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Abstract

We give a geometric interpretation of the maximal Satake compactification of symmetric
spaces X = G/K of noncompact type, showing that it arises by attaching the horo-
function boundary for a suitable G-invariant Finsler metric on X. As an application,
we establish the existence of natural bordifications, as orbifolds with corners, of locally
symmetric spaces which are orbifold quotients X /T by arbitrary uniformly weakly regu-
lar subgroups I' < GG. These bordifications result from attaching I'-quotients of suitable
domains of proper discontinuity at infinity. We further prove that such bordifications
are compactifications in the case of weakly regular conical antipodal (=7,,,4-RCA) sub-
groups, equivalently, Anosov subgroups. We show, conversely, that 7,,,-RCA subgroups
are characterized by the existence of such compactifications. As one of the applications of
our methods we give a positive answer to a question of Peter Haissinsky on convergence
group actions for torsion-free hyperbolic groups.
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1 Introduction

The goal of this paper is two-fold:

fwz (see [BJ],

Chapter 2]) of symmetric spaces X = G/K of noncompact type. (G is the connected component

1. We give a geometric interpretation of the mazimal Satake compactification X

of the isometry group of X.) We prove that this compactification is G-equivariantly homeo-

morphic, as a manifold with corners, to a reqular Finsler compactification X of X , obtained
by adding to X points at infinity represented by Finsler horofunctions. These horofunctions
arise as limits, modulo additive constants, of distance functions

dy = d'(,)

where d?(z, ) is a certain G-invariant Finsler distance on X associated with a regular direction
6 in the model spherical chamber 0,,,q of X. It turns out that the particular choice of 0 is
irrelevant, as long as it is an interior point of 7,,,4. Such horofunction boundary constructions
of compactifications of metric spaces are quite standard. The novelty is finding the right metric
on X which yields the maximal Satake compactification.



Theorem 1.1. For every reqular type 0 € int(0,,04),
X' —Xudx
is a compactification of X as a G-space which satisfies the following properties:
(i) There are finitely many G-orbits S, _, indexed by the faces Timod Of Omod- (X = Sg.)

(ii) The stratification of X’ by G-orbits is a G-invariant manifold—with—corners structure.

(11i) There is a K-equivariant homeomorphism of X’ to the closed unit ball in X centered

at the fired point of K with respect to the dual Finsler metric dj on X. In particular, X is
homeomorphic to the closed ball.

(iv) The compactification X s independent of the regular type @ in the sense that the
identity map idx extends to a natural homeomorphism of any two such compactifications.

v) There exists a G-equivariant homeomorphism of manifolds with corners between 79 and
(v) q P

the mazimal Satake compactification X5 which yields a natural correspondence of strata.

Remark 1.2. (i) We also give a geometric interpretation of the points in OfoX as strong
asymptote classes of Weyl sectors, see Remark [3.20]

(ii) The strata S, __,
of type Timoq in the Tits building of X, i.e. elements of the partial flag manifold Flag, . (X) =
G/P, .. Note that the full flag manifold Flag, (X) = G/B = 0pzX is the Fiirstenberg

boundary of X. Each small stratum is naturally identified with a symmetric subspace of X,

c X are disjoint unions of small strata X,, where the 7’s are simplices

namely the cross section of a parallel set. A subset S — 0% X is called saturated if it is a union
of small strata.

(iii) The Finsler view point had emerged in several instances during our earlier study [KLP1,
KLP2, [KLP3| of asymptotic and coarse properties of regular discrete isometry groups acting
on symmetric spaces and euclidean buildings. For instance, the notion of chamber or flag
convergence, see [KLP1, §7.2] and [KLP2, §5.3], is a special case of the Finsler convergence
at infinity considered in this paper. Furthermore, the Morse Lemma proven in [KLP3] can be
rephrased to the effect that regular quasigeodesics in symmetric spaces and euclidean buildings
are uniformly close to Finsler geodesics. In the same vein, Morse subgroups I' < G can be
characterized as Finsler quasiconvex.

(iv) The maximal Satake compactification is known to carry a G-invariant real-analytic
structure, see [BJ].

Remark 1.3. After finishing this work we learnt about the recent work of Anne Parreau [P]
where she studies the geometry of CAT(0) model spaces, i.e. of symmetric spaces of noncompact
type and euclidean buildings, from a very natural perspective, regarding them as metric spaces
with a vector valued distance function with values in the euclidean Weyl chamber A (called
A-distance in our paper). Among other things, she shows that basic properties of CAT(0)
spaces persist in this setting, notably the convexity of the distance, and develops a comparison
geometry for the A-distance function. Furthermore, she proves that the resulting A-valued



horofunction compactifications of model spaces are naturally homeomorphic to their maximal
Satake compactifications.

2. Our main application of Theorem [L.T]is to discrete subgroups I' < GG. Recall that if X
is a negatively curved symmetric space, then the locally symmetric space X /I" (actually, an
orbifold) admits the standard bordification

X/T < (X U Q)T

where Q(I') € 0, X is the domain of discontinuity of I".  The quotient (X u Q(I'))/I" is an
orbifold with boundary Q(T")/T". Furthermore, a subgroup I' is convex cocompact if and only if
(X v QI))/I' is compact.

In our earlier papers [KLPI, [KLP2, [KLP3], we introduced several classes of discrete sub-
groups I' of semisimple Lie groups G, generalizing the notions of discreteness and convex co-
compactness in rank 1. These classes are defined relative to faces 7,00 S Tmod, €quivalently,
with respect to conjugacy classes of parabolic subgroups of G. The most important (for the
purposes of this paper) of these classes are:

1. Tpog-regular and uniformly T,..q-reqular discrete subgroups I' of higher rank Lie groups
G; in the rank 1 case these conditions amount to discreteness of the subgroup.

2. Tmoa-RCA subgroups: These are subgroups of I' < G which are 7,,,4-regular and their
limit sets A, (I')  Flag, . (X) are conical and antipodal.

3. Tmoa-URU subgroups: These are 7,,,4-uniformly regular (finitely generated) undistorted
subgroups I' < G.

4. Teq-asymptotically embedded subgroups I' < G: These are intrinsically Gromov hyper-
bolic, Timeq-regular subgroups of GG, whose limit sets A, (I') are antipodal and equivari-
antly homeomorphic to the Gromov boundary of T'.

Remark 1.4. (i) Our regularity conditions capture the asymptotic behavior of divergent se-
quences in discrete subgroups I' < G with respect to the strata of the Finsler ideal boundary
of X (in the 7,,,4-regular setting) and of the visual ideal boundary of X (in the 7,,,4-uniformly
regular setting). For instance, let A(I') = d,, X be the limit set of I', i.e. the accumulation set at
infinity of the orbits 'z — X in the visual compactification X of X. Similarly, let Ag_(F, x) C X'
be the accumulation sets of the orbits 't < X in the Finsler compactifications X', Then T is
. < % X. (This
is independent of x.) Accordingly, A, (') is the set of simplices 7 € Flag,  (X) such that

Tmog-regular iff A?(T,z) is contained in the closure of the (big) stratum S,

AT, z) n X, # & for one (equivalently, any) 2 € X. Similarly, I is uniformly regular iff A(T')
consists only of regular points of d, X .

(ii) The classes 2, 3 and 4 are higher-rank analogues of convex cocompact subgroups of rank
1 Lie groups, reflecting various aspects of “geometric finiteness” of I' < G.



In [KLP2| we also gave a (the first) definition of Anosov subgroups I' < G which avoids
the language of geodesic flows; these are the (P-)Anosov subgroups of G defined earlier in
[L, [GW]. In [KLP2, [KLP3] we proved that the classes 2, 3 and 4 coincide and are equal to the
class of (Tyeq-)Anosov subgroups. In the regular case 7,00 = Omoaq, We will refer to (uniformly)
Omoa-Tegular and 0,,,g-RCA subgroups simply as (uniformly) reqular and RCA.

Our applications of Finsler compactifications to discrete groups establish the existence of
natural bordifications, as orbifolds with corners, of locally symmetric spaces which are orbifold
quotients X /T" by arbitrary uniformly 7,,.4-regular subgroups I' < G. We further prove that such
bordifications are compact in the case of uniformly reqular conical subgroups (wWhen T,,0q = Tpmod)
and, in full generality, for 7,,,g-RCA subgroups.

We now state our results first for uniformly regular conical subgroups and then in general.

Theorem 1.5. Let I' < G be a uniformly reqular subgroup.

(i) There exists a natural saturated I'-invariant open subset Qrp(I') < é’foX such that the
action

P~ X 0QmI)c X (1.6)

15 properly discontinuous. The quotient
(X U Q) /T

provides a real-analytic bordification of the orbifold X /T as an orbifold with corners.

(i1) If, in addition, the chamber limit set Ay (T') < OpyX is conical, then the action (I.4) is
also cocompact. In particular, this provides a real-analytic compactification of the orbifold X /T
as an orbifold with corners. The boundary part of this orbifold is the quotient Qpy,(I')/T.

The domain Q7 (I") at infinity results from the Finsler ideal boundary OfoX by removing a
suitable thickening of the chamber limit set A, (I'), compare (6.20]).

This theorem is a combination of Theorems [6.21] and [7.6], and Corollaries [6.22] and [Z.8]

Remark 1.7. While the compactification X is independent of @ as long as the latter is regular,
the subset Q7,(I') depends on the choice of the regular type #, which, in this theorem, has to be
an almost root type, see Definition Different root types yield in general different domains
Qrp (). For instance, if I' < PSL(2,R) = G is a cocompact Fuchsian subgroup and I' < Gx G
is the image of I' under its diagonal embedding into G x G, then the two different root types
of G x G yield two different (but homeomorphic) compactifications of (H? x H?)/T”, namely
(H? x H2)/T" and (H2 x H?)/I".

We now turn to the general case of uniformly 7,,,4-regular subgroups I' < G.

The group W which appears below is the Weyl group of X, the map ¢ : 0,,04 — Tmoq is the
< Wis
the stabilizer of the face Tyod © Omod. We refer the reader to section[8.4lfor the precise definitions
of thickenings. For now, the reader can think of Th < W as an auxiliary combinatorial datum,

opposition involution of the model spherical Weyl chamber of W, the subgroup W,

mod



a “thickening” of the neutral element inside W, which is used to define the Finsler thickening
Th?(A,, . (T)) of the limit set A, (T') < Flag, . (X), a certain I-invariant saturated compact

Tmod ~

subset of 0% X.

The following result is a combination of Theorems [0.18 and [10.20

Theorem 1.8. Let I' < G be a uniformly T,oq-reqular subgroup. Then:
(i) For each balanced W,

mod

-invariant thickening Th < W, the action
I~ X 005, ([0) = X' — TH(A,,,, (D))
15 properly discontinuous. The quotient
<X o Qgh(r)) /T (1.9)

provides a real-analytic bordification of the orbifold X /T .
(11) If, in addition, I" is Tea-RCA, then <X v Q?_ph(l“)> /T is compact. In particular, this

provides a real-analytic compactification of the orbifold X/T" as an orbifold with corners. The
boundary part of this orbifold is the quotient Qf, (T')/T.

Thus, our Theorems and [[.8 establish the existence of natural compactifications (as
orbifolds with corners) for the locally symmetric spaces X /I" by attaching I'-quotients of suitably
chosen saturated domains in the Finsler ideal boundary of X.

More abstractly, we say that a discrete subgroup I' < G is S-cocompact if there exists a
I-invariant saturated open subset €2 < OfoX such that I' acts properly discontinuously and
cocompactly on X u Q. (Note that no regularity is assumed in this definition. For instance,
all uniform lattices I' < G are S-cocompact with Q = ¢F.) Theorem [L.8 shows that 7,,,-RCA
subgroups of G are S-cocompact with Q = Q9 ().

In section [II] we also prove the converse to the last theorem:

Theorem 1.10. Uniformly 7,,.q-reqular S-cocompact subgroups of G are Tp,oq-RCA.

Combining the last two theorems, we obtain:

Corollary 1.11. A uniformly T,eq-reqular subgroup I' < G is Tyeq-RCA if and only if it is
S-cocompact.

Our cocompactness results thus provide a precise higher-rank analogue of the characteriza-
tion of convex cocompact subgroups of rank 1 Lie groups in terms of compactifications of the
corresponding locally symmetric spaces.

In section I0.4] we use our proof of cocompactness part of Theorem [L] to verify a conjecture
by Peter Haissinsky on cocompactness properties for convergence group actions on compact
metrizable spaces in the case of torsion free hyperbolic groups.

While proving Theorem [I.10, we establish yet another coarse-geometric characterization of
Tmod-RCA subgroups of GG as uniformly 7,,.q-regular subgroups in GG which are coarse retracts,

7



see sections 2.7 and [IT] for the details. This theorem is a higher-rank analogue of the character-
ization of quasiconvex subgroups of Gromov-hyperbolic groups as coarse retracts. Restricting
to the regular case, our Theorem [[L.10 proves that the antipodality condition in the definition
RCA is redundant in the context of uniformly regular subgroups:

Theorem 1.12. Uniformly reqular conical subgroups of G are RCA.

Remark 1.13. We note that the existence of an orbifold-with-boundary compactification of
locally symmetric quotients by Anosov subgroups of some special classes of simple Lie groups
(namely, Sp(2n,R), SU(n,n), SO(n,n)) appears in [GW].

Remark 1.14. Except for the application of our cocompactness argument to convergence
actions (Theorem [[0.22]), all results in this version of our preprint were already contained in
its second version. Shortly after that version, the preprint [GGKWal appeared, also addressing
the compactification of locally symmetric spaces. The main claims (Theorems 1.1 and 1.2)
of [GGKWa] are weaker than our Theorem [[.8 as compactifications modelled on maximal
Satake are only obtained for certain classes of Anosov subgroups. Also, a characterization of
Anosov subgroups in terms of the cocompactness of actions (compare our Corollary [LT1]) is
not provided. Moreover, the proof of compactness given in [GGKWa] was wrong, the erroneous
homological argument being later replaced by a dynamical argument based on our techniques
from [KLP1], see [GKWD|, Lemma 4.12 in §4.3]. However, the argument in [GKWD] still remains
incomplete as no proof is provided for the manifold-with-corners structure claimed in Theorem
1.1, see e.g. the lack of details in the proof of Lemma A.9.

Acknowledgements. We are grateful to the MSRI program “Dynamics on Moduli Spaces
of Geometric Structures” for its hospitality and support during our work on this project. The
first author was also supported by NSF grant DMS-12-05312. We are grateful to Lizhen Ji for
helpful discussions and to Anne Parreau for informing us about her work [P].

2 Preliminaries

2.1 Notations and definitions

We note that for Hausdorff paracompact topological spaces (and in this paper we will be
dealing only with such topological spaces), Alexander-Spanier and Cech cohomology theories are
naturally isomorphic, see [Sp, Ch. 6.9]. Therefore, in our paper, all cohomology is Alexander-
Spanier-Cech with field coefficients (the reader can assume that the field of coefficients is Zj).
For manifolds and CW complexes, singular and cellular cohomology is naturally isomorphic to
the Cech cohomology. We will use the notation H. ¥ for cohomology with compact support. As
for homology, we will use it again with field coefficients and only for locally-finite CW complexes,
where we will be using singular homology and singular locally finite homology, denoted HY.
By Kronecker duality, for each locally-finite CW complex X,

(HY(X))* ~ HYX), k=0.

8



We refer the reader to [J] for the definitions of manifolds and orbifolds with corners. The
only examples of orbifolds with corners which appear in this paper are the good ones, i.e.,
quotients of manifolds with corners by properly discontinuous group actions.

In the paper we will use the notion of dynamical relation between points of a topological
space Z, which is an open subset of a compact metrizable space, with respect to a topological
action I' ~ Z of a discrete group. The reader will find this definition in [F], [KLP1] and [KLI1].
We write

e~ ¢
if the points ¢ and ¢’ are dynamically related with respect to the action of the group I', and

if ¢ is dynamically related to £ with respect to a sequence v, — o in I', c¢f [KLP1) §2.1]. An
action is properly discontinuous if and only if no points of Z are dynamically related to each
other, see [F], [KL1].

2.2 Basics of symmetric spaces and their discrete isometry groups

In the paper we assume that the reader is familiar with basics of symmetric spaces of noncom-
pact type (denoted by X throughout the paper), their isometry groups G = Isom(X), visual
boundaries and Tits boundaries. We refer the reader to our earlier papers [KLP1l,[KLP2, [KLP3|
KLI] for the review of these. We also refer the reader to the same papers for the notions of
Tmod-Teqular and uniformly T,.q-reqular subgroups I' < GG, defined with respect to faces 7,04 of
model spherical Weyl chamber ¢,,,q of X. These notions of regularity present a higher rank
strengthening of the discreteness condition for I': In the case of rank 1 symmetric spaces, the
regularity of a subgroup is equivalent to its discreteness.

In the same papers we introduced several properties of 7,,,4-regular subgroups I' < GG which
generalize equivalent definitions of convex cocompact subgroups in rank 1 Lie groups. We will
mostly use in this paper the 7,,,-RCA property, where R stands for regular, C stands for
conical and A stands for antipodal; these properties describe the geometry of the limit sets of
I' and the dynamics of I" on these limit sets. We note that the class of 7,,,-RCA subgroups is
proven in [KLP2] to be equal to the class of P-Anosov subgroups I' < GG, where the parabolic
subgroup P < G is the stabilizer of a face of type 7,04 We will refer to o,,.4-regularity and
the 0,,,a-RCA property as regularity and RCA.

We recall (see [KLPI) [KLI]) that regular sequences in X are divergent sequences x,, — o0
satisfying the property that for some, equivalently, every base-point p € X, the sequence of
A-valued distances

da(p, xn) € A

diverges from the boundary of A. Accordingly, a sequence g, — o in G is reqular if the
sequence (g,x) is regular for some (equivalently, every) x € X. A subgroup I' < G is regular if
each infinite sequence in I' is regular. In the paper we will be mostly using the stronger uniform
reqularity condition, see §6.3



Below are some standard notations and notions that we will use throughout the paper:

1.

7.

10.

X will always denote a symmetric space of noncompact type, G its group of isometries
and K < G a maximal compact subgroup, the stabilizer of a base point in X which will
be denoted o or p.

. xy will denote the oriented geodesic segment in X connecting a point z to a point y;

similarly, € will denote the geodesic ray from z € X asymptotic to the point £ € 0, X.

F0q Will denote the model maximal flat for X', whose (finite) Weyl group will be denoted
W. Tt is the stabilizer of the origin 0 € F,,,q, viewing F},,q as a vector space. We will
use the notation a,,.q for the visual boundary of F},,q; we will identify a,,,q with the unit
sphere in F,,q equipped with the angular metric. The sphere a,,,q is the model spherical
apartment for the group W.

A = Apoqg © Fruoq Will be the model euclidean Weyl chamber of W its visual boundary
is the model spherical Weyl chamber ¢,,,q. We let ¢ : 01,04 — Omoq denote the opposition
involution, also known as the standard involution, of 7,,.,q; it equals —wg, where wy € W
is the element sending 0,,,q to the opposite chamber in the model apartment a,,,q-

R will denote the root system of X, aq, ..., a,, will denote simple roots with respect to A.

. p will denote a root type in 0,4, i.€., p is the direction of the coroot ¥ of a root a € R.

For instance, the coroot vector of the highest root always determines a root type p.
For simply-laced irreducible root systems, ,,,q contains exactly one root type, while for
non-simply-laced ones, 7,,,q contains two root types.

X = X Ld,X will denote the visual compactification of X with respect to its Riemannian
metric, equipped with the visual topology, and d7;sX the Tits boundary of X, which is
the visual boundary together with the Tits metric Zp4s. The Tits boundary carries a
natural structure as a piecewise spherical simplicial complex.

/ will denote the angle between vectors in a euclidean vector space, respectively, the
angle metric on spherical simplices.

. For each face T4 Of 0oa One defines the flag manifold Flag,  (X), which is the set

of all simplices of type Timeq in OrusX. Equipped with the wvisual topology, Flag,  (X)
is a homogeneous manifold homeomorphic to G/P, where P is a parabolic subgroup of
G stabilizing a face of type T,,04. The full flag manifold G/B = Flag(o,meq) is naturally
identified with the Fiirstenberg boundary dp; X of X.

For a point z € X, ¥, X denotes the space of directions at x, i.e., the unit sphere in the
tangent space T,.X. Similarly, for a spherical building B or a subcomplex C < B, and a
point £ € C, we let X¢C denote the space of directions of C at §.

10



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

There is a logarithm map log, mapping 0, X homeomorphically to ¥, X which sends each
ray € to its initial direction in >, X . This map endows >, X with the structure of a thick
spherical building, since the ideal boundary of X has one. If 7 is a simplex in O X,
then 7, will denote the image of 7 under log, .

For a simplex 7 in 0rys X, the star st(7) of 7, is the union of all chambers of 074X con-
taining 7. We will use the notation int(7) for the open simplex, which is the complement
in 7 to the union of its proper faces.

For a subset Y < X we let 0,Y denote the visual boundary of Y, i.e., its accumulation set
in the visual boundary of X. A set Y < X is said to be asymptotic to a subset Z < 0, X
if ZcoyY.

For a subset Y < X we will use the notation C H(Y) for the closed convex hull of Y, which
is the smallest closed convex subset C' of X such that the closure of C' in X contains Y.
Note that CH(Y') exists if Y n X is nonempty.

For a subset Z < 0, X we let V(z,Z) < X denote the closed convex hull of {z} U Z. In
the special case when Z = 7 is a simplex in 07y X, V(z,7) is the Weyl sector in X with
tip x and base T. A Weyl sector whose base is a chamber in 0r;, X is a (euclidean) Weyl
chamber in X.

Two Weyl sectors V(zq,7) and V (zo,7) are strongly asymptotic if for any € > 0 there
exist points y; € V(x;, 7) such that the subsectors V' (y;,7) and V(yz,7) are e-Hausdorff
close.

A sequence x; € V(x,7) (where 7 has the type Tyoa) IS Tmoea-Tegular if it diverges from
the boundary of V' (z, 7), i.e., from the subsectors V(z,7") for all proper faces 7’ of 7. We
refer the reader to [KLP2|] for the more general notion of 7,,.4-regular sequences in X,
which are not necessarily contained in sectors.

