensure this assumption [164, 22, 97].

• This lower bound is also used to guarantee the reliability of the network, especially
when the switching is used as a post-contingency recourse action in the real-time
operation of power systems [164, 117].

Define F as the feasible region of (5.2), i.e., the set of {f ,x,Θ,p} satisfying (5.2b)- (5.2i).
Due to space restrictions, we consider only one time slot of the system operation. How-

ever, the techniques developed in this chapter can also be used for the OTS over multiple
time slots with coupling constraints, such as ramping limits on the productions of the gener-
ators. As another generalization, one can consider a combined unit commitment and optimal
transmission switching problem [116, 228, 229]. In this chapter, the term “optimal solution”
refers to a globally optimal solution rather than a locally optimal solution.

5.3 Linearization of OTS

The aforementioned formulation of the OTS belongs to the class of mixed-integer non-
linear programs. The nonlinearity of this optimization problem is, in part, caused by the
multiplication of the binary variable xij and the continuous variables θi and θj in (5.2f).
However, since this nonlinear constraint has a disjunctive nature, one can use the big-M or
McCormick reformulation technique to formulate it in a linear way. First, we consider the
big-M method, and then show that the same result holds for the McCormick reformulation
scheme in the OTS. One can re-write (5.2f) for each flexible line (i, j) in the form

Bij(θi − θj)−Mij(1− xij) ≤ fij ≤ Bij(θi − θj) +Mij(1− xij) (5.3)

for a large enough scalar Mij, which results in the linearized OTS formulation. The above
inequality implies that if xij equals 1, then the line is in service and needs to satisfy the
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physical constraint fij = Bij(θi − θj). On the other hand, if xij equals 0, then (5.3) (and
hence (5.2f)) is redundant as it is dominated by (5.2d). The term “large enough” for Mij

is ambiguous, and indeed the design of an effective Mij is a challenging task that will be
studied below.

Definition 30. For every (i, j) ∈ S, it is said that Mij is feasible for the OTS if it preserves
the equivalence between (5.3) and (5.2f) in the OTS. The smallest feasible Mij is denoted by
Mopt

ij .

Remark 9. Note that the value of Mopt
ij is independent of the values of Mrl, for (r, l) ∈

S\(i, j), in the linearized OTS formulation, as long as they are chosen to be feasible. In
other words, given an instance of the OTS, the value of Mopt

ij is the same if Mrl satisfies

Mrl ≥Mopt
rl for every (r, l) ∈ S\(i, j).

The problem under investigation in this section is the following: given an instance of
OTS, is there an efficient algorithm to compute Mopt

ij or a good approximation of that for
every (i, j) ∈ S? It is desirable to find the smallest feasible values for every Mij, (i, j) ∈ S,
in (5.3) because of two reasons:

1. Commonly used methods for solving MILP or MIQP problems, such as cutting-plane
and branch-and-bound algorithms, are based on iterative convex relaxations of the
constraints. Therefore, while a sufficiently large value for Mij does not change the
feasible region of the OTS after replacing (5.2f) with (5.3), it may have a significant
impact on the feasible region of its convex relaxation. Small values for Mij yield
stronger convex relaxations with smaller feasible sets.

2. Large values for Mij may cause numerical issues for convex relaxation solvers.

For every (i, j) ∈ S, define Fij as the set of all points {f ,x,Θ,p} ∈ F such that xij = 0.

Lemma 32. The equation

Mopt
ij = Bij × max

{f ,x,Θ,p}∈Fij
{|θi − θj|} (5.4)

holds for every flexible line (i, j) ∈ S.

Proof. Consider a numberMij such thatMij ≥ Bij×maxFij{|θi−θj|}. Every set {f ,x,Θ,p} ∈
F satisfies (5.3) with the chosen Mij and, hence, Mij is feasible. Now, assume that Mij <
Bij ×maxFij{|θi − θj|}. Based on the definition of the set Fij, this implies that there exists
{f̄ , x̄, Θ̄, p̄} ∈ F such that x̄ij = 0, f̄ij = 0, and Mij < Bij|θ̄i− θ̄j|. Without loss of generality,
suppose that θ̄i ≥ θ̄j. Therefore, one can verify that

0 < Bij(θ̄i − θ̄j)−Mij(1− x̄ij) (5.5)

Combining with (5.3), this results in f̄ij > 0, contradicting the assumption f̄ij = 0. This
completes the proof.
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Figure 5.3.1: The topology of the network in Example 3. The solid and dashed edges denote
the lines with ON and OFF switches, respectively.

Due to Lemma 32, the problem of finding Mopt
ij for every (i, j) ∈ S reduces to finding the

maxFij{|θi − θj|}.

Remark 10. Note that, for a given (i, j) ∈ S, the term maxFij{|θi − θj|} is finite if and
only if the buses i and j are connected for every feasible point in Fij. This means that the
linearization of the OTS is well-defined if and only if the power network remains connected
at every feasible solution in Fij for all (i, j) ∈ S.

The next example illustrates a scenario where the maxFij{|θi − θj|} is not finite.

Example 3. Consider the network with 6 buses and 8 lines in Figure 5.3.1. Assume that
the network is decomposed into two disjoint components (known as islands) with the buses
{1, 2, 3} and {4, 5, 6} at a feasible point {f ,x,Θ,p} ∈ F16. Define Θ̃ as θ̃i = θi for i ∈
{1, 2, 3} and θ̃i = θi + τ for i ∈ {4, 5, 6}, where τ is an arbitrary scalar. It can be verified
that {f ,x, Θ̃,p} ∈ F16 for every τ . Furthermore, θ̃6 − θ̃1 = θ6 − θ1 + τ , which implies that
maxF16{|θ̃6 − θ̃1|} → +∞ as τ → +∞.

To avoid unbounded values for Mopt
ij , the existence of a connected spanning subnetwork

connecting all the nodes in the network with fixed lines will be assumed in the next section.
In what follows, it will be shown that, even if maxFij{|θi−θj|} is bounded for every (i, j) ∈ S,
one cannot devise an algorithm that efficiently finds maxFij{|θi − θj|} since it amounts to
an NP-hard problem. Furthermore, the impossibility of any constant factor approximation
of maxFij{|θi − θj|} in the linearized OTS is proven.

Theorem 24. Consider an instance of the OTS together with a flexible line (i, j) ∈ S, where
fmax
kl is a given positive number for every (k, l) ∈ L\S. Unless P = NP , it holds that:

- (Strong NP-hardness) there is no polynomial-time algorithm for finding maxFij{|θi −
θj|};

- (Inapproximability) there is no polynomial-time constant-factor approximation algo-
rithm for finding maxFij{|θi − θj|}.

Proof. To prove the strong NP-hardness of the problem, it suffices to show that there exists
a polynomial reduction from the longest path problem in unweighted graphs–a well-known
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strongly NP-hard problem [58]. The longest path problem is defined as follows: Given an
undirected graphG(V , E), where V and E stand for the sets of vertices and edges, respectively,
what is the longest simple path between two particular vertices i and j in V? Let the length
of the longest path be denoted as popt. We construct an instance of the OTS in the following
way: Consider |V| buses and, for every (r, l) ∈ E , connect buses r and l through a line with
an arbitrary orientation that is equipped with a switch (note that S = E in this case). For
each line (r, l) ∈ E , its susceptance and flow capacity are set to 1. For every bus s 6∈ {i, j}
in the system, we set ds = pmin

s = pmax
s = 0, which implies that there is no load or generator

connected to bus s. Connect a generator with pmin
i = pmax

i = 1 to bus i. Furthermore,
connect a load dj = 1 to bus j. Finally, set r = 0.

The instance designed above is feasible if and only if there is a simple path between buses i
and j in G. Furthermore, the size of the constructed instance of the OTS is polynomial in the
size of the instance of the longest path problem. Denote the feasible region of the designed
instance of the OTS as F . Note that Mopt

ij = maxFij{|θi− θj|} due to Lemma (32). Without
loss of generality, we drop the absolute value in the remainder of the proof. According to the
defined characteristics of the loads and generators in the system, for any feasible solution
of the OTS, there should be at least one simple path from bus i to bus j consisting of only
lines that are switched on. Therefore, for every (f∗,Θ∗,x∗,p∗) ∈ arg maxFij{θi − θj}, there
exists a path P∗ = {(i, v1), (v1, v2), ..., (vk, j)} with x∗rk = 1 for all (r, k) ∈ P∗. This simple
path is visualized in Figure 5.3.2. With no loss of generality, assume that the direction of
the flow on the lines respect the directions in P∗. Based on Figure 5.3.2, one can verify that

θ∗i − θ∗j =
∑

(r,l)∈P∗
(θ∗r − θ∗l ) =

∑
(r,l)∈P∗

f ∗rl ≤
∑

(r,l)∈P∗
fmax
rl ≤ popt (5.6)

Now, it is desirable to construct a feasible solution (f̄ , Θ̄, x̄, p̄) ∈ F that includes a simple path
with lines that are switched on from buses i to j whose length is popt. To this end, consider
the instance of the longest path problem and suppose that Popt = {(i, u1), (u1, u2), ..., (ul, j)}
defines the longest simple path in G between nodes i and j. For every flexible line (i, j) in
the corresponding instance of the OTS, we set x̄ij to 1 if this line belongs to Popt and set
to 0 otherwise. Moreover, we set θ̄j to 0 and define θ̄k = popt

kj for every bus k in Popt, where

popt
kj is the length of the unique path between buses k and j in Popt. This yields that f̄rl is

equal to 1 for every line (r, l) in Popt. Furthermore, for every flexible line (t, s) that does not
belong to Popt, we set f̄ts to 0. To satisfy (5.2h), set p̄i = 1. Therefore, a feasible solution
(f̄ , Θ̄, x̄, p̄) is constructed that satisfies the following property:

θ∗i − θ∗j ≥ θ̄i − θ̄j = θ̄i = popt (5.7)

Inequality (5.7) together with (5.6) establishes the proof of the strong NP-hardness of finding
maxFij{|θi−θj|}. The inapproximability of the problem follows from the fact that, unless P =
NP , there is no polynomial-time constant-factor approximation algorithm for determining
the longest path between nodes i and j in G.
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· · ·i v1 v2 vk j

Figure 5.3.2: The visualization of the path P∗ in the proof of Theorem 24. The solid edges
denote the lines in P∗ (with ON switches) and the dashed edges correspond to the remaining
lines.

Theorem 24 together with Lemma 32 implies that finding Mopt
ij is both strongly NP-hard

and inapproximable within any constant factor, hence providing a negative answer to the
question raised in this section.

Remark 11. The decision version of the OTS is known to be NP-complete [142]. One may
speculate that the NP-hardness of finding the best Mij for every (i, j) ∈ S may follow directly
from that result. However, notice that there are some well-known problems with disjunctive
constraints, such as the minimization of total tardiness on a single machine, which are known
to be NP-hard [66] and yet there are efficient methods to find the optimal parameters of their
big-M reformulation [119]. Theorem 24 shows that not only is finding the best Mij for the
OTS NP-hard, but one cannot hope for obtaining a strong linearized reformulation of the
problem based on the big-M method.

Note that one may choose to use McCormick inequalities [180] instead of the big-M
method to obtain a linear reformulation of the bilinear constraint (5.2f). In what follows, it
will be shown that the complexity of finding the optimal parameters of McCormick inequal-
ities is the same as those in the big-M method for the OTS. The McCormick inequalities
can be written in the following form for a flexible line (i, j):

fij ≤ uij|xij=1xij, (5.8a)

fij ≥ lij|xij=1xij, (5.8b)

fij ≤ Bij(θi − θj)− lij|xij=0xij, (5.8c)

fij ≥ Bij(θi − θj)− uij|xij=0xij, (5.8d)

where uij|xij=1 and lij|xij=1 are the respective upper and lower bounds for Bij(θi − θj) in the
case where the line (i, j) is in service. Similarly, uij|xij=0 and lij|xij=0 are the respective upper
and lower bounds for Bij(θi − θj) when the switch for the flexible line (i, j) is off. It can be
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verified that the following equalities hold:

uij|xij=1 = fmax
ij , (5.9a)

lij|xij=1 = −fmax
ij , (5.9b)

uij|xij=0 =Bij×max
Fij
{θi−θj}, (5.9c)

lij|xij=0 =Bij×min
Fij
{θi−θj}. (5.9d)

Therefore, Theorem 24 immediately results in the NP-hardness and inapproximability of the
pair (lij|xij=0, uij|xij=0).

5.4 Optimal Transmission Switching with a Fixed

Connected Spanning Subgraph

In this section, we consider a power system with the property that the set of fixed lines
contains a connected spanning tree of the power system. The objective is to show that a
non-trivial upper bound on Mij can be efficiently derived by solving a shortest path problem.
Furthermore, it will be proven that this upper bound is tight in the sense that there exist
instances of the OTS with a fixed connected spanning subgraph for which this upper bound
equals Mopt

ij . Before presenting this result, it is desirable to state that the OTS is hard to
solve even under the assumption of a fixed connected spanning subgraph.

Theorem 25. The OTS with a fixed connected spanning subgraph is NP-hard.

Proof. The proof is based on a reduction from subset sum problem [58] and a slight modifi-
cation of the argument made in the proof of Theorem 3.1 in [142]. The details can be found
in the Appendix.

Remark 12. Unlike Theorem 1, the statement of Theorem 25 does not imply the strong
NP-hardness of the OTS problem with a fixed connected spanning subgraph since the subset
sum problem is only weakly NP-hard. Instead, it implies that this problem may be efficiently
solvable if the capacity and the susceptance of the lines are small. However, note that small
upper bounds on the angle difference between two neighboring buses does not directly translate
into small line capacities. To illustrate, assume that |θi − θj| is upper bounded by 25 degrees
(≈ 0.43 radians) for a fixed line (i, j), which means that the capacity of this line is equal to
0.43Bij. Therefore, despite having a small value for the angle difference, a large susceptance
will lead to a large capacity, thereby rendering the OTS problem difficult to solve. Indeed,
we have observed for Polish systems that the susceptance of some lines can be as large as
16, 667 per unit, which clearly cancels the positive effect of small angle differences.

Consider a feasible point {f ,x,Θ,p} ∈ F . For any line (i, j) ∈ L, we have

Bij(θi − θj) = Bij

∑
(r,l)∈Pij

(θr − θl), (5.10)
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where Pij is an arbitrary path from node i to node j in the fixed spanning connected subgraph
of G. Together with Lemma 32, this implies that

Mopt
ij = Bij × max

{f ,x,Θ,p}∈Fij
{|θi − θj|}

= Bij|θopt
i − θopt

j |
≤ Bij

∑
(r,l)∈Pij

|θopt
r − θopt

l |

≤ Bij

∑
(r,l)∈Pij

fmax
rl

Brl

, (5.11)

where {fopt,Θopt,xopt,popt} ∈ arg maxFij{|θi − θj|}. Note that (5.11) holds for every path
Pij in the fixed connected spanning subgraph of the network. We will use this observation
in Theorem 26 to derive strong upper bounds for Mopt

ij . Denote the undirected weighted
subgraph induced by the fixed lines in the power system as GI(BI ,WI), where BI = B and
WI is the set of all tuples (i, j, wij) such that (i, j) ∈ L\S and wij is the weight corresponding
to (i, j) defined as fmax

ij /Bij. Let PI;ij and pI;ij be the set of edges in a shortest simple path
between nodes i and j in GI and its length, i.e., the summation of the weights of the edges
in PI;ij, respectively.

Theorem 26. For every flexible line (i, j) ∈ S, the inequality

Mopt
ij ≤ Bij × pI,ij (5.12)

holds. Moreover, there exists an instance of the OTS for which this inequality is tight.

Proof. Based on (5.11), we have

Mopt
ij ≤ Bij

∑
(r,l)∈PI,ij

fmax
rl

Brl

= Bij

∑
(r,l)∈PI,ij

wrl = Bij × pI,ij. (5.13)

Furthermore, a simple 3-bus system can be designed to show the tightness of the derived
upper bound: consider a 3-bus network with the buses labeled as 1, 2, and 3. Assume that
the lines (1, 2) and (2, 3) are fixed and the line (1, 3) is flexible. Furthermore, suppose that
the capacity and the susceptance of all lines are equal to 1. Upon connecting a generator
with unit capacity (pmax

1 = 1 and pmin
1 = 0) to node 1 and a unit load to node 3, one can

easily certify that Mopt
13 = 2 which in turn equals to

B13

(
fmax

12

B12

+
fmax

23

B23

)
= 2, (5.14)

thereby verifying the tightness of (5.12) for this instance.
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Algorithm 3 Bound strengthening method for linearized OTS

1: input: GI(BI ,WI) and B = {Bij|(i, j) ∈ S}
2: output: Mij for every (i, j) ∈ S
3: for (i, j) ∈ S do
4: find pI;ij using Dijkstra’s algorithm
5: Mij ← Bij × pI;ij

6: end for

Theorem 26 proposes a bound strengthening scheme for every flexible line in the OTS
that can be carried out as a simple preprocessing step before solving the OTS using any
branch-and-bound method. The algorithm for the proposed bound strengthening method is
described in Algorithm 3.

The worst-case complexity of performing this preprocessing step is O(nsn
2
b) since it is

equivalent to performing ns rounds of Dijkstra’s algorithm on the weighted graph GI (it
can also be reduced to O(ns(nl − ns + nb log nb)) if the algorithm is implemented using a
Fibonacci heap) [58]. This preprocessing step can be processed in an offline fashion before
realizing the demand in the system. The impact of this preprocessing step on the runtime
of the solver will be demonstrated on different cases in Section 5.5.

As mentioned in the Introduction, the existence of a fixed connected spanning subgraph
in power systems is a practical assumption since power operators should guarantee the re-
liability of the system by ensuring the connectivity of the power network. Therefore, due
to Theorem 26, one can design non-conservative values for Mij’s in order to strengthen the
convex relaxation of OTS.

Remark 13. In practice, the angle difference between a pair of buses is tightly constrained
if they are connected via a line. In other words, |θi − θj| is constrained to be small if the
line (i, j) is in service. One may conjecture that this can directly result in small values
for Mopt

ij . In what follows, we will provide an easy and intuitive counterexample. Consider
a 101-bus power system whose buses are labeled as 1, 2, ..., 101. Define the set of lines as
L = {(i, i + 1)|i = 1, 2, ..., 100} ∪ (101, 1) (note that the lines form a cycle). Furthermore,
assume that all lines are fixed except for the line (101, 1). Suppose that the upper bound on the
angle difference between every two neighboring buses is set to 10 degrees. This implies that
|θ101−θ1| can be as large as 1000 degrees (17 radians) if x101,1 = 0 at a feasible solution of the
OTS. Assume that the susceptance of the lines (i, i+ 1) is 100 p.u. for every i = 1, 2, ..., 100
and the susceptance of the line (101, 1) is 50 p.u.. Lemma 1 implies that M opt

ij ≈ 1700. Now,
assume that there is a load in the amount of 17 p.u. at bus 101 and that a generator with
the capacity 17 is connected to bus 1. One can easily verify that there exists a single feasible
solution for the OTS in this case (independent of the objective function). Furthermore, any
value for Mij smaller than 1700 will cut this feasible solution and, hence, make the linearized
OTS infeasible.

Consider the cost function for the OTS. In practice, a quadratic objective function is often
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used for production planning in order to model the cost of production, especially for thermal
generators [265]. However, the nonlinearity introduced by a quadratic cost function makes
the OTS particularly hard to solve. The main challenge of solving the MIQP is the fact that
the optimal solution of its continuous relaxation often lies in the interior or on the boundary
of its relaxed feasible region which may be infeasible for the original MIQP (as opposed
to the extreme point solutions in MILP). More precisely, even obtaining the convex hull of
the feasible region is not enough to guarantee the exactness of such continuous relaxations,
since the optimal solution of the relaxed problem usually does not correspond to an extreme
point in the convex hull if the objective function is quadratic. This introduces fractional
solutions for the binary variables of the problem in most of the iterations of branch-and-
bound methods which often leads to a high number of iterations. One way to partially
remedy this problem is to reformulate the problem by introducing auxiliary variables such
that a new linear function is minimized and the old quadratic objective function is moved to
the constraints. This guarantees that the continuous relaxation of the reformulated problem
will obtain an optimal solution that is an extreme point of the relaxed feasible region. This
is a key reason behind the success of different conic relaxation and strengthening methods
in MIQP [7, 13].

Assume that the objective function is quadratic in the form
∑ng

i=1 gi(pi), where gi(pi) =
ai × p2

i + bi × pi. Upon defining a new set of variables ti for i ∈ G, one can reformulate the
objective function as

∑ng
i=1 g̃i(pi, ti) where

g̃i(pi, ti) = ai × ti + bi × pi. (5.15)

subject to the additional convex constraints

p2
i ≤ ti, ∀i ∈ G (5.16)

To streamline the presentation, this problem is referred to as conic formulation of OTS
whereas the previous formulation with quadratic objective function is called quadratic for-
mulation henceforth.

5.5 Numerical Results

In this section, numerical studies on different test cases are conducted to evaluate the
effectiveness of the proposed preprocessing method in solving the OTS. To this goal, we
compare the proposed bound strengthening method to two different approaches:

• Conservative approach: In this method, the underlying structure of the power
system is not exploited and a conservative value is chosen for every Mij.

• Restrictive approach: In this method, additional constraints are imposed on the
absolute value of the angles at all buses in order to obtain a small upper bound for
Mij’s. This comes at the expense of a shrinkage in the feasible region of the OTS and,
hence, carries the risk of eliminating the globally optimal solution.
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In the conservative approach, Mij is chosen as Bij

∑
(k,l)∈L f

max
kl /Bkl for every (i, j) ∈ S. This

conservative value does not exploit the underlying structure of the network. There is also
another upper bound on Mij that does not take advantage of the underlying connectivity of
the network. To describe the construction of this upper bound, for a given power network
with nb buses and nl lines, let T collect the numbers fmax

kl /Bkl for all (k, l) ∈ L and set
Mij as the sum of the nb − 1 largest elements in T multiplied by Bij. First, note that
this quantity is greater than or equal to Bij × pI,ij and, therefore, is a valid upper bound
on Mopt

ij according to Theorem 26. Second, this number is clearly less conservative than
the value Bij

∑
(i,j)∈L f

max
ij /Bij. However, we have observed in simulations that there is no

improvement in the runtime of the solver using these upper bounds compared to the chosen
values Bij

∑
(i,j)∈L f

max
ij /Bij. A detailed analysis of the the effect of these two upper bounds

on the runtime of the solver can be found in Appendix.
Many studies on OTS in the literature use a restrictive approach and consider an addi-

tional set of constraints on the absolute value of the angles in the form of |θi| ≤ θmax
i in order

to circumvent the issue of large values for Mij’s [92, 117, 198, 116]. Under this new set of
constraints, Mij is upper bounded by Bij(θ

max
i + θmax

j ). This quantity can be small if upper
bounds for the absolute values of the angles are chosen to be small. However, imposing
these types of constraints has no physical or safety justifications. Indeed, the stability and
accuracy of the DC approximation is guaranteed by imposing strict constraints on the angle
differences as opposed to the individual angles.

All of the test cases are chosen from the publicly available MATPOWER package [285,
56]. The simulations are run on a laptop computer with an Intel Core i7 quad-core 2.50 GHz
CPU and 16GB RAM. The results reported in this section are for a serial implementation in
MATLAB using the CVX framework and the GUROBI 6.00 solver with the default settings.
The relative optimality gap threshold is defined as

zUB − zLB
zUB

× 100,

where zUB and zLB are the objective value corresponding to the best found feasible solution
and the best found lower bound, respectively. If the solver obtains a feasible solution for
the OTS with the relative optimality gap of at most 0.1% within a time limit (to be defined
later), it is said that an optimal solution is found.

Data Generation

First, we study the IEEE 118-bus system. There are 185 lines in this test case. In all of
the considered instances, a randomly generated connected spanning subgraph of the network
with 120 fixed lines is chosen and the remaining lines are considered flexible. To generate
multiple instances of the OTS, the loads are multiplied by a load factor α chosen from the set
{α1, α2, ..., αk}. Furthermore, a uniform line rating is considered for all lines in the system.
We examine both linear and quadratic cost functions and perform the following comparisons:
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• For the instances with a linear cost function, the total runtime of the solver is computed
for the conservative and proposed bound strengthening methods (denoted by L-C and
L-P, respectively) for different load factors and cardinality lower bounds.

• For the instances with a quadratic cost function, the runtime is computed for four dif-
ferent formulations: 1) the conic formulation with the proposed bound strengthening
method (denoted by C-P), 2) the conic formulation with conservative approach (de-
noted by C-C), 3) the quadratic formulation with the proposed bound strengthening
method (denoted by Q-P), and 4) the quadratic formulation with conservative approach
(denoted by Q-C).

We also study six different large-scale Polish networks that are equipped with hundreds
of switches. For each test case, a single load factor is considered for the OTS with linear
and quadratic cost functions and the effect of the proposed bound strengthening method on
the runtime and the optimality degree of the obtained solution is investigated compared to
both conservative and restrictive approaches. Similar to the IEEE 118-bus case, we fix a
randomly chosen connected spanning subgraph of the network with fixed lines. Similar to
the previous works [92, 117, 198, 116], an upper bound of 0.6 radians (35 degrees) is chosen
for the absolute value of the angles at every bus in the restrictive approach.

IEEE 118-bus System

In this subsection, the OTS is studied for the IEEE 118-bus system with 65 switches.
Two types of cost functions are considered for this system:

Linear cost function: Figure 5.5.1a shows the runtime with respect to the various load
factors. For all of these experiments, the lower bound on the cardinality of the ON switches
is set to 45, i.e. r = 45 in (5.2i). It can be observed that, for small values of the load factor,
the OTS is relatively easy to solve with a linear cost function and the solver can easily find
the optimal solution within a fraction of second with or without the bound strengthening
method. On the other hand, as the load factor increases, the OTS becomes harder to solve
and the proposed bound strengthening method has a significant impact on the runtime.
In particular, when the load factor equals 0.8, the strengthened formulation of the OTS is
solved 8.73 faster.

