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Abstract
Although allele frequency data for most HLA loci provide strong evidence for balancing
selection at the allele level, the DPB1 locus is a notable exception, with allele frequencies
compatible  with  neutral  evolution  (genetic  drift)  or  directional  selection  in  most
populations.  This  discrepancy  is  especially  interesting  as  evidence  for  balancing
selection has been seen at the nucleotide and amino acid (AA) sequence levels for DPB1.
We describe methods used to examine the global distribution of DPB1 alleles and their
constituent AA sequences. These methods allow investigation of the influence of natural
selection  in  shaping  DP diversity  in  a  hierarchical  fashion  for  DPB1 alleles,  all
polymorphic DPB1 exon 2-encoded AA positions, as well as all pairs and trios of these AA
positions. In addition, we describe how asymmetric linkage disequilibrium for all DPB1
exon 2-encoded AA pairs  can be used to complement other methods.  Application  of
these methods provides strong evidence for the operation of balancing selection on AA
positions  56,  85-87,  36,  55  and  84  (listed  in  decreasing  order  of  the  strength  of
selection), but no evidence for balancing selection on DPB1 alleles.
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Abbreviations:
AA: Amino Acid
AFND: Allele Frequency Net Database
ALD: asymmetric linkage disequilibrium
AUS: Australia
EUR: Europe
EW: Ewens-Watterson
GD: Genotype Dataset
GMT: Generic Mapping Tools
IMGT: ImMunoGeneTics
LD: Linkage Disequilibrium
NAF: North Africa
NAM: North America
NEA: Northeast Asia
OCE: Oceania
OTH: Other
RT: Randomization Test
SAM: South America
SC: Serologic Category
SEA: Southeast Asia
SLDC: Solberg Literature Dataset Compilation
SSA: Sub-Saharan Africa
ST: Supertype
SWA: Southwest Asia
TCE: T-cell Epitope
TCR: T-cell Receptor
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1. Introduction
HLA,  so-called  "human  leukocyte  antigen”,  proteins  are  cell-surface  antigens  that
present intra- or extracellular-derived peptides to T-cell receptors (TCRs) in the process
of  distinguishing  self  from  non-self  peptides.  Specific  class  I  HLA  epitopes  serve
additional  functions  as ligands for  killer-cell  immunoglobulin-like receptors  on natural
killer cells and some T-cells. The classical class I (HLA-A,  -C, and -B) and class II (HLA-
DRB1, -DQA1, -DQB1, -DPA1, and -DPB1) HLA genes are the most polymorphic loci in the
human genome; almost 40,000 HLA alleles have been identified as of June of 2024[1-3].
Located  on  chromosome  6p21.3,  the  HLA region  displays  extensive  linkage
disequilibrium (LD) both within and between the class I and class II gene regions[4-6],
although a series of recombination hot spots have been identified in the 400KB region
between the  DQA1/DQB1 and DPA1/DPB1 loci[4, 7]. Specific HLA alleles, allele-families
and  haplotypes  have  been  associated  with  susceptibility  to  and  protection  from
pathogens, auto-immune diseases, and cancers [8-15]. 

Natural selection shapes the allelic diversity of the HLA loci [16]. For all classical HLA loci
but DPB1, the Ewens-Watterson (EW) homozygosity test of neutrality reveals the action
of balancing selection, resulting in allele frequency distributions that are generally more
even than expected under neutral conditions  [4, 5, 17-26].  DPB1 allele frequencies are
generally  compatible  with  neutral  evolution  via  genetic  drift,  with  evidence  for
directional selection in some populations [18, 19, 23-25, 27]; many populations display a
single common (frequency > 0.3) DPB1 allele [28].

Salamon  et  al.  [18] extended  EW analyses  of  selection  to  amino  acids  (AAs)  in  14
populations, and identified DPB1 exon 2-encoded AA positions under balancing selection.
The strongest evidence (in decreasing order) was for positions 85, 86 and 87, 55, 56 and
84, and 36. In a larger set of 22 populations, Valdes et al. [19] demonstrated that DP AA
positions 56 and 36 showed the strongest evidence of balancing selection. Site-directed
mutagenesis experiments reveal these seven AA positions, along with positions 9, 11
and  69,  to  have  central  functions  for  the  DP  molecule,  modulating  peptide  binding
affinity, TCR interactions and DP-DP subunit interaction[29, 30].

Valdes  et  al.  suggested that  hitchhiking  of  non-peptide-interacting  AA positions  with
peptide-interacting  AA  positions,  due  to  LD  between  neighboring  positions,  may  be
evidence  of  selection  operating  on  non-peptide-interacting  positions,  but  did  not
investigate LD between AA positions.  However,  the conditional  asymmetric  LD (ALD)
measures  WA|B and WB|A [31,  32] take the  differing  numbers  of  variants  at  each  AA
position into account, and afford novel opportunities for dissecting patterns of selection
between individual AAs.