0 : Orits X — Omoq Will denote the type map, i.e. the canonical projection of the Tits
building to the model chamber.

da(z,y) is the A-valued distance function on X. For distinct points z,y € X we let
0(xy) € omoq denote the type of the direction of the oriented segment zy.

For distinct points z,y € X and £ € 0, X we let Z,(y, &) denote the angle between the
geodesic segment xy and the geodesic ray z€ at the point z € X.

We will always use the notation 7,7 to indicate that the simplices 7,7 in OpysX are
opposite (antipodal). Each simplex, of course, has a continuum of antipodal simplices.

Simplices 7,7 are called x-opposite if the Cartan involution fixing = sends 7 to 7.

P(7,7) will denote the parallel set of two antipodal simplices 7, 7 in d7;sX; it is the union
of all flats f in X of dimension dim(7) + 1, whose ideal boundaries contain both 7 and
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24.

25.

26.

27.

28.

7. We will use the notation T'(7, 7) for the group of transvections in X along the flat f:
This group is the same for all flats parallel to f and depends only on 7,7. We denote by

H=H(#7)=PnP <G (2.1)

the intersection of the parabolic subgroups of G fixing the simplices 7, 7. The subgroup
H preserves the parallel set P(7, 7).

The parallel set P(7,7) splits isometrically as the direct product C'S(7,7,p) x f, where
f is one of the flats as above and C'S(7, T, p) < X is a symmetric subspace containing the
point p € P(7,7). We let s(7,7) denote the ideal boundary of f; it is the intersection of
all apartments in 07X containing 7 U 7.

b, will denote the Busemann function (defined with respect to the usual Riemannian
metric on X) associated with a point 7 in the visual boundary of X.

d will denote the standard distance function on X, B(z, R) the closed ball of radius R
centered at x € X, Hb, a closed horoball in X, which is a sublevel set {b, < t} for the
Riemannian Busemann function b,,.

For a convex Lipschitz function f: X — R, we will denote by slope(f, &) the asymptotic
slope of f along one (equivalently, any) geodesic ray =€ asymptotic to &,

f(r®) — f(r(0))
t

slope(f, €) = lim

where r : [0,00) — z€ is the arc-length parameterization of z¢, see [KLM]. The function
slope(f,-) on 0 X is continuous and Lipschitz with respect to the Tits metric.

If f is the supremum of a family of uniformly Lipschitz convex functions f,, f = sup, f,,
then

slope(f,-) = supslope(f,,-). (2.2)
The asymptotic slopes of Busemann functions are given by

slope(be, -) = — cos Lpus(&, ) (2.3)
for £ € 0, X.

For a chamber o in 074X we let N, denote the associated horocyclic subgroup, the
unipotent radical of the Borel subgroup of G stabilizing ¢. Similarly, for a simplex 7 in
Orits X we we let N, denote the associated horocyclic subgroup, the unipotent radical in
the parabolic subgroup of G stabilizing 7, see [KLP2| §2.4.4]. Elements of N, preserve the
strong asymptote classes of geodesic rays z€, € € int(7) and hence the strong asymptote
classes of sectors V' (z, 7).
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2.3 Some point set topology

Let Z and Z' be first countable Hausdorff spaces, and let O < Z and O' < Z’' be dense
open subsets. Let f : Z — Z’ be a map such that f(O) < O’, and suppose that f has the
following partial continuity property: If (y,) is a sequence in O which converges to z € Z, then
flyn) = f(z) in Z'. In particular, f|o is continuous.

Lemma 2.4. Under these assumptions, the map f is continuous.

Proof. The lemma follows from a standard diagonal subsequence argument. O

Let (A,) be a sequence of subsets of a metrizable topological space Z. We denote by
Acc((A,)) the closed subset consisting of the accumulation points of all sequences (a,) of
points a, € A,,.

We say that the sequence of subsets (A,) accumulates at a subset S < Z if Acc((A,)) € S.

If Z is compact and C' < Z is a closed subset, then the sequence (A,) accumulates at S if
and only if every neighborhood U of C' contains all but finitely many of the subsets A,.

2.4 A transformation group lemma

Let K be a compact Hausdorff topological group, and let K —~ Y be a continuous action on a
compact Hausdorff space Y. We suppose that there exists a cross section for the action, i.e. a
compact subset C' = Y which contains precisely one point of every orbit.

Consider the natural surjective map
KxC-5%Y

given by the action, a(k,y) = ky. We observe that Y carries the quotient topology with respect
to a, because K x C'is compact and Y is Hausdorff. The identifications by « are determined
by the stabilizers of the points in C, namely a(k,y) = a(k,y') iff y = 3 and k71k’ € Stabg (y).

Consider now two such actions K —~ Y] and K — Y5 by the same group with cross sections
C; c'Y;, and suppose that
e

is a homeomorphism.

Lemma 2.5. If ¢ respects point stabilizers, i.e. Stabg(y1) = Stabg(¢(y1)) for all y, € CY,
then ¢ extends to a K-equivariant homeomorphism ® : Y, — Y.

Proof. According to the discussion above, the stabilizer condition implies that there exists a
bijection ® : Y; — Y5 for which the diagram

K x C; idx X6 K x Oy

o |

Y — Yy
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commutes. Since the «; are quotient projections, it follows that ® is a homeomorphism. O

2.5 Thom class

In this section HY denotes locally finite homology with Zs-coefficients.

Lemma 2.6 (Thom class). Let F > E — B be a fiber bundle whose base B is a compact
CW-complex and whose fiber F is a connected m-manifold (without boundary). Suppose that
there exists a section s : B — E. Then the map

H,!(F) = H,/(E)
—
~70

induced by an inclusion of the fiber is nonzero.

Proof. By thickening the section, one obtains a closed disk subbundle D — B. Then we have
the commutative diagram:

HY(F) — ~ HY(E)

/

Hy(Dp,dDp) <% H,.(D,oD)

The map j is an isomorphism. By Thom’s isomorphism theorem, the map ¢ is injective. It
follows that the map ¢, is injective. O

2.6 The horoboundary of metric spaces

We refer the reader to [G], [Bal ch. II.1] for the definition and basic properties of horofunction
compactification of metric spaces. In this section we describe these notions in the context of
nonsymmetric metrics, compare [W2].

Let (Y, d) be a metric space. We allow the distance d to be non-symmetric, i.e. we only
require that it is positive,

d(y,y’) = 0 with equality iff y = ¢/,
and satisfies the triangle inequality

d(y,y") +d(y,y") = d(y, y").

The symmetrized distance
" (y,y') = d(y, y) + dy', y)
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is a metric in the standard sense and induces a topology on Y. One observes that d is continuous,
and the distance functions

dy = d(y7 )

are 1-Lipschitz with respect to d*™. These functions satisfy the inequality
—d(y,y) < dy —dy <d(y,y). (2.7)

Let C(Y') denote the space of continuous real valued functions, equipped with the topology of
uniform convergence on bounded subsets. Moreover, let

be the quotient space of continuous functions modulo additive constants. We will denote by
[f] € C(Y) the equivalence class represented by a function f € C(Y), and our notation f = g
means that the difference f — g is constant.

We consider the natural map
Y —CY), y—[d,) (2.8)

It is continuous as a consequence of the triangle inequality. This map is a topological embedding
provided that Y is a geodesic space; see [Ba, Ch. II.1], where this is proven for symmetric
metrics, but the same proof goes through for nonsymmetric metrics as well.

We identify Y with its image in C(Y) and call the closure Y the horoclosure of Y, and
0.Y =Y —Y the horoboundary or boundary at infinity, i.e. we have the decomposition

We note that the horoclosure Y is Hausdorff and 1st countable since the space C(Y) is.

The functions representing points in 0, Y are called horofunctions. We write

Yn — [1]

for a divergent sequence of points y,, — o0 in Y which converges to a point [h] € 0,,Y represented
by a horofunction h, i.e. d,, — h modulo additive constants, and say that (y,) converges at
infinity. Each horofunction is 1-Lipschitz with respect to the symmetrized metric.

If the metric space (Y,d*¥™) is proper (which will be the case in this paper since we are
interested in symmetric spaces), then Arzela-Ascoli theorem implies that the closure Y and the

boundary 0, Y at infinity are compact. In this case, Y is the horofunction compactification of
Y.

Suppose that
G~Y

is a d-isometric group action. Then the embedding (2.8) is equivariant with respect to the
induced action on functions by ¢g- f = fog~!. For every Lipschitz constant L > 0, the subspace
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of L-Lipschitz functions Lip, (Y,d*¥™) < C(Y) is preserved by the action and contains, for
L = 1, the closure Y. We equip G with the topology of uniform convergence on bounded
subsets, using the symmetrized metric d*¥™ for both. Then the action G — Lip, (Y, d*¥™) is
continuous. In particular, the action
G~Y

is continuous. We will use this fact in the situation when G is the isometry group of a Rieman-
nian symmetric space. In this case the topology of uniform convergence on compact subsets
coincides with the Lie group topology.

An oriented geodesic in (Y,d) is a “forward” isometric embedding ¢ : I — Y, i.e. for any
parameters t; < ty in I it holds that

d(C(tl), C(tz)) = t2 — tl.

In particular, ¢ is continuous with respect to the symmetrized metric d*™. The metric space
(Y,d) is called a geodesic space, if any pair of points (y,y’) can be connected by an oriented
geodesic from y to y'.

If (Y,d) is a geodesic space, then the horofunctions arising as limits of sequences along
geodesic rays are called Busemann functions, and their sublevel and level sets are called horoballs
and horospheres. We will denote by Hb, a horoball for the Busemann function b, and more
specifically, by Hb,, the horoball of b which contains the point y in its boundary horosphere.

In the situations studied in this paper, all horofunctions will turn out to be Busemann
functions, cf. section 3.2.3]

2.7 Some notions of coarse geometry

Definition 2.9. A correspondence f : (X,d) — (X', d’) between metric spaces is coarse Lip-
schitz if there exist constants L, A such that for all x,y € X and 2’ € f(x),y € f(y), we
have

d'(x',y") < Ld(x,y) + A.

Note that if (X, d) is a geodesic metric space, then in order to show that f is coarse Lipschitz
it suffices to verify that there exists a constant C' such that

d(z',y) <C
for all z,y € X with d(z,y) <1 and all 2’ € f(z),y € f(y).

Two correspondences fi, fa : (X, d) — (X', d’) are said to be within distance < D from each
other, dist(f, g) < D, if for all x € X, y; € f;(x), we have

d/(ylayQ) < D.

Two correspondences f1, fo are said to be within finite distance from each other if dist(f1, fo) <
D for some D.
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A correspondence (X, d) — (X, d) is said to have bounded displacement if it is within finite
distance from the identity map.

Definition 2.10. A coarse Lipschitz correspondence f : (X,d) — (X', d') is said to have a
coarse left inverse if there exists a coarse Lipschitz correspondence g : X’ — X such that the
composition g o f has bounded displacement.

By applying the Axiom of Choice, we can always replace a coarse Lipschitz correspondence
f: (X,d) - (X',d') with a coarse Lipschitz map f" : (X,d) — (X', d') within bounded
distance from f. With this in mind, if a coarse Lipschitz correspondence f : (X,d) — (X', d’)
admits a coarse left inverse, then f is within bounded distance from a quasiisometric embedding
f:(X,d) - (X',d). However, the converse is in general false, even in the setting of maps
between finitely-generated groups equipped with word metrics.

We now specialize these concepts to the context of group homomorphisms. We note that
each continuous homomorphism of groups with left-invariant proper metrics is always coarse
Lipschitz. Suppose in the remainder of this section that I' is a finitely generated group and G
is a connected Lie group equipped with a left invariant metric.

Definition 2.11. We say that for a homomorphism p : I' — G, a correspondence r : G — I' is
a coarse retraction if r is a coarse left inverse to p. A subgroup I' < G is a coarse retract if the
inclusion map I' < G admits a coarse retraction.

Similarly, we say that a homomorphism p : I' - G admits a coarse equivariant retraction if
there exists a coarse Lipschitz retraction r : G — I' such that

r(hg) = r(h)r(g), Vhe p(T).

Accordingly, a subgroup I' < G is a coarse equivariant retract if the inclusion homomorphism
' — G admits a coarse equivariant retraction.

More generally, given an isometric action of p: I' —~ X on a metric space X, we say that a
coarse retraction r : X — [' is a coarse equivariant retraction if

r(yz) =yr(z), VYyel, xzelX.

In the case when X = G/K is the symmetric space associated with a connected semisimple
Lie group GG, a homomorphism I' — G admits a coarse equivariant retraction iff the isometric
action of I' on X defined via p admits a coarse equivariant retraction. Similarly, a subgroup
I' < G is a coarse retract iff the orbit map I' - I' - x < X admits a coarse left-inverse.

3 Finsler compactifications of symmetric spaces

Let X = G/K be a symmetric space of noncompact type.
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3.1 Finsler metrics
3.1.1 The Riemannian distance

We rewrite the Riemannian distance d®¢™ on X in a way which motivates our later definition
of Finsler distances.

Consider an oriented segment xy in X. As a 1-Lipschitz function, every Busemann function
be has slope < 1 along xy, and we have the inequality

4 (2, ) = be(y) — be(w). (3.1)

Observe that equality holds, i.e. b has slope = 1 along xy, iff x € y£. In particular, we obtain
the representation

a2, y) = max (be(y) — be()) (3.2)

for the Riemannian distance.

3.1.2 Certain Finsler distances

Now we fix a regular type 6 € int(c,,,4) and restrict only to Busemann functions be which are
centered at ideal points of this type, 8(¢) = #. For a chamber ¢ < 0, X, we denote by 6, € o
the unique point of type 6.

There is a sharper bound for the slopes of Busemann functions of type 6 along an oriented
segment, which depends on the type of the segment:

Lemma 3.3. The slope of a Busemann function by, along a non-degenerate oriented segment
xy is bounded above by cos Z(0(xy),10), with equality in some point, equivalently, along the
entire segment, iff € V(y,0).

Proof. The slope of by, |, in an interior point z € zy equals cos Z,(z, 6,), and is hence maximal
if the angle is minimal. The angle is minimal iff the directions zZ and z_ﬁo) lie in a common
chamber of the space of directions X, X, equivalently, iff x is contained in the euclidean Weyl
chamber V (z,0), and the angle then equals

2(0(zx),0) = £L(0(yx),0) = L(0(zy),0) = L(0(zy), 10).

In this case, the slope is maximal along the entire segment and x € V(y, o). O

In analogy with (3:2) we define the 0-Finsler distance d° : X x X — [0, +0) by
d’(,y) := max (b, () — by, () (3:4)

where the maximum is taken over all chambers ¢ < 0,X. The triangle inequality is clearly
satisfied. Positivity follows from the fact that diam(c,,04) < 5 and the assumption that 0 is

regular. The f-distance is symmetric iff (0 = 6.
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According to the lemma, we have the inequality, analogous to (3.1]),

d(2,y) = ba, (y) — by, (z) (3.5)

with equality iff z € V(y, o).

It follows that we can write the A-distance in the form

d’(z,y) = l(da(z,y))

with the linear functional [ = —b,5 (normalized at the origin) on A4 © Fiuoa-

Inequality (835) also implies that the §-distance restricts on maximal flats F' = X to analo-
gously defined metrics, because only the Busemann functions centered at the visual boundary
of the flat enter into the maximum. We have that

d'(w,y) = max (by, (y) = by, (v)) (3.6)

for points x,y € F', where the maximum is taken over the finitely many chambers in the visual
boundary of the flat. The restriction of d’ to maximal flats is thus the translation invariant
metric associated to the polyhedral norm on F,,q given by

| lg = max(low™) = max(byg — b,5(0))-

The f-distance is then the path metric associated to the G-invariant Finsler metric on X induced
by this norm.

We note that the §-distance as well as its symmetrization are equivalent, as metrics, to the
Riemannian distance.

In order to describe geodesics, we analyze when equality holds in the triangle inequality.

Lemma 3.7. The equality i ) )
d(x,2) + d°(2,y) = d°(z,y)

holds iff there exists a mazimal flat ' < X containing the points x,y and z, and a pair of
opposite chambers o4 < 0, F such that

zeV(x,o0)nV(y,oo).

Proof. Let o_ be a chamber such that x € V(y,0_). Then by, has maximal slope along xy.
From

d(z,2) + d°(z,y) = (b, (2) — by, (2)) + (bs, (y) —bo, (2)) = (bs, (y) — by, (z)) =d’(z,y)
it follows that by, has maximal slope also along the segments zz and zy, which implies that
zeV(y,o-).

Let F' be the maximal flat containing V' (y,o_), and let o, < 0, F be the chamber opposite
to o_. Similarly, b(L9)0+ has maximal slope along the reversely oriented segment yx and it
follows that z € V(z,0,). O
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~ From the lemma one sees that (X, dé) is a geodesic space. All Riemannian geodesics are
d?-geodesics, but not vice versa. In view of Lemma 3.7, the d’-geodesics can be described as
follows.

For a dg—geodesic ¢ : I — X there exists a (in general non-unique) pair of opposite chambers
04+ C OpF such that

c(t) € V(e(ts), 04))

forall t_ <t, in I, i.e. ¢ drifts towards o, and away from o_. In particular, dg—geodesics are
contained in maximal flats. More precisely, a dé—geodesic segment is contained in the singular
flat which is the intersection of all maximal flats containing the endpoints. (This is no longer
true for singular types 6. There, the geodesics are contained in certain parallel sets.)

3.2 Finsler compactifications
3.2.1 Definition

If one applies the horoboundary construction, cf. section 2.6, to the Riemannian distance %™
on X, one obtains the visual compactification

X =X uigX. (3.8)
The ideal boundary points are represented by Busemann functions, i.e. the horofunctions are

in this case precisely the Busemann functions.

We define the Finsler compactification of type 0 or 8-compactification of X as the compact-
ification _ B
X' =XxudX. (3.9)

which one obtains when applying the horoboundary construction to the Finsler distance 4
Our next goal is to describe horofunctions in 0% X in terms of Riemannian Busemann functions
on X.

3.2.2 Certain mixed Busemann functions

According to the definition of the d?-distance, see B4)), we have that

d? = d’(z,-) = max(by, — by, (2)).
For a simplex 7 < 0, X, we put

bix := max (by, — b, ()) (3.10)

oOT

where the maximum is taken only over the chambers which contain 7 as a face.

The functions bf,x for simplices 7 < 0, X and points z € X will turn out to be the horo-
functions for the f-compactification, i.e. the functions which represent the Finsler boundary
points at infinity. We will now study their properties.
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The Busemann functions by, for o o 7 are invariant under the horocyclic subgroups N, > N
(cf. [KLP2, §2.4.4]). As a consequence, the functions b? , are invariant under N-.

Let f be a minimal singular flat asymptotic to 7, . f > 7. Then 0, f = s(7,7) for a face
7 opposite to 7. The Busemann functions by, for o > 7 are affine linear along f and coincide
up to additive constants. Therefore bﬁ_,w| ¢ coincides with them up to additive constants and is
itself affine linear.

More precisely, let T'(7,7) < G denote the subgroup of transvections along f. Then there
is a surjective homomorphism 1, : T'(7,7) — R, independent of f, such that

(bg, ot ") = by, | s + - (1)

for c o 7 and t € T, and hence

(W, 0t )y = Vly + e () (3.11)

If 0 © 7 is a chamber such that x € V(y, o), then

b0 . (y) = ba, (y) — b, (),

cf. Lemma 3.3l Thus, i
b), = by, — by, (2) (3.12)

on V(z,0_), where o_ denotes the chamber z-opposite to o. With the behavior (BI1]) under
translations, it follows that (8.12) remains valid on 7" V(z,0_) = V(z, CH(o_ U T)).

Let now F' be a maximal flat through x asymptotic to 7, F' © V' (z, 7). Note that the union
of the cones V(x, CH(o_uT)), as o_ runs through the finitely many chambers in st(7_) N 0, F,
equivalently, as ¢ runs through the chambers in st(7) N 0y F, equals F. We therefore obtain
that

Urolp = max  (ba,|r — by, (1)) (3.13)

TCOoCO0

Thus the restriction of bix to a maximal flat asymptotic to 7 is the maximum of finitely many
affine linear functions.

The following result will be used to distinguish the functions bgp from each other. Let 7 be
the simplex p-opposite to 7, and let C'S(p) = C'S(1,7,p) denote the cross section of the parallel
set P(7,7) through p (cf. [KLP2, §2.4.1]).

Lemma 3.14. b§7p|cs(p) has a unique mazimum in p.
Proof. Let p # q € CS(p). We need to find a chamber ¢ > 7 such that

be, (q) > bs, (p).

The latter holds if (and only if)

Zp(q,0,5) > (3.15)

ro| S
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We choose an apartment a, in the space of directions ¥,P(7,7) < 3,X which contains the
direction v := pg. As every apartment in ¥,P(7,7), it also contains the singular sphere s, :=
log, s(7,7). It suffices to find a chamber o, > 7, in a, such that
T
Lp(v,05,) > 5 (3.16)
because then there exists a chamber o > 7 such that o, = log, 0, and ([3.13) follows.
Let ' € int(7,0q) denote the nearest point projection of § € int(pmoeq) t0 Timog. We denote
by 6, the point (direction) of type ' in 7,. Furthermore, we let v_ € a, be the antipode of v

in a,. Then inequality (8.16) follows from
Loy, (v,00,) =7 = Lo, (v,6,,) > T (3.17)

The last inequality is satisfied if 0, < a, is the chamber whose space of directions Zg;p op
contains the direction H/Tpv_. To see this, we note that Zg;p o, decomposes as the spherical

2
the spherical building >, (¥,X), which may be reducible but has no sphere factor). Since the

join of the sphere Zg;p 7, and a simplex o, of diameter < 7 (isometric to a Weyl chamber for

direction Q’Tpé’% is perpendicular to 7,, it lies in o, which yields the non-strict inequality. The

strict inequality holds because 6 is regular, and hence G’TPHUP lies in the interior of o, . O

Based on these properties, we can now distinguish the functions bf;p from each other. (Recall
that the notation f = g means that f — g is a constant.)

Lemma 3.18. bip =1, ,iff T =7 and the sectors Vp,7) and V(p', ') are strongly asymp-

T/,p
totic.

Proof. Suppose that bﬁ_,p = bf__,,p,. We first show that then 7 = 7’.