In the second experiment, the performance of the solver is evaluated as a function of the
lower bound on the number of the ON switches. As pointed out in [142], the OTS becomes
computationally hard to solve with a relatively large cardinality lower bound. This can be
a counter-intuitive observation; as this lower bound increases, the set of feasible solutions
shrinks. However, a smaller feasible region does not necessarily result in fewer and faster
branch-and-cut iterations. In fact, there are a number of cardinality-constrained NP-hard
problems, such as k-coverage [123] or subset selection in linear regression [261], that become
easy (and even trivial) when the cardinality constraint is removed from the formulation.
Roughly speaking, this means that these types of constraints may shrink the feasible region,
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Figure 5.5.1: The runtime of different formulations of OTS with a linear cost function with
respect to different load factors and cardinality lower bounds. L-C and L-P correspond to
the conservative and proposed bound strengthening methods, respectively.

but instead can make the enumeration process harder. This becomes more evident by noting
that one of earliest results on the NP-hardness of the OTS assumes a cardinality constraint
on the number of switches [33]. This behavior is observed in Figure 5.5.1b. However, note
that the negative effect of increased lower bound diminishes when the bound strengthening
step is performed. Specifically, the strengthened formulation is solved 2.66 times faster on
average for the first two cardinality lower bounds (10 and 20) and 6.53 times faster on average
for the last two cardinality lower bounds (40 and 50).

Quadratic cost function: When the cost function is quadratic, the runtime of the solver is
drastically increased. Nevertheless, the modified formulation of the OTS combined with the
proposed bound strengthening method reduces the runtime significantly. For all experiments,
a time limit of 3, 000 seconds is imposed. For those instances that are not solved within
the time limit, the relative optimality gap that is achieved by the solver at termination is
reported. The runtime for different formulations of the OTS with respect to various load
factors is depicted in Figure 5.5.2a. Similar to the previous case, the lower bound on the
cardinality of the switches is set to 45 for different load factors. It can be observed that when
the load factor equals 0.5, the solver can find the optimal solution within the time limit only
for Q-ET. As the load factor increases, the average runtime decreases for all formulations.
As it is clear from Figure 5.5.2a, Q-ET significantly outperforms other formulations for all
load factors. Specifically, the runtime for Q-ET is at least 5.95, 2.96, and 13.58 times faster
than Q-OT, Q-EC, and Q-OC on average, respectively. Notice that these values are the under-
estimators of the actual speedups since the solver was terminated before finding the optimal
solution in many cases.

Next, consider the runtime for different formulations with respect to the change in the
cardinality lower bound of ON switches. It can be observed in Figure 5.5.2b that the solution
times for Q-OT, Q-EC, and Q-OC increase as the lower bound increases. This observation
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Figure 5.5.2: The runtime of different formulations of OTS with a quadratic cost function
with respect to different load factors and cardinality lower bounds. C-P, C-C, Q-P, and Q-C

correspond to the conic formulation with the proposed bound strengthening method, the
conic formulation with conservative approach, the quadratic formulation with the proposed
bound strengthening method, and the quadratic formulation with conservative approach,
respectively.

supports the argument made in [142] suggesting that a large lower bound on the cardinality
of the ON switches would make the OTS harder to solve in general. However, notice that the
cardinality constraint has a minor effect on the runtime of Q-ET. Notice that Q-OC has the
worst runtime on average among different settings of the load factor and cardinality lower
bound. This implies that the proposed reformulation of the objective function together with
the bound strengthening step is crucial to efficiently solve the OTS with a quadratic objective
function.

Polish Networks

In this part, the proposed bound strengthening method is applied to solve the OTS for
Polish networks. As for the 118-bus system, the runtime is evaluated for both linear and
quadratic cost functions. In all of the simulations, the cardinality lower bound on the number
of ON switches is set to 0. The number of flexible lines varies from 70 to 400. The time
limit is chosen as 14, 400 seconds (4 hours) for the solver. If the time limit is reached, the
optimality gap of the best found feasible solution (if one exists) is reported. For the test cases
with a quadratic cost function, only the modified formulation of the problem is considered
because it significantly outperforms the original formulation.

Table 5.5.1 reports the performance and computational improvements when the bound
strengthening method is incorporated into the formulation as a preprocessing step, compared
to the conservative and restrictive approaches. This table includes the following columns:

• Cost Function: The type of the cost function used in the simulation;



CHAPTER 5. AN EFFICIENT METHOD FOR OPTIMAL TRANSMISSION
SWITCHING 158

R
es
tr
ic
ti
v
e

P
ro
p
o
se
d
M
et
h
o
d

C
o
n
se
rv
a
ti
v
e

C
a
se
s

C
o
st

#
C
o
n
t.

#
B
in
a
ry

T
im

e
S
u
b
o
p
t

P
re
.
T
im

e
T
im

e
O
p
tg
a
p

T
im

e
O
p
tg
a
p

S
p
ee
d
u
p

3
1
2
0
sp

L
in
ea
r

3
4
6
6

7
0

2
0

1
.6
4
%

<
1

4
7
7

<
0
.1
%

3
,6
2
3

<
0
.1
%

7
.6
0

Q
u
a
d
ra
ti
c

3
4
6
6

7
0

9
0

1
.2
5
%

<
1

2
,9
0
0

<
0
.1
%

1
4
,4
0
0

0
.1
2
%

4
.9
7
∗

2
3
8
3
w
p

L
in
ea
r

2
7
8
9

8
0

1
4

0
.7
6
%

<
1

4
1
8

<
0
.1
%

9
3
1

<
0
.1
%

2
.2
3

Q
u
a
d
ra
ti
c

2
7
8
9

8
0

4
4

0
.5
2
%

<
1

2
5
2

<
0
.1
%

3
,9
6
0

<
0
.1
%

1
5
.7
1

2
7
3
6
sp

L
in
ea
r

3
1
0
5

1
0
0

1
1

0
.9
5
%

<
1

8
0

<
0
.1
%

1
8
8

<
0
.1
%

2
.3
5

Q
u
a
d
ra
ti
c

3
1
0
5

1
0
0

1
5

1
.1
4
%

<
1

1
5
6

<
0
.1
%

2
,3
8
1

<
0
.1
%

1
5
.2
6

3
0
1
2
w
p

L
in
ea
r

3
5
1
6

1
2
0

5
0

0
.4
9
%

1
2
,4
4
7

<
0
.1
%

1
4
,4
0
0

0
.1
1
%

5
.8
8
∗

Q
u
a
d
ra
ti
c

3
5
1
6

1
2
0

1
6
2

0
.2
3
%

1
2
,5
7
0

<
0
.1
%

1
4
,4
0
0

0
.1
1
%

5
.6
0
∗

3
3
7
5
w
p

L
in
ea
r

4
0
5
3

2
0
0

3
2
0

1
.3
3
%

<
1

9
8

<
0
.1
%

7
7

<
0
.1
%

0
.7
9

Q
u
a
d
ra
ti
c

4
0
5
3

2
0
0

4
9
0

2
.7
0
%

<
1

4
,3
0
1

<
0
.1
%

1
4
,4
0
0

–
–

2
7
4
6
w
o
p

L
in
ea
r

3
5
7
6

4
0
0

3
,0
4
5

<
0
.1
%

1
1
7

<
0
.1
%

1
1
8

<
0
.1
%

6
.9
4

Q
u
a
d
ra
ti
c

3
5
7
6

4
0
0

7
,2
3
8

<
0
.1
%

1
1
8
2

<
0
.1
%

3
,5
2
3

<
0
.1
%

1
9
.3
6

A
v
e
ra

g
e

9
5
8

0
.9
3
%

<
1

1
,1

5
8

<
0
.1
%

6
,0

3
3

0
.1
%
∗

7
.8
8
∗

T
ab

le
5.

5.
1:

T
h
e

p
er

fo
rm

an
ce

of
th

e
so

lv
er

w
it

h
th

e
p
ro

p
os

ed
,
co

n
se

rv
at

iv
e,

an
d

re
st

ri
ct

iv
e

m
et

h
o
d
s

fo
r

P
ol

is
h

n
et

w
or

k
s.

T
h
e

su
p

er
sc

ri
p
t
∗

co
rr

es
p

on
d
s

to
th

e
ca

se
s

w
h
er

e
th

e
so

lv
er

is
te

rm
in

at
ed

b
ef

or
e

fi
n
d
in

g
th

e
op

ti
m

al
so

lu
ti

on
d
u
e

to
th

e
ti

m
e

li
m

it
.



CHAPTER 5. AN EFFICIENT METHOD FOR OPTIMAL TRANSMISSION
SWITCHING 159

• # Cont.: The number of continuous variables in the system;

• # Binary: The number of binary variables corresponding to the flexible lines in the
system;

• Time: The runtime (in seconds) for solving the OTS using different formulations within
the time limit;

• Subopt: The sub-optimality of the derived solution using restrictive approach. This
value quantifies the distance between the cost obtained using the restrictive approach
and the optimal value of the cost function found via the proposed bound strengthening
method. In particular, it is defined as

zR − zBS
zBS

× 100 (5.17)

where zR and zBS denote the optimal cost values of the restrictive and proposed meth-
ods, respectively. Note that the relative optimality gap threshold is still used to obtain
the values of zR and zBS;

• Pre. Time: The elapsed time of the proposed preprocessing step;

• Optgap: The relative optimality gap within the time limit. The solver is terminated
when optgap is less than 0.1%;

• Speedup: The speedup in the runtime when the proposed bound strengthening method
is used as a preprocessing step compared to the conservative approach.

It can be observed from Table 5.5.1 that the presented bound strengthening method
can notably reduce the computation time compared to the conservative approach at no
additional computational cost. In particular, the solver can be up to 19.36 times faster if the
bound strengthening method is used to strengthen the formulation. Moreover, on average
(excluding the case 3375wp with a quadratic cost function), the solution time is at least 7.88
times faster if the bound strengthening method is performed prior to solving the problem.
For the case 3375wp with a quadratic cost function, the solver cannot obtain a feasible
solution in 14, 400 seconds without bound strengthening. However, the solver can find an
optimal solution within 4, 301 seconds after performing the proposed preprocessing step. The
simplicity of the bound strengthening step is evident by the fact that this preprocessing step
is carried out in less than 1 second in all of the experiments.

Furthermore, the solver cannot find a globally optimal solution of the OTS in most cases
using the restrictive approach, due to the constraints imposed on the absolute values of the
angles at all buses. In particular, the restrictive approach can increase the cost of the system
operation by up to 2.70%. Furthermore, the proposed strengthened formulation results
in 1% cost reduction on average, compared to the conventional restrictive approach. The
runtime with the restrictive formulation is 17% less than the proposed method; however, the
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Figure 5.5.3: The runtime of the restrictive and proposed formulations, together with the
sub-optimality level of the restrictive approach, for the system case3375wp under different
load factors.

restrictive approach can only recover sub-optimal solutions for the OTS. In fact, the average
runtime of the solver to obtain a solution with 1% (as opposed to 0.1%) relative optimality
gap is only 508 seconds using the strengthened formulation.

To further elaborate on the effectiveness of the proposed strengthened formulation over
the commonly used restrictive approaches, we study a modified version of the benchmark sys-
tem 3375wp under different load scenarios. Similar to the previous case studies, a randomly
chosen connected spanning subgraph of the network is fixed, and then 200 of the remaining
lines are randomly selected and equipped with switches. We consider a linear objective for
the generation cost, where the cost coefficient of each generator is chosen randomly from the
interval [20, 40]. The load factors are chosen from the set {1, 1.05, 1.1, 1.15, 1.2} and the line
ratings are increased by 20% in order to guarantee the feasibility of the OTS for all load sce-
narios. It can be observed in Figure 5.5.3 that the runtime for the strengthened formulation
is 66% less than that of the restrictive approach. Furthermore, it is evident that the restric-
tive approach results in sub-optimal solutions in all cases. In particular, the operational cost
of the system with the load factor of 1.2 is increased by 6.48% when restrictive constraints
are imposed on the absolute values of the angles at different buses. This clearly implies that
the restrictive approach can significantly increase the operation cost in real-world networks
and supports the premise of this work: the proposed strengthened formulation strikes a good
balance between the runtime of the solver and the objective of the derived solution.
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Appendix

5.A Proof of Theorem 25

In this section, the proof of Theorem 25 is provided. We show that the decision version
of the OTS with a fixed spanning subgraph, which is introduced below, is NP-complete:

Decision version of OTS (D-OTS): Given an instance of the OTS and a scalar C, is
there a feasible solution for the OTS problem with the cost less than or equal to C?

To prove the NP-completeness of D-OTS, we adopt the approach in [142] and introduce
a reduction from the subset sum problem that is a well-known NP-complete problem [58].

Subset sum problem: Given a set of non-negative integers ai for i = 1, 2, . . . , n and a
positive integer b, is there a subset I ∈ {1, 2, . . . , n} such that

∑
i∈I ai = b?

Given an instance of the subset sum problem, we produce an instance of the D-OTS
and show that the subset sum problem is feasible if and only if the designed instance of
the D-OTS is feasible. Consider a network with n + 3 buses and 2n + 2 lines constructed
according to the following procedure:

1. For every i = 1, 2, . . . , n, connect bus i to buses n+ 1 and n+ 2 via two lines with the
capacity ai/b and the susceptance 2ai. Furthermore, suppose that the line (i, n+ 1) is
fixed and the line (i, n+ 2) is flexible for every i = 1, 2, . . . , n.

2. Connect bus n+1 to bus n+3 via a fixed line with capacity 1 and susceptance b/(b+1).

3. Connect bus n+ 2 to bus n+ 3 via a fixed line with unit capacity and susceptance.

Figure 5.A.1 visualizes the constructed network. The cardinality lower bound r in (5.2i)
is set to zero. A generator with capacity 2 is connected to bus n + 1 and there is a load
in the amount of 2 at bus n + 3. Furthermore, assume that gn+1(pn+1) is zero. Finally, C
(defined in the statement of D-OTS) is set to an arbitrarily chosen non-negative number.
Based on this construction, the cost of every feasible solution for the OTS is zero. Therefore,
addressing D-OTS reduces to verifying if the constructed instance of the OTS is feasible.
First, we show that the feasibility of the subset sum problem implies the feasibility of the
designed instance of the OTS. Consider a subset I such that

∑
i∈I ai = b. A feasible solution

for the OTS is designed as follows:
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Figure 5.A.1: A visualization of the instance of D-OTS designed in the proof of Theorem 25. The solid
and dashed edges denote the fixed and flexible lines, respectively. The first and the second arguments of the
tuple on every line denote its capacity and susceptance, respectively.

• Set θn+1 = 1 + 1
b
, θn+2 = 1, θn+3 = 0, θi = 1 + 1

2b
for every i ∈ I, and θi = 1 + 1

b
for

every i 6∈ I.

• Set xi,n+2 = 1 for every i ∈ I and xi,n+2 = 0 for every i 6∈ I.

Based on the assigned values, one can easily verify that pn+1 = 2, fn+1,n+3 = fn+2,n+3 = 1,
fn+1,i = fi,n+2 = ai

b
for every i ∈ I, and fn+1,i = fi,n+2 = 0 for every i 6∈ I. Furthermore,

all of the constraints in (5.2) are satisfied. This implies that the designed OTS is indeed
feasible.

Next, suppose that OTS is feasible. Due to the assigned load at bus n + 3 and the
capacity of each line, we should have fn+1,n+3 = fn+2,n+3 = 1. Upon setting θn+3 = 0, one
can verify that θn+2 = 1 and θn+1 = 1 + 1

b
. On the other hand, due to the power balance

constraint (5.2h) at bus n + 2, at least a flexible line should be in service. Denote the set
of all flexible lines that are in service as J . Given a bus i for which (i, n+ 2) ∈ J , one can
verify that θi = 1 + 1

2b
. To show this, note that any value for θi other than 1 + 1

2b
violates the

power balance constraint (5.2h) at bus i. This, together with (5.2h) at bus n+ 2, results in∑
i∈J

2ai
2b

=
∑
i∈J

ai
b

= 1 (5.18)

which implies that the subset sum problem is feasible. This concludes the proof.
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Proposed Method Conservative (1) Conservative (2)
Cases Cost Time Optgap Time Optgap Speedup Time Optgap Speedup

3120sp
Linear 477 < 0.1% 3, 623 < 0.1% 7.60 4, 586 < 0.1% 9.61

Quadratic 2, 900 < 0.1% 14, 400 0.12% 4.97∗ 14, 400 0.13% 4.97∗

2383wp
Linear 418 < 0.1% 931 < 0.1% 2.23 899 < 0.1% 2.15

Quadratic 252 < 0.1% 3, 960 < 0.1% 15.71 3, 080 < 0.1% 12.22

2736sp
Linear 80 < 0.1% 188 < 0.1% 2.35 128 < 0.1% 1.60

Quadratic 156 < 0.1% 2, 381 < 0.1% 15.26 6, 166 < 0.1% 39.52

3012wp
Linear 2, 447 < 0.1% 14, 400 0.11% 5.88∗ 14, 400 0.11% 5.88∗

Quadratic 2, 570 < 0.1% 14, 400 0.11% 5.60∗ 14, 400 0.11% 5.60∗

3375wp
Linear 98 < 0.1% 77 < 0.1% 0.79 89 < 0.1% 0.98

Quadratic 4, 301 < 0.1% 14, 400 – – 14, 400 0.15% 3.35∗

2746wop
Linear 17 < 0.1% 118 < 0.1% 6.94 435 < 0.1% 25.59

Quadratic 182 < 0.1% 3, 523 < 0.1% 19.36 316 < 0.1% 1.74
Average 1,158 < 0.1% 6,033 0.1%∗ 7.88∗ 6,108 0.1%∗ 9.43∗

Table 5.B.1: Performance comparisons with two different conservative values for Mij.

5.B Comparison Between Different Conservative

Bounds

In this section, we compare the runtime of the solver when different conservative bounds
are used for Mij’s in the big-M reformulation of the OTS. The results for Polish networks
are summarized in Table 5.B.1. In this table, Conservative (1) refers to the case where Mij’s
are chosen as Bij

∑
(i,j)∈L f

max
ij /Bij and Conservative (2) corresponds to the case where the

Mij values are assigned according to the following procedure: for a given power network with
nb buses and nl lines, let T collect the values of fmax

kl /Bkl for every line (k, l) ∈ L and set
Mij as the summation of the nb − 1 largest elements in T multiplied by Bij. It is observed
in Table 5.B.1 that none of these conservative bounds can improve the runtime of the solver
compared to the proposed strengthened bounds.
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Part III

System Identification and Control
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Chapter 6

Efficient Learning of Sparse
Dynamical Systems

This chapter is concerned with the problem of sparse system identification for linear
time-invariant (LTI) systems with a single sample trajectory of the dynamics. We introduce
a Lasso-like estimator to estimate the parameters of the system, taking into account their
sparse nature. Assuming that the system is inherently stable or it is equipped with an
initial stabilizing controller, we provide sharp and finite-time guarantees on the accurate
recovery of the parameters. In particular, we show that the proposed estimator can correctly
identify the sparsity pattern of the system matrices with high probability, provided that
the length of the sample trajectories exceeds a threshold. Furthermore, we show that this
threshold scales polynomially in the number of nonzero elements in the system matrices,
but logarithmically in the system dimensions, thereby improving the existing bounds on the
sample complexity of the system identification problem when the dynamics admit a sparse
representation. We further extend these results to obtain sharp bounds on the `∞-norm of
the estimation error and show how different properties of the system—such as its stability
level and mutual incoherency—affects this bound. Finally, an extensive case study on power
systems is presented to illustrate the performance of the proposed estimation method.

6.1 Introduction

Modern cyber-physical systems, such as the power grid, autonomous transportation sys-
tems, and distributed computing and sensing networks, are characterized by being large
scale, spatially distributed, with complex and ever changing dynamics and interconnection
topologies. The distributed optimal control literature addresses set-point tracking and regu-
lation in this challenging setting by assuming known dynamics with a sparse interconnection
topology. Indeed, this underlying sparsity structure is aggressively (and necessarily) ex-
ploited, with foundational results from the distributed control literature showing that both
tractability [217] and scalability [260, 138, 87] in controller synthesis are only possible when
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the underlying dynamical system is suitably sparse. However, in this large-scale, dynamic,
and complex setting, it is unclear how the necessary dynamical system models are to be
obtained. We expect data-driven methods to be needed to identify both the interconnection
topology and dynamic behavior of these systems, as first-principle modeling becomes either
intractable or impractical in these large-scale and dynamic settings.

This then raises a more fundamental question: how can data-driven methods be appro-
priately integrated into safety-critical control loops? This question has been addressed in the
context of learning and controlling a small scale and dense unknown system, e.g., a single
autonomous vehicle or robot [63, 62, 221, 207, 85, 4, 77]. These works recognize that if a
learned model is to be integrated into a safety-critical control loop, then it is essential that
the uncertainty associated with the learned model be explicitly quantified: in this way, the
learned model and these uncertainty bounds can be integrated with tools from robust con-
trol to provide strong guarantees of system performance and stability. This chapter takes a
first step towards extending these results to the large-scale distributed setting by providing
a sample efficient and computationally tractable algorithm for the identification of sparse
dynamical system models, as well as providing sharp estimates on the corresponding model
uncertainty.

Main contributions: In particular, we show that large-scale sparse system models
can be identified with complexity scaling quadratically with number of nonzero elements in
the underlying dynamical system – for systems composed of a large number of subsystems
that only interact with a small number of local neighbors, this computational saving can
be significant. We further provide sharp bounds on the corresponding model uncertainty,
paving the way for the use of these models in safety critical control loops. Finally, in
contrast to previous work, we show that such models can be extracted from single trajectory
of the system. In the context of large-scale systems, the system resets needed by methods
relying on independent trajectories become prohibitively more expensive and impractical –
indeed contrast resetting a robotic arm and a power distribution network, and the increase
in difficulty becomes apparent. Note that we defer a detailed comparison of our results to
prior work to Section 6.3.

6.2 Problem Formulation

Consider the linear time-invariant (LTI) system

x(t+ 1) = Ax(t) +Bu(t) + w(t) (6.1)

where A ∈ Rn×n and B ∈ Rn×m are the unknown state and input matrices, respectively.
Furthermore, x(t) ∈ Rn, u(t) ∈ Rm, and w(t) ∈ Rn are the respective state, input, and
disturbance vectors at time t.

The goal of this work is to estimate the underlying parameters of the dynamics, based
on a limited number of sample trajectories, i.e., a sequence {(x(i)(τ), u(i)(τ))}Tτ=0 with i =
1, 2, ..., d, where d is the number of available sample trajectories and T is the length of each
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sample trajectory. To simplify the notations, the superscript i is dropped from the sample
trajectories when d = 1.

This chapter is concerned with the identification of high dimensional but sparse system
matrices (A,B). Such high-dimensional sparse parameters arise in the context of large-scale
distributed and multi-agent systems, where dynamic coupling arises due to local interac-
tions between subsystems–it is this local interaction structure that results in correspond-
ingly sparse system matrices. Examples of such systems include power grids, intelligent
transportation systems, and distributed computation and sensing networks.

We now compare and contrast two approaches to collecting sample trajectories from a
dynamical system (6.1):

Fixed d and variable T: In this method, the number of sample trajectories d is set
to a fixed value (e.g., d = 1) and instead, a sufficiently long time horizon (also referred
to as learning time) T is chosen to collect enough information about the dynamics. This
approach is most suitable when the open-loop system is stable, or if a stabilizing controller is
provided—note that this assumption of stability is necessary, as even a simple least-squares
estimator may not be consistent if the system has unstable modes [221]. From a practical
perspective, system instability may also impose limits on how large the learning time can be
in order to ensure system safety, thereby restricting the amount of data that can be collected.

Fixed T and variable d: In this approach, the learning time T is fixed and instead, the
number of sample trajectories is chosen to be sufficiently large. Notice that this method is
not dependent on the system stability. However, one needs to reset the initial state of the
system at the beginning of each sample trajectory, which may not be possible in practice,
especially in the case of large-scale systems.

This work focuses on sparse system identification using a single trajectory, where it is
assumed that the system is either stable, or equipped with an initial stabilizing controller, and
our goal is to both identify the supports of the sparse system matrices (A,B) and estimate
their values, using a single sample trajectory. As mentioned in [63], in many applications, the
existence of an initial stabilizing controller for the unknown system (6.1) is not restrictive. In
fact, [62] and [77] respectively introduce offline and adaptive procedures for designing such
an initial stabilizing controller.

Indeed, one can cast the sparse system identification task as a supervised learning prob-
lem, where the goal is to fit the linear model (6.1)—parameterized by (A,B)—to a limited
number of measurements {(x(τ), u(τ))}Tτ=0. Motivated by this observation, one can consider
the following M -estimator:

(Â, B̂) = arg min
A,B

1

2T

T−1∑
t=0

‖x(t+ 1)− (Ax(t) +Bu(t))‖2
2 + λ(‖A‖1 + ‖B‖1). (6.2)

where the first term corresponds to the maximum likelihood estimation of (A,B) when the
disturbance noise has a zero-mean Gaussian distribution, and the second term has the role
of promoting sparsity in the estimated (Â, B̂).
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Before proceeding, it is essential to note that there are fundamental limits on the per-
formance of the introduced estimator. In particular, the above optimization problem may
not have a unique solution for any length of the sample trajectory. To see this, suppose that
u(t) = K0x(t) and K0 is equal to the identity matrix. Then, the above optimization problem
reduces to

(Â, B̂) = arg min
A,B

1

2T

T−1∑
t=0

‖x(t+ 1)− (A+B)x(t)‖2
2 + λ(‖A‖1 + ‖B‖1).

