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Finsler bordifications of symmetric and certain locally

symmetric spaces

Michael Kapovich, Bernhard Leeb

October 3, 2015

Abstract

We give a geometric interpretation of the maximal Satake compactification of symmetric

spaces X “ G{K of noncompact type, showing that it arises by attaching the horo-

function boundary for a suitable G-invariant Finsler metric on X. As an application,

we establish the existence of natural bordifications, as orbifolds with corners, of locally

symmetric spaces which are orbifold quotients X{Γ by arbitrary uniformly weakly regu-

lar subgroups Γ ă G. These bordifications result from attaching Γ-quotients of suitable

domains of proper discontinuity at infinity. We further prove that such bordifications

are compactifications in the case of weakly regular conical antipodal (=τmod-RCA) sub-

groups, equivalently, Anosov subgroups. We show, conversely, that τmod-RCA subgroups

are characterized by the existence of such compactifications. As one of the applications of

our methods we give a positive answer to a question of Peter Häıssinsky on convergence

group actions for torsion-free hyperbolic groups.
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1 Introduction

The goal of this paper is two-fold:

1. We give a geometric interpretation of the maximal Satake compactificationX
S

max (see [BJ,

Chapter 2]) of symmetric spaces X “ G{K of noncompact type. (G is the connected component

of the isometry group of X .) We prove that this compactification is G-equivariantly homeo-

morphic, as a manifold with corners, to a regular Finsler compactification X
θ̄
of X , obtained

by adding to X points at infinity represented by Finsler horofunctions. These horofunctions

arise as limits, modulo additive constants, of distance functions

dθ̄x “ dθ̄px, ¨q

where dθ̄px, yq is a certain G-invariant Finsler distance on X associated with a regular direction

θ̄ in the model spherical chamber σmod of X . It turns out that the particular choice of θ̄ is

irrelevant, as long as it is an interior point of σmod. Such horofunction boundary constructions

of compactifications of metric spaces are quite standard. The novelty is finding the right metric

on X which yields the maximal Satake compactification.
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Theorem 1.1. For every regular type θ̄ P intpσmodq,

X
θ̄

“ X \ Bθ̄
8X

is a compactification of X as a G-space which satisfies the following properties:

(i) There are finitely many G-orbits Sτmod
indexed by the faces τmod of σmod. (X “ SH.)

(ii) The stratification of X
θ̄
by G-orbits is a G-invariant manifold–with–corners structure.

(iii) There is a K-equivariant homeomorphism of X
θ̄
to the closed unit ball in X centered

at the fixed point of K with respect to the dual Finsler metric d˚
θ̄
on X. In particular, X

θ̄
is

homeomorphic to the closed ball.

(iv) The compactification X
θ̄
is independent of the regular type θ̄ in the sense that the

identity map idX extends to a natural homeomorphism of any two such compactifications.

(v) There exists a G-equivariant homeomorphism of manifolds with corners between X
θ̄
and

the maximal Satake compactification X̄S
max which yields a natural correspondence of strata.

Remark 1.2. (i) We also give a geometric interpretation of the points in Bθ̄
8X as strong

asymptote classes of Weyl sectors, see Remark 3.26.

(ii) The strata Sτmod
Ă X

θ̄
are disjoint unions of small strata Xτ , where the τ ’s are simplices

of type τmod in the Tits building of X , i.e. elements of the partial flag manifold Flagτmod
pXq “

G{Pτmod
. Note that the full flag manifold Flagσmod

pXq – G{B – BF :uX is the Fürstenberg

boundary of X . Each small stratum is naturally identified with a symmetric subspace of X ,

namely the cross section of a parallel set. A subset S Ă Bθ̄
8X is called saturated if it is a union

of small strata.

(iii) The Finsler view point had emerged in several instances during our earlier study [KLP1,

KLP2, KLP3] of asymptotic and coarse properties of regular discrete isometry groups acting

on symmetric spaces and euclidean buildings. For instance, the notion of chamber or flag

convergence, see [KLP1, §7.2] and [KLP2, §5.3], is a special case of the Finsler convergence

at infinity considered in this paper. Furthermore, the Morse Lemma proven in [KLP3] can be

rephrased to the effect that regular quasigeodesics in symmetric spaces and euclidean buildings

are uniformly close to Finsler geodesics. In the same vein, Morse subgroups Γ ă G can be

characterized as Finsler quasiconvex.

(iv) The maximal Satake compactification is known to carry a G-invariant real-analytic

structure, see [BJ].

Remark 1.3. After finishing this work we learnt about the recent work of Anne Parreau [P]

where she studies the geometry of CAT(0) model spaces, i.e. of symmetric spaces of noncompact

type and euclidean buildings, from a very natural perspective, regarding them as metric spaces

with a vector valued distance function with values in the euclidean Weyl chamber ∆ (called

∆-distance in our paper). Among other things, she shows that basic properties of CAT(0)

spaces persist in this setting, notably the convexity of the distance, and develops a comparison

geometry for the ∆-distance function. Furthermore, she proves that the resulting ∆-valued
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horofunction compactifications of model spaces are naturally homeomorphic to their maximal

Satake compactifications.

2. Our main application of Theorem 1.1 is to discrete subgroups Γ ă G. Recall that if X

is a negatively curved symmetric space, then the locally symmetric space X{Γ (actually, an

orbifold) admits the standard bordification

X{Γ ãÑ pX Y ΩpΓqq{Γ

where ΩpΓq Ă B8X is the domain of discontinuity of Γ. The quotient pX Y ΩpΓqq{Γ is an

orbifold with boundary ΩpΓq{Γ. Furthermore, a subgroup Γ is convex cocompact if and only if

pX Y ΩpΓqq{Γ is compact.

In our earlier papers [KLP1, KLP2, KLP3], we introduced several classes of discrete sub-

groups Γ of semisimple Lie groups G, generalizing the notions of discreteness and convex co-

compactness in rank 1. These classes are defined relative to faces τmod Ď σmod, equivalently,

with respect to conjugacy classes of parabolic subgroups of G. The most important (for the

purposes of this paper) of these classes are:

1. τmod-regular and uniformly τmod-regular discrete subgroups Γ of higher rank Lie groups

G; in the rank 1 case these conditions amount to discreteness of the subgroup.

2. τmod-RCA subgroups: These are subgroups of Γ ă G which are τmod-regular and their

limit sets Λτmod
pΓq Ă Flagτmod

pXq are conical and antipodal.

3. τmod-URU subgroups: These are τmod-uniformly regular (finitely generated) undistorted

subgroups Γ ă G.

4. τmod-asymptotically embedded subgroups Γ ă G: These are intrinsically Gromov hyper-

bolic, τmod-regular subgroups of G, whose limit sets Λτmod
pΓq are antipodal and equivari-

antly homeomorphic to the Gromov boundary of Γ.

Remark 1.4. (i) Our regularity conditions capture the asymptotic behavior of divergent se-

quences in discrete subgroups Γ ă G with respect to the strata of the Finsler ideal boundary

of X (in the τmod-regular setting) and of the visual ideal boundary of X (in the τmod-uniformly

regular setting). For instance, let ΛpΓq Ă B8X be the limit set of Γ, i.e. the accumulation set at

infinity of the orbits Γx Ă X in the visual compactification X ofX . Similarly, let Λθ̄pΓ, xq Ă X
θ̄

be the accumulation sets of the orbits Γx Ă X in the Finsler compactifications X
θ̄
. Then Γ is

τmod-regular iff Λθ̄pΓ, xq is contained in the closure of the (big) stratum Sτmod
Ă Bθ̄

8X . (This

is independent of x.) Accordingly, Λτmod
pΓq is the set of simplices τ P Flagτmod

pXq such that

Λθ̄pΓ, xq XXτ ‰ H for one (equivalently, any) x P X . Similarly, Γ is uniformly regular iff ΛpΓq

consists only of regular points of B8X .

(ii) The classes 2, 3 and 4 are higher-rank analogues of convex cocompact subgroups of rank

1 Lie groups, reflecting various aspects of “geometric finiteness” of Γ ă G.
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In [KLP2] we also gave a (the first) definition of Anosov subgroups Γ ă G which avoids

the language of geodesic flows; these are the (P -)Anosov subgroups of G defined earlier in

[L, GW]. In [KLP2, KLP3] we proved that the classes 2, 3 and 4 coincide and are equal to the

class of (τmod-)Anosov subgroups. In the regular case τmod “ σmod, we will refer to (uniformly)

σmod-regular and σmod-RCA subgroups simply as (uniformly) regular and RCA.

Our applications of Finsler compactifications to discrete groups establish the existence of

natural bordifications, as orbifolds with corners, of locally symmetric spaces which are orbifold

quotientsX{Γ by arbitrary uniformly τmod-regular subgroups Γ ă G. We further prove that such

bordifications are compact in the case of uniformly regular conical subgroups (when τmod “ σmod)

and, in full generality, for τmod-RCA subgroups.

We now state our results first for uniformly regular conical subgroups and then in general.

Theorem 1.5. Let Γ ă G be a uniformly regular subgroup.

(i) There exists a natural saturated Γ-invariant open subset ΩThpΓq Ă Bθ̄
8X such that the

action

Γ ñ X Y ΩThpΓq Ă X
θ̄

(1.6)

is properly discontinuous. The quotient

pX Y ΩThpΓqq {Γ

provides a real-analytic bordification of the orbifold X{Γ as an orbifold with corners.

(ii) If, in addition, the chamber limit set ΛchpΓq Ă BF :uX is conical, then the action (1.6) is

also cocompact. In particular, this provides a real-analytic compactification of the orbifold X{Γ

as an orbifold with corners. The boundary part of this orbifold is the quotient ΩThpΓq{Γ.

The domain ΩThpΓq at infinity results from the Finsler ideal boundary Bθ̄
8X by removing a

suitable thickening of the chamber limit set Λσmod
pΓq, compare (6.20).

This theorem is a combination of Theorems 6.21 and 7.6, and Corollaries 6.22 and 7.8.

Remark 1.7. While the compactification X
θ̄
is independent of θ̄ as long as the latter is regular,

the subset ΩThpΓq depends on the choice of the regular type θ̄, which, in this theorem, has to be

an almost root type, see Definition 6.7. Different root types yield in general different domains

ΩThpΓq. For instance, if Γ ă PSLp2,Rq “ G is a cocompact Fuchsian subgroup and Γ1 ă GˆG

is the image of Γ under its diagonal embedding into G ˆ G, then the two different root types

of G ˆ G yield two different (but homeomorphic) compactifications of pH2 ˆ H
2q{Γ1, namely

pH2 ˆ H2q{Γ1 and pH2 ˆ H
2q{Γ1.

We now turn to the general case of uniformly τmod-regular subgroups Γ ă G.

The group W which appears below is the Weyl group of X , the map ι : σmod Ñ σmod is the

opposition involution of the model spherical Weyl chamber of W , the subgroup Wτmod
ă W is

the stabilizer of the face τmod Ă σmod. We refer the reader to section 8.4 for the precise definitions

of thickenings. For now, the reader can think of Th Ă W as an auxiliary combinatorial datum,
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a “thickening” of the neutral element inside W , which is used to define the Finsler thickening

Thθ̄pΛτmod
pΓqq of the limit set Λτmod

pΓq Ă Flagτmod
pXq, a certain Γ-invariant saturated compact

subset of Bθ̄
8X .

The following result is a combination of Theorems 9.18 and 10.20.

Theorem 1.8. Let Γ ă G be a uniformly τmod-regular subgroup. Then:

(i) For each balanced Wτmod
-invariant thickening Th Ă W , the action

Γ ñ X Y Ωθ̄
ThpΓq :“ X

θ̄
´ Thθ̄pΛτmod

pΓqq

is properly discontinuous. The quotient
´
X Y Ωθ̄

ThpΓq
¯

{Γ (1.9)

provides a real-analytic bordification of the orbifold X{Γ.

(ii) If, in addition, Γ is τmod-RCA, then
´
X Y Ωθ̄

ThpΓq
¯

{Γ is compact. In particular, this

provides a real-analytic compactification of the orbifold X{Γ as an orbifold with corners. The

boundary part of this orbifold is the quotient Ωθ̄
ThpΓq{Γ.

Thus, our Theorems 1.5 and 1.8 establish the existence of natural compactifications (as

orbifolds with corners) for the locally symmetric spacesX{Γ by attaching Γ-quotients of suitably

chosen saturated domains in the Finsler ideal boundary of X .

More abstractly, we say that a discrete subgroup Γ ă G is S-cocompact if there exists a

Γ-invariant saturated open subset Ω Ă Bθ̄
8X such that Γ acts properly discontinuously and

cocompactly on X Y Ω. (Note that no regularity is assumed in this definition. For instance,

all uniform lattices Γ ă G are S-cocompact with Ω “ H.) Theorem 1.8 shows that τmod-RCA

subgroups of G are S-cocompact with Ω “ Ωθ̄
ThpΓq.

In section 11 we also prove the converse to the last theorem:

Theorem 1.10. Uniformly τmod-regular S-cocompact subgroups of G are τmod-RCA.

Combining the last two theorems, we obtain:

Corollary 1.11. A uniformly τmod-regular subgroup Γ ă G is τmod-RCA if and only if it is

S-cocompact.

Our cocompactness results thus provide a precise higher-rank analogue of the characteriza-

tion of convex cocompact subgroups of rank 1 Lie groups in terms of compactifications of the

corresponding locally symmetric spaces.

In section 10.4 we use our proof of cocompactness part of Theorem 1.8 to verify a conjecture

by Peter Häıssinsky on cocompactness properties for convergence group actions on compact

metrizable spaces in the case of torsion free hyperbolic groups.

While proving Theorem 1.10, we establish yet another coarse-geometric characterization of

τmod-RCA subgroups of G as uniformly τmod-regular subgroups in G which are coarse retracts,
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see sections 2.7 and 11 for the details. This theorem is a higher-rank analogue of the character-

ization of quasiconvex subgroups of Gromov-hyperbolic groups as coarse retracts. Restricting

to the regular case, our Theorem 1.10 proves that the antipodality condition in the definition

RCA is redundant in the context of uniformly regular subgroups:

Theorem 1.12. Uniformly regular conical subgroups of G are RCA.

Remark 1.13. We note that the existence of an orbifold-with-boundary compactification of

locally symmetric quotients by Anosov subgroups of some special classes of simple Lie groups

(namely, Spp2n,Rq, SUpn, nq, SOpn, nq) appears in [GW].

Remark 1.14. Except for the application of our cocompactness argument to convergence

actions (Theorem 10.22), all results in this version of our preprint were already contained in

its second version. Shortly after that version, the preprint [GGKWa] appeared, also addressing

the compactification of locally symmetric spaces. The main claims (Theorems 1.1 and 1.2)

of [GGKWa] are weaker than our Theorem 1.8, as compactifications modelled on maximal

Satake are only obtained for certain classes of Anosov subgroups. Also, a characterization of

Anosov subgroups in terms of the cocompactness of actions (compare our Corollary 1.11) is

not provided. Moreover, the proof of compactness given in [GGKWa] was wrong, the erroneous

homological argument being later replaced by a dynamical argument based on our techniques

from [KLP1], see [GKWb, Lemma 4.12 in §4.3]. However, the argument in [GKWb] still remains

incomplete as no proof is provided for the manifold-with-corners structure claimed in Theorem

1.1, see e.g. the lack of details in the proof of Lemma A.9.

Acknowledgements. We are grateful to the MSRI program “Dynamics on Moduli Spaces

of Geometric Structures” for its hospitality and support during our work on this project. The

first author was also supported by NSF grant DMS-12-05312. We are grateful to Lizhen Ji for

helpful discussions and to Anne Parreau for informing us about her work [P].

2 Preliminaries

2.1 Notations and definitions

We note that for Hausdorff paracompact topological spaces (and in this paper we will be

dealing only with such topological spaces), Alexander-Spanier and Čech cohomology theories are

naturally isomorphic, see [Sp, Ch. 6.9]. Therefore, in our paper, all cohomology is Alexander-

Spanier-Čech with field coefficients (the reader can assume that the field of coefficients is Z2).

For manifolds and CW complexes, singular and cellular cohomology is naturally isomorphic to

the Čech cohomology. We will use the notation H˚
c for cohomology with compact support. As

for homology, we will use it again with field coefficients and only for locally-finite CW complexes,

where we will be using singular homology and singular locally finite homology, denoted H
lf
˚ .

By Kronecker duality, for each locally-finite CW complex X ,

pH lf
k pXqq˚ – Hk

c pXq, k ě 0.

8



We refer the reader to [J] for the definitions of manifolds and orbifolds with corners. The

only examples of orbifolds with corners which appear in this paper are the good ones, i.e.,

quotients of manifolds with corners by properly discontinuous group actions.

In the paper we will use the notion of dynamical relation between points of a topological

space Z, which is an open subset of a compact metrizable space, with respect to a topological

action Γ ñ Z of a discrete group. The reader will find this definition in [F], [KLP1] and [KL1].

We write

ξ
Γ
„ ξ1

if the points ξ and ξ1 are dynamically related with respect to the action of the group Γ, and

ξ
pγnq
„ ξ1

if ξ is dynamically related to ξ1 with respect to a sequence γn Ñ 8 in Γ, cf [KLP1, §2.1]. An

action is properly discontinuous if and only if no points of Z are dynamically related to each

other, see [F], [KL1].

2.2 Basics of symmetric spaces and their discrete isometry groups

In the paper we assume that the reader is familiar with basics of symmetric spaces of noncom-

pact type (denoted by X throughout the paper), their isometry groups G “ IsompXq, visual

boundaries and Tits boundaries. We refer the reader to our earlier papers [KLP1, KLP2, KLP3,

KL1] for the review of these. We also refer the reader to the same papers for the notions of

τmod-regular and uniformly τmod-regular subgroups Γ ă G, defined with respect to faces τmod of

model spherical Weyl chamber σmod of X . These notions of regularity present a higher rank

strengthening of the discreteness condition for Γ: In the case of rank 1 symmetric spaces, the

regularity of a subgroup is equivalent to its discreteness.

In the same papers we introduced several properties of τmod-regular subgroups Γ ă G which

generalize equivalent definitions of convex cocompact subgroups in rank 1 Lie groups. We will

mostly use in this paper the τmod-RCA property, where R stands for regular, C stands for

conical and A stands for antipodal; these properties describe the geometry of the limit sets of

Γ and the dynamics of Γ on these limit sets. We note that the class of τmod-RCA subgroups is

proven in [KLP2] to be equal to the class of P -Anosov subgroups Γ ă G, where the parabolic

subgroup P ă G is the stabilizer of a face of type τmod. We will refer to σmod-regularity and

the σmod-RCA property as regularity and RCA.

We recall (see [KLP1, KL1]) that regular sequences in X are divergent sequences xn Ñ 8

satisfying the property that for some, equivalently, every base-point p P X , the sequence of

∆-valued distances

d∆pp, xnq P ∆

diverges from the boundary of ∆. Accordingly, a sequence gn Ñ 8 in G is regular if the

sequence pgnxq is regular for some (equivalently, every) x P X . A subgroup Γ ă G is regular if

each infinite sequence in Γ is regular. In the paper we will be mostly using the stronger uniform

regularity condition, see §6.3.
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Below are some standard notations and notions that we will use throughout the paper:

1. X will always denote a symmetric space of noncompact type, G its group of isometries

and K ă G a maximal compact subgroup, the stabilizer of a base point in X which will

be denoted o or p.

2. xy will denote the oriented geodesic segment in X connecting a point x to a point y;

similarly, xξ will denote the geodesic ray from x P X asymptotic to the point ξ P B8X .

3. Fmod will denote the model maximal flat for X , whose (finite) Weyl group will be denoted

W . It is the stabilizer of the origin 0 P Fmod, viewing Fmod as a vector space. We will

use the notation amod for the visual boundary of Fmod; we will identify amod with the unit

sphere in Fmod equipped with the angular metric. The sphere amod is the model spherical

apartment for the group W .

4. ∆ “ ∆mod Ă Fmod will be the model euclidean Weyl chamber of W ; its visual boundary

is the model spherical Weyl chamber σmod. We let ι : σmod Ñ σmod denote the opposition

involution, also known as the standard involution, of σmod; it equals ´w0, where w0 P W

is the element sending σmod to the opposite chamber in the model apartment amod.

5. R will denote the root system of X , α1, ..., αn will denote simple roots with respect to ∆.

6. ρ̄ will denote a root type in σmod, i.e., ρ̄ is the direction of the coroot α_ of a root α P R.

For instance, the coroot vector of the highest root always determines a root type ρ̄.

For simply-laced irreducible root systems, σmod contains exactly one root type, while for

non-simply-laced ones, σmod contains two root types.

7. X “ X\B8X will denote the visual compactification of X with respect to its Riemannian

metric, equipped with the visual topology, and BT itsX the Tits boundary of X , which is

the visual boundary together with the Tits metric =T its. The Tits boundary carries a

natural structure as a piecewise spherical simplicial complex.

8. = will denote the angle between vectors in a euclidean vector space, respectively, the

angle metric on spherical simplices.

9. For each face τmod of σmod one defines the flag manifold Flagτmod
pXq, which is the set

of all simplices of type τmod in BT itsX . Equipped with the visual topology, Flagτmod
pXq

is a homogeneous manifold homeomorphic to G{P , where P is a parabolic subgroup of

G stabilizing a face of type τmod. The full flag manifold G{B “ Flagpσmodq is naturally

identified with the Fürstenberg boundary BF :uX of X .

10. For a point x P X , ΣxX denotes the space of directions at x, i.e., the unit sphere in the

tangent space TxX . Similarly, for a spherical building B or a subcomplex C Ă B, and a

point ξ P C, we let ΣξC denote the space of directions of C at ξ.
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11. There is a logarithm map logx mapping B8X homeomorphically to ΣxX which sends each

ray xξ to its initial direction in ΣxX . This map endows ΣxX with the structure of a thick

spherical building, since the ideal boundary of X has one. If τ is a simplex in BT itsX ,

then τx will denote the image of τ under logx.

12. For a simplex τ in BT itsX , the star stpτq of τ , is the union of all chambers of BT itsX con-

taining τ . We will use the notation intpτq for the open simplex, which is the complement

in τ to the union of its proper faces.

13. For a subset Y Ă X we let B8Y denote the visual boundary of Y , i.e., its accumulation set

in the visual boundary of X . A set Y Ă X is said to be asymptotic to a subset Z Ă B8X

if Z Ă B8Y .

14. For a subset Y Ă X we will use the notation CHpY q for the closed convex hull of Y , which

is the smallest closed convex subset C of X such that the closure of C in X contains Y .

Note that CHpY q exists if Y X X is nonempty.

15. For a subset Z Ă B8X we let V px, Zq Ă X denote the closed convex hull of txu Y Z. In

the special case when Z “ τ is a simplex in BT itsX , V px, τq is the Weyl sector in X with

tip x and base τ . A Weyl sector whose base is a chamber in BT itsX is a (euclidean) Weyl

chamber in X .

16. Two Weyl sectors V px1, τq and V px2, τq are strongly asymptotic if for any ǫ ą 0 there

exist points yi P V pxi, τq such that the subsectors V py1, τq and V py2, τq are ǫ-Hausdorff

close.

17. A sequence xi P V px, τq (where τ has the type τmod) is τmod-regular if it diverges from

the boundary of V px, τq, i.e., from the subsectors V px, τ 1q for all proper faces τ 1 of τ . We

refer the reader to [KLP2] for the more general notion of τmod-regular sequences in X ,

which are not necessarily contained in sectors.

18. θ : BT itsX Ñ σmod will denote the type map, i.e. the canonical projection of the Tits

building to the model chamber.

19. d∆px, yq is the ∆-valued distance function on X . For distinct points x, y P X we let

θpxyq P σmod denote the type of the direction of the oriented segment xy.

20. For distinct points x, y P X and ξ P B8X we let =xpy, ξq denote the angle between the

geodesic segment xy and the geodesic ray xξ at the point x P X .

21. We will always use the notation τ, τ̂ to indicate that the simplices τ, τ̂ in BT itsX are

opposite (antipodal). Each simplex, of course, has a continuum of antipodal simplices.

22. Simplices τ, τ̂ are called x-opposite if the Cartan involution fixing x sends τ to τ̂ .

23. P pτ̂ , τq will denote the parallel set of two antipodal simplices τ, τ̂ in BT itsX ; it is the union

of all flats f in X of dimension dimpτq ` 1, whose ideal boundaries contain both τ and

11



τ̂ . We will use the notation T pτ̂ , τq for the group of transvections in X along the flat f :

This group is the same for all flats parallel to f and depends only on τ, τ̂ . We denote by

H “ Hpτ̂ , τq “ Pτ̂ X Pτ ă G (2.1)

the intersection of the parabolic subgroups of G fixing the simplices τ̂ , τ . The subgroup

H preserves the parallel set P pτ̂ , τq.

24. The parallel set P pτ̂ , τq splits isometrically as the direct product CSpτ̂ , τ, pq ˆ f , where

f is one of the flats as above and CSpτ̂ , τ, pq Ă X is a symmetric subspace containing the

point p P P pτ̂ , τq. We let spτ̂ , τq denote the ideal boundary of f ; it is the intersection of

all apartments in BT itsX containing τ̂ Y τ .

25. bη will denote the Busemann function (defined with respect to the usual Riemannian

metric on X) associated with a point η in the visual boundary of X .

26. d will denote the standard distance function on X , Bpx,Rq the closed ball of radius R

centered at x P X , Hbη a closed horoball in X , which is a sublevel set tbη ď tu for the

Riemannian Busemann function bη.