By our assumption, the difference bf;p — b§,7p, is in particular bounded, and hence for every

point ¢ € X also bf_vq —bfj,7q is bounded. We choose ¢ inside a maximal flat F' which is asymptotic

to both simplices 7 and 7. We know from (3.13) how the restrictions of bf,q and bf,’q to F' look:
In particular, the asymptotic slope (slope bﬁ,q)|60O r attains the maximal value 1 precisely in the
points opposite to 0, for 7 < o < d,F. Since (sloped? )|o,r = (sloped?, )|a, r, it follows that
st(7) N O B = st(7') N 0 F' and hence 7 = 7.

The assertion in the case 7 = 7’ follows from Lemma [3.14] 0

Consequently, the functions bgp modulo additive constants one-to-one correspond to strong
asymptote classes of Weyl sectors in X.

3.2.3 Points at infinity and topology at infinity

Every function bf;p represents a Finsler boundary point at infinity:

Lemma 3.19. Letx,, — o0 be a sequence in the Weyl sector V (p, ) such that d(x,, V (p, 0T)) —
+00. Then

0 0 0
@ —d (p) — 1, (320)

T
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uniformly on compacta.

Proof. Step 1. Let 7 < 0, X be the simplex p-opposite to 7. We first prove the assertion on
the parallel set P(7, 7).

On the Weyl cone V(z,,st(7)) < P(7,7) it holds that dgn — v’ | compare the equality

case in (3.5 and (B.12)), whence ’
0 0 0 0 0
dxn - dmn (p) = bT,mn - bT,.CEn (p) = bT,p'
From our assumption that d(x,,V(p,07)) — 40, it follows that V(x,,st(7)) contains balls
B(p,rn) n P(7,7) with radii r,, — +00. Thus, (3.20) holds on P(7, 7).

Step 2. We extend this to X using the action of the horocyclic subgroup V;, relying on the
invariance
0 _ 10
br,ou=1"07,

of mixed Busemann functions under isometries uw € N,. By step 1, it holds for (u,y) € N, x
P(7,7) that i i i
dye, (wy) —dg, (p) — U7, (uy),
— —
df,, (v) v? ()

and the convergence is locally uniform in (u,y). Note that

de(xn,uxn) = de(uflxn, x,) — 0

for u € N, because d(x,, V(p, 0T)) — +00, and the convergence is locally uniform in u. Hence

UL p,

sup|d’, —d° | -0
X
due to the triangle inequality, compare (2.7)), and it follows that

& (uy) —d°, (p) — b7 (uy)

locally uniformly in (u,y), i.e.
0 0 0
dmn - dxn (p) - bT,p
locally uniformly on X, as claimed. O

We want to show that, vice versa, the functions bf,p represent all Finsler boundary points.

We fix a base point 0 € X and denote by K the maximal compact subgroup of G fixing o.
For a discussion of the concept of A-distance, see [KLP2| 2.1].

Lemma 3.21. Let x, — o0 be a divergent sequence in X. Then, after passing to a subsequence,

(i) there exists a face type Tmoqa S Omoa Such that the sequence of A-distances

Op 1= da(0,z,) — © (3.22)
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in the model euclidean Weyl chamber A = V (0, 0ynoa) is contained in a tubular neighborhood of
the sector V (0, Tmoa) and drifts away from its boundary V (0, 0Tmoa),

d<5n7 V(O, aTmod)) - —i—OO,

(i1) and, as a consequence, there exists a sequence of simplices 1, € Flag, (X) and a
bounded sequence of points
Pn € CS(Tn, Tn,0)  P(T, T0),

where T, denotes the simplex o-opposite to T,, such that x, € V(pp, T,).

Proof. Property (i) can clearly be achieved by passing to a subsequence.

Let 0, < 0, X be chambers such that z,, € V(0,0,), and let 7,, € ,, denote their faces of
type Tmoq- Moreover, let 7,, € 0, X denote the simplices o-opposite to 7,,. There exist unique
points p, € CS(7, T, 0) < P(7,, T,) such that x,, lies in the minimal flat f(7,, 7,,, p,) containing
the sector V(p,, 7,,). The sequence (p,,) is bounded, because the sequence (d,,) is contained in a
tubular neighborhood of the sector V' (0, 7;,04). Furthermore, x,, € V(p,, 7,) for large n, because
(6,) drifts away from V' (0, 0T,0¢). This yields (ii). O

Since Flag,  (X) is compact, one can further strengthen property (ii) by passing to a
subsequence once more and achieve that the sequences (7,,) and (p,) converge. These are then
the data which characterize the convergence at infinity:

Proposition 3.23 (Convergence at infinity). Let x, — o be a divergent sequence in X.
Then i

Tp — [bf',p]
with p e CS(7,T,0), where T denotes the simplex o-opposite to T, if and only if, without passing

to a subsequence, properties (i) and (ii) hold for large n with Tpeq = 0(T), 7, — T and p, — p.

Proof. Given properties (i) and (ii), we can write 7, = k,7 and 7,, = k,7 with k, — e in K
and 7 o-opposite to 7. The sequence of points

k:;lxn € V(k:;lpn,f) c P(7,71)
——
—p

is contained in a tubular neighborhood of the sector V (o, 7) and drifts away from its boundary,
d(k,*z,,V(o,07)) — +00. Lemma B.19 yields, combined with (2.7), that

d —dl o (ky'p) > b,

n Tn kn

uniformly on compacta. It follows that also

& —d (p) — 00

T7p )

0 _ g0 0 0 : 0
because dk,;lxn =d, ok, and |dk;1xn —d;, | — 0 uniformly on compacta. Thus, z, — [b] ].
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Conversely, suppose that x,, — [bf;p]. Then, if (6,) is not contained in a tubular neighbor-
hood of V' (0, Tpneq), or if it is contained in a tubular neighborhood of V(0, 7;,04) but does not
drift away from V' (0, 0Tyna), then a subsequence of (d,) is contained in a tubular neighborhood
of another sector V (0, Vimod)s Vinod # Tmod, and drifts away from V' (0, 0vypeq). 1t follows that (z,,)
subconverges to a boundary point [bg,q] with 6(v) = V4, a contradiction, since [bfiq] # [bﬁ_,p].
Thus, property (i) holds with 7,,,4 = 0(7).

Regarding property (ii), it follows from the proof of the previous lemma, that for sufficiently
large n there exist simplices 7, € Flag, (X) and points p, € CS(7,,Tn,0) such that z, €
V(pn, ™) and the sequence (p,) is bounded in X. Suppose that 7, -» 7 or p, - p. Since
Flag, . (X) is compact, we can then pass to a subsequence such that 7, — 7’ and p, — p' €
CS(7,7,0) with (7/,p") # (7,p). According to the first part of the proof, this implies that (z,,)
accumulates at [bf,m,]. However, [bf,vp,] # [bip] as a consequence of Lemma[3.14] and we obtain
a contradiction. Thus, property (ii) holds with 7, — 7 and p,, — p. a

Remark 3.24. (i) The assumption that p € CS(7,7,0) where 7 is o-opposite to 7 is a nor-
malization of p. It can be arranged in a unique way by replacing p while keeping the strong
asymptote class of the sector V(p, 7) unchanged.

(i) In the case Tyoq = Omoa the condition simplifies: It holds that x, — [bg,] if and only if
d(0y,, V (0, 001m04)) — +0 and z,, € V (0, 0,) with a sequence of chambers o, — o.

Corollary 3.25. FEvery Finsler boundary point at infinity is represented by a function bf;p.

Proof. By the lemma and the proposition, every divergent sequence in X subconverges to a
point at infinity represented by a function bﬁ,p. Hence there are no other points at infinity. [

Remark 3.26. (i) Together with Lemma [B.I§ we conclude that Finsler boundary points at
infinity one-to-one correspond to strong asymptote classes of Weyl sectors in X.

(ii) Since all horofunctions are of the form bgp and arise as limits of sequences along Weyl
sectors, and in particular as limits of sequences along Finsler geodesic rays, it follows that all
horofunctions are Busemann functions, as defined in section

Lemma 3.27. Let (z,) and (1;,) be sequences in X which are bounded distance apart and
converge at infinity, x, — [V ] and x], — [V, ,]. Then =17

Proof. By our assumption, the differences of distance functions dgn — dil are uniformly bounded

independently of n. It follows that also bf,p — 1%, , is bounded, which implies that 7 = 7. O

T’,p’
Remark 3.28. Note that, unlike in the case of the visual boundary at infinity, the limit points
[62,] and [bY, ,] do in general not coincide.
~Note that the continuous extension of the G-action on X to the Finsler compactification
X is given by
0 0 - 0
g- [br,p] = [br,p °g 1] = [bgT,gp]'

We now extend the above discussion to sequences at infinity.
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Let Tiod € Vmoa be face types. Then every boundary point of type v,,04 is a limit of boundary
points of type Toq:

Lemma 3.29. Let x, — o be a sequence in the Weyl sector V (p,v) such that d(z,,V (p, dv)) —
+0 and let T < v be a face. Then [V ] — [09 ].

T,Tn
Proof. According to Lemma [B19] there exist points y, € V(z,,7) < V(p,v) such that

4 0 0
d, —d, (zn) = b7, —0
uniformly on compacta. Since also d(y,, V (p,0r)) — +o0, applying Lemma [3.19 again yields
that
0 0 0
dyn o dyn (p) - vap
uniformly on compacta. It follows that [bf,xn] > [bfip]. O

The next result partially characterizes the convergence of sequences at infinity.

Lemma 3.30. If i i
(07, 2] = [00,]

and 0(T,) = Timoa for all m, then Ty < 0(v) and 7, > T S v.

Proof. We may assume without loss of generality that x, € C'S(7,,7,,0) and p € CS(V,v,0)
where 7,, is o-opposite to 7,, and  is o-opposite to v.

As in the proof of the previous lemma, using Lemma [3.19] we approximate the points [bé ]

Tn,Tn

at infinity by points y,, € V(x,, 7,,) such that still
0
yn - [bmp]'

The latter holds if the growth
A(Yn, V(xy, 01)) — +0

is sufficiently fast. Sufficiently fast growth implies moreover that y, € V(o,st(7,)), and hence
that there exist chambers o,, 2 7, such that y, € V (0, 0,).

After passing to a subsequence, there exists a face type 7/, S 0moq such that the A-dis-
tances da(0,y,) lie in a tubular neighborhood of V(0,7 ;) but drift away from V(0,07,,,,)-
Invoking sufficiently fast growth again, it follows that 7, 2 Tyea-

/

Consider the faces 7, < 7, € 0, of type 0(7),) = 7)..4,

! and denote by 7/ the simplices

o-opposite to 7. There exists a bounded sequence () of points !, € C'S(7/, 7., 0) such that

n» 'n’

yn € V(2 7"). After passing to a subsequence once more, we may assume convergence 7, — 7’

and x;, — 2’. Then y, — [b, ] by Proposition 3.23, and hence [bf,@,] = [bfip]. In particular,

/

7! .a = 0(v) and 7" = v. It follows that 7,, — 7 < v, i.e. the assertion holds for the subsequence.

Returning to the original sequence of points [bi“xn], our argument yields that every sub-
sequence has a subsequence for which the assertion holds. Consequently, 7,,,¢  0(r) and the
sequence of simplices 7,, can only accumulate at the face 7 < v of type Tioq. In view of the

compactness of Flag,  (X), it follows that 7, — 7. O
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Our discussion of sequential convergence implies that the Finsler compactification does not
depend on the regular type 6.

Proposition 3.31 (Type independence of Finsler compactification). For any two reg-
ular types 0,0 € int(0yn0q), the identity map idx extends to a G-equivariant homeomorphism

sending [V )] — [b7 ] at infinity.

. . . 5 g 1 - . e . o=0 0
Proof. The extension of idy sending [bY ] — [b7 ] is a G-equivariant bijection X~ — X . The
conditions given in Proposition B.23] for sequences z,, — o in X to converge at infinity do

not depend on the type 6, i.e. we have convergence z,, — [bf__m] in X' if and only if we have

1. =0 .
convergence z,, — [0 ] in X . A general point set topology argument, see Lemma 24, now
implies that the extension is a homeomorphism. O

3.2.4 Stratification and G-action

For every face type Tiod © Omod, We define the stratum
STmod = {[b?_',p] : 9<T) = Tm0d7p € X} (332)

Furthermore, we put Sz = X. We define the stratification of X as

76 = |_| STmod'
@ngodgC"mod
The combination of Lemmas [3.29] and B.30] yields for the closures of strata:
ngod = |_| Symod (333>

Vmod=Tmod

In particular, there is one open stratum Sz = X and one closed stratum S,, , = dpyX, and
the latter is contained in the closure of every other stratum.
There is the natural fibration
STmod - Flangod (X> (334>

by the forgetful map [bip] — 7, and the fiber over 7 is the space of strong asymptote classes of
Weyl sectors V(z,7), cf. Lemma [B.I8 which is canonically identified with the cross section of
any parallel set P(7,7) for a simplex 7 opposite to .

The natural G-action on X preserves each stratum, along with its fibration, and acts
transitively on it.

The stabilizer of a point [bf,p] is the semidirect product
Ny x (T(7,7) x Ky(r.z))
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where N, < P, is the horocyclic subgroup, 7 denotes a simplex opposite to 7, T'(7,7) is
the group of transvections along the singular flat f(7,7), see section B:22Z2] and the compact
subgroup Ky, ) is the pointwise stabilizer of f(7,7).

The following observation will be very useful to us:

Lemma 3.35. For every open subset O nyg intersecting the closed stratum, O N 0pz X # &,
the G-orbit is the entire space, G - O = X

Proof. Every stratum contains the closed stratum in its closure, and G acts transitively on
every stratum. O

In addition to the “big” strata .S

Tmod )

we define for every simplex 7 < 0, X the “small”
stratum

0 7.
X: ={[b7,] :pe X}. (3.36)
The strata X, for the simplices 7 € Flag, _ (X) are the fibers of the fibration (3.34]).

Note that X is canonically identified with every cross section C'S(7, 7, p) for every simplex
7 opposite to 7 and every point p € P(7,T).

The closures of the small strata are given by

X.=|]x (3.37)

The stratum closure X, is canonically identified with the Finsler compactification of X, with
respect to the natural induced regular Finsler metric d?mod on X, where the regular type 0
defines the regular type 6. X is the
point corresponding to the simplex CH (0 U Tynoq) S Omoa of dimension 1 + dim(7,.0q).

Omoa for the Coxeter complex of X, ; namely, 6

Tmod Tmod Tmod

Note that for different simplices 71, 7o of the same type 7,04, it holds that

X,nX, =0.

There is the following relation between flag convergence in the sense of [KLP2] and Finsler
convergence, which also justifies [KLP2, Remark 5.8]:

Lemma 3.38. A sequence (v,) Tmoa-flag converges, x, — 7 € Flag, . (X), if and only if it

accumulates in X© at the small stratum closure X,.

Proof. This follows from the definition of flag convergence and Proposition [3.23] O

3.2.5 Compactification of maximal flats and Weyl sectors

Let F < X be a maximal flat. Applying the horoboundary construction to the restricted Finsler
distance d’|p r, one obtains the f-compactification

F=FLdF
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of F.. By analogy with Corollary 3.25] the Finsler boundary points at infinity are represented
by the mixed Busemann functions

bfj’f = Il’l&X(b@a — by, (p))

oOT

for Weyl sectors V(p, 7) < F, cf. (BI0). We note that
FO _ 10
bT,p - bT,p|F7

see ([BI3). Specializing the discussion of sequential convergence in X to F', see the proof of
Corollary 3.25], we obtain the following version of Proposition 3223 (Note that the visual
boundary 0., F is a finite simplicial complex.)

Lemma 3.39 (Convergence at infinity for maximal flats). Suppose that x, — © is a
sequence in F' which converges at infinity, and let o € F' be a base point. Then:

(i) There exists a unique face T € O F' such that the sequence (x,,) is contained in a tubular
neighborhood of the Weyl sector V(o,7) and Tyeqa-regular for Tyeq = 0(T).

(ii) There ezists a convergent sequence p, — p of points in the orthogonal complement TL,O
through o of the minimal singular flat f;, containing V(o,7), such that x, € V(p,, 7).

(#i) It holds that )
T, — [bf:’g]

in the Finsler compactification I

The convergence at infinity of divergent sequences in F' is the same intrinsically and extrin-
sically, i.e. sequences x,, — o0 in F' converge in Fiff they converge in X We thus have the
natural topological embedding ) )

7 5
extending the inclusion map and sending [bf ’g] — [bf,p], compare also Lemma B.14]

For every face 7 < 0o F', we define the stratum

SE = {[bF0) . pe F} c & F. (3.40)

T

It is canonically identified with the cross section foo mentioned in the lemma. Moreover, for
every face type Timod © Omoq We define the stratum

Sp oy =00, 000) =moat = || SF

9(7—):Tmod

analogous to (832). Then Sf =5, '~ ?° F, and the SF are the fibers for the restricted
fibration (3.34]). As in (8.37)), the closures of strata decompose as:

5.= || sr (3.41)

O F2v2T
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Let Tr < G denote the subgroup of transvections along F. We regard it, intrinsically, also as
the group of translations of F'. Unlike for the visual boundary, the induced action of

Ty —~ 0 F

on the Finsler boundary is nontrivial. The action preserves each stratum S, and Ty acts

T

transitively on it.

The discussion for Weyl sectors is analogous.

Let V(o,7) © X be a Weyl sector. Again, sequential convergence at infinity for diver-
gent sequences in V'(o,7) is the same intrinsically and extrinsically, and we have the natural
topological embedding

Vio,r) — X'
extending the inclusion map and sending [by. éo’T)’é] — [bip].
The ideal points in 0%V (0,7) c 6% X are the points [bfip] for the Weyl sectors V (p,v) <
V (o, 7). We have analogously defined strata Syten) < 0%V (0, 7) for the faces v < 7, and the
decomposition

57— || sy (3.42)

T2V Dv

of their closures.

If 7" = 7, then V (o, 7")9 < Vo, 7')9. An ideal point [bfip] e %V (0,7) with V(p,v) < V(o,7)
belongs to 0%V (o, 7') iff V(p,v) = V(o,7').

Furthermore, regarding the intersection of compactified sectors, we obtain:

Lemma 3.43. For any two simplices 11,7 C 0 X, it holds that

V (o, 7‘1)9 n Vo, 7‘2)9 =V(o,1) N V(o, 7‘2)9 =V(o,11 N 7‘2)9. (3.44)
Proof. Suppose thati[bip] € V(o, 7'1)9 NV (o, 7'2)9. Then v € 71 n7y. There are sectors V (p;, v) <
V (o, 7;) such that [bf ] = [0f , ]. They are contained in the parallel set P(v,?) for the simplex
U o-opposite to v, because the sectors V' (o, 7;) are contained. Consequently, the minimal flats

fvp: containing the sectors V(p;, ) are parallel. Since [b,e;pl] = [bf,m], the sectors V(p;, v) are

strongly asymptotic and the flats f,, ,, must coincide. We may therefore assume without loss of

generality that p; = py = p. But then V(p,v) < V(o,7) n V(o,72) = V(0,71 N 75) and hence
)

[b6,,] € V(0,71 " 72) . This shows the inclusion

V (o, 7‘1)9 n V (o, 7‘2)9 < V(o,m1 0 7‘2)9.

The reverse inclusion is clear. O

In the case of the model euclidean Weyl chamber A, we will use the following notation. For
a face type Timod S Omoq We define the stratum

SA ™Y J:5e A} dLA.

Tmod Tmod»0
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Its closure is

STmod - |_| SVmod’

Vmod=Tmod

cf. Lemmas[3.29 and B.300

3.2.6 K-action

Let 0 € X be the fixed point of K. Let V = V(0,0) < X be a euclidean Weyl chamber.
We recall some basic facts about the action K —~ X:
(i) V is a cross section for the action, i.e. every K-orbit intersects V' exactly once.

(ii) Stabilizers: The fixed point set in V' of any element k € K is a Weyl sector V (o, 7),
where (J € 7 € o is the face fixed by k. In other words, if k fixes a point p € V(0,0), then it
fixes the smallest Weyl sector V (o, 7) containing it. (Here, V' (o, &) := {0}.)

We now establish analogous properties for the action of K on the compactification.

Lemma 3.45 (Cross section). V' <X’ is a cross section for the action of K on x’.

Proof. Since K - 7 is compact and contains K -V = X, and since X is dense in its compacti-

fication, it holds that K - v =X’

We have to verify that the K-action does not carry different points of V'’ to each other.
Suppose that
0 0
k ‘ [bT,p] - [bT’,p’] (346)

for k € K and Weyl sectors V (p,7),V(p/,7) € V. Then, in particular, k7 = 7/. Since 0,04 is a
cross section for the action of K on 0, X (in fact, for the action of i), this implies that 7 = 7/
and kT = T.

It follows that k fixes the sector V' (o, 7) pointwise, and hence also the minimal (singular)
flat f., containing it. Moreover, it preserves the parallel set P(7,7) = P(f;,). Here, 7 < 0,X
denotes the simplex o-opposite to 7. Note that pe V < P(7,7)

Condition (B3.46]) is then equivalent to

kfr,p = fT,p’

where f.,, fry © P(7,7) denote the flats parallel to f;, through p and p’, equivalently, the
minimal flats containing the sectors V(p,7) and V(p’, 7). Since V is a cross section for the
action of K on X, it follows that fr, "V = fr,y 0V is fixed pointwise by k. The intersection
frp 0V is nonempty and contains a sector V (g, 7). Hence, [bf_m] = [biq] is fixed by k. O

Lemma 3.47 (Stabilizers). Let k€ K and V(p,7) < V. The following are equivalent:
(i) k fizes [bip] eV’
(i1) k fixes V(p,T) pointwise.
(111) k fizes pointwise the smallest Weyl sector V (o, v) containing V (p, 7).
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Proof. The proof of the previous lemma shows in particular the equivalence of (i) and (ii).
Conditions (ii) and (iii) are equivalent, because the fixed point set of k£ on V' is a sector V (o, v),
namely for the face v, & € v < o, which is the fixed point set of k on o. O

Let K, denote the stabilizer in K of the simplex 7, and put Ky = K.