It is easy to see that, given any optimal solution (Â, B̂) to the above optimization, (Ã, B̃) =
(αÂ, (1−α)B̂) is also optimal for any 0 ≤ α ≤ 1. To break this symmetry and to guarantee
the identifiability of the parameters, it is essential to inject an input noise to the system at
every time t. In particular, we assume that u(t) = K0x(t) + v(t), where v(t) is a random
vector with a user-defined distribution. As another example, if A is stable and K0 = 0, the
need to introduce noise in the input is inevitable in order to identify the matrix B.

To further analyze the properties of the above estimator, one can write (6.1) in a compact

form. Let Ψ∗ =
[
A B

]>
denote the true parameters of the system. Furthermore, define

Y =

x(1)>

...
x(T )>

 , X=

 x(0)> u(0)>

...
...

x(T−1)> u(T−1)>

 ,W =

 w(0)>

...
w(T−1)>

 . (6.3)

The system identification problem is then reduced to estimating the unknown parameter Ψ∗

given the design matrix X, and the observation matrix Y that is corrupted with the noise
matrix W . We can therefore rewrite optimization problem (6.2) compactly as

Ψ̂ = arg min
Ψ

1

2T
‖Y −XΨ‖2

F + λ‖Ψ‖1 (6.4)

which corresponds to the so-called Lasso estimator, initially popularized in statistics and ma-
chine learning to estimate the support parameter values of a sparse linear model [245]. The
non-asymptotic properties of this estimator have been widely studied in the literature [256,
181, 281], all highlighting its sub-linear sample complexity under suitable technical condi-
tions. In particular, they show that under the so-called mutual incoherency of the design
matrix and the sparsity of the unknown parameters, the minimum number of observations
for the accurate estimation of the Lasso scales logarithmically in the dimension of Ψ. Moti-
vated by these results, one may speculate that the proposed estimator (6.2) benefits from a
similar logarithmic sample complexity. However, the validity of the derived non-asymptotic
estimation error bounds on the Lasso is contingent upon a number of assumptions on the
independence between the design matrix X and the noise matrix W [256, 196]; such as-
sumptions do not necessarily hold in the sparse system identification problem, partly due
to the dependency between the states, the inputs and the disturbance noise. The problem-
atic nature of this dependency becomes more evident by noting that the Lasso may not be
consistent when the design and noise matrices are dependent [75].
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This lack of independence in the design and noise matrices of the sparse system identifica-
tion problem has been the main roadblock in deriving similar sub-linear sample complexity
bounds for the sparse system identification problem and it leaves the following question
unanswered:

Is the estimator (6.2) consistent, and if so, what is its sample complexity?

6.3 Statistical Guarantees

Despite the fact that in general, the Lasso may not be a consistent estimator when the
design and noise matrices are dependent, we exploit the underlying structure of the sys-
tem identification problem to control this dependency and provide an affirmative answer to
the posed question. In other words, we show that not only is the proposed estimator (6.2)
consistent, but that it also enjoys a logarithmic sample complexity in the state and input
dimensions, under appropriate conditions. To this goal, we first provide a number of defini-
tions.

Definition 31. A zero-mean (centered) random variable x is sub-Gaussian with parameter
b if its moment generating function satisfies

E{exp(tx)} ≤ exp

(
b2t2

2

)
for every t.

For a centered sub-Gaussian random variable x with parameter b, one can easily verify

that P(|x| > t) ≤ 2 exp
(
t2

2b2

)
. The most commonly known examples of such random variables

are Gaussian, Bernoulli, and any bounded random variable.

Definition 32. Given a sub-Gaussian random variable x, its sub-Gaussian norm, de-
noted by ‖x‖ψ is defined as the smallest r > 0 such that the inequality E{x2/r2} ≤ 2 is
satisfied.

It is well-known that the above two definitions are closely related. In particular, it can

be verified that 1√
5
b ≤ ‖x‖ψ ≤

√
8
3
b for a sub-Gaussian random variable with parameter b.1

For a random vector x with sub-Gaussian elements, ‖x‖ψ is defined as maxi{‖xi‖ψ}.
As mentioned before, we assume that the dynamical system is equipped with an initial

static and stabilizing state-feedback controller K0. More specifically, we assume that at any
given time t, the input u(t) is equal to K0x(t) + v(t), where v(t) is a user-defined input noise
with independent and centered sub-Gaussian elements whose non-zero variance is upper
bounded by σ2

v (for stable systems, K0 can be set to zero). Similarly, we assume that the

1This is a standard result; see [214] and [255] for a simple proof.
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disturbance noise at every time t is a random vector with independent and centered sub-
Gaussian elements whose variance is upper bounded by σ2

u. Further, let η > 0 be the smallest
positive constant such that max{‖w(t)‖ψ, ‖v(t)‖ψ} ≤ η; such a constant is guaranteed to
exist as w and v are assumed to be centered sub-Gaussian random variables.

Remark 14. Most of the existing results on the sample complexity of the system identifi-
cation problem assume a centered Gaussian distribution for the input noise [207, 85, 62].
Despite having desirable finite-time properties, these types of Gaussian inputs may jeopar-
dize the safety of the dynamical system due to their unbounded range. Accordingly, in many
control systems, the input is constrained to have a limited power. These types of constraints
can be translated into `∞ or `2 bounds on the input signal. Due to the fact that such bounded
random signals are sub-Gaussian, our results are readily applied to system identification
problems with input constraints.

Notice that for LTI systems, the uniform asymptotic stability of the closed-loop sys-
tem is equivalent to its exponential stability. In other words, an LTI system is uniformly
asymptotically stable if and only if there exist constants C ≥ 1 and 0 < ρ < 1 such that
|||(A+BK0)τ ||| ≤ Cρτ for every time τ . Without loss of generality, let C ≥ 1 and 0 ≤ ρ < 1
be the smallest constants such that |||(A+BK0)τB||| ≤ Cρτ , |||K0(A+BK0)τ ||| ≤ Cρτ and
|||K0(A+BK0)τB||| ≤ Cρτ for every time τ . Note that the existence of such C ≥ 1 and
0 < ρ < 1 is guaranteed due to the exponential stability of the closed-loop system.

Furthermore, we assume that the initial state x(0) rests at its stationary distribution or,
equivalently, the following equality holds:

x(0) = lim
T̃→∞

−1∑
τ=−T̃

(A+BK0)−τ−1(w(τ) +Bv(τ))

Note that, for exponentially stable systems, the state converges to its stationary distribu-
tion exponentially fast and therefore, the stationarity of x(0) is a reasonable assumption.
Furthermore, using the above equality, it is easy to see that x(0) is a random vector whose
elements are (dependent) centered sub-Gaussian random variables with bounded parame-
ters. Moreover, one can verify that its covariance E{x(0)x(0)>} = Q∗ satisfies the following
Lyapunov equation:

(A+BK0)Q∗(A+BK0)> −Q∗ + σ2
wI + σ2

vBB
> = 0 (6.5)

Accordingly, Q∗ can be used to derive the covariance matrix M∗ for the random vector[
x(0)> (K0x(0) + v(0))>

]>
:

M∗ =

[
Q∗ Q∗KT

0

K0Q
∗ K0Q

∗KT
0 + σ2

vI

]
Define Aj = {i : Ψ∗ij 6= 0} and let Acj refer to its complement. Denote k as the maximum
number of nonzero elements in any column of Ψ∗.
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Assumption 3. The following inequalities are satisfied

A1 (Mutual incoherence)

max
1≤j≤n

{
max
i∈Acj

{∥∥∥M∗
iAj(M

∗
AjAj)

−1
∥∥∥

1

}}
≤ 1− γ

A2 (Bounded eigenvalue)

min
1≤j≤n

λmin(M∗
AjAj) ≥ Cmin

A3 (Bounded infinity norm)

max
1≤j≤n

∣∣∣∣∣∣∣∣∣(M∗
AjAj)

−1
∣∣∣∣∣∣∣∣∣
∞
≤ Dmax

A4 (Nonzero gap)

min
1≤j≤n

{
max
i∈Aj

{
|Ψ∗ij|

}}
≥ Ψmin

for some constants 0 < γ < 1, 1 ≥ Cmin > 0, Dmax ≥ 1 and 1 ≥ Ψmin > 0.

Next, we present the main result of this chapter.

Theorem 27. Assume that k ≥ 2 and

λ = c1 ·
C

1− ρ ·
η2

γ

√
log((n+m)/δ)

T
(6.6)

T ≥ c2 ·
C4

(1− ρ)4
· D2

max

γ2C2
minΨ2

min

· k2 log((n+m)/δ), (6.7)

where c1 and c2 are universal constants. Then, the following statements hold with probability
of at least 1− δ:

1. (Correct sparsity recovery) (6.4) has a unique solution and recovers the true sparsity
pattern of Ψ∗.

2. (`∞-norm error) We have

‖Ψ̂−Ψ∗‖∞ ≤ c3 ·
C

1− ρ ·
Dmaxη

2

γ

√
log((n+m)/δ)

T
(6.8)

where c3 is a universal constant.
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Remark 15. As mentioned before, the injection of a random input noise is essential to
guarantee the identifiability of the parameters. This is also reflected in the above theorem:
in order to guarantee a finite sample complexity for the proposed estimator, it is crucial to
have Cmin > 0, which is only possible if σv > 0.

A number of observations can be made based on Theorem 27. First, it implies that if γ, C,
Dmax, Cmin, Ψmin, and ρ do not scale with the system dimension, then T = Ω(k2 log(n+m))
is enough to guarantee the correct sparsity recovery and a small estimation error. Notice that
for sparse systems, this quantity can be much smaller than the system dimension. Second,
the sample complexity of the proposed estimator depends on C

1−ρ , which is a measure of

the system stability. In particular, for highly stable systems, C
1−ρ is small, resulting in an

improved accuracy of the proposed estimator with smaller T . In contrast, when the system
is close to its stability margin, C

1−ρ will grow which negatively affects the estimation error

as well as the lower bound on T . Another intuitive interpretation of C
1−ρ is that it measures

the amount of dependency between the states at different times: for highly stable systems
where ρ is small, (x(t), u(t)) is only weakly dependent on (x(τ), u(τ)) for τ = 0, . . . , t − 1,
thereby facilitating the estimation of the unknown parameters. We finally mention that
this dependency is in contrast with the recent discoveries on the sample complexity of the
least-squares estimator, which support the favorable effect of a large ρ on the accuracy of the
estimator [233]. We leave investigating whether this seemingly contradictory observation is
an artifact of our methodology (e.g., mixing the initial state to the stationary distribution),
or is fundamental to the sparse system identification problem, to future work.

Remark 16. In order to further enhance the accuracy of the proposed estimator, one can
perform a least-squares estimation restricted to the nonzero elements of the estimated param-
eter, after obtaining its sparsity pattern via the proposed method. Although, theoretically, this
post-model-selection estimation method may not improve the estimation error rate, it will in-
cur less bias [24]. We will show in our simulations that the effect of this post-processing step
can be significant in the accuracy of the estimation.

Comparison to prior art

As mentioned before, another line of work focuses on unstructured system identification,
where either the learning time T or the number of sample trajectories d is allowed to grow.
In [62], the authors consider the sample complexity of the system identification problem
with multiple sample trajectories via least-squares, where it is shown that the proposed
estimator incurs a small error, provided that d = Ω(n + m). Revisiting (6.20) reveals that
the proposed method outperforms the sample complexity of ordinary least-squares when k is
significantly smaller than n+m, i.e., exploiting prior knowledge of the system sparsity leads
to a reduction in sample complexity. In [221, 233, 4, 77], the authors consider unstructured
system identification from a single sample trajectory under different assumptions on system
stability and/or the initial state of the system. However, similar to [62], none of these works
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take advantage of the underlying sparsity structures of the system matrices. As a result, they
cannot correctly estimate the sparsity structure of (A,B) and suffer from poor dependencies
on the system dimensions in the large-scale and structure setting.

Subsequently, a Lasso-type estimator is proposed in [85] to further exploit the underlying
sparsity pattern of (A,B) with d sample trajectories, each with a zero initial state. In

particular, it is shown that d = Ω
(

κ(Σ)2

γ2Ψ2
min
k log(n+m)

)
is enough to ensure the correct

sparsity recovery and a small estimation error with high probability, where κ(Σ) is the
condition number of the finite-time controllability matrix of the system. Comparing this
quantity with (6.20), one can observe that the former has a better dependency on k. However,
κ(Σ) is highly dependent on the learning time T . In fact, it is easy to show that for unstable
systems, κ(Σ) may grow exponentially fast with respect to T . On the other hand, (6.20)
is free of such dependency and instead, it is in terms of the stationary distributions of the
state and input vectors.

Moreover, our work is a major extension to the results of [207], where the authors address
a similar sparse system identification problem with a single sample trajectory. First, unlike
the presented results, [207] only considers autonomous systems, i.e., systems (6.1) with
B=0. Second, [207] only ensures the correct sparsity recovery of the true parameters. In
contrast, we extend these results to obtain non-asymptotic bounds on the estimation error.
As demonstrated in [62, 63], having these bounds is essential for the design of near-optimal
and robustly stabilizing controllers. Third, [207] requires that the closed-loop system be
contractive with respect to the spectral norm, i.e., that |||(A + BK0)||| < 1, whereas we
only require system stability. Notice that the former condition is much stronger, as in
practice, stable systems are often not contractive in spectral norm. Finally, the validity of
the non-asymptotic bounds introduced in [207] heavily relies on the Gaussian nature of the
disturbance and input noises. As an extension to this result, our proposed method targets a
larger class of uncertainties for the disturbance and input noises, thereby allowing for norm
bounded disturbance and input signals.

Mutual incoherency

In this subsection, we analyze the mutual incoherence condition on the steady-state
covariance matrix M∗. In particular, we explain why this assumption is not an artifact
of the proposed method, but that it rather stems from a fundamental limitation of any
sparsity-promoting technique for the system identification problem. We show that similar
mutual incoherence assumptions are indeed necessary to recover the correct sparsity of system
parameters by using a class of oracle estimators.

We assume that the oracle estimator can measure the disturbance matrix W and that
it can work with sample trajectories of an arbitrary length. With these assumptions, the
oracle estimator solves the following optimization problem to estimate the parameters of the
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system:

min
Ψ
‖Ψ‖0 (6.9a)

s.t. XΨ = Y −W (6.9b)

Clearly, this oracle estimator cannot be used in practice since 1) the disturbance matrix W
is unknown, 2) the learning time T is finite, and 3) the corresponding optimization problem
is non-convex and NP-hard in its worst case. Setting aside these restrictions for now, there
are fundamental limits on the consistency of this estimator. To explain this, we introduce
the mutual-coherence metric for a matrix (note the difference between this definition and
Assumption A1). For a given matrix A ∈ Rt1×t2 , its mutual-coherence µ(A) is defined as

µ(A) = max
1≤i<j≤t2

|A>:,iA:,j|
‖A:,i‖2‖A:,j‖2

In other words, µ(A) measures the maximum correlation between distinct columns of A.
Reminiscent of the classical results in the compressive sensing literature, it is well-known
that the optimal solution Ψ∗ of (6.9) is unique if the following identifiability condition

‖Ψ∗:,j‖0 <
1

2

(
1 +

1

µ(X)

)
(6.10)

holds for j = 1, 2, ..., n (see, e.g., Theorem 2.5 in [73]). Furthermore, this bound is tight,
implying that there exists an instance of the problem for which the violation of ‖Ψ∗:,j‖0 <
1
2

(
1 + 1

µ(X)

)
for some j results in the non-uniqueness of the optimal solution. On the other

hand, according to Lemma 35 (to be introduced later) and the Borel-Cantelli lemma, 1
T
X>X

converges to M∗ almost surely, as T →∞. This implies that

µ(X) = max
1≤i<j≤m+n

|X>:,iX:,j|
‖X:,i‖2‖X:,j‖2

a.s.→ max
1≤i<j≤m+n

|M∗
ij|√

M∗
iiM

∗
jj

The above analysis reveals that the off-diagonal entries of M∗ play a crucial role in the iden-
tifiability of the true parameters: as these elements become smaller relative to the diagonal
entries, the oracle estimator can correctly identify the structure of Ψ for a wider range of
sparsity levels. Similarly, our proposed mutual incoherence assumption is expected to be
satisfied when the off-diagonals of M∗ have small magnitudes, relative to the diagonal en-
tries. This implies that Assumption A1 is a natural condition to impose in order to ensure
the correct sparsity recovery of Ψ. Furthermore, in practice, M∗ will be close to a diago-
nally dominant matrix with exponentially decaying off-diagonal entries, provided that the
matrices A, B, and K0 have sparse structures [234].



CHAPTER 6. EFFICIENT LEARNING OF SPARSE DYNAMICAL SYSTEMS 175

500 1000 1500 2000 2500

Learning Time

0

2000

4000

6000

8000

10000

12000

14000

M
is

m
a
tc

h
 E

rr
o
r

N
g
 = 100

N
g
 = 200

N
g
 = 400

N
g
 = 800

(a) Relative mismatch error

500 1000 1500 2000 2500

Learning Time

10
-2

10
-1

10
0

10
1

10
2

E
s
ti
m

a
ti
o

n
 E

rr
o

r

LASSO

LASSO+LS

LS

(b) Normalized estimation error

(c) The distribution of γ

Figure 6.4.1: (a) The mismatch error with respect to the learning time for different number
of generators in the system. The values are averaged over 10 independent trials. (b) The
normalized estimation error for Lasso (abbreviated as LASSO), Lasso + least-squares (abbre-
viated as LASSO+LS), and least-squares (abbreviated as LS) estimators with respect to the
learning time. The values are averaged over 10 independent trials. (c) The distribution of
mutual incoherence parameter γ for 2000 randomly generated instances of the problem.
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6.4 Numerical Results

As a case study, we consider the frequency control problem for power systems, where the
goal is to control the governing frequency of the entire network, based on the so-called swing
equations. Assume that there exist Ng generators in the system. It is common to describe
the per-unit swing equations using the well-known direct current (DC) approximation:

Miθ̈i +Diθ̇i = PMi
− PEi

where θi is the voltage angle at generator i, PMi
is the mechanical power input at generator i,

and PEi denotes the active power injection at the bus connected to generator i. Furthermore,
Mi and Di are the inertia and damping coefficients at generator i, respectively. Under the
DC approximation, the relationship between active power injection and voltage is defined as
follows:

PEi =
∑
j∈Ni

Bij(θi − θj)

where n is the number of generators in the network, Ni collects the neighbors of generator
i, and Bij is the susceptance of the line (i, j). After discretization with the sampling time
dt, the system of swing equations is reduced to the following dynamical system:

xi(t+ 1) =

(
Aiixi(t) +

∑
j∈Ni

Aijxj(t)

)
+Biiui(t) + wi(t)

where xi =
[
θi θ̇i

]>
, ui(t) = PMi

, and

Aii=

[
1 dt

−
∑
j∈Ni

Bij

Mi
dt 1− Di

Mi
dt

]
, Aij =

[
0 0

Bij
Mi
dt 0

]
, Bii=

[
0
1

]
The goal is to identify the underlying dynamical system based on a single sample trajectory
consisting of a sequence of mechanical power inputs and their effects on the angles and
frequencies of different generators. To assess the performance of the proposed method, we
generate several instances of the problem according to the following rules:

- the generators are connected via a randomly generated tree with a maximum degree
of 10.

- the parameters Bij, Mi, Di are uniformly chosen from [0.5, 1], [1, 2], [0.5, 1.5], respec-
tively.

Furthermore, the sampling time dt is set to 0.1. We assume that the disturbance noise has
a zero-mean Gaussian distribution with covariance 0.01I2×2. Notice that the magnitude of
the noise is comparable to those of the nonzero elements in A and B. Furthermore, the
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mechanical input is set to ui(t) = −0.1(θi + θ̇i) + vi(t), where vi(t) is a randomly generated
input noise, distributed according to a zero-mean Gaussian distribution with variance 0.05.
Notice that the first term in the input signal is used to ensure the closed-loop stability.

The reported results are for a serial implementation in MATLAB R2017b, and the func-
tion lasso is used to solve (6.2). It is worthwhile to note that the running time can be
further reduced via parallelization; this is trivially possible due to the decomposable nature
of the problem. The mismatch error is defined as the total number of false positives and
false negatives in the sparsity pattern of the estimated parameters (Â, B̂). Furthermore,
relative learning time (RLT) is defined as the learning time normalized by the dimension
of the system, and relative mismatch error (RME) is used to denote the mismatch error
normalized by the total number of elements in A and B. In all of our experiments, the

regularization coefficient λ is set to λ =
√

0.03 log(n+m)
T

. Note that this value does not require

any additional fine-tuning and is at most a constant factor away from (6.6).
Figure 6.4.1a illustrates the mismatch error (averaged over 10 different trials) with

respect to the learning time T and for different number of generators Ng that are
chosen from {100, 200, 400, 800}. These correspond to the total system dimensions of
{300, 600, 1200, 2400}. Note that the largest instance has more than 3.84 million unknown
parameters. Not surprisingly, the learning time needed to achieve a small mismatch error in-
creases as the dimension of the system grows. Conversely, a smaller value for RLT is needed
to achieve infinitesimal RME for larger systems. In particular, when Ng is equal to 100, 200,
400, and 800, the minimum RLT to guarantee RME ≤ 0.1% is equal to 3.83, 1.42, 0.50, and
0.16, respectively.

As mentioned before, the accuracy of the proposed estimator can be improved by addi-
tionally applying the least-squares over the nonzero elements of (Â, B̂). Figure 6.4.1b illus-
trates the normalized 2-norm estimation error of this approach (abbreviated as LASSO+LS),
compared to the proposed method without any post-processing step (abbreviated as LASSO),
and the least-squares estimator (abbreviated as LS) when Ng is set to 200. It can be observed
that both LASSO+LS and LS significantly outperform LS; in fact, LS is not even well-defined
if the learning time is strictly less than the system dimensions. Furthermore, on average,
the estimation error for LASSO+LS is 1.91 times smaller than that of LASSO.

Finally, only 32 out of 360 generated instances did not satisfy the proposed mutual inco-
herence condition. However, this violation did not have a significant effect on the accuracy
of the proposed estimator. To further investigate the frequency of the instances that sat-
isfy this condition, we plot the histogram of the mutual incoherence parameter γ for 2000
randomly generated instances with fixed Ng = 200. It can be seen in Figure 6.4.1c that the
mutual incoherence condition is violated only for 5.15% of the instances.
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Appendix

6.A Proof of the Main Theorem

In this section, we present the sketch of the proof for the main theorem. Define

L(Ψ:,j) = ‖Y −XΨ:,j‖2
2

and

Ψ̂:,j = arg min
1

2T
L(Ψ:,j) + λ‖Ψ:,j‖1 (6.11)

for every j ∈ {1, 2, ..., n}. It is easy to verify that

Ψ̂ =
[
Ψ̂:,1 Ψ̂:,2 · · · Ψ̂:,n

]
Furthermore, the Gradient and Hessian of L(·) are equal to

G = −∇L(Ψ:,j)|Ψ:,j=Ψ∗:,j
=

1

T
XTW:,j,

M = ∇2L(Ψ:,j)|Ψ:,j=Ψ∗:,j
=

1

T
XTX

Note that G can be different for every j. However, we keep this dependency implicit in
the notations to streamline the presentation. The following Lemma is at the core of our
subsequent analysis:

Lemma 33 (Proposition 4.1 [207]). Suppose that the following conditions are satisfied:

‖G‖∞ ≤
λγ

3
,

‖GAj‖∞ ≤
ΨminCmin

4k
− λ∣∣∣∣∣∣∣∣∣MAcjAj−M∗

AcjAj

∣∣∣∣∣∣∣∣∣
∞
≤ γCmin

12
√
k
,∣∣∣∣∣∣∣∣∣MAjAj−M∗

AjAj

∣∣∣∣∣∣∣∣∣
∞
≤ γCmin

12
√
k

Then, (6.11) recovers the true sparsity pattern of Ψ∗:,j.
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The first step in proving Theorem 27 is to verify that the conditions of Lemma 33 hold
with high probability. To this goal, first we write x(t) and u(t) in terms of x(0), w(τ) and
v(τ) for τ = 0, 1, . . . , t:

x(t) =(A+BK0)tx(0) +
t−1∑
τ=0

(A+BK0)t−τ−1(w(τ) +Bv(τ))

u(t) =v(t) +K0(A+BK0)tx(0) +
t−1∑
τ=0

K0(A+BK0)t−τ−1(w(τ) +Bv(τ))

Instead of initiating the system at x(0) with the stationary distribution, we will start at
the time −T0, with a modified initial state x(−T0) = w(−T0 − 1) + Bv(−T0 − 1), where
w(−T0− 1) and v(−T0− 1) have the same distributions as the disturbance and input noises,
respectively. Since the system is stable, by taking T0 → ∞ and invoking the Continuous
Mapping Theorem, the matrices[

x(0) x(1) . . . x(T − 1)
]

and [
K0x(0)+v(0) K0x(1)+v(1) . . . K0x(T−1)+v(T−1)

]
converge in distribution to the same matrices when the system is initialized at a state with
the stationary distribution. Therefore, without loss of generality, we will focus on the former.
Based on this observation, one can write

x(t) = lim
T0→∞

t−1∑
τ=−T0−1

(A+BK0)t−τ−1(w(τ) +Bv(τ))

u(t) = v(t)+ lim
T0→∞

t−1∑
τ=−T0−1

K0(A+BK0)t−τ−1(w(τ)+Bv(τ))

This implies that the elements in G and M can be written as quadratic functions of the
disturbance and input noises in the form of Gi = z>RGz and Mij = z>RMz, where z ∈
R(n+m)(t+T0+1) is a random vector, defined as

z=
[
w(−T0−1)> · · · w(t− 1)> v(−T0−1)> · · · v(t− 1)>

]>
The following theorem will be used in our analysis to provide concentration bounds on G
and M .