We have developed approaches for investigating natural selection at single AA positions
and sets of AAs using the EW test, and for investigating LD between pairs of AA positions
using ALD. The companion paper presents results from the application of these methods
to  investigate  DPB1  exon  2-encoded  AA  polymorphism  in  a  set  of  136  population
samples  representing  13,338  individuals.  Here,  we  present  the  methods  used  with
examples based upon a synthesis of the population-level data. These results based on
averages over populations are exemplary, as any inferences about the presence/absence
of evidence for selection must be based on the individual population-level data. 

2. Materials and Methods
2.1. Population samples
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The non-overlapping dataset analyzed here was compiled from three sources (described
in Supplementary Table S1 and available at pypop.org/popdata)[24], and were originally
published in anthropological studies or as healthy control populations for case-control
studies.  Each  individual  population  dataset  has  been  subjected  to  quality  control
scrutiny, and the overall dataset has been reviewed to eliminate duplications.

2.1.1. Solberg Literature Dataset Compilation (SLDC)
DPB1  allele count data for 100 populations compiled by Solberg et al. are available at
www.pypop.org/popdata/2008/literature-datasets.zip[24].  Published  in  eight  journals
between 1990 and 2007, these datasets represent 9,852 largely-indigenous individuals
from Africa, Europe, Asia, Oceania and South America.

2.1.2. Allele Frequencies Net Database (AFND)
DPB1 allele-count  data for  11 populations,  representing 1689 individuals  from Africa,
Europe, Asia, Indonesia and Argentina, from the AlleleFrequencies.net database (AFND)
[33] are available at www.pypop.org/popdata/2008/data.html. 

2.1.3. Genotype Datasets (GD)
DPB1  genotype  data  for  22  populations  from  the  NCBI's  IHWG  Anthropology  Allele
Frequencies  MHC  database  (https://ftp.ncbi.nlm.nih.gov/pub/mhc/mhc/Final
Archive/IHWG/Anthropology), part of the 13th International Histocompatibility Workshop
Anthropology/Human  Genetic  Diversity  component,  represent  1621  individuals  from
Africa, Europe, Malaysia, Oceania, Australia, North America and South America. 

DPB1 genotype  data  for  176  individuals  from three indigenous  Oaxacan  populations
(Mixe, Mixteco, and Zapotec)[34] were provided by Dr. J.A. Hollenbach.

Together, this combined dataset represents a global sampling of 13,338 individuals from
136 populations [5, 20, 27, 34-97].

2.2. Data Analysis
2.2.1. Software
Python  for  Population  Genomics  (PyPop,  version  0.7.0,  www.pypop.org)  [98,  99] was
used for one-tailed EW homozygosity tests of neutrality (EW test) and to calculate the
EW homozygosity  statistic  (F)  [100, 101], the normalized deviate of  F (Fnd)  [18], and
associated EW test p-values for all  DPB1 alleles, polymorphic DPB1 exon 2-encoded AA
positions, and all pairs and trios thereof.

The asymLD R package (v0.1,  https://cran.r-project.org/web/packages/asymLD)[31, 32]
was used to calculate the conditional  ALD measures, WA|B and WB|A for AA pairs. 

Meta-analyses comparing and combining statistics across all populations and geographic
regions were carried out using the R (version 3.0.1) [102, 103] t.test function to compute
parametric t-tests.

2.2.2. Standardization of DPB1 alleles across population datasets
DPB1 allele  names  and  sequences  in  Immuno  Polymorphism  Database  (IPD)-
ImMunoGeneTics (IMGT)/HLA Database version 3.4.0 were used for all comparisons and
analyses [1-3]. DPB1 allele names were validated and translated to version 3.4.0 names
using the Allele Name Translation Tool (version 0.5.0) [104]. DPB1 alleles with identical
exon  2  nucleotide  sequences  were  combined  into  a  common  allele  category.  Allele
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names  longer  than  two  fields  were  truncated  to  two  fields  (e.g.  DPB1*01:01:01  to
DPB1*01:01), and all allele-level analyses were carried out at the protein-level. The same
rules for consistent nomenclature, data validation, and ambiguity resolution were applied
to datasets from each of  the three sources.  These rules are available  in  the config-
allelecount.ini configuration file available at http://pypop.org/popdata/.

2.2.3. Definition of locus-categories
Based on the AA sequences for  each allele  name in the dataset,  DPB1 alleles  were
assigned to four distinct "locus-categories" for analysis: alleles, polymorphic  DPB1 AA
positions,  AA pairs and AA trios. This process, referred to as "collapsing" alleles to a
specific locus-category, is described in 2.2.3.1. 