Corollary 3.48. The points in the compactified euclidean Weyl chamber V (o, 0)9 fized by K-
are precisely the points in

Vo, 1),

and the points with stabilizer equal to K, are precisely the points in

Vi) — |J Vi)

vt
4 Coxeter groups and their regular polytopes

4.1 Basics of polytopes

We refer the readers to [Gr] and [Z] for a detailed treatment of polytopes. In what follows, V'
will denote a euclidean vector space, i.e. a finite-dimensional real vector space equipped with
an inner product (x,y). We will use the notation V* for the dual vector space, and for A € V*
and z € V we let (\,x) = A(x). The inner product on V defines the inner product, again
denoted (A, ), on the dual space.

A polytope B in V is a compact convex subset equal to the intersection of finitely many
closed half-spaces. Note that we do not require B to have nonempty interior. The affine span
(B) of B is the intersection of all affine subspaces in V' containing B. The topological frontier
of B in its affine span is the boundary 0B of B. A facet of B is a codimension one face of 0B.

Each polytope B has a face poset Fg. It is the poset whose elements are the faces of B with
the order given by the inclusion relation. Two polytopes are combinatorially isomorphic if there
is an isomorphism of their posets. Such an isomorphism necessarily preserves the dimension of
faces. Two polytopes B and B’ are combinatorially homeomorphic if there exists a (piecewise
linear) homeomorphism h : B — B’ which sends faces to faces.

Given a polytope B whose dimension equals n = dim(V), the polar (or dual) polytope of B
is defined as the following subset of the dual vector space:

B*={\eV*:\(z) <1,Vxe B}.

Thus, A € B* < V* implies that the affine hyperplane H) = {\ = 1} is disjoint from the
interior of B. Moreover, A € 0B* iff H) has nonempty intersection with B. Each face ¢ of B
determines the dual face p* of B*, consisting of the elements A € B* which are equal to 1 on
the entire face . This defines a natural bijection between the faces of B and B*:

*:(p»—»(p*,
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Under this bijection, faces have complementary dimensions:
dim(p) + dim(¢*) =n — 1.
The bijection * also reverses the face inclusion:
pC Y = o DY".

In particular, the face poset of dB* is dual to the face poset of 0B. If W is a group of linear
transformations preserving B, its dual action

w*(A) = Xow™!

on V* preserves B*. Naturality of  implies that it is W-equivariant.

A polytope B is called simplicial if its faces are simplices. It is called simple if it has a
natural structure of a manifold with corners: Each vertex v of B is contained in exactly d
facets, where d is the dimension of B. Equivalently, the affine functionals defining these facets
in (B) have linearly independent linear parts. For each simplicial polytope, its dual is a simple
polytope, and vice versa.

Lemma 4.1. Two polytopes are combinatorially isomorphic if and only if they are combinato-
rially homeomorphic.

Proof. One direction is clear. Suppose that ¢ : Fg — Fp is an isomorphism of posets. Using
this bijection we will define a homeomorphism h : B — B’, sending each face F' to ¢(F’), by
induction on skeleta. We let h : B® — (B’)° be equal to c restricted to the vertex sets.

Suppose, inductively, that we constructed a homeomorphism h on k-skeleta of our polyhedra,
sending each F' to ¢(F). We extend h to the (k + 1)-dimensional skeleton as follows. Given a
(k + 1)-dimensional face F' of B, we already have a homeomorphic embedding

h:0F — B,
sending faces to faces and preserving the order. Since ¢ preserves the posets, we have that
h(OF) = dc(F).

We pick an arbitrary pair of interior points x € F, 2’ € F' = ¢(F') and set h(z) = 2/. Then we
extend h to a PL homeomorphism h : FF — F' via the Alexander trick, meaning that we cone
off the boundary map. O

For simple polytopes one can make a sharper statement, see [Dal:

Theorem 4.2. If B and B’ are combinatorially isomorphic simple polytopes, then there exists
a combinatorial diffeomorphism h : B — B’ inducing the given combinatorial isomorphism.

Here, a diffeomorphism of polytopes means a homeomorphism which is the restriction of a
diffeomorphism defined on a larger open set.
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4.2 Root systems

In this and the following sections, the euclidean vector space V is identified with the model
maximal flat F},,q for the symmetric space X; the root system R < V* is the root system of X.
Accordingly, the Coxeter group W defined via R is the Weyl group of X. Since the symmetric
space X has noncompact type, R spans V*, i.e. W fixes only the origin 0 in V.

Given a face 7 of the spherical Coxeter complex 0.V, we define the root subsystem
R, cR

consisting of all roots which vanish identically on V(0, 7).

Each root o € R corresponds to a coroot ¥ € V', which is a vector such that the reflection
So 1V — V corresponding to a acts on V by the formula:

So() = 2 — (o, xyar”. (4.3)

The group W also acts isometrically on the dual space V*; each reflection s, € W acts on V*
as a reflection. The corresponding wall is given by the equation

NeV*:(\ av) =0},
equivalently, this wall is a", the orthogonal complement of a in V*.

From now on, we fix a Weyl chamber A = A,,,,q < V for the action of W on V. The visual
boundary of A is the model spherical chamber o,,,4.

Notation 4.4. We let [n] denote the set {1,...,n}.
The choice of A determines the set of positive roots R* < R and the set of simple roots
aq,...,a, € RT, where n = dim(V);
A={reV:ar)={a,z)=>0,i€[n]}.
We will use the notation s; = s,, for the simple reflections. They generate W.
The dual chamber to A is
A*cV* A" ={AeV*:(a;,\) =0,i€[n]}.

Remark 4.5. Note that there is another notion of a dual cone to A in V* namely the root
cone AV, consisting of all A € V* such that the restriction of A to A is nonnegative. The root
cone consists of the nonnegative linear combinations of simple roots. The root cone contains
the dual chamber but, is, with few exceptions, strictly larger.

Let B be a W-invariant polytope in V' with nonempty interior. We will use the notation
Ap =An B, A} = A* n B*.

Lemma 4.6. Suppose that A € A* is such that A\(x) <1 for all x € Ag. Then X\ € B*.

Proof. Let A € V* and let v € int(A) < V. Then A|y, is maximal in v iff A € A*. The assertion
follows. .
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4.3 Geometry of the dual ball
We assume now that B < V is a W-invariant polytope in V' with nonempty interior, such that
Ap={reA:l(x) <1}

where | = [ € int(A*) is a regular linear functional. The gradient vector of [ gives a direction
10, which is a regular point of ¢4
Set I, = w*l = low™!, where w € W. Then,

B=(J{zeV:l(z) <1},

weW

i.e. the facets of B are carried by the affine hyperplanes [, = 1 for w e W.

The polytope B defines a (possibly nonsymmetric) norm on V', namely the norm for which
B is the unit ball:
lall = llzlls = mas (1, (2)). (47)

We let wy,...,w, denote the nonzero vertices of the n-simplex Ag. We will label these
vertices consistently with the labeling of the simple roots: w; is the unique vertex of Ap on
which «; does not vanish. Geometrically speaking, w; is opposite to the facet A; of Ap carried
by the wall o; = 0.

The regularity of [ implies:

Lemma 4.8. The polytope B is simplicial. Its facets are the simplices
{rewA:l,(x) =1}
For each reflection s; = Sq,, the line segment w;s;(w;) is not contained in the boundary of B.

Proof. We will prove the last statement. The segment w;s;(w;) is parallel to the vector «.
If o were to be parallel to the face [ = 1 of B, then {I,a;”) = 0, which implies that [ is
singular. O

Corollary 4.9. Since the polytope B is simplicial, the dual polytope B* is simple.

The chamber A* contains a distinguished vertex of A%, namely the linear functional | = [a;
this is the only vertex of A%, contained in the interior of A*. (The other vertices of A%, are
not vertices of B*.)

We now analyze the geometry of A%, in more detail.

Lemma 4.10. A%, is given by the set of 2n inequalities (-, ;) = 0 and {-,w;y < 1 for i€ [n].

Proof. It is clear that these inequalities are necessary for A € V* to belong to A%.. In order to
prove that they are sufficient, we have to show that each A satisfying these inequalities belongs
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to B*. The inequalities (A, w;) < 1 show that the restriction of A to Ap is < 1. Now, Lemma
shows that A(z) <1 for all z € B. O

Close to the origin, A%, is given by the n inequalities (-, ;) > 0, while the other n in-
equalities are strict. Close to [, it is given by the n inequalities {-,w;» < 1, while the other n
inequalities are strict.

We define the exterior facet E; = A%y by the equation
<'7 wl> = 17
and the interior facet F; < A%+ as the fixed point set of the reflection s;, equivalently, by the
equation
(', Oéj) = 0.
For subsets I,J < [n] = {1, ...,n} we define the exterior faces

E] = ﬂEz

el

Fy=()F

jed

containing [, and the interior faces

containing the origin. These are nonempty faces of A%, of the expected dimensions, due to the
linear independence of the w;’s, respectively, the «a;’s.

As a consequence of the last lemma, every face of the polytope A%, has the form
E[ N FJ
for some subsets @ < I, J < [n].

We now describe the combinatorics of the polytope A%..

Lemma 4.11. For eachi=1,...,n, £, n F;, = .

Proof. Suppose that A € A% is a point of intersection of these faces. Then A is a linear function
fixed by the reflection s; and satisfying the equation (A, w;) = 1. Then \(s;(w;)) = 1 as well.
Thus, A = 1 on the entire segment connecting the vertices w; and s;(w;) of B. Since A belongs
to B*, this segment has to be contained in the boundary of B. But this contradicts Lemma
4.8 Therefore, such a A\ cannot exist. O

We denote by W; < W the subgroup generated by the reflections s; for j € J. The fixed
point set of W; on A% equals F).

Furthermore, we define w; as the face of B, as well as of Ag, which is the convex hull of
the vertices w; for 2 € I. The dual face wj of B* is given, as a subset of B*, by the equations
(-,w;y = 1. It is contained in W - A%, where we put J = [n] —I. Indeed, the vertices of w} are
the functionals [,, for which the dual facet [, = 1 of B contains w;, equivalently, for w e Wj.
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Note that W preserves w; and therefore also wj (and acts on it as a reflection group). The
fixed point set of W; on W - A%, is contained in the intersection

ﬂ WAL«

’wEW]

and in particular in A%,. This implies that
& # Fixw, (w]) < Afs.
Note that £ = wj n A% It follows that
E; n Fy 2 Fixy, (w}) # &.

In combination with the previous lemma, we conclude:
Lemma 4.12. For arbitrary subsets & < I, J < [n], it holds that E; nF; # & iff [ nJ = .

Next, we prove the uniqueness of the labeling of the faces.
Lemma 4.13. If E;nF;=Ep nFp # &, thenI =1 and J = J'.

Proof. Since ErnEp = Erop and FynFy = Fj v, the proof reduces to the case of containment
Icl'and JcJ.

Suppose that j' € J' — J. Then, intersecting both sides of the equality E; n F; = Epn Fp
with Fj, the previous lemma yields that

O # Erogy 0 Fr = Epogny 0 Fy = O,
a contradiction. Thus J = J', and similarly [ = I’ O

For the n-cube [0, 1], we define similarly facets £ = {t; = 1} and F] = {t; = 0}. They
satisfy the same intersection properties as in Lemmas .12l and £.13l Hence the correspondence

E N F J > E} N F }
is a combinatorial isomorphism between the polytopes A%, and [0, 1]". Lemma AT now yields:

Theorem 4.14. The polytope A% is combinatorially homeomorphic to the n-cube [0, 1], i.e.
there exists a combinatorial homeomorphism

* h n
B* — [07 1]

inducing the bijection ¢ of face posets.
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4.4 Cube structure of the compactified Weyl chamber

In this section we construct a canonical homeomorphism from the Finsler compactification A’
of the model Weyl chamber A < V| to the cube [0,0]". Recall that oy, ..., «,, are the simple
roots with respect to A. Each intersection

A; =ker(a;) n A

is a facet of A.

For x € A define
() = (a1(x),...,an(x)) € [0,00)".

This map is clearly a homeomorphism from A to [0,00)". We wish to extend the map @ to a
homeomorphism of the compactifications.

We recall the description of sequential convergence at infinity in A, compare Lemma [3.30]
A sequence xp — o0 in A converges at infinity iff the following properties hold:

(i) By parts (i) and (ii) of the lemma, there exists a face 7 = 7,00 Of Tpnog = 0o A such that
for every a; € R, the sequence («;(xy)) converges.

(ii) By the 7,0q-regularity assertion in part (i) of the lemma, for the other simple roots
a; ¢ R,, we have divergence «;(x)) — +0.

In other words, the sequence (xj) converges at infinity, iff the limit

lim o "
Jim @ () € [0, 0]
in the closed cube exists. Moreover, part (iii) of Lemma .39 combined with Lemma [B.I§]
implies that the extension
A [0, o0]”
sending

lim zp — lm o (xy)
k—+0 k—+0

for sequences () converging at infinity is well-defined and bijective. Now, Lemma [2.4] implies
that the extension is a homeomorphism. Composing with the homeomorphism

1 1
K [0,00]" — [0, 1], /@:(tl,...,tn)H(l— 1 )

L1 1
we obtain:
Lemma 4.15. The map ko @ is a homeomorphism from A’ to the cube [0,1]™. It sends the

compactification of each face Zf,i € [n], to the face F! of the cube [0, 1]™.

For a partition [n] = I 1 J, we define J € 71 S 0,04 as the face fixed by the reflections s;
for j € J. Equivalently, the vertices of 7 are the directions of the vectors w; for i € I.
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Vice versa, for a face J S 7 = Tjod S Opmod, We define the partition [n]| = I L J; such that
7. = T, i.e. I, indexes the vertices of 7.

.

Moreover, we have the sector A; = nierA; = V(0,77) < A and its compactification
——0 ——0
A =4
el

cf. (3:44).

Recall that our vector space V' is the underlying vector space of the model maximal flat
' = F,,,q. We can now combine the above lemma with the homeomorphism constructed in
Theorem T4

Theorem 4.16. There exists a homeomorphism
A2, A%, < BY

satisfying the following:
1. For each partition [n] =1 u J,

and

In particular, ¢(0) = 0.
2. The map ¢ preserves the W -stabilizers: x € A s fized by w e W iff ¢(x) is fized by w.

3. As a consequence, ¢ extends to a W -equivariant homeomorphism of the compactified
model flat to the dual ball:

—0 "
®Fmod : Fmod - B :

Proof. Combining Theorem .14 and Lemma [A.15] we define
¢p=htorod.

A%, is a cross section for the action of W on B*, because A* is a cross section for its action

on V*. By Lemma [3.43] the compactified chamber A is a cross section for the action of W
on F'. We also note that for J = [n] — I, the fixed point sets of the subgroup W; < W in A’
and A%, are precisely Zi and F7, cf. Corollary .48 The last assertion of the theorem follows
using Lemma 2.5 O

Remark 4.17. One can also derive this theorem from [BJ, Proposition 1.18.11]. Our proof is
a direct argument which avoids symplectic geometry.

Remark 4.18. We note that the paper [KMN] computes horofunctions on finite dimensional
vector spaces V' equipped with polyhedral norms, but does not address the question about the
global topology of the associated compactification of V. See also [Bri, W1J.
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Question 4.19. Suppose that || - || is a polyhedral norm on a finite-dimensional real vector
space V. Is it true that the horoclosure V of V with respect to this norm, with its natural
stratification, is homeomorphic to the closed unit ball for the dual norm? Is it homeomorphic
to a closed ball for arbitrary norms?

5 Manifold with corners structure on the Finsler com-
pactified symmetric space

In Theorem we proved the existence of a W-equivariant homeomorphism @5 : F - B*.
Since B* is a simple polytope, it has a natural structure of a manifold with corners, whose
strata are the faces of B*. Via the homeomorphism ®r, we then endow F’ with the structure
of a manifold with corners as well. The homeomorphism @' sends each face 7* of B* (dual to
the face 7 of B, which we will identify with the corresponding face of the Coxeter complex at
infinity a,,,q) to the ideal boundary

v (0,7).

The latter can be described as the set of strong asymptote classes of sectors V(x, 7):
[V(z,7)] =[V(2,7)] &= z=2"€ F/Span(V(0,7)),

see Lemma [B.I8 In other words, this is the stratum S of FG, see ([340). The goal of this

section is to extend this manifold with corners structure from F' to X . We will also see that
this structure matches the one of the maximal Satake compactification of X.

5.1 Manifold with corners

Let 0 € 0p;3 X a chamber which we view as a point in the closed stratum of 79. Let o€ X be
the fixed point of K.

Lemma 5.1. For every neighborhood U of o in V (o, 0)9 and every neighborhood U’ of the
identity e in K, the subset U’ - U is a neighborhood of o in X

Proof. Suppose that U’ - U is not a neighborhood. Then there exists a sequence &, — o

in X outside U’ - U. There exist chambers o, such that &, € V(o, O’n)e, and points y, €
V(o,0,) approximating &, such that y, — o. Our description of sequential convergence, cf.
Proposition .23, implies that the sequence (y,,) is opeq-regular and o, — . Hence there exist
elements k,, — e in K such that k,0 = 0,. Then, due to the continuity of the K-action, the

points k¢, € V(o,0) converge to o. Hence they enter the neighborhood U, and (k,) enters
U’ for large n. This is a contradiction. O

Suppose now that the neighborhood U < V(o,0) is sufficiently small, say, disjoint from

— 0
the union of the compactified sectors V' (o,7) over all proper faces 7 & o. Then the stabilizer
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of every point in U equals the pointwise stabilizer K, = Kp of the maximal flat F' > V(o, 0),
see Corollary [3.48 We consider the bijective continuous map

K/KpxU— KU c X'

given by the K-action. By the previous lemma, its image KU is a neighborhood of the closed
stratum S, , = OpgX. After shrinking U to a compact neighborhood of o, the map becomes
a homeomorphism. After further shrinking U to an open neighborhood, the map becomes a
homeomorphism onto an open neighborhood of 0p; X.

Since U is a manifold with corners, see Theorem [£.16, and K /K is a manifold, we conclude
with Lemma, [3.35t

Theorem 5.2 (Manifold with corners). X' isa manifold with corners with respect to the
stratification by the strata S, In particular, the manifold-with-corners structure is G-inva-

riant.

nod *

This means that the k-dimensional stratum of the manifold with corner structure equals

the union of the k-dimensional strata S, _,.

5.2 Homeomorphism to ball

At last, we can now prove that the Finsler compactification of the symmetric space X is K-
equivariantly homeomorphic to a closed ball. Let B* be the dual ball to the unit ball B < F},,4
of the norm (A7) on the vector space F),.q4, defined via the regular vector 9. We will identify
the dual vector space of F,,q with F},,q itself using the euclidean metric on F,,,4. Hence, B*
becomes a unit ball in F,,,,q for the dual norm

A =11 115
of our original norm.

Since B* < F},,q is W-invariant, the dual norm extends from F}, 4 to a G-invariant Finsler
metric on X. The latter defines a G-invariant distance function on X

dg(z,y) = [lda(z, y)ll5,

cf. §3.1.21 The closed unit ball (centered at o € X) for this dual norm is

B*(0,1) = {g e X : d}(0,q) < 1}.
The group K preserves this dual ball since K fixes the point o.

We can now prove:
Theorem 5.3. There exists a K-equivariant homeomorphism
X' 2, B*0,1)

which restricts to the homeomorphism ¢ : Zé — A%, from Theorem[{.16,
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Proof. We will use Lemma to construct ®. In order to do so, we have to know that A
and A%, are cross sections for the actions of K on X’ and B*(0,1), and that ¢ respects the
K-stabilizers.

1. According to Lemma [3.45] A’ is a cross section for the action of K on X . Since K
preserves the dual ball B*(o,1) and

A%, = A~ B*(o,1),

while A is a cross section for the action K — X, it follows that A%, is a cross section for the
action K —~ B*(o,1).

2. The faces 7, & < 7 < o, correspond to index sets J, & < J, < [n], where j € J, iff
the reflection s; fixes 7. According to Corollary 3.48, the fixed point set of K, on Zg equals
me. On the other hand, the fixed point set of K on A%, equals the interior face F;,.. By

—0
Theorem [£.16, the homeomorphism ¢ carries V (o, 7) to Fj_ . Therefore, ¢ respects the point
stabilizers. 0

5.3 Relation to the maximal Satake compactification

It turns out that the compactification X constructed in this paper is naturally isomorphic to
the mazimal Satake compactification Yiwx. To this end, we will use the dual-cell interpretation
of the maximal Satake compactification, see [BJ, Ch. 1.19]

Theorem 5.4. There is a G-equivariant homeomorphism of manifolds with corners X -
X°  which extends the wdentity map X — X.

max

Proof. We first observe that the group K acts on both compactifications so that the cross sec-
tions for the actions are the respective compactifications of the model euclidean Weyl chamber
A = Apog © F = Fioq. We therefore compare the W-invariant compactifications of F},s4.
On the side of 79, the ideal boundary of F' is the union of strata S as in §5.21 Elements of
SE are equivalence classes [V (z,7)] of sectors V(x,7) in F. Two sectors V (x, 1),V (2, 7) with
the same base T are equivalent iff x, 2" project to the same vector in F'/Span(V (0,7)). These
are exactly the strata, denoted e(C'), in the maximal Satake compactification of F'; denoted by
Ffwx, see [BJ, Ch. I1.19]: For each sector C' = V(0,7), the stratum e(C) is F'/Span(C). We
then have a W-equivariant bijection

defined via the collection of maps
[V(z,7)] = [z] € e(C).

For 7 = 7, this is just the identity map F' — F.
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In order to show that this map is a homeomorphism we note that the topology on Ff,m is
defined via roots (see [BJ, Ch. 1.19]) and on the Weyl chamber A in F' this topology is exactly

the topology on A’ described in terms of simple roots, cf. the proof of Lemma [4.15}

Lastly, we note that the map h we described respects the stabilizers in the group K. There-
fore, by Lemma 2.5 we obtain a K-equivariant homeomorphic extension

0 S
X - Xmax
of h, which is also an extension of the identity map X — X. Since the identity is G-equivariant,

the same holds for the extension. O

Remark 5.5. The maximal Satake compactification is a real-analytic manifold with corners
on which the group G acts real-analytically, see [B.J, Ch. 1.19]. Therefore, the same conclusion

holds for the compactification X

5.4 Proof of Theorem 1.1

The theorem is the combination of the following results:

Part (i) is proven in §3.2.4] where we established that X" is a union of strata Sr.... €ach of
which is a single G-orbit. Thus, G acts on Yé with finitely many orbits.

