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ABSTRACT OF THE THESIS

Route Clustering for Strategic Planning in Air Traffic Management

By

Adrià Segarra Torné

Master of Science in Mechanical and Aerospace Engineering

University of California, Irvine, 2015

Professor Kenneth D. Mease, Chair

The volume of air traffic in the National Air Space has been growing at a very fast pace during

recent years, and increasing demand for air travel in coming years is predicted. Strategic

Planning is a necessary tool to guarantee a safe and efficient increase of Air Traffic. An

Aggregate Model for Strategic Planning of Air Traffic Management is the framework of this

project.

Aggregate models require the creation of a network that is representative of the expected flow

and which will serve as a platform to solve flow optimization problems. We have integrated

an automatic method for route clustering – Smax method – to generate the required network.

Automatic clustering is necessary in order to efficiently cluster many individual scenarios.

Some available alternatives to determine the number of clusters are tested. The studied

alternatives provide success rates that oscillates between 49% and 68%. In addition to the

relatively low success rates, these methods require one user-input parameter, and they are

highly sensitive to it.

A different method, based on the Silhouette Score and the Dip Test measures, is developed.

The Smax method requires no user-input parameters, and it consistently provides rates of

success that approximately oscillate between the 72% and the 81%.

x



The presented clustering approach noticeably improves the rate of correct clustering cases

for the specific scenario of route clustering.
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Chapter 1

Aim of the Project

The aim of this project is to develop an automatic route clustering technique in order to

improve the quality of the resulting aggregate network which can be used as a platform to

solve air traffic flow optimization problems.
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Chapter 2

Scope of the Project

• Determine the adequate characteristics of the dataset to generate the network.

• Classify flights from the dataset in homogeneous groups.

• Define the dissimilarity metric.

• Identify outlier flights.

• Study the available clustering methods. Modify as necessary.

• Analyze the performance of the final clustering method.

2



Chapter 3

Background in Air Traffic

Management

3.1 Classical Tools and Organization of ATM

Based on [1] we can determine the basic features of the current Air Traffic Flow Management

(ATFM) model. This will help the reader understand the context where Strategic Planning

would be useful, and how it would be implemented.

3.1.1 Organization and Structure

ATCSCC

ARTCC

TRACON

Tower Personnel

GMTO

Figure 3.1: Hierarchy in ATM
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• GMTOs (General Managers of Tactical Operations): provide oversight and line au-

thority to Traffic Management Personnel. Expert Air Traffic Control (ATC) advisors.

Provide daily updates on ATM initiatives.

• ATCSCC (David J. Hurley Air Traffic Control System Command Center): Maximum

authority in ATC/ATM in the National Airspace System (NAS). Responsible for Air

Traffic Flow Management.

• ARTCCs (Air Route Traffic Control Centers): Control the aircraft in its specific

airspace, which is further divided into sectors.

• TRACON (Terminal Radar Approach Control): Control the aircraft in the terminal

airspace (5 to 40 miles from airport, or up to 10,000 feet).

• Tower Personnel: Give departure clearance, control aircraft on the ground and

within 5 miles.

A distinction must be made between Air Traffic Control (ATC) and Air Traffic Management

(ATM). The management decisions (strategic planning) are taken centrally at the ATC-

SCC, whereas the control decisions (to assure separation between aircraft and safety in the

operations) are taken locally at ARTCCs and TRACONs (and ultimately through tower per-

sonnel). The outputs of the management function are traffic management initiatives (TMIs),

also called traffic flow management (TFM) initiatives, which are implemented through the

control side.

3.1.2 ATC/ATM tools

It is necessary to present the current tools that are being used to manage the NAS. An

understanding of these tools will provide a framework for the future Strategic Planning

model.

4



• Sequencing Programs: designed to achieve a specified interval between aircraft (to

assure a safe minimum separation).

• Altitude Segregation: used to separate flows of traffic or to distribute the number

of aircraft that require access to a specific area. Low Altitude Alternate Departure

Routing, Capping and Tunneling are the main examples of these tools.

• Ground Delay Programs (GDP): procedure where aircraft are delayed at their

departure airport in order to manage demand and capacity at their arrival airport, or

in support of Sever Weather Avoidance Plan (SWAP).

• Ground Stops (GS): procedure requiring aircraft that meet a specific criteria to

remain on the ground. They may be caused by severe weather, equipment outages,

catastrophic events, saturated sectors, and others.

• Airspace Flow Programs (AFP): provide enhanced en-route traffic management

during severe weather events. It will automatically assign new EDCTs (departure

times) to those aircraft whose route would be affected by severe weather, in order to

avoid this weather (causing delays). Airborne holding and rerouting can be applied if

approved by ARTCC or TRACON, but are not considered by the program. In case

rerouting is applied, the new route is usually proposed by the user/airline.

• Flight Schedule Monitor (FSM)[2]: simulation/modeling tool used in the NAS in

support of GDPs, GS and AFPs (also airborne holding, if it must be planned). The

inputs for this tool are the scheduled flights information during a specific time-frame,

as well as some hypothetical TMIs if demand is found to be greater than capacity

(TMIs are GDPs, GS, AFPs and airborne holding). The outputs of this tool will

be specific flight information, arrival and departure rates, open arrival slots and other

pertinent traffic flow information. FSM provides a graphical and time-line presentation

of airport and airspace demand and capacity, and this information is used by ATCSCC

5



to plan the necessary TMIs. The FSM has the capability to implement TMIs to balance

demand and capacity on airports and airspace.

• Time Based Flow Management (TBFM): additional tool to adjust capacity/demand

imbalances at select airports and en-route points across the NAS.

• Traffic Management Advisor (TMA): comprehensive automated tool for planning

efficient flight trajectories from cruise altitude to the runway threshold.

• Adaptive Compression (AC): helps ensure that all slots in a program are used.

• Integrated Collaborative Rerouting (ICR): used to reroute aircraft around en-

route constrains, incorporating operator preferences where possible.

• North American Route Programs (NRP): specifies provisions for flight planning

at flight level 290 (FL290) and above, within the conterminous U.S. and Canada.

• Special Traffic Management Program (STMP): long-range strategic initiative

that is implemented when a location requires special handling to accommodate above-

normal traffic demand, e.g. a sports event.

The communication of all TMIs and important information is mainly made in two ways:

the Operational Information System (OIS) and the Advisories. The OIS is a website that

contains various relevant information, while the Advisories are distributed electronically

when necessary.

The Planning Team in charge of these tools is composed of FAA personnel at the ATC-

SCC. The ATCSCC hosts a planning telephone conference every two hours to identify any

constraints to the NAS for the next six hours. The team members present their ideas and

concerns and develop an Operations Plan that explains the constraints and how they will be

managed. A tool to aid Strategic Planning would be highly beneficial for this team.

6



3.1.3 Weather Tools

The main weather tools that are currently used by Traffic Management personnel are the

following:

• Terminal Area Forecasts (TAF): describe anticipated weather conditions at air-

ports. In the U.S, these forecasts are produced every eight hours by the National

Weather Service (NWS).

• Convective outlooks forecast the most severe thunderstorms in the U.S. for the next

18 hours. They are updated several times throughout the day.

• The Collaborative Convective Forecast Product (CCFP) is a forecast for intense

convection activity made for two-, four- and six-hour periods by a group consisting of

the NWS, the aircraft operators, ARTCC weather units and the meteorological service

of Canada.

Severe Weather Avoidance Plan (SWAP)

SWAP is a formalized program that is developed for areas susceptible to disruption in air

traffic flows caused by thunderstorms. Each air traffic facility may develop its own strategy

for managing the severe weather event. Their plan then becomes part of the overall daily

operations plan. As each weather event is unique, the response is tailored to meet the

specific forecasted and actual events of the day. The SWAP plan is issued through the

Planning Team.

3.1.4 Routes

The routes to be used are mainly taken from one of the following sources:
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• National Playbooks: collection of SWAP routes that have been pre-validated.

• Preferred Routes: routes that are requested, and have been published by ATC to

inform users of the normal traffic flows between airports.

• Coded Departure Routes (CDR): combination of coded air traffic routings and

refined coordination procedures.

Each source is used in different scenarios, and the routes are selected by ATC personnel or

requested by the user.

3.2 NextGen

The Next Generation Air Transportation System, or NextGen, is an upgrade on the U.S. air

transportation system that aims at maintaining or increasing the safety in the operations,

while allowing the predicted growth in air traffic in the upcoming years. More information

can be found in the references of [3].

3.3 Justification

The current ATFM model is the result of successive additions to the first existing tools

when commercial aviation appeared. Looking at the presented tools we can identify a clear

decentralization on the tasks performed: there is a tool for each task. In addition, these

tools are mainly focused on solving problems during brief periods of time in localized regions

of airspace, what is known as tactical planning.

Tactical planning is very necessary due to the uncertainty of the factors determining the

evolution of the air traffic. Nevertheless, a better overall organization of the air traffic flow
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over bigger regions of airspace could help reduce the use of tactical planning tools. The kind

of planning that affects great domains of airspace and deals with longer planning horizons (2-

8h) is known as strategic planning. Strategic planning as an automatized tool to aid human

decision-makers is increasingly necessary as air traffic grows in the National Air Space.

The context of this work is the development of a centralized tool to asses the strategic

planning in the whole National Air Space, accounting for the appropriate restrictions and

limitations and including the weather effects. Our focus is the creation of the aggregate

network that would be used in this optimization problem.

A global strategic planning must be integrated with the currently used tools and resources in

order to be a useful aid. In the context of the network creation, this involves a correct choice

of the dataset, which will be discussed in detail later, and an appropriate representation of

the flows by the aggregate network, consisting in routes that controllers would identify as

main flows and therefore use.

For the purposes of the model evaluation, only historical flight tracks have been used. In

a real application, this could be enriched by adding the routes from the alternative sources

mentioned in Subsection 3.1.4 Routes. This is not a crucial step, though, as the histori-

cal flight tracks should already include most of the routes represented in these alternative

sources, for a big enough dataset. The addition or omission of this additional routes may

have operational effects, but it has no effect on the clustering method study that will be

discussed on this project.