2.2.3.1. Individual, pairwise and triplet amino acid analyses of selection 
Because the majority of DPB1 genotyping methods used to generate the population data
sets detected exon 2 variants, AA analyses were carried out on exon 2-encoded peptide
sequences (AAs 6 to 92). All analyzed DPB1 alleles encode either E85-A86-V87 or G85-
P86-M87 with 100% correlation; these three positions were treated as a single position
for  analysis,  referred to as position  “85+”. For  the analysis  of  each sequence-based
locus-category, each DPB1 allele was collapsed into an “allele-category” defined by the
encoded AA polymorphism of the position, pair or trio of AA positions, for that allele.
Each distinct allele-category was analyzed as an allele at that locus-category. Although
18 DPB1 exon 2 amino acids were polymorphic in this dataset, four were monomorphic
in most populations and were excluded from subsequent analyses; analyses of selection
were performed on 14 polymorphic AA positions, 91 AA pairs and 364 trios; ALD analysis
was performed on the same 91 pairs.

2.2.4. Tests of Neutrality
The  EW  test  has  been  applied  widely  to  allele  frequencies  to  detect  the  action  of
selection at a locus[17-19, 21, 23-26, 100, 101, 105, 106]. Assuming Hardy Weinberg
proportions, the observed homozygosity statistic (Fobs) is computed as the sum of the
squares of the frequencies at a given locus in a given population. The EW test compares
Fobs to Fexp, the distribution of homozygosity values expected under conditions of neutral
evolution  as  predicted  by  the  EW  model,  generated  via  Monte  Carlo  Markov  Chain
simulation, for a population of the same size (2n), displaying the same number of alleles
(k). EW test p-values indicate the proportion of the Fexp distribution that is smaller than
Fobs, providing a one-sided test against the alternative of balancing selection. The mean
of the distribution of expected homozygosity values is reported as Fexp.

The normalized deviate of homozygosity (Fnd) [18] measures the difference between Fobs

and Fexp by dividing the difference by the square-root of the variance of the distribution
for Fexp: Fnd = (Fobs - Fexp)/SD(Fexp).  Low (negative) Fnd values are consistent with the action
of balancing selection maintaining relatively even allele frequencies. High (positive)  Fnd

values reflect frequency distributions skewed in favor of one or a few alleles, consistent
with directional selection. Fnd values near zero are consistent with the null hypothesis of
neutral evolution, but cannot be used to infer the absence of selection.

Fnd statistics  can  be  combined  across  multiple  datasets  to  test  whether  the  set  of
normalized deviations is compatible  with neutrality.  The average  Fnd  over a set of  m
independent  populations  is  asymptotically  normally  distributed.  A  t-test  was  used to
determine if the mean  Fnd differed significantly from zero. When comparing  Fnd values
across multiple populations or loci, the overall trend was further assessed by considering
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the  proportion  of  populations  with Fnd  <0.  Solberg  et  al.  [24] provide  more  detailed
discussion of the EW test. 

Each variant  in  a  given  locus-category  was  treated  as  a  discrete  allele-category  for
analysis. For example, in the analysis of AA position 8, all DPB1 alleles encoding valine at
this  position  were  collapsed  into  one  allele-category  (V8),  while  all  alleles  encoding
leucine were collapsed into a second allele-category (L8). For the paired analysis of AA
positions 8 and 9, alleles were collapsed into one of six allele-categories (V8:Y9, V8:F9,
V8:H9, L8:Y9, L8:F9, or L8:H9) as determined by their position 8 and 9 sequences. The
EW test was applied to the frequencies of the allele-categories.

The EW test assumes an infinite-alleles model to generate the distribution of Fexp values;
each  allele  at  a  locus  is  assumed  to  represent  a  novel  variant.  When  considering
individual AA positions, only 20 "alleles" are possible for a given position. Though many
fewer than 20 AA variants are observed at variant DP AA positions, this discrepancy
might result in a bias toward lower Fnd values. However, Salamon et al. [18] have shown
that the calculation of Fnd values using Fobs values calculated under a finite-alleles model
and Fexp values calculated under an infinite-alleles model has a negligible effect on the
EW test. Fnd values calculated for pairs and trios of AA variants, which necessarily have
the potential for many more than 20 variants, are equally valid. 

For  the EW test applied to AAs, we interpret  the inference of  balancing selection as
indicating a lack of functional constraint on the variant residues at a position. Clearly, all
AA positions  are subject to selection;  most  positions  are invariant and are therefore
under  strong  positive  directional  selection.  Similarly,  no  DPB1 encoded  AA positions
display all twenty possible AA residues; therefore, when balancing selection is inferred
for a position, the variants at that position may contribute to multiple distinct alleles. 