Part (ii) is proven in Theorem [5.2]

Part (iii) is proven in Theorem [53

Part (iv) is the content of Proposition 3311

Lastly, Part (v) is established in Theorem 5.4 O

6 Proper discontinuity: regular case

The main result of this and the following section is Corollary [7.8 proving that the quotient
space of each RCA subgroup I' < GG admits a compactification as an orbifold with corners.
Our discussion parallels that in [KLP1] where we first prove the nonexistence of I'-dynamical
relation between points at infinity outside of certain thickenings of chamber limit sets and then
establish cocompactness outside of the same thickenings.

Given a regular subgroup I' < G, for each type 0 € 0,,,q which is sufficiently close to the
100t type f € Omoq, We define a T-invariant thickening Thy(Ae(T)) < 62X of the limit set
A(I") € 0, X of a regular subgroup I' < G. (Note that the limit set and its thickening live in
different spaces!) We also define the complementary set

Qppy (1) = 05X — Thy(Aeh(I)).
We then prove that the action of I' on the Finsler—bordified symmetric space

Xu QTh§ (F)
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is properly discontinuous (assuming that I' is regular) and cocompact (assuming that I' is
conical). Then the quotient orbifold

(X U Qg (1)) /T

is a compactification of the locally symmetric space X /I" as an orbifold with corners.

6.1 A metric inequality for dynamical relation
For a regular type 0 € int(0,,,4), we consider the action
G~X =xudx

of the full isometry group on the Finsler compactification of type 6.

Let g, — o be a o,.¢-regular sequence in GG. After passing to a subsequence, we may
suppose that we have convergence

gt — Ay € 0, X

in the visual compactification X for some (any) point z € X.

The following result is a Finsler version of [KLPI, Sublemma 6.2].

Lemma 6.1 (Dynamical relation with respect to regular sequences of isometries).

If [bfir il € 0% X are Finsler boundary points such that
: (@) o3
[bf'7 fy o ] ‘?\/ [b?'+ ,p+:|

with respect to the action of (g,) on 76, then

A_) + slope(t’

T+,P+

slope(b? A+) <0 (6.2)

T_,p—)

Proof. We denote by = b?

repe- BY assumption, there exists a sequence z,, — o0 in X such that

g 'z, — [b_] and z,, — [by] in X’ ie.

dé

0
gile, — 0 and dy — by

uniformly on compacta modulo additive constants.

Fix a base point x € X and let x(¢) be the point at distance ¢ from z on the segment
connecting = to g 'z (it is defined for sufficiently large n depending on t), and let z*(¢) be the
point at distance ¢ from x on the ray x\4.

We consider the behavior of the convex functions din — d’(z,,-) along the subsegments
connecting x.f (t) to gz, (t); more precisely, we use the monotonicity of discretized slopes. We
have

& (wt(t+1))—d) (af (1) < d° (gaay (1) —d) (guary (1)) = d's (a, (1)) —d'—s (z; (t+1))

n gn Tn 9n Tn
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for sufficiently large n depending on t. Letting n — +00, we obtain
bi(a™(t+1)) —bi(a¥(t) <b_(2z (1) —b-(2(t+ 1)),

using that the functions din are uniformly Lipschitz (e.g. w.r.t. df™), and letting t — +o0,
we get
slope(by, Ay) < —slope(b_, A_),

as claimed. 0

Corollary 6.3. Under the assumptions of the lemma, at least one of the inequalities

slope(t?  A_) <0 and slope(t?  A\.) <0

T—,p—") T+,p+)
holds.

Remark 6.4. (i) The condition slope(b?

7 A) < 0 is equivalent to \ € aopobé,p C 0 X.
(ii) Since sequential convergence at infinity is independent of the regular type 6 € int(cmoq),

the proof of the lemma implies that inequality (6.2)) holds simultaneously for all types 0 € pmoq.

We also investigate the dynamical relations between points in X and ideal points in 6§oX :

Addendum 6.5. If x_ € X is dynamically related to [by] € 0% X with respect to the action of
(gn) on 79, then slope(by, Ay) < 0.

Proof. The same argument as before yields that
slope(df;, A_) + slope(b,, A, ) < 0.

The distance function di is proper because the type 0 is regular, and hence asymptotically
increasing along rays by convexity, i.e. slope(d? ,-) = 0. The assertion follows. O

Remark 6.6. More precisely, one obtains that slope(d? , A_) = cos Zris(10,0(A_)) and there-
fore
slope(by, A1) < — cos ZLrpus(10,0(N_)) < 0.

6.2 Almost root types

We let p € 0,04 be a root type. For instance, we can take for p the direction of the coroot
corresponding to the highest root & of the root system R. However, for instance, in the case of
irreducible root systems which are not simply-laced, we have two choices of root types in g,,04.
The important property of the root type p is that the closed ball B(p, %) in the model spherical
apartment a,q of W is a subcomplex. In particular, its boundary sphere S(p, 5) contains no
regular points. The idea is to replace p with a nearby regular type @ so that the metric sphere

S(0,%) contains only nearly singular points.
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Definition 6.7. Let © < int(o,,,¢) be a compact convex subset. We say that 0 € Opog 1s a
(p, ©)-almost root type if

2(0,p) < d(©, 00 mod). (6.8)

Let from now on 6 € int(0,,,q) denote a (p, ©)-almost root type.
Lemma 6.9. Let £, )\ € 0, X be ideal points with types 0(&) = 0 and O(\) € ©. Then

LTits(€> )‘> 7 g

Proof. Suppose that Zpus(§,\) = 5. Let p € d.X be a point of type p in a common chamber
with §. Then Z(&,p) = £(0,p) and 2 — £(0, p) < Lrus(p,A) < T+ £(0, p). Hence there exists
a point 7 € 0, X with Z(p,n) = 2 at distance Z(n, X) < Z(0, p). It follows that 7 is regular, a

contradiction. O

The asymptotic slopes of mixed Busemann functions of almost root type, as they occur as
functions representing Finsler boundary points at infinity, vanish only at nearly singular visual
boundary points:

Lemma 6.10. For the mized Busemann functions bf;p it holds that

slope(b?_,-) # 0

T?p’

on 671(O).

Proof. As a consequence of (2.3) and (2.2) (or (3:13))), for every visual boundary point £ € 05 X
exists a chamber o (&) such that

slope(bf’;p, €) = — cos Lris (90(5)7 £).

The assertion therefore follows from the previous lemma. O

Notation 6.11. For the rest of this chapter, we let 6 be an almost root type.

6.3 Limit sets of uniformly regular subgroups

For each subgroup I' < G, the limit set A(T") < 0,X of I' is the accumulation set in d,X of
one (equivalently, any) orbit I' -z < X. A subgroup I' < G is uniformly reqular (see [KLP1]) if
it is discrete and A(I") consists only of regular points:

A(T) < a9 X.

The chamber limit set A.,(I") consists of those chambers in 07X which have nonempty in-
tersection with the limit set of I'. In other words, A, (") is the image of A(I") under the
canonical projection 559X — 0p; X. Tt is clear that A(T') and, hence, A, (T") are compact and
[-invariant. The set O(A(T")) of types of limit points is a compact subset of int(c,,0q4)-

For a compact convex t-invariant subset © < int(0,,04), a subgroup I' < G is O-reqular if

H(A(T)) c ©.
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6.4 Dynamical relation on almost root type Finsler compactifica-
tions

In what follows, we will assume that the discrete subgroup I' < G is O-regular and that
0 € int(om0q) is a (p, ©)-almost Toot type.
We apply our general observation about dynamical relations with respect to divergent se-

quences of isometries, see section [6.1], to the I'-action:

Proposition 6.12 (Dynamical relation). If [b.] € 0% X are Finsler boundary points such
that

[b-]~ [b)]

with respect to the I'-action on 79, then there exist limit chambers o4 € Ao (T) such that at
least one of the inequalities

slope(b—, *)|s_no-1(0) < 0 and slope(by,-)|s, no-10) > 0

holds.

Proof. By assumption, there exists a sequence v, — o0 in I' such that [b_] is dynamically

related to [by] with respect to the action of (v,) on X' After passing to a subsequence, we
have convergence
Ve - A e dl9X

because I is uniformly regular. Our assumption implies that now #(A\4) € ©.

Let 04 € Aey(T) denote the limit chambers containing the limit points Ay. Corollary
yields that at least one of the inequalities slope(b_,A_) < 0 and slope(by,A\;) < 0 holds.
Suppose that the former holds: slope(b_, A\_) < 0.

According to Lemma 610, slope(b_,-) # 0 on §71(0) o A(T"). Hence, the strict inequality
slope(b_, A_) < 0 holds, and moreover, since the convex set © is connected, that

slope(b_,-) <0
ono_nO1(O). O
Remark 6.13. The condition slope(b, -)[,~s-1(0) < 0 is equivalent to
o 0H(O) c 0,Hb,
in 0,X.
As before, we also obtain:

Addendum 6.14. Ifz_ € X is dynamically related to [b] € 00 X with respect to the T-action

on X', then slope(by, )]s, no-1(0) < 0.

Remark 6.15. The strict inequalities in Proposition and Addendum are equivalent
to the non-strict inequalities, compare Lemma [6.101
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6.5 Proper discontinuity
We define the thickening of a chamber o € 0py X in OfoX by

Thy(o) := {[b] € &% X| slope(b, ) sr-1(0) < 0} (6.16)

~
< o0n0~1(0)cdn Hby

and, correspondingly, the thickening of the chamber limit set

Ag(T) = Thy(A(T)) == | Thg(o). (6.17)
g€Acn(I)

It is clearly I'-invariant.

This construction of thickenings is analogous to the root thickenings defined in [KLP1], with
the difference that now the thickening of the chamber limit set is defined via almost root types
and takes place in the Finsler boundary instead of the visual boundary.

We will need:

Lemma 6.18. Let (f,) be a sequence of uniformly Lipschitz continuous convex functions on
X which converge uniformly on compacta, f, — f, and let &, — £ be a convergent sequence in
O X such that

slope(fn, &n) < 0.

for all n. Then
slope(f, €) < 0.

Proof. Fix a base point 0 € X. The condition slope(f,,&,) < 0 is equivalent to the property
that f, < f.(o) along the ray of,. Since the rays o, Hausdorff converge to the ray of, it
follows that f < f(o) along of, i.e. slope(f,&) < 0. O

Corollary 6.19. A;(I') is compact.
Proof. This follows from the lemma and the compactness of A(T). O

We now define a [-invariant open subset in 0 X:

Qppg(T) := 0% X — Thy(Am(T)) € %X (6.20)

Note that it is saturated, i.e. a union of small strata.

We obtain

Theorem 6.21 (Domain of proper discontinuity). Let I' < G be a O-regular discrete
subgroup and suppose that 0 € int(0,,.q) is a (p, ©)-almost root type. Then the action

T~ X U Qp,(T)

s properly discontinuous.
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Proof. According to Proposition and Addendum [6.14] there are no dynamical relations
between points outside Thg(Aq,(T")). Therefore, the action is properly discontinuous, see [E]
and [KLI]. O

Corollary 6.22. The quotient
(X U QTh(;(F)) /F
is a bordification as an orbifold with corners of the orbifold X /T.

Proof. The space X U Qg (I') is an orbifold with corners according to Theorem [5.2, and the
corner structure is preserved by I'. Therefore, the quotient inherits the structure of an orbifold
with corners. O

7 Cocompactness: regular case

7.1 Finsler Dirichlet fundamental domains

In order to prove cocompactness of the I'-action on the bordified symmetric space X U Qg (I')
we use a rather classical idea: Constructing a compact Dirichlet fundamental domain for the
action. The main novelty lies in the use of a Finsler distance and Finsler Busemann functions
for the construction. Our proof parallels the one in [KLP1, §8.1.3], where we were proving
cocompactness in domains of proper discontinuity in root type flag manifolds by constructing
Dirichlet fundamental domains in those flag manifolds.

Pick a point 0 € X not fixed by any nontrivial element of I. We define the 8-Dirichlet

domains B _ _
D = Dg = {ZL’ | d0(0> l’) = mind0('>x>|FO} cX

for the I'-action on X. Clearly,
r-D=X.

For each sequence x,, — o0 in D which converges at infinity, =, — [b] € 6§oX , we obtain:
b(y0) = b(o) = lim (dy,(70) = dz,(0)) = 0.
Hence, be(y0) = be(0) and thus:
0% D < {[b] | b(0o) = minb|r,} = 3% X. (7.1)

Notation 7.2. As before, throughout this section we let  be an almost root type.

7.2 1Ideal boundaries of Dirichlet domains

Suppose now that D is the Dirichlet domain of I' defined in the previous section.

In [KLP1] and [KLP2] we defined and analyzed the notion of conical limit chambers of
regular subgroups of GG: This notion is a higher rank generalization of the one of conical limit
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point for discrete subgroups of rank 1 Lie groups. We let A%™(I") denote the set of conical
limit chambers in A, (T"). We will now prove that in the case when all limit chambers of T" are
conical, the Finsler ideal boundary of the Dirichlet domain D is disjoint from the thickened
limit set; this is analogous to [KLP1] §8.1.3], where similar result was established in the context
of the visual ideal boundary.

Lemma 7.3. 0% D n Thy(c) = & for all conical limit chambers o € A™(T).
Proof. Suppose that [b] € Thy(o) < &% X. Then
slope(b,-) < 0

on o nOO).

Since the limit chamber ¢ is conical, there exists a sequence =, — oo in I' such that the
sequence y,0 — o0 in X converges to some A € 0 N A(T') < 0 n 071(O) conically with respect
to the Weyl chamber V(o,0), i.e.

d(yn0,V(0,0)) < const.

Let z, € V(o,0) denote the nearest point projection of v,0 to V(o,0). Then z, lies on a
Riemannian geodesic ray on, with 7, € 0 < 0, X, and

M — A
Since slope(b, -) is a continuous function on 0, X, we have that
slope(b,n,) < s <0
for large n. It follows that
lim b(z,) = —oo0,
n—-+0oo

and, since d(v,0, z,) < const, also

nl_l)r_ir_loo b(y,0) = —c0.

Thus,
inf b|1’*0 = —00,

which implies that [b] ¢ 6% D, cf. (Z). O

Corollary 7.4. If Ay (1) is conical, i.e., Aep(I') = AS™(T), then

DXy Qpp, ().
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7.3 Cocompactness

We now use compactified Dirichlet domains D = Df in order to prove cocompactness of discrete
group actions on bordified symmetric spaces: The domains €2 below are I'-invariant open subsets
of the Finsler boundary 0% X.

Lemma 7.5. Suppose that X U ) c X is a domain of proper discontinuity for the I'-action
and that 8% D? < Q for some base point o € X. Then Ei has nonempty intersection with each
orbit of the action I' —~ X u Q. In particular, the action I' ~ X U € is cocompact.

Proof. Let [b] € €2, and let x,, — o be a sequence in X such that z, — [b].
0
InO

0
yo’

Suppose that the sequence hits infinitely many Dirichlet domains vD = D
with v, — oo in I'. Then

ie,x,eD

C:zbz_u{xn:neN}u{[b]}chQ

is compact and it holds that
1CnC# &

for all n, contradicting the proper discontinuity of the action I' = X u Q.

It follows that the sequence () is contained in a finite union of Dirichlet domains. After
passing to a subsequence, we may assume that it is contained in a single one, x,, € Dﬁ’;o for some
v €T and all n. Then [b] € 0% DY, i.e.

yo>

This shows that also every I'-orbit in €2 hits ﬁi.
We now apply this lemma to the domain X U Qg (I).

Theorem 7.6 (Cocompactness). Let I' < G be a ©-reqular discrete subgroup and suppose
that 0 € int(0meq) s a (P, ©)-almost root type. Suppose in addition that A, (T) < O0pyX is
conical. Then the properly discontinuous action

T~ X UQp, (T) X' (7.7)
1§ cocompact.

Proof. That the action is properly discontinuous, we know from Theorem [6.21. According to
Corollary [Z.4], the compactified Dirichlet domains avoid the thickening of the chamber limit set,

Ei cXu QTh(;(F>-

Lemma then yields the assertion. O
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Corollary 7.8. IfT' < G is an RCA subgroup and 0 € int(0,,,q) is an almost root type (as in
the previous theorem), then the action

'~ X U Qqp,(T)
15 properly discontinuous and cocompact. The quotient
(X U Qg (1)) /T
has a structure as a real-analytic orbifold with corners induced from that one of 79_, and
(Qr4, (T)) /T
is the boundary of this orbifold.

Proof. 1t is proven in [KLP1] as well as in [KLP2] that each RCA subgroup I' < G is uniformly
regular. The RCA property includes the conicality assumption, i.e., that each limit chamber
of I' is conical. Now, the statement follows from Theorem Note that the real-analytic
structure on the quotient comes from the G-equivariant homeomorphism between X and the
maximal Satake compactification of X: The latter is a real-analytic manifold with corners. The
last the statement of the corollary is a special case of Corollary [6.22 O

8 Interlude

In order to extend our main results on proper discontinuity and cocompactness for discrete
group actions from the regular to the weakly regular case, we need some additional background
material, primarily concerning the asymptotic geometry of symmetric spaces.
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8.1 Weak regularity
8.1.1 Basic definitions

We recall the concept of 7,,,q-reqularity from [KLP2, §2.4.2 and §5.1]:
The open star
08t (Timod) S Tmod
is the union of all open faces of o,,,q whose closure contains 7,,.,q. Its complement
08t (Timod) = Tmod — 0St(Tinod)
is the union of all (closed) faces of 0,,,¢ which do not contain 7,,.4-
An ideal point & € 0 X 18 Tioa-regular if () € 0st(Tioa), and Tpeq-singular if 6(§) €
0st(Tmod)-
For a simplex 7 < 0., X, the open star
ost(7) < st(7)
is the union of all open simplices in st(7) whose closure contains 7, equivalently, the subset of
Tmoa-Tegular points in st(7). Furthermore,
Ost(T) := st(r) — ost(r)
is the union of all (closed) simplices in st(7) which do not contain 7, equivalently, the subset
of Tyeq-singular points in st(7).
A sequence (d,) in A i8S Tyeq-regular if
d(0p,, V(0,0 8t(Timoq))) — +0.

A sequence (x,,) in X is T,,0q-regular if for some, equivalently, any base point o € X the sequence
of A-distances da (0, z,) is Tyea-regular.

Remark 8.1. A sequence (x,) is Tpeg-regular if and only if every subsequence has a T,,04-
regular subsequence. (Simply, because a sequence of positive numbers is unbounded if and only
if every subsequence has an unbounded subsequence.)

We call a sequence (g,,) in G Tyeq-regular if some (any) orbit (g,z) in X has this property.

We call a sequence (9,,) in A uniformly T,,.q-reqular, if it diverges from V(0, 0 st(704)) at a
linear rate, i.e.

lim inf d(6,, V' (0, 0 $t(Timod)))/[[0n]| > 0,

n——+o
equivalently if it accumulates A at a compact subset of 0st(Tymeq)-

A sequence (x,) in X is uniformly T,eq-regular if for some (any) base point o € X the
sequence of A-distances da (o, x,,) is uniformly 7,,.,4-regular, equivalently, if (z,) accumulates at
a compact subset of 07! (0st(7,,0q)). Lastly, we call a sequence (g,) in G uniformly T,,.q-reqular
if some (any) orbit (g,z) in X has this property.

A subgroup I' < G is (uniformly) Tpmeq-regular if every sequence of distinct elements in I’
has this property.
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8.1.2 Relation of weakly regular convergence and stratification at infinity

We consider sequences §,, — o0 in A and their accumulation sets at infinity.

Lemma 8.2. A sequence 9, — o in A accumulates in A ata compact subset of Sfmod if and
only if it is contained in a tubular neighborhood of V (0, Tymea) and d(8,, V' (0, 0Timea)) — +00.

Proof. 1f (8,) has the property that it is contained in a tubular neighborhood of V' (0, 7,,04) and
d(0p,, V (0, 0Tynoa)) — +00, then Lemma implies that it accumulates at a compact subset
of Sfmod. If (6,) does not have this property, then, after passing to a subsequence, it has this
property for a different face type 7, # Tmoa, and it follows that (d,,) has accumulation points
in the different stratum S5 . 0

mod

Lemma 8.3. A sequence 0,, — o0 in A accumulates at gfmod if and only if it is Tyeq-reqular,
i.e. d(0p, V(0,08t(Tmed))) — +0.

Proof. Suppose that the sequence (0,,) is not 7,,.¢-regular. Then a subsequence is contained in
a tubular neighborhood of V' (0, @ st(7,n0q)). Hence there exists a smallest face Vyoq P Tinoa With
the property that a subsequence (9, ) is contained in a tubular neighborhood of V' (0, ,04). By
the previous lemma, (d,,) accumulates at a compact subset of S d gfmod.

Vice versa, suppose that (,) is Tpeq-regular and has an accumulation point in Sfmod. By
the previous lemma, a subsequence of (9,,) is contained in a tubular neighborhood of V' (0, /,04)-
If Viod P Tmod, then vpog © 0st(Tneq) and we run into a contradiction with 7,,,4-regularity.

—=A

A
Therefore V04 2 Tmoqd and consequently Sumod c STmod. O

We now state corresponding facts for sequences x,, — o0 in X.

Fix a base point 0 € X and a face type T,,0,¢. There exist simplices 7,, € 0 X of type Tiod
such that z,, € V(o,st(r,)).

Lemma 8.4. The sequence (x,,) accumulates at X, if and only if it is Tpeq-reqular and 7, — T.

Proof. The sequence (r,) accumulates at X, if and only if 7, — 7 and the sequence of A-

w0 5A : T
lengths da (o, 7,) accumulates in A” at S . By the previous lemma, the second condition is
equivalent to the 7,,,4-regularity of the sequence (x,,). O

Corollary 8.5. The sequence (z,,) accumulates at S, ., if and only if it is Tpea-regular.

d

Proof. Suppose that (z,) accumulates at S, .. In view of Remark B} we may assume that
(x,) accumulates at a small stratum closure X, with a simplex 7 of type Tyoq. The previous
lemma shows that (z,,) is T,.e-regular.