9



Chapter 4

Previous Work

The work that will be carried out during this thesis is an addition to the existing work

of Alessandro Bombelli, Llúıs Soler and Prof. Kenneth Mease. Reading of [4] is highly

encouraged, as it is a necessary reference to understand the context of the work that will be

conducted here. For convenience, the summary of that publication is added:

“The Aggregate Route Model for strategic Traffic Flow Management is presented. It is

an Eulerian flow model whose cells are discrete elements of unidirectional point-to-point

routes, each cell with the same transit time. The aggregate routes are determined from

flight data based on similarity measures. Spatial similarity is judged by the Fréchet distance

and temporal similarity by average speed. The traffic controls accounted for in the model

are ground delays and pre-departure reroutes. The resulting traffic flow network is then

translated into a discrete linear time-invariant system. Centralized strategic traffic flow

planning is posed as a linear programming problem. The total delay is minimized subject

to sector capacity constraints. Two examples demonstrate the planning: in the first, ground

delays are adjusted to plan traffic in the Los Angeles Center, and in the second, ground

delays and pre-departure reroutes are planned to manage a scenario with convective weather
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impeding departures from the Dallas Fort Worth airport.”

The work presented here constitutes a change on how the Aggregate Routes for this model

are created. We aim at improving both the automation of the process and the quality of the

resulting network.
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Chapter 5

Clustering Overview

5.1 Clustering Framework

Dataset

Route Clustering

Aggregate Network

Flow optimization

Figure 5.1: Main program
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Figure 5.2: Route clustering process

In Figure 5.1 the main organization of the global program is presented to provide context.

The dataset (flight tracks) is clustered, obtaining an aggregate network. This aggregate

network will serve as an input to solve the flow optimization problem. In this project we

will focus on the route clustering process, which we present in Figure 5.2.

The first steps of the clustering process can be understood as the subset generation. The

clustering process starts with the dataset consisting on files containing the information of

interest of all flights in the national airspace. Each file contains information corresponding

to all flights during one specific day. Once the days of interest have been chosen, the raw text

files (known as TRX files) are preprocessed and transformed into a format better suitable to

be read afterwards. This step noticeably increases the speed and performance of the process.

Then the flights of interest are evaluated to determine the need for speed clustering. If

clustering is found suitable, two groups are formed based on their speed.
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The next step is to further divide the dataset into subgroups of flights that share the same

origin and destination airport. The resulting groups of flights are called subsets, and the

combination of all subsets is equivalent to the original dataset. The following steps can be

grouped into what we will call geometric clustering. First the similarity matrix for each

subset must be calculated. It contains the pairwise distances for each pair of routes in a

subset. Once the pairwise distances are known, outliers must be detected, and the number

of clusters for each subset decided. Then the flights with speeds that are too dissimilar

compared to the other flights in their cluster will be discarded, to provide further dynamic

consistency to the clusters. Finally the representative route for each cluster (aggregate route)

will be obtained as a combination of all routes in that cluster.

Each subset will yield an aggregate subnetwork (combination of aggregate routes in that

subset), and the combination of all aggregate subnetworks results in the global aggregate

network, which is representative of the initial dataset.

All these steps will be explained in detail, with special emphasis in the geometric clustering.

5.2 What is Geometric Clustering

In this context we will refer to geometric clustering as the formation of groups of routes

that are geometrically similar. The correct identification of such groups will allow us to de-

scribe the flow between a specific origin/destination pair (O/D pair) using a lower dimension

network.
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Figure 5.3: Tracks from DFW to IND.
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Figure 5.4: Clusters from DFW to IND.

For example, the flow between DFW and PHX airports for a specific timeframe consists of

15



142 flight tracks, as seen in Figure 5.3. But we can visually identify two distinct regions

where most routes are concentrated. Therefore, one could describe the same flow using two

appropriate clusters (or aggregate routes) as represented in Figure 5.4.

The advantage of an aggregate representation is the considerable reduction of the network

dimension, which is very important when solving flow optimization problems. In the previous

example, the original flow of 142 routes is now represented using only 2 clusters. Nevertheless,

this approach also has some shortcomings, the most relevant being the inevitable loss of

information. It will be important to guarantee that no relevant information is lost.

In the context of a strategic planning approach, the loss of detailed information that clus-

tering implies (if carried out correctly) is considered acceptable, compared to its benefits.

5.3 Need for Automatic Clustering

Clustering processes usually require input parameters that must be tuned manually for each

clustering scenario. In our study case, an individual clustering process is required for each

origin/destination pair, as we will only cluster flights belonging to the same subset. For n

airports, the number of origin/destination pairs (with A → B 6= B → A, A and B being

airports) is

N = (n− 1)n (5.1)

so clustering must be carried out N times.

Considering only ASPM77 airports in the national airspace, N = 5, 852. Manual tuning

of parameters for all these cases would be a tedious, inefficient and imprecise task, so the

need for an automatic clustering method is justified. There are some automatic clustering
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techniques in the literature which will be discussed in the corresponding section.
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Chapter 6

Generating the Subsets

6.1 Dataset

The dataset consists of the multiple flight tracks that will be clustered to generate the

aggregate network. The flight tracks in raw format are obtained from TRX files, which

are txt files, each of them containing the relevant information for all flights in the national

airspace for one whole day. In addition to the flight tracks, these files contain additional

information like the aircraft type, O/D airports or filed flight plan among others. The process

by which this information is gathered and organized will be omitted, as it is not relevant for

the object of this project.

The first step in the generation of our dataset is to decide the best combination of days

to obtain representative clusters. Because the objective of this network is to be used as a

platform to solve flow optimization problems in potential contingency scenarios (because of

weather, sector capacity, etc.) we must make sure that enough alternatives are represented

in our network. The approach we used is to choose the 60 days with worst weather conditions

of SWAP season 2014 (April 15th through September 20th). Days with convective weather
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will contain the characteristic contingency routes being used in those situations. Other

contingency scenarios will also be represented in a dataset of this size.

The Weather Impacted Traffic Index (WITI) [5] will be used to quantify the severity of the

weather impact on a specific day. WITI is an indicator of the number of aircraft affected by

weather. The first step is the generation of a grid that covers the whole national airspace.

Then the computation of WITI at an instant of time k (typically at 1-min intervals) is as

follows [6],

(6.1)WITI(k) =
m∑
j=1

n∑
i=1

Ti,j(k)Wi,j(k)

where Wi,j(k) = 1 if severe weather is present in the grid element (i, j) at instant k or 0

otherwise, Ti,j(k) is the number of aircraft in the grid element (i, j) at instant k, and n and

m are the number of rows and columns in the weather grid, respectively. The measure used

to choose the worst-weather days is the daily WITI over our domain, which is the addition

of all the instant WITI scores during that day. We have chosen the 60 days with the highest

daily WITI scores.

The domain of choice for the study case is the whole National Air Space. The reason to

choose such a domain is the variety of scenarios it provides. If we want to be able to

automatically cluster very different subsets we must include them from an early point in the

development of the method.

We will focus on the domestic traffic taking off from Dallas Fort Worth airport (DFW) and

directed towards all other ASPM77 airports [7]. This dataset contains a wide diversity of

subsets (various length scales, densities and distributions) that is considered to be a good

representation of all the cases of interest. The developed method is general and applicable

to any given dataset and domain.

In addition to choosing the specific days of interest and the domain of study, the time of the

19



day is considered to be a relevant factor as well. During the night air traffic is, in general,

very low, and flights are allowed to take direct routes more often. In case weather must

be avoided, the deviations will be as small as possible. This is due to the lack of sector

capacity constraints and operational limitations. Including night flights (local time) in our

dataset will cause a heavy imbalance, resulting in a clear increase in route usage for the most

direct routes. This effect is similar to the one caused by including weather-free days in our

dataset. As we will see later on, we want to minimize the cluster density variations as much

as possible, and therefore only flights taking off and landing between 9am and 9pm (central

time) will be considered. Only complete flights are included in our dataset.

The final dataset consists of 17,111 flights departing from DFW to other ASPM77 airports,

taking off after 9am and landing before 9pm. The average departure rate is 24 aircraft/h. It

must be noticed that this corresponds only to departures to other ASPM77 airports, so the

total average departure rate including all departures for DFW will be higher.

Once our dataset is formed, it is important to ensure that we only cluster flights that are

similar in all aspects, as they will eventually be represented by one single route. Therefore,

the more variability there is in the features of the clustered individual routes, the higher the

error when representing them by one single aggregate route. We must accept some variability

in order to cluster, but we also want to ensure that the similarity of features within routes

is reasonable.

There are three kinds of similarity that we want to guarantee:

• Speed similarity.

• Operational similarity.

• Geometric similarity.

In the following sections we will discuss how speed similarity and operational similarity
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are guaranteed, resulting in the final subsets of flights. The next step, geometric similarity

(through geometric clustering), is the core of this work and will be treated in several chapters.

6.2 Speed Similarity

The first step to guarantee speed similarity is to calculate the average cruise speed for

each flight in our dataset. Next, if our dataset contains flights originating from more than

one airport, it is divided into smaller datasets, each of them corresponding to all flights

originating form the same airport. This is done because the following speed clustering will

be more flexible if applied to single airports than to the whole dataset.

Then, using the k-means clustering technique for each airport, 2 clusters are imposed and

formed based on the flights’ average speed. The reason for choosing 2 clusters is that, if

the flights must be separated based on their speed, the two groups we would want to form

are high speed and low speed flights that correspond to commercial aviation and general

aviation. The difference in speeds should be considerable.

But not all airports will handle both kinds of flights (or, at least, not in significant amounts).

So speed clustering may not always be necessary. To identify whether or not it is necessary

we must measure the quality of the resulting clusters to determine if they are adequate

or not. There are several indices that can be used to indicate the quality of a clustering

alternative. Some of the most popular are the Davis-Bouldin index, the Dunn index and the

Silhouette coefficient. The Dunn index aims to identify dense and well separated clusters,

which is not always the case for the studied route scenarios. The Davis-Bouldin index is

based on intra-cluster and inter-cluster separations calculated for each cluster, and therefore

gives the same weight to all clusters regardless of the number of datapoints that each of

them contains. The Silhouette coefficient is calculated for each datapoint and the set of
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Silhouette coefficients can be used as desired: a first averaging for each cluster and then an

averaging at the cluster level would yield a very similar index to the Davis-Bouldin, whereas

an overall averaging should give more importance to how adequate are the denser clusters.

However, preliminary tests of both approaches have yielded very similar results, although

further analysis should be done in the future. The method of choice will be the Silhouette

coefficient (and ultimately its average), which is introduced next.

6.2.1 Silhouette Coefficient

“Silhouettes” were introduced by Rousseeuw in 1987 as a general graphical aid for interpre-

tation and validation of cluster analysis [8]. In a Silhouettes calculation, the distance from

each data point in a cluster to all other data points within the same cluster and to all data

points in the closest cluster are determined. Thus Silhouettes provides a measure of how

well a data point was classified when it was assigned to a cluster by according to both the

tightness of the clusters and the separation between them.