27. For a convex Lipschitz function f : X Ñ R, we will denote by slopepf, ξq the asymptotic

slope of f along one (equivalently, any) geodesic ray xξ asymptotic to ξ,

slopepf, ξq “ lim
tÑ8

fprptqq ´ fprp0qq

t

where r : r0,8q Ñ xξ is the arc-length parameterization of xξ, see [KLM]. The function

slopepf, ¨q on B8X is continuous and Lipschitz with respect to the Tits metric.

If f is the supremum of a family of uniformly Lipschitz convex functions fι, f “ supι fι,

then

slopepf, ¨q “ sup
ι

slopepfι, ¨q. (2.2)

The asymptotic slopes of Busemann functions are given by

slopepbξ, ¨q “ ´ cos=T itspξ, ¨q (2.3)

for ξ P B8X .

28. For a chamber σ in BT itsX we let Nσ denote the associated horocyclic subgroup, the

unipotent radical of the Borel subgroup of G stabilizing σ. Similarly, for a simplex τ in

BT itsX we we let Nτ denote the associated horocyclic subgroup, the unipotent radical in

the parabolic subgroup of G stabilizing τ , see [KLP2, §2.4.4]. Elements of Nτ preserve the

strong asymptote classes of geodesic rays xξ, ξ P intpτq and hence the strong asymptote

classes of sectors V px, τq.
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2.3 Some point set topology

Let Z and Z 1 be first countable Hausdorff spaces, and let O Ă Z and O1 Ă Z 1 be dense

open subsets. Let f : Z Ñ Z 1 be a map such that fpOq Ď O1, and suppose that f has the

following partial continuity property: If pynq is a sequence in O which converges to z P Z, then

fpynq Ñ fpzq in Z 1. In particular, f |O is continuous.

Lemma 2.4. Under these assumptions, the map f is continuous.

Proof. The lemma follows from a standard diagonal subsequence argument.

Let pAnq be a sequence of subsets of a metrizable topological space Z. We denote by

AccppAnqq the closed subset consisting of the accumulation points of all sequences panq of

points an P An.

We say that the sequence of subsets pAnq accumulates at a subset S Ă Z if AccppAnqq Ď S.

If Z is compact and C Ă Z is a closed subset, then the sequence pAnq accumulates at S if

and only if every neighborhood U of C contains all but finitely many of the subsets An.

2.4 A transformation group lemma

Let K be a compact Hausdorff topological group, and let K ñ Y be a continuous action on a

compact Hausdorff space Y . We suppose that there exists a cross section for the action, i.e. a

compact subset C Ă Y which contains precisely one point of every orbit.

Consider the natural surjective map

K ˆ C
α

ÝÑ Y

given by the action, αpk, yq “ ky. We observe that Y carries the quotient topology with respect

to α, because K ˆ C is compact and Y is Hausdorff. The identifications by α are determined

by the stabilizers of the points in C, namely αpk, yq “ αpk1, y1q iff y “ y1 and k´1k1 P StabKpyq.

Consider now two such actions K ñ Y1 and K ñ Y2 by the same group with cross sections

Ci Ă Yi, and suppose that

C1

φ
ÝÑ C2

is a homeomorphism.

Lemma 2.5. If φ respects point stabilizers, i.e. StabKpy1q “ StabKpφpy1qq for all y1 P C1,

then φ extends to a K-equivariant homeomorphism Φ : Y1 Ñ Y2.

Proof. According to the discussion above, the stabilizer condition implies that there exists a

bijection Φ : Y1 Ñ Y2 for which the diagram

K ˆ C1

idKˆφ
ÝÑ K ˆ C2§§đα1

§§đα2

Y1
Φ

ÝÑ Y2
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commutes. Since the αi are quotient projections, it follows that Φ is a homeomorphism.

2.5 Thom class

In this section H lf
˚ denotes locally finite homology with Z2-coefficients.

Lemma 2.6 (Thom class). Let F
ι

Ñ E Ñ B be a fiber bundle whose base B is a compact

CW-complex and whose fiber F is a connected m-manifold (without boundary). Suppose that

there exists a section s : B Ñ E. Then the map

H lf
m pF qloomoon
–Z2

ι˚ÝÑ H lf
m pEq

induced by an inclusion of the fiber is nonzero.

Proof. By thickening the section, one obtains a closed disk subbundle D Ñ B. Then we have

the commutative diagram:

H lf
m pF q

ι˚
✲ H lf

m pEq

HmpDF , BDF q

j

❄ ι1
✲̊ HmpD, BDq

❄

The map j is an isomorphism. By Thom’s isomorphism theorem, the map ι1˚ is injective. It

follows that the map ι˚ is injective.

2.6 The horoboundary of metric spaces

We refer the reader to [G], [Ba, ch. II.1] for the definition and basic properties of horofunction

compactification of metric spaces. In this section we describe these notions in the context of

nonsymmetric metrics, compare [W2].

Let pY, dq be a metric space. We allow the distance d to be non-symmetric, i.e. we only

require that it is positive,

dpy, y1q ě 0 with equality iff y “ y1,

and satisfies the triangle inequality

dpy, y1q ` dpy1, y2q ě dpy, y2q.

The symmetrized distance

dsympy, y1q :“ dpy, y1q ` dpy1, yq
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is a metric in the standard sense and induces a topology on Y . One observes that d is continuous,

and the distance functions

dy :“ dpy, ¨q

are 1-Lipschitz with respect to dsym. These functions satisfy the inequality

´ dpy1, yq ď dy ´ dy1 ď dpy, y1q. (2.7)

Let CpY q denote the space of continuous real valued functions, equipped with the topology of

uniform convergence on bounded subsets. Moreover, let

CpY q :“ CpY q{R

be the quotient space of continuous functions modulo additive constants. We will denote by

rf s P CpY q the equivalence class represented by a function f P CpY q, and our notation f ” g

means that the difference f ´ g is constant.

We consider the natural map

Y ÝÑ CpY q, y ÞÑ rdys. (2.8)

It is continuous as a consequence of the triangle inequality. This map is a topological embedding

provided that Y is a geodesic space; see [Ba, Ch. II.1], where this is proven for symmetric

metrics, but the same proof goes through for nonsymmetric metrics as well.

We identify Y with its image in CpY q and call the closure Y the horoclosure of Y , and

B8Y :“ Y ´ Y the horoboundary or boundary at infinity, i.e. we have the decomposition

Y “ Y \ B8Y.

We note that the horoclosure Y is Hausdorff and 1st countable since the space CpY q is.

The functions representing points in B8Y are called horofunctions. We write

yn Ñ rhs

for a divergent sequence of points yn Ñ 8 in Y which converges to a point rhs P B8Y represented

by a horofunction h, i.e. dyn Ñ h modulo additive constants, and say that pynq converges at

infinity. Each horofunction is 1-Lipschitz with respect to the symmetrized metric.

If the metric space pY, dsymq is proper (which will be the case in this paper since we are

interested in symmetric spaces), then Arzelà-Ascoli theorem implies that the closure Y and the

boundary B8Y at infinity are compact. In this case, Y is the horofunction compactification of

Y .

Suppose that

G ñ Y

is a d-isometric group action. Then the embedding (2.8) is equivariant with respect to the

induced action on functions by g ¨f “ f ˝g´1. For every Lipschitz constant L ą 0, the subspace
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of L-Lipschitz functions LipLpY, dsymq Ă CpY q is preserved by the action and contains, for

L “ 1, the closure Y . We equip G with the topology of uniform convergence on bounded

subsets, using the symmetrized metric dsym for both. Then the action G ñ LipLpY, dsymq is

continuous. In particular, the action

G ñ Y

is continuous. We will use this fact in the situation when G is the isometry group of a Rieman-

nian symmetric space. In this case the topology of uniform convergence on compact subsets

coincides with the Lie group topology.

An oriented geodesic in pY, dq is a “forward” isometric embedding c : I Ñ Y , i.e. for any

parameters t1 ď t2 in I it holds that

dpcpt1q, cpt2qq “ t2 ´ t1.

In particular, c is continuous with respect to the symmetrized metric dsym. The metric space

pY, dq is called a geodesic space, if any pair of points py, y1q can be connected by an oriented

geodesic from y to y1.

If pY, dq is a geodesic space, then the horofunctions arising as limits of sequences along

geodesic rays are called Busemann functions, and their sublevel and level sets are called horoballs

and horospheres. We will denote by Hbb a horoball for the Busemann function b, and more

specifically, by Hbb,y the horoball of b which contains the point y in its boundary horosphere.

In the situations studied in this paper, all horofunctions will turn out to be Busemann

functions, cf. section 3.2.3.

2.7 Some notions of coarse geometry

Definition 2.9. A correspondence f : pX, dq Ñ pX 1, d1q between metric spaces is coarse Lip-

schitz if there exist constants L,A such that for all x, y P X and x1 P fpxq, y1 P fpyq, we

have

d1px1, y1q ď Ldpx, yq ` A.

Note that if pX, dq is a geodesic metric space, then in order to show that f is coarse Lipschitz

it suffices to verify that there exists a constant C such that

d1px1, y1q ď C

for all x, y P X with dpx, yq ď 1 and all x1 P fpxq, y1 P fpyq.

Two correspondences f1, f2 : pX, dq Ñ pX 1, d1q are said to be within distance ď D from each

other, distpf, gq ď D, if for all x P X, yi P fipxq, we have

d1py1, y2q ď D.

Two correspondences f1, f2 are said to be within finite distance from each other if distpf1, f2q ď

D for some D.
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A correspondence pX, dq Ñ pX, dq is said to have bounded displacement if it is within finite

distance from the identity map.

Definition 2.10. A coarse Lipschitz correspondence f : pX, dq Ñ pX 1, d1q is said to have a

coarse left inverse if there exists a coarse Lipschitz correspondence g : X 1 Ñ X such that the

composition g ˝ f has bounded displacement.

By applying the Axiom of Choice, we can always replace a coarse Lipschitz correspondence

f : pX, dq Ñ pX 1, d1q with a coarse Lipschitz map f 1 : pX, dq Ñ pX 1, d1q within bounded

distance from f . With this in mind, if a coarse Lipschitz correspondence f : pX, dq Ñ pX 1, d1q

admits a coarse left inverse, then f is within bounded distance from a quasiisometric embedding

f 1 : pX, dq Ñ pX 1, d1q. However, the converse is in general false, even in the setting of maps

between finitely-generated groups equipped with word metrics.

We now specialize these concepts to the context of group homomorphisms. We note that

each continuous homomorphism of groups with left-invariant proper metrics is always coarse

Lipschitz. Suppose in the remainder of this section that Γ is a finitely generated group and G

is a connected Lie group equipped with a left invariant metric.

Definition 2.11. We say that for a homomorphism ρ : Γ Ñ G, a correspondence r : G Ñ Γ is

a coarse retraction if r is a coarse left inverse to ρ. A subgroup Γ ă G is a coarse retract if the

inclusion map Γ ãÑ G admits a coarse retraction.

Similarly, we say that a homomorphism ρ : Γ Ñ G admits a coarse equivariant retraction if

there exists a coarse Lipschitz retraction r : G Ñ Γ such that

rphgq “ rphqrpgq, @h P ρpΓq.

Accordingly, a subgroup Γ ă G is a coarse equivariant retract if the inclusion homomorphism

Γ ãÑ G admits a coarse equivariant retraction.

More generally, given an isometric action of ρ : Γ ñ X on a metric space X , we say that a

coarse retraction r : X Ñ Γ is a coarse equivariant retraction if

rpγxq “ γrpxq, @γ P Γ, x P X.

In the case when X “ G{K is the symmetric space associated with a connected semisimple

Lie group G, a homomorphism Γ Ñ G admits a coarse equivariant retraction iff the isometric

action of Γ on X defined via ρ admits a coarse equivariant retraction. Similarly, a subgroup

Γ ă G is a coarse retract iff the orbit map Γ Ñ Γ ¨ x Ă X admits a coarse left-inverse.

3 Finsler compactifications of symmetric spaces

Let X “ G{K be a symmetric space of noncompact type.
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3.1 Finsler metrics

3.1.1 The Riemannian distance

We rewrite the Riemannian distance dRiem on X in a way which motivates our later definition

of Finsler distances.

Consider an oriented segment xy in X . As a 1-Lipschitz function, every Busemann function

bξ has slope ď 1 along xy, and we have the inequality

dRiempx, yq ě bξpyq ´ bξpxq. (3.1)

Observe that equality holds, i.e. bξ has slope ” 1 along xy, iff x P yξ. In particular, we obtain

the representation

dRiempx, yq “ max
ξPB8X

`
bξpyq ´ bξpxq

˘
(3.2)

for the Riemannian distance.

3.1.2 Certain Finsler distances

Now we fix a regular type θ̄ P intpσmodq and restrict only to Busemann functions bξ which are

centered at ideal points of this type, θpξq “ θ̄. For a chamber σ Ă B8X , we denote by θσ P σ

the unique point of type θ̄.

There is a sharper bound for the slopes of Busemann functions of type θ̄ along an oriented

segment, which depends on the type of the segment:

Lemma 3.3. The slope of a Busemann function bθσ along a non-degenerate oriented segment

xy is bounded above by cos=pθpxyq, ιθ̄q, with equality in some point, equivalently, along the

entire segment, iff x P V py, σq.

Proof. The slope of bθσ |xy in an interior point z P xy equals cos=zpx, θσq, and is hence maximal

if the angle is minimal. The angle is minimal iff the directions ÝÑzx and
ÝÑ
zθσ lie in a common

chamber of the space of directions ΣzX , equivalently, iff x is contained in the euclidean Weyl

chamber V pz, σq, and the angle then equals

=pθpzxq, θ̄q “ =pθpyxq, θ̄q “ =pιθpxyq, θ̄q “ =pθpxyq, ιθ̄q.

In this case, the slope is maximal along the entire segment and x P V py, σq.

In analogy with (3.2) we define the θ̄-Finsler distance dθ̄ : X ˆ X Ñ r0,`8q by

dθ̄px, yq :“ max
σ

`
bθσpyq ´ bθσpxq

˘
(3.4)

where the maximum is taken over all chambers σ Ă B8X . The triangle inequality is clearly

satisfied. Positivity follows from the fact that diampσmodq ď π
2
and the assumption that θ̄ is

regular. The θ̄-distance is symmetric iff ιθ̄ “ θ̄.
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According to the lemma, we have the inequality, analogous to (3.1),

dθ̄px, yq ě bθσpyq ´ bθσpxq (3.5)

with equality iff x P V py, σq.

It follows that we can write the θ̄-distance in the form

dθ̄px, yq “ lpd∆px, yqq

with the linear functional l “ ´bιθ̄ (normalized at the origin) on ∆mod Ă Fmod.

Inequality (3.5) also implies that the θ̄-distance restricts on maximal flats F Ă X to analo-

gously defined metrics, because only the Busemann functions centered at the visual boundary

of the flat enter into the maximum. We have that

dθ̄px, yq “ max
σĂB8F

`
bθσpyq ´ bθσpxq

˘
(3.6)

for points x, y P F , where the maximum is taken over the finitely many chambers in the visual

boundary of the flat. The restriction of dθ̄ to maximal flats is thus the translation invariant

metric associated to the polyhedral norm on Fmod given by

} ¨ }θ̄ “ max
wPW

pl ˝ w´1q “ max
wPW

`
bwθ̄ ´ bwθ̄p0q

˘
.

The θ̄-distance is then the path metric associated to theG-invariant Finsler metric onX induced

by this norm.

We note that the θ̄-distance as well as its symmetrization are equivalent, as metrics, to the

Riemannian distance.

In order to describe geodesics, we analyze when equality holds in the triangle inequality.

Lemma 3.7. The equality

dθ̄px, zq ` dθ̄pz, yq “ dθ̄px, yq

holds iff there exists a maximal flat F Ă X containing the points x, y and z, and a pair of

opposite chambers σ˘ Ă B8F such that

z P V px, σ`q X V py, σ´q.

Proof. Let σ´ be a chamber such that x P V py, σ´q. Then bθσ´
has maximal slope along xy.

From

dθ̄px, zq ` dθ̄pz, yq ě
`
bθσ´

pzq ´ bθσ´
pxq

˘
`
`
bθσ´

pyq ´ bθσ´
pzq

˘
“
`
bθσ´

pyq ´ bθσ´
pxq

˘
“ dθ̄px, yq

it follows that bθσ´
has maximal slope also along the segments xz and zy, which implies that

z P V py, σ´q.

Let F be the maximal flat containing V py, σ´q, and let σ` Ă B8F be the chamber opposite

to σ´. Similarly, bpιθqσ`
has maximal slope along the reversely oriented segment yx and it

follows that z P V px, σ`q.
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From the lemma one sees that pX, dθ̄q is a geodesic space. All Riemannian geodesics are

dθ̄-geodesics, but not vice versa. In view of Lemma 3.7, the dθ̄-geodesics can be described as

follows.

For a dθ̄-geodesic c : I Ñ X there exists a (in general non-unique) pair of opposite chambers

σ˘ Ă B8F such that

cpt˘q P V pcpt¯q, σ˘qq

for all t´ ă t` in I, i.e. c drifts towards σ` and away from σ´. In particular, dθ̄-geodesics are

contained in maximal flats. More precisely, a dθ̄-geodesic segment is contained in the singular

flat which is the intersection of all maximal flats containing the endpoints. (This is no longer

true for singular types θ̄. There, the geodesics are contained in certain parallel sets.)

3.2 Finsler compactifications

3.2.1 Definition

If one applies the horoboundary construction, cf. section 2.6, to the Riemannian distance dRiem

on X , one obtains the visual compactification

X “ X \ B8X. (3.8)

The ideal boundary points are represented by Busemann functions, i.e. the horofunctions are

in this case precisely the Busemann functions.

We define the Finsler compactification of type θ̄ or θ̄-compactification of X as the compact-

ification

X
θ̄

“ X \ Bθ̄
8X. (3.9)

which one obtains when applying the horoboundary construction to the Finsler distance dθ̄.

Our next goal is to describe horofunctions in Bθ̄
8X in terms of Riemannian Busemann functions

on X .

3.2.2 Certain mixed Busemann functions

According to the definition of the dθ̄-distance, see (3.4), we have that

dθ̄x “ dθ̄px, ¨q “ max
σ

`
bθσ ´ bθσpxq

˘
.

For a simplex τ Ă B8X , we put

bθ̄τ,x :“ max
σĄτ

`
bθσ ´ bθσpxq

˘
(3.10)

where the maximum is taken only over the chambers which contain τ as a face.

The functions bθ̄τ,x for simplices τ Ă B8X and points x P X will turn out to be the horo-

functions for the θ̄-compactification, i.e. the functions which represent the Finsler boundary

points at infinity. We will now study their properties.
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The Busemann functions bθσ for σ Ą τ are invariant under the horocyclic subgroupsNσ Ą Nτ

(cf. [KLP2, §2.4.4]). As a consequence, the functions bθ̄τ,x are invariant under Nτ .

Let f be a minimal singular flat asymptotic to τ , B8f Ą τ . Then B8f “ spτ, τ̂q for a face

τ̂ opposite to τ . The Busemann functions bθσ for σ Ą τ are affine linear along f and coincide

up to additive constants. Therefore bθ̄τ,x|f coincides with them up to additive constants and is

itself affine linear.

More precisely, let T pτ, τ̂q Ă G denote the subgroup of transvections along f . Then there

is a surjective homomorphism ψτ : T pτ, τ̂q Ñ R, independent of f , such that

pbθσ ˝ t´1q|f “ bθσ |f ` ψτ ptq

for σ Ą τ and t P T , and hence

pbθ̄τ,x ˝ t´1q|f “ bθ̄τ,x|f ` ψτ ptq (3.11)

If σ Ą τ is a chamber such that x P V py, σq, then

bθ̄τ,xpyq “ bθσpyq ´ bθσpxq,

cf. Lemma 3.3. Thus,

bθ̄τ,x “ bθσ ´ bθσpxq (3.12)

on V px, σ´q, where σ´ denotes the chamber x-opposite to σ. With the behavior (3.11) under

translations, it follows that (3.12) remains valid on T ¨ V px, σ´q “ V px, CHpσ´ Y τqq.

Let now F be a maximal flat through x asymptotic to τ , F Ą V px, τq. Note that the union

of the cones V px, CHpσ´ Yτqq, as σ´ runs through the finitely many chambers in stpτ´qXB8F ,

equivalently, as σ runs through the chambers in stpτq X B8F , equals F . We therefore obtain

that

bθ̄τ,x|F “ max
τĂσĂB8F

`
bθσ |F ´ bθσpxq

˘
. (3.13)

Thus the restriction of bθ̄τ,x to a maximal flat asymptotic to τ is the maximum of finitely many

affine linear functions.

The following result will be used to distinguish the functions bθ̄τ,p from each other. Let τ̂ be

the simplex p-opposite to τ , and let CSppq “ CSpτ, τ̂ , pq denote the cross section of the parallel

set P pτ, τ̂q through p (cf. [KLP2, §2.4.1]).

Lemma 3.14. bθ̄τ,p|CSppq has a unique maximum in p.

Proof. Let p ‰ q P CSppq. We need to find a chamber σ Ą τ such that

bθσpqq ą bθσppq.

The latter holds if (and only if)

=ppq, θσq ą
π

2
. (3.15)
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We choose an apartment ap in the space of directions ΣpP pτ, τ̂q Ă ΣpX which contains the

direction v :“ ÝÑpq. As every apartment in ΣpP pτ, τ̂q, it also contains the singular sphere sp :“

logp spτ, τ̂ q. It suffices to find a chamber σp Ą τp in ap such that

=ppv, θσp
q ą

π

2
. (3.16)

because then there exists a chamber σ Ą τ such that σp “ logp σ, and (3.15) follows.

Let θ̄1 P intpτmodq denote the nearest point projection of θ̄ P intpσmodq to τmod. We denote

by θ1
τp

the point (direction) of type θ̄1 in τp. Furthermore, we let v´ P ap be the antipode of v

in ap. Then inequality (3.16) follows from

=θ1
τp

pv, θσp
q “ π ´ =θ1

τp
pv´, θσp

q ą
π

2
. (3.17)

The last inequality is satisfied if σp Ă ap is the chamber whose space of directions Σθ1
τp
σp

contains the direction
ÝÝÝÑ
θ1
τp
v´. To see this, we note that Σθ1

τp
σp decomposes as the spherical

join of the sphere Σθ1
τp
τp and a simplex στp of diameter ď π

2
(isometric to a Weyl chamber for

the spherical building ΣτppΣpXq, which may be reducible but has no sphere factor). Since the

direction
ÝÝÝÑ
θ1
τp
θσp

is perpendicular to τp, it lies in στp , which yields the non-strict inequality. The

strict inequality holds because θ̄ is regular, and hence
ÝÝÝÑ
θ1
τp
θσp

lies in the interior of στp .

Based on these properties, we can now distinguish the functions bθ̄τ,p from each other. (Recall

that the notation f ” g means that f ´ g is a constant.)

Lemma 3.18. bθ̄τ,p ” bθ̄τ 1,p1 iff τ “ τ 1 and the sectors V pp, τq and V pp1, τ 1q are strongly asymp-

totic.

Proof. Suppose that bθ̄τ,p ” bθ̄τ 1,p1. We first show that then τ “ τ 1.

By our assumption, the difference bθ̄τ,p ´ bθ̄τ 1,p1 is in particular bounded, and hence for every

point q P X also bθ̄τ,q´bθ̄τ 1,q is bounded. We choose q inside a maximal flat F which is asymptotic

to both simplices τ and τ 1. We know from (3.13) how the restrictions of bθ̄τ,q and b
θ̄
τ 1,q to F look:

In particular, the asymptotic slope pslope bθ̄τ,qq|B8F attains the maximal value 1 precisely in the

points opposite to θσ for τ Ă σ Ă B8F . Since pslope bθ̄τ,qq|B8F “ pslope bθ̄τ 1,qq|B8F , it follows that

stpτq X B8F “ stpτ 1q X B8F and hence τ “ τ 1.

The assertion in the case τ “ τ 1 follows from Lemma 3.14.

Consequently, the functions bθ̄τ,p modulo additive constants one-to-one correspond to strong

asymptote classes of Weyl sectors in X .

3.2.3 Points at infinity and topology at infinity

Every function bθ̄τ,p represents a Finsler boundary point at infinity:

Lemma 3.19. Let xn Ñ 8 be a sequence in the Weyl sector V pp, τq such that dpxn, V pp, Bτqq Ñ

`8. Then

dθ̄xn
´ dθ̄xn

ppq Ñ bθ̄τ,p (3.20)
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uniformly on compacta.

Proof. Step 1. Let τ̂ Ă B8X be the simplex p-opposite to τ . We first prove the assertion on

the parallel set P pτ̂ , τq.

On the Weyl cone V pxn, stpτ̂qq Ă P pτ̂ , τq it holds that dθ̄xn
“ bθ̄τ,xn

, compare the equality

case in (3.5) and (3.12), whence

dθ̄xn
´ dθ̄xn

ppq “ bθ̄τ,xn
´ bθ̄τ,xn

ppq “ bθ̄τ,p.

From our assumption that dpxn, V pp, Bτqq Ñ `8, it follows that V pxn, stpτ̂ qq contains balls

Bpp, rnq X P pτ̂ , τq with radii rn Ñ `8. Thus, (3.20) holds on P pτ̂ , τq.