2.2.5. Linkage Disequilibrium calculations
LD is  defined as a deviation from linkage “equilibrium” --  the random association of
alleles at linked loci. In this analysis, we interpret LD between pairs of AA positions as
illuminating functional constraints (or the lack thereof) on possible intramolecular DP
variation.  Given  a  sufficiently  large  number  of  populations,  a  global  LD  value  of  1
between two AA positions suggests that only a particular combination of  residues at
those positions are tolerated in the DP molecule, whereas an LD value of 0 indicates that
any combination of residues at those positions are acceptable for DP function. We retain
the concept of LD as a useful metric for considering association of individual AA residues,
but  acknowledge that the concept  of  linkage equilibrium is  not  applicable  to protein
sequences, given structural and functional constraints.  LD between alleles at linked loci
can reflect recombination, demography, the age of the variants, and selection. Here, the
LD metric reflects primarily functional and structural constraints.

The  conditional  ALD statistics,  WA|B and  WB|A [31,  32],  which  extend  the  global  LD
measure, Wn[107], in cases when loci display different numbers of alleles, was calculated
for  all  91 pairs  of  14 polymorphic  DPB1 exon 2-encoded AA positions.  WA|B and  WB|A

describe LD between loci A and B, conditioned on locus B and on locus A, respectively.
For bi-allelic loci, these measures are identical to Wn (a.k.a., the correlation coefficient r
for SNPs), but because they do not assume symmetry in the number of alleles at each
locus, the ALD statistics more accurately describe correlation between two polymorphic
loci. ALD values range from 0 to 1, when each allele at the non-conditioned locus occurs
with only one allele at the conditioned locus.
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ALD  has  an  appealing  interpretation  in  the  context  of  neutrality  testing  due  to  its
connection with homozygosity measures. The squared ALD statistic can be expressed as
a standardized difference between a conditional  (or haplotype specific) homozygosity
and the unconditional homozygosity. For example, with FA as the homozygosity for locus
A and FA/B as the conditional homozygosity for A conditioned on locus B,  WA/B

2 = (FA/B −
FA)/(1 −  FA). The complementary measure,  WB/A

2, is obtained by swapping the  A and  B
subscripts in the above definition.

ALD for pairs of AA positions was calculated by treating each AA position as a locus, each
distinct residue at an AA position as an “allele” at the locus, and each DPB1 allele in
which each pair of variant residues is found as a haplotype. Because the DPB1 exon 2-
encoded AAs are known, haplotype estimation of AA positions is not needed.

2.2.6. Correction for Multiple Comparisons
Uncorrected p-values are reported in the tables. The p-value threshold for a Bonferroni
correction based on the number of tests performed is listed in each table. This p-value
threshold  is  included  as  a  conservative  reference  value,  and  represents  an
overcorrection,  as  these tests  are  not  independent  due to  correlations  from LD and
shared population histories. 

3. Results
3.1 Observed DPB Amino Acid Polymorphism
As shown in  Table  1,  18 of  85  DPB1-encoded AA positions  were polymorphic  in  the
dataset. Positions 12, 17, 32, and 72 were monomorphic in at least 88% of populations,
and  were  excluded  from  AA  pair  and  trio  analyses.  All  observed  DPB1 alleles  but
DPB1*77:01 encode an R at position 12;  *77:01 encodes L12 and was observed in 11
Basque individuals.  DPB1*111:01 encodes  P  at  position  32,  while  all  other  observed
alleles  encode  R32;  *111:01  was  observed  in  one  Jing  Chinese  individual.  The  P17
sequence is only encoded by DRB1*38:01, while all other observed alleles encode A17;
*38:01 was observed in one Jing Chinese, one Naxi, one Shandong Han Chinese, and two
Pumi  individuals.  DPB1*31:01  and  *34:01 encode  L  at  position  72,  while  all  other
observed alleles encode V72; *31:01 and *34:01 were observed in 58 individuals in six
sub-Saharan  African,  one  North  African,  three  Southeast  Asian  and  six  Oceanian
populations. Position 33 was polymorphic in 51.5% of populations. The remaining 13 AA
positions were polymorphic in at least 92% of populations.

3.2. Linkage Disequilibrium across DPB1 Exon 2-Encoded Amino Acids
We measured LD across DPB1 exon 2 by calculating ALD for each pair of variant encoded
AA  positions.  Mean ALD  values  for  each  AA  position-pair  across  all  populations  are
illustrated in Figure 1. While uniformly high LD might be expected between AA variants
in a single locus, the complex pattern of LD illustrated is consistent with the "patchwork
pattern"  of  polymorphism,  resulting  from  interallelic  gene-conversion  events  [108],
observed across  the  DPB1 molecule;  we interpret  these intramolecular  LD values as
identifying regions of stringent and relaxed functional constraint on AA diversity. 