The calculation of the Silhouette score for each datapoint is as follows,

(6.2)S(i) =
min (Db(i, k))−Dw(i)

max [min (Db(i, k)) , Dw(i)]

with Db(i, k) being the average distance from datapoint i to all other datapoints in another

cluster k, thus min (Db(i, k)) is the Db(i, k) corresponding to the closest neighboring cluster,

and Dw(i) being the average distance from datapoint i to all other datapoints within the

same cluster.
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Eq. (6.2) can also be expressed as

(6.3)S(i) =


1− Dw(i)

min(Db(i,k))
if Dw(i) < min (Db(i, k))

0 if Dw(i) = min (Db(i, k))

1− min(Db(i,k))
Dw(i)

if Dw(i) > min (Db(i, k))

Eq. (6.3) can better help understand the meaning of the obtained Silhouette values. A

Silhouette close to 1.0 is obtained when the average distance from a datapoint to the other

datapoints within its own cluster is smaller than the average distances to all data points in

the closest cluster. A Silhouette close to zero indicates that the datapoint could equally well

have been assigned to the neighbouring cluster. A negative Silhouette is obtained when the

cluster assignment has been arbitrary, and the datapoint is actually closer to the neighboring

cluster than to the other data points within its own cluster [9].

In this case, each datapoint (route) will be characterized by its average speed, and therefore

the distance between two datapoints will be calculated as the difference between speeds,

obtaining our dissimilarity measure. Once the 2 imposed clusters have been obtained and

S(i) has been calculated for each route, one can calculate the average Silhouette value for

the speed clustering, S̄S,

(6.4)S̄S =
1

Nr

Nr∑
1

S(i)

where Nr is the number of routes being clustered. Following are two example cases for JAX

and DAL airports.
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Figure 6.1: Silhouette scores for speed clustering, JAX.
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Figure 6.2: Silhouette scores for speed clustering, DAL.
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In each of the figures we can see the routes being grouped in clusters, and the S(i) value for

each route is represented by a horizontal line, the length of which is S(i). In addition, the

average of the average speeds of the routes in each cluster are shown (values Avg1 and Avg2),

as well as S̄S. As proposed by the original author in [8], S̄S is a measure of how adequate (or

natural) is a given cluster distribution. In our case a value of S̄S close to 1 means that speed

clustering in 2 clusters is very adequate, and negative values or values closer to 0 mean that

it is not adequate. Only the scenario with 2 clusters is studied because of physical meaning.

There may well be some situation where more than 2 clusters would be an adequate choice in

terms of S̄S, but we don’t want to complicate the speed classification in excess, and we limit

it to the two defined groups. Only if two clear clusters are identified will it be performed.

By looking at Figure 6.2, with S̄S = 0.91, we can see a consistency in the S(i) values within

each cluster, most of them being very close to 1. We can also see a considerable difference

between the average speeds in each cluster. On the other hand, in Figure 6.1, with S̄S = 0.69,

we can see a wide variety of S(i) values within each cluster, including some negative values.

This indicates that there are no clear 2 groups of speeds in that dataset. The average speeds

of each cluster are also much closer.

For this purpose, we found that setting a threshold of S̄S = 0.80 was adequate. For this

choice, all scenarios with S̄S > 0.80 will be clustered by speed and two subgroups will be

formed, and all others scenarios will not be clustered by speed.

The S̄S threshold can be modified, and other techniques can be used to decide if speed

clustering is appropriate. For example, one could use the Dip Test (introduced later) to

identify unimodal speed distributions, but the results provided by S̄S have been satisfactory.

Another approach could be to perform the speed clustering when the difference between

average speeds of the two clusters is higher than a set threshold, or when the smaller average

speed is smaller than a set threshold (corresponding to typical general aviation speeds). This
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approach could be combined with an S̄S threshold.

6.3 Operational Similarity

After classifying the flights based on their average speed (if necessary) we must guarantee

operational similarity within flights in a same subset. This is done by classifying the flights

based on their origin and destination airports. For all flights inside the same speed category,

subsets of those flights sharing the same origin and destination airport are formed.

Operational similarity is necessary in order to generate coherent clusters. If two geometrically

similar flights with similar speeds, but directed towards different neighboring airports, were

clustered together, it would be impossible to decide the destination airport for the resulting

aggregate route.

Once the flights have been further classified based on their O/D pair, we have obtained our

final subsets. Now flights in these subsets have similar speed and are operationally similar,

so they can be clustered based on geometric similarity. The geometric clustering is central

to this project and will be developed in detail in following chapters.
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Chapter 7

Clustering Alternatives

We can distinguish two main types of clustering techniques: Partitional and Hierarchical.

Their definitions are as follows (extracted from [10]):

• Partitional : Given a database of objects, a partitional clustering algorithm constructs

partitions of the data, where each cluster optimizes a clustering criterion, such as the

minimization of the sum of squared distance from the mean within each cluster.

One of the issues with such algorithms is their high complexity, as some of them

exhaustively enumerate all possible groupings and try to find the global optimum.

Even for a small number of objects, the number of partitions is huge. That’s why,

common solutions start with an initial, usually random, partition and proceed with its

refinement. A better practice would be to run the partitional algorithm for different sets

of initial points (considered as representatives) and investigate whether all solutions

lead to the same final partition.

Partitional Clustering algorithms try to locally improve a certain criterion. First, they

compute the values of the similarity or distance, they order the results, and pick the

one that optimizes the criterion. Hence, the majority of them could be considered as
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greedy-like algorithms.

• Hierarchical : Hierarchical algorithms create a hierarchical decomposition of the

objects. They are either agglomerative (bottom-up) or divisive (top-down):

– Agglomerative algorithms start with each object being a separate cluster itself,

and successively merge groups according to a distance measure. The clustering

may stop when all objects are in a single group or at any other point the user

wants. These methods generally follow a greedy-like bottom-up merging.

– Divisive algorithms follow the opposite strategy. They start with one group of all

objects and successively split groups into smaller ones, until each object falls in

one cluster, or as desired. Divisive approaches divide the data objects in disjoint

groups at every step, and follow the same pattern until all objects fall into a

separate cluster. This is similar to the approach followed by divide-and-conquer

algorithms.

Most of the times, both hierarchical clustering approaches suffer from the fact that

once a merge or a split is committed, it cannot be undone or refined.

Partitional methods like k-means can become increasingly slow for large datasets (or even for

some small particular datasets), and their solutions may vary when the clustering is carried

out several times for the same dataset. The complexity involved to obtain good results

using these algorithms (iterations, choice of initial points or cluster seeds, etc.) is another

drawback. Also, convergence to a local minimum (criterion optimization) may produce

counterintuitive results for some partitional methods. Another key limitation of k-means is

its cluster model; the concept is based on spherical clusters that are separable in a way so

that the mean value converges towards the cluster center. The clusters are expected to be of

similar size, so that the assignment to the nearest cluster center is the correct assignment.

In our dataset, clusters often have significantly different sizes. Last, algorithms like k-means
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require Euclidean distance metrics, which is something difficult to achieve for our purposes

(route clustering).

For out type of dataset, the method of choice has been agglomerative hierarchical clustering.

The speed and relative simplicity of this method make it adequate for our case, and the fact

that no iterations are required and the solution for a given dataset is always the same are also

advantageous. In addition, Hierarchical clustering accepts any kind of dissimilarity metric,

and the observations are not even used, only a dissimilarity matrix is required. Refinement

of the merges done by the hierarchical clustering could be achieved by combining it with

partitional methods, but the results obtained without this refinement are considered satis-

factory. The choice of the appropriate linkage method (discussed later) must be determined,

and several tests will be carried out.

Besides the presented two main categories, other methods exist, like density-based clustering,

grid-based clustering, model-based clustering and categorical data clustering. These or other

alternatives have not been studied, and that possibility is left open.
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Chapter 8

Dissimilarity Matrix

The dissimilarity matrix is an array in which the value of each element (i, j) represents the

dissimilarity measure (result of the dissimilarity metric) between elements i and j in the

dataset. The more dissimilar two elements are, the bigger the value of their dissimilarity

measure.

On the other hand, a similarity matrix uses a similarity metric to characterize how similar

two elements are, with bigger values meaning more similar. For hierarchical clustering, the

input must be a dissimilarity metric (commonly referred to as distance metric).

There are many available options to characterize the distance between two n-dimensional

points in a dataset. Some common options are the Euclidean distance, Squared Euclidean

distance or Manhattan distance, to name a few. The choice becomes more complicated when

we want to quantify the dissimilarity between two routes, represented by polygonal curves.

Some available options are based on the area between the curves, others are based on the

distance between points in the curves. Both approaches have some implicit problems: the

area-related approaches may not deal appropriately with curves intersecting each other, and

30



the distance approaches may not deal appropriately with curves that are only different in a

very localized region and are extremely similar everywhere else. Because in our dataset it

is more common to have curves intersecting than curves with very localized differences, we

will choose a measure based on the distance between points: the Fréchet distance, which is

widely used in the literature to characterize dissimilarity between curves.

The Fréchet distance was introduced by Maurice Fréchet in 1906 [11]. It can be understood

intuitively as follows. A man is walking a dog on a leash. Given two curves, the man can

move on one curve, the dog on the other; both may vary their speed without backtracking.

The Fréchet distance is the length of the shortest leash that is sufficient for the man and the

dog to traverse those two curves and remain connected by the leash at all times. Figure 8.1

shows an example of the physical meaning of this distance metric in a discrete scenario like

ours, where the two curves are described by a set of points.

Figure 8.1: Example of discrete Fréchet distance.

The two routes are described by the thick red and blue polygonal curves. The thin lines in

Figure 8.1 represent the connections between the positions of the man and dog at each time,

and the thick line connecting the two curves is the longest of them: the Fréchet distance.

There may be other ways to transit both curves that may result in the same ‘shortest leash’

length, but there is no way to transit them that results in a shorter leash allowing to connect

31



both man and dog at all times.

The formal definition of the discrete Fréchet distance can be found in [12]. The algorithm

used in our application to calculate the the discrete Fréchet distance is also that found in

[12]. We present it in Algorithm 1.