Theorem 28 (Hanson-Wright inequality [218]). Let x =
[
x1 x2 . . . xn

]
be a random

vector with independent zero-mean sub-Gaussian elements. Given a square and symmetric
matrix P , the following inequality holds

P
(∣∣x>Px− E

{
x>Px

}∣∣ > t
)
≤ 2 exp

(
−c ·min

{
t2

‖x‖4
ψ‖P‖2

F

,
t

‖x‖2
ψ|||P |||

})
for every t ≥ 0, where c is a universal constant.
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For a symmetric matrix P , we have ‖P‖2
F =

∑n
k=1 λ

2
k. Therefore, the above theorem

implies that, for a sub-Gaussian random vector z with independent elements, we have

P
(∣∣z>Pz−E{z>Pz}∣∣ > t

)
≤ 2 exp

(
−c · t2

‖z‖4
ψ (
∑n

k=1 λ
2
k)

)

provided that t ≤
( ∑

k λ
2
k

maxk |λk|

)
‖z‖2

ψ. The assumptions of Lemma 33 can be seen to hold

directly as a consequence of the following two lemmas:

Lemma 34. Let i ∈ {1, 2, ..., n + m} and suppose that ε < 3Cη2

1−ρ . Then, there exists a
universal constant c4 such that

P{|Gi| > ε} ≤ 2 exp

(
−c4

(1− ρ)2

C2η4
Tε2
)

Proof. See Appendix 6.B.

Lemma 35. Let i, j ∈ {1, 2, ..., n + m} and suppose that ε ≤ 4C2η2

(1−ρ)2 . Then, there exists a
universal constant c5 such that

P{|Mij −M∗
ij| > ε} ≤ 2 exp

(
−c5

(1− ρ)4

C4η4
Tε2
)

Proof. See Appendix 6.B.

The following proposition shows that for a fixed column j, the proposed estimator (6.11)
correctly recovers the sparsity pattern with high probability.

Proposition 6. Assume that k ≥ 2 and the following conditions are satisfied:

λ = c6 ·
√

C2η4

γ2T (1− ρ)
log(n+m/δ) (6.12)

T ≥ c7 ·
C4η4k2

γ2C2
minΨ2

min(1− ρ)4
log(n+m/δ) (6.13)

for universal constants c6, c7 ≥ 0. Then, (6.11) recovers the true sparsity pattern of Ψ∗:,j with
probability of at least 1− δ.

Proof. The Lemmas 34 and 35 can be used to prove statement. The details are provided in
Appendix 6.B.

The next lemma provides a deterministic upper bound on the estimation error in terms
of the deviations of M and G from their mean.
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Lemma 36. Assume that ∣∣∣∣∣∣∣∣∣MAj ,Aj −M∗
Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞
≤ min{1, 2η2}

2Dmax

(6.14)

and (6.11) recovers the correct sparsity pattern of Ψ∗:,j. Then, the following inequality holds

for E = Ψ̂:,j −Ψ∗:,j:

EAcj = 0

‖EAj‖∞≤
(

2D2
max

∣∣∣∣∣∣∣∣∣MAjAj−M∗
AjAj

∣∣∣∣∣∣∣∣∣
∞

+Dmax

) (
‖GAj‖∞+λ

)
(6.15)

Proof. See Appendix 6.B.

The next lemma shows that the condition of Proposition 36 holds with high probability,
provided that T is large enough.

Proposition 7. Assume that

T ≥ c8 ·
D2

maxC
4

(1− ρ)4
k2 log(k/δ) (6.16)

for some universal constant c5 ≥ 0. Then, the following inequality holds with probability of
at least 1− δ ∣∣∣∣∣∣∣∣∣MAj ,Aj −M∗

Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞
≤ min{1, 2η2}

2Dmax

(6.17)

Proof. Notice that |Aj| ≤ k. One can verify that

P
(∣∣∣∣∣∣∣∣∣MAj ,Aj −M∗

Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞
> ε
)
≤ 2k2 exp

(
−c5 ·

(1− ρ)4

C4η4

T

k2
ε2
)

(6.18)

provided that ε
k
≤ 4C2η2

(1−ρ)2 . Setting ε = min{1,2η2}
2Dmax

and recalling that Dmax, C ≥ 1, one can verify

that ε
k
≤ 4C2η2

(1−ρ)2 is satisfied. Furthermore, by choosing c8 = 16
c5

, one can certify that (6.16)
is enough to ensure that the right hand side of the above inequality is upper bounded by δ,
thereby completing the proof.

Proof of Theorem 27: First note that (6.4) can be decomposed into n disjoint sub-problems
over different columns of Ψ, each in the form of (6.11). Consider the following choices for λ
and T :

λ = c6 ·
√

C2η4

γ2T (1− ρ)2
log(4(n+m)/δ) (6.19)

T ≥ max

{
c7, c8,

1

c4

,
2

c5

}
· C4D2

maxk
2

γ2C2
minΨ2

min(1− ρ)4
log((n+m)/δ) (6.20)
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where c4, c5, c6, c7, and c6 are introduced in Lemmas 34, 35, and Propositions 6, 7. Based
on the Proposition 6 and the above choices for λ and T , (6.11) recovers the sparsity pattern
of Ψ∗:,j for a given column index j with probability of at least 1− δ. Furthermore, based on
Proposition 7, the lower bound on T guarantees that the inequality∣∣∣∣∣∣∣∣∣QAj ,Aj −Q∗Aj ,Aj ∣∣∣∣∣∣∣∣∣∞ ≤ min{1, 2η2}

2Dmax

(6.21)

holds with probability of at least 1− δ. This, together with Proposition 36 results in

‖E:,j‖∞ ≤
(

2D2
max

∣∣∣∣∣∣∣∣∣QAj ,Aj −Q∗Aj ,Aj ∣∣∣∣∣∣∣∣∣∞ +Dmax

) (
‖GAj‖∞ + λ

)
(6.22)

with probability of at least 1 − 2δ. Now, it suffices to obtain concentration bounds for
different terms of the above inequality. Based on (6.18) and Lemma 34, one can write

P
(
‖GAj‖∞ > ε1

)
≤ exp

(
log(2k)− c4 ·

(1− ρ)2

C2η4
Tε21

)
(6.23)

P
(∣∣∣∣∣∣∣∣∣QAj ,Aj −Q∗Aj ,Aj ∣∣∣∣∣∣∣∣∣∞ > ε2

)
≤ exp

(
2 log(2k)− c5 ·

(1− ρ)4

C4η4

T

k2
ε22

)
(6.24)

This implies that, with the following choices

ε1(ζ1) =

√
ζ1 ·

C2η4

c4T (1− ρ)2
log(2k) (6.25)

ε2(ζ2) =

√
ζ2 ·

C4η4k2

c5T (1− ρ)4
log(2k) (6.26)

for any ζ1 > 1, ζ2 > 2 that satisfy

ε1(ζ1) ≤ 3Cη2

1− ρ, ε2(ζ2) ≤ 4C2η2

(1− ρ)2
k, (6.27)

we have

P
(
‖E:,j‖∞ ≤

(
2D2

maxε2(ζ2) +Dmax

)
(ε1(ζ1) + λ)

)
≥ 1− exp (−(ζ2 − 2) log(2k))

− exp (−(ζ1 − 1) log(2k))− 2δ (6.28)

Note that the last term on the right hand side is due to a simple union bound on the events
that (6.21) holds and (6.11) recovers the correct sparsity pattern of Ψ∗:,j. Now, upon defining

ζ1 =
log(2/δ)

log(2k)
+ 1 (6.29)

ζ2 =
log(2/δ)

log(2k)
+ 2 (6.30)
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the inequalities in (6.27) are satisfied, provided that T ≥ max{ 1
c4
, 2
c5
} · log(4k/δ). Further-

more, combining (6.29) and (6.30) with (6.28) results in

P
(
‖E:,j‖∞ ≤

(
2D2

maxε2(ζ2) +Dmax

)
(ε1(ζ1) + λ)

)
≥ 1− 3δ (6.31)

After plugging (6.29) and (6.30) into (6.26) and (6.25), the above inequality is reduced to

‖E:,j‖∞ ≤
(

2D2
max

√
2

c5

· C4η4

T (1− ρ)4
k2 log(4k/δ) +Dmax

)

×
(√

1

c4

· C2η4

T (1− ρ)2
log(4k/δ) + c6

√
C2η4

γ2T (1− ρ)2
log(4(n+m)/δ)

)
(6.32)

with probability of at least 1− 3δ. Due to (6.20), one can write

D2
max

√
2

c5

· C4η4

T (1− ρ)4
k2 log(4k/δ) ≤ Dmax (6.33)

Therefore,

‖E:,j‖∞ ≤3Dmax

(
1√
c4

+ c6

)√
C2η4

γ2T (1− ρ)2
log(4(n+m)/δ)

=

(
3√
c4

+ 3c6

)
DmaxCη

2

γ(1− ρ)

√
log(4(n+m)/δ)

T
(6.34)

with probability of at least 1−3δ. Now, to conclude the proof, it suffices to perform a union
bound on different columns of the solution with indices 1 ≤ j ≤ n. This results in

‖E‖∞ ≤
(

3√
c4

+ 3c6

)
DmaxCη

2

γ(1− ρ)

√
log(4(n+m)/δ)

T
(6.35)

with probability of at least 1− 3nδ. Replacing δ with δ
3n

in the above inequality concludes
the proof.
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6.B Proof of Auxiliary Lemmas

Proof of Lemma 34

To prove this lemma, we first introduce some notations. Define the matrix

R1(X(τ)) =



0 0 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 0 0
X(T0) X(T0 − 1) . . . X(1) X(0) 0 . . . 0 0

X(T0 + 1) X(T0) . . . X(2) X(1) X(0) . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

X(T0 + T − 1) X(T0 + T − 2) . . . X(T ) X(T − 1) X(T − 2) . . . X(0) 0


(6.36)

where X(τ) is a matrix valued time-dependent signal. Furthermore, define the symmetrized
matrix R̃1(·) =

(
R1(·) +R1(·)T

)
/2. Finally, for a matrix N , define [N ]i→j as a matrix with

the same size as H and with all rows equal to zero except for the jth row which is equal to
the ith row of N .

Lemma 37. Let λk be the kth eigenvalue of the matrix RG defined as

RG =

 R̃1

(
[(A+BK)τ ]i→j

)
η2 1

2
R1

(
[(A+BK)τB]i→j

)
η2

1
2
R1

(
[(A+BK)τB]i→j

)T
η2 0

 (6.37)

Then, the following relations hold

max
k
|λk| ≤

3

2

Cη2

1− ρ (6.38)

(n+m)(T+T0+1)∑
k

λ2
k ≤

9

2

C2η4T

(1− ρ)2
(6.39)

Proof. Notice that

‖RG‖ ≤ η2
∥∥∥R̃1

(
[(A+BK)τ ]i→j

)∥∥∥+
1

2
η2
∥∥∥R1

(
[(A+BK)τB]i→j

)∥∥∥ (6.40)

Similar to the proof of Lemma A.3 in [207], one can verify that∥∥∥R̃1

(
[(A+BK)τ ]i→j

)∥∥∥ ≤ C

1− ρ (6.41)∥∥∥R1

(
[(A+BK)τB]i→j

)∥∥∥ ≤ C

1− ρ (6.42)

This completes the proof of the second statement. Finally, it is easy to see that the rank
of RG is upper bounded by 2T . This, together with the bound on the maximum eigenvalue
completes the proof of the third statement.
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Define the matrix Pji ∈ Rn(T+T0+1)×m(T+T0+1) as

Pji =

[
0(T0+1)×(T0+1) 0(T0+1)×T

0T×(T0+1) IT×T

]
⊗ Eji (6.43)

where Eji ∈ Rn×m is a 0-1 matrix with 1 at its (j, i)th entry and 0 otherwise.

Lemma 38. Let λk be the kth eigenvalue of the matrix R̃G defined as

R̃G =

 R̃1

(
[K(A+BK)τ ]i→j

)
η2 1

2
R1

(
[K(A+BK)τB]i→j

)
η2 + 1

2
Pjiη

2

1
2
R1

(
[K(A+BK)τB]i→j

)T
η2 + 1

2
P T
jiη

2 0


(6.44)

Then, the following relations hold

max
k
|λk| ≤

2Cη2

1− ρ (6.45)

(n+m)(T+T0+1)∑
k

λ2
k ≤

16C2η4T

(1− ρ)2
(6.46)

Proof. The proof of the first statement follows directly from Lemma 37. Furthermore, it is
easy to verify that the rank of R̃G is upper bounded by 4T . This, together with the upper
bound on the maximum eigenvalue completes the proof of the third statement.

Proof of Lemma 34: One can easily verify that

- if i ∈ {1, 2, . . . , n}, then Gi = 1
T
XT

:,iW:,j = 1
T
zTRGz where z ∈ R(n+m)(T+T0+1) is a

random vector with independent zero-mean sub-Gaussian elements and ‖z‖ψ ≤ 1.

- if i ∈ {n+ 1, . . . , n+m}, then Gi = 1
T
XT

:,iW:,j = 1
T
zT R̃Gz where z ∈ R(n+m)(T+T0+1) is

a random vector with independent zero-mean sub-Gaussian elements and ‖z‖ψ ≤ 1.

Furthermore, note that the diagonal entries of both RG and R̃G are zero and hence,

E
{

1
T
zTRGz

}
= E

{
1
T
zT R̃Gz

}
= 0. This, together with Hanson-Wright inequality and

Lemmas 37 and 38 completes the proof.

Proof of Lemma 35

Define the matrix

R2(X(τ)) =


X(T0) X(T0 − 1) . . . X(1) X(0) 0 . . . 0 0

X(T0 + 1) X(T0) . . . X(2) X(1) X(0) . . . 0 0
...

...
. . .

...
...

...
. . .

...
X(T0 + T − 1) X(T0 + T − 2) . . . X(T ) X(T − 1) X(T − 2) . . . X(0) 0


(6.47)
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and

H1i = R2

(
[(A+BK0)τ ]i,:

)
η ∈ RT×n(T+T0+1)

H1j = R2

(
[(A+BK0)τ ]j,:

)
η ∈ RT×n(T+T0+1)

H2i = R2

(
[(A+BK0)τB]i,:

)
η ∈ RT×m(T+T0+1)

H2j = R2

(
[(A+BK0)τB]j,:

)
η ∈ RT×m(T+T0+1)

H3i = R2

(
[K0(A+BK0)τ ]i,:

)
η ∈ RT×n(T+T0+1)

H3j = R2

(
[K0(A+BK0)τ ]j,:

)
η ∈ RT×n(T+T0+1)

H4i = R2

(
[K0(A+BK0)τB]i,:

)
η2 + Piη ∈ RT×m(T+T0+1)

H4j = R2

(
[K0(A+BK0)τB]j,:

)
η2 + Pjη ∈ RT×m(T+T0+1) (6.48)

where the matrix Pj ∈ RT×m(T+T0+1) has the form

Pj =
[
0T×(T0+1) IT×T

]
⊗ ej (6.49)

and ej ∈ R1×m with 1 at its jth entry and 0 otherwise. These notations will be used in the
subsequent lemma.

Lemma 39. Let {k1, k2, k3, k4} ∈ {1, 2, 3, 4}4, where k1 6= k4 and k2 6= k3. Furthermore, let
λk be the kth eigenvalue of the following matrix

RM(k1, k2, k3, k4) =

[
1
2
(H>k1i

Hk3j +H>k3j
Hk1i)

1
2
(H>k1i

Hk4j +H>k3j
Hk2i)

1
2
(H>k4j

Hk1i +H>k2i
Hk3j)

1
2
(H>k2i

Hk4j +H>k4j
Hk2i)

]
∈ R(n+m)(T+T0+1)×(n+m)(T+T0+1) (6.50)

Then, the following relations hold

max
k
|λk| ≤

6C2η2

(1− ρ)2
(6.51)

(n+m)(T+T0+1)∑
k=1

λ2
k ≤

72C4η4

(1− ρ)4
(6.52)

Proof. To show the validity of the first statement, one can write

|||RM(k1, k2, k3, k4)|||

≤ 1

2
max{

∣∣∣∣∣∣H>k1i
Hk3j +H>k3j

Hk1i

∣∣∣∣∣∣, ∣∣∣∣∣∣H>k2i
Hk4j +H>k4j

Hk2i

∣∣∣∣∣∣}+
1

2

∣∣∣∣∣∣H>k1i
Hk4j +H>k3j

Hk2i

∣∣∣∣∣∣
≤ 1

2
max{

∣∣∣∣∣∣H>k1i

∣∣∣∣∣∣|||Hk3j|||+
∣∣∣∣∣∣H>k3j

∣∣∣∣∣∣|||Hk1i|||,
∣∣∣∣∣∣H>k2i

∣∣∣∣∣∣|||Hk4j|||+
∣∣∣∣∣∣H>k4j

∣∣∣∣∣∣|||Hk2i|||}

+
1

2

(∣∣∣∣∣∣H>k1i

∣∣∣∣∣∣|||Hk4j|||+
∣∣∣∣∣∣H>k3j

∣∣∣∣∣∣|||Hk2i|||
)

(6.53)
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Furthermore, similar to the proof of Lemma A.4 in [207], one can verify that

|||Hri|||, |||Hrj||| ≤
C

1− ρ if r = 1, 2, 3

|||Hri|||, |||Hrj||| ≤
2C

1− ρ if r = 4

Combining this with the above inequality completes the proof of the first statement. Finally,
note that RM(k1, k2, k3, k4) can be written as

R
(1)
M =

1

2

[
H>k1i

H>k2i

] [
Hk3j Hk4j

]
+

1

2

[
H>k3j

H>k4j

] [
Hk1i Hk2i

]
(6.54)

which implies that its rank is upper bounded by 2T . This, together with the upper bound
on the maximum eigenvalue completes the proof.

Lemma 40. We have E(M) = M∗.

Proof. Define

X1 =
[
x(0) . . . x(T − 1)

]
X2 =

[
Kx(0) + v(0) . . . Kx(T − 1) + v(T − 1)

]
The theorem can be proven by showing

1

T
E(X1X

T
1 ) = Q∗,

1

T
E(X2X

T
1 ) = KQ∗,

1

T
E(X2X

T
2 ) = KQ∗KT + σ2

vI,

(6.55)

In what follows, we show the validity of the first equality. The other equalities can be proven
in a similar manner. We have

1

T
E(X1X

T
1 ) =

1

T

T−1∑
τ=0

E(x(τ)x(τ)T ) (6.56)

Furthermore, notice that x(0) has a stationary distribution and hence, E(x(0)x(0)T ) = Q∗.
Furthermore,

E(x(1)x(1)T ) = (A+BK)Q∗(A+BK)T + σ2
wI + σ2

vBB
T = Q∗ (6.57)
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where the second inequality is due to (6.5). Similarly, one can show that E(x(τ)x(τ)T ) = Q∗

for every τ ∈ {2, 3, . . . , T − 1} and hence,

1

T
E(X1X

T
1 ) =

1

T

T−1∑
τ=0

Q∗ = Q∗ (6.58)

This completes the proof.

Proof of Lemma 35: Due to Lemma 40 and upon taking T0 →∞, we have

P{|Mij −M∗
ij| > ε} = P{|Mij − E(Mij)| > ε} (6.59)

and hence, it suffices to obtain a bound for P{|Mij −E(Mij)| > ε}. We should consider four
cases:

- If i, j ∈ {1, 2, . . . , n}, then Mij = 1
T
zTRM(1, 2, 1, 2)z, where z ∈ R(n+m)(T+T0+1) is a

random vector with independent zero-mean sub-Gaussian elements and ‖z‖ψ ≤ 1.

- If i ∈ {1, 2, . . . , n} and j ∈ {n + 1, n + 2, . . . , n + m}, then Mij = 1
T
zTRM(1, 2, 3, 4)z,

where z ∈ R(n+m)(T+T0+1) is a random vector with independent zero-mean sub-Gaussian
elements and ‖z‖ψ ≤ 1.

- If i ∈ {n + 1, n + 2, . . . , n + m} and j ∈ {1, 2, . . . , n}, then Mij = 1
T
zTRM(3, 4, 1, 2)z,

where z ∈ R(n+m)(T+T0+1) is a random vector with independent zero-mean sub-Gaussian
elements and ‖z‖ψ ≤ 1.

- If i ∈ {n + 1, n + 2, . . . , n + m} and j ∈ {n + 1, n + 2, . . . , n + m}, then Mij =
1
T
zTR

(4)
M (3, 4, 3, 4)z, where z ∈ R(n+m)(T+T0+1) is a random vector with independent

zero-mean sub-Gaussian elements and ‖z‖ψ ≤ 1.

Invoking the Hanson-Wright inequality and Lemma 39 for the aforementioned cases com-
pletes the proof.

The proof of Proposition 6

We need the following lemma:

Lemma 41. We have

‖M∗‖ ≤ 85C2η2

1− ρ (6.60)

Proof. One can easily verify that

Q∗ =
∞∑
τ=0

[
σw(A+BK0)τ σv(A+BK0)τB

] [
σw(A+BK0)τ σv(A+BK0)τB

]T
(6.61)
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and hence

M∗ =

[
0 0
0 σ2

vI

]
+
∞∑
τ=0

[
σw(A+BK0)τ σv(A+BK0)τB
σwK0(A+BK0)τ σvK0(A+BK0)τB

] [
σw(A+BK0)τ σv(A+BK0)τB
σwK0(A+BK0)τ σvK0(A+BK0)τB

]T
(6.62)

Therefore, with the assumption σw, σw ≤ 1 and the fact that σu, σv ≤
√

5η (the proof of
which is simple and can be found, e.g., in [214]), one can write

|||M∗||| ≤ 5η2 + 5η2

∞∑
τ=0

∣∣∣∣∣∣∣∣∣∣∣∣[ (A+BK0)τ (A+BK0)τB
K0(A+BK0)τ K0(A+BK0)τB

]∣∣∣∣∣∣∣∣∣∣∣∣2
≤ 5η2 + 5η2

∞∑
τ=0

(|||(A+BK0)τ |||+ |||K0(A+BK0)τB|||+ |||K0(A+BK0)τ |||

+ |||(A+BK0)τB|||)2

≤ 5η2 + 80η2

∞∑
τ=0

C2ρ2τ

≤ 85C2η2

1− ρ (6.63)

This completes the proof.

Based on this lemma, we will take a similar approach to the proof of Theorem 3.1 in [207]
to prove the correct sparsity recovery of the system matrices.

Proof of Proposition 6: To prove this proposition, we need to show that the conditions of
Lemma ?? holds with high probability. To ensure that the first condition on G implies the
second one, it suffices to have

λγ

3
≤ ΨminCmin

4k
− λ (6.64)

Noting that 0 < γ < 1, one can verify that the following bound on λ is enough to guarantee
that the above inequality holds:

λ ≤ ΨminCmin

8k
(6.65)

Furthermore, to ensure the last two conditions on M , it suffices to have∣∣∣∣∣∣∣∣∣M:Aj −M∗
:Aj

∣∣∣∣∣∣∣∣∣
∞
≤ γCmin

12
√
k

(6.66)
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Based on the above analysis, it suffices to have

P
(
‖G‖∞ >

γλ

3

)
≤ δ

2
(6.67a)

P
(∣∣∣∣∣∣∣∣∣M:Aj −M∗

:Aj

∣∣∣∣∣∣∣∣∣
∞
>
γCmin

12
√
k

)
≤ δ

2
(6.67b)

in order to ensure the exact recovery with probability of at least 1 − δ. First, we derive
conditions under which (6.67a) holds. Based on Lemma 34, one needs to ensure the following
inequalities

2(n+m) exp

(
−c4 ·

(1− ρ)2

C2η4

γ2λ2

9
T

)
≤ δ

2
(6.68a)

λ ≤ ΨminCmin

8k
(6.68b)

γλ

3
≤ 3Cη2

1− ρ (6.68c)

where (6.68c) is a technical condition that is required by Lemma 34. It can be easily verified
that (6.68a) is satisfied with the choice of

λ =

√
9

c4

· C2η4

γ2T (1− ρ)2
log(4(n+m)/δ) (6.69)

Based on the chosen value for λ and in order to satisfy (6.68b), we should have the following
lower bound on T

T ≥ 576

c4

· C2η4k2

Ψ2
minC

2
minγ

2(1− ρ)2
log(4(n+m)/δ) (6.70)

Similarly, to ensure the validity of (6.68c), we should have

T ≥ 1

c4

· log(4(n+m)/δ) (6.71)

Now, we will derive the conditions under which (6.67b) is satisfied using Lemma 35. To this
goal, first we need to show that the following condition is satisfied:

0 < ε <
4C2η2

(1− ρ)2
(6.72a)

which is reduced to
γCmin

12
√
k
<

4C2η2

(1− ρ)2
k (6.73)

with the choice of ε = γCmin

12
√
k

. However, the above inequality implies that

k3/2 >
1

48

γCmin(1− ρ)2

C2η2
(6.74)
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A sufficient condition for the correctness of the above inequality is to have k ≥ 2. To see
this, note that

Cmin ≤ λmin(M∗
Aj ,Aj) ≤ λmax(M∗) ≤ 85C2η2

1− ρ (6.75)

where the last inequality is due to Lemma 41. Therefore,

1

48

γCmin(1− ρ)2

C2η2
≤ 85

48
< 2 (6.76)

which implies k ≥ 2. Finally, to verify (6.67b) and according to Lemma 35, it suffices to
have

2(n+m)k exp

(
−c5 ·

(1− ρ)4

C4η4

γ2C2
min

144k
T

)
≤ δ

2
(6.77)

This implies that

T ≥ 144

c5

· C4η4k

(1− ρ)4γ2C2
min

log(4(n+m)k/δ) (6.78)

Based on the above analysis, the inequalities (6.70), (6.71), and (6.78) impose lower bounds
on T . Comparing these inequalities with (6.20), one can verify that the latter dominates all
of them. This completes the proof.

Proof of Lemma 36

To prove this lemma, first we introduce the KKT conditions for (6.11).