Step 2. We extend this to X using the action of the horocyclic subgroup Nτ , relying on the

invariance

bθ̄τ,p ˝ u “ bθ̄τ,p

of mixed Busemann functions under isometries u P Nτ . By step 1, it holds for pu, yq P Nτ ˆ

P pτ̂ , τq that

dθ̄uxn
puyqlooomooon

dθ̄xnpyq

´dθ̄xn
ppq Ñ bθ̄τ,ppuyqloomoon

bθ̄τ,ppyq

,

and the convergence is locally uniform in pu, yq. Note that

dθ̄pxn, uxnq “ dθ̄pu´1xn, xnq Ñ 0

for u P Nτ because dpxn, V pp, Bτqq Ñ `8, and the convergence is locally uniform in u. Hence

sup
X

|dθ̄uxn
´ dθ̄xn

| Ñ 0

due to the triangle inequality, compare (2.7), and it follows that

dθ̄xn
puyq ´ dθ̄xn

ppq Ñ bθ̄τ,ppuyq

locally uniformly in pu, yq, i.e.

dθ̄xn
´ dθ̄xn

ppq Ñ bθ̄τ,p

locally uniformly on X , as claimed.

We want to show that, vice versa, the functions bθ̄τ,p represent all Finsler boundary points.

We fix a base point o P X and denote by K the maximal compact subgroup of G fixing o.

For a discussion of the concept of ∆-distance, see [KLP2, 2.1].

Lemma 3.21. Let xn Ñ 8 be a divergent sequence in X. Then, after passing to a subsequence,

(i) there exists a face type τmod Ď σmod such that the sequence of ∆-distances

δn :“ d∆po, xnq Ñ 8 (3.22)
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in the model euclidean Weyl chamber ∆ “ V p0, σmodq is contained in a tubular neighborhood of

the sector V p0, τmodq and drifts away from its boundary V p0, Bτmodq,

dpδn, V p0, Bτmodqq Ñ `8,

(ii) and, as a consequence, there exists a sequence of simplices τn P Flagτmod
pXq and a

bounded sequence of points

pn P CSpτ̂n, τn, oq Ă P pτ̂n, τnq,

where τ̂n denotes the simplex o-opposite to τn, such that xn P V ppn, τnq.

Proof. Property (i) can clearly be achieved by passing to a subsequence.

Let σn Ă B8X be chambers such that xn P V po, σnq, and let τn Ď σn denote their faces of

type τmod. Moreover, let τ̂n Ă B8X denote the simplices o-opposite to τn. There exist unique

points pn P CSpτ̂n, τn, oq Ă P pτ̂n, τnq such that xn lies in the minimal flat fpτ̂n, τn, pnq containing

the sector V ppn, τnq. The sequence ppnq is bounded, because the sequence pδnq is contained in a

tubular neighborhood of the sector V p0, τmodq. Furthermore, xn P V ppn, τnq for large n, because

pδnq drifts away from V p0, Bτmodq. This yields (ii).

Since Flagτmod
pXq is compact, one can further strengthen property (ii) by passing to a

subsequence once more and achieve that the sequences pτnq and ppnq converge. These are then

the data which characterize the convergence at infinity:

Proposition 3.23 (Convergence at infinity). Let xn Ñ 8 be a divergent sequence in X.

Then

xn Ñ rbθ̄τ,ps

with p P CSpτ̂ , τ, oq, where τ̂ denotes the simplex o-opposite to τ , if and only if, without passing

to a subsequence, properties (i) and (ii) hold for large n with τmod “ θpτq, τn Ñ τ and pn Ñ p.

Proof. Given properties (i) and (ii), we can write τn “ knτ and τ̂n “ knτ̂ with kn Ñ e in K

and τ̂ o-opposite to τ . The sequence of points

k´1

n xn P V pk´1

n pnloomoon
Ñp

, τq Ă P pτ̂ , τq

is contained in a tubular neighborhood of the sector V po, τq and drifts away from its boundary,

dpk´1
n xn, V po, Bτqq Ñ `8. Lemma 3.19 yields, combined with (2.7), that

dθ̄
k´1
n xn

´ dθ̄
k´1
n xn

pk´1

n pq Ñ bθ̄τ,p

uniformly on compacta. It follows that also

dθ̄xn
´ dθ̄xn

ppq Ñ bθ̄τ,p,

because dθ̄
k´1
n xn

“ dθ̄xn
˝ kn and |dθ̄

k´1
n xn

´ dθ̄xn
| Ñ 0 uniformly on compacta. Thus, xn Ñ rbθ̄τ,ps.
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Conversely, suppose that xn Ñ rbθ̄τ,ps. Then, if pδnq is not contained in a tubular neighbor-

hood of V p0, τmodq, or if it is contained in a tubular neighborhood of V p0, τmodq but does not

drift away from V p0, Bτmodq, then a subsequence of pδnq is contained in a tubular neighborhood

of another sector V p0, νmodq, νmod ‰ τmod, and drifts away from V p0, Bνmodq. It follows that pxnq

subconverges to a boundary point rbθ̄ν,qs with θpνq “ νmod, a contradiction, since rbθ̄ν,qs ‰ rbθ̄τ,ps.

Thus, property (i) holds with τmod “ θpτq.

Regarding property (ii), it follows from the proof of the previous lemma, that for sufficiently

large n there exist simplices τn P Flagτmod
pXq and points pn P CSpτ̂n, τn, oq such that xn P

V ppn, τnq and the sequence ppnq is bounded in X . Suppose that τn Û τ or pn Û p. Since

Flagτmod
pXq is compact, we can then pass to a subsequence such that τn Ñ τ 1 and pn Ñ p1 P

CSpτ̂ , τ, oq with pτ 1, p1q ‰ pτ, pq. According to the first part of the proof, this implies that pxnq

accumulates at rbθ̄τ 1,p1s. However, rbθ̄τ 1,p1s ‰ rbθ̄τ,ps as a consequence of Lemma 3.14, and we obtain

a contradiction. Thus, property (ii) holds with τn Ñ τ and pn Ñ p.

Remark 3.24. (i) The assumption that p P CSpτ̂ , τ, oq where τ̂ is o-opposite to τ is a nor-

malization of p. It can be arranged in a unique way by replacing p while keeping the strong

asymptote class of the sector V pp, τq unchanged.

(ii) In the case τmod “ σmod the condition simplifies: It holds that xn Ñ rbθσ s if and only if

dpδn, V p0, Bσmodqq Ñ `8 and xn P V po, σnq with a sequence of chambers σn Ñ σ.

Corollary 3.25. Every Finsler boundary point at infinity is represented by a function bθ̄τ,p.

Proof. By the lemma and the proposition, every divergent sequence in X subconverges to a

point at infinity represented by a function bθ̄τ,p. Hence there are no other points at infinity.

Remark 3.26. (i) Together with Lemma 3.18 we conclude that Finsler boundary points at

infinity one-to-one correspond to strong asymptote classes of Weyl sectors in X .

(ii) Since all horofunctions are of the form bθ̄τ,p and arise as limits of sequences along Weyl

sectors, and in particular as limits of sequences along Finsler geodesic rays, it follows that all

horofunctions are Busemann functions, as defined in section 2.6.

Lemma 3.27. Let pxnq and px1
nq be sequences in X which are bounded distance apart and

converge at infinity, xn Ñ rbθ̄τ,ps and x1
n Ñ rbθ̄τ 1,p1s. Then τ “ τ 1.

Proof. By our assumption, the differences of distance functions dθ̄xn
´dθ̄x1

n
are uniformly bounded

independently of n. It follows that also bθ̄τ,p ´ bθ̄τ 1,p1 is bounded, which implies that τ “ τ 1.

Remark 3.28. Note that, unlike in the case of the visual boundary at infinity, the limit points

rbθ̄τ,ps and rbθ̄τ 1,p1s do in general not coincide.

Note that the continuous extension of the G-action on X to the Finsler compactification

X
θ̄
is given by

g ¨ rbθ̄τ,ps “ rbθ̄τ,p ˝ g´1s “ rbθ̄gτ,gps.

We now extend the above discussion to sequences at infinity.
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Let τmod Ă νmod be face types. Then every boundary point of type νmod is a limit of boundary

points of type τmod:

Lemma 3.29. Let xn Ñ 8 be a sequence in the Weyl sector V pp, νq such that dpxn, V pp, Bνqq Ñ

`8 and let τ Ď ν be a face. Then rbθ̄τ,xn
s Ñ rbθ̄ν,ps.

Proof. According to Lemma 3.19, there exist points yn P V pxn, τq Ă V pp, νq such that

dθ̄yn ´ dθ̄ynpxnq ´ bθ̄τ,xn
Ñ 0

uniformly on compacta. Since also dpyn, V pp, Bνqq Ñ `8, applying Lemma 3.19 again yields

that

dθ̄yn ´ dθ̄ynppq Ñ bθ̄ν,p

uniformly on compacta. It follows that rbθ̄τ,xn
s Ñ rbθ̄ν,ps.

The next result partially characterizes the convergence of sequences at infinity.

Lemma 3.30. If

rbθ̄τn,xn
s Ñ rbθ̄ν,ps

and θpτnq “ τmod for all n, then τmod Ď θpνq and τn Ñ τ Ď ν.

Proof. We may assume without loss of generality that xn P CSpτ̂n, τn, oq and p P CSpν̂, ν, oq

where τ̂n is o-opposite to τn and ν̂ is o-opposite to ν.

As in the proof of the previous lemma, using Lemma 3.19, we approximate the points rbθ̄τn,xn
s

at infinity by points yn P V pxn, τnq such that still

yn Ñ rbθ̄ν,ps.

The latter holds if the growth

dpyn, V pxn, Bτnqq Ñ `8

is sufficiently fast. Sufficiently fast growth implies moreover that yn P V po, stpτnqq, and hence

that there exist chambers σn Ě τn such that yn P V po, σnq.

After passing to a subsequence, there exists a face type τ 1
mod Ď σmod such that the ∆-dis-

tances d∆po, ynq lie in a tubular neighborhood of V p0, τ 1
modq but drift away from V p0, Bτ 1

modq.

Invoking sufficiently fast growth again, it follows that τ 1
mod Ě τmod.

Consider the faces τn Ď τ 1
n Ď σn of type θpτ 1

nq “ τ 1
mod, and denote by τ̂ 1

n the simplices

o-opposite to τ 1
n. There exists a bounded sequence px1

nq of points x1
n P CSpτ̂ 1

n, τ
1
n, oq such that

yn P V px1
n, τ

1
nq. After passing to a subsequence once more, we may assume convergence τ 1

n Ñ τ 1

and x1
n Ñ x1. Then yn Ñ rbθ̄τ 1,x1s by Proposition 3.23, and hence rbθ̄τ 1,x1s “ rbθ̄ν,ps. In particular,

τ 1
mod “ θpνq and τ 1 “ ν. It follows that τn Ñ τ Ď ν, i.e. the assertion holds for the subsequence.

Returning to the original sequence of points rbθ̄τn,xn
s, our argument yields that every sub-

sequence has a subsequence for which the assertion holds. Consequently, τmod Ď θpνq and the

sequence of simplices τn can only accumulate at the face τ Ď ν of type τmod. In view of the

compactness of Flagτmod
pXq, it follows that τn Ñ τ .
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Our discussion of sequential convergence implies that the Finsler compactification does not

depend on the regular type θ̄.

Proposition 3.31 (Type independence of Finsler compactification). For any two reg-

ular types θ̄, θ̄1 P intpσmodq, the identity map idX extends to a G-equivariant homeomorphism

X
θ̄

Ñ X
θ̄1

sending rbθ̄τ,ps ÞÑ rbθ̄
1

τ,ps at infinity.

Proof. The extension of idX sending rbθ̄τ,ps ÞÑ rbθ̄
1

τ,ps is a G-equivariant bijection X
θ̄

Ñ X
θ̄1

. The

conditions given in Proposition 3.23 for sequences xn Ñ 8 in X to converge at infinity do

not depend on the type θ̄, i.e. we have convergence xn Ñ rbθ̄τ,ps in X
θ̄
if and only if we have

convergence xn Ñ rbθ̄
1

τ,ps in X
θ̄1

. A general point set topology argument, see Lemma 2.4, now

implies that the extension is a homeomorphism.

3.2.4 Stratification and G-action

For every face type τmod Ă σmod, we define the stratum

Sτmod
“ trbθ̄τ,ps : θpτq “ τmod, p P Xu. (3.32)

Furthermore, we put SH “ X . We define the stratification of X
θ̄
as

X
θ̄

“
ğ

HĎτmodĎσmod

Sτmod
.

The combination of Lemmas 3.29 and 3.30 yields for the closures of strata:

Sτmod
“

ğ

νmodĚτmod

Sνmod
(3.33)

In particular, there is one open stratum SH “ X and one closed stratum Sσmod
“ BF :uX , and

the latter is contained in the closure of every other stratum.

There is the natural fibration

Sτmod
ÝÑ Flagτmod

pXq (3.34)

by the forgetful map rbθ̄τ,ps ÞÑ τ , and the fiber over τ is the space of strong asymptote classes of

Weyl sectors V px, τq, cf. Lemma 3.18, which is canonically identified with the cross section of

any parallel set P pτ, τ̂q for a simplex τ̂ opposite to τ .

The natural G-action on X
θ̄
preserves each stratum, along with its fibration, and acts

transitively on it.

The stabilizer of a point rbθ̄τ,ps is the semidirect product

Nτ ¸
`
T pτ, τ̂q ˆ Kfpτ,τ̂ q

˘
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where Nτ Ă Pτ is the horocyclic subgroup, τ̂ denotes a simplex opposite to τ , T pτ, τ̂q is

the group of transvections along the singular flat fpτ, τ̂q, see section 3.2.2, and the compact

subgroup Kfpτ,τ̂ q is the pointwise stabilizer of fpτ, τ̂q.

The following observation will be very useful to us:

Lemma 3.35. For every open subset O Ă X
θ̄
intersecting the closed stratum, OX BF :uX ‰ H,

the G-orbit is the entire space, G ¨O “ X
θ̄
.

Proof. Every stratum contains the closed stratum in its closure, and G acts transitively on

every stratum.

In addition to the “big” strata Sτmod
, we define for every simplex τ Ă B8X the “small”

stratum

Xτ “ trbθ̄τ,ps : p P Xu. (3.36)

The strata Xτ for the simplices τ P Flagτmod
pXq are the fibers of the fibration (3.34).

Note that Xτ is canonically identified with every cross section CSpτ̂ , τ, pq for every simplex

τ̂ opposite to τ and every point p P P pτ̂ , τq.

The closures of the small strata are given by

Xτ “
ğ

νĚτ

Xν (3.37)

The stratum closure Xτ is canonically identified with the Finsler compactification of Xτ with

respect to the natural induced regular Finsler metric dθ̄τmod on Xτ , where the regular type θ̄

defines the regular type θ̄τmod
P Στmod

σmod for the Coxeter complex of Xτ ; namely, θ̄τmod
is the

point corresponding to the simplex CHpθ̄ Y τmodq Ă σmod of dimension 1 ` dimpτmodq.

Note that for different simplices τ1, τ2 of the same type τmod, it holds that

Xτ1 X Xτ2 “ H.

There is the following relation between flag convergence in the sense of [KLP2] and Finsler

convergence, which also justifies [KLP2, Remark 5.8]:

Lemma 3.38. A sequence pxnq τmod-flag converges, xn Ñ τ P Flagτmod
pXq, if and only if it

accumulates in X
θ̄
at the small stratum closure Xτ .

Proof. This follows from the definition of flag convergence and Proposition 3.23.

3.2.5 Compactification of maximal flats and Weyl sectors

Let F Ă X be a maximal flat. Applying the horoboundary construction to the restricted Finsler

distance dθ̄|FˆF , one obtains the θ̄-compactification

F
θ̄

“ F \ Bθ̄
8F
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of F . By analogy with Corollary 3.25, the Finsler boundary points at infinity are represented

by the mixed Busemann functions

bF,θ̄τ,p :“ max
σĄτ

`
bθσ ´ bθσppq

˘

for Weyl sectors V pp, τq Ă F , cf. (3.10). We note that

bF,θ̄τ,p “ bθ̄τ,p|F ,

see (3.13). Specializing the discussion of sequential convergence in X to F , see the proof of

Corollary 3.25, we obtain the following version of Proposition 3.23. (Note that the visual

boundary B8F is a finite simplicial complex.)

Lemma 3.39 (Convergence at infinity for maximal flats). Suppose that xn Ñ 8 is a

sequence in F which converges at infinity, and let o P F be a base point. Then:

(i) There exists a unique face τ Ă B8F such that the sequence pxnq is contained in a tubular

neighborhood of the Weyl sector V po, τq and τmod-regular for τmod “ θpτq.

(ii) There exists a convergent sequence pn Ñ p of points in the orthogonal complement fK
τ,o

through o of the minimal singular flat fτ,o containing V po, τq, such that xn P V ppn, τq.

(iii) It holds that

xn Ñ rbF,θ̄τ,p s

in the Finsler compactification F
θ̄
.

The convergence at infinity of divergent sequences in F is the same intrinsically and extrin-

sically, i.e. sequences xn Ñ 8 in F converge in F
θ̄
iff they converge in X

θ̄
. We thus have the

natural topological embedding

F
θ̄

ÝÑ X
θ̄

extending the inclusion map and sending rbF,θ̄τ,p s ÞÑ rbθ̄τ,ps, compare also Lemma 3.14.

For every face τ Ă B8F , we define the stratum

SF
τ “ trbF,θ̄τ,p s : p P F u Ă Bθ̄

8F. (3.40)

It is canonically identified with the cross section fK
τ,o mentioned in the lemma. Moreover, for

every face type τmod Ă σmod we define the stratum

SF
τmod

“ trbθ̄τ,ps : θpτq “ τmodu “
ğ

θpτq“τmod

SF
τ

analogous to (3.32). Then SF
τmod

“ Sτmod
X Bθ̄

8F , and the SF
τ are the fibers for the restricted

fibration (3.34). As in (3.37), the closures of strata decompose as:

S
F

τ “
ğ

B8FĚνĚτ

SF
ν (3.41)
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Let TF Ă G denote the subgroup of transvections along F . We regard it, intrinsically, also as

the group of translations of F . Unlike for the visual boundary, the induced action of

TF ñ Bθ̄
8F

on the Finsler boundary is nontrivial. The action preserves each stratum SF
τ , and TF acts

transitively on it.

The discussion for Weyl sectors is analogous.

Let V po, τq Ă X be a Weyl sector. Again, sequential convergence at infinity for diver-

gent sequences in V po, τq is the same intrinsically and extrinsically, and we have the natural

topological embedding

V po, τq
θ̄

ÝÑ X
θ̄

extending the inclusion map and sending rb
V po,τq,θ̄
τ,p s ÞÑ rbθ̄τ,ps.

The ideal points in Bθ̄
8V po, τq Ă Bθ̄

8X are the points rbθ̄ν,ps for the Weyl sectors V pp, νq Ă

V po, τq. We have analogously defined strata S
V po,τq
ν Ă Bθ̄

8V po, τq for the faces ν Ď τ , and the

decomposition

S
V po,τq

ν “
ğ

τĚν1Ěν

S
V po,τq
ν1 (3.42)

of their closures.

If τ 1 Ă τ , then V po, τ 1q
θ̄

Ă V po, τq
θ̄
. An ideal point rbθ̄ν,ps P Bθ̄

8V po, τq with V pp, νq Ă V po, τq

belongs to Bθ̄
8V po, τ 1q iff V pp, νq Ă V po, τ 1q.

Furthermore, regarding the intersection of compactified sectors, we obtain:

Lemma 3.43. For any two simplices τ1, τ2 Ă B8X, it holds that

V po, τ1q
θ̄

X V po, τ2q
θ̄

“ V po, τ1q X V po, τ2q
θ̄

“ V po, τ1 X τ2q
θ̄
. (3.44)

Proof. Suppose that rbθ̄ν,ps P V po, τ1q
θ̄
XV po, τ2q

θ̄
. Then ν Ă τ1Xτ2. There are sectors V ppi, νq Ă

V po, τiq such that rbθ̄ν,ps “ rbθ̄ν,pis. They are contained in the parallel set P pν, ν̂q for the simplex

ν̂ o-opposite to ν, because the sectors V po, τiq are contained. Consequently, the minimal flats

fν,pi containing the sectors V ppi, νq are parallel. Since rbθ̄ν,p1s “ rbθ̄ν,p2s, the sectors V ppi, νq are

strongly asymptotic and the flats fν,pi must coincide. We may therefore assume without loss of

generality that p1 “ p2 “ p. But then V pp, νq Ă V po, τ1q X V po, τ2q “ V po, τ1 X τ2q and hence

rbθ̄ν,ps P V po, τ1 X τ2q
θ̄
. This shows the inclusion

V po, τ1q
θ̄

X V po, τ2q
θ̄

Ď V po, τ1 X τ2q
θ̄
.

The reverse inclusion is clear.

In the case of the model euclidean Weyl chamber ∆, we will use the following notation. For

a face type τmod Ď σmod we define the stratum

S∆

τmod
“ trb∆,θ̄

τmod,δ
s : δ P ∆u Ă Bθ̄

8∆.
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Its closure is

S
∆

τmod
“

ğ

νmodĚτmod

S∆

νmod
,

cf. Lemmas 3.29 and 3.30.

3.2.6 K-action

Let o P X be the fixed point of K. Let V “ V po, σq Ă X be a euclidean Weyl chamber.

We recall some basic facts about the action K ñ X :

(i) V is a cross section for the action, i.e. every K-orbit intersects V exactly once.

(ii) Stabilizers: The fixed point set in V of any element k P K is a Weyl sector V po, τq,

where H Ď τ Ď σ is the face fixed by k. In other words, if k fixes a point p P V po, σq, then it

fixes the smallest Weyl sector V po, τq containing it. (Here, V po,Hq :“ tou.)

We now establish analogous properties for the action of K on the compactification.

Lemma 3.45 (Cross section). V
θ̄

Ă X
θ̄
is a cross section for the action of K on X

θ̄
.

Proof. Since K ¨ V
θ̄
is compact and contains K ¨ V “ X , and since X is dense in its compacti-

fication, it holds that K ¨ V
θ̄

“ X
θ̄
.

We have to verify that the K-action does not carry different points of V
θ̄
to each other.

Suppose that

k ¨ rbθ̄τ,ps “ rbθ̄τ 1,p1s (3.46)

for k P K and Weyl sectors V pp, τq, V pp1, τ 1q Ă V . Then, in particular, kτ “ τ 1. Since σmod is a

cross section for the action of K on B8X (in fact, for the action of G), this implies that τ “ τ 1

and kτ “ τ .

It follows that k fixes the sector V po, τq pointwise, and hence also the minimal (singular)

flat fτ,o containing it. Moreover, it preserves the parallel set P pτ, τ̂q “ P pfτ,oq. Here, τ̂ Ă B8X

denotes the simplex o-opposite to τ . Note that p P V Ă P pτ, τ̂q

Condition (3.46) is then equivalent to

kfτ,p “ fτ,p1

where fτ,p, fτ,p1 Ă P pτ, τ̂q denote the flats parallel to fτ,o through p and p1, equivalently, the

minimal flats containing the sectors V pp, τq and V pp1, τq. Since V is a cross section for the

action of K on X , it follows that fτ,p X V “ fτ,p1 X V is fixed pointwise by k. The intersection

fτ,p X V is nonempty and contains a sector V pq, τq. Hence, rbθ̄τ,ps “ rbθ̄τ,qs is fixed by k.

Lemma 3.47 (Stabilizers). Let k P K and V pp, τq Ă V . The following are equivalent:

(i) k fixes rbθ̄τ,ps P V
θ̄
.

(ii) k fixes V pp, τq pointwise.

(iii) k fixes pointwise the smallest Weyl sector V po, νq containing V pp, τq.
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Proof. The proof of the previous lemma shows in particular the equivalence of (i) and (ii).

Conditions (ii) and (iii) are equivalent, because the fixed point set of k on V is a sector V po, νq,

namely for the face ν, H Ď ν Ď σ, which is the fixed point set of k on σ.

Let Kτ denote the stabilizer in K of the simplex τ , and put KH “ K.

Corollary 3.48. The points in the compactified euclidean Weyl chamber V po, σq
θ̄
fixed by Kτ

are precisely the points in

V po, τq
θ̄
,

and the points with stabilizer equal to Kτ are precisely the points in

V po, τq
θ̄

´
ď

HĎνĹτ

V po, νq
θ̄
.

4 Coxeter groups and their regular polytopes

4.1 Basics of polytopes

We refer the readers to [Gr] and [Z] for a detailed treatment of polytopes. In what follows, V

will denote a euclidean vector space, i.e. a finite-dimensional real vector space equipped with

an inner product px, yq. We will use the notation V ˚ for the dual vector space, and for λ P V ˚

and x P V we let xλ, xy “ λpxq. The inner product on V defines the inner product, again

denoted pλ, µq, on the dual space.

A polytope B in V is a compact convex subset equal to the intersection of finitely many

closed half-spaces. Note that we do not require B to have nonempty interior. The affine span

xBy of B is the intersection of all affine subspaces in V containing B. The topological frontier

of B in its affine span is the boundary BB of B. A facet of B is a codimension one face of BB.

Each polytope B has a face poset FB. It is the poset whose elements are the faces of B with

the order given by the inclusion relation. Two polytopes are combinatorially isomorphic if there

is an isomorphism of their posets. Such an isomorphism necessarily preserves the dimension of

faces. Two polytopes B and B1 are combinatorially homeomorphic if there exists a (piecewise

linear) homeomorphism h : B Ñ B1 which sends faces to faces.