Very high LD values are observed between some pairs of adjacent variant positions (e.g.
8-9, 55-56, 84-85+). For these pairs,  ALD is maximal in one direction (e.g.  W8|9,  W56|55,
and W85|84 =1) and high but less than 1.0 in the other direction. However, not all adjacent
pairs have high LD (cf., 35-36 and 56-57). While high LD between adjacent positions may
be expected, the opposite suggests diversification at key positions in the molecule. High
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LD observed between distant regions of the molecule (e.g. 8:76 and 36:55), is suggestive
of interactions key to the secondary structure and function of the DP molecule (e.g., AA
positions 36 and 55 contribute to the p9 pocket [109]). 

Position 33 displays low ALD with most other polymorphic positions; W33|X, where X is any
other polymorphic AA position, ranges from 0.6 to 0.48 for all positions but 69, where
W33|69 is 1.0. Similarly, WX|33 ranges from 0.6 to 0.4. Position 69 displays a similar pattern;
W69|X ranges from 0.13 to 0.46, while WX|69 ranges from 0.14 to 0.43 for all positions but
33. Maximal ALD for W33|69 likely reflects functional constraints on these positions; in this
dataset, Q33 is always found with R69, and all R69 alleles have Q33 but  DPB1*69:01,
which has an E33-R69 sequence, while E33 is found with either E69 or K69 in all other
alleles. This Q33-R69 motif displays very low LD with other positions. The 66 populations
in which position 33 is invariant all lack Q33, and 65 of them lack R69;  DPB1*69:01 is
observed in only one of these populations (Miao Hmong) and in only one individual.

3.3. Amino acid-Level Analyses of Selection
3.3.1 Individual AA Positions
As shown in Table 1, individual AA-level Fnd variation is consistent with previous reports
[18,  19,  106],  in  which  low  Fnd was  observed  in  three  distinct  regions  of  the  DP
sequence. While mean Fnd for all polymorphic AA positions is -0.7, mean Fnd for positions
12, 17, 32, 33 and 72 is positive, with no significantly low p-values for these positions. 

Of the remaining 13 positions, mean Fnd for positions 35, 57, 65 and 76 is consistent with
neutral evolution. Mean Fnd values for the remaining nine AA positions differ significantly
from  the  null  hypothesis  of  neutral  evolution  in  the  direction  of  negative  Fnd,  and
balancing  selection.  Of  these,  the  lowest  and  most  significant  mean  Fnd values  are
observed for positions 56 (Fnd = -1.464 p-value = 2.2E-47) and 85+ (Fnd = -1.354 p-value
= 6.7E-50). In addition, positions 36 and 56 display the largest fractions of populations
for which significant EW test p-values are observed. 

3.3.2 Pairs of AA Positions
Mean  Fnd values  for  AA  position  pairs  are  illustrated  in  Figure  2  and  presented  in
Supplementary Table S2. Mean Fnd for all AA pairs is -0.63. Of the 91 AA position pairs
analyzed, 73 display mean Fnd values that differ significantly from the null hypothesis of
neutral evolution (Fnd = 0) in the direction of negative Fnd values across all populations.
Of these, the Fnd values for all 46 AA pairs involving positions 36, 55, 56, and 85+ differ
significantly  in  this  manner,  with  the  lowest  and  most  significant  mean  Fnd values
observed for AA position pairs 36:85+ (Fnd = -1.183, p-value=1.22E-43) and 56:85+ (Fnd

= -1.152, p-value = 2.93E-39). Sixteen AA position pairs, primarily involving positions 9,
11, 33, 57, 65, and 76, displayed Fnd values that were consistent with neutral evolution,
and AA position  pairs  9:76  and 57:65  displayed significant  positive  mean  Fnd values
consistent with directional selection. 

3.3.3 Trios of AA Positions
Mean  Fnd values  for  AA position  trios  are  presented in  Supplementary  Table  S3  and
illustrated  in  Figure  3.  Mean  Fnd for  all  trios  is  -0.53.  Of  the  364  AA  position  trios
analyzed, 269 display significantly negative mean Fnd values, consistent with balancing
selection. Of the 202 AA trios with Fnd values below -0.5, 154 (76.2%) include AA position
36, 56 or 85, and all 34 AA trios that include pairs of these positions display mean Fnd

values below -0.62. While the mean Fnd value for the 36:56:85 trio is -0.86 ( p-value =
9.04E-22), the lowest and most significant mean Fnd values are observed for the 55:56:57
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((Fnd =  -1.06,  p-value=8.26E-28)  and  36:84:85  (Fnd =  -1.03,  p-value=1.06E-26)  AA
position trios.  Twenty AA position trios displayed significant positive mean  Fnd values
(>0.22), consistent with directional selection; these trios involve positions 8, 9, 11, 33,
57, 65 and 76. The remaining 15 trios involving these positions are included in the set of
75 trios with mean Fnd values consistent with neutral evolution. 