Lemma 42 (KKT conditions). Ψ̂:,j is an optimal solution for (6.11) if and only if it satisfies

M(Ψ̂:,j −Ψ∗:,j)−G+ λS = 0 (6.79)

for some S ∈ ∂‖Ψ̂:,j‖1, where ∂‖Ψ̂:,j‖1 is the sub-differential of ‖ · ‖1 at Ψ̂:,j.

Proof. The proof is trivial and is omitted for brevity.

The following lemma is an immediate consequence of the KKT conditions.

Lemma 43. Assuming that (6.11) recovers the correct sparsity pattern of Ψ∗:,j, the following

equalities hold for E = Ψ̂:,j −Ψ∗:,j:

EAcj = 0 (6.80)

EAj = (MAj ,Aj)
−1GAj − λ(MAj ,Aj)

−1SAj (6.81)

Proof. Due to the correct sparsity recovery, we have EAcj = 0. This, together with the KKT
conditions imply that

MAjAjEAj −GAj + λSAj = 0 (6.82)

Solving the above equation with respect to EAj will conclude the proof.
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Proof of Lemma 36: Based on Lemma 43, one can write

‖EAj‖∞ ≤
∥∥(MAjAj)

−1GAj
∥∥
∞︸ ︷︷ ︸

Z1

+λ
∥∥(MAjAj)

−1SAj
∥∥
∞︸ ︷︷ ︸

Z2

(6.83)

In what follows, we will provide a bound for each term in the above inequality. For Z2, one
can write

Z2 ≤ λ
∥∥∥((MAj ,Aj)

−1 − (M∗
Aj ,Aj)

−1
)
SAj

∥∥∥
∞

+ λ
∥∥∥(M∗

Aj ,Aj)
−1SAj

∥∥∥
∞

≤ λ
(∣∣∣∣∣∣∣∣∣(MAj ,Aj)−1 − (M∗

Aj ,Aj)
−1
∣∣∣∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣∣∣∣(M∗

Aj ,Aj)
−1
∣∣∣∣∣∣∣∣∣
∞

)
≤ λ

∣∣∣∣∣∣∣∣∣(QAj ,Aj)−1 − (M∗
Aj ,Aj)

−1
∣∣∣∣∣∣∣∣∣
∞︸ ︷︷ ︸

∆

+Dmax

 (6.84)

On the other hand, we have

(MAj ,Aj)
−1 =(M∗

Aj ,Aj)
−1−(M∗

Aj ,Aj)
−1
(
MAj ,Aj−M∗

Aj ,Aj

)
(MAj ,Aj)

−1

=(M∗
Aj ,Aj)

−1

−(M∗
Aj ,Aj)

−1
(
MAj ,Aj−M∗

Aj ,Aj

)(
(M∗
Aj ,Aj)

−1+
(

(MAj ,Aj)
−1−(M∗

Aj ,Aj)
−1
))

(6.85)

and therefore

∆ ≤
∣∣∣∣∣∣(MAj ,Aj)−1

∣∣∣∣∣∣
∞

∣∣∣∣∣∣∣∣∣MAj ,Aj −M∗
Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞

(∣∣∣∣∣∣∣∣∣(M∗
Aj ,Aj)

−1
∣∣∣∣∣∣∣∣∣
∞

+ ∆
)

(6.86)

This leads to

∆ ≤ D2
max

1−Dmax

∣∣∣∣∣∣∣∣∣MAj ,Aj −M∗
Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞

∣∣∣∣∣∣∣∣∣QAj ,Aj −M∗
Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞

≤ D2
max

1−min{1/2, η2}
∣∣∣∣∣∣∣∣∣MAj ,Aj −M∗

Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞

≤ 2D2
max

∣∣∣∣∣∣∣∣∣MAj ,Aj −M∗
Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞

(6.87)

where the last inequality is due to the assumption (6.14). Combining the above inequality
with (6.84) gives rise to

Z2 ≤ λ
(

2D2
max

∣∣∣∣∣∣∣∣∣MAj ,Aj −M∗
Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞

+Dmax

)
(6.88)
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Now we will bound Z1. Similar to Z2, we have

Z1 ≤
(∣∣∣∣∣∣∣∣∣(MAj ,Aj)−1 − (M∗

Aj ,Aj)
−1
∣∣∣∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣∣∣∣(M∗

Aj ,Aj)
−1
∣∣∣∣∣∣∣∣∣
∞

)
‖GAj‖∞

≤
(

∆ +
∣∣∣∣∣∣∣∣∣(M∗

Aj ,Aj)
−1
∣∣∣∣∣∣∣∣∣
∞

)
‖GAj‖∞

≤
(

2D2
max

∣∣∣∣∣∣∣∣∣MAj ,Aj −M∗
Aj ,Aj

∣∣∣∣∣∣∣∣∣
∞

+Dmax

)
‖GAj‖∞ (6.89)

Putting together (6.89) and (6.88) completes the proof.
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Chapter 7

Efficient Learning of Distributed
Control Policies

In this work, we propose a robust approach to design distributed controllers for unknown-
but-sparse linear and time-invariant systems. By leveraging modern techniques in distributed
controller synthesis and structured linear inverse problems as applied to system identification,
we show that near-optimal distributed controllers can be learned with sub-linear sample
complexity and computed with near-linear time complexity, both measured with respect to
the dimension of the system. In particular, we provide sharp end-to-end guarantees on the
stability and the performance of the designed distributed controller and prove that for sparse
systems, the number of samples needed to guarantee robust and near optimal performance
of the designed controller can be significantly smaller than the dimension of the system.
Finally, we show that the proposed optimization problem can be solved to global optimality
with near-linear time complexity by iteratively solving a series of small quadratic programs.

7.1 Introduction

Encouraged by the success of machine learning (ML) techniques applied to complex de-
cision making problems [132] such as image classification [144], video and board games [183,
231, 230], and robotics [67, 200, 162], the use of ML for the control of autonomous systems
interacting with physical environments has been an active area of research in recent years.
While there is an increasing body of work studying the theoretical and practical aspects
of deploying learning-enabled control policies in individual systems (e.g., self-driving cars,
agile robots) [162, 67, 34, 241, 212], there has been little work studying the use of these
techniques on distributed systems, that is to say systems composed of interconnected and
often spatially-distributed subsystems. Examples of such distributed systems include intel-
ligent transportation systems and cities, smart grids, and distributed sensor networks. Even
when the individual components are well modeled, controlled, and understood, integrating
them into a large-scale, interconnected, and heterogeneous system can make modeling and
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control of the full system challenging, strongly motivating the use of machine-learning-based
techniques.

Extending the application of data-driven techniques to large-scale and safety-critical sys-
tems requires overcoming several challenges. First, we must ensure that the new data-driven
methods lead to autonomous systems that are safe, reliable, and robust, as many of our
target application areas correspond to safety-critical infrastructure. Failure of such systems
could be catastrophic in terms of both social, economic, and possible human losses. Second,
any proposed learning and control algorithm must scale gracefully to large-scale and poten-
tially spatially distributed systems. To address these challenges, we extend the approach
taken in [62] for designing centralized control policies to the distributed optimal control of
an unknown distributed dynamical system. We develop both deterministic and probabilistic
guarantees for a novel robust distributed control synthesis approach. Our proposed method
is scalable to large systems, and it allows us to provide the first end-to-end sample complexity
guarantees for the distributed optimal control of an unknown system.

In particular, we consider the discrete-time stochastic linear time-invariant system

x(t+ 1) = A?x(t) +B?u(t) + w(t) (7.1)

with the state x(t) ∈ Rn, state matrix A? ∈ Rn×n, controllable input u(t) ∈ Rm, input
matrix B? ∈ Rn×m, and exogenous random noise w(t) ∈ Rn (also referred to as disturbance
noise). The goal is to design a control policy u(t) = f({x(τ)}tτ=0, {u(τ)}τt=0) that minimizes
the following expected cost function:

lim
T→∞

1

T

T∑
t=1

E
{
x(t)>Qx(t) + u(t)>Ru(t)

}
(7.2)

subject to dynamics (7.1), where Q and R are positive-definite matrices. When the system
matrices are known and there is no communication constraint on the control policy, this
problem reduces to the well-known centralized linear-quadratic regulator (LQR) design for
which the static linear policy u(t) = Kx(t) is known to be optimal. The optimality of this
control policy is contingent upon the full knowledge of the system matrices, as well as the
absence of communication constraints on the structure of the controller. However, these
conditions are not satisfied in general, as the system may be subject to unknown dynamics
and spatiotemporal constraints as discussed below:

Unknown dynamics: As mentioned in Chapter 6, in many systems, the exact parameters
of the dynamics are not known a priori. In particular, rather than having direct access to
the system matrices (A?, B?), we usually only have access to some estimates (Â, B̂) obtained
from first principles, domain knowledge, or a system identification technique. Further, in
the distributed setting, the sparsity structure of these matrices may be unknown as well, due
to dynamic interconnections between component sub-systems. As we describe in the sequel,
identifying a structured model is the key to scaling robust and optimal control methods to
large systems.
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Spatiotemporal constraints: Large-scale distributed systems, such as power grids and
distributed computing networks, are composed of smaller sub-systems that are locally inter-
connected according to a physical interaction topology. Exploiting the underlying sparsity
of these systems, as induced by the local interactions between subsystems, is crucial in ex-
tending robust and optimal control methods to the distributed setting [257, 217] by allowing
local sub-controllers to communicate and coordinate with each other. Furthermore, from
a practical perspective, controllers that can be implemented using finite impulse response
(FIR) components lead to simple and intuitive implementations [258, 259].

Contributions

In this work, we overcome the aforementioned difficulties by leveraging recent advances in
control theory and machine learning. Namely, we develop a novel distributed robust control
synthesis method using the System Level Synthesis (SLS) framework [257], and combine it
with model error bounds obtained via the non-asymptotic analysis of regularized estimators
as applied to sparse system identification [85, 84], leading to a method that is efficient both
in sample and computational complexities.

Given the estimates (Â, B̂) of the true system matrices (A?, B?), we are interested in
designing a distributed controller that can guarantee the stability of the true system with a
small optimality gap in its cost function. In particular, given the estimates Â, B̂ with an
estimation error ε := max{‖Â−A?‖2, ‖B̂−B?‖2}, we propose a method to design a dynamic
and linear state-feedback controller K that 1) admits a distributed implementation, respect-
ing the spatiotemporal constraints imposed by the underlying communication topology, and
2) is robust against the model uncertainties; in particular, it stabilizes the closed-loop gain
A? + B?K and admits a relative sub-optimality bound J(A?, B?,K) − J? ≤ α(ε, L)J? for
some positive sub-optimality factor α(ε, L). Here, J(A?, B?,K) is the value of the cost func-
tion (7.2) achieved by the controller u = Ku acting on the true system, and J? is the cost of
the oracle distributed controller to be formally defined later. Furthermore, L is the enforced
temporal length of the obtained system responses with the designed controller. We show
that the sub-optimality factor α(ε, L) can be decomposed into two terms:

α(ε, L) = αe(ε) + αt(L) (7.3)

where αe(ε) bounds the performance degradation caused by model uncertainty, and αt(L)
bounds the effect of temporal truncation, which quantifies the deviation of the designed
controller from its oracle counterpart, when the system responses are restricted to the FIR
filters with length L. We prove that the uncertainty and truncation errors decay linearly
in ε and exponentially in L, respectively. Furthermore, by carefully examining the sparsity
structure of the estimated system matrices and the controller, we show that under some
conditions, these errors do not scale with the system dimensions, and instead, they are
only dependent on the sparsity structures of the system dynamics and the controller, as
well as other spectral characteristics of the system. By combining the derived bounds with
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the recent high-dimensional system identification techniques [85, 84], we provide an end-
to-end sub-optimality bound on the performance of the designed distributed controller in
terms of the number of sample trajectories that are used for estimating the dynamics, as
well as the required temporal length of the system responses. Finally, we provide an efficient
algorithm with near-linear time complexity to solve the proposed optimization problem. The
performance of the presented method is extensively evaluated in different case studies.

More notation: To streamline the presentation, we specialize and abuse some of the nota-
tions in this chapter. We use upper- and lower-case letters to denote matrices and vectors,
respectively. Furthermore, we use boldface upper- and lower-case letters to denote transfer
matrices and vector-valued signals, respectively. The symbols H2 and H∞ are endowed with
the standard definitions of the Hardy spaces, i.e., the class of holomorphic transfer func-
tions on the open unit disk with bounded mean square and maximum norms, respectively.
Accordingly, let RH2 and RH∞ correspond to the restriction of these spaces to the set
of real, rational, and proper functions. For a transfer matrix M ∈ RH∞, one can write
M =

∑∞
τ=0M(τ)z−τ , where M(τ) is the τ th spectral component of M. Given a matrix M ,

the symbol supp(M) refers to a binary matrix that shares the same sparsity pattern as M .
Finally, given a matrix M0, the set S(M0) is defined as {M | supp(M) = supp(M0)}.

7.2 Related Work

Distributed Control Many dynamical systems, such as the power grid, intelligent trans-
portation systems, and distributed computing networks, are large-scale, physically distributed,
and interconnected. In such settings, control systems are composed of several sub-controllers,
each equipped with their own sensors and actuators – these sub-controllers then exchange lo-
cal sensor measurements and control actions via a communication network. This information
exchange between sub-controllers is constrained by the underlying properties of the commu-
nication network, ultimately manifesting as information asymmetry among sub-controllers.
This information asymmetry is what makes distributed optimal controller synthesis chal-
lenging [122, 174, 217, 19, 20, 194]—indeed, early negative results gave reason to suspect
that the resulting distributed optimal control problems were intractable [263, 250].

However, in the early 2000s, a body of work [19, 209, 68, 20, 217, 174, 194] culminating
with the introduction of quadratic invariance (QI) in the seminal paper [217], showed that for
a large class of practically relevant systems, the resulting distributed optimal control problem
is convex. The identification of QI as a useful condition for determining the tractability of
a distributed optimal control problem led to an explosion of synthesis results in this area
[161, 224, 146, 159, 223, 160, 177, 244, 147, 87]. These results showed that the robust and
optimal control methods that were proven so powerful for centralized systems could be used
in distributed settings. However, they also made clear that the synthesis and implementation
of QI distributed optimal controllers did not scale gracefully with the size of the underlying
system—indeed, the complexity of computing a QI distributed optimal controller is at least as
expensive to compute as its centralized counterpart, and can be more difficult to implement.
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This lack of scalability motivated the development of the SLS framework [257], which allowed
for the convex synthesis of localized distributed optimal controllers [258, 259] that enjoyed
order constant synthesis and implementation complexity. In this chapter, we build upon the
SLS framework to synthesize an efficient learning-based distributed controller.

System Identification Estimating system models from input/output experiments has a
well-developed theory dating back to the 1960s, particularly in the case of linear and time-
invariant systems. Standard reference textbooks on the topic include [10, 165, 52, 109], all
focusing on establishing asymptotic consistency of the proposed estimators.

On the other hand, contemporary results in statistical learning as applied to system
identification seek to characterize finite time and finite data rates, leaning heavily on tools
from stochastic optimization and concentration of measure. Such finite-time guarantees
provide estimates of both system parameters and their uncertainty, which allows for a natural
bridge to robust/optimal control. In [62], it was shown that under full state observation, if
the system is driven by Gaussian noise, the ordinary least squares estimate of the system
matrices constructed from independent data points achieves order optimal rates that are
linear in the system dimension. This result was later generalized to the single trajectory
setting for (i) marginally stable systems in [233], (ii) unstable systems in [221], and (iii)
partially observed stable systems in [204, 222, 249, 232].

In this chapter, we leverage our results for the identification of sparse state-space param-
eters (Chapter 6), where rates are shown to be logarithmic in the ambient dimension, and
polynomial in the number of nonzero elements to be estimated.

Machine Learning for Continuous Control We focus on classical and contemporary
results most related to the approach taken in this chapter. The use of learning and adapta-
tion in controller design goes back to Kalman: in particular, self-tuning adaptive control, as
pioneered in [135, 11], proved to be successful, and was followed by a long sequence of contri-
butions to adaptive control theory, deriving conditions for convergence, stability, robustness
and performance under various assumptions. Contemporary approaches can be viewed as
non-asymptotic refinements of these classical problems. The modern study of adaptive con-
trol, as applied to the LQR problem, was initiated in [4], which provided regret bounds for
the optimal LQR control of an unknown system. The work [4] uses an Optimism in the Face
of Uncertainty (OFU) based approach, where it maintains confidence ellipsoids of system
parameters and selects those parameters that lead to the best closed-loop performance. This
work was followed up by several refinements and extensions to different settings [219, 5, 202,
3, 63, 176, 211], and can all be viewed as model-based reinforcement learning algorithms.
Another approach was taken in [12], where the authors proposed a learning-based model
predictive control (MPC) approach to guarantee the robustness and high performance of an
unknown system.

Closest to our work are the results in [62], where the LQR optimal control of an unknown
system is studied in the centralized setting. In [62], the authors propose a two-step procedure.
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First, they identify a coarse model of the matrices (A?, B?) describing system behavior, as
well as high-probability bounds on the corresponding model estimate uncertainty. They then
use these model and uncertainty estimates to synthesize a robustly stabilizing controller,
and analyze the end-to-end sample complexity of the resulting controller performance. We
generalize this approach to distributed settings, by efficiently exploiting the structure of the
system both during the identification and control synthesis phase. This in turn allows us to
reduce both the sample and computational complexities of learning distributed controllers,
as will be described in the sequel.

7.3 Preliminaries on System Level Synthesis

Given the true system matrices, the optimal centralized LQR controller can be computed
by solving its corresponding Ricatti equation [28]. However, as described above, in general
the resulting problem becomes highly difficult when solving for a structured controller since it
amounts to an NP-hard problem [251]. To circumvent this inherent difficulty, [257] introduces
the SLS framework, and shows how it can be used to synthesize distributed controllers by
optimizing over their induced closed-loop system responses.

We motivate this approach via a simple example. Given a static state-feedback control
policy K, the closed-loop map from the disturbance noise {w(0), w(1), . . . } to the state x(t)
and the control input u(t) at time t is given by

x(t) =
∑t

τ=0(A? +B?K)τw(t− τ − 1) ,

u(t) =
∑t

τ=0K(A? +B?K)τw(t− τ − 1) .
(7.4)

where, with a slight abuse of notation, the initial state x(0) is denoted by w(−1). Letting
Φx(t) := (A? +B?K)t−1 and Φu(t) := K(A? +B?K)t−1, we can rewrite (7.4) as[

x(t)
u(t)

]
=

t∑
τ=0

[
Φx(τ)
Φu(τ)

]
w(t− τ − 1) , (7.5)

where {Φx(t),Φu(t)} are called the system responses induced by the controller K. The
closed-loop system response elements can be defined for a dynamic controller in a similar
vein. In particular, consider the control policy u = Kx for some dynamic controller K.
Then, the closed-loop transfer matrices from the disturbance noise w to the state x and
control action u satisfy [

x
u

]
=

[
(zI − A−BK)−1

K(zI − A−BK)−1

]
w. (7.6)

The following theorem parameterizes the set of stable closed-loop transfer matrices, as de-
scribed in (7.6), that are achievable by any stabilizing controller K.

Theorem 29 (State-Feedback Parameterization [257]). The followings are true:
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I � z�x
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Figure 7.3.1: Internally stabilizing realization of the SLS controller specified in Theorem 29.
Notice that sparsity structure imposed on the system responses {Φx,Φu} translates directly
to the internal sparsity structure of the corresponding controller realization.

- The affine subspace defined by

[
zI − A −B

] [Φx

Φu

]
= I, Φx,Φu ∈

1

z
RH∞ (7.7)

parameterizes all system responses (7.6) from w to (x,u) that are achievable by an
internally stabilizing state-feedback controller K.

- For any transfer matrices {Φx,Φu} satisfying (7.7), the controller K = ΦuΦ
−1
x , as

implemented in Figure 7.3.1, is internally stabilizing and achieves the desired system
response (7.6).

We now make two comments on the consequences of Theorem 29. First, note that
{Φx,Φu} = {(zI −A−BK)−1,K(zI −A−BK)−1} (as described in (7.6)) are elements of
the affine subspace defined by (7.7) whenever K is a causal stabilizing controller. It is clear
from (7.7) that any pair of transfer functions that satisfy (7.7) also obey

Φx(t+ 1) = A?Φx(t) +B?Φu(t) , Φx(1) = I , ∀t ≥ 1 , (7.8)

and hence, satisfy the state-space equation. Furthermore, the above theorem implies that
there exists a dynamic controller K that achieves these system responses. The SLS frame-
work therefore allows for any optimal control problem over linear systems to be cast as
an optimization problem over elements {Φx(t),Φu(t)}, constrained to satisfy the affine equa-
tions (7.8). Comparing equations (7.4) and (7.5), we see that the former is non-convex in the
controller K, whereas the latter is convex in the elements {Φx(t),Φu(t)}, enabling solutions
to previously difficult optimal control problems.

Second, notice that the realization of the controller K = ΦuΦ
−1
x in Figure 7.3.1 implies

that any sparsity structure imposed on the the system responses translates directly to the
internal structure of the corresponding controller. Therefore, we can synthesize controllers
that admit distributed realizations by imposing appropriate structural constraints on the
system responses. For example, if we wish to limit communications between sub-controllers
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that are first neighbors according to the topology defined by A, it suffices to impose additional
linear constraints that the supports of the system responses Φx and Φu be contained in the
support of the matrix A. This concept of locality in system behavior and corresponding
controller implementation is formalized and generalized in [258, 259], and is the key in
scaling robust and optimal control methods to large-scale distributed systems.

It follows from Theorem 29 and the standard equivalence between infinite horizon LQR

and H2 optimal control that, for a disturbance process wt
iid∼ N (0, σ2

wI), the standard LQR
problem can be equivalently written as

min
Φx,Φu

σ2
w

∥∥∥∥[Q 1
2 0

0 R
1
2

] [
Φx

Φu

]∥∥∥∥2

H2

s.t. equation (7.7). (7.9)

We drop the σ2
w in the objective function as it affects neither the optimal controller nor the

sub-optimality guarantees.
Finally, we will make extensive use of a robust variant of Theorem 29.

Theorem 30 (Robust Stability [178]). Suppose that the transfer matrices {Φx,Φu} ∈
1
z
RH∞ satisfy [

zI − A −B
] [Φx

Φu

]
= I + ∆. (7.10)

Then, the controller K = ΦuΦ
−1
x stabilizes the system described by (A,B) if and only if

(I + ∆)−1 ∈ RH∞. Furthermore, the resulting system response is given by[
x
u

]
=

[
Φx

Φu

]
(I + ∆)−1w. (7.11)

7.4 A Tractable Formulation

Following the SLS framework, the following optimization serves as an alternative formu-
lation of the optimal distributed control problem:

min
Φx,Φx

∥∥∥∥[Q1/2 0
0 R1/2

] [
Φx

Φu

]∥∥∥∥
H2

(7.12)

s.t.
[
zI − A −B

] [Φx

Φu

]
= I, (7.13)

Φx ∈
1

z
RH∞ ∩ Cx, (7.14)

Φu ∈
1

z
RH∞ ∩ Cu, (7.15)
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where Cx := {Cx(τ)}∞τ=1 and Cu := {Cu(τ)}∞τ=1 capture the structural constraints on Φx

and Φu, respectively. In particular, we have Φx(τ) ∈ Cx(τ) and Φu(τ) ∈ Cu(τ) for every
τ ∈ {1, . . . ,∞}. The optimization (7.12) is referred to as the oracle optimization and its
corresponding optimal objective value is called the oracle cost. Notice that the formulation
of the oracle optimization heavily relies on the availability of the true system matrices.
Furthermore, although being convex, the oracle optimization is infinite dimensional as the
system responses belong to the set of strictly proper functions. Despite these shortcomings
of the oracle optimization, it can be used as a baseline to assess the performance of our
proposed method. As a result, we regularly make use of this oracle optimization to measure
the sub-optimality of our designed controller. Let (Φ?

x,Φ
?
u) denote the optimal solution of

this optimization problem. According to Theorem 29, the corresponding oracle controller
K? = Φ?

uΦ
?
x
−1 uniformly asymptotically stabilizes the true system. This together with the

fact that for LTI systems, uniform asymptotic stability is equivalent to exponential stability,
implies that the system responses are exponentially stable [257]. Therefore, upon writing
Φ?
x =

∑∞
t=1 Φ?

x(t)z
−t and Φ?

u =
∑∞

t=1 Φ?
u(t)z

−t, there exist constants C? ≥ 1 and 0 < ρ? < 1
such that

max {‖Φ?
x(t)‖∞, ‖Φ?

u(t)‖∞} ≤ C?ρ
t
? (7.16)

for every integer t.
In what follows, we introduce a surrogate to the oracle optimization that can be solved to

robustly design a stabilizing distributed controller based on learned estimates (Â, B̂), taking
into account the resulted estimation error. Throughout the chapter, ε is used to refer to
the spectral norm of the estimation error. In particular, upon defining ∆A = Â − A? and
∆B = B̂ − B?, we have ε := max{‖∆A‖2, ‖∆B‖2}. We now recall a robust stability result
from [62]:

Lemma 44 ([62]). Suppose that the controller K̂ stabilizes the system defined by the matrices
(Â, B̂) and that (Φ̂x, Φ̂u) is its corresponding system response on (Â, B̂). Then, controller
K̂ stabilizes the system defined by the matrices (A?, B?) if ‖∆̂‖H∞ < 1, where

∆̂ =
[
∆A ∆B

] [Φ̂x

Φ̂u

]
. (7.17)

Moreover, under this stability condition, one can write

J(A?, B?, K̂) =

∥∥∥∥[Q1/2 0
0 R1/2

] [
Φ̂x

Φ̂u

](
I + ∆̂

)−1
∥∥∥∥
H2

(7.18)

Following [62], we design a near-optimal distributed controller by solving the following
robust counterpart of the oracle optimization problem (7.12) based on the estimated values
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of (Â, B̂) with a given estimation error ε:

min
Φx,Φx

max
‖∆A‖2≤ε,
‖∆B‖2≤ε

∥∥∥∥∥
[
Q1/2 0

0 R1/2

] [
Φx

Φu

](
I +

[
∆A ∆B

] [Φx

Φu

])−1
∥∥∥∥∥
H2

(7.19)

s.t.
[
zI − Â −B̂

] [Φx

Φu

]
= I, (7.20)

Φx ∈
1

z
RH∞ ∩ Cx, Φu ∈

1

z
RH∞ ∩ Cu, (7.21)

The above optimization seeks to find a stabilizing distributed controller that minimizes the
worst-case performance achieved on the true system, given the estimates (Â, B̂), and the
estimation error ε. Clearly, this problem is equivalent to its oracle analog if ε = 0. However,
notice that the above optimization is infinite-dimensional, since the variable system responses
belong to the class of sparse and strictly proper transfer functions. Furthermore, unlike the
oracle optimization, it is non-convex with respect to the system responses. To deal with its
non-convexity, [62] introduces the following surrogate:

min
γ∈[0,1)

1

1− γ min
Φx,Φx

∥∥∥∥[Q1/2 0
0 R1/2

] [
Φx

Φu

]∥∥∥∥
H2

(7.22)

s.t.
[
zI − Â −B̂

] [Φx

Φu

]
= I,

∥∥∥∥∥
[

εA√
α
Φx

εB√
1−αΦu

]∥∥∥∥∥
H∞

≤ γ, (7.23)[
Φx

Φu

]
∈ 1

z
RH∞ ∩ C (7.24)

where εA = ‖Â − A?‖2, εB = ‖B̂ − B?‖2, and C = {
[
M> N>]>

]
|M ∈ Cx,N ∈ Cu}.