Given a polytope B whose dimension equals n “ dimpV q, the polar (or dual) polytope of B

is defined as the following subset of the dual vector space:

B˚ “ tλ P V ˚ : λpxq ď 1, @x P Bu.

Thus, λ P B˚ Ă V ˚ implies that the affine hyperplane Hλ “ tλ “ 1u is disjoint from the

interior of B. Moreover, λ P BB˚ iff Hλ has nonempty intersection with B. Each face ϕ of B

determines the dual face ϕ˚ of B˚, consisting of the elements λ P B˚ which are equal to 1 on

the entire face ϕ. This defines a natural bijection between the faces of B and B˚:

‹ : ϕ ÞÑ ϕ˚.

32



Under this bijection, faces have complementary dimensions:

dimpϕq ` dimpϕ˚q “ n´ 1.

The bijection ‹ also reverses the face inclusion:

ϕ Ă ψ ðñ ϕ˚ Ą ψ˚.

In particular, the face poset of BB˚ is dual to the face poset of BB. If W is a group of linear

transformations preserving B, its dual action

w˚pλq “ λ ˝ w´1

on V ˚ preserves B˚. Naturality of ‹ implies that it is W -equivariant.

A polytope B is called simplicial if its faces are simplices. It is called simple if it has a

natural structure of a manifold with corners: Each vertex v of B is contained in exactly d

facets, where d is the dimension of B. Equivalently, the affine functionals defining these facets

in xBy have linearly independent linear parts. For each simplicial polytope, its dual is a simple

polytope, and vice versa.

Lemma 4.1. Two polytopes are combinatorially isomorphic if and only if they are combinato-

rially homeomorphic.

Proof. One direction is clear. Suppose that c : FB Ñ FB1 is an isomorphism of posets. Using

this bijection we will define a homeomorphism h : B Ñ B1, sending each face F to cpF q, by

induction on skeleta. We let h : B0 Ñ pB1q0 be equal to c restricted to the vertex sets.

Suppose, inductively, that we constructed a homeomorphism h on k-skeleta of our polyhedra,

sending each F to cpF q. We extend h to the pk ` 1q-dimensional skeleton as follows. Given a

pk ` 1q-dimensional face F of B, we already have a homeomorphic embedding

h : BF Ñ B1,

sending faces to faces and preserving the order. Since c preserves the posets, we have that

hpBF q “ BcpF q.

We pick an arbitrary pair of interior points x P F, x1 P F 1 “ cpF q and set hpxq “ x1. Then we

extend h to a PL homeomorphism h : F Ñ F 1 via the Alexander trick, meaning that we cone

off the boundary map.

For simple polytopes one can make a sharper statement, see [Da]:

Theorem 4.2. If B and B1 are combinatorially isomorphic simple polytopes, then there exists

a combinatorial diffeomorphism h : B Ñ B1 inducing the given combinatorial isomorphism.

Here, a diffeomorphism of polytopes means a homeomorphism which is the restriction of a

diffeomorphism defined on a larger open set.

33



4.2 Root systems

In this and the following sections, the euclidean vector space V is identified with the model

maximal flat Fmod for the symmetric space X ; the root system R Ă V ˚ is the root system of X .

Accordingly, the Coxeter group W defined via R is the Weyl group of X . Since the symmetric

space X has noncompact type, R spans V ˚, i.e. W fixes only the origin 0 in V .

Given a face τ of the spherical Coxeter complex B8V , we define the root subsystem

Rτ Ă R

consisting of all roots which vanish identically on V p0, τq.

Each root α P R corresponds to a coroot α_ P V , which is a vector such that the reflection

sα : V Ñ V corresponding to α acts on V by the formula:

sαpxq “ x ´ xα, xyα_. (4.3)

The group W also acts isometrically on the dual space V ˚; each reflection sα P W acts on V ˚

as a reflection. The corresponding wall is given by the equation

tλ P V ˚ : xλ, α_y “ 0u,

equivalently, this wall is αK, the orthogonal complement of α in V ˚.

From now on, we fix a Weyl chamber ∆ “ ∆mod Ă V for the action of W on V . The visual

boundary of ∆ is the model spherical chamber σmod.

Notation 4.4. We let rns denote the set t1, ..., nu.

The choice of ∆ determines the set of positive roots R` Ă R and the set of simple roots

α1, ..., αn P R`, where n “ dimpV q;

∆ “ tx P V : αipxq “ xαi, xy ě 0, i P rnsu.

We will use the notation si “ sαi
for the simple reflections. They generate W .

The dual chamber to ∆ is

∆˚ Ă V ˚, ∆˚ “ tλ P V ˚ : pαi, λq ě 0, i P rnsu.

Remark 4.5. Note that there is another notion of a dual cone to ∆ in V ˚, namely the root

cone ∆_, consisting of all λ P V ˚ such that the restriction of λ to ∆ is nonnegative. The root

cone consists of the nonnegative linear combinations of simple roots. The root cone contains

the dual chamber but, is, with few exceptions, strictly larger.

Let B be a W -invariant polytope in V with nonempty interior. We will use the notation

∆B “ ∆ X B, ∆˚
B˚ “ ∆˚ X B˚.

Lemma 4.6. Suppose that λ P ∆˚ is such that λpxq ď 1 for all x P ∆B. Then λ P B˚.

Proof. Let λ P V ˚ and let v P intp∆q Ă V . Then λ|Wv is maximal in v iff λ P ∆˚. The assertion

follows.
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4.3 Geometry of the dual ball

We assume now that B Ă V is a W -invariant polytope in V with nonempty interior, such that

∆B “ tx P ∆ : lpxq ď 1u

where l “ l∆ P intp∆˚q is a regular linear functional. The gradient vector of l gives a direction

ιθ̄, which is a regular point of σmod.

Set lw “ w˚l “ l ˝ w´1, where w P W . Then,

B “
č

wPW

tx P V : lwpxq ď 1u,

i.e. the facets of B are carried by the affine hyperplanes lw “ 1 for w P W .

The polytope B defines a (possibly nonsymmetric) norm on V , namely the norm for which

B is the unit ball:

||x|| “ ||x||θ̄ “ max
wPW

plwpxqq . (4.7)

We let ω1, ..., ωn denote the nonzero vertices of the n-simplex ∆B. We will label these

vertices consistently with the labeling of the simple roots: ωi is the unique vertex of ∆B on

which αi does not vanish. Geometrically speaking, ωi is opposite to the facet Ai of ∆B carried

by the wall αi “ 0.

The regularity of l implies:

Lemma 4.8. The polytope B is simplicial. Its facets are the simplices

tx P w∆ : lwpxq “ 1u.

For each reflection si “ sαi
, the line segment ωisipωiq is not contained in the boundary of B.

Proof. We will prove the last statement. The segment ωisipωiq is parallel to the vector α_
i .

If α_
i were to be parallel to the face l “ 1 of B, then xl, α_

i y “ 0, which implies that l is

singular.

Corollary 4.9. Since the polytope B is simplicial, the dual polytope B˚ is simple.

The chamber ∆˚ contains a distinguished vertex of ∆˚
B˚ , namely the linear functional l “ l∆;

this is the only vertex of ∆˚
B˚ contained in the interior of ∆˚. (The other vertices of ∆˚

B˚ are

not vertices of B˚.)

We now analyze the geometry of ∆˚
B˚ in more detail.

Lemma 4.10. ∆˚
B˚ is given by the set of 2n inequalities p¨, αiq ě 0 and x¨, ωiy ď 1 for i P rns.

Proof. It is clear that these inequalities are necessary for λ P V ˚ to belong to ∆˚
B˚ . In order to

prove that they are sufficient, we have to show that each λ satisfying these inequalities belongs
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to B˚. The inequalities xλ, ωiy ď 1 show that the restriction of λ to ∆B is ď 1. Now, Lemma

4.6 shows that λpxq ď 1 for all x P B.

Close to the origin, ∆˚
B˚ is given by the n inequalities p¨, αiq ě 0, while the other n in-

equalities are strict. Close to l, it is given by the n inequalities x¨, ωiy ď 1, while the other n

inequalities are strict.

We define the exterior facet Ei Ă ∆˚
B˚ by the equation

x¨, ωiy “ 1,

and the interior facet Fj Ă ∆˚
B˚ as the fixed point set of the reflection sj , equivalently, by the

equation

p¨, αjq “ 0.

For subsets I, J Ă rns “ t1, ..., nu we define the exterior faces

EI :“
č

iPI

Ei

containing l, and the interior faces

FJ :“
č

jPJ

Fj

containing the origin. These are nonempty faces of ∆˚
B˚ of the expected dimensions, due to the

linear independence of the ωi’s, respectively, the αj ’s.

As a consequence of the last lemma, every face of the polytope ∆˚
B˚ has the form

EI X FJ

for some subsets H Ď I, J Ď rns.

We now describe the combinatorics of the polytope ∆˚
B˚ .

Lemma 4.11. For each i “ 1, ..., n, Ei X Fi “ H.

Proof. Suppose that λ P ∆˚
B˚ is a point of intersection of these faces. Then λ is a linear function

fixed by the reflection si and satisfying the equation xλ, ωiy “ 1. Then λpsipωiqq “ 1 as well.

Thus, λ “ 1 on the entire segment connecting the vertices ωi and sipωiq of B. Since λ belongs

to B˚, this segment has to be contained in the boundary of B. But this contradicts Lemma

4.8. Therefore, such a λ cannot exist.

We denote by WJ ă W the subgroup generated by the reflections sj for j P J . The fixed

point set of WJ on ∆˚
B˚ equals FJ .

Furthermore, we define ωI as the face of B, as well as of ∆B, which is the convex hull of

the vertices ωi for i P I. The dual face ω˚
I of B˚ is given, as a subset of B˚, by the equations

x¨, ωiy “ 1. It is contained inWJ ¨∆˚
B˚ , where we put J “ rns´I. Indeed, the vertices of ω˚

I are

the functionals lw for which the dual facet lw “ 1 of B contains ωI , equivalently, for w P WJ .
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Note that WJ preserves ωI and therefore also ω˚
I (and acts on it as a reflection group). The

fixed point set of WJ on WJ ¨ ∆˚
B˚ is contained in the intersection

č

wPWJ

w∆˚
B˚

and in particular in ∆˚
B˚ . This implies that

H ‰ FixWJ
pω˚

I q Ă ∆˚
B˚ .

Note that EI “ ω˚
I X ∆˚

B˚ . It follows that

EI X FJ Ě FixWJ
pω˚

I q ‰ H.

In combination with the previous lemma, we conclude:

Lemma 4.12. For arbitrary subsets H Ď I, J Ď rns, it holds that EI XFJ ‰ H iff I X J “ H.

Next, we prove the uniqueness of the labeling of the faces.

Lemma 4.13. If EI X FJ “ EI 1 X FJ 1 ‰ H, then I “ I 1 and J “ J 1.

Proof. Since EIXEI 1 “ EIYI 1 and FJXFJ 1 “ FJYJ 1, the proof reduces to the case of containment

I Ď I 1 and J Ď J 1.

Suppose that j1 P J 1 ´ J . Then, intersecting both sides of the equality EI X FJ “ EI 1 X FJ 1

with Ej1, the previous lemma yields that

H ‰ EIYtj1u X FJ “ EI 1Ytj1u X FJ 1 “ H,

a contradiction. Thus J “ J 1, and similarly I “ I 1.

For the n-cube r0, 1sn, we define similarly facets E 1
i “ tti “ 1u and F 1

j “ ttj “ 0u. They

satisfy the same intersection properties as in Lemmas 4.12 and 4.13. Hence the correspondence

EI X FJ
c

ÞÑ E 1
I X F 1

J

is a combinatorial isomorphism between the polytopes ∆˚
B˚ and r0, 1sn. Lemma 4.1 now yields:

Theorem 4.14. The polytope ∆˚
B˚ is combinatorially homeomorphic to the n-cube r0, 1sn, i.e.

there exists a combinatorial homeomorphism

∆˚
B˚

h
ÝÑ r0, 1sn

inducing the bijection c of face posets.
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4.4 Cube structure of the compactified Weyl chamber

In this section we construct a canonical homeomorphism from the Finsler compactification ∆
θ̄

of the model Weyl chamber ∆ Ă V , to the cube r0,8sn. Recall that α1, ..., αn are the simple

roots with respect to ∆. Each intersection

∆i “ kerpαiq X ∆

is a facet of ∆.

For x P ∆ define
ÝÑα pxq :“ pα1pxq, . . . , αnpxqq P r0,8qn.

This map is clearly a homeomorphism from ∆ to r0,8qn. We wish to extend the map ÝÑα to a

homeomorphism of the compactifications.

We recall the description of sequential convergence at infinity in ∆, compare Lemma 3.39.

A sequence xk Ñ 8 in ∆ converges at infinity iff the following properties hold:

(i) By parts (i) and (ii) of the lemma, there exists a face τ “ τmod of σmod “ B8∆ such that

for every αi P Rτ the sequence pαipxkqq converges.

(ii) By the τmod-regularity assertion in part (i) of the lemma, for the other simple roots

αi R Rτ , we have divergence αipxkq Ñ `8.

In other words, the sequence pxkq converges at infinity, iff the limit

lim
kÑ`8

ÝÑα pxkq P r0,8sn

in the closed cube exists. Moreover, part (iii) of Lemma 3.39 combined with Lemma 3.18

implies that the extension

∆
θ̄ ÝÑα

ÝÑ r0,8sn

sending

lim
kÑ`8

xk ÞÑ lim
kÑ`8

ÝÑα pxkq

for sequences pxkq converging at infinity is well-defined and bijective. Now, Lemma 2.4 implies

that the extension is a homeomorphism. Composing with the homeomorphism

κ : r0,8sn Ñ r0, 1sn, κ : pt1, . . . , tnq ÞÑ

ˆ
1 ´

1

t1 ` 1
, . . . , 1 ´

1

tn ` 1

˙

we obtain:

Lemma 4.15. The map κ ˝ ÝÑα is a homeomorphism from ∆
θ̄
to the cube r0, 1sn. It sends the

compactification of each face ∆
θ̄

i , i P rns, to the face F 1
i of the cube r0, 1sn.

For a partition rns “ I \ J , we define H Ď τI Ď σmod as the face fixed by the reflections sj
for j P J . Equivalently, the vertices of τ are the directions of the vectors ωi for i P I.
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Vice versa, for a face H Ď τ “ τmod Ď σmod, we define the partition rns “ Iτ \ Jτ such that

τIτ “ τ , i.e. Iτ indexes the vertices of τ .

Moreover, we have the sector ∆I “ XiPI∆i “ V p0, τIq Ă ∆ and its compactification

∆
θ̄

I “
č

iPI

∆
θ̄

i ,

cf. (3.44).

Recall that our vector space V is the underlying vector space of the model maximal flat

F “ Fmod. We can now combine the above lemma with the homeomorphism constructed in

Theorem 4.14:

Theorem 4.16. There exists a homeomorphism

∆
θ̄ φ

ÝÑ ∆˚
B˚ Ă B˚

satisfying the following:

1. For each partition rns “ I \ J ,

φpS
∆

τI
q “ EI

and

φp∆
θ̄

Jq “ FJ .

In particular, φp0q “ 0.

2. The map φ preserves the W -stabilizers: x P ∆
θ̄
is fixed by w P W iff φpxq is fixed by w.

3. As a consequence, φ extends to a W -equivariant homeomorphism of the compactified

model flat to the dual ball:

ΦFmod
: F

θ̄

mod Ñ B˚.

Proof. Combining Theorem 4.14 and Lemma 4.15, we define

φ “ h´1 ˝ κ ˝ ÝÑα .

∆˚
B˚ is a cross section for the action of W on B˚, because ∆˚ is a cross section for its action

on V ˚. By Lemma 3.45, the compactified chamber ∆
θ̄
is a cross section for the action of W

on F
θ̄
. We also note that for J “ rns ´ I, the fixed point sets of the subgroup WJ ă W in ∆

θ̄

and ∆˚
B˚ are precisely ∆

θ̄

I and FI , cf. Corollary 3.48. The last assertion of the theorem follows

using Lemma 2.5.

Remark 4.17. One can also derive this theorem from [BJ, Proposition I.18.11]. Our proof is

a direct argument which avoids symplectic geometry.

Remark 4.18. We note that the paper [KMN] computes horofunctions on finite dimensional

vector spaces V equipped with polyhedral norms, but does not address the question about the

global topology of the associated compactification of V . See also [Bri, W1].
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Question 4.19. Suppose that || ¨ || is a polyhedral norm on a finite-dimensional real vector

space V . Is it true that the horoclosure V of V with respect to this norm, with its natural

stratification, is homeomorphic to the closed unit ball for the dual norm? Is it homeomorphic

to a closed ball for arbitrary norms?

5 Manifold with corners structure on the Finsler com-

pactified symmetric space

In Theorem 4.16 we proved the existence of a W -equivariant homeomorphism ΦF : F
θ̄

Ñ B˚.

Since B˚ is a simple polytope, it has a natural structure of a manifold with corners, whose

strata are the faces of B˚. Via the homeomorphism ΦF , we then endow F
θ̄
with the structure

of a manifold with corners as well. The homeomorphism Φ´1

F sends each face τ˚ of B˚ (dual to

the face τ of B, which we will identify with the corresponding face of the Coxeter complex at

infinity amod) to the ideal boundary

Bθ̄
8V p0, τq.

The latter can be described as the set of strong asymptote classes of sectors V px, τq:

rV px, τqs “ rV px1, τqs ðñ x ” x1 P F {SpanpV p0, τqq,

see Lemma 3.18. In other words, this is the stratum SF
τ of F

θ̄
, see (3.40). The goal of this

section is to extend this manifold with corners structure from F
θ̄
to X

θ̄
. We will also see that

this structure matches the one of the maximal Satake compactification of X .

5.1 Manifold with corners

Let σ P BF :uX a chamber which we view as a point in the closed stratum of X
θ̄
. Let o P X be

the fixed point of K.

Lemma 5.1. For every neighborhood U of σ in V po, σq
θ̄
and every neighborhood U 1 of the

identity e in K, the subset U 1 ¨ U is a neighborhood of σ in X
θ̄
.

Proof. Suppose that U 1 ¨ U is not a neighborhood. Then there exists a sequence ξn Ñ σ

in X
θ̄
outside U 1 ¨ U . There exist chambers σn such that ξn P V po, σnq

θ̄
, and points yn P

V po, σnq approximating ξn such that yn Ñ σ. Our description of sequential convergence, cf.

Proposition 3.23, implies that the sequence pynq is σmod-regular and σn Ñ σ. Hence there exist

elements kn Ñ e in K such that knσ “ σn. Then, due to the continuity of the K-action, the

points k´1
n ξn P V po, σq

θ̄
converge to σ. Hence they enter the neighborhood U , and pknq enters

U 1 for large n. This is a contradiction.

Suppose now that the neighborhood U Ă V po, σq
θ̄
is sufficiently small, say, disjoint from

the union of the compactified sectors V po, τq
θ̄
over all proper faces τ Ĺ σ. Then the stabilizer
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of every point in U equals the pointwise stabilizer Kσ “ KF of the maximal flat F Ą V po, σq,

see Corollary 3.48. We consider the bijective continuous map

K{KF ˆ U ÝÑ KU Ă X
θ̄

given by the K-action. By the previous lemma, its image KU is a neighborhood of the closed

stratum Sσmod
“ BF :uX . After shrinking U to a compact neighborhood of σ, the map becomes

a homeomorphism. After further shrinking U to an open neighborhood, the map becomes a

homeomorphism onto an open neighborhood of BF :uX .

Since U is a manifold with corners, see Theorem 4.16, and K{KF is a manifold, we conclude

with Lemma 3.35:

Theorem 5.2 (Manifold with corners). X
θ̄
is a manifold with corners with respect to the

stratification by the strata Sτmod
. In particular, the manifold-with-corners structure is G-inva-

riant.

This means that the k-dimensional stratum of the manifold with corner structure equals

the union of the k-dimensional strata Sτmod
.

5.2 Homeomorphism to ball

At last, we can now prove that the Finsler compactification of the symmetric space X is K-

equivariantly homeomorphic to a closed ball. Let B˚ be the dual ball to the unit ball B Ă Fmod

of the norm (4.7) on the vector space Fmod, defined via the regular vector θ̄. We will identify

the dual vector space of Fmod with Fmod itself using the euclidean metric on Fmod. Hence, B˚

becomes a unit ball in Fmod for the dual norm

|| ¨ ||˚ “ || ¨ ||˚
θ̄

of our original norm.

Since B˚ Ă Fmod is W -invariant, the dual norm extends from Fmod to a G-invariant Finsler

metric on X . The latter defines a G-invariant distance function on X

d˚
θ̄px, yq “ ||d∆px, yq||˚

θ̄ ,

cf. §3.1.2. The closed unit ball (centered at o P X) for this dual norm is

B˚po, 1q “ tq P X : d˚
θ̄po, qq ď 1u.

The group K preserves this dual ball since K fixes the point o.

We can now prove:

Theorem 5.3. There exists a K-equivariant homeomorphism

X
θ̄ Φ

ÝÑ B˚po, 1q

which restricts to the homeomorphism φ : ∆
θ̄

Ñ ∆˚
B˚ from Theorem 4.16.
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Proof. We will use Lemma 2.5 to construct Φ. In order to do so, we have to know that ∆
θ̄

and ∆˚
B˚ are cross sections for the actions of K on X

θ̄
and B˚po, 1q, and that φ respects the

K-stabilizers.

1. According to Lemma 3.45, ∆
θ̄
is a cross section for the action of K on X

θ̄
. Since K

preserves the dual ball B˚po, 1q and

∆˚
B˚ “ ∆ X B˚po, 1q,

while ∆ is a cross section for the action K ñ X , it follows that ∆˚
B˚ is a cross section for the

action K ñ B˚po, 1q.

2. The faces τ , H Ď τ Ď σ, correspond to index sets J , H Ď Jτ Ď rns, where j P Jτ iff

the reflection sj fixes τ . According to Corollary 3.48, the fixed point set of Kτ on ∆
θ̄
equals

V po, τq
θ̄
. On the other hand, the fixed point set of Kτ on ∆˚

B˚ equals the interior face FJτ . By

Theorem 4.16, the homeomorphism φ carries V po, τq
θ̄
to FJτ . Therefore, φ respects the point

stabilizers.

5.3 Relation to the maximal Satake compactification

It turns out that the compactification X
θ̄
constructed in this paper is naturally isomorphic to

the maximal Satake compactification X
S

max. To this end, we will use the dual-cell interpretation

of the maximal Satake compactification, see [BJ, Ch. I.19]

Theorem 5.4. There is a G-equivariant homeomorphism of manifolds with corners X
θ̄

Ñ

X
S

max which extends the identity map X Ñ X.

Proof. We first observe that the group K acts on both compactifications so that the cross sec-

tions for the actions are the respective compactifications of the model euclidean Weyl chamber

∆ “ ∆mod Ă F “ Fmod. We therefore compare the W -invariant compactifications of Fmod.

On the side of X
θ̄
, the ideal boundary of F is the union of strata SF

τ as in §5.2. Elements of

SF
τ are equivalence classes rV px, τqs of sectors V px, τq in F . Two sectors V px, τq, V px1, τq with

the same base τ are equivalent iff x, x1 project to the same vector in F {SpanpV p0, τqq. These

are exactly the strata, denoted epCq, in the maximal Satake compactification of F , denoted by

F
S

max, see [BJ, Ch. I.19]: For each sector C “ V p0, τq, the stratum epCq is F {SpanpCq. We

then have a W -equivariant bijection

h : F
θ̄

Ñ F
S

max

defined via the collection of maps

rV px, τqs ÞÑ rxs P epCq.

For τ “ H, this is just the identity map F Ñ F .
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In order to show that this map is a homeomorphism we note that the topology on F
S

max is

defined via roots (see [BJ, Ch. I.19]) and on the Weyl chamber ∆ in F this topology is exactly

the topology on ∆
θ̄
described in terms of simple roots, cf. the proof of Lemma 4.15.

Lastly, we note that the map h we described respects the stabilizers in the group K. There-

fore, by Lemma 2.5, we obtain a K-equivariant homeomorphic extension

X
θ̄

Ñ X
S

max

of h, which is also an extension of the identity map X Ñ X . Since the identity is G-equivariant,

the same holds for the extension.

Remark 5.5. The maximal Satake compactification is a real-analytic manifold with corners

on which the group G acts real-analytically, see [BJ, Ch. I.19]. Therefore, the same conclusion

holds for the compactification X
θ̄
.

5.4 Proof of Theorem 1.1

The theorem is the combination of the following results:

Part (i) is proven in §3.2.4, where we established that X
θ̄
is a union of strata Sτmod

each of

which is a single G-orbit. Thus, G acts on X
θ̄
with finitely many orbits.

Part (ii) is proven in Theorem 5.2.

Part (iii) is proven in Theorem 5.3.

Part (iv) is the content of Proposition 3.31.

Lastly, Part (v) is established in Theorem 5.4.

6 Proper discontinuity: regular case

The main result of this and the following section is Corollary 7.8 proving that the quotient

space of each RCA subgroup Γ ă G admits a compactification as an orbifold with corners.

Our discussion parallels that in [KLP1] where we first prove the nonexistence of Γ-dynamical

relation between points at infinity outside of certain thickenings of chamber limit sets and then

establish cocompactness outside of the same thickenings.