Conversely, suppose that (z,) is Tyee-regular and converges at infinity. After passing to
a subsequence, we may assume that z,, € V(o,st(7,)) with a convergent sequence 7,, — 7 of
simplices of type T,,0q. Again by the previous lemma, it follows that the limit point belongs to
X, cS Ol

Tmod *
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8.2 Relative position at infinity and folding order

We recall some concepts from [KLPI] and refer to the discussion there for more details.

Let 09,0 < 0,X be chambers. We view them also as points 0g,0 € dp; X. There exists
an (in general non-unique) apartment a < 0, X containing these chambers, 0¢,0 < a, and a
unique apartment chart o : @,,q — a such that op = a(0,,04). We define the position of o
relative to oy as the chamber

pos(c,00) := a (o)  Amod-
Abusing notation, it can be regarded algebraically as the unique element
pos(o,00) € W

such that

o= a(pos(a, UO)Umod)>

cf. [KLP1l, Def 4.8]. It does not depend on the choice of the apartment a. To see this, choose
regular points &, € int(og) and £ € int(o) which are not antipodal, Z744(€,&) < m. Then the
segment &€ is contained in a by convexity, and its image a1(£,€) in dyeq is independent of
the chart a because its initial portion a™(&& N 0p) in Gpeq 8.

The level sets of pos(-,0q) in dp X are the Schubert cells relative oy, i.e. the orbits of the
Borel subgroup B,, < G fixing oy.

More generally, we define the position relative oy of an arbitrary simplex 7 < 0, X as
follows. Let again a — 0, X be an apartment containing g and 7, and let « : a0 — a be a
chart such that g = a(0m0q). We define the position of T relative to oq as the simplex

pos(t,09) 1= ofl(T) C Umod-

It can be interpreted algebraically as a coset in W /W, where 7,00 = 6(7).

Even more generally, we define the position of a simplex v < 0, X relative to a simplex
To € O X of type Tioq- Let a © 05, X be an apartment containing 7y and v, and let « @ @00 — @
be a chart such that 75 = a(7m0q). We define the position of v relative to 7y as the W, -orbit
of the simplex a (V) © amoq. It can be interpreted algebraically as a double coset

pOS(V? TO) € WTmod\W/WVmod
where v,,,¢ = 0(v). In particular, for chambers o we have that

pOS(U, 7—0) € WTmod\W

The Bruhat order “<” on the Weyl group W has the following geometric interpretation as
folding order, cf. [KLPI, §4.2]. For distinct elements wy,wy € W, it holds that

w, < Wy
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if and only if there exists a folding map @04 — Gmod iXiNg 0noq and MaAPPINE WoT mod — W10 mod,
cf. [KLPIl Def 4.3]. Here, by a folding map ayeq — meq We mean a type preserving continuous
map which sends chambers isometrically onto chambers.

The folding order on relative positions coincides with the inclusion order on Schubert cycles,
ie. w; < wy if and only if the Schubert cell {pos(-,009) = w;} is contained in the closure of

the Schubert cell {pos(-,0¢) = ws}, and the Schubert cycles relative oy are the sublevel sets of
pos(-, 09), cf. [KLP1l, Prop 4.9].

More generally, we have a folding order on the simplices of type o4 i Gmoq: For distinct
simplices 71, To © o, it holds that
T1 < To
iff there exists a folding map @meq — @moa fiXing 0,04 and mapping 7 — 71, cf. [KLPI)
§4.3]. Again, the folding order coincides with the inclusion order on Schubert cycles. Note that
the Schubert cycles in Flag,  (X) are projective subvarieties; in particular, they admit finite
triangulations.

We also need to define the folding order on positions of chambers relative to simplices 7y of
an arbitrary face type T4 We say that
IA/WTn’Loda-1 ﬁTn’wd W 5-2

Tmod

for chambers &1, 02 © amoq iff there exist 6, € W, &, such that

equivalently, geometrically, if for some (any) chambers &, € W, &, there exists a folding map
(mod — Omod 1IXING Tyoq and mapping 75 to ;. (Note that the elements in W,,,q are such
folding maps.)

Lemma 8.6. <, . is a partial order.

od

Proof. Transitivity holds, because the composition of folding maps is again a folding map.
To verify reflexivity, pick points &,,04 € INt(Tin0a) a0d Mnog € INE(Tpmoq)-

Let ¢ = wW0m0d © Gmoq be a chamber and f : @04 — Gmoq & folding map fixing 7,,,g. We
denote = wWNpoq- If the f-image of the segment &,,,47 is again an unbroken geodesic segment,
then the two geodesic segments are congruent by an element of W_

mod’

because their initial
directions at &,,,q are. On the other hand, if the f-image of &,,,47 is a broken geodesic segment,
then the distance of its endpoints is strictly smaller than its length, and consequently fo * 7.
This shows that

W,

Tmod

W,

01 $7—mod WT77LodU2 = 7—modo’l = WTmodo-l = WTmodU2

Tmod

and hence reflexivity. O

We will use the following notation.
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For a simplex 7 < 0, X of type 0(T) = Tynod := LTmod, We denote by

C

Tmod

(1) := {7 : 7 opposite to 7‘} < Flag,,,(X)
the open Schubert cell associated with 7 in Flag, . (X), and by
Cpa(T) = U{st(%) : 7 opposite to 7} < Jpp X

the set of chambers which have a face opposite to 7, equivalently, the set of chambers which
are opposite to a chamber in st(7). It equals the union of open Schubert cells Cp; (o) over all
chambers o c st(7). Here, and later, we will abuse notation and regard stars as sets of chambers.
Note that Cp;(7) is the preimage of C;,  (7) under the natural fibration 0p; X — Flag,  (X).

mod

The following result will be useful to compare relative positions.

Lemma 8.7. (i) Let 0g,01,09 € 0, X be chambers, and suppose that there exists a segment
£o&a with &y € int(0g) and & € int(oy) containing a point & € int(oy). Then

pos(o1,0¢) < pos(oa, o)

with equality iff o1 = os.

(i1) More generally, let 01,09 < 0 X be chambers and let 7o < 0,X be a simplex of type
Tmod- Suppose that there exists a segment {oéa with & € int(7y) and & € int(oy) containing a
point & € int(oy). Then

pos(01,To) <r,,,, POS(02,To)

with equality iff o1 = o».

Proof. We prove the more general assertion (ii). After perturbing &;, we can arrange that the
subsegment &£, avoids codimension two faces. Along this subsegment we find a gallery of
chambers connecting o; to g5. We may therefore proceed by induction and assume that the
chambers o7 and oy are adjacent, i.e. share a panel m which is intersected transversally by
&1&. Working in an apartment containing 7y, 01, 02, the wall through 7 does not contain 7, and
separates st(79) U o7 from oy. Folding at this wall yields the desired inequality. O

8.3 Further properties of the folding order

This is a technical section whose results are used in the proof of Proposition which is the
key to proving proper discontinuity of actions of 7,,,4-regular subgroups.

We work with the spherical building structure on the visual boundary 0,X. We fix a
reference chamber oy < 0, X.

Let 7 < 0, X be a simplex. For any interior points 7 € int(7) and &, € int(0y), the segment
n&y enters the interior of a chamber o_ o 7, i.e.

néo Nint(o_) # .
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Note that the chamber o_ does not depend on the interior points 7, {;. Moreover, it is contained
in any apartment containing oy and 7. We call o_ the chamber in st(7) pointing towards oy.

Similarly, if £, 2 &n is an extension of the segment &yn beyond 7, then there exists a
chamber o, S 7 such that n¢, nint(oy) # &, and we call 0, a chamber in st(7) pointing away
from og.

Let a € 0, X be an apartment containing o and 7.

Then o0 < a. Moreover, since geodesic segments inside a extend uniquely, there exists
a unique chamber o, < st(7) N a pointing away from oy. The chambers 0. < a can be
characterized as follows in terms of separation from oy by walls:

Lemma 8.8. Let 0 < st(T) na be a chamber. Then
(i) o = o iff o is separated from o by every wall s < a containing T.

(i1) o = o_ iff o is not separated from og by any wall s < a containing .

Proof. (i) Clearly, o, is separated from oy by every wall s o 7 because, using the above
notation, £4€, N s = 1. Vice versa, if o is separated from o by all such walls s, then ¢ and o
lie in the same hemispheres bounded by the walls s © 7 in a, and therefore must coincide.

(ii) Similarly, o_ is not separated from oy by any wall s © 7 because £mn N s = 7, and
vice versa, if o is not separated from oy by any wall s > 7, then ¢ and o_ lie in the same
hemispheres bounded by the walls s © 7 in a, and therefore must coincide. 0

Remark 8.9. The assertion of the lemma remains valid if one only admits the walls s < a
such that s n o is a panel containing 7.

The chambers pointing towards and away from oy in 0, X can also be characterized in terms
of the folding order:

Lemma 8.10. The restriction of the function pos(og,-) to the set of chambers contained in
st(7) attains a unique global minimum in o_ and global maxima precisely in the chambers
pointing away from og.

Proof. Let 0 > 7 be a chamber and let a € 0,X be an apartment containing og and ¢. Then
o_ < a. Let o4 < st(7) N a be the unique chamber pointing away from oy.

Still using the above notation, let &, D &n be an extension of the segment &yn with
endpoint &, € int(o). Let £ € {mnint(o_). The points £ and n appear in this order on the
(oriented) segment &y¢. .

We now perturb the segment £&; to a segment £, which intersects int(o) in a point 7’
close to n and int(¢_) in a point & close to £_. The perturbation is possible because o > 7.
Again, the points &’ and 1’ appear in this order on the perturbed segment {,¢’,. Lemma [8.7]
implies that

pos(o_,09) < pos(o,09) < pos(o,,09)
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with equality in the first (second) inequality if and only if ¢ = 0_ (0 = 0, ). The assertion of
the lemma follows because pos(oy,0g) does not depend on the choice of a. O

Let now 0 < 0, X be an arbitrary chamber.

We say that a face 7 < o faces towards oy if there exist points &y € int(op) and £ € int(o)
such that {o& Nnint(7) # &. Equivalently, o is a chamber in st(7) pointing away from oy. Again
equivalently, with an apartment a > oy U o, all walls s < a through 7 separate o from o,
see Lemma B8 The last characterization remains valid, if one only admits the walls which
intersect ¢ in a panel, cf. Remark 8.9

The last characterization implies that ¢ has a unique smallest face
front,, (o) € o

facing towards o, namely the intersection of all panels facing towards 0. Note that front,, (o) =
o iff 0 = 0y, and front,,(0) = J iff ¢ is antipodal to 0.

Similarly, we say that 7 < o faces away from o if there exist points & € int(op) and
n € int(7) such that &mn N int(o) # &. Equivalently, o is the unique chamber in st(7) pointing
towards og, equivalently, no wall s © a through 7 separates ¢ from oy. Again, ¢ has a unique
smallest face
back,, (o) € o

facing away from oy, namely the intersection of all panels facing away from oy. Moreover,
back,,(0) = & iff 0 = 09, and back,,(c) = o iff ¢ is antipodal to oy.

The front and back faces of o are complementary, i.e. each vertex of o belongs to exactly
one of them.

Let 0 < 0,X be a chamber and let 7 < o be a face.

Lemma 8.11. The restriction of the function pos(og,-) to the set of chambers contained in
st(7) attains a mazimum in o iff front,, (o) < 7.

Proof. By definition, front,,(c) < 7 iff 7 faces towards oy iff o is a chamber in st(7) pointing
away from og. By Lemma B0 the latter holds iff the restriction of pos(oy,-) to the set of
chambers contained in st(7) is maximal in o. O

8.4 Thickenings
A thickening (of the neutral element) in W is a subset
Thc W

which is a union of sublevels for the folding order, i.e. which contains with every element w
also every element w’ satisfying w’ < w, cf. [KLPI, Def 4.16]. In the theory of posets, such
subsets are called deals.

59



Note that
Th® := wo(W — Th)

is again a thickening. Here, wy € W denotes the longest element of the Weyl group, that is, the
element of order two mapping ,,,¢ to the opposite chamber in a,,.,q. It holds that

W = Th uwg Th®

and we call Th® the thickening complementary to Th.

The thickening Th < W is called fat if Th uwy Th = W, equivalently, Th = Th®. It is called
slim if Th nwy Th = ¢, equivalently, Th < Th®. It is called balanced if it is both fat and slim,
equivalently, Th = Th®, cf. [KLP1, Def 4.17].

For types U,V € 0moq and a radius 7 € [0, ] we define the metric thickening

Thy, 5., = {we W d(wd,dy) <},

using the natural W-invariant spherical metric d on a,,,q, cf. [KLP1l §4.4].

For a face type Tmod S Omod, We denote by W.

Tmod

—Wo : Omod — Tmod denotes the canonical involution of the model spherical Weyl chamber.

its stabilizer in W. Furthermore, ¢ =

Lemma 8.12. (i) If Do € Trod, then Wioa Thiy 5. = Th, 5.,

(i) If 10y = Vg, then Thg, 5., 18 fat forr = 35 and slim for r < 3.

Proof. (i) For w’' e W. we have that w'dy = 7y and hence

Tmod?

d(w'wd, 9p) = d(wd, w' ).
——

Yo
(ii) Since woly = —y = —1y, we have

d(wowﬁ, —150) = d(wlg, —woﬁo),
——
Jo
whence the assertion. O

Corollary 8.13 (Existence of balanced thickenings). If the face type Ty0q is t-invariant,
LTimod = Tmod, then there exists a W, -invariant balanced thickening Th < W.

Proof. Since (T04 = Tmod, there exists 1% € Tmoa Such that m% = 1%. Moreover, there exists
V) € Opmoq such that d(-,Jy) # 5 on W. (This holds for an open dense subset of types ¥ € 0y04.)
According to the lemma, the metric thickening Thq%ﬂ;% is balanced and W, -invariant. 0O

Given a thickening Th < W, we obtain thickenings at infinity as follows.

First, we define the thickening in dp; X of a chamber o € 0p; X as
Thpy(o) := {pos(-,0) € Th} < Ips X.
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It is a finite union of Schubert cycles relative 0. We then define the thickening of ¢ inside the
Finsler ideal boundary as the “suspension” of its thickening inside the Fiirstenberg boundary,

Th' (o) == {[t},] : st(v) = Thpa(o)} = J{S, : st(v) < Thpa(o)} < 64X

where we view st(v) as a subset of Jp; X, namely as the set of chambers containing v as a face.
Note that Thp;(o) = Th?(0) N 0pyX.

Lemma 8.14. T (o) is compact.

Proof. Consider a sequence of points [bihpn] € Thé(a), and suppose that it converges in 6§oX ,

4 4
b0, ] = [bpg]-
We must show that also [bf;q] € Thé(a).
After passing to a subsequence, we may assume that all simplices v, have the same type
0(Vy) = Vpmoq. According to Lemma B30, v, — v € u. By assumption, st(v,) € Thp;(o), and
we must show that st(u) < Thp; (o). Since st(v) 2 st(u), this follows from st(v) < Thgy(o).

The latter follows from the closedness of Thg; (o) in 0p; X, because every chamber ¢’ < st(v)
is a limit of a sequence of chambers o/, < st(v,). O

Remark 8.15. One can show that Thg(a) c % X is a contractible CW-complex. In the second
version of this preprint, we proved that it is Cech acyclic, see [KL2, Thm 8.21 in §8.5].

Example 8.16. Suppose that the Weyl group W of X is of type As, i.e. is isomorphic to the
permutation group on 3 letters. Let s1, 55 € W denote the generators which are the reflections
in the walls of the positive chamber o,,,4. There is the unique balanced thickening Th =
{e, 51,5} © W. The thickening Th?(0) c 0% X is the wedge of two closed disks connected at
the point o: These disks are the visual compactifications X,,,i = 1,2, of two rank 1 symmetric
spaces X,,. Here 7, 79 are the two vertices of the edge o.

More generally, we define the thickening in é’foX of a set of chambers A ¢ Jpy X as

Th'(A) := | ] Th’(0) = %X
oeA

Lemma 8.17. If A is compact, then Thé(A) is compact.

Proof. Since 0p; X is a homogeneous space also for the maximal compact subgroup K, there
exists a chamber oy € A and a compact subset C' ¢ K such that A = Coy. Then

Th’(A) = C - Th’ (o)

and is hence compact as a consequence of the previous lemma. O

If the thickening Th < W is W,
a simplex 7 < 0, X of type T,,0q as

-invariant, then we can define the thickening in é’foX of

nod

Th'(r) := Th'(0) < 0% X
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for a chamber o = 7. It does not depend on o. For a set A c Flag, _,(X) of simplices of type
Tmod, We define its thickening in OfoX as

Th'(4) := | J Th’(7) < 8. X.
TEA

Again, Th?(A) is compact if A is.

Lemma 8.18 (Fibration of thickenings). Let A < Flag, ,(X) be compact, and suppose
that the thickenings ThG(T) of the simplices T € A are pairwise disjoint. Then the natural map

Th?(A) = A
is a fiber bundle.

Proof. Regarding continuity of m, suppose that &, — ¢ in Thé(A) and 7, —» 7 in A with
€, € Th?(7,,). Then ¢ € Th?(7) by semicontinuity of relative position, and hence 7(£) = 7.

In order to show that 7 is a fibration, we need to construct local trivializations. Fix 7€ A
and an opposite simplex 7. Let U denote the unipotent radical of the stabilizer of 7 in G.
Then U acts simply transitively on an open neighborhood of 7 in Flag,  (X). Now, let S < U
denote the closed subset consisting of all u € U which send 7 to elements of A. Then S -7 is a
neighborhood of 7 in A. Restricting the action of U to the subset .S, we obtain a topological
embedding

S x Th’(r) — Th’(A)

and a local trivialization of 7 over a neighborhood of 7 in A. O

9 Proper discontinuity: general case

9.1 Accumulation of individual orbits for divergent sequences of
isometries

Let 74 < 0, X be a pair of opposite simplices, (7)) = Tioa, and let H = H(7_,7,) < G be the
subgroup of isometries preserving the parallel set P = P(7_, 7 ), compare (ZI). We study now

. . . . . . )
the dynamics of divergent sequences of isometries in H on the Finsler compactification X .

We begin by relating the dynamics on the symmetric space to the dynamics at infinity on
the flag manifolds. We let 0 € X denote a base point. In the sequel, we study the asymptotic
dynamics of sequences of isometries h,, — oo in H.

Lemma 9.1. The following are equivalent:

(i) For any point x € X, the orbit (h,z) is contained in a tubular neighborhood of the Weyl
cone V(o,st(y)) and d(h,z,V(0,0st(7y))) — +0o0.

(i) The (hy,)-orbits in X accumulate in X7 at X, .
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(i1) All (hy)-orbits in Cry(T-) < 0ps X accumulate at st(Ty).
(ii’) All (hy)-orbits in C

Tmod

(1-) < Flag,_,(X) converge to 1.

Proof. Note that if property (i) or (i’) is satisfied for some point x € X then also for every other
point, cf. Lemma [3.27

Suppose that (i) holds. Then h,o0 € V(o,st(r;)) for large n, and Lemma 4] with 7, = 7
implies (i).

Vice versa, suppose that (i’) holds. Let 7, © 0, P(7_,7,) be simplices of type Toq such
that h,o € V(o,st(7,)). Lemma 8.4 yields that the sequence (h,0) is T,,0¢-regular and 7,, — 7.
Since 74 is an isolated point of {7 € Flag, (X):7 < 0y, P(7—,74)}, it follows that 7, = 7, for
large n, and thus property (i) is satisfied.

To see that conditions (ii) and (ii’) are equivalent, consider the natural fibration
aFuX - FlagTIIIOd (X>

whose fibers st(7) for 7 € Flag,  (X) are compact. The equivalence follows because Cr;(7-)
is the preimage of C; (7).

Our next goal is to show that (ii’) implies (i).

We first observe that the pointwise convergence h,, — 7, on the Schubert cell C' = C;  (7_)
implies locally uniform convergence. Indeed, the unipotent radical U = U,_ of the parabolic
subgroup P, acts simply transitively on C. It is normalized by H, and the action H —~ C
corresponds to the action H —~ U by conjugation. We realize G' as a matrix group. Then U
becomes a subset of a space of matrices. We note that the action

M g]Wg_1

of G by conjugation on the space of matrices is linear. Therefore, the pointwise convergence
h, — const of the sequence of transformations h, on U implies locally uniform convergence
(on the linear span of the subset U).

We now prove that (ii’) implies (i). We deduce this implication from results in our earlier
paper [KLP2]. The locally uniform convergence h,, — 7, on C implies that the sequence (h,,)
acting on Flag, (X) is contracting in the sense of [KLP2, Def. 5.9]. Therefore, according to
[KLP2, Thm. 5.23], the sequence (hy,) is Tyeq-regular.

Let 7, € 0 P(7_, 74 ) be simplices of type T4 such that h,o € V(o,st(r,)). Then (7,) is a
shadow sequence for (h,0) in the sense of [KLP2, Def. 5.13|. By [KLP2, Lem. 5.16], 7, — 7.
Since 74 is an isolated point of {7 € Flag, (X):7 < 0y, P(7_,74)}, it follows that 7,, = 7, for
large n, and thus property (i) is satisfied.

It remains to prove that (i)=>(ii’). Condition (i) implies that h,'o € V(o,st(7_)) and
d(h; o,V (0,0st(1_))) — +o0. Therefore, for a simplex 7_ opposite to 7_, it follows that

d(o, P(7_, h,7_)) = d(h; o, P(T_,7_)) — 0

as n — +00. This implies that h,7_ — 7. O
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Remark 9.2. Property (ii’) is equivalent to the condition that d(h,'o, P(t_,7_)) — 0 for all
7_ € C. This observation can be used to give a more geometric proof for (ii")=(i).

The next result describes the accumulation of individual (h,)-orbits in x'.

Let @& # Th ¢ W be a W, -invariant thickening. Then the thickenings (Th¢)?(7_) and

Thé(u) are H-invariant disjoint compact subsets of X'

Proposition 9.3. Suppose that all (h,,)-orbits in Cry(17-) < 0puX accumulate atst(7y). Then,
for any W, -invariant thickening & # Th & W, all (hy)-orbits in the (P._-invariant) subset

X - (Th)?(1_) X’ accumulate at Thé(7'+).