Furthermore, γ is a variable that controls the trade-off between the performance of the
designed controller and its robustness against the uncertainties in the estimated system
matrices. It can be easily verified that the above optimization is jointly quasi-convex in γ
and (Φx,Φu). Therefore, upon restricting (Φx,Φu) to FIR responses, it can be solved in
polynomial time to an arbitrary accuracy. In the absence of sparsity constraints, [62] shows
that the above problem gives rise to a robust controller that stabilizes the true system for
sufficiently small εA and εB. Moreover, [62] characterizes the gap between the cost of the
derived and optimal LQR controllers, and shows that the gap scales as O(εA+εB). However,
care must be taken when extending this approach to the distributed setting:
1. Sparsity constraints: The derived bound on the performance of the synthesized controller
in [62] is only valid if there are no sparsity constraints on the system responses.
2. Computational complexity: As mentioned before, the above optimization is infinite dimen-
sional and hence, intractable to solve. With the goal of reducing (7.22) to a finite-dimensional
problem, [62] proposes to restrict (Φx,Φu) to FIR responses with length L. With this as-
sumption, [62] shows that for a fixed γ, the inner optimization in (7.22) can be represented
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as a semidefinite programming (SDP) with the size L(n+m) +n. Moreover, [62] introduces
a gridding method to search for the optimal value of γ over the interval [0, 1). Considering
the expensive computational complexity of the available SDP solvers, (7.22) quickly becomes
prohibitive to solve as the system dimension and/or the length of the FIR responses grow.
In particular, using an interior point method [270] to solve the inner SDP for every γ, the

proposed algorithm in [62] has the time complexity O
(

(L(n+m))6.5 1
η

log
(

1
η

))
to obtain an

η-accurate solution.
3. Sample complexity: Combined with the proposed least-squares estimation method in [62],
the minimum number of sample trajectories to accurately estimate the system matrices scales
linearly in the system dimension. This linear dependency makes the accurate estimation
impractical, if not impossible, as the system size scales up—this is because no a priori
knowledge of sparsity in the underlying system is exploited.

In this chapter, we will remedy all of the aforementioned issues by introducing a scalable
surrogate to the robust optimization problem (7.19) with provable optimality guarantees.

Tractable Surrogates

We now show how the underlying sparse structure of the system matrices (A?, B?) and
distributed controller can be exploited to develop a tractable and scalable convex surrogate
to optimization problem (7.19).

Consider the sequence Cv := {Cv(τ)}∞τ=1, where Cv(0) = {X|X ∈ S(In)} and

Cv(τ) = {X1X2 +X3X4|X1 ∈ S(Â), X2 ∈ Cx(τ), X3 ∈ S(B̂), X4 ∈ Cu(τ)} (7.25)

for every τ = 1, . . . ,∞. Assuming that (Â, B̂) and (A?, B?) share the same sparsity pattern,
consider the following optimization problem:



CHAPTER 7. EFFICIENT LEARNING OF DISTRIBUTED CONTROL POLICIES 205

min
γ∈[0,1)

1

1− γ min
V (0:L)
Φx(1:L)
Φu(1:L)

√√√√ L∑
t=1

∥∥∥∥[Q1/2 0
0 R1/2

] [
Φx(t)
Φu(t)

]∥∥∥∥2

F

(7.26a)

s.t. Φx(1) = I + V (0) (7.26b)

Φx(t+ 1) = ÂΦx(t) + B̂Φu(t) + V (t) t = 1, . . . , L− 1 (7.26c)

0 = ÂΦx(L) + B̂Φu(L) + V (L) (7.26d)

L∑
t=1

∥∥∥∥∥
[
ε̄Φx(t)
ε̄Φu(t)

]
:,j

∥∥∥∥∥
1

≤ αk
−1/2
φ γ j = 1, . . . , n (7.26e)

L∑
t=0

‖V:,j(t)‖1 ≤ (1− α)k−1
v γ j = 1, . . . , n (7.26f)

Φx(t) ∈ Cx(t), Φu(t) ∈ Cu(t) t = 1, . . . , L (7.26g)

V (t) ∈ Cv(t) t = 0, . . . , L (7.26h)

Here, α ∈ (0, 1) is a parameter to be tuned. Furthermore, ε̄ is an upper bound on the
spectral norm of the true estimation error ε, i.e., ε̄ ≥ ε. Later, we will show how to obtain
such upper bound directly from the sample trajectories via bootstrapping. The scalar kφ
corresponds to the maximum number of nonzero elements in different rows and columns of[
Φ>x Φ>u

]>
. Similarly, kv denotes the maximum number of nonzero elements in different

rows and columns of V; we will explain later how to obtain kv based on the imposed sparsity
patterns of the system responses. Let a globally optimal solution of the above optimization
be denoted by (ΦL

x ,Φ
L
u ,V

L, γL). The inner optimization problem of (7.26) can be written
as a parametric QP with respect to γ and is denoted by OPT(γ), whose optimal objective
value is referred to as g(γ). It is easy to see that g(γ) is defined over the domain [γ0,+∞)
for some γ0 ≥ 0, and is monotonically decreasing.

We will discuss a number of key properties of this problem. First, notice that the op-
timization is over only the first L components of the system responses, thus yielding a
finite-dimensional approximation of the previous infinite-dimensional problem. The slack
variables V (0), V (1), . . . , V (L) are used to capture the error incurred by this truncation. In
Theorem 31, we show that the approximation error incurred by restricting our optimization
to the first L system response elements decays exponentially with respect to L. Moreover, as
will be shown in Lemma 45, the supports of the introduced slack variables are only slightly
larger than those of the system responses. Therefore, if the computed system responses are
sparse, so are the slack variables. This will in turn help reduce the number of variables in
the problem, thereby resulting in a significant computational saving. Finally, a close com-
parison between (7.26) and (7.22) reveals that the constraint imposed on the H∞-norm of
the system responses in the latter is replaced by induced norm-1 constraints on the system
response elements and the slack variables. Considering the fact that these constraints can
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be represented as linear inequalities, we will later show how to efficiently decompose the
proposed optimization problem into a series of small and independent QPs.

The next lemma characterizes the sparsity structure of the set Cv. To simplify notation, k
will be used to denote the maximum number of nonzero elements of every row and column of[
A? B?

]
and feasible

[
Φ>x (τ) Φ>u (τ)

]>
, τ = 1, . . . , L. Furthermore, we will drop the scripts

from a time-dependent sequence {M(τ)}t2τ=t1 whenever they are implied by the context.

Lemma 45. The following statements hold:

1. The maximum number of nonzero elements in the rows or columns of every M ∈ Cv is
upper bounded by 2k2.

2. The equality Cv(τ) = S(P1P2 + P3P4) is satisfied for every τ = 1, . . . , L, where P1 =
supp(Â) and P3 = supp(B̂). Furthermore, P2 and P4 are binary matrices with the
maximum number of nonzero elements that satisfy P2 ∈ Cx(τ) and P4 ∈ Cu(τ).

Proof. The proofs of both statements are immediately implied by the sparsity patterns of
Â, B̂, and the elements of Cx(τ) and Cu(τ).

Since P1, P2, P3, and P4 are sparse matrices, Lemma 45 implies that {Cv(τ)} can be
efficiently characterized by sparse matrix multiplication and summation.

Optimality gap

In this subsection, we analyze the performance of the controller derived from (7.26). The
following is the first main theorem of this chapter.

Theorem 31. Let J? be the oracle cost and (γL,ΦL
x ,Φ

L
u) be the optimal solution of (7.26).

Suppose that Â and B̂ have the same sparsity structure as A? and B?, and that

ε̄ <
(1− ρ?) min{α, 1− α}

32C?ρ?
k−2, L >

2 log(k) + log
(

4
√

2(‖A?‖∞+‖B?‖∞)
1−α

)
1− ρ?

. (7.27)

Then, the following statements hold:

1. KL = ΦL
uΦL

x
−1

stabilizes the true system.

2. We have

J(A,B,KL)− J?
J?

≤ 16

min{α, 1− α}
C?ρ?

(1− ρ?)
k2ε̄︸ ︷︷ ︸

uncertainty error

+
2
√

2

1− α(‖A?‖∞ + ‖B?‖∞)C?k
2ρL?︸ ︷︷ ︸

truncation error

(7.28)

Proof. See Appendix 7.A.



CHAPTER 7. EFFICIENT LEARNING OF DISTRIBUTED CONTROL POLICIES 207

Theorem 31 quantifies the effects of model uncertainty and spatiotemporal truncation
on the optimality gap of the designed distributed controller. In particular, it shows that
the uncertainty error is a linear function of ε̄, which is an available upper bound on the
actual estimation error. On the other hand, even with ε̄ = ε = 0, one cannot guarantee a
zero optimality gap for the designed controller due to the error incurred by the truncation
of the system responses. Theorem 31 together with the fact that 0 ≤ ρ? < 1 implies that
this truncation error decreases exponentially fast with respect to the FIR length L. Further,
the smaller ρ? is, i.e., the faster the optimal system response decays to zero, the faster
the truncation error decays. Finally, if we assume that ‖A?‖∞, ‖B?‖∞, C?, and ρ? do not
scale with the system dimensions, then the derived bounds show that the uncertainty and
truncation errors are independent of the system dimension and instead, they only scale with
the number of nonzero elements in different rows or columns of the system matrices and
responses. Note that ‖A?‖∞, ‖B?‖∞, C?, and ρ? are defined in terms of the element-wise
norm of the system matrices and responses; indeed, the assumption on independence of these
quantities from the system dimension are milder and more practical than similar assumptions
on their spectral norms, as is usually done in the literature.

7.5 Sample Complexity

Recently, special attention has been devoted to estimating state-space parameters of
linear and time-invariant systems based on a limited number of input-output sample trajec-
tories, defined as sequences {(x(i)(τ), u(i)(τ))}Tτ=0 with i = 1, 2, ..., d, where d is the number
of available sample trajectories and T is the length of each sample trajectory. To simplify
notation, the superscript i is dropped from the sample trajectories when d = 1. As men-
tioned in Chapter 6, in general, there are two different approaches to the identification of
state-space parameters in the full observation setting: 1) Single sample trajectory, and 2)
multiple sample trajectories.

As we seek sparse state-space parameters (Â, B̂), we draw upon techniques from Chapter
6 and consider the following Lasso-type estimator:

(Â, B̂) = arg min
A,B

1

2(t2−t1)d

d∑
i=1

t2∑
t=t1

∥∥x(i)(t+ 1)−
(
Ax(i)(t)+Bu(i)(t)

)∥∥2

2
+λ(‖A‖1 + ‖B‖1)

(7.29)

which is referred to as LASSO(1 : d, t1 : t2) in the sequel. For simplicity of notation, let Ψ̂ =[
Â B̂

]>
and Ψ? =

[
A? B?

]>
denote the estimated and true system matrices, respectively.

In [85, 84], variants of the regression problem (7.29) are used to address the problem of
sparse system identification with single and multiple sample trajectories.

Remark 17. As mentioned before in Chapter 6, the system identification based on a single
trajectory relies on the availability of an initial distributed controller K0. Such initial con-
troller may not be necessary if the system is internally stable or it may be obtained based on
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domain knowledge. Alternatively, we have developed a system identification technique in [85]
that is based on multiple sample trajectories and hence, bypass the need for such initial con-
trollers. Indeed, our optimization technique can be readily combined with the results of [85]
to obtain end-to-end bounds on the sample complexity of the designed distributed controller
based on multiple sample trajectories. Due to space restrictions and similarity of the results,
we only focus on the system identification with single sample trajectory in this chapter.

Assume that w(t)
iid∼ N (0, σ2

wI) for some σw > 0 and the system is equipped with a
known stabilizing and static localized controller K0 with a sparse structure. As mentioned
before, K0 can be set to zero if the system is internally stable. Furthermore, suppose that

u(t) = K0x(t) + v(t) with v(t)
iid∼ N (0, σ2

vI) for some σv > 0.

As shown in Chapter 6, upon the stability of A + BK0, the vector
[
x(t)> u(t)>

]>
converges to a stationary distribution N (0,M?), where M? is defined as

M? =

[
P PK>0
K0P K0PK

>
0 + σ2

vI

]
(7.30)

and P satisfies the following Lyapunov equation:

(A? +B?K0)P (A? +B?K0)> − P + σ2
wI + σ2

vB?B
>
? = 0 (7.31)

We assume that the initial state rests at its stationary distribution. As explained in Chapter
6, this assumption is mild since the state vector converges to its stationary distribution
exponentially fast. The following proposition is a restatement of Theorem 27 from Chapter
6:LASSO(1, 1 : T − 1).

Proposition 8 ([84]). Suppose that k ≥ 2 and the following conditions hold:

λ = Cs;λ

√
log((n+m)/δ)

T
, T ≥ Cs;Tk

2 log((n+m)/δ), (7.32)

Then, under Assumption 3, LASSO(1, 1 : T − 1) recovers the true sparsity pattern of Ψ? and
it incurs the element-wise estimation error

‖Ψ̂−Ψ?‖∞ ≤ Cs;err

√
log((n+m)/δ)

T
(7.33)

with probability at least 1− δ.

The system complexity constants Cs;λ, Cs;T , and Cs;err depend on the spectral radius of the
closed-loop gain A+BK0, as well as other parameters of the system. The reader is referred
to Assumption 3 and its corresponding discussion in Chapter 6.

Equipped with this proposition and Theorem 31, we present the following theorem that
characterizes the sample complexity of the derived distributed controller in terms of the
learning time and the FIR lengths of the system responses.
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Theorem 32. Suppose that k ≥ 2, Assumption 3 holds, and LASSO(1, 1 : T − 1) is used

to obtain the estimates (Â, B̂). Furthermore, suppose that ε̄ = ζCs;err

√
k2 log((n+m)/δ)

T
for an

arbitrary ζ ≥ 1 and that

λ = Cs;λ

√
log((n+m)/δ)

T
, (7.34)

T ≥ max

{(
32

min{α, 1− α}
C?ρ?ζCs;err

1− ρ?

)2

k6, Cs;Tk
2

}
log((n+m)/δ), (7.35)

L ≥
2 log(k) + log

(
4
√

2(‖A?‖∞+‖B?‖∞)
1−α

)
1− ρ?

. (7.36)

where α ∈ (0, 1) is an arbitrary and predefined parameter in (??). Then, the following
statements hold with probability at least 1− δ:

1. KL = ΦL
uΦL

x
−1

stabilizes the true system.

2. We have

J(A,B,KL)− J?
J?

≤ 16

min{α, 1− α}
C?ρ?ζCs;err

1− ρ?
k3

√
log((n+m)/δ)

T

+
2
√

2

1− α(‖A?‖∞ + ‖B?‖∞)C?kρ
L
? (7.37)

Proof. Theorem 31 and Proposition 8 can be used to prove this theorem. First, note
that (7.34) and (7.35) guarantee the validity of (7.32). Therefore, LASSO(1, 1 : T − 1)
can recover the correct sparsity pattern of the system matrices and the estimation error
bound (7.33) holds with probability of at least 1− δ. This implies that

ε = ‖Ψ̂−Ψ?‖2 ≤ k‖Ψ̂−Ψ?‖∞ ≤ ζCs;err

√
k2 log((n+m)/δ)

T
= ε̄ (7.38)

with the same probability. Combined with (7.35) and (7.36), this certifies the validity
of (7.27). Therefore, (7.28) holds with probability of at least 1 − δ. Replacing ε̄ with

ζCs;errk
√

log((n+m)/δ)
T

in (7.28) completes the proof.

The above theorem characterizes the sample complexity of designing a distributed con-
troller in terms of the lengths of the sample trajectory T , and the FIR filters L. Notice
that, similar to Proposition 8, the statements of Theorem 32 hold with probability of 1− δ,
where δ is the probability of failure. In particular, according to (7.35) and (7.37), in order
to reduce the probability of failure by a factor of c > 1, one needs to increase the length
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of the sample trajectory by a factor of log(c). Furthermore, under the assumption that δ,
C?, ρ∗, ‖A?‖∞, ‖A?‖∞, and the system complexity constants do not scale with the system
dimension, Theorem 32 implies that T = Ω(k6 log(n + m)) is enough to guarantee that the
optimality gap of the designed controller is on the order of O(k3

√
log(n+m)/T + kρL? ).

Assuming that the dynamics and controller have sparse structures, i.e., k � n + m, the
proposed bound improves upon the existing sample complexity bounds for learning optimal
LQR controllers which scale linearly with the system dimension [62, 63].

Remark 18. While the proposed method is best suited for designing controllers with sparse
system responses, its performance can be compared against a more general oracle optimiza-
tion (7.12), where the constraint sets Cx and Cu are relaxed to weakly sparse structures.
Under such circumstances, an optimal LQR controller can be a valid oracle controller, pro-
vided that its induced system responses are weakly sparse or, equivalently, they have spatially
decaying structures; see [190, 191, 178]. Even though such generalizations are not discussed
in this chapter, we note that the derived sub-optimality gap of the designed controller in
Theorems 32 and 31 can be extended to this setting, with an additional non-vanishing term
capturing the model selection error.

7.6 Computational complexity

In this subsection, we propose an efficient algorithm for solving (7.26). It is easy to verify
that the proposed optimization problem is jointly quasiconvex. In particular, it is convex
with respect to ({Φx(t)} , {Φu(t)} , {V (t)}) (after fixing γ) and quasiconvex with respect to
γ (after fixing ({Φx(t)} , {Φu(t)} , {V (t)})).

Lemma 46. For every fixed and feasible γ̄, OPT(γ̄) has a unique solution.

Proof. Notice that {V (t)} can be uniquely written in terms of {Φx(t)} and {Φu(t)}. This,
together with the fact that the objective is strictly convex, results in the uniqueness of the
solution.

Lemma 46 and the quasiconvexity of g(γ) do not necessarily result in the uniqueness
of the solution for (7.26) since g(γ) may contain spurious local minima in its flat regions.
A naive approach to circumvent this issue is to discretize γ within the interval [0, 1) with
the points {γ1, . . . , γN}, compute g(γi) for every 1 ≤ i ≤ N , and select the solution with
the lowest cost. However, notice that in this approach, the number of discrete points has
undesirable dependency on the required accuracy of the solution: roughly speaking, one
needs to evaluate and optimize over Ω(1/ε) discrete points in order to get a solution whose
cost is ε-away from the optimal cost. In the next proposition, we show that (7.26) is in fact
unimodal with respect to γ and hence, it is free of spurious local minima (i.e. non-global



CHAPTER 7. EFFICIENT LEARNING OF DISTRIBUTED CONTROL POLICIES 211

local minima).1 The unimodal property of (7.26) with respect to γ implies that a simple
application of the golden-section search method2 on γ can find an ε-accurate solution by
computing g(γi) at no more than O(log(1/ε)) points.

Proposition 9. Suppose that (7.26) is feasible. Furthermore, suppose that γ0 is the smallest

value such that 0 ≤ γ0 < 1 and OPT(γ0) is feasible. Then, g(γ)
1−γ is unimodal in the interval

[γ0, 1).

Proof. See Appendix 7.A.

For a fixed γ, problem OPT(γ) can be decomposed into n parallel sub-problems over the
columns of [

Φx(1)> . . . Φx(L)> Φu(1)> . . . Φu(L)> V (0)> . . . V (L)>
]>

(7.39)

In particular, define OPTj(γ) as OPT(γ) after replacing the variable matrices
({Φx(t)}, {Φu(t)}, {V (t)}) with ({[Φx(t)]:,j}, {[Φu(t)]:,j}, {[V (t)]:,j}), as in:

min
{[V (t)]:,j}
{[Φx(t)]:,j}
{[Φu(t)]:,j}

√√√√ L∑
t=1

∥∥∥∥∥
[
Q1/2 0

0 R1/2

] [
Φx(t)
Φu(t)

]
:,j

∥∥∥∥∥
2

F

(7.40a)

s.t. [Φx(1)]:,j = I:,j + [V (0)]:,j (7.40b)

[Φx(t+ 1)]:,j = Â[Φx(t)]:,j + B̂[Φu(t)]:,j + [V (t)]:,j t = 1, . . . , L− 1 (7.40c)

0 = Â[Φx(L)]:,j + B̂[Φu(L)]:,j + [V (L)]:,j (7.40d)

L∑
t=1

∥∥∥∥∥
[
ε̄Φx(t)
ε̄Φu(t)

]
:,j

∥∥∥∥∥
1

≤ αk
−1/2
φ γ t = 1, . . . , L (7.40e)

L∑
t=0

‖[V (t)]:,j‖1 ≤ (1− α)k−1
v γ t = 0, . . . , L (7.40f)

[Φx(t)]:,j ∈ Cx;j(t), [Φu(t)]:,j ∈ Cu;j(t) t = 1, . . . , L (7.40g)

[V (t)]:,j ∈ Cv;j(t) t = 0, . . . , L (7.40h)

1Note that another approach for eliminating the spurious local minima in the flat regions of a quasiconvex
optimization problem is a reformulation based on its sublevel sets; see [37]. However, this method will destroy
the decomposibility of (7.26); a feature that is at the core of near-linear solvability of (7.26), as will be shown
later in this chapter.

2The golden-section search is an algorithm for finding the global minimum of a univariate and strictly
unimodal function defined within a bounded interval. The method sequentially identifies and maintains an
interval containing the global minimum with a geometrically diminishing length. The geometric shrinkage
in the length of this interval implies that O(log(η−1)) number of function evaluations is enough to obtain
the minimum of the function with η accuracy; see Section 10 in [208] for more details.
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where Cx;j(t) = {X:,j : X ∈ Cx(t)}, Cu;j(t) = {X:,j : X ∈ Cu(t)}, and Cv;j(t) = {X:,j :
X ∈ Cv(t)}. Furthermore, let gj(γ) denote its optimal objective value. Then, g(γ) =√∑n

j=1 gj(γ)2 and the optimal solution of OPT(γ) can be obtained by replacing the jth

column of (7.39) with the solution of the sub-problem OPTj(γ) for every j = 1, . . . , n.
The next lemma shows that the sub-problem OPTj(γ) can be reformulated as a small

QP whose size is independent of n.

Lemma 47. The sub-problem OPTj(γ) can be written as a QP over O(Lk2) variables subject
to O(Lk2) constraints.

Proof. For every t = 0, . . . , L, let (Φ
nj
x (t),Φ

nj
u (t), V nj(t)) correspond to (Φx(t),Φu(t), V (t))

after removing the elements that are set to zero via the sparsity constraints (7.26g)
and (7.26h). It is easy to see that OPTj(γ) can be written in terms of
({Φnj

x (t)}, {Φnj
u (t)}, {V nj(t)}) with a total number of O(Lk2) variables. The rest of the proof

is devoted to show how to reduce the number of constraints in OPTj(γ) to O(Lk2). Let Φ
nj
x ,

Φ
nj
u , and Vnj denote

∑L
t=1 Φ

nj
x (t)z−t,

∑L
t=1 Φ

nj
u (t)z−t, and

∑L
t=0 V

nj(t)z−t, respectively. The
constraints (7.40b)-(7.40d) can be written compactly as

[
zI − Â −B̂ −I

] Φx

Φu

V


:,j

= I:,j ⇐⇒ Mj

Φ
nj
x

Φ
nj
u

Vnj

 = I:,j (7.41)

Here, Mj is equal to
∑L

t=0Mj(t)z
−t, where Mj(t) is defined as

[
zI − Â −B̂ −I

]
, after

removing the columns that correspond to the zero elements of
[
Φx(t)

> Φu(t)
> V (t)>

]>
j,:

enforced by the sparsity constraints. The matrix Mj has at most n rows and 2k2+k columns.
On the other hand, every column of

[
zI − Â −B̂

]
has at most k + 1 number of nonzero

elements. Similarly, every column of −I has exactly one nonzero element. Therefore, a
simple calculation yields that Mj can have at most 3k2 + k number of nonzero rows. This
together with the definition of Mj implies that (7.40b)-(7.40d) can be reduced to O(Lk2)
linear constraints. Finally, (7.40e) and (7.40f) can be trivially written as a set of O(Lk2)
linear inequalities by introducing O(Lk2) slack variables. This completes the proof.