Algorithm 1 Discrete Fréchet algorithm

1: function dF (P,Q): real;
2: input: polygonal curves P = (u1, ..., up) and Q = (v1, ..., vq).
3: return: δdF (P,Q)
4: ca: array [1..p, 1..q] of real;
5: function c(i, j): real;
6: if ca(i, j) > −1 then return ca(i, j)
7: else if i = 1 and j = 1 then ca(i, j) := d(u1, v1)
8: else if i > 1 and j = 1 then ca(i, j) := max{c(i− 1, 1), d(ui, v1)}
9: else if i = 1 and j > 1 then ca(i, j) := max{c(i, j − 1), d(u1, vj)}
10: else if i > 1 and j > 1 then ca(i, j) := max{min(c(i−1, j), c(i−1, j−1), c(i, j−

1)), d(ui, vj)}
11: else ca(i, j) =∞
12: end if
13: return ca(i, j);
14: end function
15: for i = 1 to p do
16: for j = 1 to q do
17: ca(i, j) := −1.0;
18: end for
19: end for
20: return c(p, q);
21: end function

It is important to note that

(8.1a)δdF (P,Q) = 0⇒ P = Q

(8.1b)δdF (P,Q) ≤ δdF (P,R) + δdF (R,Q)

and therefore δdF (P,Q) defines a metric on the set of polygonal curves.

With the defined function, we will fill in our dissimilarity matrix, or Frechet Matrix (FM),
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such that

(8.2)
FM(i, j) = dF (Ri, Rj)

= δdF (Ri, Rj)

where Ri is the i− th route and Rj is the j − th route. Because

(8.3)δdF (Ri, Rj) = δdF (Rj, Ri)

FM will be a symmetric matrix.
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Chapter 9

Outlier Detection

Outlier data points are those points that are distant from other observations, or, in a broader

sense, that do not conform to the rest of data. Detecting them is crucial to obtain quality

clusters.

9.1 What are Outliers

Lets start by observing an example of outliers in a specific dataset to intuitively understand

the meaning of outlier routes in our context.
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Figure 9.1: Unfiltered flights from DFW to PHX.
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Figure 9.2: Filtered flights from DFW to PHX.

By looking at Figure 9.1 two very dense regions where most routes are concentrated can be
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identified. There are other routes that don’t follow the dominant pattern but, if we were

asked to identify the relevant flows in Figure 9.1, most of us would point out the two dense

regions corresponding to the ones in Figure 9.10. The routes that have been eliminated in

Figure 9.10 would be the outliers in this scenario.

9.2 Why Detect Outliers

Most clustering techniques have difficulty when the dataset contains outliers. Deleting them

before clustering is a crucial step, and the following examples will show why.

Figure 9.3 corresponds to an unfiltered dataset, and Figure 9.4 and Figure 9.5 are the results

of two different clustering techniques applied to the unfiltered dataset. We can see that both

clustering techniques fail at recognizing the dominant patterns because of the presence of

outliers.
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Figure 9.3: Unfiltered flights from DFW to ONT.
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Figure 9.4: Incorrect clusters from DFW to ONT.
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Figure 9.5: Incorrect clusters from DFW to ONT.

If, in stead, the dataset is filtered to detect the presence of outliers and eliminate them, the

37



expected result is obtained.
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Figure 9.6: Filtered flights from DFW to ONT.
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Figure 9.7: Correct clusters from DFW to ONT.
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Figure 9.6 corresponds to the filtered dataset (without outliers), and Figure 9.7 corresponds

to the result obtained applying any of the two clustering techniques applied in Figure 9.4 or

Figure 9.5. We see that the result obtained is now physically meaningful and it represents

the relevant flows in the dataset. Some tracks are contained somewhere in between the two

main flows, and that information has been lost in the clustering process. The density of

the main flows is much higher than that of the central routes and that’s why they are not

represented in the final clusters. This loss of information will always be present, specially in

disperse clusters.

9.3 How to Detect Outliers

There are several algorithms available that are aimed at finding clusters of different sizes,

shapes and densities in the presence of outliers. Some of them include ROCK [13], CURE

[14], DBSCAN [15], CHAMELEON [16] and FAÇADE [17]. In addition, another method

is developed in [18] and compared with the aforementioned methods. For a more detailed

explanation of these methods and a comparison with our method of choice, reading of [18]

is encouraged.

An outlier detection algorithm and a method to determine the number of clusters are de-

veloped in [18]. In this section, only the outlier detection algorithm will be presented and

discussed.

One of the main challenges of other outlier detection methods is the need for user input

parameters. These parameters must be tuned for different applications and datasets. In our

aim for a fully automatized approach, a robust outlier detection method is desired. As we

will see later, the method of choice still requires one input parameter, but the method is

much more flexible and can correctly filter outliers in a very wide variety of scenarios for one

39



single value of the parameter.

The algorithm presented in [18] is based on identifying low connectivity zones, understanding

by connectivity the number of nearest neighbors to each datapoint. Outliers can be viewed

as objects located in low density zones, or objects with low connectivity in opposition to

the higher connectivity in the intra-cluster region. Other density algorithms use a similar

approach, but they require external parameters to define the size of the target and the lower

limit for density [15].

An iterative process is proposed where some characteristics of the system are used. The

internal parameters are established based on the average nearest-neighbor distance (first pa-

rameter) and the average connectivity for all objects (second parameter). The latter depends

on the previous parameter. In a convergence process, these parameters are automatically

adjusted each time an elimination process is carried out, until the characteristics of the sys-

tem stabilize – there are no significant variations form object to object –. The detection

algorithm (from [18]) is the following,

Algorithm 2 Outlier detection algorithm

1: function outliers(FM)
2: input: distance metric (FM), P .
3: return: outliers.
4: for Rk = {4, 2} do
5: j=1
6: while discarded 6= 0 do
7: d̄j = 1

Nr(j)

∑Nr(j)
i=1 min(FM(i, [1 : i− 1, i+ 1 : end]))

8: R := Rkd̄j
9: c̄j(R) = 1

Nr(j)

∑Nr(j)
i=1 ci = 1

Nr(j)

∑Nr(j)
i=1 count(FM(i, [1 : i−1, i+1 : end])) < R)

10: Discard objects i if ci < Pc̄j(R)
11: j=j+1
12: end while
13: end for
14: end function

Notice that, on line 7 of Algorithm 2, Nr(j) is the number of non-discarded routes at iteration

j.
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The outlier detection process goes as follows. First, Rk = 4. Then, the average nearest

neighbor distance d̄j is calculated using the routes that have not been discarded so far; for

each route, the Fréchet distance to its nearest neighbor is found, and the average of all

nearest-neighbor distances is calculated and assigned to d̄j. Then, the size of the target (or

target radius) is calculated as R := Rkd̄j. Now the connectivity of each route ci is defined as

the number of routes that are closer than R to route i, and the average connectivity c̄j(R) is

calculated. Notice that the average connectivity is a function of the target radius R, because

ci is. Last, the routes with ci < Pc̄j(R) are considered outliers and discarded. This process

is repeated until no more outliers are found, and then it is all repeated for Rk = 2, a smaller

target that results in a finer filtering.

It is important to emphasize that the value of the multiplier Rk to define the target size

is not critical. As this algorithm relies on an overall comparison of the connectivity values

of all objects, similar results are obtained for a wide range of multipliers. Of course, one

should use big enough values for the multiplier so that the connectivity is higher than zero

for most points in the dataset, implying that Rk > 1. On the other hand, very big values

for Rk result in large overlapping regions and don’t characterize the system appropriately.

Therefore, low values for Rk, although larger than unity, are appropriate in general.

There is another multiplier, P , that we have specified as input in line 2. In the original

algorithm P takes the value of 1/3, which is not adequate for our purposes as we will later

see. The value of P must be determined by trial and error, but the fact it is a multiplier to

c̄j allows for one single P value to provide good results for a wide variety of scenarios.

Therefore, P must not be changed for each different filtering scenario, but rather be fixed

based on a few example subsets and then be applied to the rest of subsets. Remember that

a study of ASPM77 airports in the national airspace would yield 5,852 subsets: P can be

fixed by choosing a few different subsets of different characteristics and studying its behavior,

and then be applied to the rest of subsets or future study cases of the same nature (aircraft
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routes in the national airspace).

9.3.1 Choosing P

The parameter P is used to set the connectivity threshold that will separate outliers from

routes that belong to clusters. Routes i with ci < Pc̄j(R) are discarded, therefore, the

higher the value of P , the higher the number of discarded routes. P can be understood as

the “minimum connectivity ratio” acceptable for a route to be considered relevant, as

(9.1a)clim = P c̄j(R)

(9.1b)P =
clim
c̄j(R)

with clim being the threshold connectivity value.

Let us introduce the two study cases that will be used in the following examples.
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Figure 9.8: Unfiltered tracks to Phoenix (PHX).
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Figure 9.9: Unfiltered tracks to Memphis (MEM).

In Figure 9.8 we can see a scenario with two natural clusters of similarly high density,

relatively compact, and some outliers. The scenario in Figure 9.9 consists of two clusters as

well, but now the density variation between them is considerable. The presence of outliers

is evident in both cases.

Effects of high P (P=0.2)

Lets see the effects of applying Algorithm 2 with P = 0.2 to the presented datasets.
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Figure 9.10: Filtered tracks to PHX, P=0.2.
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Figure 9.11: Filtered tracks to MEM, P=0.2.

In the case of PHX, where the clusters have similar density, the outliers are correctly detected.
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But on the second case, from DFW to MEM, the low density cluster is incorrectly eliminated.

We want to prevent the loss of relevant information, so the value of P will have to be adjusted.

The failure for high P values in cases with large density variations between clusters is due

to the large number of high connectivity values ci caused by the dense clusters, which raise

the average value c̄j, and the routes in the less dense clusters end up having a connectivity

ci < Pc̄j(R). It is not impossible to deal with density variations, but P has to be adjusted.

Effects of low P (P=0.03)

Following are the results of applying Algorithm 2 using P = 0.03.
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Figure 9.12: Filtered tracks to PHX, P=0.03.
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Figure 9.13: Filtered tracks to MEM, P=0.03.

In this case we obtain the expected results. It is important to notice that the filtered results

for PHX in Figure 9.12 have not changed much with respect to Figure 9.10, but the results

for MEM now include the less dense cluster – and also some subtle outliers around the dense

cluster –. The reason behind this is that outliers are detected comparing their connectivity

to the average connectivity. Thus for situations like Figure 9.8 where all clusters have high

(and similar) densities there is a wide range of values of P for which we obtain correct results,

because the difference between the connectivity of the outliers and the connectivity of the

clustered routes is very large. On the other hand, clusters of low density are sensitive to the

values of P . Thus, low values of P will provide satisfactory results in both situations.