4. Discussion. 
Although  the  action  of  natural  selection  on  individual  DPB1-encoded  AAs  has  been
investigated previously[18, 106], there have not been studies investigating all pairs and
trios  of  polymorphic  DPB1-encoded AAs,  along  with  LD between all  pairs  of  AAs.  In
particular,  we  have  shown  strong  evidence  of  balancing  selection  operating  on  AA
positions 56, 85-87, 36, 55 and 84 (in decreasing order of strength) based on averages
across  all  populations.  We further  investigate  and dissect  this  selection  in  individual
populations in the companion paper. 

Dai et al. [109] described the crystal structure of the DP2 molecule, and Diaz et al. have
investigated  the  impact  of  individual  residues  on  the  DP2  molecule’s  structure  and
function  [29]. As illustrated in Figure 4, in the top-down view of the DP2 structure, the
side chains of residues at positions 36, 55,  and 84 contribute to the peptide binding
groove;  positions 36 and 55 are physically proximal in the secondary structure of the
molecule and contribute to the p9 binding pocket, while position 84 contributes to the p1
pocket  on the opposite  end of  the peptide binding groove.  DP positions  55 and 84
correspond  to  the  highly  polymorphic  DR and  DQ positions  57  and  86,  for  which
balancing  selection  has  been  previously  observed  [110,  111].  As  revealed  by  site-
directed mutagenesis  [29],  the specificity of peptide anchor positions is influenced by
variation  at  DP positions  55,  84  and 85,  and position  36 variation  impacts  peptide
binding as well. Polymorphism at these peptide-interacting AA positions is therefore key
for the maintenance of a broad population-level peptide repertoire. Given this role in
peptide presentation, it is not surprising to detect strong balancing selection at these
positions.

Figure 5 shows mean Fnd values for six AA pairs, along with the individual mean Fnd 
values for the constituent AAs that make up each pair, for populations in each 
geographic region. For position pair 33:69, Fnd(69) ≤ Fnd(33:69) < Fnd(33) in all 
geographic regions and, as noted in section 3.2, ALD is highly asymmetric for this AA 
pair (W33|69=1, W69|33<0.4 in each geographic region, as shown in Supplementary Figure 
S1A-I). In this extreme example, any evidence for balancing selection at the level of the 
AA pair is clearly driven by position 69 and not position 33. While other position pairs 
may be less clear cut, owing to regional differences in allele frequencies and LD, this 
combination of Fnd and ALD results can aid in the assessment of evidence for selection at
specific AA positions.

For position pair 36:56, Fnd(36) and Fnd(56) are both lower than Fnd(36:56) in most 
regions, with the exception of populations from SEA, OCE, AUS and NEA, and Fnd(36)≈
Fnd(56) in most regions. Interestingly, ALD between positions 36 and 56 is symmetric 
(W36|56 = W56|36), and relatively high (0.86-0.94) in all regions but SEA, NEA, and OCE 
(0.28-0.40). A similar pattern of Fnd results is seen for the 36:85 and 56:85 pairs, 
indicating that evidence of selection at one of the sites does not overpower that of the 
other site in the pair. 
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For adjacent pairs of sites, it is of interest to assess the strength of evidence for one site
over the other. For position pair 55:56,  Fnd(56)  < Fnd(55:56)  ≤ Fnd(55)  in most regions,
with the exception of populations from SEA, OCE, and AUS. W56|55=1.0 in all regions and
W55|56>0.90  in  all  regions  except  SEA,  NEA,  and  OCE  indicating  more  variability  at
position 55 conditional on position 56 in populations from these regions. These results
point to position 56 rather than position 55 as a potential target of selection in most
regions. A similar pattern is seen for position pair 35:36, where position 36 is revealed as
the target of selection. Supplementary Figure S2 presents these comparisons of mean Fnd

values for AA pairs and their constituent positions for all 91 AA pairs evaluated.

As revealed in a comparison of Figures 2 and 3, Supplementary Tables S2 and S3, and
Supplementary  Figure  S2,  the  mean  Fnd value  across  all  locus-category  comparisons
increases from -0.70 for individual amino acids, -0.63 for AA pairs and -0.53 for AA trios,
to  0.13  for  DPB1  exon 2-defined alleles.  This  trend results  from the increase in  the
number of possible "alleles" (k) at each "locus" tested, from a minimum possible k of 2 at
the AA level, 4 for pairs and 8 for trios. As the number of "alleles" increases with each
level of analysis, allele-frequencies become increasingly skewed between high-frequency
and  low-frequency  variants,  and  the  mean  homozygosity  values  increase  with  each
successive level  of  analysis.  This  trend of  increasing  Fnd values likely  continues  with
successively larger sets of AA positions, until the mean Fnd value of 0.13 is observed for
exon 2-defined alleles.