It is worthwhile to mention that the above lemma is a generalization to the dimension
reduction algorithm introduced in [259].

Remark 19. Note that for every index j, the aforementioned reduced QP can be efficiently
constructed in an offline fashion before running Algorithm 4 detailed below, provided that
the estimated system matrices (Â, B̂) and the sparsity constraints (7.40g) and (7.40h) are
given in sparse matrix formats, such as Coordinate list [108]. While we do not discuss the
structure of such representations, we note that the complexity of constructing these reduced
QPs is dominated by that of Algorithm 4.
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Remark 20. Without loss of generality, we assume that the proposed optimization (7.26)
is finitely-representable on a Turing machine. In other words, the total number of digits
required to write (or accurately approximate) the input data for (7.26) is a finite number D.
This is a common assumption made for the complexity analysis of optimization problems;
see e.g. [253].

Definition 33. An algorithm solves an optimization problem that is finitely-representable
on a Turing machine to η-accuracy if the following statements hold:

- It returns a feasible solution if and only if the problem is feasible,

- Upon feasibility, it returns a feasible solution whose objective value is greater than the
optimal objective value by no more than η.

Algorithm 4 delineates the proposed method for solving (7.26). In particular, it uses a
golden-section search method to optimize over the scalar variable γ, while solving multiple
small QPs at each iteration to obtain g(γ). At any iteration, g(γ) is set to +∞ if at least
one of OPT1(γ), . . . ,OPTn(γ) is infeasible. Suppose g(γ) has the domain [γ0,+∞) for some
γ0 ≥ 0. It is easy to verify that a finite value for γ0 always exists; however, γ0 < 1 is required
for (7.26) to be feasible.

Define t and t as the smallest and largest integers such that

η1 =

(
2

1 +
√

5

)t
≤ η1, η1 =

(
2

1 +
√

5

)t
> η1 (7.42)

Furthermore, define

∆γ =

(
4

1 +
√

5
− 1

)
η1 (7.43)

Let gap(γc) and gap(γd) denote the objective values of the problems OPT(γc) and OPT(γc)
when they are solved to η2-accuracy. At each iteration, Algorithm (4) shrinks the interval

[γa, γb] by comparing the values of gap(γc)

1−γc and gap(γd)

1−γd
, while ensuring that γL ∈ [γa, γb].

However, notice that gap(γc) and gap(γd) are the approximations of g(γc) and g(γd), where
the possible approximation error is due to the limited accuracy of the interior point method.
The incurred error in the computation of g(γc) and g(γd) may be aggregated and result in
wrong comparisons between their actual values, thereby violating γL ∈ [γa, γb]. To avoid
such wrong comparisons, one needs to ensure that the approximation errors gap(γc)− g(γc)
and gap(γd)− g(γd) are appropriately controlled at every iteration of the algorithm; this will
be shown in the next theorem. In particular, we will show how to control the accuracy of the
used interior point method for solving the sub-problems OPTj(γc) and OPTj(γd) in order
to ensure γL ∈ [γa, γb] at every iteration of the algorithm. Define the quantity

∆g = min
γ∈[γ0,γL−∆γ ]∪[γL,1−∆γ)

∣∣∣∣ g(γ + ∆γ)

1− (γ + ∆γ)
− g(γ)

1− γ

∣∣∣∣ . (7.44)
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Algorithm 4 Sequential Quadratic Programming

1: input: Estimates Â, B̂, estimation error ε̄, and accuracy parameters η1, and η2

2: output: {Φx(t)}, {Φu(t)}, {V (t)}, and g(γ)
3: obtain g(1) by solving n sub-problems OPT1(1), . . . ,OPTn(1) to η2

n
-accuracy using in-

terior point method.
4: if g(1) = +∞ then
5: return Infeasible
6: else
7: set γa ← 0, γb ← 1, γc ← 1− 2

1+
√

5
, and γd ← 2

1+
√

5

8: while |γb − γa| > η1 do
9: Solve OPT(γc) by solving n sub-problems OPT1(γc), . . . ,OPTn(γc) to η2

n
-accuracy

using interior point method. Let the corresponding objective value be denoted as
gap(γc).

10: Solve OPT(γd) by solving n sub-problems OPT1(γd), . . . ,OPTn(γd) to η2

n
-accuracy

using interior point method. Let the corresponding objective value be denoted as
gap(γd).

11: if gap(γc)

1−γc < gap(γd)

1−γd
then

12: set γb ← γd
13: else
14: set γa ← γc
15: end if
16: γc ← γb − 2

1+
√

5
(γb − γa) and γd ← γa + 2

1+
√

5
(γb − γa)

17: end while
18: γ̄ ← (γa + γb)/2
19: obtain ({Φ̄x(t)}, {Φ̄u(t)}, {V̄ (t)}, g(γ̄)) by solving n sub-problems

OPT1(γ̄), . . . ,OPTn(γ̄) to η2

n
-accuracy using interior point method. Let the

corresponding objective value be denoted as gap(γ̄).
20: if gap(γ̄) = +∞ then
21: return Infeasible
22: else
23: return ({Φ̄x(t)}, {Φ̄u(t)}, {V̄ (t)}, γ̄)
24: end if
25: end if
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According to the Proposition 9, the function g(γ)
1−γ is strictly monotone in the intervals [γ0, γ

L]

and [γL, 1) which implies that ∆g > 0.

Theorem 33. Suppose that the input data for (7.26) can be represented with D digits, and
that η2 satisfies D ≤ C log(1/η2) for a universal constant C. Then, Algorithm 4 terminates
in O(L3.5k7n log(n)log(1/η1)log(1/η2)) time. In particular:

1. If γ0 ≤ 1 − η1/2 and η2 ≤ min
{

2
1+
√

5
∆gη1, η1

2
}

, then the algorithm returns a feasible

solution with |γ̄ − γL| ≤ η1/2. Furthermore,

gapprox(γ̄)

1− γ̄ − g(γL)

1− γL ≤
(

g(γ0)

2(1− γL)2γL
+ 2

)
η1 (7.45)

provided that η1 ≤ 2(1− γL)2.

2. If γ0 > 1− η1/2, then the algorithm declares infeasibility.

Proof. See Appendix 7.A.

Bootstrapping:

Recall that formulating the optimization problem (7.26) relies on the availability of the
upper bound ε̄ on the actual estimation error ε = max{‖Â−A?‖2, ‖B̂−B?‖2}. It is evident
from (7.26) that the performance (and even feasibility) of the proposed control design method
heavily relies on the conservativeness of ε̄: a large value for ε̄ results in more restrictive
constraints on the system responses. Although in some applications, an upper bound for ε
may be readily available based on the domain knowledge, its value may be too conservative
for practical purposes. A simple method to alleviate this issue is to resort to a bootstrap
approach, where the goal is to estimate the estimation error, merely based on the available
data samples. In particular, given the estimates Â and B̂, we draw sample trajectories
from the empirical distribution induced by (Â, B̂) in N rounds. Using these synthetically
generated sample trajectories at each round i, we re-estimate the system dynamics Â(i)

and B̂(i). Finally, an upper bound on the estimation error is obtained by setting ε̄ as
100× (1− δ) percentile of max{‖Â(i) − Â‖2, ‖B̂(i) − B̂‖2}, i = 1, . . . , N , for some parameter
δ > 0. Roughly speaking, the obtained estimation error is an upper bound on the actual one
with probability of at least 1− δ. Similar bootstrap methods are widely used for estimating
various characteristics of estimators, such as their bias, variance, etc. A more detailed
analysis on bootstrap methods can be found in [71, 113, 225].

Algorithm 5 describes the proposed method for obtaining ε̄. In this algorithm, the matrix
M is defined as (7.30), where P refers to the solution of the Lyapunov equation (7.31) after
replacing the true system matrices with the estimated ones.
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Algorithm 5 Bootstrapping

1: input: Initial state x0, estimates Â, B̂, initial controller K0, distribution parameters ηw,
ηv, M , confidence parameter δ, and number of rounds N

2: output: upper bound on the estimation error ε̄
3: for i in {1, . . . , N} do
4: x(0) ∼ N (0,M)
5: for τ in {0, . . . , T − 1} do
6: u(τ)← K0x(τ) + v(τ), where v(τ) ∼ N (0, η2

vI)
7: x(τ + 1)← Âx(τ) + B̂u(τ) + w(τ) where w(τ) ∼ N (0, η2

wI)
8: end for
9: Obtain (Â(i), B̂(i)) by solving LASSO(1, 1 : T − 1) with

(
{x(τ)}Tτ=0, {u(τ)}T−1

τ=0

)
as input

10: ε̄(i) ← max{‖Â(i) − Â‖, ‖B̂(i) − B̂‖}
11: end for
12: return ε̄ as the 100× (1− δ) percentile of

{
ε̄(i)
}N
i=1

.

7.7 Numerical Results

To illustrate the effectiveness of the developed control design framework, we focus on a
class of graph Laplacian systems with chain structures. Let the scalars xi(t), ui(t), and wi(t)
denote the state, input, and the disturbance corresponding to the subsystem i. Consider the
following dynamics:

xi(t+ 1) = (Di+1−2ai)xi(t)+ai(xi−1(t)+xi+1(t))+biui(t)+wi(t) if 2 ≤ i ≤ n− 1

xi(t+ 1) = (Di + 1− ai)xi(t) + aixi−1(t) + biui(t) + wi(t) if i = n

xi(t+ 1) = (Di + 1− ai)xi(t) + aixi+1(t) + biui(t) + wi(t) if i = 1

(7.46)

where Di and ai are scalar numbers, and bi is a binary number taking the value 1 only if
subsystem i is directly controlled by an input signal; see Figure 7.7.1 for a simple realization
of this model. We assume that w(t) ∼ N (0, I) in all of our experiments. Inspired by the
exponential decay of the truncation error with respect to the FIR length L in Theorem 31,
we set the parameter α in (7.26) to 1.2−L throughout our simulations. Similar to [258],
we assume that the control structure is local and subject to communication delays, both of
which can be translated to sparsity constraints on the system responses. In particular, given
the locality parameter d, we are interested in designing a control structure with the property
that the effect of a disturbance signal wi(t) hitting subsystem i is localized to a region defined
by its d-hop neighbors. Recalling the definition of the system responses (7.6), one can easily
verify that the local containment of the effect of disturbance noise within d-hop neighbors
is equivalent to enforcing banded sparsity structures on Φx and Φu with the bandwidth of
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x1 x2 x3 x4 x5

w1 w2 w3 w4 w5

u1 u3 u4

Figure 7.7.1: A realization of the graph Laplacian systems with chain structures. The number
of state and input signals are equal to 5 and 3, respectively.

at most d. Furthermore, given the communication speed parameter c, the sub-controllers
can interact c times faster than their corresponding subsystems. In particular, given the
subsystems i and j with bi = bj = 1 and |i − j| = k, the control action ui(t) can use xj(τ)
and uj(τ), provided that τ ≤ (t − k)/c. The local and communication constraints can be
translated into sparsity constraints on the system responses. In particular, define

Cx(t) = S
(
supp(A)min{d−1,max{0,c(t−1)}}) (7.47)

Cu(t) = S
(
supp(B)> · supp(A)min{d−1,max{0,c(t−1)}}) (7.48)

for every t ∈ {1, . . . , L}. Then, the constraints Φx(t) ∈ Cx(t) and Φu(t) ∈ Cu(t) imply that
the resulted controller satisfies the prescribed local and communication constraints. More
details on these derivations can be found in [258]. As an example, Figure 7.7.2 shows the
sparsity patterns of the system responses for d = 5 and c = 2.

All the simulations in this section are run on a laptop computer with an Intel Core i7 quad-
core 2.50 GHz CPU and 16GB RAM. The reported results are for a serial implementation
in MATLAB using the CVX framework and the MOSEK solver with default settings.

Stability analysis

In the first experiment, we consider a small-scale instance of the problem and study
the robustness of the designed controller with respect to the uncertainties in the model. In
particular, the considered system has 8 states, m of which are randomly chosen and equipped
with input signals, for m ∈ {5, 6, 7, 8}. We choose ai = 1/3 for every i ∈ {1, . . . , 8}. In order
to make the open-loop system marginally unstable, we set Di = 0.05 for i ∈ {2, . . . , 7} and
D1 = D8 = 0.05 − 1/3. We also assume 10% element-wise uncertainty in the estimated
system matrices Â and B̂. In other words, Âij is randomly chosen from the interval [A?ij −
0.1|A?ij|, A?ij + 0.1|A?ij|] for every (i, j) ∈ {1, . . . , 8}2. Similarly, B̂kl is randomly chosen
from the interval [B?kl− 0.1|B?kl|, B?kl + 0.1|B?kl|] for every (k, l) ∈ {1, . . . , 8}× {1, . . . ,m}.
Finally, assume that the estimation error ε = max{‖Â−A?‖2, ‖B̂−B?‖2} is known. Later, we
will relax these assumptions and estimate Â, B̂, and ε directly from the sample trajectories,
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Figure 7.7.2: The sparsity pattern of the system responses {Φx(t)}4
t=1 and {Φu(t)}4

t=1 when
d = 5 and c = 4. We assume that n = 20 and bi = 1 for every other sub-system. The top
row (from left to right) shows the sparsity patterns of Φx(1), . . . ,Φx(4). The bottom row
(from left to right) shows the sparsity patterns of Φu(1), . . . ,Φu(4).

using the system identification and bootstrap methods that are introduced in Subsections 7.5
and 7.6. The FIR length L is set to 10. Finally, we set the locality parameter d and the
communication speed parameter c to 3 and 2, respectively.

The goal in this simulation is to illustrate the robustness of the introduced distributed
controller, compared to the nominal distributed (designed based on localized SLS approach
in [258]) and centralized controllers (designed using Ricatti equations) that treat Â and B̂ as
the true parameters of the system without taking into account their estimation errors.3 For
each input dimension m ∈ {5, 6, 7, 8}, we generate 100 independent instances of the problem
and design the robust distributed, nominal distributed, and nominal centralized controllers.
Figure 7.7.3 shows the ratio of the instances for which each controller stabilizes the sys-
tem. As can be seen, the proposed robust distributed controller outperforms the nominal
distributed controller when m is equal to 6,7, and 8. In particular, the nominal distributed
controller either did not exist or failed to stabilize the true system for 100% and 98% of
the instances when m is equal to 6 and 7, significantly underperforming compared to the
robust distributed controller. Furthermore, the decrease in m deteriorated the performance
of the nominal and robust distributed controllers. In particular, for m = 5, both controllers
ceased to exist for all of the instances. This is indeed not a surprising observation: roughly
speaking, designing a distributed controller with restrictive conditions on its locality and
communication speed becomes harder as the input dimension decreases. On the other hand,
the centralized controller stabilized the true system for 70% of the instances. Notice that

3Note that the nominal controller is also known as certainty equivalent controller in the literature; see [9,
176].
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Figure 7.7.3: The ratio of the robust distributed, nominal distributed, and nominal central-
ized controllers that stabilize the true system.

this controller is free of local and communication constraints and hence, its success rate
is independent of the input dimension. Overall, the proposed robust distributed controller
outperforms the nominal distributed and centralized controllers, provided that the input
dimension is not too small.

Another benefit of the proposed controller compared to its nominal counterparts is its
ability to identify whether there is “too much uncertainty” in the model. In particular, the
infeasibility of the proposed optimization problem (7.26) implies that the estimation error in
the model is too large to be accommodated by a robust controller; indeed, such information
cannot be inferred by a nominal controller since it is oblivious to the uncertainties in the
model.

End-to-end performance

Next, we showcase the end-to-end performance of the proposed robust distributed con-
troller in larger systems. Given a graph Laplacian system, we assume that its dynamics are
unknown and first identify the system matrices with a single sample trajectory using the
proposed Lasso-based estimator (7.29). Then, we obtain an upper bound on the estimation
error using the bootstrap method introduced in Algorithm 5. Finally, we design the robust
distributed controller using Algorithm 4.

Consider the system dynamics (7.46) with n = 40, where each subsystem is equipped
with an input signal (i.e. B? = I). Assume that Di = 0 and ai = 0.2 for every i ∈ {1, . . . , n}.
We further multiply the resulting matrix A? by 0.99 in order to make it marginally stable.
To identify the dynamics, we excite the system with a sequence of randomly generated
input signals u(t) ∼ N (0, 0.1I) for t = 0, 1, . . . , T . The initial controller K0 is set to zero
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(a) Estimation errors (b) Performance

Figure 7.7.4: (a) The true and bootstrapped estimation errors with respect to the learning
time. (b) The end-to-end performance of the designed robust distributed controller with
respect to learning time and for different FIR lengths. The shaded areas show the quartiles.

since the open-loop system is stable. After estimating the system dynamics, we obtain the
bootstrapped estimation error using Algorithm 5 with the confidence parameter δ = 0.05
and the number of rounds N = 500.

Figure 7.7.4a shows the true and bootstrapped estimation errors with respect to the
learning time T . It can be seen that the bootstrapped error is a reliable upper bound on
the true estimation error. Given the estimated system matrices and the bootstrapped error,
we design the robust distributed controller using Algorithm 4. Figure 7.7.4b illustrates the
end-to-end performance of the designed controller with respect to the learning time T and
for different FIR lengths L, compared to the oracle cost4. It can be seen that the designed
distributed controller performs similarly to the oracle one, even when learning time T is as
short as 150, which is approximately equal to the number of nonzero elements in (A?, B?).
Furthermore, the performance of the controller improves as the estimation error shrinks or,
equivalently, the learning time increases. Furthermore, there is a non-negligible improvement
in the performance of the designed controller if the FIR length is increased from 4 to 8.
However, the improvement in performance is marginal if the FIR length is increased from 8
to 12, indicating that the L = 8 is a reasonable choice for the designed distributed controller.

Finally, we evaluate the runtime of Algorithm 4 for different system dimensions. Consider
the same dynamics for the system as before, with n changing from 20 to 150. Figure 7.7.5
shows the empirical runtime of the proposed algorithm. A log-log regression yields an em-

4To obtain the oracle cost, we solved the oracle optimization (7.12) to near-optimality after restricting
the system responses to FIR filters with length 100. We empirically observed that a further increase in the
FIR length has little to no effect on the controller cost
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Figure 7.7.5: The empirical runtime of the algorithm with respect to the system dimension
(i.e., n+m), along with its log-log regression.

pirical time complexity of O(n1.004) for the algorithm, being in line with the theoretical time
complexity of the algorithm in Theorem 33. Finally, it is worthwhile to mention that Algo-
rithm 4 is highly parallelizable. In particular, given a machine with n cores, the sub-problems
in Algorithm 4 can be solved in parallel and, consequently, the complexity of the proposed
algorithm becomes independent of the system dimension.

7.8 Summary

We propose a two-step procedure for designing robust distributed controllers for systems
with unknown linear and time-invariant dynamics. Our method first actively probes the
system to learn a model, and then designs a robust distributed controller by taking into
account the uncertainty of the learned model. By taking advantage of recently-developed
sparsity-promoting techniques in system identification, together with the localized System
Level Synthesis (SLS) framework, we propose the first stabilizing and learning-based dis-
tributed controller with guaranteed sub-linear sample complexity and near-linear (constant
order if we assume parallel computation) computational complexity. The graceful scalabil-
ity of the proposed method makes it particularly useful for the control of large-scale and
unknown systems with sparse interconnections.
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Appendix

7.A Omitted Proofs

Proof of Theorem 31

To prove Theorem 31, we consider the following operator

‖G‖E1 = sup
z∈T
‖G(z)‖1 (7.49)

for every G ∈ RH∞, where T is the complex unit circle.. The next lemma describes useful
properties of the above operator.

Lemma 48. The following statements hold:

1. (Semi-norm property) The operator ‖ · ‖E1 is a well-defined semi-norm on RH∞.

2. (Sub-multiplicativity) For G,H ∈ RH∞, we have ‖GH‖E1 ≤ ‖G‖E1‖H‖E1.

3. (Hölder’s Inequality) For G ∈ RH∞, we have ‖G‖H∞ ≤
√
‖G‖E1‖G>‖E1.

4. For G ∈ RH∞, we have ‖G‖H∞ ≤
√
k‖G‖E1, where k is the maximum number of

nonzero elements in different rows of G.

5. For G ∈ RH∞, we have ‖G‖E1 ≤
∑∞

t=0 ‖G(t)‖1.

Proof. The first statement follows immediately from the definition of ‖ · ‖E1 . Consider the
following properties of the induced norms for matrices:

i. ‖G(z)H(z)‖1 ≤ ‖G(z)‖1‖H(z)‖1 for every z ∈ T.

ii. ‖G(z)‖2 ≤
√
‖G(z)‖1‖G(z)>‖1 for every z ∈ T.

iii. ‖G(z)‖1 ≤ k‖G(z)>‖1 for every z ∈ T.
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The second, third, and forth statements of the lemma are followed respectively from (i), (ii),
and (iii) combined with (ii), respectively. To show the validity of the last statement, note
that

‖G‖E1 ≤ sup
z∈T

∥∥∥∥∥
∞∑
t=0

G(t)z−t

∥∥∥∥∥
1

≤ sup
z∈T

∞∑
t=0

∥∥G(t)z−t
∥∥

1
≤

∞∑
t=0

‖G(t)‖1 (7.50)

We provide the proof for Theorem 31 in two steps:

1. We derive conditions under which a feasible solution to (7.26) can be constructed based
on the optimal solution of the oracle optimization.

3. We derive the gap between the cost of the designed feasible solution and the oracle
cost in terms of ε̄ and L. The obtained gap will be used to derive an upper bound on
the optimality gap of the synthesized distributed controller.

The following Lemma characterizes a feasible solution to (7.26) based on the system responses
of the oracle controller.

Lemma 49. Suppose that

ε̄ <
(1− ρ?) min{α, 1− α}

16C?ρ?
k−2, L >

2 log(k) + log
(

2
√

2(‖A?‖∞+‖B?‖∞)
1−α

)
1− ρ?

(7.51)

and that (Â, B̂) has the same sparsity as (A,B). Then,

Φ̃x(t) = Φ?
x(t), t = 1, . . . , L (7.52a)

Φ̃u(t) = Φ?
u(t), t = 1, . . . , L (7.52b)

Ṽ (t) =


0 if t = 0
−∆AΦ?

x(t)−∆BΦ?
u(t) if t = 1, . . . , L− 1

−ÂΦ?
x(L)− B̂Φ?

u(L) if t = L

(7.52c)

γ̃ =
2C?ρ?
1− ρ?

(
1

α
k3/2 +

2
√

2

1− αk
2

)
ε̄+

√
2

1− α · (‖A?‖∞ + ‖B?‖∞)C?k
2ρL? , (7.52d)

is feasible for (7.26).

Proof. To show the feasibility of the proposed solution, first note that (7.51) results in

2C?ρ?
1− ρ?

(
1

α
k3/2 +

2
√

2

1− αk
2

)
ε̄ < 1/2,

√
2

1− α · (‖A?‖∞ + ‖B?‖∞)C?k
2ρL? < 1/2 (7.53)

where, in the second inequality, we used the relation − log(ρ∗) ≥ 1 − ρ?. This implies that
γ̃ < 1. Furthermore, the definition of (Φ̃x(t), Φ̃u(t), Ṽ (t)) can be used to show that the
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constraints (7.26b), (7.26c), (7.26d), (7.26g), (7.26h) are satisfied. It remains to show the
feasibility of (7.26e) and (7.26f). One can write

max
j

L∑
t=0

‖Ṽ:,j(t)‖1 ≤(‖Â‖∞‖Φ?
x(L)‖1+‖B̂‖∞‖Φ?

u(L)‖1)+
L−1∑
t=1

ε (‖Φ?
x(t)‖1 + ‖Φ?

x(t)‖1)

≤(‖A?‖∞ + ‖B?‖∞ + 2ε̄)kC?ρ
L
? +

2C?ρ?
1− ρ?

kε̄

≤(‖A?‖∞ + ‖B?‖∞)kC?ρ
L
? +

4C?ρ?
1− ρ?

kε̄

≤1− α√
2
k−1γ̃

≤(1− α)k−1/2
v γ̃ (7.54)

where, in the last inequality, we used the fact that kv ≤ 2k2. Similarly, we have

L∑
t=1

∥∥∥∥∥
[
ε̄Φx(t)
ε̄Φu(t)

]
:,j

∥∥∥∥∥
1

≤
(

L∑
t=1

‖Φ?
x(t)‖1 + ‖Φ?

u(t)‖1

)
ε̄

≤ 2C?ρ?
1− ρ?

kε̄

≤ αk−1/2γ̃

≤ αk
−1/2
φ γ̃ (7.55)

where we used the fact that kφ ≤ k. This completes the proof.

Now we are ready to present the proof of Theorem 31.
Proof of Theorem 31: Let

(
γL,
{

ΦL
x (t)

}
,
{

ΦL
u(t)

}
,
{
V L(t)

})
be the optimal solution

of (7.26). Consider the transfer functions ΦL
x =

∑L
t=1 ΦL

x (t)z−t, ΦL
u =

∑L
t=1 ΦL

u(t)z−t, and

VL =
∑L

t=0 V
L(t)z−t. Define ∆L = ∆AΦL

x + ∆BΦL
u + VL. One can easily verify that

[
zI − A? −B?