Conclusions

High values of P behave correctly in the presence of dense clusters of similar density. When

there are considerable cluster density variations, high P values may eliminate the less dense
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clusters. In all cases, severe outliers and subtle outliers are eliminated.

The choice of a low P value is necessary in order to not eliminate relevant information when

there are big differences in cluster density. Low P values will still behave good in the presence

of dense clusters of similar density, eliminating most outliers but occasionally not eliminating

small structures of sub-clusters that may not be relevant – this structures will not affect the

resulting number of clusters –. When the clusters have large density variations, low P values

will not eliminate the less dense clusters, and some outliers (not severe) will be left around

the main clusters. Therefore the clustering process will still be challenging because of the

left outliers.

After some iterations using different values of P , P = 0.03 is chosen for all examples, and

has provided satisfactory results in very different situations. There is flexibility in choosing

the value of P and other values close to 0.03 will provide very similar results.

9.4 What to Do With Outliers

There are several possibilities about what to do with the detected outliers. In some situa-

tions it may be necessary to reassign the outliers to some of the formed clusters, if found

appropriate. In our case this step is not needed as we are only interested in the end result

(the aggregate routes) and there is no need to assign all routes to some cluster – we can

simply eliminate them –. The reassignment would not substantially change the final shape

of the clusters, as the datasets contain enough routes. In very small datasets this step could

be beneficial.

Another option would be to look for other clusters in the outliers. This option would be

necessary if high P values were used, because relevant information could be contained in

the outliers. However, the process of reclustering outliers is not simple, as usually the same
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clusters that were obtained in the first clustering step will be obtained in subsequent steps,

until some new clusters are formed. By the time new clusters are formed, that information

may or may not be relevant.

Our approach is to use low P values to ensure that no relevant information is contained in

the outliers, and eliminate them. The fact that some outliers are still left will be dealt with

in the following steps.
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Chapter 10

Finding the Number of Clusters

10.1 Linkage and Dendrogram

It is our goal now to introduce the concepts of linkage and dendrogram used in hierarchical

clustering. They are closely related and will be presented simultaneously.

Agglomerative hierarchical clustering starts with each element in a separate cluster and then

combines the clusters sequentially, reducing the number of clusters at each step until all

objects belong to only one cluster. The first connection is necessarily between the two most

similar elements, and it is then necessary to define the similarity between the newly formed

group and the remaining elements. The way in which this similarity is measured is the

linkage method. It is important to remark that for a given similarity metric of choice, each

linkage method will result in different similarity measures between groups.

The dendrogram is a way to visualize the linkage distances (cophenetic distances) between

the groups or elements in a dataset. In a dendrogram plot the x axis contains one entry for

each element in the dataset (route IDs in this case), and each pair of groups is merged at
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a specific height equivalent to their linkage distance. A group can contain one or multiple

elements. The result of a hierarchical clustering algorithm can be visualized in a dendrogram

plot.

Following are some examples using a very simple set of routes that will serve to visualize the

effects of some popular linkage algorithms, and the resulting dendrograms. The example set

of routes is given in Figure 10.1

1 2 3

2mi 4mi

Figure 10.1: Example route distribution.

In this example case, routes 1 and 2 will always be linked first because they are the closest

pair of elements in the dataset, and their cophenetic distance t (distance at which they are

linked) will always be equal to their pairwise dissimilarity measure. On the other hand, the

cophenetic distance between the group {1, 2} and route 3 will depend on the linkage method

of choice. The dissimilarity metric we are using is the Fréchet distance, which for parallel

routes is equivalent to their separation.

Single Linkage

For two groups of observations A and B, the single linkage cophenetic distance t(A,B) is

defined as

(10.1)t(A,B) = min{d(a, b):a∈A, b∈B}

where d(a, b) is the dissimilarity measure of choice between elements a and b. In this example

case, the single linkage cophenetic distance between route 3 and group {1, 2} is equivalent
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to the distance between route 3 and route 2, 4mi.
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Figure 10.2: Single linkage dendrogram.

As we can see in the dendrogram (Figure 10.2) routes 1 and 2 are linked at 2mi, and this

group is linked with route 3 at 4mi.

Complete Linkage

For two groups of observations A and B, the complete linkage cophenetic distance t(A,B)

is defined as

(10.2)t(A,B) = max{d(a, b):a∈A, b∈B}

where d(a, b) is the dissimilarity measure of choice between elements a and b. In this example

case, the complete linkage cophenetic distance between route 3 and group {1, 2} is equivalent

to the distance between route 3 and route 1, 6mi.
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Figure 10.3: Complete linkage dendrogram.

As we can see in the dendrogram (Figure 10.3) routes 1 and 2 are linked at 2mi, and this

group is linked with route 3 at 6mi.

Average Linkage

For two groups of observations A and B, the average linkage cophenetic distance t(A,B) is

defined as

(10.3)t(A,B) =
1

|A| |B|
∑
a∈A

∑
b∈B

d(a, b)

where d(a, b) is the dissimilarity measure of choice between elements a and b. In this example

case, the average linkage cophenetic distance between route 3 and group {1, 2} is equivalent

to the average distance between route 3 and route 2, and between route 3 and route 1, 5mi.
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Figure 10.4: Average linkage dendrogram.

As we can see in the dendrogram (Figure 10.4) routes 1 and 2 are linked at 2mi, and this

group is linked with route 3 at 5mi.

Linkage Methods Comparison

Besides the three presented linkage methods there are other alternatives. Some of the other

popular alternatives include centroid method and Ward’s method. These alternatives require

the use of en Euclidean distance metric and therefore cannot be used with the Fréchet

distance. We will see that their features are very similar to the average linkage.

Following is a table summarizing the advantages and disadvantages of the five introduced

linkage methods.
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Linkage Advantages Disadvantages

Single Shape & size Outliers & density variation

Complete Outliers Can break large clusters

Average Outliers Shape & size

Centroid Outliers Shape & size

Ward’s Outliers Shape & size

Table 10.1: Linkage methods comparison.

It is important to notice that single linkage can provide incorrect results for scenarios with

outliers and density variations. These are precisely the two main problems of our dataset

so one could advance that this linkage method would not be the most suitable for route

clustering.

Pruning the Dendrogram

We have introduced the dendrogram as a graphic representation of the linkage distances in

a hierarchical clustering process. The dendrogram is also used to visualize the formation of

clusters.

Once a dendrogram is obtained for a specific scenario, the dendrogram can be pruned at a

certain height (cophenetic distance): the number of ‘branches’ that are cut by a horizontal

line placed at the specified height determines the number of resulting clusters, and all the

elements that are contained in the lower levels of each branch will form that specific cluster.

The height (distance) at which the dendrogram is pruned represents the limit linkage dis-

tance that the user is willing to accept between two subclusters inside that cluster: i.e., no
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pair of subclusters inside that cluster will be more dissimilar than the height at which the

dendrogram was pruned.

Let’s take one of the presented dendrograms, corresponding to complete linkage for example,

Figure 10.3. If the dendrogram is pruned at a height of between 0mi and 2mi, 3 clusters

will be obtained, one for each route. If it is pruned between 2mi and 6mi, 2 clusters will be

obtained, one for routes {1, 2} and one for route 3. If the dendrogram is pruned at a height

greater than 6mi, all three routes will become one single cluster.

Determining the appropriate height to prune a dendrogram (or, equivalently, the appropriate

number of clusters) is one of the biggest challenges in hierarchical clustering – and in any

kind of clustering –. Several automatic approaches to determining the number of clusters

have been developed [19], [20], [21], [22], [23], [24].

Natural clusters can be clearly identified (and the process easily automatized) when inter-

cluster separations are significantly higher than intra-cluster separations (with homogeneous

intra-cluster separations). The process becomes more complex when clusters are defined at

different levels of resolution; some clusters are in turn formed by smaller sub-clusters, that

can be regarded as an internal structure [18].

It is frequent in the exisiting methods to form clusters when the inter-group separations

are distinct enough from the intra-group separations. This approach usually results in an

excessive heterogeneity in inter-group division, and the methods tend to go into the fine

structure of clusters. The result is usually an excessive division of data, and the identification

of clusters at all resolution levels, identifying clusters and sub-clusters at the same time. Some

examples of this approach can be found in [21], [22], [24], which are based on reachability

plots produced by the optics algorithm [25], [26]. The reachibility plots combine selective

linkage and density analysis.

The approach presented in [18] aims at identifying the groups from an external global view
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of all the system. This project intends to achieve similar results from the same conceptual

point of view, adapted to the restrictions of our dataset. The main challenges will be the

heterogeneity in inter-cluster and intra-cluster separation due to the differences in cluster

density, the abundance of outliers and disperse clusters and the presence of internal structures

or sub-clusters.

The simplest approach consisting of a fixed distance threshold will be tested and character-

ized, as well as the method developed in [18], which is conceptually similar to our objective.

Last, the developed method will be tested and compared to the other two alternatives.

Cophenetic Coefficient

We have just presented various linkage techniques that will result in different linkage dis-

tances between groups, and thus in different dendograms for the same dataset. It is to

be expected that some linkage methods may be more appropriate than others to faithfully

represent specific datasets. The coefficient introduced here is a measure to quantify this

effect.

The cophenetic distance between two observations is represented in a dendrogram by the

height of the link at which those two observations are first joined. That height is the distance

between the two subclusters that are merged by that link.

The cophenetic coefficient (or cophenetic correlation) [27] for a cluster tree is defined as the

linear correlation coefficient between the cophenetic distances obtained from the tree, and

the original distances (or dissimilarities) used to construct the tree. Thus, it is a measure of

how faithfully the tree represents the dissimilarities among observations.

Define

d(i, j)= the dissimilarity measure between observations i and j, and d̄ its average value.
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t(i, j)= the cophenetic distance between observations i and j, and t̄ its average value.

Then the cophenetic coefficient c is calculated as follows,

(10.4)c =

∑
i<j(d(i, j)− d̄)(t(i, j)− t̄)√

[
∑

i<j(d(i, j)− d̄)2][
∑

i<j(t(i, j)− t̄)2]

Values of c close to 1 indicate a faithful representation of the dataset by the dendrogram,

and values close to 0 indicate the opposite.

Effects of the Linkage in the Dendrogram

The following scenario consists on the filtered flights from DFW to SEA.
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Figure 10.5: Filtered tracks to SEA.