Given a regular subgroup Γ ă G, for each type θ̄ P σmod which is sufficiently close to the

root type ρ̄ P σmod, we define a Γ-invariant thickening Thθ̄pΛchpΓqq Ă Bθ̄
8X of the limit set

ΛpΓq Ă B8X of a regular subgroup Γ ă G. (Note that the limit set and its thickening live in

different spaces!) We also define the complementary set

ΩThθ̄
pΓq “ Bθ̄

8X ´ Thθ̄pΛchpΓqq.

We then prove that the action of Γ on the Finsler–bordified symmetric space

X Y ΩThθ̄
pΓq

43



is properly discontinuous (assuming that Γ is regular) and cocompact (assuming that Γ is

conical). Then the quotient orbifold

`
X Y ΩThθ̄

pΓq
˘

{Γ

is a compactification of the locally symmetric space X{Γ as an orbifold with corners.

6.1 A metric inequality for dynamical relation

For a regular type θ̄ P intpσmodq, we consider the action

G ñ X
θ̄

“ X Y Bθ̄
8X

of the full isometry group on the Finsler compactification of type θ̄.

Let gn Ñ 8 be a σmod-regular sequence in G. After passing to a subsequence, we may

suppose that we have convergence

g˘1

n x Ñ λ˘ P B8X

in the visual compactification X for some (any) point x P X .

The following result is a Finsler version of [KLP1, Sublemma 6.2].

Lemma 6.1 (Dynamical relation with respect to regular sequences of isometries).

If rbθ̄τ˘,p˘
s P Bθ̄

8X are Finsler boundary points such that

rbθ̄τ´,p´
s

pgnq
„ rbθ̄τ`,p`

s

with respect to the action of pgnq on X
θ̄
, then

slopepbθ̄τ´,p´
, λ´q ` slopepbθ̄τ`,p`

, λ`q ď 0 (6.2)

Proof. We denote b˘ “ bθ̄τ˘,p˘
. By assumption, there exists a sequence xn Ñ 8 in X such that

g´1
n xn Ñ rb´s and xn Ñ rb`s in X

θ̄
, i.e.

dθ̄
g´1
n xn

Ñ b´ and dθ̄xn
Ñ b`

uniformly on compacta modulo additive constants.

Fix a base point x P X and let x˘
n ptq be the point at distance t from x on the segment

connecting x to g˘1
n x (it is defined for sufficiently large n depending on t), and let x˘ptq be the

point at distance t from x on the ray xλ˘.

We consider the behavior of the convex functions dθ̄xn
“ dθ̄pxn, ¨q along the subsegments

connecting x`
n ptq to gnx

´
n ptq; more precisely, we use the monotonicity of discretized slopes. We

have

dθ̄xn
px`

n pt`1qq´dθ̄xn
px`

n ptqq ď dθ̄xn
pgnx

´
n ptqq´dθ̄xn

pgnx
´
n pt`1qq “ dθ̄

g´1
n xn

px´
n ptqq´dθ̄

g´1
n xn

px´
n pt`1qq
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for sufficiently large n depending on t. Letting n Ñ `8, we obtain

b`px`pt` 1qq ´ b`px`ptqq ď b´px´ptqq ´ b´px´pt` 1qq,

using that the functions dθ̄xn
are uniformly Lipschitz (e.g. w.r.t. dRiem), and letting t Ñ `8,

we get

slopepb`, λ`q ď ´ slopepb´, λ´q,

as claimed.

Corollary 6.3. Under the assumptions of the lemma, at least one of the inequalities

slopepbθ̄τ´,p´
, λ´q ď 0 and slopepbθ̄τ`,p`

, λ`q ď 0

holds.

Remark 6.4. (i) The condition slopepbθ̄τ,p, λq ď 0 is equivalent to λ P B8Hbbθ̄τ,p Ă B8X .

(ii) Since sequential convergence at infinity is independent of the regular type θ̄ P intpσmodq,

the proof of the lemma implies that inequality (6.2) holds simultaneously for all types θ̄ P σmod.

We also investigate the dynamical relations between points in X and ideal points in Bθ̄
8X .

Addendum 6.5. If x´ P X is dynamically related to rb`s P Bθ̄
8X with respect to the action of

pgnq on X
θ̄
, then slopepb`, λ`q ď 0.

Proof. The same argument as before yields that

slopepdθ̄x´
, λ´q ` slopepb`, λ`q ď 0.

The distance function dθ̄x´
is proper because the type θ̄ is regular, and hence asymptotically

increasing along rays by convexity, i.e. slopepdθ̄x´
, ¨q ě 0. The assertion follows.

Remark 6.6. More precisely, one obtains that slopepdθ̄x´
, λ´q “ cos=T itspιθ̄, θpλ´qq and there-

fore

slopepb`, λ`q ď ´ cos=T itspιθ̄, θpλ´qq ă 0.

6.2 Almost root types

We let ρ̄ P σmod be a root type. For instance, we can take for ρ̄ the direction of the coroot

corresponding to the highest root α̃ of the root system R. However, for instance, in the case of

irreducible root systems which are not simply-laced, we have two choices of root types in σmod.

The important property of the root type ρ̄ is that the closed ball Bpρ̄, π
2
q in the model spherical

apartment amod of W is a subcomplex. In particular, its boundary sphere Spρ̄, π
2
q contains no

regular points. The idea is to replace ρ̄ with a nearby regular type θ̄ so that the metric sphere

Spθ̄, π
2
q contains only nearly singular points.
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Definition 6.7. Let Θ Ă intpσmodq be a compact convex subset. We say that θ̄ P σmod is a

pρ̄,Θq-almost root type if

=pθ̄, ρ̄q ă dpΘ, Bσmodq. (6.8)

Let from now on θ̄ P intpσmodq denote a pρ̄,Θq-almost root type.

Lemma 6.9. Let ξ, λ P B8X be ideal points with types θpξq “ θ̄ and θpλq P Θ. Then

=T itspξ, λq ‰
π

2
.

Proof. Suppose that =T itspξ, λq “ π
2
. Let ρ P B8X be a point of type ρ̄ in a common chamber

with ξ. Then =pξ, ρq “ =pθ̄, ρ̄q and π
2

´ =pθ̄, ρ̄q ď =T itspρ, λq ď π
2

` =pθ̄, ρ̄q. Hence there exists

a point η P B8X with =pρ, ηq “ π
2
at distance =pη, λq ď =pθ̄, ρ̄q. It follows that η is regular, a

contradiction.

The asymptotic slopes of mixed Busemann functions of almost root type, as they occur as

functions representing Finsler boundary points at infinity, vanish only at nearly singular visual

boundary points:

Lemma 6.10. For the mixed Busemann functions bθ̄τ,p it holds that

slopepbθ̄τ,p, ¨q ‰ 0

on θ´1pΘq.

Proof. As a consequence of (2.3) and (2.2) (or (3.13)), for every visual boundary point ξ P B8X

exists a chamber σpξq such that

slopepbθ̄τ,p, ξq “ ´ cos=T itspθσpξq, ξq.

The assertion therefore follows from the previous lemma.

Notation 6.11. For the rest of this chapter, we let θ̄ be an almost root type.

6.3 Limit sets of uniformly regular subgroups

For each subgroup Γ ă G, the limit set ΛpΓq Ă B8X of Γ is the accumulation set in B8X of

one (equivalently, any) orbit Γ ¨ x Ă X . A subgroup Γ ă G is uniformly regular (see [KLP1]) if

it is discrete and ΛpΓq consists only of regular points:

ΛpΓq Ă Breg
8 X.

The chamber limit set ΛchpΓq consists of those chambers in BT itsX which have nonempty in-

tersection with the limit set of Γ. In other words, ΛchpΓq is the image of ΛpΓq under the

canonical projection Breg
8 X Ñ BF :uX . It is clear that ΛpΓq and, hence, ΛchpΓq are compact and

Γ-invariant. The set θpΛpΓqq of types of limit points is a compact subset of intpσmodq.

For a compact convex ι-invariant subset Θ Ă intpσmodq, a subgroup Γ ă G is Θ-regular if

θpΛpΓqq Ă Θ.
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6.4 Dynamical relation on almost root type Finsler compactifica-

tions

In what follows, we will assume that the discrete subgroup Γ ă G is Θ-regular and that

θ̄ P intpσmodq is a pρ̄,Θq-almost root type.

We apply our general observation about dynamical relations with respect to divergent se-

quences of isometries, see section 6.1, to the Γ-action:

Proposition 6.12 (Dynamical relation). If rb˘s P Bθ̄
8X are Finsler boundary points such

that

rb´s
Γ
„ rb`s

with respect to the Γ-action on X
θ̄
, then there exist limit chambers σ˘ P ΛchpΓq such that at

least one of the inequalities

slopepb´, ¨q|σ´Xθ´1pΘq ă 0 and slopepb`, ¨q|σ`Xθ´1pΘq ą 0

holds.

Proof. By assumption, there exists a sequence γn Ñ 8 in Γ such that rb´s is dynamically

related to rb`s with respect to the action of pγnq on X
θ̄
. After passing to a subsequence, we

have convergence

γ˘1

n x Ñ λ˘ P Breg
8 X

because Γ is uniformly regular. Our assumption implies that now θpλ˘q P Θ.

Let σ˘ P ΛchpΓq denote the limit chambers containing the limit points λ˘. Corollary 6.3

yields that at least one of the inequalities slopepb´, λ´q ď 0 and slopepb`, λ`q ď 0 holds.

Suppose that the former holds: slopepb´, λ´q ď 0.

According to Lemma 6.10, slopepb´, ¨q ‰ 0 on θ´1pΘq Ą ΛpΓq. Hence, the strict inequality

slopepb´, λ´q ă 0 holds, and moreover, since the convex set Θ is connected, that

slopepb´, ¨q ă 0

on σ´ X θ´1pΘq.

Remark 6.13. The condition slopepb, ¨q|σXθ´1pΘq ď 0 is equivalent to

σ X θ´1pΘq Ă B8Hbb

in B8X .

As before, we also obtain:

Addendum 6.14. If x´ P X is dynamically related to rb`s P Bθ̄
8X with respect to the Γ-action

on X
θ̄
, then slopepb`, ¨q|σ`Xθ´1pΘq ă 0.

Remark 6.15. The strict inequalities in Proposition 6.12 and Addendum 6.14 are equivalent

to the non-strict inequalities, compare Lemma 6.10.
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6.5 Proper discontinuity

We define the thickening of a chamber σ P BF :uX in Bθ̄
8X by

Thθ̄pσq :“ trbs P Bθ̄
8X| slopepb, ¨q|σXθ´1pΘq ď 0looooooooooooomooooooooooooon

ô σXθ´1pΘqĂB8Hbb

u (6.16)

and, correspondingly, the thickening of the chamber limit set

Λθ̄pΓq “ Thθ̄pΛchpΓqq :“
ď

σPΛchpΓq

Thθ̄pσq. (6.17)

It is clearly Γ-invariant.

This construction of thickenings is analogous to the root thickenings defined in [KLP1], with

the difference that now the thickening of the chamber limit set is defined via almost root types

and takes place in the Finsler boundary instead of the visual boundary.

We will need:

Lemma 6.18. Let pfnq be a sequence of uniformly Lipschitz continuous convex functions on

X which converge uniformly on compacta, fn Ñ f , and let ξn Ñ ξ be a convergent sequence in

B8X such that

slopepfn, ξnq ď 0.

for all n. Then

slopepf, ξq ď 0.

Proof. Fix a base point o P X . The condition slopepfn, ξnq ď 0 is equivalent to the property

that fn ď fnpoq along the ray oξn. Since the rays oξn Hausdorff converge to the ray oξ, it

follows that f ď fpoq along oξ, i.e. slopepf, ξq ď 0.

Corollary 6.19. Λθ̄pΓq is compact.

Proof. This follows from the lemma and the compactness of ΛpΓq.

We now define a Γ-invariant open subset in Bθ̄
8X :

ΩThθ̄
pΓq :“ Bθ̄

8X ´ Thθ̄pΛchpΓqq Ă Bθ̄
8X (6.20)

Note that it is saturated, i.e. a union of small strata.

We obtain

Theorem 6.21 (Domain of proper discontinuity). Let Γ ă G be a Θ-regular discrete

subgroup and suppose that θ̄ P intpσmodq is a pρ̄,Θq-almost root type. Then the action

Γ ñ X Y ΩThθ̄
pΓq

is properly discontinuous.
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Proof. According to Proposition 6.12 and Addendum 6.14, there are no dynamical relations

between points outside Thθ̄pΛchpΓqq. Therefore, the action is properly discontinuous, see [F]

and [KL1].

Corollary 6.22. The quotient `
X Y ΩThθ̄

pΓq
˘

{Γ

is a bordification as an orbifold with corners of the orbifold X{Γ.

Proof. The space X Y ΩThθ̄
pΓq is an orbifold with corners according to Theorem 5.2, and the

corner structure is preserved by Γ. Therefore, the quotient inherits the structure of an orbifold

with corners.

7 Cocompactness: regular case

7.1 Finsler Dirichlet fundamental domains

In order to prove cocompactness of the Γ-action on the bordified symmetric space X YΩThθ̄
pΓq

we use a rather classical idea: Constructing a compact Dirichlet fundamental domain for the

action. The main novelty lies in the use of a Finsler distance and Finsler Busemann functions

for the construction. Our proof parallels the one in [KLP1, §8.1.3], where we were proving

cocompactness in domains of proper discontinuity in root type flag manifolds by constructing

Dirichlet fundamental domains in those flag manifolds.

Pick a point o P X not fixed by any nontrivial element of Γ. We define the θ̄-Dirichlet

domains

D :“ Dθ̄
o :“ tx | dθ̄po, xq “ min dθ̄p¨, xq|Γou Ă X

for the Γ-action on X . Clearly,

Γ ¨D “ X.

For each sequence xn Ñ 8 in D which converges at infinity, xn Ñ rbs P Bθ̄
8X , we obtain:

bpγoq ´ bpoq “ lim
nÑ`8

pdxn
pγoq ´ dxn

poqq ě 0.

Hence, bξpγoq ě bξpoq and thus:

Bθ̄
8D Ď trbs | bpoq “ min b|Γou Ă Bθ̄

8X. (7.1)

Notation 7.2. As before, throughout this section we let θ̄ be an almost root type.

7.2 Ideal boundaries of Dirichlet domains

Suppose now that D is the Dirichlet domain of Γ defined in the previous section.

In [KLP1] and [KLP2] we defined and analyzed the notion of conical limit chambers of

regular subgroups of G: This notion is a higher rank generalization of the one of conical limit
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point for discrete subgroups of rank 1 Lie groups. We let Λcon
ch pΓq denote the set of conical

limit chambers in ΛchpΓq. We will now prove that in the case when all limit chambers of Γ are

conical, the Finsler ideal boundary of the Dirichlet domain D is disjoint from the thickened

limit set; this is analogous to [KLP1, §8.1.3], where similar result was established in the context

of the visual ideal boundary.

Lemma 7.3. Bθ̄
8D X Thθ̄pσq “ H for all conical limit chambers σ P Λcon

ch pΓq.

Proof. Suppose that rbs P Thθ̄pσq Ă Bθ̄
8X . Then

slopepb, ¨q ă 0

on σ X θ´1pΘq.

Since the limit chamber σ is conical, there exists a sequence γn Ñ 8 in Γ such that the

sequence γno Ñ 8 in X converges to some λ P σ X ΛpΓq Ă σ X θ´1pΘq conically with respect

to the Weyl chamber V po, σq, i.e.

dpγno, V po, σqq ď const.

Let xn P V po, σq denote the nearest point projection of γno to V po, σq. Then xn lies on a

Riemannian geodesic ray oηn with ηn P σ Ă B8X , and

ηn Ñ λ.

Since slopepb, ¨q is a continuous function on B8X , we have that

slopepb, ηnq ď s ă 0

for large n. It follows that

lim
nÑ`8

bpxnq “ ´8,

and, since dpγno, xnq ď const, also

lim
nÑ`8

bpγnoq “ ´8.

Thus,

inf b|Γo “ ´8,

which implies that rbs R Bθ̄
8D, cf. (7.1).

Corollary 7.4. If ΛchpΓq is conical, i.e., ΛchpΓq “ Λcon
ch pΓq, then

D
θ̄

Ă X Y ΩThθ̄
pΓq.
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7.3 Cocompactness

We now use compactified Dirichlet domains D “ Dθ̄
o in order to prove cocompactness of discrete

group actions on bordified symmetric spaces: The domains Ω below are Γ-invariant open subsets

of the Finsler boundary Bθ̄
8X .

Lemma 7.5. Suppose that X Y Ω Ă X
θ̄
is a domain of proper discontinuity for the Γ-action

and that Bθ̄
8D

θ̄
o Ă Ω for some base point o P X. Then D

θ̄

o has nonempty intersection with each

orbit of the action Γ ñ X Y Ω. In particular, the action Γ ñ X Y Ω is cocompact.

Proof. Let rbs P Ω, and let xn Ñ 8 be a sequence in X such that xn Ñ rbs.

Suppose that the sequence hits infinitely many Dirichlet domains γD “ Dθ̄
γo, i.e., xn P Dθ̄

γno

with γn Ñ 8 in Γ. Then

C :“ D
θ̄

o Y txn : n P Nu Y trbsu Ă X Y Ω

is compact and it holds that

γnC X C ‰ H

for all n, contradicting the proper discontinuity of the action Γ ñ X Y Ω.

It follows that the sequence pxnq is contained in a finite union of Dirichlet domains. After

passing to a subsequence, we may assume that it is contained in a single one, xn P Dθ̄
γo for some

γ P Γ and all n. Then rbs P Bθ̄
8D

θ̄
γo, i.e.

rbs P Γ ¨ Bθ̄
8D

θ̄
o.

This shows that also every Γ-orbit in Ω hits D
θ̄

o.

We now apply this lemma to the domain X Y ΩThθ̄
pΓq.

Theorem 7.6 (Cocompactness). Let Γ ă G be a Θ-regular discrete subgroup and suppose

that θ̄ P intpσmodq is a pρ̄,Θq-almost root type. Suppose in addition that ΛchpΓq Ă BF :uX is

conical. Then the properly discontinuous action

Γ ñ X Y ΩThθ̄
pΓq Ă X

θ̄
(7.7)

is cocompact.

Proof. That the action is properly discontinuous, we know from Theorem 6.21. According to

Corollary 7.4, the compactified Dirichlet domains avoid the thickening of the chamber limit set,

D
θ̄

o Ă X Y ΩThθ̄
pΓq.

Lemma 7.5 then yields the assertion.
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Corollary 7.8. If Γ ă G is an RCA subgroup and θ̄ P intpσmodq is an almost root type (as in

the previous theorem), then the action

Γ ñ X Y ΩThθ̄
pΓq

is properly discontinuous and cocompact. The quotient

`
X Y ΩThθ̄

pΓq
˘

{Γ

has a structure as a real-analytic orbifold with corners induced from that one of X
θ̄
, and

`
ΩThθ̄

pΓq
˘

{Γ

is the boundary of this orbifold.

Proof. It is proven in [KLP1] as well as in [KLP2] that each RCA subgroup Γ ă G is uniformly

regular. The RCA property includes the conicality assumption, i.e., that each limit chamber

of Γ is conical. Now, the statement follows from Theorem 7.6. Note that the real-analytic

structure on the quotient comes from the G-equivariant homeomorphism between X
θ̄
and the

maximal Satake compactification of X : The latter is a real-analytic manifold with corners. The

last the statement of the corollary is a special case of Corollary 6.22.

8 Interlude

In order to extend our main results on proper discontinuity and cocompactness for discrete

group actions from the regular to the weakly regular case, we need some additional background

material, primarily concerning the asymptotic geometry of symmetric spaces.
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8.1 Weak regularity

8.1.1 Basic definitions

We recall the concept of τmod-regularity from [KLP2, §2.4.2 and §5.1]:

The open star

ostpτmodq Ă σmod

is the union of all open faces of σmod whose closure contains τmod. Its complement

B stpτmodq :“ σmod ´ ostpτmodq

is the union of all (closed) faces of σmod which do not contain τmod.

An ideal point ξ P B8X is τmod-regular if θpξq P ostpτmodq, and τmod-singular if θpξq P

B stpτmodq.

For a simplex τ Ă B8X , the open star

ostpτq Ă stpτq

is the union of all open simplices in stpτq whose closure contains τ , equivalently, the subset of

τmod-regular points in stpτq. Furthermore,

B stpτq :“ stpτq ´ ostpτq

is the union of all (closed) simplices in stpτq which do not contain τ , equivalently, the subset

of τmod-singular points in stpτq.

A sequence pδnq in ∆ is τmod-regular if

dpδn, V p0, B stpτmodqqq Ñ `8.

A sequence pxnq in X is τmod-regular if for some, equivalently, any base point o P X the sequence

of ∆-distances d∆po, xnq is τmod-regular.

Remark 8.1. A sequence pxnq is τmod-regular if and only if every subsequence has a τmod-

regular subsequence. (Simply, because a sequence of positive numbers is unbounded if and only

if every subsequence has an unbounded subsequence.)

We call a sequence pgnq in G τmod-regular if some (any) orbit pgnxq in X has this property.

We call a sequence pδnq in ∆ uniformly τmod-regular, if it diverges from V p0, B stpτmodqq at a

linear rate, i.e.

lim inf
nÑ`8

dpδn, V p0, B stpτmodqqq{}δn} ą 0,

equivalently if it accumulates ∆ at a compact subset of ostpτmodq.

A sequence pxnq in X is uniformly τmod-regular if for some (any) base point o P X the

sequence of ∆-distances d∆po, xnq is uniformly τmod-regular, equivalently, if pxnq accumulates at

a compact subset of θ´1postpτmodqq. Lastly, we call a sequence pgnq in G uniformly τmod-regular

if some (any) orbit pgnxq in X has this property.

A subgroup Γ ă G is (uniformly) τmod-regular if every sequence of distinct elements in Γ

has this property.
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8.1.2 Relation of weakly regular convergence and stratification at infinity

We consider sequences δn Ñ 8 in ∆ and their accumulation sets at infinity.

Lemma 8.2. A sequence δn Ñ 8 in ∆ accumulates in ∆
θ̄
at a compact subset of S∆

τmod
if and

only if it is contained in a tubular neighborhood of V p0, τmodq and dpδn, V p0, Bτmodqq Ñ `8.

Proof. If pδnq has the property that it is contained in a tubular neighborhood of V p0, τmodq and

dpδn, V p0, Bτmodqq Ñ `8, then Lemma 3.19 implies that it accumulates at a compact subset

of S∆
τmod

. If pδnq does not have this property, then, after passing to a subsequence, it has this

property for a different face type τ 1
mod ‰ τmod, and it follows that pδnq has accumulation points

in the different stratum S∆

τ 1
mod

.

Lemma 8.3. A sequence δn Ñ 8 in ∆ accumulates at S
∆

τmod
if and only if it is τmod-regular,

i.e. dpδn, V p0, B stpτmodqqq Ñ `8.

Proof. Suppose that the sequence pδnq is not τmod-regular. Then a subsequence is contained in

a tubular neighborhood of V p0, B stpτmodqq. Hence there exists a smallest face νmod Č τmod with

the property that a subsequence pδnk
q is contained in a tubular neighborhood of V p0, νmodq. By

the previous lemma, pδnk
q accumulates at a compact subset of S∆

νmod
Ć S

∆

τmod
.

Vice versa, suppose that pδnq is τmod-regular and has an accumulation point in S∆
νmod

. By

the previous lemma, a subsequence of pδnq is contained in a tubular neighborhood of V p0, νmodq.

If νmod Ğ τmod, then νmod Ă B stpτmodq and we run into a contradiction with τmod-regularity.

Therefore νmod Ě τmod and consequently S∆
νmod

Ă S
∆

τmod
.

We now state corresponding facts for sequences xn Ñ 8 in X .

Fix a base point o P X and a face type τmod. There exist simplices τn Ă B8X of type τmod

such that xn P V po, stpτnqq.

Lemma 8.4. The sequence pxnq accumulates at Xτ if and only if it is τmod-regular and τn Ñ τ .

Proof. The sequence pxnq accumulates at Xτ if and only if τn Ñ τ and the sequence of ∆-

lengths d∆po, xnq accumulates in ∆
θ̄
at S

∆

τmod
. By the previous lemma, the second condition is

equivalent to the τmod-regularity of the sequence pxnq.

Corollary 8.5. The sequence pxnq accumulates at Sτmod
if and only if it is τmod-regular.

Proof. Suppose that pxnq accumulates at Sτmod
. In view of Remark 8.1, we may assume that

pxnq accumulates at a small stratum closure Xτ with a simplex τ of type τmod. The previous

lemma shows that pxnq is τmod-regular.

Conversely, suppose that pxnq is τmod-regular and converges at infinity. After passing to

a subsequence, we may assume that xn P V po, stpτnqq with a convergent sequence τn Ñ τ of

simplices of type τmod. Again by the previous lemma, it follows that the limit point belongs to

Xτ Ă Sτmod
.
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8.2 Relative position at infinity and folding order

We recall some concepts from [KLP1] and refer to the discussion there for more details.

Let σ0, σ Ă B8X be chambers. We view them also as points σ0, σ P BF :uX . There exists

an (in general non-unique) apartment a Ă B8X containing these chambers, σ0, σ Ă a, and a

unique apartment chart α : amod Ñ a such that σ0 “ αpσmodq. We define the position of σ

relative to σ0 as the chamber

pospσ, σ0q :“ α´1pσq Ă amod.