] [ΦL
x

ΦL
u

]
= I + ∆L (7.56)
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Now, we show that ‖∆L‖H∞ < 1. To this end, we write

‖∆L‖H∞ ≤ ‖∆AΦL
x + ∆BΦL

u‖H∞ + ‖VL‖H∞
≤
∥∥[∆A

ε̄
∆B

ε̄

]∥∥
2

∥∥∥∥[ε̄ΦL
x

ε̄ΦL
u

]∥∥∥∥
H∞

+ ‖VL‖H∞

(a)

≤
(∥∥∥∥[ε̄ΦL

x

ε̄ΦL
u

]∥∥∥∥
E1

∥∥∥∥∥
[
ε̄ΦL

x

ε̄ΦL
u

]>∥∥∥∥∥
E1

)1/2

+
(
‖VL‖E1‖VL>‖E1

)1/2

(b)

≤ k
1/2
φ

∥∥∥∥[ε̄ΦL
x

ε̄ΦL
u

]∥∥∥∥
E1

+ k1/2
v ‖VL‖E1

(c)

≤ k
1/2
φ max

j

{
L∑
t=1

∥∥∥∥∥
[
εΦL

x (t)
εΦL

x (t)

]
:,j

∥∥∥∥∥
1

}
+ k1/2

v max
j

{
‖V L

:,j(t)‖1

}
≤ αγL + (1− α)γL

= γL < 1 (7.57)

where (a), (b), and (c) are due to Lemma 48 and the fact that the maximum number of

nonzero elements in different rows of
[
ΦL
x (t)> ΦL

u(t)>
]>

and V L(t) is upper bounded by
kφ and kv, respectively. Together with Theorem 30, this implies that the derived controller

KL = ΦL
uΦL

x
−1

stabilizes the true system. The rest of the proof is devoted to verifying the
optimality gap for the designed controller KL. Based on (7.57) and Lemma 44, one can write

J(A?, B?,K
L) =

∥∥∥∥[Q1/2 0
0 R1/2

] [
ΦL
x

ΦL
u

]
(I + ∆L)−1

∥∥∥∥
H2

≤ 1

1− ‖∆L‖H∞

∥∥∥∥[Q1/2 0
0 R1/2

] [
ΦL
x

ΦL
u

]∥∥∥∥
H2

≤ 1

1− γL
∥∥∥∥[Q1/2 0

0 R1/2

] [
ΦL
x

ΦL
u

]∥∥∥∥
H2

(7.58)

Now, consider the transfer functions Φ̃x =
∑L

t=1 Φ̃x(t)z
−t and Φ̃u =

∑L
t=1 Φ̃u(t)z

−t, where
Φ̃x(t) and Φ̃u(t) are defined in Lemma 49. One can write

1

1− γL
∥∥∥∥[Q1/2 0

0 R1/2

] [
ΦL
x

ΦL
u

]∥∥∥∥
H2

≤ 1

1− γ̃

∥∥∥∥[Q1/2 0
0 R1/2

] [
Φ̃x

Φ̃u

]∥∥∥∥
H2

≤ 1

1− γ̃ J? (7.59)

The first inequality is due to the feasibility of (γ̃, Φ̃x, Φ̃u, Ṽ). The second equality is due to
the fact that (Φ̃x, Φ̃u) are the truncations of the system responses when K? acts on the true
system to their first L time steps. This implies that

J(A,B,KL)− J?
J?

≤ 1

1− γ̃ − 1 (7.60)
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It remains to obtain an upper bound on the right hand side of the above inequality. We have

1

1− γ̃−1≤ 1

1−

 2C?ρ?
1− ρ?

(
1

α
k3/2 +

2
√

2

1− αk
2

)
ε̄︸ ︷︷ ︸

e1

+

√
2

1− α(‖A?‖∞+‖B?‖∞)C?k
2ρL?︸ ︷︷ ︸

e2


−1

=
e1 + e2

1− e1 − e2

(7.61)

Using (7.27), it is easy to verify that we have e1 ≤ 1/4 and e2 ≤ 1/4. This implies that

J(A,B,KL)− J?
J?

≤ 2(e1 + e2) (7.62)

Plugging back the definitions of e1 and e2, together with some simple algebra completes the
proof. �

Proof of Proposition 9

We need a number of lemmas in order to prove this proposition.

Lemma 50. Given vectors a, b, and a positive definite matrix M , suppose that a>Ma =
−a>Mb = b>Mb. Then, we have a = −b.

Proof. a>Ma = −a>Mb and b>Mb = −b>Ma imply a>M(a+ b) = 0 and b>M(a+ b) = 0.
Combining these equations leads to (a + b)>M(a + b) = 0. Due to the positive definiteness
of M , we have a = −b.

Lemma 51. For every feasible γ, g(γ)2 can be reformulated as the optimal solution of the
following QP:

min
x

1

2
x>Mx (7.63a)

s.t. H1x ≤ h1 + γ1 (7.63b)

H2x = 0 (7.63c)

where

- x is the vectorized concatenation of ({Φx(t)} , {Φu(t)}).

- M is a positive definite matrix,

- H1 and H2 are matrices that only depend on (Â, B̂, α, k) and Cv.
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- h1 is a vector whose nonzero elements have absolute value greater than 1.

- 1 is a vector whose elements are equal to 1.

Proof. The proof follows after writing the slack variables {V (t)}Lt=0 in terms of {Φx(t)}Lt=1

and {Φu(t)}Lt=1 and linearizing `1 norm. The details are omitted for brevity.

Proof of Proposition 9. According to Lemma 51, g(γ)2 is equivalent to (7.63) which is a
strictly convex QP. Therefore, based on the result of [27], the optimal solution of (7.63) is a
continuous function of γ when it is feasible. Therefore, g(γ)2 (and hence g(γ)) is continuous

over the interval [γ0, 1). By contradiction, suppose that g(γ)
1−γ is not unimodal. Then, the

quasiconvexity of g(γ)
1−γ in the interval [γ0, 1) implies that there must exist γ and γ̄ such that

γ0 ≤ γ < γ̄ < 1 and g(γ)
1−γ is constant in the interval [γ, γ̄]. This implies that g(γ) = c(1− γ)

and g(γ)2 = c2(1 − γ)2 for some c and every γ ∈ [γ, γ̄]. Define the active set I(γ) as the
set of the row indices of H1 corresponding to the active inequalities, i.e., the set of indices i
for which we have (H1)i,:x = (h1)i + γ. Let H1[I(γ)] be the submatrix of H1 after removing
the rows not belonging to I(γ). Without loss of generality, we assume that the matrix

H[I(γ)] =
[
H>2 H1[I(γ)]>

]>
is full row rank; otherwise, one can remove the dependent

rows of H[I(γ)] to reduce it to a full row rank matrix. Now, due to the continuity of x(γ),
there must exist γ and ¯̄γ such that γ ≤ γ < γ ≤ γ̄ and I(γ) remains the same for every

γ ∈ [γ, γ]. Let I(γ) be denoted as I∗ within this interval. Then, (7.63) is reduced to

min
x

1

2
x>Mx (7.64)

s.t. H[I∗]x = h3[I∗] + γh4[I∗] (7.65)

for every γ ∈ [γ, γ], where h3[I∗] =
[
0 h1[I∗]>

]>
and h4[I∗] =

[
0 1[I∗]>

]>
. We consider

two cases:
case 1: Suppose that I∗ is empty. This implies that h4[I∗] = 0 and therefore, g(γ) is
constant over the interval [γ, ¯̄γ] which is a contradiction.

case 2: Suppose that I∗ is non-empty and hence, h4[I∗] 6= 0. Due to the feasibility of the
affine constraints, strong duality holds. Therefore, by solving the dual of (7.64), one can
explicitly write the optimal value of (7.64) in the form of

g(γ)2 =
1

2
(h3[I∗] + γh4[I∗])>

(
H[I∗]M−1H[I∗]>

)−1
(h3[I∗] + γh4[I∗])

=
1

2

(
h4[I∗]>

(
H[I∗]M−1H[I∗]>

)−1
h4[I∗]

)
γ2

+
(
h3[I∗]>

(
H[I∗]M−1H[I∗]>

)−1
h4[I∗]

)
γ

+
1

2

(
h3[I∗]>

(
H[I∗]M−1H[I∗]>

)−1
h3[I∗]

)
(7.66)
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Since we assumed that g(γ)2 = c2(1 − γ)2 for every [γ, ¯̄γ], the following equalities must be

satisfied:

h4[I∗]>
(
H[I∗]M−1H[I∗]>

)−1
h4[I∗] =− h3[I∗]>

(
H[I∗]M−1H[I∗]>

)−1
h4[I∗]

= h3[I∗]>
(
H[I∗]M−1H[I∗]>

)−1
h3[I∗] (7.67)

Note that
(
H[I∗]M−1H[I∗]>

)−1
is positive definite due to the fact that H[I∗] is full row

rank. Therefore, Lemma 50 implies that h4[I∗] = −h3[I∗]. On the other hand, h4[I∗] has an
element with value 1 due to the assumption that I∗ is non-empty. Furthermore, according
to Lemma 51, none of the elements of h4 have magnitude equal to 1. This contradicts with
h4[I∗] = −h3[I∗] and completes the proof. �

Proof of Theorem 33

First, we show that the algorithm terminates in O(L3.5k7n log(n) log(1/η1) log(1/η2))
time. Without loss of generality, suppose that g(1) < +∞. Then, the while loop will take at
most dlog(1/η1)e iterations to satisfy |γc−γd| ≤ η1 and terminate. On the other hand, at each
iteration, one needs to solve OPT1(γc), . . . ,OPTn(γc) and OPT1(γd), . . . ,OPTn(γd) by solv-
ing 2n instances of the reduced-QPs introduced in Lemma 47. Classical results on the interior
methods show that each QP can be solved to η2

n
-accuracy in O(L3.5k7 log(n) log(1/η2)) [37,

270]. Combining these time complexities, one can verify that the algorithm terminates in
O(L3.5k7n log(n) log(1/η1) log(1/η2)).

Next, we prove the statements 1 and 2 of the theorem.
Proof of statement 2: Suppose that γ0 > 1− η1/2. Then, it is easy to verify that γa and γb
will obtain the following values at the end of the while loop:

γa = 1− η1, γb = 1 (7.68)

Therefore, 1−η1/2 will be assigned to γ̄ after the line 18 of the algorithm. This implies that
γ0 > γ̄ and g(γ) = +∞ due to the definition of γ0.
Proof of statement 1: An argument similar to the proof of the first statement can be used
to show that g(γ̄) < +∞ at the termination of the algorithm. Next, we show that we
have γL ∈ [γa, γb] at the end of the while loop. This trivially holds if the interior point
method that is used to solve OPTi(γc) and OPTi(γd) could achieve zero optimality gap, i.e.,
gap(γ) = g(γ) at every iteration. As mentioned before, this may not be the case since the
values of g(γ) are available only up to a nonzero approximation error. By contradiction,
suppose γL 6∈ [γa, γb] at the end of the while loop. Together with the unimodal property of
g(γ)
1−γ , this implies that one of the following events happens before the line 11 of the algorithm
in at least one iteration of the while loop:

- g(γc) and g(γd) are finite, γL ∈ [γd, γb],
g(γc)
1−γc ≥

g(γd)
1−γd

, and gap(γc)

1−γc < gap(γd)

1−γd

- g(γc) and g(γd) are finite, γL ∈ [γa, γc],
g(γc)
1−γc <

g(γd)
1−γd

, and gap(γc)

1−γc ≥
gap(γd)

1−γd
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Suppose the first event occurs. In particular, assume that g(γc) and g(γd) are finite, γL ∈
[γd, γb], and g(γc)

1−γc ≥
g(γd)
1−γd

. It is easy to see that γd − γc > ∆γ due to the definition of ∆γ

in (7.43). On the other hand, notice that [γc, γd] ⊆ [γ0, γ
L] and hence, g(γ)

1−γ is decreasing in

[γ0, γ
L]. Therefore, we have g(γc)

1−γc ≥
g(γd)
1−γd

+ ∆g due to the definition of ∆g in (7.44). This
leads to the following series of inequalities:

gap(γc)

1− γc
≥ g(γc)

1− γc
≥ g(γd)

1− γd
+ ∆g ≥

gap(γd)

1− γd
+

(
∆g −

η2

1− γd

)
(7.69)

where the first and last inequalities are due to the fact that gap ≥ g(γc) and gap(γd) ≤
g(γd)+η2, respectively. Furthermore, it is easy to verify that γd ≤

(
1− 2

1+
√

5

)
η1. Combining

this inequality with the assumption η2 ≤ 2
1+
√

5
∆gη1 leads to

∆g −
η2

1− γd
≥ ∆g −

1 +
√

5

2

η2

η1

≥ 0 (7.70)

Together with (7.69), these inequalities result in gap(γc)

1−γc ≥
gap(γd)

1−γd
which is a contradiction. A

similar argument can be made to show that the second event does not occur. Therefore, we
have γL ∈ [γa, γb] at the end of the while loop and therefore, |γ̄ − γL| ≤ η1/2. It remains to

show that (7.45) is valid, provided that η1 ≤ (1− γL)2. One can write

gap(γ̄)

1− γ̄ −
g(γL)

1− γL ≤
g(γ̄)

1− γ̄ −
g(γL)

1− γL︸ ︷︷ ︸
(a)

+
η2

1− γ̄︸ ︷︷ ︸
(b)

(7.71)

We provide separate upper bounds for (a) and (b). One can verify that the following relation
holds for (b):

η2

1− γ̄ ≤
2η2

η1

≤ 2η1 (7.72)

where the first and second inequalities are due to γ̄ ≤ 1− η1/2 and the assumption η2 ≤ η1
2.

Next, we provide an upper bound for (a). One can write

g(γ̄)

1− γ̄ −
g(γL)

1− γL ≤ g(γ0)

∣∣∣∣ 1

1− γL + (γL − γ̄)
− 1

1− γL
∣∣∣∣

≤ g(γ0)
|γL − γ̄|

(1− γL + (γL − γ̄))(1− γL)

≤ g(γ0)
η1/2

(1− γL − η1/2)(1− γL)
(7.73)
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where η1 ≤ 2(1 − γL)2 is used in the second inequality to ensure that the denominator is
positive. On the other hand, we have

1− γL − η1/2 ≥ 1− γL − (1− γL)2 ≥ (1− γL)γL (7.74)

Combining this inequality with (7.73) results in

g(γ̄)

1− γ̄ −
g(γL)

1− γL ≤
g(γ0)

2(1− γL)2γL
η1 (7.75)

This completes the proof. �
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Chapter 8

Conclusions and Future Work

This dissertation is aimed to develop scalable and guaranteed computational methods
for the efficient operation of complex and safety-critical systems. To this goal, we develop
tools in data analytics, optimization, and control, which are the three pillars of reliable
computation. Our results are categorized into three parts, namely machine learning, network
optimization, and system identification and control. In each of these parts, we take advantage
of the underlying structure of the real-world problems, such as their spectral or element-wise
sparsity, to develop efficient and practical computational methods. In what follows, we
briefly summarize our contributions and future directions.

8.1 Part I. Machine Learning

Graphical Lasso (GL) is a popular method for finding the conditional independence be-
tween the entries of a random vector. This technique aims at learning the sparsity pattern of
the inverse covariance matrix from a limited number of samples, based on the regularization
of a positive-definite matrix. Motivated by the computational complexity of solving the GL
for large-scale problems, Chapter 2 of the dissertation provides conditions under which the
GL behaves the same as the simple method of thresholding the sample covariance matrix.
The conditions make direct use of the sample covariance matrix and are not based on the
solution of the GL. More precisely, it is shown that the GL and thresholding techniques are
equivalent if: (i) a certain matrix formed based on the sample covariance matrix is both
sign-consistent and inverse-consistent, and (ii) the gap between the largest thresholded and
the smallest un-thresholded entries of the sample covariance matrix is not too small. Al-
though the GL is believed to be a difficult conic optimization problem, it is proved that it
indeed has a closed-form solution in the case where the sparsity pattern of the solution is
known to be acyclic. This result is then extended to general sparse graphs and an explicit
formula is derived as an approximate solution of the GL, where the approximation error
is also quantified in terms of the structure of the sparsity graph. The significant speedup
and graceful scalability of the proposed explicit formula compared to other state-of-the-art
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methods is showcased on different real-world and randomly generated data sets.
Chapter 3 of the dissertation deals with the non-negative rank-1 robust principal compo-

nent analysis (RPCA), where the goal is to recover the true non-negative principal compo-
nent of the data matrix exactly, using partial and potentially noisy measurements of the data
matrix. The main difference between the RPCA and its classical counterpart is the sparse-
but-arbitrarily-large values of the additive noise. The most commonly known methods for
solving the RPCA are based on convex relaxations, where the problem is convexified at the
expense of significantly increasing the number of variables. In this work, we show that the
original non-convex and non-smooth `1 formulation of the positive rank-1 RPCA problem
based on the well-known Burer-Monteiro approach has benign landscape, i.e., it does not
have any spurious local solution and has a unique global solution that coincides with the true
components. In particular, we provide strong deterministic and statistical guarantees for the
benign landscape of the positive rank-1 RPCA and show that the absence of spurious local
solutions is guaranteed to hold with a surprisingly large number of corrupted measurements.
While the results on “no spurious local minima” are ubiquitous for smooth problems related
to matrix completion and sensing, to the best of our knowledge, the results presented in this
chapter are the first to prove the absence of local minima when the objective function is non-
smooth. Finally, through extensive simulations, we provide strong evidence suggesting that
the proposed results may hold for the general non-negative rank-r RPCA. The extension of
our theoretical results to this generalized problem is left as a future work.

8.2 Part II. Network Optimization

Network flow problems play a central role in operations research, computer science and
engineering. Due to the complexity of these problems, the main focus has long been on
lossless flow networks and more recently on networks with linear loss functions. Chapter
4 of the dissertation studies the generalized network flow (GNF) problem, which aims to
optimize the flows over a lossy flow network. It is assumed that each node is associated with
an injection and that the two flows at the endpoints of each line are related to each other
via an arbitrary convex monotonic function. The GNF problem is hard to solve due to the
presence of nonlinear equality flow constraints. It is shown that although GNF is highly
nonconvex, globally optimal injections can be found by means of a convexified generalized
network flow (CGNF) problem. It is also proven that CGNF obtains globally optimal flows
for GNF, as long as the optimal injection vector is a Pareto point. In the case where CGNF
returns a wrong (infeasible) flow vector for GNF, the network can be decomposed into two
subgraphs such that: (i) the flows found by CGNF for one of the subgraphs are all globally
optimal, and (ii) the flows obtained by CGNF for the lines between the subgraphs are all
correct and at their limits (i.e., the lines between the two subgraphs are congested). The
set of all globally optimal flow vectors are characterized based on the optimal injection
vector found using CGNF. This set may be infinite, non-convex, and disconnected, while
it belongs to the boundary of a convex set. Finally, we generalize the GNF problem and
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its convexification to include coupling convex constraints on the flows or the injections. An
immediate application of this work is in power systems, where the goal is to optimize the
power flows at nodes and over lines of a power grid. Recent work on the optimal power
flow problem has shown that this non-convex problem can be solved via a convex relaxation
after two approximations: relaxing angle constraints (by adding virtual phase shifters) and
relaxing power balance equations to inequality flow constraints. The results on GNF prove
that the second approximation (on power balance equations) is redundant under a practical
angle assumption.

Chapter 5 of the dissertation is concerned with the optimal transmission switching in
power systems. Finding an optimal topology of a power system subject to operational and
security constraints is a daunting task. In this problem, certain lines are fixed/uncontrollable,
whereas the remaining ones could be controlled via on/off switches. The objective is to co-
optimize the topology of the grid and the parameters of the system (e.g., generator outputs).
Common techniques for solving this problem are mostly based on mixed-integer linear or
quadratic reformulations using the big-M or McCormick inequalities followed by iterative
methods, such as branch-and-bound or cutting-plane algorithms. The performance of these
methods partly relies on the strength of the convex relaxation of these reformulations. In this
chapter, it is shown that finding the optimal parameters of a linear or convex reformulation
based on big-M or McCormick inequalities is NP-hard. Furthermore, the inapproximability
of these parameters up to any constant factor is proven. Despite the negative results on the
complexity of the problem, a simple bound strengthening method is developed to significantly
strengthen mixed-integer reformulations of the OTS, provided that there exists a connected
spanning subgraph of the network with fixed lines. This bound strengthening method can
be used as a preprocessing step even in an offline fashion, before forecasting the demand
in the system. Through extensive computational experiments, it is verified that this simple
preprocessing technique can significantly improve the runtime of the mixed-integer solvers
without sacrificing optimality as is done in standard formulations with restricting constraints
in many test cases, including the IEEE 118-bus system and Polish networks.

8.3 Part III. System Identification and Control

In chapter 6, we consider the problem of sparse system identification of linear time-
invariant (LTI) systems, where the goal is to estimate the sparse structure of the system
matrices based on a single sample trajectory of the dynamics. A Lasso-type estimator is
introduced to identify the parameters of the system, while promoting their sparsity via a `1-
regularization technique. By carefully examining the underlying properties of the system—
such as its stability and mutual incoherency—we provide non-asymptotic bounds on the
accuracy of the proposed estimator. In particular, we show that it correctly identifies the
sparsity structure of the system matrices and enjoys a sharp upper bound on its estimation
error, provided that the learning time exceeds a threshold. We further show that this thresh-
old scales polynomially in the number of nonzero elements but logarithmically in the system
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dimensions.
We extend these results in Chapter 7 and propose a two-step procedure for designing

robust distributed controllers for systems with unknown linear and time-invariant dynamics.
Our method first actively probes the system to learn a model, and then designs a robust
distributed controller by taking into account the uncertainty of the learned model. By taking
advantage of our developed sparsity-promoting techniques in system identification, together
with the localized System Level Synthesis (SLS) framework, we propose the first stabilizing
and learning-based distributed controller with guaranteed sub-linear sample complexity and
near-linear (constant order if we assume parallel computation) computational complexity.
The graceful scalability of the proposed method makes it particularly useful for the control
of large-scale and unknown systems with sparse interconnections.

8.4 Future Directions

The work comprising this dissertation is a step towards building high-performance com-
putational techniques for societal problems. To move forward, interdisciplinary research
should be conducted with the goal of striking a balance between two major paradigms,
namely theory and application of computational techniques. In what follows, we will discus
some of the possible future research directions.

Distributed learning and control: Richer models. Most of the existing learning-based
control techniques are focused on either the richness of their learned model (culminating
in reinforcement learning) or the guaranteed robustness of the control actions (e.g. robust
linear-quadratic controllers), with one coming at the expense of the other. However, most
real-world systems, such as smart grids and automated transportation networks, are nonlin-
ear and safety-critical, and they must be controlled in real-time. Moving forward, we need
to develop efficient learning-based control frameworks for nonlinear dynamics, taking into
account their safety constraints. In particular, we need to design efficient learning meth-
ods with guaranteed robustness that are applicable to richer system models and control
paradigms, such as nonlinear and online (adaptive) learning-based control.

Global guarantees for data-driven nonsmooth optimization. In practice, local-search
algorithms can efficiently recover globally-optimal solutions in some of the nonsmooth opti-
mization problems in machine learning, such as robust low-rank matrix recovery. In contrast,
undesired local minima are common and hard to avoid in a number of emerging nonsmooth
problems, such as the training of deep nonlinear neural networks, as well as the robust state
estimation of power systems with large-and-sparse noise values. A common feature of these
problems is that data leads the process of decision making. A question therefore arises as to
whether there exists a unifying framework to systematically study the effect of data on the
global landscape of nonsmooth optimization problems. We consider answering this question
as an enticing challenge for future research, as the existing techniques can only target a
limited class of problems with specific structures. Furthermore, such insight can be used to
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study how to reformulate a data-driven nonsmooth optimization so that its spurious local
solutions disappear.

Massively-scalable algorithms: Bridging the gap between theory and practice. In
recent years, the scale of real-life problems has significantly outpaced the ability of existing
algorithms to operate in real-time. Despite being massive-scale, the real-world systems are
structured in many ways: they may be modeled as tree-like graphs (e.g. power and trans-
portation systems), have local structures (e.g. network of self-driving vehicles), or enjoy
sparsity in their pattern, rank, etc. (e.g. low-rank representation of data in recommender
systems). While such application-specific structures are well-known to domain experts, most
of the current computational methods remain oblivious to them. We believe that exploit-
ing the underlying structure of real-world problems is a key game changer in the pursuit
of massively-scalable computational methods. To achieve this goal, we need “bilingual” re-
searchers well-versed in both theory and practice to bridge the gap between these two major
paradigms, within the realm of computational methods.

Mathematical tools for smart infrastructures. The integration of Internet of Things
(IoT) sensors in urban infrastructure has taken us one step closer to the design of smart
and autonomous cities, pinpointing the critical role of data analytics in their efficient opera-
tions. The infrastructure of the future must process the data in real-time and make reliable
decisions. This calls for highly-efficient and data-driven computational methods that can
automatically diagnose the errors caused by natural disasters, malicious activities, or the
“human-in-the-loop”. The lack of reliability in the operation of the existing infrastructures
has been proven to be catastrophic in recent years. For instance, the major blackouts of
1977, 2003, and 2019 in Northeast United States and Canada are strong evidences highlight-
ing the inability of existing state estimation techniques in power systems to reliably predict
and prevent the cascading effect of a failure in the system. With the goal of addressing the
emerging challenges in power systems, ARPA-E has recently announced its ambitious plan to
revolutionize the operation of power grids by shifting towards data-driven approaches.1 The
final report on the 2003 blackout in the United States and Canada explicitly recommends to
“Evaluate and adopt better real-time tools for operators and reliability coordinators” in order
to ensure the safety of the power grid for the years to follow.2

This indeed calls for a novel, efficient, and trustworthy computational paradigm that
can be easily used in tomorrow’s interconnected systems; a goal that can be achieved by
pushing the boundaries of science in both optimization and data analytics, and by conducting
interdisciplinary research at the intersection of operations research, artificial intelligence, and
computer science.

1https://arpa-e.energy.gov/?q=news-item
2http://eta-publications.lbl.gov/sites/default/files/2003-blackout-us-canada.pdf

https://arpa-e.energy.gov/?q=news-item/department-energy-announces-20-million-develop-artificial-intelligence-and-machine
http://eta-publications.lbl.gov/sites/default/files/2003-blackout-us-canada.pdf
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[10] Karl Johan Åström and Peter Eykhoff. “System identification—a survey”. In: Auto-
matica 7.2 (1971), pp. 123–162.
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