Proof. According to the implication (ii)=(i") in Lemma 0.1} the orbits in X accumulate at
S,, < Th?(7;). The latter inclusion holds, because Th # & and hence st(7,) S Thpu(7y).

The issue is therefore to prove the assertion for the orbits at infinity. We first verify it for
the orbits in the (P,_-invariant) subset

Thé(C’Tmod(T,)) = U{Thé(i) : 7_ opposite to T_} X,
Due to the implication (ii)=(ii’) in Lemma [0} our assumption implies that
hnf—f — Ty (94)

for every simplex 7_ opposite to 7_. This in turn implies the (Hausdorff) convergence of

compact subsets ) _ _
hn Th(7_) = Th’ (h,7) — Th' (7).

Indeed, we may write h,7_ = g,7, with a sequence g, — e in GG, and then see that h,, Thé(f_) =
gn Th?(1,) — ThP(1,). It follows that the (h,)-orbits in Th?(C,.  (7_)) accumulate at Th? (7).

Tmod

We are left with the orbits in the “annulus”
Ann := %X — ((Th®)?(r_) 0 TW(C,, ,(7))).

Here, a finer argument is needed.

Note that Ann is a union of small strata. Let v = 0, X be a simplex such that X, = Ann.
We must show that the orbits (hn[b?:,x]) in 0% X accumulate at Th?(r,) for all z € X. We
will deduce this from the dynamics of the orbits of points in the boundary 0X, of the small
stratum, more precisely, in 60X, N 0p; X.

We need to carefully analyze the position of v relative to 7_.

There exists a maximal flat F/ < X such that the apartment o’ = 0,F" < 0,X contains
7_ and v. Let 7_ < d' denote the simplex opposite to 7_. Furthermore, choose interior points
¢_ e int(7_) and 7 € int(v), and let £_ € int(7_) be the antipode of £_. (Note that v # 7_, 7_.)
Then the geodesic segment £_n extends inside a’ to the segment 5,7]5, of length 7. Let uy > v
be the simplices such that né_ M int(u_) # @& and né_ A int(uy) # &.
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The last property implies that W, < W, , where e.g. W, < Isom(a’) denotes the group
generated by reflections at the walls containing 7_, because the walls containing p_ also contain
7_. Thus, the chambers in st(y_) are contained in an orbit of W, = W | and in particular
they have the same position relative 7 and 7_. Similarly, the chambers in st(uy) have the
same relative position.

Lemma 9.5. The chambers in st(u_) have strictly smaller position relative T_ than the other
chambers in st(v). Similarly, the chambers in st(u, ) have strictly smaller position relative T_
than the other chambers in st(v).

Proof. Let o < st(v) be a chamber. We perturb n € int(v) generically to a point 7' € int(o).
Then the perturbed segment £ 7’ intersects ost(x_) and contains a point (_ € int(o_) for a
chamber o_ < st(p—). By Lemmal87, pos(o, 7-) >,  pos(o_,7_) with equality iff o < st(p_).
The same argument applies to the chambers in st(u. ). O

We continue with the proof of the proposition.

Since X, < Ann, it holds that
X, & (Th®)?(r.) and X, ¢ Th’(7).
This is equivalent to the conditions
st(v) & Thyy(7—) and  st(v) & They(7-). (9.6)

Since the function pos(-,7_) has the same range on st(v) and st(v) n dp F’, ([@.6) is in turn
equivalent to the conditions st(v) N 0pyF”" ¢ Thh,(7-) and st(v) N OpaF” & Thpy(7-). The
latter are, in view of the disjoint decomposition

6F11F’ = (6FUF’ M Th%u(T_)) (] (é’FﬁF/ N ThFu(’f'_)),
in turn equivalent to the conditions
st(v) N Thi (7o) # & and  st(v) N Thps(7-) # .

In view of the lemma, these conditions imply that st(u_)  Th%;(7_) and st(uy) < Thps(7),
equivalently, that i )
X, < (Th®’(r.) and X,, = Th?(+). (9.7)

The second condition is most important.
Now we return to dynamics and apply the sequence (h,). Recall that our goal is to show

that the (h,,)-orbits of points in X, accumulate only at The_(u). Therefore we are free to pass
to subsequences.

Since h,7_ — 7., compare (0.4]), we have that hoé_ — &, with the antipode &, € int(7y)
of & . After passing to a subsequence, we also have convergence h,v — vy and hyuy — ps.
Then also h,n — 1, € int(vy) and the sequence of geodesics h,, -£_n&_ of length 7 converges to
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an a priori broken geodesic path 7, of the same length 7m connecting the points £+ and passing
through 7.,. Since &4 are antipodal, the path ~, is also a geodesic segment.

It follows that pos(-,7_) takes the same values on st(u+) and st(uZ) and, accordingly, the
range of pos(-, 7_) on st(ju+) is the same as the range of pos(-, 7, ) on st(uZ). Thus, ([@.7) implies
7“;0 (= Th6<T+>

It therefore suffices to show that the orbits (hn[bim]) accumulate at 7% :

As mentioned before, we will deduce this from the dynamics of the orbits of the points in
0X, N drp X. The control on their dynamics comes from the following observation.

Let ji_ © v be an arbitrary simplex which is v-opposite to p_ inside st(r) in the sense that
the geodesic segment £_7n can be extended beyond 7 into the interior of fi_. It then extends
further to a segment 5_775’_ of length 7, with endpoint & € int(7” ) and 7/ a simplex opposite
to 7_. Since also h,7" — 7, by (@4), it follows that also

hnfi = fig (9.8)

We now identify the strata Xp,, with the limit stratum X, and translate the assertion on the
dynamics of (h,,) into an assertion on the dynamics of a related divergent sequence of isometries
preserving X, . This is done as follows.

In view of the convergence h,u+ — pZ, there exists a sequence g, — e in G so that

hops = gnpZ and, consequently, h,v = g,ve. Moreover, let g € G so that uy = guZ and
v = guy. The isometries b/, := g 'h,g — o in G then fix pf and vy, and in particular

preserve the stratum X, . Since (h,)-orbits accumulate at the same compact subsets as the
corresponding (g, 'k, )-orbits, we are reduced to showing that the (h,)-orbits in X, accumulate
at Yﬂéro c 0X Voo

Property (Q.8) translates into
nhloe = (9.9)
for all simplices jio, D vy which are vy,-opposite to uo, inside st(vy).

Recall that, as all small strata of 0% X, the stratum X, carries a natural structure as
a symmetric space of noncompact type, being canonically identified with the space of strong
asymptote classes of Weyl sectors V (-, vy ). Moreover, there is a natural identification of spher-
ical buildings
Orits Xvy = Ly, Orits X.

The simplices uZ correspond to a pair of opposite simplices jiy := X, pu% < 0 X, .

Condition (@.9) means that all (h,)-orbits in Cry(fi—) € 0p; X, accumulate at st(fiy). The
simplices ji4 are fixed by the A/, and invoking implication (ii)=>(i) of Lemma [0.1] it follows
that every (h/,)-orbit ([bzio,h; o)) in X, remains in a tubular neighborhood of the Weyl cone
V(o,st(jiy)) and )

d([e ., .1,V (8,0st(fiy))) — +oo. (9.10)

OO7h’/er

Here, 6 € X, denotes a base point, say 6 = [b ] for a base point 0 € X, and we measure
05 _

distances in X, using a P,_-invariant Riemannian or Finsler metric d.
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The relation between euclidean Weyl chambers and Weyl cones in X and X, is as follows.
V.., the star st(7) to the star
st(7), and the open star ost(7) to the open star ost(7). The euclidean Weyl sector V' (0,7) < X,

A simplex 7 2 vy, corresponds to the simplex 7 := ¥, 7 < 05X

consists of the points [0 ] with z € V(0,7)  X. The faces of the sector V (o, 7) correspond

Voo, &

to the faces of the sector V(o,7) which properly contain the face V(o,v). The Weyl cone
V/(0,st(7)) consists of the points [09 ] with € V(o,st(7)).

The last condition on the (k! )-orbit ([bf@h% L) in X, , see formula (9.10) and the sen-

tence before, therefore means that we can replace the orbit points A,z by points x, in a
tubular neighborhood of the Weyl cone V(o,st(u)) < X such that [bio,h;z . = [b€w7mn] and
d(x,,V(o,08t(nk))) — +00. Then the sequence (z,) accumulates at Y%, cf. Lemmal[84l The
same applies to every sequence (y,,) of points y,, € V(x,, vy). It follows by approximation that

the (h)-orbit ([b? _ 1) in X, accumulates at Y%t . This finishes the proof. O

Voo, Tn

Voo )

Invoking the implication (i’)=(ii) of Lemma [0.1] we conclude:

Corollary 9.11. Ifthe (hy)-orbits in X accumulate in X’ at X,., then for any W, -invariant
thickening & # Th < W, all (hy)-orbits in X' - (Th)?(1_) accumulate at TH (1..).

9.2 Locally uniform accumulation of orbits

We continue the discussion of the previous section. Our next goal is to show that the ac-
cumulation of (h,)-orbits as in Corollary [0.11] is locally uniform. Here we need to assume
uniform Tyeq-regularity for the sequence of isometries (h,). This can be expressed by replac-

. . o . . . "
ing the assumption that the (h,)-orbits in X accumulate in the Finsler compactification X
at the stratum closure X, with the stronger assumption that they accumulate in the visual
compactification X at a compact subset of the open star ost(7, ).

Proposition 9.12. If the (h,)-orbits in X accumulate in X at a compact subset of ost(T),
and if & # Th < W is a W.

Tmod

X - (Th)?(1_), the sequence of subsets h,C accumulates at Thg(T_,_).

-invariant thickening, then for every compact subset C'

Proof. We argue by contradiction. Suppose that the assertion fails for some compact subset C'.
Recall that the thickenings (Th®)?(7_) and Th?(r,) are disjoint compact subsets. Hence, after
passing to a suitable subsequence, there exists an open neighborhood U, of Th9(7+) such that
U, n (Th)?(r_) = & and

h,C €Uy Von. (9.13)
Moreover, due to the uniform 7,,,4-regularity of the sequence (h,), we may assume that for a
base point 0 € P and a compact T7,,,q-Weyl convex subset © < 0st(T,0q4), it holds that

hno € V(o,ste(ry)) ¥V n,

cf. [KLP2, Defs. 2.15 and 2.16 in §2.4.2]. The last condition is equivalent to o € V' (h,0, st,o(7_))
and, since h,7+ = T4, to h to € V(o,st,e(7_)). Thus, the (h,!)-orbits in X accumulate in X
at a compact subset of ost(7_).
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By passing to a subsequence again, we can arrange that
h,t0eV(h toste(t-)) Vn, (9.14)

compare [KLP2, Prop. 2.18 and Cor. 2.19]. After (reindexing and) filling in the sequence (h,,)
in H, we may assume that in addition to (9.14)) it holds that the coarse path

n hto

in P is a quasigeodesic ray, compare [KLP2l Lemma 7.12]. Instead of (0.13)), we then only have
that

hn,, C U, VEk
for a subsequence of indices nj; — +00. Since C' is compact, we may assume after passing to a

subsequence of (ny) that there exists a convergent sequence of points Z — 7 in P (Th®)?(7_)
such that
hy, T — T ¢ U,

According to Corollary @I1] the orbit (h,Z) accumulates at Th?(.). We may therefore assume,
after shrinking U, and replacing the sequence 7, — T by its h,,-image for sufficiently large m,
that the entire orbit (h,7) is contained in U,, and that ' ¢ U,.

Then h,, 7, ¢ U, for large k, and we replace n; by the minimal index (“exit time”) such
that h,, 7 ¢ Us. In view of the continuity of the action, the orbits (h,,Zx)nen converge to the
orbit (h,z) as k — +oo. It follows that still ny — +o0 and, after passing to a subsequence,
that h,, T — 7' ¢ U, with a different limit point z’.

By shifting the orbits (h,Zx)nen and taking a limit, we now find a backward orbit inside U,
for a modified divergent sequence of isometries in H as follows. For every m > 1, the points
hny—m @y € Uy are defined for large k. By a diagonal argument, after passing to a subsequence
of (ny), we may assume simultaneous convergence

Py —mZ — 7, € Uy
as k — 4oo for all m. Since the coarse paths
n — Ay, h;}rnko

defined for n > —ny, are uniform coarse quasigeodesic rays passing through o at time n = 0, we
may assume in addition that, as k — +o0, they subconverge to a coarse quasiline

n— hl "o
defined on Z, and that we have simultaneous convergence
hn+nkh;kl - h;
in H as k — +oo for all n € Z. Using the continuity of the H-action on 7(5, we obtain
R R R O

=/
—
Tom
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and hence

for all m > 1. Moreover,
B, — 0

in H as m — +0o0 because m — k!, ‘o is a quasiline.

By (@.14), we have that h'o e V(h,1,,0,ste(7_)), equivalently, h,_,h'o e V(o,steo(T.)),
and thus, by taking a limit,

h',,0€ V(o ste(r)).

In particular, the (h,)men-orbits in X accumulate in X at st,e(7-) < ost(7_), and conse-
quently in 76 at X, .

We now apply Corollary @.I1] to the sequence (h’,,) in H by reversing the roles of the
simplices 71 and their thickenings: Since z’ ¢ Th?(7,), the orbit (A’ Z') must accumulate in

X’ at (Th)?(7_). On the other hand, by construction, the orbit is contained in the closed
neighborhood U, , which is disjoint from (Th®)?(7_), a contradition. O

The proposition has the following implication for dynamical relations:

Corollary 9.15 (Dynamical relations with respect to sequences in H). If74 € X are
points such that T_ is dynamically related to T, with respect to the sequence (hy,),

_ (hn) _
r_ ~ Ty,

then z_ € (Th)(r_) or 7, € TH (7).

9.3 Dynamical relation

We extend the last corollary to arbitrary uniformly 7,,.,4-regular sequences (g,) in G.

Uniform 7,,04-regularity means that the (g,)-orbits in X accumulate in X at a compact
subset of the 7,,0q-regular part 671 (0st(7,04)) © 0% X of the visual boundary. After passing to
a subsequence of (g,), we may suppose that there exists a pair of (in general not antipodal)
simplices T4 < 0, X of types 0(7y) = Tmoa and 0(7_) = (T,,0q such that the (g+!)-orbits in X
accumulate at compact subsets C of the open stars ost(74),

gt — Cy < ost(7y)
for x € X.

Generalizing our earlier result Corollary in the regular case, we obtain:

Corollary 9.16 (Dynamical relation with respect to 7,,,4-regular sequences of isome-
tries). Let & # Th< W be a W,

mod

-invariant thickening. If x4 € X are points such that T_
is dynamically related to T, with respect to a uniformly Tp,eq-reqular sequence (g,) in G,

— (gn) _
T ~ Ty,
then z_ € (Th)(r_) or 7, € TH (7).
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Proof. We deduce this version of the result using the K A, K-decomposition of G.

Let 74 < 0, X be a pair of antipodal simplices of the same types 0(7}) = 6(71), and let
o€ P(r',7.) be a base point and K < G the maximal compact subgroup fixing it. We may
write

with isometries k,, k!, € K and h, — oo in H(7", 7)) such that, in view of the uniform 7,,.4-
regularity of (g,), also (h,,) is uniformly 7,,.4-regular and the (hi!)-orbits in X accumulate at
compact subsets C’, < ost(7.),

hilz — C', < ost(7h).

After passing to a subsequence, we may assume convergence k, — ko and k!, — k! . Then
—1 . . . .
7. = ko7, and 7_ = k' 7", and our assumption on dynamical relation translates into

K .z () ki lzy.

Corollary therefore yields that kKl z_ € (Thc)é(T, ) or k', € Thé(ﬂr), equivalently, that
Iy —

Z_e (Th)? (K ') = (Th®)?(7_) or & € Th?(ky,7,) = Th?(r,), as claimed. O

9.4 Proper discontinuity

We deduce a version of the last result for discrete group actions. Generalizing our earlier result
for regular subgroups, see Proposition [6.12] we obtain:

Corollary 9.17 (Dynamical relation with respect to uniformly 7,,,.-regular sub-

groups). Let Tyoq be a t-invariant face type, and let Th < W be a W, -invariant balanced

thickening. Suppose that I' < G is a uniformly Tmeq-regqular discrete subgroup. If two points

T4 € X are dynamically related with respect to the I'-action,

_ T

T :Z'-H

then at least one of them is contained in Thg(ATmod(F)).

Proof. By assumption, there exists a sequence 7, — o in I' such that
— ('Yn) —
r_— ~ $+.

According to the definition of the 7,,,4-limit set, after passing to a subsequence, there exist
limit simplices Ay € A, (I') such that

v e — Oy < ost(Ay)

in X for suitable compact subsets C. = ost(\+) and all points z € X. Since the thickening Th
is balanced, Th® = Th, Corollary 016 yields at least one of the containments z € Th?(\y). O

We can now extend Theorem [6.21] to the weakly regular case. The last result translates
into:
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Theorem 9.18 (Domain of proper discontinuity). Suppose that I' < G is a uniformly
Tmod-Tegular discrete subgroup and that Th < W is a W, -invariant balanced thickening. Then

the action ) .
F — 79 - The(ATmod (F>)

s properly discontinuous.

Proof. According to the last corollary, there are no dynamical relations between points outside
Th?(A,, ,(T')). Therefore, the action is properly discontinuous, see [F] and [KLI]. O

9.5 Nonemptyness of domains of proper discontinuity at infinity

Let I" and Th be as in Theorem [0.18 and suppose in addition that I' is 7,,,,4-antipodal, i.e. any
two limit simplices in A, (I') are antipodal.

Lemma 9.19. If rank(X) > 2, then TH (A, (T)) # % X.

Tmod
Proof. The set of chambers in the model apartment a,,,q decomposes as
Thri(omed) U Thri(weomed)-

We regard both thickenings as subcomplexes of a,,,q. Their union covers a,,,q and they have
disjoint interiors. Since rank(X) = 2, ameq is connected and the two subcomplexes have a
common face v. Then st(7) N Thpi(0med) # & and st(v) N Thpg(wWoomed) # -

Fix a limit simplex 7 € A, (I'). Let a © 7 be an apartment, let 7 < a be the simplex
opposite to 7, and let f : 0, X — a be a folding map which restricts to an isometry on every
apartment o’ > 7. Then for every simplex 7/ < 0, X opposite to 7 it holds that f(Thg;(7))
Thpi(7). Let v € 0, X be a simplex with pos(v,7) = v. It follows that st(v) & Thpy(A) for
every limit simplex A € A, (I"). Consequently, X, ¢ The_(ATmo L@)). O

Remark 9.20. Note that the nonemptyness of domains of proper discontinuity is much harder
to prove for the [-actions on flag manifolds and requires additional assumptions. For the case
of actions on the Fiirstenberg boundary, see [KLP1, Thm. 8.39 in §8.3].

10 Cocompactness: general case

Suppose that I' < G is a 7,,,04-RCA subgroup and that Th ¢ W is a W, _ -invariant balanced
thickening. In this section, we will use the following notation:

A 0 N ~

S=X, A:=ThA, (), Q:=%-A

By Theorem [9.18] the action
I —Q

is properly discontinuous. The main goal of this section is to show that this action is also
cocompact.

71



10.1 Decompositions and collapses

A decomposition R of a set Z is an equivalence relation on Z. We let D = Dy denote the
subset of the power set 2% consisting of the equivalence classes of R.

A decomposition of a Hausdorff topological space Z is closed if the elements of D are closed
subsets of Z; a decomposition is compact if its elements are compact subsets. Given a decom-
position R of Z, one defines the quotient space Z/R. Quotient spaces of closed decompositions
are 17 but in general not Hausdorff.

Definition 10.1. A decomposition of Z is upper semicontinuous (usc) if it is closed and for
each D € D and each open subset U c Z containing D, there exists another open subset V < 7
containing D such that every D’ € D intersecting V' nontrivially is already contained in U.

Lemma 10.2 (|[D, Proposition 1, page 8|). The following are equivalent for a closed de-
composition R of Z:

(1) R is usc.

(i1) For every open subset U < Z, the saturated subset

U*=| J{peD: DU}

1S open.
(11i) The quotient projection
Z " Z/R

18 closed.

Proof. (i)=(ii): Let € U, and let D € D be the decomposition subset through z. The usc
property implies that U* contains a neighborhood of z.

(ii)=(i): Take V = U*.

(ii)=(iii): Let C' = Z be closed, and let U be the complement. Then U* = k™ 'k(Z — O,
and it follows that x(C) is closed.

(iii)=(ii): Let U < Z be open. Then U* = k1 (Z/R — k(Z — U)) is open. O

Let Z' ¢ Z be the union of all elements of D which are not singletons, and denote by R’
the equivalence relation on Z’ induced by R.

Lemma 10.3. Suppose that Z' is closed. Then R is usc iff R’ is usc.

Proof. Suppose that R’ is usc. Let D € D. If D is a singleton, then Z — Z’ is a saturated open
neighborhood of D. On the other hand, if D < Z’ then D has a saturated open neighborhood
V'in Z'. It is an intersection V' = V n Z’ with an open subset V' < Z which is necessarily
again saturated. This verifies that R is usc.

Vice versa, suppose that R is usc. Then the intersection of a saturated open subset in Z
with Z’ is open and saturated in Z’. Hence R’ is usc. O
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We will use the following result:

Proposition 10.4 ([D, Proposition 2, page 13]). If Z is metrizable and R is a compact
usc decomposition of Z, then Z /R is again metrizable.

We now apply the notion of usc decompositions in the context of the Finsler thickening of
A, . (I') c Flag, . (X). Since I' is 7,04-antipodal and the thickening Th is slim, we obtain a
compact decomposition R of i], whose elements are singletons, namely the points in Q, and the
thickenings Th?(7) of the simplices 7 € A, (T'). (One can show that the latter are contractible,
cf. Remark BI5l) We let

KX — X

denote the quotient projection, and

~

A:=r(A) = A, (D), Q:=k(Q)

~

Q.

lle

Lemma 10.5. The decomposition R ofﬁ) 1§ compact usc.

Proof. The restriction A > Aofkisa map of compact Hausdorff spaces and hence closed.
Thus the restriction of the decomposition R to A is usc, cf. Lemma [I0.2. Hence, by Lemma
[M0.3], the decomposition R is usc as well. It is also compact. O

Corollary 10.6. ¥ = %/R is metrizable.