An automatic method to determine the correct number of clusters has not been presented

yet, so for now lets assume we impose 2 clusters for this distribution by visual analysis.
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The presented dendrograms correspond to the three studied linkage methods, and horizontal

dashed lines delimit the region where the dendrogram should be pruned in each case in order

to obtain 2 clusters as a result.
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Figure 10.6: Dendrogram, single linkage, SEA.
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Figure 10.7: Dendrogram, complete linkage, SEA.
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Figure 10.8: Dendrogram, average linkage, SEA.

59



For clarity, only a maximum of 30 groups are plotted in the x axis of the dendrograms. When

there are more than 30 routes in the dataset, the groups in the x axis do not correspond to

individual elements, but to the distribution corresponding to 30 clusters.

It is interesting to notice that there is no overlap whatsoever between the three ranges of

linkage distances (Fréchet distances) that would result in two clusters – in fact, there isn’t

overlap between the range of any two linkage methods –. There is no common Frechét

distance limit that would provide 2 clusters as a result for all three linkages. The relevance

and influence of the linkage method becomes apparent.

In the following sections the three mentioned linkage alternatives (single, complete and

average) will be tested, together with some methods to determine the number of clusters of

a scenario.

10.2 Criteria for Performance Evaluation

In order to analyze the performance of the different methods to choose the number of clusters

of a dataset, it is necessary to determine the desired results beforehand. Out of the 76 subsets

that are contained in our dataset (no speed clustering is required, and there is one subset

for each one of the 77 ASPM77 destinations excluding DFW itself), only 53 of them will be

considered in this study case. Some of the excluded subsets don’t contain enough flights to

carry out clustering (a lower limit of 10 flights per subset has been imposed), and others don’t

have any clear recognizable patterns and therefore there is no target result to be expected

and considered correct.

The 53 selected subsets have been visually analyzed to determine the expected number of

clusters and their expected geometric appearance. The results of each tested linkage method

and pruning technique have been compared with the expected results, and the success rate
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has been calculated as the proportion of expected results achieved.

With very few exceptions, when the number of clusters determined by a method is correct,

their geometric distribution is, as well. Therefore, the number of clusters determined by a

method will be used as measure.

Each presented pruning technique is tested for single, complete and average linkage, for the

53 selected subsets of the original 60-day dataset.

In all cases (for all linkage methods and pruning techniques) the used datasets are the same,

and have been previously filtered using the outlier detection algorithm for P = 0.03.

10.3 Fixed Distance Threshold, Dt

A fixed distance threshold Dt is the most basic way to determine where to prune a den-

drogram. The height where the dendrogram is pruned is previously fixed for all cases,

independently of the subset.

In our case the distance threshold Dt corresponds to a Fréchet threshold Ft, as Fréchet is

the used distance metric.

Because there is a wide range of values that Ft can take, the process to test its performance

has been the following: for each subset, the range of Ft values (taken at unitary steps, in

[km]) that would provide the expected number of clusters is found. This range is stored,

and finally all the ranges of Ft are plotted in a histogram. For each value of Ft, the ratio of

correct predictions vs. total cases is calculated and plotted in the vertical axis.

Next are the obtained histograms for all three linkage methods. The mode of each distribu-

tion, with its correct clustering ratio p, is specified in each plot.

61



0 100 200 300 400 500 600 700

F
t

0

10

20

30

40

50

60

%
 c

o
rr

e
c
t 
c
u
s
te

ri
n
g
 c

a
s
e
s

Mode F
t
=146, p=0.50943

Figure 10.9: Dt histogram, single linkage.
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Figure 10.10: Dt histogram, complete linkage.

62



0 100 200 300 400 500 600 700

F
t

0

10

20

30

40

50

60

70

%
 c

o
rr

e
c
t 
c
u
s
te

ri
n
g
 c

a
s
e
s

Mode F
t
=195, p=0.62264

Figure 10.11: Dt histogram, average linkage.

As expected, the optimum Ft values for the different linkage methods differ considerably.

Most importantly, the maximum achievable ratio of correct clustering cases is of 62%. This

is a measure of the flexibility of the method, and proves it has trouble when clustering subsets

of very different nature (different length scales, densities and shapes).

In addition, single linkage is the linkage method providing the worst performance, as antici-

pated.

It must be noted that the optimal Ft values are not known a priori, and determining these

values for a scenario where the expected solution is unknown would be really difficult. Even

when the expected solution is known, determining these values is an arduous task that

requires individual analysis of all cases, which defeats the purpose of this work and should

be avoided.
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10.4 Descriptive Function, DF

An alternative and automatic method to determine the height to prune the dendrogram is

proposed in [18]. This method is based on the squared single-linkage distances of the dataset

and the obtained pruning height is dependent on each dataset. The method is presented as

a flexible general approach. It is introduced as an appropriate method for single linkage, but

it will be tested for all single, complete and average linkages.

The first step in this method is to calculate the descriptive function DF for each pair of

objects. The order of the objects present in the final association vector is the following:

when two objects are first associated, they are placed in consecutive positions. When an

additional object or group is further associated into an existing structure (single element or

group), it will appear in the vector before or after the original group. Therefore, formed

blocks suffer no changes during the subsequent association steps.

The descriptive function for a pair of consecutive objects i, i+ 1 corresponds to the squared

minimal distance measure of all linkage steps in which both objects participate (or cophenetic

distance),

(10.5)DFi,i+1 = t2i,i+1

The presented descriptive function will produce localized higher peaks corresponding to a

high probability of inter-cluster separation, and low value regions indicating a high proba-

bility of intra-cluster association.

An inter-cluster separation DFsep is found in the descriptive function as

(10.6)DFsep = K(Q3 −Q1)

where Q3 and Q1 are the upper limits of the first and third quartile of the distribution of

values in the descriptive function.
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In [18], the chosen value for the parameter K is K = 6. For datasets of routes with very

compact clusters of similar densities, even in the presence of many outliers, the method

presented in [18] is very successful, including the chosen values for the parameters P = 1/3

(outlier detection) and K = 6 (pruning the dendrogram). The use of these parameters is not

appropriate in other complex scenarios with heavy density variations and not very compact

clusters (as we have partially shown in Subsection 9.3.1 Choosing P). Next we will determine

if there is any appropriate choice of the parameter K that provides satisfactory success rates,

or whether this method is not flexible enough for our clustering scenarios.

The process followed to test this method is very similar to the one followed in Section 10.3

Fixed Distance Threshold, Dt. Now, for each subset, the range of values of K providing the

expected number of clusters is found (at unitary steps) and finally all values are plotted in

a histogram. Following are the obtained results.
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Figure 10.12: K histogram, single linkage.
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Figure 10.13: K histogram, complete linkage.
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Figure 10.14: K histogram, average linkage.
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The DF method performs better than the Dt method for complete and average linkages,

obtaining maximum performances of 68% and 66% respectively. It performs slightly worse

than Dt for single linkage.

The obtained results, if somewhat better, are very similar to those obtained for the Dt

method. Again, single linkage provides the worst performance for our dataset, as expected.

The optimal values for K also differ considerably between linkage methods, adding to the

difficulty of determining them.

Last it must be noted that, again, the optimal K values are not known a priori, and deter-

mining them is equally challenging as determining the optimal Ft values.

10.5 Problem of the Presented Methods

As indicated by the success rates of the presented methods, they lack flexibility to deal with

subsets of very different nature. This can be better visualized with an example.

For the following scenarios and after visual analysis the desired number of clusters is 2 for

both cases.

Seattle-Tacoma International Airport (SEA)
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Figure 10.15: Unfiltered tracks, SEA.
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Figure 10.16: Filtered tracks, SEA.
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Figure 10.17: Tracks and clusters, SEA.
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Figure 10.18: Clusters, SEA
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Pittsburgh International Airport (PIT)
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Figure 10.19: Unfiltered tracks, PIT.
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Figure 10.20: Filtered tracks, PIT.

70



-98 -96 -94 -92 -90 -88 -86 -84 -82 -80

Longitude [deg]

30

32

34

36

38

40

42

44

L
a
ti
tu

d
e
 [
d
e
g
]

DFW
PIT
Filtered tracks(101)
Clusters(2)

Figure 10.21: Tracks and clusters, PIT.
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Figure 10.22: Clusters, PIT

If these results had to be achieved by pruning the dendrogram using the presented methods,
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the parameters to use should be contained in the following ranges,

SEA PIT

K range [6 - 13] [19 - 23]

Dt range [km] [135 - 199] [204 - 274]

Table 10.2: Valid ranges for parameters, SEA and PIT.

There is no overlap in the ranges of any parameter, so no matter what method was used, the

desired result could only be obtained in one of the clustering cases. The presented scenario

is an extreme case where both methods fail. It is common in our dataset to find pairs of

subsets where at least one of the methods is unable to produce the expected results in both

cases.

10.6 Average Silhouette, Smax

Using Smax

Rousseeuw proposed in [8] the use of the average silhouette value of a clustering scenario as

an indicator of how appropriate it was. We will apply this concept to determine where to

prune the dendrogram for our geometric clustering.

Lets remember the definition of Silhouette score, Eq. (6.2),

S(i) =
min (Db(i, k))−Dw(i)

max [min (Db(i, k)) , Dw(i)]

The dissimilarity between two routes will now correspond to their discrete Fréchet distance.

Now min(Db(i, k)) corresponds to the average Fréchet distance between route i and all the
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routes in the nearest neighboring cluster k, and Dw(i) corresponds to the average Fréchet

distance between route i and all other routes in its own cluster.

The average silhouette value for a subset, S̄N , will be calculated as the average of the

silhouette values of all routes in that subset,

(10.7)S̄N =
1

Nr

Nr∑
1

S(i)

where Nr is the number of routes in the subset.

In order to visualize the meaning of S̄N , some scenarios for the same dataset are attached with

different clustering alternatives, their corresponding aggregate routes, and the S̄N values.
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Figure 10.23: SJC, 2 clusters, S̄N = 0.597
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Figure 10.24: SJC, 3 clusters, S̄N = 0.668
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Figure 10.25: SJC, 4 clusters, S̄N = 0.636
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Figure 10.26: SJC, 6 clusters, S̄N = 0.568
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Figure 10.27: SJC, 10 clusters, S̄N = 0.291
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Notice that for the 3 cluster distribution, Figure 10.24, the highest S̄N value is achieved,

S̄N = 0.668. This coincides with the expected result by visual analysis. One can calculate

S̄N for all possible number of clusters Nclust (from Nr to 2) and obtain the evolution of

S̄N(Nclust). For this specific example, the result corresponds to Figure 10.28.
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Figure 10.28: Average silhouette score evolution for SJC.