Abusing notation, it can be regarded algebraically as the unique element

pospσ, σ0q P W

such that

σ “ α
`
pospσ, σ0qσmod

˘
,

cf. [KLP1, Def 4.8]. It does not depend on the choice of the apartment a. To see this, choose

regular points ξ0 P intpσ0q and ξ P intpσq which are not antipodal, =T itspξ, ξ0q ă π. Then the

segment ξ0ξ is contained in a by convexity, and its image α´1pξ0ξq in amod is independent of

the chart α because its initial portion α´1pξ0ξ X σ0q in σmod is.

The level sets of posp¨, σ0q in BF :uX are the Schubert cells relative σ0, i.e. the orbits of the

Borel subgroup Bσ0
Ă G fixing σ0.

More generally, we define the position relative σ0 of an arbitrary simplex τ Ă B8X as

follows. Let again a Ă B8X be an apartment containing σ0 and τ , and let α : amod Ñ a be a

chart such that σ0 “ αpσmodq. We define the position of τ relative to σ0 as the simplex

pospτ, σ0q :“ α´1pτq Ă amod.

It can be interpreted algebraically as a coset in W {Wτmod
where τmod “ θpτq.

Even more generally, we define the position of a simplex ν Ă B8X relative to a simplex

τ0 Ă B8X of type τmod. Let a Ă B8X be an apartment containing τ0 and ν, and let α : amod Ñ a

be a chart such that τ0 “ αpτmodq. We define the position of ν relative to τ0 as the Wτmod
-orbit

of the simplex α´1pνq Ă amod. It can be interpreted algebraically as a double coset

pospν, τ0q P Wτmod
zW {Wνmod

where νmod “ θpνq. In particular, for chambers σ we have that

pospσ, τ0q P Wτmod
zW.

The Bruhat order “ă” on the Weyl group W has the following geometric interpretation as

folding order, cf. [KLP1, §4.2]. For distinct elements w1, w2 P W , it holds that

w1 ă w2
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if and only if there exists a folding map amod Ñ amod fixing σmod and mapping w2σmod ÞÑ w1σmod,

cf. [KLP1, Def 4.3]. Here, by a folding map amod Ñ amod we mean a type preserving continuous

map which sends chambers isometrically onto chambers.

The folding order on relative positions coincides with the inclusion order on Schubert cycles,

i.e. w1 ĺ w2 if and only if the Schubert cell tposp¨, σ0q “ w1u is contained in the closure of

the Schubert cell tposp¨, σ0q “ w2u, and the Schubert cycles relative σ0 are the sublevel sets of

posp¨, σ0q, cf. [KLP1, Prop 4.9].

More generally, we have a folding order on the simplices of type τmod in amod: For distinct

simplices τ̄1, τ̄2 Ă amod, it holds that

τ̄1 ă τ̄2

iff there exists a folding map amod Ñ amod fixing σmod and mapping τ̄2 ÞÑ τ̄1, cf. [KLP1,

§4.3]. Again, the folding order coincides with the inclusion order on Schubert cycles. Note that

the Schubert cycles in Flagτmod
pXq are projective subvarieties; in particular, they admit finite

triangulations.

We also need to define the folding order on positions of chambers relative to simplices τ0 of

an arbitrary face type τmod. We say that

Wτmod
σ̄1 ĺτmod

Wτmod
σ̄2

for chambers σ̄1, σ̄2 Ă amod iff there exist σ̄1
i P Wτmod

σ̄i such that

σ̄1
1

ĺ σ̄1
2
,

equivalently, geometrically, if for some (any) chambers σ̄1
i P Wτmod

σ̄i there exists a folding map

amod Ñ amod fixing τmod and mapping σ̄1
2 to σ̄1

1. (Note that the elements in Wmod are such

folding maps.)

Lemma 8.6. ăτmod
is a partial order.

Proof. Transitivity holds, because the composition of folding maps is again a folding map.

To verify reflexivity, pick points ξmod P intpτmodq and ηmod P intpσmodq.

Let σ̄ “ wσmod Ă amod be a chamber and f : amod Ñ amod a folding map fixing τmod. We

denote η̄ “ wηmod. If the f -image of the segment ξmodη̄ is again an unbroken geodesic segment,

then the two geodesic segments are congruent by an element of Wτmod
, because their initial

directions at ξmod are. On the other hand, if the f -image of ξmodη̄ is a broken geodesic segment,

then the distance of its endpoints is strictly smaller than its length, and consequently fσ̄ ń σ̄.

This shows that

Wτmod
σ̄1 ĺτmod

Wτmod
σ̄2 ĺτmod

Wτmod
σ̄1 ñ Wτmod

σ̄1 “ Wτmod
σ̄2

and hence reflexivity.

We will use the following notation.
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For a simplex τ Ă B8X of type θpτq “ τ̂mod :“ ιτmod, we denote by

Cτmod
pτq :“ tτ̂ : τ̂ opposite to τ

(
Ă Flagτmod

pXq

the open Schubert cell associated with τ in Flagτmod
pXq, and by

CF :upτq :“
ď 

stpτ̂ q : τ̂ opposite to τ
(

Ă BF :uX

the set of chambers which have a face opposite to τ , equivalently, the set of chambers which

are opposite to a chamber in stpτq. It equals the union of open Schubert cells CF :upσq over all

chambers σ Ă stpτq. Here, and later, we will abuse notation and regard stars as sets of chambers.

Note that CF :upτq is the preimage of Cτmod
pτq under the natural fibration BF :uX Ñ Flagτmod

pXq.

The following result will be useful to compare relative positions.

Lemma 8.7. (i) Let σ0, σ1, σ2 Ă B8X be chambers, and suppose that there exists a segment

ξ0ξ2 with ξ0 P intpσ0q and ξ2 P intpσ2q containing a point ξ1 P intpσ1q. Then

pospσ1, σ0q ĺ pospσ2, σ0q

with equality iff σ1 “ σ2.

(ii) More generally, let σ1, σ2 Ă B8X be chambers and let τ0 Ă B8X be a simplex of type

τmod. Suppose that there exists a segment ξ0ξ2 with ξ0 P intpτ0q and ξ2 P intpσ2q containing a

point ξ1 P intpσ1q. Then

pospσ1, τ0q ĺτmod
pospσ2, τ0q

with equality iff σ1 “ σ2.

Proof. We prove the more general assertion (ii). After perturbing ξ2, we can arrange that the

subsegment ξ1ξ2 avoids codimension two faces. Along this subsegment we find a gallery of

chambers connecting σ1 to σ2. We may therefore proceed by induction and assume that the

chambers σ1 and σ2 are adjacent, i.e. share a panel π which is intersected transversally by

ξ1ξ2. Working in an apartment containing τ0, σ1, σ2, the wall through π does not contain τ0 and

separates stpτ0q Y σ1 from σ2. Folding at this wall yields the desired inequality.

8.3 Further properties of the folding order

This is a technical section whose results are used in the proof of Proposition 9.3 which is the

key to proving proper discontinuity of actions of τmod-regular subgroups.

We work with the spherical building structure on the visual boundary B8X . We fix a

reference chamber σ0 Ă B8X .

Let τ Ă B8X be a simplex. For any interior points η P intpτq and ξ0 P intpσ0q, the segment

ηξ0 enters the interior of a chamber σ´ Ą τ , i.e.

ηξ0 X intpσ´q ‰ H.
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Note that the chamber σ´ does not depend on the interior points η, ξ0. Moreover, it is contained

in any apartment containing σ0 and τ . We call σ´ the chamber in stpτq pointing towards σ0.

Similarly, if ξ0ξ` Ľ ξ0η is an extension of the segment ξ0η beyond η, then there exists a

chamber σ` Ą τ such that ηξ` X intpσ`q ‰ H, and we call σ` a chamber in stpτq pointing away

from σ0.

Let a Ă B8X be an apartment containing σ0 and τ .

Then σ´ Ă a. Moreover, since geodesic segments inside a extend uniquely, there exists

a unique chamber σ` Ă stpτq X a pointing away from σ0. The chambers σ˘ Ă a can be

characterized as follows in terms of separation from σ0 by walls:

Lemma 8.8. Let σ Ă stpτq X a be a chamber. Then

(i) σ “ σ` iff σ is separated from σ0 by every wall s Ă a containing τ .

(ii) σ “ σ´ iff σ is not separated from σ0 by any wall s Ă a containing τ .

Proof. (i) Clearly, σ` is separated from σ0 by every wall s Ą τ because, using the above

notation, ξ0ξ` X s “ η. Vice versa, if σ is separated from σ0 by all such walls s, then σ and σ`

lie in the same hemispheres bounded by the walls s Ą τ in a, and therefore must coincide.

(ii) Similarly, σ´ is not separated from σ0 by any wall s Ą τ because ξ0η X s “ η, and

vice versa, if σ is not separated from σ0 by any wall s Ą τ , then σ and σ´ lie in the same

hemispheres bounded by the walls s Ą τ in a, and therefore must coincide.

Remark 8.9. The assertion of the lemma remains valid if one only admits the walls s Ă a

such that s X σ is a panel containing τ .

The chambers pointing towards and away from σ0 in B8X can also be characterized in terms

of the folding order:

Lemma 8.10. The restriction of the function pospσ0, ¨q to the set of chambers contained in

stpτq attains a unique global minimum in σ´ and global maxima precisely in the chambers

pointing away from σ0.

Proof. Let σ Ą τ be a chamber and let a Ă B8X be an apartment containing σ0 and σ. Then

σ´ Ă a. Let σ` Ă stpτq X a be the unique chamber pointing away from σ0.

Still using the above notation, let ξ0ξ` Ą ξ0η be an extension of the segment ξ0η with

endpoint ξ` P intpσ`q. Let ξ´ P ξ0ηX intpσ´q. The points ξ´ and η appear in this order on the

(oriented) segment ξ0ξ`.

We now perturb the segment ξ0ξ` to a segment ξ0ξ
1
` which intersects intpσq in a point η1

close to η and intpσ´q in a point ξ1
´ close to ξ´. The perturbation is possible because σ Ą τ .

Again, the points ξ1
´ and η1 appear in this order on the perturbed segment ξ0ξ

1
`. Lemma 8.7

implies that

pospσ´, σ0q ĺ pospσ, σ0q ĺ pospσ`, σ0q
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with equality in the first (second) inequality if and only if σ “ σ´ (σ “ σ`). The assertion of

the lemma follows because pospσ`, σ0q does not depend on the choice of a.

Let now σ Ă B8X be an arbitrary chamber.

We say that a face τ Ă σ faces towards σ0 if there exist points ξ0 P intpσ0q and ξ P intpσq

such that ξ0ξX intpτq ‰ H. Equivalently, σ is a chamber in stpτq pointing away from σ0. Again

equivalently, with an apartment a Ą σ0 Y σ, all walls s Ă a through τ separate σ from σ0,

see Lemma 8.8. The last characterization remains valid, if one only admits the walls which

intersect σ in a panel, cf. Remark 8.9.

The last characterization implies that σ has a unique smallest face

frontσ0
pσq Ď σ

facing towards σ0, namely the intersection of all panels facing towards σ0. Note that frontσ0
pσq “

σ iff σ “ σ0, and frontσ0
pσq “ H iff σ is antipodal to σ0.

Similarly, we say that τ Ă σ faces away from σ0 if there exist points ξ0 P intpσ0q and

η P intpτq such that ξ0η X intpσq ‰ H. Equivalently, σ is the unique chamber in stpτq pointing

towards σ0, equivalently, no wall s Ă a through τ separates σ from σ0. Again, σ has a unique

smallest face

backσ0
pσq Ď σ

facing away from σ0, namely the intersection of all panels facing away from σ0. Moreover,

backσ0
pσq “ H iff σ “ σ0, and backσ0

pσq “ σ iff σ is antipodal to σ0.

The front and back faces of σ are complementary, i.e. each vertex of σ belongs to exactly

one of them.

Let σ Ă B8X be a chamber and let τ Ă σ be a face.

Lemma 8.11. The restriction of the function pospσ0, ¨q to the set of chambers contained in

stpτq attains a maximum in σ iff frontσ0
pσq Ď τ .

Proof. By definition, frontσ0
pσq Ď τ iff τ faces towards σ0 iff σ is a chamber in stpτq pointing

away from σ0. By Lemma 8.10, the latter holds iff the restriction of pospσ0, ¨q to the set of

chambers contained in stpτq is maximal in σ.

8.4 Thickenings

A thickening (of the neutral element) in W is a subset

Th Ă W

which is a union of sublevels for the folding order, i.e. which contains with every element w

also every element w1 satisfying w1 ă w, cf. [KLP1, Def 4.16]. In the theory of posets, such

subsets are called ideals.
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Note that

Thc :“ w0pW ´ Thq

is again a thickening. Here, w0 P W denotes the longest element of the Weyl group, that is, the

element of order two mapping σmod to the opposite chamber in amod. It holds that

W “ Th\w0Th
c

and we call Thc the thickening complementary to Th.

The thickening Th Ă W is called fat if ThYw0Th “ W , equivalently, Th Ě Thc. It is called

slim if ThXw0Th “ H, equivalently, Th Ď Thc. It is called balanced if it is both fat and slim,

equivalently, Th “ Thc, cf. [KLP1, Def 4.17].

For types ϑ̃0, ϑ̃ P σmod and a radius r P r0, πs we define the metric thickening

Thϑ̃0,ϑ̃,r
:“ tw P W : dpwϑ̃, ϑ̃0q ď ru,

using the natural W -invariant spherical metric d on amod, cf. [KLP1, §4.4].

For a face type τmod Ď σmod, we denote by Wτmod
its stabilizer in W . Furthermore, ι “

´w0 : σmod Ñ σmod denotes the canonical involution of the model spherical Weyl chamber.

Lemma 8.12. (i) If ϑ̃0 P τmod, then Wτmod
Thϑ̃0,ϑ̃,r

“ Thϑ̃0,ϑ̃,r
.

(ii) If ιϑ̃0 “ ϑ̃0, then Thϑ̃0,ϑ̃,r
is fat for r ě π

2
and slim for r ă π

2
.

Proof. (i) For w1 P Wτmod
, we have that w1ϑ̃0 “ ϑ̃0 and hence

dpw1wϑ̃, ϑ̃0q “ dpwϑ̃, w1´1
ϑ̃0loomoon

ϑ̃0

q.

(ii) Since w0ϑ̃0 “ ´ιϑ̃0 “ ´ϑ̃0, we have

dpw0wϑ̃,´ϑ̃0q “ dpwϑ̃,´w0ϑ̃0loomoon
ϑ̃0

q,

whence the assertion.

Corollary 8.13 (Existence of balanced thickenings). If the face type τmod is ι-invariant,

ιτmod “ τmod, then there exists a Wτmod
-invariant balanced thickening Th Ă W .

Proof. Since ιτmod “ τmod, there exists ϑ̃0 P τmod such that ιϑ̃0 “ ϑ̃0. Moreover, there exists

ϑ̃ P σmod such that dp¨ϑ̃, ϑ̃0q ‰ π
2
onW . (This holds for an open dense subset of types ϑ̃ P σmod.)

According to the lemma, the metric thickening Thϑ̃0,ϑ̃,
π
2

is balanced and Wτmod
-invariant.

Given a thickening Th Ă W , we obtain thickenings at infinity as follows.

First, we define the thickening in BF :uX of a chamber σ P BF :uX as

ThF :upσq :“ tposp¨, σq P Thu Ă BF :uX.

60



It is a finite union of Schubert cycles relative σ. We then define the thickening of σ inside the

Finsler ideal boundary as the “suspension” of its thickening inside the Fürstenberg boundary,

Thθ̄pσq :“ trbθ̄ν,ps : stpνq Ă ThF :upσqu “
ď 

Sν : stpνq Ă ThF :upσq
(

Ă Bθ̄
8X

where we view stpνq as a subset of BF :uX , namely as the set of chambers containing ν as a face.

Note that ThF :upσq “ Thθ̄pσq X BF :uX .

Lemma 8.14. Thθ̄pσq is compact.

Proof. Consider a sequence of points rbθ̄νn,pns P Thθ̄pσq, and suppose that it converges in Bθ̄
8X ,

rbθ̄νn,pns Ñ rbθ̄µ,qs.

We must show that also rbθ̄µ,qs P Thθ̄pσq.

After passing to a subsequence, we may assume that all simplices νn have the same type

θpνnq “ νmod. According to Lemma 3.30, νn Ñ ν Ď µ. By assumption, stpνnq Ă ThF :upσq, and

we must show that stpµq Ă ThF :upσq. Since stpνq Ě stpµq, this follows from stpνq Ă ThF :upσq.

The latter follows from the closedness of ThF :upσq in BF :uX , because every chamber σ1 Ă stpνq

is a limit of a sequence of chambers σ1
n Ă stpνnq.

Remark 8.15. One can show that Thθ̄pσq Ă Bθ̄
8X is a contractible CW-complex. In the second

version of this preprint, we proved that it is Čech acyclic, see [KL2, Thm 8.21 in §8.5].

Example 8.16. Suppose that the Weyl group W of X is of type A2, i.e. is isomorphic to the

permutation group on 3 letters. Let s1, s2 P W denote the generators which are the reflections

in the walls of the positive chamber σmod. There is the unique balanced thickening Th “

te, s1, s2u Ă W . The thickening Thθ̄pσq Ă Bθ̄
8X is the wedge of two closed disks connected at

the point σ: These disks are the visual compactifications Xτi , i “ 1, 2, of two rank 1 symmetric

spaces Xτi . Here τ1, τ2 are the two vertices of the edge σ.

More generally, we define the thickening in Bθ̄
8X of a set of chambers A Ă BF :uX as

Thθ̄pAq :“
ď

σPA

Thθ̄pσq Ă Bθ̄
8X.

Lemma 8.17. If A is compact, then Thθ̄pAq is compact.

Proof. Since BF :uX is a homogeneous space also for the maximal compact subgroup K, there

exists a chamber σ0 P A and a compact subset C Ă K such that A “ Cσ0. Then

Thθ̄pAq “ C ¨ Thθ̄pσ0q

and is hence compact as a consequence of the previous lemma.

If the thickening Th Ă W is Wτmod
-invariant, then we can define the thickening in Bθ̄

8X of

a simplex τ Ă B8X of type τmod as

Thθ̄pτq :“ Thθ̄pσq Ă Bθ̄
8X
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for a chamber σ Ě τ . It does not depend on σ. For a set A Ă Flagτmod
pXq of simplices of type

τmod, we define its thickening in Bθ̄
8X as

Thθ̄pAq :“
ď

τPA

Thθ̄pτq Ă Bθ̄
8X.

Again, Thθ̄pAq is compact if A is.

Lemma 8.18 (Fibration of thickenings). Let A Ă Flagτmod
pXq be compact, and suppose

that the thickenings Thθ̄pτq of the simplices τ P A are pairwise disjoint. Then the natural map

Thθ̄pAq
π

ÝÑ A

is a fiber bundle.

Proof. Regarding continuity of π, suppose that ξn Ñ ξ in Thθ̄pAq and τn Ñ τ in A with

ξn P Thθ̄pτnq. Then ξ P Thθ̄pτq by semicontinuity of relative position, and hence πpξq “ τ .

In order to show that π is a fibration, we need to construct local trivializations. Fix τ P A

and an opposite simplex τ̂ . Let U denote the unipotent radical of the stabilizer of τ̂ in G.

Then U acts simply transitively on an open neighborhood of τ in Flagτmod
pXq. Now, let S Ă U

denote the closed subset consisting of all u P U which send τ to elements of A. Then S ¨ τ is a

neighborhood of τ in A. Restricting the action of U to the subset S, we obtain a topological

embedding

S ˆ Thθ̄pτq Ñ Thθ̄pAq

and a local trivialization of π over a neighborhood of τ in A.

9 Proper discontinuity: general case

9.1 Accumulation of individual orbits for divergent sequences of

isometries

Let τ˘ Ă B8X be a pair of opposite simplices, θpτ`q “ τmod, and let H “ Hpτ´, τ`q ă G be the

subgroup of isometries preserving the parallel set P “ P pτ´, τ`q, compare (2.1). We study now

the dynamics of divergent sequences of isometries in H on the Finsler compactification X
θ̄
.

We begin by relating the dynamics on the symmetric space to the dynamics at infinity on

the flag manifolds. We let o P X denote a base point. In the sequel, we study the asymptotic

dynamics of sequences of isometries hn Ñ 8 in H .

Lemma 9.1. The following are equivalent:

(i) For any point x P X, the orbit phnxq is contained in a tubular neighborhood of the Weyl

cone V po, stpτ`qq and dphnx, V po, B stpτ`qqq Ñ `8.

(i’) The phnq-orbits in X accumulate in X
θ̄
at Xτ`

.
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(ii) All phnq-orbits in CF :upτ´q Ă BF :uX accumulate at stpτ`q.

(ii’) All phnq-orbits in Cτmod
pτ´q Ă Flagτmod

pXq converge to τ`.

Proof. Note that if property (i) or (i’) is satisfied for some point x P X then also for every other

point, cf. Lemma 3.27.

Suppose that (i) holds. Then hno P V po, stpτ`qq for large n, and Lemma 8.4 with τn “ τ`

implies (i’).

Vice versa, suppose that (i’) holds. Let τn Ă B8P pτ´, τ`q be simplices of type τmod such

that hno P V po, stpτnqq. Lemma 8.4 yields that the sequence phnoq is τmod-regular and τn Ñ τ`.

Since τ` is an isolated point of tτ P Flagτmod
pXq : τ Ă B8P pτ´, τ`qu, it follows that τn “ τ` for

large n, and thus property (i) is satisfied.

To see that conditions (ii) and (ii’) are equivalent, consider the natural fibration

BF :uX ÝÑ Flagτmod
pXq

whose fibers stpτq for τ P Flagτmod
pXq are compact. The equivalence follows because CF :upτ´q

is the preimage of Cτmod
pτ´q.

Our next goal is to show that (ii’) implies (i).

We first observe that the pointwise convergence hn Ñ τ` on the Schubert cell C “ Cτmod
pτ´q

implies locally uniform convergence. Indeed, the unipotent radical U “ Uτ´
of the parabolic

subgroup Pτ´
acts simply transitively on C. It is normalized by H , and the action H ñ C

corresponds to the action H ñ U by conjugation. We realize G as a matrix group. Then U

becomes a subset of a space of matrices. We note that the action

M
g

ÞÑ gMg´1

of G by conjugation on the space of matrices is linear. Therefore, the pointwise convergence

hn Ñ const of the sequence of transformations hn on U implies locally uniform convergence

(on the linear span of the subset U).

We now prove that (ii’) implies (i). We deduce this implication from results in our earlier

paper [KLP2]. The locally uniform convergence hn Ñ τ` on C implies that the sequence phnq

acting on Flagτmod
pXq is contracting in the sense of [KLP2, Def. 5.9]. Therefore, according to

[KLP2, Thm. 5.23], the sequence phnq is τmod-regular.

Let τn Ă B8P pτ´, τ`q be simplices of type τmod such that hno P V po, stpτnqq. Then pτnq is a

shadow sequence for phnoq in the sense of [KLP2, Def. 5.13]. By [KLP2, Lem. 5.16], τn Ñ τ`.

Since τ` is an isolated point of tτ P Flagτmod
pXq : τ Ă B8P pτ´, τ`qu, it follows that τn “ τ` for

large n, and thus property (i) is satisfied.

It remains to prove that (i)ñ(ii’). Condition (i) implies that h´1
n o P V po, stpτ´qq and

dph´1
n o, V po, B stpτ´qqq Ñ `8. Therefore, for a simplex τ̂´ opposite to τ´, it follows that

dpo, P pτ´, hnτ̂´qq “ dph´1

n o, P pτ´, τ̂´qq Ñ 0

as n Ñ `8. This implies that hnτ̂´ Ñ τ`.
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Remark 9.2. Property (ii’) is equivalent to the condition that dph´1
n o, P pτ´, τ̂´qq Ñ 0 for all

τ̂´ P C. This observation can be used to give a more geometric proof for (ii’)ñ(i).

The next result describes the accumulation of individual phnq-orbits in X
θ̄
.

Let H ‰ Th Ĺ W be a Wτmod
-invariant thickening. Then the thickenings pThcqθ̄pτ´q and

Thθ̄pτ`q are H-invariant disjoint compact subsets of X
θ̄
.

Proposition 9.3. Suppose that all phnq-orbits in CF :upτ´q Ă BF :uX accumulate at stpτ`q. Then,

for any Wτmod
-invariant thickening H ‰ Th Ĺ W , all phnq-orbits in the (Pτ´

-invariant) subset

X
θ̄

´ pThcqθ̄pτ´q Ă X
θ̄
accumulate at Thθ̄pτ`q.

Proof. According to the implication (ii)ñ(i’) in Lemma 9.1, the orbits in X accumulate at

Sτ`
Ď Thθ̄pτ`q. The latter inclusion holds, because Th ‰ H and hence stpτ`q Ď ThF :upτ`q.

The issue is therefore to prove the assertion for the orbits at infinity. We first verify it for

the orbits in the (Pτ´
-invariant) subset

Thθ̄pCτmod
pτ´qq “

ď 
Thθ̄pτ̂´q : τ̂´ opposite to τ´

(
Ă Bθ̄

8X.

Due to the implication (ii)ñ(ii’) in Lemma 9.1, our assumption implies that

hnτ̂´ Ñ τ` (9.4)

for every simplex τ̂´ opposite to τ´. This in turn implies the (Hausdorff) convergence of

compact subsets

hnTh
θ̄pτ̂´q “ Thθ̄phnτ̂´q Ñ Thθ̄pτ`q.