This corollary is relevant to us in order to do computations with Cech cohomology.

Remark 10.7. We showed in [KL2) Lemma 10.7] that ¥ is Cech acyclic.

10.2 Convergence actions

Since the 7,,,g-RCA property of I is equivalent to 7,,,q-asymptotic embeddedness, we have that
A, (') = 0, equivariantly, see [KLP2]. We continue using the notation from the previous
section. The action of I on ¥ descends to a continuous action

[ —~3. (10.8)

The results of section imply that this action is a convergence actionEI (We will not use
this fact and hence will omit the proof.) We note that ¥ = Q 1 A, where Q is the domain of
discontinuity of I' —~ ¥ and A is the limit set of the action.

There is the following natural question from the general theory of convergence groups, due
to P. Haissinsky [HJE

LCf. [PS] for a similar constructions of convergence actions starting with isometric actions on CAT(0) spaces.
2An equivalent question was asked by P. Tukia in [T2, p. 77], we owe the observation of equivalence of the
questions to V. Gerasimov.
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Question 10.9. Let I' —~ X be a convergence group action of a hyperbolic group on a metriz-
able compact space Y, and suppose that A < X is an invariant compact subset which is equiv-
ariantly homeomorphic to d,I'. Then the action I' =~ Q = ¥ — A is properly discontinuous. Is
it always cocompact?

Remark 10.10. This is true for actions which are expanding at the limit set A, cf. [KLP1].

In our situation of actions derived from 7,,,-RCA actions on symmetric spaces, we have
the following additional information of which we will make crucial use:

Whenever I' — R is a properly discontinuous cocompact isometric action on a locally
compact geodesic metric space, there exists a continuous I'-equivariant map of triads

(R, B, 0,R) -5 (2,0,0) (10.11)

which comes from extending an orbit map I' —» I'v = X, see [KLP3, Thm. 1.4], [KLP2, Thm.

7.35 and the discussion before] and Lemma[3.38 Here, R denotes the Gromov compactification
of R and dy R its Gromov boundary,

E ~Ru 6OO}~Z.
We observe that the map of triads satisfies:
(i) f|}§ : R — Q is proper.
(ii) f|am1§ : 0, R — A is a homeomorphism.
The first property comes from the proper discontinuity of the I'-action on 2.

In section [I0.4] we will give a positive answer to Question [[0.9 for torsion-free hyperbolic
groups under the assumption that €2 has finitely many path-connected components.

10.3 Cocompactness theorems

We consider now an action I' —~ ¥ of a hyperbolic group as in (I0.8), i.e. which is derived from
a Tmoa-RCA action I' —~ X on the symmetric space X. Note that the domain €2 < ¥ is path
connected. We recall that we work with Alexander-Spanier-Cech cohomology.

Theorem 10.12. Q/I" is compact.

Proof. Since I' < G is a finitely-generated linear group, it is virtually torsion-free by Selberg’s
Lemma. Therefore, from now on we shall assume that I' is torsion-free.

Let R be a contractible finite-dimensional locally compact simplicial complex on which I’
acts properly discontinuously and cocompactly, e.g. a suitable Rips complex of I'. We set
R = E/F . Then 7 (R) = I'. Furthermore, the Gromov compactification R of R is contractible
and metrizable, cf. [BM].

We need to “thicken” R to a closed manifold without changing the fundamental group. To
do so, we first embed R as a subcomplex into the (suitably triangulated) euclidean space E?"*1,
where n = dim(R). We denote by N the regular neighborhood of R in E*"*! and let D = 0N.
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Lemma 10.13. D is connected and w1 (D) — 7 (N) = w1 (R) is surjective.

Proof. Let N' := N — R. We claim that the map D — N’ is a homotopy equivalence. The
proof is the same as the one for the homotopy equivalence R — N: Each simplex ¢ € N is the
join ¢; * o of a simplex ¢; disjoint from R (and, hence, contained in D) and a simplex ¢ € R
(in the extreme cases, ¢; or co could be empty). Now, use the straight line segments given by
these join decompositions to homotop each ¢ — R to ¢, < D.

Since R has codimension > 2 in NV, it does not separate N/ and each loop in N is homotopic
to a loop in N’. Hence, N’ is connected and

m(D) — m(N') — m(N)
is surjective. 0

Lemma 10.14. There exists a closed connected manifold M which admits a map h : R — M
inducing an isomorphism of fundamental groups m (R) — w1 (M).

Proof. We start with N (the regular neighborhood of R = E?"*1) as above. As noted in the
proof of the previous lemma, the inclusion R — N is a homotopy equivalence, and N is a
compact manifold with boundary. Consider the closed manifold M obtained by doubling N
along its boundary D,

M = Ny up Na,

where Np, Ny are the two copies of N. We let i : D — M, i, : N, — M denote the inclusion
maps. Since M is the double of N, we have the canonical retraction r : M — N; (whose
restriction to Ny is a homeomorphism). Define the map h = i; o g,

h:R-%L Ny - M,

where g corresponds to the inclusion R — N and hence is a homotopy equivalence. We claim
that h induces an isomorphism h, of fundamental groups.

The existence of the retraction r implies the injectivity of i1, and hence of h,.

By Lemma [I0.13] D is connected. Hence, the Seifert—van Kampen theorem implies that
m1 (M) is generated by the two subgroups ig.(m (Ng)), k = 1,2. Since the homomorphisms

m(D) — m1(Nk)
are surjective (Lemma [[0.13]), we obtain
i1x(m1(N1)) = ta(m1(D)) = i24(m1(N2)).

Hence, both homomorphisms iy, : 7 (Ng) — (M) are surjective. The surjectivity of h,
follows. .

We let m = 2n 4+ 1 denote the dimension of the manifold M and its universal cover M.
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We now consider the triads (I0.I1]) and the diagonal I'-action on their products with M.
Dividing out the action, we obtain bundles over M and f induces the map of triads of bundles

~

31)/0) 5 (2 x I/T. (@ x BT, (A x B)/T) - (10.15)

.

~
E L

Note that E also fibers over /T" with fiber M.
The map F' of triads of bundles satisfies:
(i) F°

(i) F|z,.., : Lmoa — L is a homeomorphism of bundles.

Emod : Emod - E is pl"Opel".

Lemma 10.16. Both spaces E, E,,,q are metrizable.

Proof. These spaces are fiber bundles with compact metrizable bases and fibers. Therefore,
E, E,,.q are both compact and Hausdorff. Hence, they are metrizable, for instance, by Smirnov’s
metrization theorem, because they are paracompact, Hausdorff and locally metrizable. O

Our approach to proving Theorem [10.12]is based on the following observation.

In a noncompact connected manifold, the point represents the zero class in Héf . Similarly,
let . : F — E' 5 B be a fiber bundle over a noncompact connected manifold, where ¢ : F — E,
is the homeomorphism of F to the fiber E, = 771(b). If the base B is path-connected, then the
induced map
Lt Y (F) — HY(E)

on locally finite homology is independent of the choice of b. In order to show triviality of this
map provided that B is noncompact, note that for each class [n] € Z{(E) and each locally finite
class [€] € HY(F), if b is chosen so that Fj, is disjoint from the support of 7, then {[n], [£]) = 0.
Here and in the sequel we use (co)homology with Zs-coefficients. Hence, ¢, = 0.

The compactness of /T" therefore follows from showing that the fiber of the bundle
M™ - E — QT
represents a nontrivial class in HY(FE), i.e. that the locally finite fundamental class []\7] €

HY (M) has a non-zero image under the inclusion induced map HY (M) — HY (E).

The proper map F : E,,,q — F induces the map F, : HY (E,,.q) — HY(E) which carries
the class represented by the M-fiber in the model F,,,4 to the corresponding class in E. It
therefore suffices to show that

HY (M) > HY (Byoq) — HY (E) (10.17)
—_——
~70

is a composition of injective maps.

Step 1: Injectivity of F,. We pass to compactly supported cohomology. We recall that
locally finite homology (with field coefficients) is dual to compactly supported cohomology in
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the same degree via Kronecker duality. We therefore must show that the dual map
HIN(E) == HI(Eon)

is surjective.

We now switch the fiber direction and regard E and E,,,q as bundles over M. We use their
compactifications £ and E,,,q mentioned earlier which allow us to replace compactly supported
cohomology by relative cohomology. Since E is compact and metrizable, while L is compact,
we have a natural isomorphism of Alexander-Spanier cohomology groups (cf. [Sp, Lemma 11,
p. 321]):

H™(E)~ H™(E,L)

Similarly, we have a natural isomorphism

Hm(Emod) = Hm(Emod> Lmod)~

C

Thus, the surjectivity of the previous map F™* is equivalent to the surjectivity of the map

Hm(E, L) id) Hcm(Emoda Lmod)

induced by the map of pairs
(Emods Limoa) — (E, L). (10.18)

To verify the surjectivity of F*

™, we use the long exact cohomology sequence of F"

. HYE) —— H™ (L) H™E, L) H™(E) — H™(L)

L E* E?

l rel abs T
m— n m— m( ] m( m
H 1(Emod) — H 1(Lmod> — H (Emoda Lmod) — H (Emod> — H (Lmod> ce

A diagram chase (as in the proof of the 5-lemma) shows that the surjectivity of F*, follows

rel
from the surjectivity of £ . Indeed, one first checks that ker j < im F}*

., and uses this to

verify the inclusion
5 Yim F3,

abs

) = im(FT’*el>'
To see that F'*

< 1S surjective, we consider the map of bundles:

E

The fibration 7z  is a homotopy equivalence because its fibers R are contractible. Let

SZM—>EmOd
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denote a section. It follows that somj is a left homotopy inverse for F', i.e. somgzo F ~idg

mod "

Thus, the induced map on cohomology FJ,  is surjective.

Step 2: Injectivity of v.. We consider the fiber bundle

~

M — E,.q — R.
The map h : R — M in Lemma [[0.14] yields a section of this bundle. Since the base R of the

bundle is a finite CW complex and its fiber M is a connected m-manifold, Lemma implies
that the induced map
H%(M> i’ H%(Emod)y
is injective.
This concludes the proof of Theorem [10.12] O

We note that our proof required no assumptions on algebro—topological properties of 3. We
only used that ¥ is compact metrizable, that 2 is path-connected, the existence of the map of
triads (I0.IT]) and that I is virtually torsion-free. Our proof, thus, shows

Theorem 10.19. Let X = Q u A be a compact metrizable space, where A < X is closed. Let
I’ be a wvirtually torsion-free hyperbolic group and let R be a contractible Rips complex for T.
Assume that I' — ¥ is a continuous action, such that A is I'-invariant and I'-equivariantly
homeomorphic to 01" and such that the action of I' on Q is properly discontinuous. Assume
also that € is path-connected and that there exists a continuous equivariant map of triads
f : (§7 §7 aooé) - (27 Q> A)

Then QT is compact.

This theorem provides strong evidence for a positive answer to Question [10.9 in the case of

convergence group actions with path-connected discontinuity domains, see Theorem [10.22 in
the next section.

By combining Theorems @18 and [[0.12] with Theorem [I.T], we obtain:

Theorem 10.20. Let I' < G be a Tyoq-RCA subgroup, let Th < W be a W.

oog Slnvariant
balanced thickening (which always exists), and let 0 € int(c,,04). Then the action

P ~X'— TH(A,,,, ()
15 properly discontinuous and cocompact. The quotient
(X' — TH (A, (T))/T
has a natural structure as a compact real-analytic orbifold with corners.

Remark 10.21. The starting point of our proof of Theorem [[0.12] namely, the usage of the
bundles E and F,,,q, is similar to the one in [GW, Prop. 8.10 on pages 40-41]. However, we
avoid the use of Poincaré duality and do not need homological assumptions on the space .
Unlike [GW], an essential ingredient in our proof is the map of triads (I0.I1), i.e. the existence of
a continuous extension of the equivariant proper map f :R—Qtoa map of compactifications.
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10.4 Haissinsky’s conjecture for nonelementary torsion-free conver-
gence groups

Theorem 10.22. Let I' —~ ¥ be a convergence group action of a torsion-free hyperbolic group
on a metrizable compact space X3, and suppose that A < ¥ is an invariant compact subset which
is equivariantly homeomorphic to 0, I". Then the action I' —~ Q = X — A is cocompact provided
that Q has finitely many path connected components.

Proof. After passing to a finite index subgroup of I' preserving each connected component of
(2, it suffices to consider the case when Q is path connected (and nonempty). If we had an
equivariant map of triads (I0.I1]), we would be done by Theorem [[0.19. Below we modify the
space 2 so that such a map of triads exists.

Pick a point z € €2 and define the orbit map
f:T—-Q vz

This map is injective since I is torsion-free and, hence, acts freely on €. Let fy : 0, —> A
be an (the) equivariant homeomorphism. We further let I' = I' U d,,I' denote the Gromov
compactification of I.

Lemma 10.23. The extension of the map f by the map fy : 01" — A,
f T udl — X,
is an equivariant homeomorphism to I'e U A.

Proof. We first note that the natural action I' ~ T is a convergence action.

Suppose that (,) is a sequence in I" converging to £ € 0,,['; A = f(§). We claim that

nlEIC}O flom) = A

Case 1: I' is nonelementary. Without loss of generality (in view of compactness of X
and the convergence property of the action I' —~ ), there exists A_ € A such that the sequence
Ynln—{r_} converges to some A, € A uniformly on compacts. Since f is a homeomorphism,
v, converges to fo'(A,) uniformly on compacts in d,.I' — f;1(A\_). The assumption that I is
nonelementary implies that 0, — f;'(A_) consists of more than one point. Therefore, in view
of the convergence property for the action I' —~ T, it follows that 7, converges to f;1(\y) on
' (here we again pass to a subsequence if necessary). Hence, £ = fz'(A;), Ay = X and the
continuity of f’ follows (cf. Lemma [24]).

Case 2: I is elementary, i.e, I' = Z. Then I' is generated by a single loxodromic
homeomorphism v : ¥ — ¥, ie., A = {A;,A_}. Tukia proved [Tl Lemma 2D] that the
sequence (") converges uniformly on compacts in ¥ — {A_} to A, , while the sequence (y~™)
converges uniformly on compacts in ¥ — {\; } to A_. This implies continuity of the map f. O

79



We now amalgamate the spaces Rand ¥ using the homeomorphism
f:T=Tud,l »To=TxUA,

where we identify I' with the vertex set of the Rips complex R. We denote by ¥’ the result
of the amalgamation. This space is metrizable, for instance, by Proposition [[0.4l (This can
be also easily proven more directly, as ¥’ is Hausdorff, compact and 1st countable; hence, it is
metrizable by Urysohn’s metrization theorem.)

Since f’ is I'-equivariant, the topological action of I" on R U Y descends to a topological
action I' —~ Y. This action is properly discontinuous on € := RuQ Y as for each compact
C < (¥, its intersections with R and Q are both compact and the actions I' — ﬁ,F —~ ()
are properly discontinuous. Lastly, we note that, in view of connectivity of E, since (2 is path
connected, so is . We set A’ := A.

The inclusion map @ : R — Y is I'-equivariant and its (co)restriction R — s clearly
proper. Therefore, ¢ yields an equivariant map of triads

~

Fi(R R, 0,T) — (2,0, A

which is proper on R and restricts to an equivariant homeomorphism Jd,I" — A’. Since the
embedding 2 — €)' is proper, 2/I" is compact if and only if €'/I" is compact.

Remark 10.24. It is not hard to check that I' ~ ¥’ is a convergence action, however, this is
not needed for our proof.

With this modification, Theorem [[0.19implies that €'/ is compact, hence, €2/I" is compact
as well. 0

11 Equivalent characterizations of 7,,,,-RCA actions

We call an open subset S © 0% X saturated if it is a union of small strata X,.

We start with the following simple observation about Finsler convergence at infinity: If
(z,) and (y,) are sequenes in X which are bounded distance apart (i.e. d(x,,¥y,) is uniformly
bounded) and x,, — [b], y, — [I'] € 6% X, then the limit points [b] and [¢] lie in the same small
stratum X, see Lemma [3.27. In particular, for each saturated open subset S < é’foX ,

[b]e S < [V]e S
It follows that if [b] € S, then the entire accumulation set
Acc((B(xn, R))) < 02X

is a compact subset of S.

80



Lemma 11.1. Let I' < G be a discrete subgroup. If S < é’foX 1s a I'-invariant saturated open
subset such that I' acts properly discontinuously on X LS, then each compact subset C < X LS
satisfies the following uniform finiteness property: There ezists a function fc(R) such that for
each ball B(z, R) < X it holds that

card({ye T :vC n B(z,R) # &}) < fc(R).

Proof. Suppose the contrary. Then there is a sequence of balls B(x;, R) intersecting C' and
a sequence y; — oo in I' such that also the balls B(~;z;, R) intersect C. We may assume

that x; —» 7 and v;z; — 7' in X' By the observation preceeding the lemma, it holds that
z,¥ € X u S. Since these points are dynamically related with respect to the I'-action, we
obtain a contradiction with proper discontinuity. O

The lemma leads to the following definition.

Definition 11.2. A discrete subgroup I' < G is S-cocompact if there exists a I['-invariant
saturated open subset Q = 0% X such that the action I' ~ X 11 is properly discontinuous and
cocompact.

Note that each S-cocompact subgroup is necessarily finitely generated because it acts prop-
erly discontinuously and cocompactly on a connected manifold with boundary.

Theorem 11.3. Fach S-cocompact subgroup I' < G admits a I'-equivariant coarse Lipschitz
retraction v : X — I'. In particular, I' is undistorted in G.

Proof. Let Q < 0% X be as in the definition. Let C' < X UQ be a compact subset whose I'-orbit
covers the entire X U 2. We define the coarse retraction r first by sending each point x € X to
the subset

r(z):={yel:zerC}cT.

This subset is clearly finite because of the proper discontinuity of the I'-action, and the assign-
ment x — r(z) is equivariant. According to Lemma [T} the cardinality of the subset

{yvel :yer(B(z,1)} ={yel: B(z,1) nyC # &}
is bounded by fc(1), independently of z. It follows that r is coarse Lipschitz. O

We now apply the previous theorem to the cocompact domains of proper discontinuity
obtained earlier by removing Finsler thickenings of limit sets.
In the regular case, we make the following observation regarding the antipodality condition:

Corollary 11.4. FEvery uniformly reqular conical subgroup I' < G is RCA. In other words,
uniform reqularity and conicality imply antipodality in the reqular case.

Proof. We choose 6 to be an almost root type as in Theorems (.21 and and conclude that
the subgroup I' is S-cocompact. By Theorem [[1.3] I' is undistorted in G. Hence, I" is an URU
subgroup of G. By [KLP3, Theorem 1.5], I' is RCA. O
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It seems unclear whether, without assuming uniformity, regularity and conicality still imply
antipodality. Note that RCA implies uniform regularity, see [KLP2].

We now proceed to the general weakly regular case. Here, we need to assume antipodality.
The next result relates conicality and S-cocompactness:

Theorem 11.5. Suppose that I' < G is Tyeq-uniformly regular and antipodal. Then I is Tyoq-
conical if and only if it is S-cocompact.

Proof. The direction 7,,,-RCA = S-cocompact is proven in Theorem [[0.200 To prove the
converse, note that each S-cocompact subgroup I' is undistorted in G' by Theorem [11.3] Hence,
it is Tmea-URU and therefore 7,,,-RCA by [KLP3, Thm. 1.5]. O

Remark 11.6. The proof shows that, without assuming antipodality, uniform 7,,,4-regularity
and S-cocompactness imply 7,,,¢-RCA. One may wonder whether the antipodality condition can
be dropped altogether, as in the regular case. This would yield the implication uniformly 7,,,4-
RC= 7,,,0,¢-RCA. Furthermore, since S-cocompactness is strictly stronger than undistortedness,
one may ask whether each 7,,,4-regular S-cocompact subgroup is 7;,,¢-uniformly regular.

We now can prove a converse to Theorem [10.20:

Corollary 11.7. Suppose that I' < G is a uniformly T,eq-reqular discrete subgroup and that
Thc W is a W,

Tmod

(i) The properly discontinuous action (see Theorem [9.18)

-invariant balanced thickening. Then the following are equivalent:

F - Yé - Thg(ATmod (F>)

18 cocompact.

(ii) There ezists a T-invariant saturated open subset Q c 0% X such that the action
Fr~XouQ

15 properly discontinuous and cocompact.
(111) T is Tynoa-RCA.

Proof. (1)=(ii) is obvious.
(il)=>(iii): I" is S-cocompact, hence 7,,,4-URU, hence 7,,,¢-RCA.

(iii)=(i) is the content of Theorem [10.20} O
We are now ready to state the equivalence of a variety of conditions on discrete subgroups:

Theorem 11.8. The following are equivalent for T,,.q-uniformly reqular subgroups I' < G:
1. T' is a coarse equivariant retract.
2. T' is a coarse retract.

3. I' is undistorted in G, i.e. Tyoq-URU.
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4. T is Tpoq-RCA.
5. T is Tea-asymptotically embedded.
6. I is T,0q-Anosov.

7. T' is S-cocompact.

Proof. The implications 1=2=-3 are immediate. The equivalence 3<4 is one of the main results
of [KLP3], see Corollary 1.6 of that paper. The equivalences 4<5<6 are established in [KLP2].
The implication 5=7 is Theorem of this paper, while the implication 7=1 is established
in Theorem O

In the regular case, this result can be strengthened to:

Theorem 11.9. The following are equivalent for uniformly regqular subgroups I' < G':
1. ' is RCA.
2. T 1s conical.

3. The Finsler ideal boundary in (?fOX of each -Dirichlet domain Df of the group I' in X
is contained in QThg(F>7 compare (6.20).

4. T is S-cocompact.

Proof. The implication 1=-2 is trivial. The converse is Corollary [[1.4. The equivalence 4<>1
holds in general in the weakly regular case. The implication 1=3 has been proven in Corol-
lary [[4l The implication 3=4 was how we proved cocompactness in Theorem [7.6l O

We note that this list of equivalences is nearly a perfect match to the list of equivalent defi-
nitions of convex cocompact subgroups of rank 1 Lie groups, except that convex-cocompactness
is (by necessity) missing, see [KIL].
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