The number of clusters corresponding to each step in the plot is indicated with a number

above that step (only for Nclust ≤ 4). The shape of this plot is similar for all scenarios. The

first slope, starting at S̄N = 1, reaches a minimum, then the value rises again, reaching a local

maximum or stabilizing in the end (for Nclust = 2). The high values for Nclust close to Nr are

not meaningful, as they correspond to a distribution where most clusters consist of a single

route. It is after the minimum value for S̄N is passed that representative distributions can be

achieved, and the local maximum will represent the most natural or adequate distribution.

As advised in [8] one should not blindly use the average silhouette score as a measure to decide

the number of clusters. The presence of severe outliers could result in distributions with
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single-route clusters corresponding to the outliers having higher average silhouette scores.

Thus the outlier filtering step becomes even more important.

In the rest of plots in this work, for convenience, the first part of the evolution of S̄N is not

calculated nor plotted, and a dashed line will replace it. Only the values for Nclust ≤ 10 are

calculated.

The whole process (except for the final speed filtering) from the original dataset to the Nclust

choice has been presented so far. A full example is included next to visualize the process.
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Figure 10.29: Unfiltered tracks, LGA.
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Figure 10.30: Filtered tracks, LGA.
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Figure 10.31: S̄N evolution, LGA.
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Figure 10.32: Tracks and clusters, LGA.
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Figure 10.33: Clusters, LGA

The correct behavior of the model is confirmed in this example with complex geometry,
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internal sub-clusters, cluster density variations and many outliers. The outlier detection

algorithm produces good results, and so does the Nclust choice method.

One can also see the significance of the obtained flows. For example, the 3 southernmost

clusters are operationally very distinct: one is avoiding ZTL center by the norht, the other

by the south, while the other is crossing it, corresponding to 3 different operational decisions.

The full example of LGA (including the speed filtering and Dip test – presented next – can

be found in Appendix A).

Dip Test

The average Silhouette value S̄N has been introduced as an appropriate quality measure

to determine the natural cluster structure in a dataset. However, two or more clusters are

required in order to calculate the Silhouette values, as the existence of a ‘nearest neighboring

cluster’ is necessary.

In some situations the routes may form one single cluster, and that solution cannot be

determined by maximizing S̄N as S(i) cannot be calculated. In order to detect single cluster

scenarios, the Dip test, introduced by Hartigan and Hartigan in 1984 [28], will be used. The

Dip test will distinguish any unimodal from any multimodal distribution.

The dip statistic is defined as the maximum difference between the empirical distribution

function and the unimodal distribution function that minimizes that maximum difference.

A distribution function F is unimodal with mode m if F is convex in (−∞,m] and concave

in [m,∞). The mode m is not necessarily unique. A unimodal F may have an atom only at

a unique mode m, and has a density, except possibly at a unique mode m, that increases in

(−∞,m) and decreases in (m,∞).
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Define

(10.8)ρ(F,G) = supx|F (x)−G(x)|

for any bounded functions F,G. Define

(10.9)ρ(F,A) = infG∈Aρ(F,G)

for any class A of bounded functions. Let U be the class of unimodal distribution functions.

The dip of a distribution function F is defined by

(10.10)D(F ) = ρ(F,U)

Note that

(10.11a)D(F1) ≤ D(F2) + ρ(F1, F2)

(10.11b)D(F ) = 0 for F∈U

(10.11c)D(F ) > 0 for F /∈U

thus the dip measures departure from unimodality. The maximum value of D(F ) is 1/4,

achieved when F has two atoms of size 1/2.

In order to determine the probability of a distribution of being unimodal, a significance test is

carried out. The dip of the empirical distribution is compared to that of the null distribution

through bootstrapping. The appropriate null distribution is uniform (for a deeper discussion

and exceptions, see [28]), as the dip is asymptotically larger for the uniform than for any

distribution in a wide class of unimodal distributions, those with exponentially decreasing

tails. For a given empirical distribution, a random uniform distribution with the same

sample size as the empirical distribution is generated, and its dip is calculated. This process

is repeated a set number of times nboot (500 for all shown examples) and all dip values

for the uniform distributions are stored in vector bootdip. With dip= dip of the empirical

81



distribution,

(10.12)p =
count(dip < bootdip)

nboot

so p corresponds to the ratio of cases when the dip of the uniform distribution is greater than

that of the empirical distribution, versus the total number of tested uniform distributions.

Equivalently, it represents the probability of the empirical distribution of being unimodal.

The following figure illustrates the behavior and results of the dip test for two randomly

generated unimodal distributions of the same sample size, with modes that are initially

coincident but which are slowly separated so the distribution becomes progressively bimodal.
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Figure 10.34: Behavior of dip test for different distributions.

In order to use the dip test, for each distribution of routes, one of the two extreme routes

(meaning one of the two routes situated at the boundaries of the route distribution) is found,

and the Fréchet distances of all other routes with respect to this route are used as data points

for the empirical distribution.
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Because the dip test is very sensitive (see Figure 10.34), a threshold value of p = 0.75 will

be used to determine whether or not a distribution is unimodal. A distribution will be

considered unimodal for values of p > 0.75. The general process followed to determine the

number of clusters of a route distribution is the following.

Dip test

p

p > 0.75?

Nclust = 1 Smax

Nclust

yes no

Figure 10.35: Nclust selection process.

Following are some examples of unimodal route distributions and the results of the performed

dip test.

McCarran International Airport (LAS)
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Figure 10.36: Unfiltered tracks, LAS.
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Figure 10.37: Filtered tracks, LAS.
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Figure 10.38: Dip test, LAS.
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Figure 10.39: S̄N evolution, LAS.
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Figure 10.40: Tracks and clusters, LAS.
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Figure 10.41: Clusters, LAS
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Eppley Airfield (OMA)
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Figure 10.42: Unfiltered tracks, OMA.

-102 -100 -98 -96 -94 -92

Longitude [deg]

32

33

34

35

36

37

38

39

40

41

42

L
a

ti
tu

d
e

 [
d

e
g

]

DFW
OMA
Filtered tracks(122)

Figure 10.43: Filtered tracks, OMA.
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Figure 10.44: Dip test, OMA.
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Figure 10.45: S̄N evolution, OMA.
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Figure 10.46: Tracks and clusters, OMA.
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Figure 10.47: Clusters, OMA

The histogram of the empirical distributions is represented in Figure 10.38 and Figure 10.44,
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together with the dip value and the p value. In both cases, we see p values of over 0.9, which

correctly characterizes both route distributions as unimodal. In addition, Figure 10.39 and

Figure 10.45 show the low values of S̄N for the rest ofNclust alternatives. Note that having low

S̄N values, on its own, does not imply that the distribution must be unimodal, as some route

distributions may have very disperse clusters in which case all S̄N values will be relatively

low.

10.7 Speed Filtering and Aggregate Route Creation

The reader may have noticed that after the outlier filtering step, and when the aggregate

routes are added, the number of filtered routes decreases. This is due to the last filtering

before generating the aggregate routes: the speed filtering.

The need for this step will be understood after explaining the process by which the aggregate

routes are created; once the number of clusters for a route distribution has been chosen using

the Dip test and the Smax calculations, it’s time to characterize each cluster by an aggregate

route, or a single route that best represents that cluster of routes.

Because this network is being generated in order to be used in a dynamic model, both

the geometry of the aggregate route as well as the speed at which it is traveled must be

representative of the routes in that cluster. Each route is characterized by a sequence of

points that are taken at constant time steps (i.e. the time required to travel from any point

in a route to the next point is always the same). Therefore, the distribution of the points in

a route is representative of the instantaneous speed of the aircraft flying it.

The approach to generate the aggregate network and be geometrically and dynamically

representative of the cluster of routes is to determine the nodes of the aggregate route as the

centroids of the corresponding nodes of all routes in that cluster. In this way, the first node
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of the aggregate route will correspond to the centroid of all the first nodes of all routes in

that cluster, and subsequently for the rest of nodes.

An alternative approach was tested in which the aggregate route for each cluster was chosen

as the single route in that cluster that minimized the average Fréchet distance from it to

the rest of routes in the cluster. This approach was found unsuitable because the aggregate

route was strongly dependent on the features of one single route. If the chosen route had

an unrepresentative geometry or speed profile, or it had local features that didn’t represent

the cluster, the aggregate route obtained was not an appropriate choice. Thus, the approach

previously described is more robust as all features are averaged.

A problem arises when routes in a cluster have different number of nodes (due to speed or

geometrical differences), which is granted to happen. At some point during the creation of

the aggregate route, some routes will have reached the destination airport while some other

routes will not, and the subsequent nodes of the aggregate network from this point on will be

incorrectly placed. This problem is repeated every time a route reaches the destination and

the clustering continues, resulting in inconsistent aggregate routes. Following is an example

of the aggregate routes arriving at Pittsburgh, created without speed filtering, to visualize

the described effect.
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Figure 10.48: Tracks without outliers, PIT.

Figure 10.49: Arrival to PIT. No speed filtering.
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Figure 10.50: Aggregate routes arriving at PIT. No speed filtering.

A hippodrome wait pattern can be clearly identified in one of the aggregate routes. This

is caused by a flight that is very similar to all other flights (so it was not discarded as an

outlier) but is longer than the rest because of the waiting pattern before landing. Thus, the

extra nodes of this route considerably affect the resulting aggregate route. This effect also

occurs when some routes are slightly dissimilar in number of nodes, not necessarily due to a

waiting pattern which is an extreme case.

In order to solve this problem, once the clusters have been formed, the number of nodes of

all routes in a cluster will be made equal. The first step is to eliminate the routes with too

many or too few nodes, because they would not be adapted correctly to the new imposed

number of nodes. This is done by sorting the routes based on their number of nodes, and

eliminating the first and last quartiles of the distribution. Once this is done we are left with

the 50% of the original routes in that cluster, but the quality of the cluster will be improved

due to the increase in dynamic consistency. In addition, this step also improves the geometric

consistency of the clusters, as the eliminated routes are usually those that are geometrically

more dissimilar as well. Then, out of the left routes, the route with the least number of

nodes (nn)min is found. For each of the other routes, nodes are randomly eliminated until
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only (nn)min nodes are left. Now, all routes have the same number of nodes. The effects of

the random deletion of nodes is compensated between routes. This process is only carried

out if the cluster has at least 10 routes.

Notice that this process is conservative in terms of speed of the aggregate route (the speed

is underestimated), as the aggregate route speed will correspond to the first quartile of the

speed distribution of the routes in that cluster. This limit could be modified.