Indeed, we may write hnτ̂´ “ gnτ` with a sequence gn Ñ e in G, and then see that hnTh
θ̄pτ̂´q “

gnTh
θ̄pτ`q Ñ Thθ̄pτ`q. It follows that the phnq-orbits in Thθ̄pCτmod

pτ´qq accumulate at Thθ̄pτ`q.

We are left with the orbits in the “annulus”

Ann :“ Bθ̄
8X ´

`
pThcqθ̄pτ´q Y Thθ̄pCτmod

pτ´qq
˘
.

Here, a finer argument is needed.

Note that Ann is a union of small strata. Let ν Ă B8X be a simplex such that Xν Ă Ann.

We must show that the orbits phnrbθ̄ν,xsq in Bθ̄
8X accumulate at Thθ̄pτ`q for all x P X . We

will deduce this from the dynamics of the orbits of points in the boundary BXν of the small

stratum, more precisely, in BXν X BF :uX .

We need to carefully analyze the position of ν relative to τ´.

There exists a maximal flat F 1 Ă X such that the apartment a1 “ B8F
1 Ă B8X contains

τ´ and ν. Let τ̂´ Ă a1 denote the simplex opposite to τ´. Furthermore, choose interior points

ξ´ P intpτ´q and η P intpνq, and let ξ̂´ P intpτ̂´q be the antipode of ξ´. (Note that ν ‰ τ´, τ̂´.)

Then the geodesic segment ξ´η extends inside a1 to the segment ξ´ηξ̂´ of length π. Let µ˘ Ą ν

be the simplices such that ηξ´ X intpµ´q ‰ H and ηξ̂´ X intpµ`q ‰ H.
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The last property implies that Wµ´
ď Wτ´

, where e.g. Wτ´
ă Isompa1q denotes the group

generated by reflections at the walls containing τ´, because the walls containing µ´ also contain

τ´. Thus, the chambers in stpµ´q are contained in an orbit of Wτ´
“ Wτ̂´

, and in particular

they have the same position relative τ´ and τ̂´. Similarly, the chambers in stpµ`q have the

same relative position.

Lemma 9.5. The chambers in stpµ´q have strictly smaller position relative τ´ than the other

chambers in stpνq. Similarly, the chambers in stpµ`q have strictly smaller position relative τ̂´

than the other chambers in stpνq.

Proof. Let σ Ă stpνq be a chamber. We perturb η P intpνq generically to a point η1 P intpσq.

Then the perturbed segment ξ´η
1 intersects ostpµ´q and contains a point ζ´ P intpσ´q for a

chamber σ´ Ă stpµ´q. By Lemma 8.7, pospσ, τ´q ľτmod
pospσ´, τ´q with equality iff σ Ă stpµ´q.

The same argument applies to the chambers in stpµ`q.

We continue with the proof of the proposition.

Since Xν Ă Ann, it holds that

Xν Ć pThcqθ̄pτ´q and Xν Ć Thθ̄pτ̂´q.

This is equivalent to the conditions

stpνq Ć Thc
F :upτ´q and stpνq Ć ThF :upτ̂´q. (9.6)

Since the function posp¨, τ´q has the same range on stpνq and stpνq X BF :uF
1, (9.6) is in turn

equivalent to the conditions stpνq X BF :uF
1 Ć Thc

F :upτ´q and stpνq X BF :uF
1 Ć ThF :upτ̂´q. The

latter are, in view of the disjoint decomposition

BF :uF
1 “ pBF :uF

1 X Thc
F :upτ´qq \ pBF :uF

1 X ThF :upτ̂´qq,

in turn equivalent to the conditions

stpνq X Thc
F :upτ´q ‰ H and stpνq X ThF :upτ̂´q ‰ H.

In view of the lemma, these conditions imply that stpµ´q Ă Thc
F :upτ´q and stpµ`q Ă ThF :upτ̂´q,

equivalently, that

Xµ´
Ă pThcqθ̄pτ´q and Xµ`

Ă Thθ̄pτ̂´q. (9.7)

The second condition is most important.

Now we return to dynamics and apply the sequence phnq. Recall that our goal is to show

that the phnq-orbits of points in Xν accumulate only at Thθ̄pτ`q. Therefore we are free to pass

to subsequences.

Since hnτ̂´ Ñ τ`, compare (9.4), we have that hnξ̂´ Ñ ξ` with the antipode ξ` P intpτ`q

of ξ´. After passing to a subsequence, we also have convergence hnν Ñ ν8 and hnµ˘ Ñ µ˘
8.

Then also hnη Ñ η8 P intpν8q and the sequence of geodesics hn ¨ξ´ηξ̂´ of length π converges to
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an a priori broken geodesic path γ8 of the same length π connecting the points ξ˘ and passing

through η8. Since ξ˘ are antipodal, the path γ8 is also a geodesic segment.

It follows that posp¨, τ´q takes the same values on stpµ˘q and stpµ˘
8q and, accordingly, the

range of posp¨, τ̂´q on stpµ˘q is the same as the range of posp¨, τ`q on stpµ˘
8q. Thus, (9.7) implies

Xµ`
8

Ă Thθ̄pτ`q.

It therefore suffices to show that the orbits phnrbθ̄ν,xsq accumulate at Xµ`
8
.

As mentioned before, we will deduce this from the dynamics of the orbits of the points in

BXν X BF :uX . The control on their dynamics comes from the following observation.

Let µ̂´ Ą ν be an arbitrary simplex which is ν-opposite to µ´ inside stpνq in the sense that

the geodesic segment ξ´η can be extended beyond η into the interior of µ̂´. It then extends

further to a segment ξ´ηξ̂
1
´ of length π, with endpoint ξ̂1

´ P intpτ̂ 1
´q and τ̂ 1

´ a simplex opposite

to τ´. Since also hnτ̂
1
´ Ñ τ` by (9.4), it follows that also

hnµ̂´ Ñ µ`
8 (9.8)

We now identify the strata Xhnν with the limit stratum Xν8
and translate the assertion on the

dynamics of phnq into an assertion on the dynamics of a related divergent sequence of isometries

preserving Xν8
. This is done as follows.

In view of the convergence hnµ˘ Ñ µ˘
8, there exists a sequence gn Ñ e in G so that

hnµ˘ “ gnµ
˘
8 and, consequently, hnν “ gnν8. Moreover, let g P G so that µ˘ “ gµ˘

8 and

ν “ gν8. The isometries h1
n :“ g´1

n hng Ñ 8 in G then fix µ˘
8 and ν8, and in particular

preserve the stratum Xν8
. Since phnq-orbits accumulate at the same compact subsets as the

corresponding pg´1
n hnq-orbits, we are reduced to showing that the ph1

nq-orbits inXν8
accumulate

at Xµ`
8

Ă BXν8
.

Property (9.8) translates into

h1
nµ̂

´
8 Ñ µ`

8 (9.9)

for all simplices µ̂´
8 Ą ν8 which are ν8-opposite to µ´

8 inside stpν8q.

Recall that, as all small strata of Bθ̄
8X , the stratum Xν8

carries a natural structure as

a symmetric space of noncompact type, being canonically identified with the space of strong

asymptote classes of Weyl sectors V p¨, ν8q. Moreover, there is a natural identification of spher-

ical buildings

BT itsXν8
– Σν8

BT itsX.

The simplices µ˘
8 correspond to a pair of opposite simplices µ̄˘ :“ Σν8

µ˘
8 Ă B8Xν8

.

Condition (9.9) means that all ph1
nq-orbits in CF :upµ̄´q Ă BF :uXν8

accumulate at stpµ̄`q. The

simplices µ̄˘ are fixed by the h1
n, and invoking implication (ii)ñ(i) of Lemma 9.1, it follows

that every ph1
nq-orbit prbθ̄ν8,h1

nx
sq in Xν8

remains in a tubular neighborhood of the Weyl cone

V pō, stpµ̄`qq and

d̄prbθ̄ν8,h1
nx

s, V pō, B stpµ̄`qqq Ñ `8. (9.10)

Here, ō P Xν8
denotes a base point, say ō “ rbθ̄ν8,os for a base point o P X , and we measure

distances in Xν8
using a Pν8

-invariant Riemannian or Finsler metric d̄.
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The relation between euclidean Weyl chambers and Weyl cones in X and Xν8
is as follows.

A simplex τ Ľ ν8 corresponds to the simplex τ̄ :“ Σν8
τ Ă B8Xν8

, the star stpτq to the star

stpτ̄q, and the open star ostpτq to the open star ostpτ̄ q. The euclidean Weyl sector V pō, τ̄q Ă Xν8

consists of the points rbθ̄ν8,xs with x P V po, τq Ă X . The faces of the sector V pō, τ̄ q correspond

to the faces of the sector V po, τq which properly contain the face V po, ν8q. The Weyl cone

V pō, stpτ̄qq consists of the points rbθ̄ν8,xs with x P V po, stpτqq.

The last condition on the ph1
nq-orbit prbθ̄ν8,h1

nx
sq in Xν8

, see formula (9.10) and the sen-

tence before, therefore means that we can replace the orbit points h1
nx by points xn in a

tubular neighborhood of the Weyl cone V po, stpµ`
8qq Ă X such that rbθ̄ν8,h1

nx
s “ rbθ̄ν8,xn

s and

dpxn, V po, B stpµ`
8qqq Ñ `8. Then the sequence pxnq accumulates at Xµ`

8
, cf. Lemma 8.4. The

same applies to every sequence pynq of points yn P V pxn, ν8q. It follows by approximation that

the ph1
nq-orbit prbθ̄ν8,xn

sq in Xν8
accumulates at Xµ`

8
. This finishes the proof.

Invoking the implication (i’)ñ(ii) of Lemma 9.1, we conclude:

Corollary 9.11. If the phnq-orbits in X accumulate in X
θ̄
at Xτ`

, then for anyWτmod
-invariant

thickening H ‰ Th Ĺ W , all phnq-orbits in X
θ̄

´ pThcqθ̄pτ´q accumulate at Thθ̄pτ`q.

9.2 Locally uniform accumulation of orbits

We continue the discussion of the previous section. Our next goal is to show that the ac-

cumulation of phnq-orbits as in Corollary 9.11 is locally uniform. Here we need to assume

uniform τmod-regularity for the sequence of isometries phnq. This can be expressed by replac-

ing the assumption that the phnq-orbits in X accumulate in the Finsler compactification X
θ̄

at the stratum closure Xτ`
with the stronger assumption that they accumulate in the visual

compactification X at a compact subset of the open star ostpτ`q.

Proposition 9.12. If the phnq-orbits in X accumulate in X at a compact subset of ostpτ`q,

and if H ‰ Th Ĺ W is a Wτmod
-invariant thickening, then for every compact subset C Ă

X
θ̄

´ pThcqθ̄pτ´q, the sequence of subsets hnC accumulates at Thθ̄pτ`q.

Proof. We argue by contradiction. Suppose that the assertion fails for some compact subset C.

Recall that the thickenings pThcqθ̄pτ´q and Thθ̄pτ`q are disjoint compact subsets. Hence, after

passing to a suitable subsequence, there exists an open neighborhood U` of Thθ̄pτ`q such that

Ū` X pThcqθ̄pτ´q “ H and

hnC Ć U` @ n. (9.13)

Moreover, due to the uniform τmod-regularity of the sequence phnq, we may assume that for a

base point o P P and a compact τmod-Weyl convex subset Θ Ă ostpτmodq, it holds that

hno P V po, stΘpτ`qq @ n,

cf. [KLP2, Defs. 2.15 and 2.16 in §2.4.2]. The last condition is equivalent to o P V phno, stιΘpτ´qq

and, since hnτ˘ “ τ˘, to h
´1
n o P V po, stιΘpτ´qq. Thus, the ph´1

n q-orbits in X accumulate in X

at a compact subset of ostpτ´q.

67



By passing to a subsequence again, we can arrange that

h´1

n`1
o P V ph´1

n o, stιΘpτ´qq @ n, (9.14)

compare [KLP2, Prop. 2.18 and Cor. 2.19]. After (reindexing and) filling in the sequence phnq

in H , we may assume that in addition to (9.14) it holds that the coarse path

n ÞÑ h´1

n o

in P is a quasigeodesic ray, compare [KLP2, Lemma 7.12]. Instead of (9.13), we then only have

that

hnk
C Ć U` @ k

for a subsequence of indices nk Ñ `8. Since C is compact, we may assume after passing to a

subsequence of pnkq that there exists a convergent sequence of points x̄k Ñ x̄ in X
θ̄
´pThcqθ̄pτ´q

such that

hnk
x̄k Ñ x̄1 R U`.

According to Corollary 9.11, the orbit phnx̄q accumulates at Thθ̄pτ`q. We may therefore assume,

after shrinking U` and replacing the sequence x̄k Ñ x̄ by its hm-image for sufficiently large m,

that the entire orbit phnx̄q is contained in U`, and that x̄1 R Ū`.

Then hnk
x̄k R Ū` for large k, and we replace nk by the minimal index (“exit time”) such

that hnk
x̄k R U`. In view of the continuity of the action, the orbits phnx̄kqnPN converge to the

orbit phnx̄q as k Ñ `8. It follows that still nk Ñ `8 and, after passing to a subsequence,

that hnk
x̄k Ñ x̄1 R U` with a different limit point x̄1.

By shifting the orbits phnx̄kqnPN and taking a limit, we now find a backward orbit inside Ū`

for a modified divergent sequence of isometries in H as follows. For every m ě 1, the points

hnk´mx̄k P U` are defined for large k. By a diagonal argument, after passing to a subsequence

of pnkq, we may assume simultaneous convergence

hnk´mx̄k Ñ x̄1
´m P Ū`

as k Ñ `8 for all m. Since the coarse paths

n ÞÑ hnk
h´1

n`nk
o

defined for n ě ´nk are uniform coarse quasigeodesic rays passing through o at time n “ 0, we

may assume in addition that, as k Ñ `8, they subconverge to a coarse quasiline

n ÞÑ h1
n

´1
o

defined on Z, and that we have simultaneous convergence

hn`nk
h´1

nk
Ñ h1

n

in H as k Ñ `8 for all n P Z. Using the continuity of the H-action on X
θ̄
, we obtain

hnk´mx̄klooomooon
Ñx̄1

´m

“ hnk´mh
´1

nk
¨ hnk

x̄k Ñ h1
´mx̄

1
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and hence

x̄1
´m “ h1

´mx̄
1

for all m ě 1. Moreover,

h1
´m Ñ 8

in H as m Ñ `8 because m ÞÑ h1
m

´1
o is a quasiline.

By (9.14), we have that h´1
n o P V ph´1

n´mo, stιΘpτ´qq, equivalently, hn´mh
´1
n o P V po, stιΘpτ´qq,

and thus, by taking a limit,

h1
´mo P V po, stιΘpτ´qq.

In particular, the ph1
´mqmPN-orbits in X accumulate in X at stιΘpτ´q Ă ostpτ´q, and conse-

quently in X
θ̄
at Xτ´

.

We now apply Corollary 9.11 to the sequence ph1
´mq in H by reversing the roles of the

simplices τ˘ and their thickenings: Since x̄1 R Thθ̄pτ`q, the orbit ph1
´mx̄

1q must accumulate in

X
θ̄
at pThcqθ̄pτ´q. On the other hand, by construction, the orbit is contained in the closed

neighborhood Ū`, which is disjoint from pThcqθ̄pτ´q, a contradition.

The proposition has the following implication for dynamical relations:

Corollary 9.15 (Dynamical relations with respect to sequences in H). If x̄˘ P X
θ̄
are

points such that x̄´ is dynamically related to x̄` with respect to the sequence phnq,

x̄´
phnq
„ x̄`,

then x̄´ P pThcqθ̄pτ´q or x̄` P Thθ̄pτ`q.

9.3 Dynamical relation

We extend the last corollary to arbitrary uniformly τmod-regular sequences pgnq in G.

Uniform τmod-regularity means that the pgnq-orbits in X accumulate in X at a compact

subset of the τmod-regular part θ
´1postpτmodqq Ă B8X of the visual boundary. After passing to

a subsequence of pgnq, we may suppose that there exists a pair of (in general not antipodal)

simplices τ˘ Ă B8X of types θpτ`q “ τmod and θpτ´q “ ιτmod such that the pg˘1
n q-orbits in X

accumulate at compact subsets C˘ of the open stars ostpτ˘q,

g˘1

n x Ñ C˘ Ă ostpτ˘q

for x P X .

Generalizing our earlier result Corollary 6.3 in the regular case, we obtain:

Corollary 9.16 (Dynamical relation with respect to τmod-regular sequences of isome-

tries). Let H ‰ Th Ĺ W be a Wτmod
-invariant thickening. If x̄˘ P X

θ̄
are points such that x̄´

is dynamically related to x̄` with respect to a uniformly τmod-regular sequence pgnq in G,

x̄´
pgnq
„ x̄`,

then x̄´ P pThcqθ̄pτ´q or x̄` P Thθ̄pτ`q.
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Proof. We deduce this version of the result using the KA`K-decomposition of G.

Let τ 1
˘ Ă B8X be a pair of antipodal simplices of the same types θpτ 1

˘q “ θpτ˘q, and let

o P P pτ 1
´, τ

1
`q be a base point and K ă G the maximal compact subgroup fixing it. We may

write

gn “ knhnk
1
n

with isometries kn, k
1
n P K and hn Ñ 8 in Hpτ 1

´, τ
1
`q such that, in view of the uniform τmod-

regularity of pgnq, also phnq is uniformly τmod-regular and the ph˘1
n q-orbits in X accumulate at

compact subsets C 1
˘ Ă ostpτ 1

˘q,

h˘1

n x Ñ C 1
˘ Ă ostpτ 1

˘q.

After passing to a subsequence, we may assume convergence kn Ñ k8 and k1
n Ñ k1

8. Then

τ` “ k8τ
1
` and τ´ “ k1´1

8 τ 1
´, and our assumption on dynamical relation translates into

k1
8x̄´

phnq
„ k´1

8 x̄`.

Corollary 9.15 therefore yields that k1
8x̄´ P pThcqθ̄pτ 1

´q or k´1
8 x̄` P Thθ̄pτ 1

`q, equivalently, that

x̄´ P pThcqθ̄pk1´1

8 τ 1
´q “ pThcqθ̄pτ´q or x̄` P Thθ̄pk8τ

1
`q “ Thθ̄pτ`q, as claimed.

9.4 Proper discontinuity

We deduce a version of the last result for discrete group actions. Generalizing our earlier result

for regular subgroups, see Proposition 6.12, we obtain:

Corollary 9.17 (Dynamical relation with respect to uniformly τmod-regular sub-

groups). Let τmod be a ι-invariant face type, and let Th Ă W be a Wτmod
-invariant balanced

thickening. Suppose that Γ ă G is a uniformly τmod-regular discrete subgroup. If two points

x̄˘ P X
θ̄
are dynamically related with respect to the Γ-action,

x̄´
Γ
„ x̄`,

then at least one of them is contained in Thθ̄pΛτmod
pΓqq.

Proof. By assumption, there exists a sequence γn Ñ 8 in Γ such that

x̄´
pγnq
„ x̄`.

According to the definition of the τmod-limit set, after passing to a subsequence, there exist

limit simplices λ˘ P Λτmod
pΓq such that

γ˘1

n x Ñ C˘ Ă ostpλ˘q

in X for suitable compact subsets C˘ Ă ostpλ˘q and all points x P X . Since the thickening Th

is balanced, Thc “ Th, Corollary 9.16 yields at least one of the containments x̄˘ P Thθ̄pλ˘q.

We can now extend Theorem 6.21 to the weakly regular case. The last result translates

into:
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Theorem 9.18 (Domain of proper discontinuity). Suppose that Γ ă G is a uniformly

τmod-regular discrete subgroup and that Th Ă W is a Wτmod
-invariant balanced thickening. Then

the action

Γ ñ X
θ̄

´ Thθ̄pΛτmod
pΓqq

is properly discontinuous.

Proof. According to the last corollary, there are no dynamical relations between points outside

Thθ̄pΛτmod
pΓqq. Therefore, the action is properly discontinuous, see [F] and [KL1].

9.5 Nonemptyness of domains of proper discontinuity at infinity

Let Γ and Th be as in Theorem 9.18, and suppose in addition that Γ is τmod-antipodal, i.e. any

two limit simplices in Λτmod
pΓq are antipodal.

Lemma 9.19. If rankpXq ě 2, then Thθ̄pΛτmod
pΓqq ‰ Bθ̄

8X.

Proof. The set of chambers in the model apartment amod decomposes as

ThF :upσmodq \ ThF :upw0σmodq.

We regard both thickenings as subcomplexes of amod. Their union covers amod and they have

disjoint interiors. Since rankpXq ě 2, amod is connected and the two subcomplexes have a

common face ν̄. Then stpν̄q X ThF :upσmodq ‰ H and stpν̄q X ThF :upw0σmodq ‰ H.

Fix a limit simplex τ P Λτmod
pΓq. Let a Ą τ be an apartment, let τ̂ Ă a be the simplex

opposite to τ , and let f : B8X Ñ a be a folding map which restricts to an isometry on every

apartment a1 Ą τ . Then for every simplex τ̂ 1 Ă B8X opposite to τ it holds that fpThF :upτ̂ 1qq Ă

ThF :upτ̂ q. Let ν Ă B8X be a simplex with pospν, τq “ ν̄. It follows that stpνq Ć ThF :upλq for

every limit simplex λ P Λτmod
pΓq. Consequently, Xν Ć Thθ̄pΛτmod

pΓqq.

Remark 9.20. Note that the nonemptyness of domains of proper discontinuity is much harder

to prove for the Γ-actions on flag manifolds and requires additional assumptions. For the case

of actions on the Fürstenberg boundary, see [KLP1, Thm. 8.39 in §8.3].

10 Cocompactness: general case

Suppose that Γ ă G is a τmod-RCA subgroup and that Th Ă W is a Wτmod
-invariant balanced

thickening. In this section, we will use the following notation:

Σ̂ :“ X
θ̄
, Λ̂ :“ Thθ̄pΛτmod

pΓqq, Ω̂ :“ Σ̂ ´ Λ̂

By Theorem 9.18, the action

Γ ñ Ω̂

is properly discontinuous. The main goal of this section is to show that this action is also

cocompact.
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10.1 Decompositions and collapses

A decomposition R of a set Z is an equivalence relation on Z. We let D “ DR denote the

subset of the power set 2Z consisting of the equivalence classes of R.

A decomposition of a Hausdorff topological space Z is closed if the elements of D are closed

subsets of Z; a decomposition is compact if its elements are compact subsets. Given a decom-

position R of Z, one defines the quotient space Z{R. Quotient spaces of closed decompositions

are T1 but in general not Hausdorff.

Definition 10.1. A decomposition of Z is upper semicontinuous (usc) if it is closed and for

each D P D and each open subset U Ă Z containing D, there exists another open subset V Ă Z

containing D such that every D1 P D intersecting V nontrivially is already contained in U .

Lemma 10.2 ([D, Proposition 1, page 8]). The following are equivalent for a closed de-

composition R of Z:

(i) R is usc.

(ii) For every open subset U Ă Z, the saturated subset

U˚ “
ď

tD P D : D Ă Uu

is open.

(iii) The quotient projection

Z
κ

ÝÑ Z{R

is closed.

Proof. (i)ñ(ii): Let x P U , and let D P D be the decomposition subset through x. The usc

property implies that U˚ contains a neighborhood of x.

(ii)ñ(i): Take V “ U˚.

(ii)ñ(iii): Let C Ă Z be closed, and let U be the complement. Then U˚ “ κ´1κpZ ´ Cq,

and it follows that κpCq is closed.

(iii)ñ(ii): Let U Ă Z be open. Then U˚ “ κ´1pZ{R ´ κpZ ´ Uqq is open.

Let Z 1 Ă Z be the union of all elements of D which are not singletons, and denote by R1

the equivalence relation on Z 1 induced by R.

Lemma 10.3. Suppose that Z 1 is closed. Then R is usc iff R1 is usc.

Proof. Suppose that R1 is usc. Let D P D. If D is a singleton, then Z ´Z 1 is a saturated open

neighborhood of D. On the other hand, if D Ă Z 1 then D has a saturated open neighborhood

V 1 in Z 1. It is an intersection V 1 “ V X Z 1 with an open subset V Ă Z which is necessarily

again saturated. This verifies that R is usc.

Vice versa, suppose that R is usc. Then the intersection of a saturated open subset in Z

with Z 1 is open and saturated in Z 1. Hence R1 is usc.
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We will use the following result:

Proposition 10.4 ([D, Proposition 2, page 13]). If Z is metrizable and R is a compact

usc decomposition of Z, then Z{R is again metrizable.

We now apply the notion of usc decompositions in the context of the Finsler thickening of

Λτmod
pΓq Ă Flagτmod

pXq. Since Γ is τmod-antipodal and the thickening Th is slim, we obtain a

compact decomposition R of Σ̂, whose elements are singletons, namely the points in Ω̂, and the

thickenings Thθ̄pτq of the simplices τ P Λτmod
pΓq. (One can show that the latter are contractible,

cf. Remark 8.15.) We let

κ : Σ̂ Ñ Σ

denote the quotient projection, and

Λ :“ κpΛ̂q – Λτmod
pΓq, Ω :“ κpΩ̂q – Ω̂.

Lemma 10.5. The decomposition R of Σ̂ is compact usc.

Proof. The restriction Λ̂ Ñ Λ of κ is a map of compact Hausdorff spaces and hence closed.