When comparing the mean Fnd values of AA pairs and trios to those of their constituent
AAs, the mean Fnd values of approximately 1/3 of pairs and trios are higher than their
constituents, while approximately 2/3 have values that are intermediate with respect to
the values of their constituent AAs; only one pair (35:57) and one trio (33:35:37) have Fnd

values that are lower than their constituents.

5. Conclusion
We have identified balancing selection operating on nine of 14 polymorphic DPB1 exon
2-encoded AA positions (treating AA positions 85-87 as a single unit). Further, balancing
selection is operating on 50% of AA pairs and 74% of AA trios. We further identified high
asymmetric  LD between relatively  distant  AA  positions,  suggestive  of  structural  and
functional  constraints  on the evolution  of  DPB1 AA diversity.  This  population  genetic
approach for dissecting selection on AA positions can be applied to any locus, and can
also  be  applied  to  nucleotide  positions.  For  DPB1,  these  observations  suggest  that
natural selection is operating on specific functional categories of DPB1 exon 2-encoded
AAs rather than individual  DPB1 alleles.  To  investigate this  possibility,  we apply this
approach to functional categories of AA polymorphism, in the individual populations, in
the companion paper.
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Figure 1. Mean ALD Values for 91 Pairs of DPB1 Encoded Amino Acid Positions
LEGEND: 
Mean WA|B and WB|A values for each pair of amino acid positions (A and B) are shown in 
each box. For each box, the position indicated for that row is conditioned on the position 
indicated for that column. Boxes are color coded to reflect the ALD scale on the right. 
Black boxes with no numbers indicate complete LD (WA|B or WB|A = 1).

Figure 2. Mean Fnd Values for 91 Pairs of Variant DPB1 Exon 2 Encoded Amino Acid 
Positions
LEGEND:
Mean Fnd values for each pair of amino acid positions are shown in the upper half of the 
matrix. Boxes are color coded to reflect the log of the p-value of the parametric t-test for
each pair. Log p-values range from -0.01 to -42.9 as indicated on the scale to the right. 
The grey bar on the left-side of the scale indicates the threshold of significance (p-value 
< 1.05E-4) for 473 comparisons. 

Figure 3. Mean Fnd Values for 364 Trios of Variant DPB1 Exon 2 Encoded Amino Acid 
Positions
LEGEND: 
Circles: mean Fnd values for each amino acid position trio. 
×: mean Fnd values of trios including amino acid positions 36 and 56.
+: mean Fnd values of trios including amino acid positions 36 and 85+.

*: mean Fnd values of trios including amino acid positions 56 and 85+.

Black-filled circle: mean Fnd value for the 36:56:85+ trio.
White-filled circles: mean Fnd values of all other trios.

Amino acid position trios are depicted in numerical order (1 to 364) as presented in 
Supplementary Table S3.

Figure 4. Location of Key Amino acid Residues in the HLA-DP2 Crystal Structure
LEGEND:
Figure 4A
A side view of the HLA-DP2 protein is shown. The DPa and DPb subunit backbones are 
shown in yellow and blue, respectively. The peptide binding grove is formed by the 
yellow and blue alpha helices at the top, with the model oriented to look along the 
groove.

Figure 4B
A top-down view of the HLA-DP2 peptide binding groove is shown. The DPA1 Exon 2 
encoded backbone is shown in green. The DPB1 Exon 2 encoded backbone is shown in 
blue. Positions 36, 56, and 85-87 and their side chains are shown in red. Positions 
a31, a50, a83, b9, b11, b55, b69, and b84 and their side chains are shown in yellow. 
Although DP position 83 is encoded by DPA1 exon 2, this AA position contributes to the 
2 domain.

The DPA1 and DPB2 exon 2 encoded backbone structures shown are derived from the 
HLA-DP2 (DPA1*01:03, DPB1*02:01) protein crystal structure [1] (Protein Data Bank ID 
3LQZ) obtained from the National Center for Biotechnology Information's Molecular 
Modeling Database (http://www.ncbi.nlm.nih.gov/structure?term=DPB1), and were 
manipulated in was manipulated in CN3D v4.3.1.
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1. Dai, S., et al., Crystal structure of HLA-DP2 and implications for chronic beryllium disease. 
Proc Natl Acad Sci U S A, 2010. 107(16): p. 7425-30.