The effect of the speed filtering can be observed in Figure 10.53.

-98 -96 -94 -92 -90 -88 -86 -84 -82 -80

Longitude [deg]

30

32

34

36

38

40

42

44

L
a

ti
tu

d
e

 [
d

e
g

]

DFW
PIT
Filtered tracks(101)

Figure 10.51: Tracks without outliers after speed filtering, PIT.
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Figure 10.52: Arrival to PIT. Speed filtering.

Figure 10.53: Aggregate routes arriving at PIT. Speed filtering.

The histograms for the number of nodes of the various routes in each cluster are included

next. The vertical dashed lines delimit the first and third quartile of the distribution, and

all routes on the extremes delimited by these lines are eliminated before clustering. The

number of nodes indicated by Q1 is the one used for the corresponding agregate routes. The

values of the quartiles are added in each plot. In this context, nn is the number of nodes of

a route.
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Figure 10.54: Histogram for speed filtering. Cluster 1, PIT.
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Figure 10.55: Histogram for speed filtering. Cluster 2, PIT.

96



For scenarios with more disperse clusters (like LAX) the histograms of nn become similar to

normal distributions (or, in general, unimodal distributions). See the following examples,
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Figure 10.56: Tracks without outliers, LAX
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Figure 10.57: Tracks without outliers after speed filtering, LAX.
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Figure 10.58: Histogram for speed filtering. Cluster 1, LAX.
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Figure 10.59: Histogram for speed filtering. Cluster 2, LAX.
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10.8 Performance of Smax Method

It is interesting to first compare the performance of the developed method with that of the

fixed threshold and the descriptive function. Lets start by looking at the behavior of the

Smax method in the cases presented in Section 10.5 Problem of the Presented Methods.

Seattle-Tacoma International Airport (SEA)
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Figure 10.60: Unfiltered tracks, SEA.
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Figure 10.61: Tracks without outliers, SEA.
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Figure 10.62: Dip test, SEA.
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Figure 10.63: S̄N evolution, SEA.
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Figure 10.64: Tracks without outliers after speed filtering, SEA.
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Figure 10.65: Final tracks and clusters, SEA.
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Figure 10.66: Clusters, SEA
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Pittsburgh International Airport (PIT)
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Figure 10.67: Unfiltered tracks, PIT.
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Figure 10.68: Tracks without outliers, PIT.
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Figure 10.69: Dip test, PIT.
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Figure 10.70: S̄N evolution, PIT.
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Figure 10.71: Tracks without outliers after speed filtering, PIT.
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Figure 10.72: Final tracks and clusters, PIT.
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Figure 10.73: Clusters, PIT

The developed method correctly predicts the expected number of clusters in both cases.

Remember that these cases are specially challenging due to the differences in the dendrogram

structures and the correct pruning heights, and none of the other methods had the ability

to correctly predict both results.

The success rates for the developed method have been calculated too, and are presented next

together with the success rates of the alternative methods.

Dt K Smax

Single 51 49 72

Complete 62 68 79

Average 62 66 81

Table 10.3: Success rate [%] of different pruning methods.
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The increase in performance using the developed method is considerable. It is important to

remark that the success rates are not free from error, as the target values are assigned after

visual analysis of the scenarios. However, the target configurations – after being determined

– are the same for all tests, so even though these exact success rate values may not be totally

accurate, the tendencies shown should be.

The average cophenetic coefficients for every linkage method have also been calculated (they

are independent from the pruning method),

Single Complete Average

C̄ 0.80 0.83 0.89

Table 10.4: Average cophenetic coefficient for different linkage methods.
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Chapter 11

Conclusions

An automatic method for route clustering with outlier detection has been developed combin-

ing the Silhouette score and the Dip test as cluster quality measures and decision indicators.

The method has been compared to two other alternatives, and an increase in flexibility is

apparent.

The presented method performs well in a wide range of situations, with heavy cluster density

variations, presence of outliers, disperse clusters, internal sub-cluster structures and complex

geometries.

The success rates of the developed method are consistently higher for the three linkage

methods used, and the best performance of 81% is achieved for average linkage using the

developed method. The increase in success rate is of at least a 13%, with the best alternative

corresponding to the case of optimal choice of K using the descriptive function and complete

linkage method. Our method requires no user input and outperforms the tested alternatives

for all linkages, to the point that the worst performance of our method (72% for single linkage)

is better than the best performance of the alternative methods (68%) for this application.
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In addition to providing the best performance for our developed method, the average linkage

is also the linkage method that results in the best average cophenetic coefficient for our

dataset. This means it is the linkage method that better represents the route distributions

in a dendrogram.

The approach presented in this work still fails in some scenarios with very short length

scale, when local phenomena in the approach phases becomes geometrically dominant, but

this scenarios are rare. It may also fail in some scenarios with extremely heavy density

variations, usually combined with disperse clusters, although one may argue whether the

clusters with low density are relevant in those situations. Ultimately, some scenarios have

no clear patterns and clustering may not be appropriate in those situations.

Overall, this method seems appropriate for the application of route clustering.
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Chapter 12

Future Work

Some of the implicit problems of using the Fréchet distance as distance metric can be solved

by using a variant of the Fréchet distance. As proposed in [12] Section 4, an alternative is

to use the minimum of the total distance of an order-preserving correspondence between the

points of a pair of curves. This approach would differentiate a pair of curves that are locally

different from a pair of curves that are different for most of their lengths, whereas both pairs

may have the same Fréchet distance. This is a promising distance metric which has not been

tested.

It would be recommendable to test the behavior of an alternative quality measure. One would

first calculate the average Silhouette score for each individual cluster, finally obtaining an

overall average of all cluster averages. This approach, conceptually similar to the Davies-

Bouldin index, would give the same importance to the quality of all clusters independently

of their density. Only preliminary tests have been done, and further study of this alternative

(or the Davies-Bouldin index itself) should be carried out.

The aggregate network resulting of this work must be used in real flow optimization problems

in order to detect the existence of errors that are not strictly clustering-related. Work towards
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implementing the air traffic flow optimization problem is in process.
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Appendix A

Additional Examples

Several subsets of different nature will be included now, with the plots corresponding to the

different steps in the clustering process, to show the behavior of the developed method.

All the presented results are produced in a fully automatic way, without any interference

from the user at any point.

Memphis International Airport: big density variations between clusters.
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Figure A.1: Unfiltered tracks, MEM.
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Figure A.2: Tracks without outliers, MEM.
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Figure A.3: Dip test, MEM.
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Figure A.4: S̄N evolution, MEM.
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Figure A.5: Tracks without outliers after speed filtering, MEM.
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Figure A.6: Final tracks and clusters, MEM.
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Figure A.7: Clusters, MEM

Southwest Florida International Airport: big density variations and disperse clusters.
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Figure A.8: Unfiltered tracks, RSW.
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Figure A.9: Tracks without outliers, RSW.
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Figure A.10: Dip test, RSW.
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Figure A.11: S̄N evolution, RSW.
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Figure A.12: Tracks without outliers after speed filtering, RSW.
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Figure A.13: Final tracks and clusters, RSW.
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Figure A.14: Clusters, RSW
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General Mitchell International Airport: big density variations and disperse clusters.
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Figure A.15: Unfiltered tracks, MKE.
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Figure A.16: Tracks without outliers, MKE.
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Figure A.17: Dip test, MKE.
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Figure A.18: S̄N evolution, MKE.
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Figure A.19: Tracks without outliers after speed filtering, MKE.
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Figure A.20: Final tracks and clusters, MKE.
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Figure A.21: Clusters, MKE

LaGuardia Airport: complex geometry, internal sub-cluster structures and many out-

liers.
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Figure A.22: Unfiltered tracks, LGA.
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Figure A.23: Tracks without outliers, LGA.
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Figure A.24: Dip test, LGA.

0 100 200 300 400 500

Frechet distance [km]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e

ra
g

e
 s

ilh
o

u
e

tt
e

 v
a

lu
e

, 
S

N

6 5 4

3

2

Figure A.25: S̄N evolution, LGA.
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Figure A.26: Tracks without outliers after speed filtering, LGA.
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Figure A.27: Final tracks and clusters, LGA.
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Figure A.28: Clusters, LGA

Sacramento International Airport: unimodal distribution.
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Figure A.29: Unfiltered tracks, SMF.
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Figure A.30: Tracks without outliers, SMF.
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Figure A.31: Dip test, SMF.
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Figure A.32: S̄N evolution, SMF.
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Figure A.33: Tracks without outliers after speed filtering, SMF.
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Figure A.34: Final tracks and clusters, SMF.
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Figure A.35: Clusters, SMF
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Los Angeles International Airport: very disperse clusters.

-120 -115 -110 -105 -100

Longitude [deg]

24

26

28

30

32

34

36

38

40

42

44

L
a

ti
tu

d
e

 [
d

e
g

]

DFW
LAX
Unfiltered tracks(637)

Figure A.36: Unfiltered tracks, LAX.
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Figure A.37: Tracks without outliers, LAX.

134



0 50 100 150 200 250 300 350 400 450

Frechet distance [km]

0

50

100

150

200

250

300

#
 f
lig

h
ts

dip=0.09024, p=0

Figure A.38: Dip test, LAX.
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Figure A.39: S̄N evolution, LAX.
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Figure A.40: Tracks without outliers after speed filtering, LAX.
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Figure A.41: Final tracks and clusters, LAX.
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Figure A.42: Clusters, LAX

Palm Springs International Airport: disperse very low density clusters.
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Figure A.43: Unfiltered tracks, PSP.
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Figure A.44: Tracks without outliers, PSP.
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Figure A.45: Dip test, PSP.
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Figure A.46: S̄N evolution, PSP.
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Figure A.47: Tracks without outliers after speed filtering, PSP.
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Figure A.48: Final tracks and clusters, PSP.
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Figure A.49: Clusters, PSP
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Hartsfield-Jackson Atlanta International Airport: density variations.
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Figure A.50: Unfiltered tracks, ATL.
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Figure A.51: Tracks without outliers, ATL.
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Figure A.52: Dip test, ATL.
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Figure A.53: S̄N evolution, ATL.
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Figure A.54: Tracks without outliers after speed filtering, ATL.
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Figure A.55: Final tracks and clusters, ATL.
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Figure A.56: Clusters, ATL

In the shown examples there is cases with big density variations between clusters, unimodal

distributions, complex patterns, internal sub-cluster structures, many outliers, disperse clus-

ters and low density clusters. The developed clustering method provides successful results

in a wide variety of cases.
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