Thus the restriction of the decomposition R to Λ̂ is usc, cf. Lemma 10.2. Hence, by Lemma

10.3, the decomposition R is usc as well. It is also compact.

Corollary 10.6. Σ “ Σ̂{R is metrizable.

This corollary is relevant to us in order to do computations with Čech cohomology.

Remark 10.7. We showed in [KL2, Lemma 10.7] that Σ is Čech acyclic.

10.2 Convergence actions

Since the τmod-RCA property of Γ is equivalent to τmod-asymptotic embeddedness, we have that

Λτmod
pΓq – B8Γ equivariantly, see [KLP2]. We continue using the notation from the previous

section. The action of Γ on Σ̂ descends to a continuous action

Γ ñ Σ. (10.8)

The results of section 9.2 imply that this action is a convergence action.1 (We will not use

this fact and hence will omit the proof.) We note that Σ “ Ω \ Λ, where Ω is the domain of

discontinuity of Γ ñ Σ and Λ is the limit set of the action.

There is the following natural question from the general theory of convergence groups, due

to P. Häıssinsky [H]2:

1Cf. [PS] for a similar constructions of convergence actions starting with isometric actions on CAT(0) spaces.
2An equivalent question was asked by P. Tukia in [T2, p. 77], we owe the observation of equivalence of the

questions to V. Gerasimov.

73



Question 10.9. Let Γ ñ Σ be a convergence group action of a hyperbolic group on a metriz-

able compact space Σ, and suppose that Λ Ă Σ is an invariant compact subset which is equiv-

ariantly homeomorphic to B8Γ. Then the action Γ ñ Ω “ Σ ´ Λ is properly discontinuous. Is

it always cocompact?

Remark 10.10. This is true for actions which are expanding at the limit set Λ, cf. [KLP1].

In our situation of actions derived from τmod-RCA actions on symmetric spaces, we have

the following additional information of which we will make crucial use:

Whenever Γ ñ rR is a properly discontinuous cocompact isometric action on a locally

compact geodesic metric space, there exists a continuous Γ-equivariant map of triads

p rR, rR, B8
rRq

f̃
ÝÑ pΣ,Ω,Λq (10.11)

which comes from extending an orbit map Γ Ñ Γx Ă X , see [KLP3, Thm. 1.4], [KLP2, Thm.

7.35 and the discussion before] and Lemma 3.38. Here, rR denotes the Gromov compactification

of rR and B8
rR its Gromov boundary,

rR “ rR \ B8
rR.

We observe that the map of triads satisfies:

(i) f̃ | rR : rR Ñ Ω is proper.

(ii) f̃ |B8
rR : B8

rR Ñ Λ is a homeomorphism.

The first property comes from the proper discontinuity of the Γ-action on Ω.

In section 10.4 we will give a positive answer to Question 10.9 for torsion-free hyperbolic

groups under the assumption that Ω has finitely many path-connected components.

10.3 Cocompactness theorems

We consider now an action Γ ñ Σ of a hyperbolic group as in (10.8), i.e. which is derived from

a τmod-RCA action Γ ñ X on the symmetric space X . Note that the domain Ω Ă Σ is path

connected. We recall that we work with Alexander-Spanier-Čech cohomology.

Theorem 10.12. Ω{Γ is compact.

Proof. Since Γ ă G is a finitely-generated linear group, it is virtually torsion-free by Selberg’s

Lemma. Therefore, from now on we shall assume that Γ is torsion-free.

Let rR be a contractible finite-dimensional locally compact simplicial complex on which Γ

acts properly discontinuously and cocompactly, e.g. a suitable Rips complex of Γ. We set

R “ rR{Γ. Then π1pRq – Γ. Furthermore, the Gromov compactification rR of rR is contractible

and metrizable, cf. [BM].

We need to “thicken” R to a closed manifold without changing the fundamental group. To

do so, we first embed R as a subcomplex into the (suitably triangulated) euclidean space E2n`1,

where n “ dimpRq. We denote by N the regular neighborhood of R in E2n`1, and let D “ BN .
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Lemma 10.13. D is connected and π1pDq Ñ π1pNq – π1pRq is surjective.

Proof. Let N 1 :“ N ´ R. We claim that the map D ãÑ N 1 is a homotopy equivalence. The

proof is the same as the one for the homotopy equivalence R Ñ N : Each simplex c Ă N is the

join c1 ‹ c2 of a simplex c1 disjoint from R (and, hence, contained in D) and a simplex c2 Ă R

(in the extreme cases, c1 or c2 could be empty). Now, use the straight line segments given by

these join decompositions to homotop each c´ R to c1 Ă D.

Since R has codimension ě 2 in N , it does not separate N 1 and each loop in N is homotopic

to a loop in N 1. Hence, N 1 is connected and

π1pDq
–

ÝÑ π1pN 1q ÝÑ π1pNq

is surjective.

Lemma 10.14. There exists a closed connected manifold M which admits a map h : R Ñ M

inducing an isomorphism of fundamental groups π1pRq Ñ π1pMq.

Proof. We start with N (the regular neighborhood of R Ă E2n`1) as above. As noted in the

proof of the previous lemma, the inclusion R Ñ N is a homotopy equivalence, and N is a

compact manifold with boundary. Consider the closed manifold M obtained by doubling N

along its boundary D,

M “ N1 YD N2,

where N1, N2 are the two copies of N . We let i : D Ñ M, ik : Nk Ñ M denote the inclusion

maps. Since M is the double of N , we have the canonical retraction r : M Ñ N1 (whose

restriction to N2 is a homeomorphism). Define the map h “ i1 ˝ g,

h : R
g

ÝÑ N1

i1ÝÑ M,

where g corresponds to the inclusion R Ñ N and hence is a homotopy equivalence. We claim

that h induces an isomorphism h˚ of fundamental groups.

The existence of the retraction r implies the injectivity of i1˚ and hence of h˚.

By Lemma 10.13, D is connected. Hence, the Seifert–van Kampen theorem implies that

π1pMq is generated by the two subgroups ik˚pπ1pNkqq, k “ 1, 2. Since the homomorphisms

π1pDq Ñ π1pNkq

are surjective (Lemma 10.13), we obtain

i1˚pπ1pN1qq “ i˚pπ1pDqq “ i2˚pπ1pN2qq.

Hence, both homomorphisms ik˚ : π1pNkq Ñ π1pMq are surjective. The surjectivity of h˚

follows.

We let m “ 2n` 1 denote the dimension of the manifold M and its universal cover ĂM .
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We now consider the triads (10.11) and the diagonal Γ-action on their products with ĂM .

Dividing out the action, we obtain bundles over M and f̃ induces the map of triads of bundles

pp rR ˆ ĂMq{Γlooooomooooon
Ēmod

, p rR ˆ ĂMq{Γlooooomooooon
Emod

, pB8
rR ˆ ĂMq{Γlooooooomooooooon
Lmod

q
F

ÝÑ ppΣ ˆ ĂMq{Γlooooomooooon
Ē

, pΩ ˆ ĂMq{Γlooooomooooon
E

, pΛ ˆ ĂMq{Γlooooomooooon
L

q (10.15)

Note that E also fibers over Ω{Γ with fiber ĂM .

The map F of triads of bundles satisfies:

(i) F |Emod
: Emod Ñ E is proper.

(ii) F |Lmod
: Lmod Ñ L is a homeomorphism of bundles.

Lemma 10.16. Both spaces Ē, Ēmod are metrizable.

Proof. These spaces are fiber bundles with compact metrizable bases and fibers. Therefore,

Ē, Ēmod are both compact and Hausdorff. Hence, they are metrizable, for instance, by Smirnov’s

metrization theorem, because they are paracompact, Hausdorff and locally metrizable.

Our approach to proving Theorem 10.12 is based on the following observation.

In a noncompact connected manifold, the point represents the zero class in H lf
0
. Similarly,

let ι : F Ñ E
π

Ñ B be a fiber bundle over a noncompact connected manifold, where ι : F Ñ Eb

is the homeomorphism of F to the fiber Eb “ π´1pbq. If the base B is path-connected, then the

induced map

ι˚ : H lf
˚ pF q Ñ H lf

˚ pEq

on locally finite homology is independent of the choice of b. In order to show triviality of this

map provided that B is noncompact, note that for each class rηs P Z i
cpEq and each locally finite

class rξs P H lf
m pF q, if b is chosen so that Eb is disjoint from the support of η, then xrηs, rξsy “ 0.

Here and in the sequel we use (co)homology with Z2-coefficients. Hence, ι˚ “ 0.

The compactness of Ω{Γ therefore follows from showing that the fiber of the bundle

ĂMm Ñ E Ñ Ω{Γ

represents a nontrivial class in H lf
m pEq, i.e. that the locally finite fundamental class rĂMs P

H lf
m pĂMq has a non-zero image under the inclusion induced map H lf

m pĂMq Ñ H lf
m pEq.

The proper map F : Emod Ñ E induces the map F˚ : H lf
m pEmodq Ñ H lf

m pEq which carries

the class represented by the ĂM -fiber in the model Emod to the corresponding class in E. It

therefore suffices to show that

H lf
m pĂMqlooomooon
–Z2

ι˚ÝÑ H lf
m pEmodq

F˚ÝÑ H lf
m pEq (10.17)

is a composition of injective maps.

Step 1: Injectivity of F˚. We pass to compactly supported cohomology. We recall that

locally finite homology (with field coefficients) is dual to compactly supported cohomology in
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the same degree via Kronecker duality. We therefore must show that the dual map

Hm
c pEq

F˚

ÝÑ Hm
c pEmodq

is surjective.

We now switch the fiber direction and regard E and Emod as bundles over M . We use their

compactifications Ē and Ēmod mentioned earlier which allow us to replace compactly supported

cohomology by relative cohomology. Since E is compact and metrizable, while L is compact,

we have a natural isomorphism of Alexander-Spanier cohomology groups (cf. [Sp, Lemma 11,

p. 321]):

Hm
c pEq – HmpĒ, Lq

Similarly, we have a natural isomorphism

Hm
c pEmodq – HmpĒmod, Lmodq.

Thus, the surjectivity of the previous map F ˚ is equivalent to the surjectivity of the map

HmpĒ, Lq
F˚
relÝÑ Hm

c pĒmod, Lmodq

induced by the map of pairs

pĒmod, Lmodq
F

ÝÑ pĒ, Lq. (10.18)

To verify the surjectivity of F ˚
rel, we use the long exact cohomology sequence of F :

. . . Hm´1pĒq ✲ Hm´1pLq ✲ HmpĒ, Lq ✲ HmpĒq ✲ HmpLq . . .

. . .Hm´1pĒmodq
❄

✲ Hm´1pLmodq

–

❄

✲ HmpĒmod, Lmodq

F ˚
rel

❄ j
✲ HmpĒmodq

F ˚
abs

❄

✲ HmpLmodq

–

❄

. . .

A diagram chase (as in the proof of the 5-lemma) shows that the surjectivity of F ˚
rel follows

from the surjectivity of F ˚
abs. Indeed, one first checks that ker j Ă imF ˚

rel, and uses this to

verify the inclusion

j´1pimF ˚
absq Ă impF ˚

relq.

To see that F ˚
abs is surjective, we consider the map of bundles:

Ēmod

F
✲ Ē

M
✛

π Ē
π
Ē
m
od

✲

The fibration πĒmod
is a homotopy equivalence because its fibers rR are contractible. Let

s :M Ñ Ēmod
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denote a section. It follows that s ˝πĒ is a left homotopy inverse for F , i.e. s ˝πĒ ˝F » idĒmod
.

Thus, the induced map on cohomology F ˚
abs is surjective.

Step 2: Injectivity of ι˚. We consider the fiber bundle

ĂM Ñ Emod Ñ R.

The map h : R Ñ M in Lemma 10.14 yields a section of this bundle. Since the base R of the

bundle is a finite CW complex and its fiber ĂM is a connected m-manifold, Lemma 2.6 implies

that the induced map

H lf
m pĂMq

ι˚ÝÑ H lf
m pEmodq,

is injective.

This concludes the proof of Theorem 10.12.

We note that our proof required no assumptions on algebro–topological properties of Σ. We

only used that Σ is compact metrizable, that Ω is path-connected, the existence of the map of

triads (10.11) and that Γ is virtually torsion-free. Our proof, thus, shows

Theorem 10.19. Let Σ “ Ω \ Λ be a compact metrizable space, where Λ Ă Σ is closed. Let

Γ be a virtually torsion-free hyperbolic group and let R̃ be a contractible Rips complex for Γ.

Assume that Γ ñ Σ is a continuous action, such that Λ is Γ-invariant and Γ-equivariantly

homeomorphic to B8Γ and such that the action of Γ on Ω is properly discontinuous. Assume

also that Ω is path-connected and that there exists a continuous equivariant map of triads

f̃ : p rR, rR, B8
rRq Ñ pΣ,Ω,Λq.

Then Ω{Γ is compact.

This theorem provides strong evidence for a positive answer to Question 10.9 in the case of

convergence group actions with path-connected discontinuity domains, see Theorem 10.22 in

the next section.

By combining Theorems 9.18 and 10.12 with Theorem 1.1, we obtain:

Theorem 10.20. Let Γ ă G be a τmod-RCA subgroup, let Th Ă W be a Wτmod
-invariant

balanced thickening (which always exists), and let θ̄ P intpσmodq. Then the action

Γ ñ X
θ̄

´ Thθ̄pΛτmod
pΓqq

is properly discontinuous and cocompact. The quotient

pX
θ̄

´ Thθ̄pΛτmod
pΓqq{Γ

has a natural structure as a compact real-analytic orbifold with corners.

Remark 10.21. The starting point of our proof of Theorem 10.12, namely, the usage of the

bundles E and Emod, is similar to the one in [GW, Prop. 8.10 on pages 40-41]. However, we

avoid the use of Poincaré duality and do not need homological assumptions on the space Σ.

Unlike [GW], an essential ingredient in our proof is the map of triads (10.11), i.e. the existence of

a continuous extension of the equivariant proper map f̃ : rR Ñ Ω to a map of compactifications.
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10.4 Häıssinsky’s conjecture for nonelementary torsion-free conver-

gence groups

Theorem 10.22. Let Γ ñ Σ be a convergence group action of a torsion-free hyperbolic group

on a metrizable compact space Σ, and suppose that Λ Ă Σ is an invariant compact subset which

is equivariantly homeomorphic to B8Γ. Then the action Γ ñ Ω “ Σ ´ Λ is cocompact provided

that Ω has finitely many path connected components.

Proof. After passing to a finite index subgroup of Γ preserving each connected component of

Ω, it suffices to consider the case when Ω is path connected (and nonempty). If we had an

equivariant map of triads (10.11), we would be done by Theorem 10.19. Below we modify the

space Σ so that such a map of triads exists.

Pick a point x P Ω and define the orbit map

f : Γ Ñ Ω, γ ÞÑ γx.

This map is injective since Γ is torsion-free and, hence, acts freely on Ω. Let f8 : B8Γ Ñ Λ

be an (the) equivariant homeomorphism. We further let Γ “ Γ Y B8Γ denote the Gromov

compactification of Γ.

Lemma 10.23. The extension of the map f by the map f8 : B8Γ Ñ Λ,

f 1 : Γ Y B8Γ Ñ Σ,

is an equivariant homeomorphism to Γx Y Λ.

Proof. We first note that the natural action Γ ñ Γ is a convergence action.

Suppose that pγnq is a sequence in Γ converging to ξ P B8Γ; λ “ f8pξq. We claim that

lim
nÑ8

fpγnq “ λ.

Case 1: Γ is nonelementary. Without loss of generality (in view of compactness of Σ

and the convergence property of the action Γ ñ Σ), there exists λ´ P Λ such that the sequence

γn|Σ´tλ´u converges to some λ` P Λ uniformly on compacts. Since f8 is a homeomorphism,

γn converges to f´1
8 pλ`q uniformly on compacts in B8Γ ´ f´1

8 pλ´q. The assumption that Γ is

nonelementary implies that B8Γ´ f´1
8 pλ´q consists of more than one point. Therefore, in view

of the convergence property for the action Γ ñ Γ, it follows that γn converges to f´1
8 pλ`q on

Γ (here we again pass to a subsequence if necessary). Hence, ξ “ f´1
8 pλ`q, λ` “ λ and the

continuity of f 1 follows (cf. Lemma 2.4).

Case 2: Γ is elementary, i.e, Γ – Z. Then Γ is generated by a single loxodromic

homeomorphism γ : Σ Ñ Σ, i.e., Λ “ tλ`, λ´u. Tukia proved [T1, Lemma 2D] that the

sequence pγnq converges uniformly on compacts in Σ ´ tλ´u to λ`, while the sequence pγ´nq

converges uniformly on compacts in Σ´ tλ`u to λ´. This implies continuity of the map f .
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We now amalgamate the spaces rR and Σ using the homeomorphism

f 1 : Γ “ Γ Y B8Γ Ñ Γx “ ΓxY Λ,

where we identify Γ with the vertex set of the Rips complex rR. We denote by Σ1 the result

of the amalgamation. This space is metrizable, for instance, by Proposition 10.4. (This can

be also easily proven more directly, as Σ1 is Hausdorff, compact and 1st countable; hence, it is

metrizable by Urysohn’s metrization theorem.)

Since f 1 is Γ-equivariant, the topological action of Γ on rR \ Σ descends to a topological

action Γ ñ Σ1. This action is properly discontinuous on Ω1 :“ rRY Ω Ă Σ1 as for each compact

C Ă Ω1, its intersections with rR and Ω are both compact and the actions Γ ñ rR,Γ ñ Ω

are properly discontinuous. Lastly, we note that, in view of connectivity of rR, since Ω is path

connected, so is Ω1. We set Λ1 :“ Λ.

The inclusion map i : rR ãÑ Σ1 is Γ-equivariant and its (co)restriction rR Ñ Ω1 is clearly

proper. Therefore, i yields an equivariant map of triads

rf : p rR, rR, B8Γq Ñ pΣ1,Ω1,Λ1q

which is proper on rR and restricts to an equivariant homeomorphism B8Γ Ñ Λ1. Since the

embedding Ω Ñ Ω1 is proper, Ω{Γ is compact if and only if Ω1{Γ is compact.

Remark 10.24. It is not hard to check that Γ ñ Σ1 is a convergence action, however, this is

not needed for our proof.

With this modification, Theorem 10.19 implies that Ω1{Γ1 is compact, hence, Ω{Γ is compact

as well.

11 Equivalent characterizations of τmod-RCA actions

We call an open subset S Ă Bθ̄
8X saturated if it is a union of small strata Xν .

We start with the following simple observation about Finsler convergence at infinity: If

pxnq and pynq are sequenes in X which are bounded distance apart (i.e. dpxn, ynq is uniformly

bounded) and xn Ñ rbs, yn Ñ rb1s P Bθ̄
8X , then the limit points rbs and rb1s lie in the same small

stratum Xν , see Lemma 3.27. In particular, for each saturated open subset S Ă Bθ̄
8X ,

rbs P S ðñ rb1s P S

It follows that if rbs P S, then the entire accumulation set

AccppBpxn, Rqqq Ă Bθ̄
8X

is a compact subset of S.
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Lemma 11.1. Let Γ ă G be a discrete subgroup. If S Ă Bθ̄
8X is a Γ-invariant saturated open

subset such that Γ acts properly discontinuously on X\S, then each compact subset C Ă X\S

satisfies the following uniform finiteness property: There exists a function fCpRq such that for

each ball Bpx,Rq Ă X it holds that

cardptγ P Γ : γC X Bpx,Rq ‰ Huq ď fCpRq.

Proof. Suppose the contrary. Then there is a sequence of balls Bpxi, Rq intersecting C and

a sequence γi Ñ 8 in Γ such that also the balls Bpγixi, Rq intersect C. We may assume

that xi Ñ x̄ and γixi Ñ x̄1 in X
θ̄
. By the observation preceeding the lemma, it holds that

x̄, x̄1 P X Y S. Since these points are dynamically related with respect to the Γ-action, we

obtain a contradiction with proper discontinuity.

The lemma leads to the following definition.

Definition 11.2. A discrete subgroup Γ ă G is S-cocompact if there exists a Γ-invariant

saturated open subset Ω Ă Bθ̄
8X such that the action Γ ñ X \Ω is properly discontinuous and

cocompact.

Note that each S-cocompact subgroup is necessarily finitely generated because it acts prop-

erly discontinuously and cocompactly on a connected manifold with boundary.

Theorem 11.3. Each S-cocompact subgroup Γ ă G admits a Γ-equivariant coarse Lipschitz

retraction r : X Ñ Γ. In particular, Γ is undistorted in G.

Proof. Let Ω Ă Bθ̄
8X be as in the definition. Let C Ă XYΩ be a compact subset whose Γ-orbit

covers the entire X YΩ. We define the coarse retraction r first by sending each point x P X to

the subset

rpxq :“ tγ P Γ : x P γCu Ă Γ.

This subset is clearly finite because of the proper discontinuity of the Γ-action, and the assign-

ment x ÞÑ rpxq is equivariant. According to Lemma 11.1, the cardinality of the subset

tγ P Γ : γ P rpBpx, 1qqu “ tγ P Γ : Bpx, 1q X γC ‰ Hu

is bounded by fCp1q, independently of x. It follows that r is coarse Lipschitz.

We now apply the previous theorem to the cocompact domains of proper discontinuity

obtained earlier by removing Finsler thickenings of limit sets.

In the regular case, we make the following observation regarding the antipodality condition:

Corollary 11.4. Every uniformly regular conical subgroup Γ ă G is RCA. In other words,

uniform regularity and conicality imply antipodality in the regular case.

Proof. We choose θ̄ to be an almost root type as in Theorems 6.21 and 7.6 and conclude that

the subgroup Γ is S-cocompact. By Theorem 11.3, Γ is undistorted in G. Hence, Γ is an URU

subgroup of G. By [KLP3, Theorem 1.5], Γ is RCA.
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It seems unclear whether, without assuming uniformity, regularity and conicality still imply

antipodality. Note that RCA implies uniform regularity, see [KLP2].

We now proceed to the general weakly regular case. Here, we need to assume antipodality.

The next result relates conicality and S-cocompactness:

Theorem 11.5. Suppose that Γ ă G is τmod-uniformly regular and antipodal. Then Γ is τmod-

conical if and only if it is S-cocompact.

Proof. The direction τmod-RCA ñ S-cocompact is proven in Theorem 10.20. To prove the

converse, note that each S-cocompact subgroup Γ is undistorted in G by Theorem 11.3. Hence,

it is τmod-URU and therefore τmod-RCA by [KLP3, Thm. 1.5].

Remark 11.6. The proof shows that, without assuming antipodality, uniform τmod-regularity

and S-cocompactness imply τmod-RCA. One may wonder whether the antipodality condition can

be dropped altogether, as in the regular case. This would yield the implication uniformly τmod-

RCñ τmod-RCA. Furthermore, since S-cocompactness is strictly stronger than undistortedness,

one may ask whether each τmod-regular S-cocompact subgroup is τmod-uniformly regular.

We now can prove a converse to Theorem 10.20:

Corollary 11.7. Suppose that Γ ă G is a uniformly τmod-regular discrete subgroup and that

Th Ă W is a Wτmod
-invariant balanced thickening. Then the following are equivalent:

(i) The properly discontinuous action (see Theorem 9.18)

Γ ñ X
θ̄

´ Thθ̄pΛτmod
pΓqq

is cocompact.

(ii) There exists a Γ-invariant saturated open subset Ω Ă Bθ̄
8X such that the action

Γ ñ X Y Ω

is properly discontinuous and cocompact.

(iii) Γ is τmod-RCA.

Proof. (i)ñ(ii) is obvious.

(ii)ñ(iii): Γ is S-cocompact, hence τmod-URU, hence τmod-RCA.

(iii)ñ(i) is the content of Theorem 10.20.

We are now ready to state the equivalence of a variety of conditions on discrete subgroups:

Theorem 11.8. The following are equivalent for τmod-uniformly regular subgroups Γ ă G:

1. Γ is a coarse equivariant retract.

2. Γ is a coarse retract.

3. Γ is undistorted in G, i.e. τmod-URU.
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4. Γ is τmod-RCA.

5. Γ is τmod-asymptotically embedded.

6. Γ is τmod-Anosov.

7. Γ is S-cocompact.

Proof. The implications 1ñ2ñ3 are immediate. The equivalence 3ô4 is one of the main results

of [KLP3], see Corollary 1.6 of that paper. The equivalences 4ô5ô6 are established in [KLP2].

The implication 5ñ7 is Theorem 10.20 of this paper, while the implication 7ñ1 is established

in Theorem 11.3.

In the regular case, this result can be strengthened to:

Theorem 11.9. The following are equivalent for uniformly regular subgroups Γ ă G:

1. Γ is RCA.

2. Γ is conical.

3. The Finsler ideal boundary in Bθ̄
8X of each θ̄-Dirichlet domain Dθ̄

o of the group Γ in X

is contained in ΩThθ̄
pΓq, compare (6.20).

4. Γ is S-cocompact.

Proof. The implication 1ñ2 is trivial. The converse is Corollary 11.4. The equivalence 4ô1

holds in general in the weakly regular case. The implication 1ñ3 has been proven in Corol-

lary 7.4. The implication 3ñ4 was how we proved cocompactness in Theorem 7.6.

We note that this list of equivalences is nearly a perfect match to the list of equivalent defi-

nitions of convex cocompact subgroups of rank 1 Lie groups, except that convex-cocompactness

is (by necessity) missing, see [KlL].
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