Figure 5. Plots of Mean Fnd Values in Six Pairs of DPB1 Exon 2 Encoded Amino Acid 
Positions

LEGEND: 
The pertinent amino acid pair is indicated above each box. Within each box, the circled 1
indicates the mean Fnd value for the first amino acid position in the pair, the circled 2
indicates the mean Fnd value for the second amino acid position in the pair, and the bar
indicates the mean Fnd value for the amino acid pair, for each region of the world. The
range of  Fnd values, from 2 to -2, is shown on the left side of each box, and the three
letter codes for each global region, shown below each box, represent Australia (AUS),
Europe (EUR), North Africa (NAF), North American (NAM), Northeast Asia (NEA), Oceania
(OCE),  Other  (OTH),  South  America  (SAM),  Southeast  Asia  (SEA),  Sub-Saharan Africa
(SSA), and Southwest Asia (SWA).
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Figure 1. Mean ALD Values for 91 Pairs of DPB1 Encoded Amino Acid Positions (row 
conditioned on column)
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Figure 2. Mean Fnd Values for 91 Pairs of Variant DPB1 Exon 2 Encoded Amino Acid 
Positions
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Figure 3. Mean Fnd Values for 364 Trios of Variant DPB1 Exon 2 Encoded 
Amino Acid Positions
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 Figure 4. Location of Key Amino acid Residues in the HLA-DP2 Crystal 
Structure
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Figure 5. Plots of Mean Fnd Values in Six Pairs of DPB1 Exon 2 Encoded Amino
Acid Positions
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Table 1. Summary of Amino Acid-level Ewens-Watterson Analysis Based on DPB1 Exon 2-encoded Peptide 
Sequences. 

Amino
acid

Positio
n

mean k Number of
Variant

Populations

mean Fnd Number of
Populations

with EW test p-
values <0.05

Proportion of
populations
with Fnd < 0

p-value of
parametric t-

test

Significant
Trend

8 2 134 -0.994 11 0.858 1.7E-27 -
9 2.87 134 -0.430 5 0.739 2.8E-08 -
11 2 131 -0.760 6 0.847 4.1E-22 -
12 2 1 0.369 0 0 N.D. +a

17 2 4 0.931 0 0 4.5E-06 +
32 2 1 0.915 0 0 N.D. +a

33 2 70 0.708 0 0 8.1E-37 +
35 2.83 127 -0.345 12 0.551 7.3E-05 -
36 2 128 -1.294 43 0.891 1.5E-34 -
55 2.92 128 -1.124 27 0.938 9.7E-38 -
56 2 128 -1.464 39 0.922 2.2E-47 -
57 2.05 131 -0.259 1 0.649 3.5E-05 -
65 2.04 132 -0.222 2 0.614 2.6E-04 -
69 2.57 125 -0.645 2 0.84 4.5E-17 -
72 2 16 0.789 0 0 3.9E-10 +
76 2.76 133 -0.301 1 0.684 1.6E-05. -
84 2.49 135 -1.035 15 0.926 1.1E-37 -

85+b 2 135 -1.354 27 0.926 6.7E-50 -
Analytical results and summary statistics (described below) assessed for each of 18 polymorphic amino 
acid (AA) positions in a dataset of 136 populations are shown. These 18 AAs represent all of the DPB1 exon
2-encoded AA variation observed in the dataset. Invariant AA positions (displaying a single AA residue 
across all populations) are not shown.

Analytical Results and Summary Statistics:

mean k: Describes the mean number of amino acid residues observed at a given position across 
populations for which that AA position was polymorphic.
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Number of Variant Populations: Describes the number of populations (out of 136) that display any 
polymorphism for a given position. 

mean Fnd: Average values of the normalized deviate of homozygosity (Fnd) for each AA position over the 
number of populations for which that AA position was polymorphic.

Number of Populations with EW test p-values < 0.05: Describes the number of populations (out of 136) for 
which any individual Ewens-Watterson (EW) homozygosity test displayed statistical significance (p-value <
0.05). 

Proportion of populations with Fnd < 0: Identifies the fraction of populations displaying homozygosity lower 
than the value expected under the EW model for a population of the same size, displaying the same 
number of alleles (polymorphic AAs) evolving under the null hypothesis of neutral evolution (Ho: Fnd = 0). 

p-value of parametric t-test: Describes the p-value of a t-test comparing overall trends in in Fnd values with 
respect to the null hypothesis. For such parametric t-test comparisons of overall trends in Fnd between 474 
locus-categories (DPB1 alleles, 18 individual AA positions, 91 AA pairs and 364 AA trios), significance was 
evaluated at the 1.05x10-4 level.

Significant Trend: Based on the significance levels of the t-tests, a trend toward positive, directional 
selection (+), negative, balancing selection (-), or neutral evolution (blank) is indicated. 

a Significant positive trends for positions 12 and 32 are inferred from the observation that 135 populations 
are monomorphic for these positions.

b 85+ refers to AA positions 85-87 are observed as a pair of invariant sequence blocks (G85-V86-M87 or 
E85-A86-V87), and are treated as a single polymorphic position. 
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