
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Methods for Efficient Deep Reinforcement Learning

Permalink
https://escholarship.org/uc/item/0j9812wf

Author
Green, Samuel Brooks

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0j9812wf
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Methods for Efficient Deep Reinforcement Learning

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Samuel Brooks Green

Committee in charge:

Professor Çetin Kaya Koç, Co-Chair
Professor Ömer Eğecioğlu, Co-Chair
Professor Timothy Sherwood
Dr. Craig M. Vineyard, Sandia National Laboratories

December 2019

The Dissertation of Samuel Brooks Green is approved.

Professor Timothy Sherwood

Dr. Craig M. Vineyard, Sandia National Laboratories

Professor Ömer Eğecioğlu, Committee Co-Chair

Professor Çetin Kaya Koç, Committee Co-Chair

December 2019

Methods for Efficient Deep Reinforcement Learning

Copyright © 2019

by

Samuel Brooks Green

iii

To my parents.

iv

Acknowledgements

My interest in reinforcement learning originated from a seminar Professor Ömer Eğecioğlu

facilitated on the topic. In addition to that, I would like to express my appreciation for

Professor Eğecioğlu’s constant encouragement and support, from the time I applied to

UCSB, and throughout my Ph.D. effort.

I’m also fortunate to have Professor Timothy Sherwood on my committee. I benefited

from many conversations with Professor Sherwood regarding selection of high-quality

research directions and how to best communicate the results of those efforts. Professor

Sherwood also demonstrated the value of adding kindness to professional rigor.

Dr. Craig Vineyard, at Sandia National Laboratories, has been an invaluable addition

to my committee. Dr. Vineyard mentored me and proposed and supported numerous

experimental directions which have become the core components of my current and future

research.

Finally, I would like to thank Professor Çetin Kay Koç for inviting me to pursue a

Ph.D. at UCSB. Through Professor Koç, I was guided to the exciting topics of neuromor-

phic engineering and efficient autonomy, which eventually resulted in this dissertation.

I have benefited from countless new concepts, adventures, and lessons from the time

Professor Koç has spent on me.

v

Curriculum Vitæ
Samuel Brooks Green

Education

2019 Ph.D. in Computer Science (Expected), University of California,
Santa Barbara.

2009 M.S. in Applied Mathematics, University of Central Arkansas.

2006 B.S. in Computer Science, University of Central Arkansas.

Publications

S. Green, C. M. Vineyard, and Ç. K. Koç, “RAPDARTS: Resource-aware progressive
differentiable architecture search,” in International Joint Conference on Neural Networks.
IEEE, Glasgow, UK, July 19–24, 2020 (In Review).

S. Green∗, C. Vineyard∗, W. M. Severa, and Ç. K. Koç, “Benchmarking event-driven neu-
romorphic architectures,” in International Conference on Neuromorphic Systems. ACM,
Knoxville, Tennessee, July 23–25, 2019.

S. Green∗, J. Luo∗, P. Feghali, G. Legrady, and Ç. K. Koç, “Visual diagnostics for deep
reinforcement learning policy development,” NVIDIA GPU Technology Conference, San
Jose, California, March 18–21, 2019.

S. Green, J. B. Aimone, “Memristors learn to play,” Nature electronics 2(3), 96, March,
2019.

S. Green, C. M. Vineyard, and Ç. K. Koç, “Distillation strategies for proximal policy
optimization,” IEEE Transactions on Neural Networks and Learning Systems, submitted
June 5, 2019 (In Review).

S. Green* and J. Luo*, “Bridging reinforcement learning and creativity: implementing
reinforcement learning in processing,” SIGGRAPH Asia Courses, December 2018.

S. Green∗, J. Luo∗, P. Feghali, G. Legrady, and Ç. K. Koç, “Reinforcement learning
and trustworthy autonomy,” Cyber-Physical Systems Security, Ç. K. Koç, editor, pp.
191–217, Springer, 2018.

S. Green, C. M. Vineyard, and Ç. K. Koç, “Mathematical optimizations for deep learn-
ing,” Cyber-Physical Systems Security, Ç. K. Koç, editor, pp. 69–92, Springer, 2018.

S. Green, C. M. Vineyard, and Ç. K. Koç, “Impacts of mathematical optimizations on
reinforcement learning policy performance,” in International Joint Conference on Neural
Networks. IEEE, Rio de Janeiro, Brazil, July 8–13, 2018.

S. Green, “Inductive image editing based on learned stylistic preferences,” US Patent Nr.
9,558,428 B1. 2017.

∗Denotes equal contribution.

vi

S. Green, İ. Çiçek, and Ç. K. Koç, “Continuous-time computational aspects of cyber-
physical security,” in Workshop on Fault Diagnosis and Tolerance in Cryptography, pp.
59–62, Santa Barbara, CA, August 2016.

S. Green, “FPGA coprocessing for computational mathematics,” M.S. Thesis, University
of Central Arkansas, 2009.

vii

Abstract

Methods for Efficient Deep Reinforcement Learning

by

Samuel Brooks Green

Reinforcement learning (RL) is a broad family of algorithms for training autonomous

agents to collect rewards in sequential decision-making tasks. Shortly after deep neu-

ral networks (DNNs) advanced, they were incorporated into RL algorithms as high-

dimensional function approximators. Recently, “deep” RL algorithms have been used for

many applications that were once only approachable by humans, e.g., expert-level per-

formance at the game of Go and dexterous control of a high degree-of-freedom robotic

hand. However, standard deep RL approaches are computationally, and often financially,

expensive. High cost limits RL’s real-world application, and it will slow research progress.

In this dissertation, we introduce methods for developing efficient DNN-based RL

agents. Our approaches for increasing efficiency draw upon recent developments for the

optimization of DNN inference. Specifically, we present quantization, parameter pruning,

parameter sharing, and model distillation algorithms that reduce the computational cost

of DNN-based policy execution. We also introduce a new algorithm for the automatic

design of DNNs which attain high performance while meeting specific resource constraints

like latency and power. Intuition, which is backed by empirical results, states that a naive

reduction in DNN model capacity should lead to a reduction in model performance.

However, our results prove that by taking a principled approach, it is often possible

to maintain high agent performance while simultaneously lowering the computational

expense of decision-making.

Finally, a policy must be evaluated on hardware, and currently, there is an explosion

viii

of non von Neumann architectures for the acceleration of neural algorithms. We analyze

one such device, and we propose rigorous methods for analysis of such devices for future

applications.

ix

Contents

Curriculum Vitae vi

Abstract viii

1 Introduction 1
1.1 Dissertation Outline . 8
1.2 Permissions and Attributions . 9

2 Deep Reinforcement Learning 11
2.1 Introduction . 11
2.2 Markov Decision Processes . 13
2.3 Reinforcement Learning Approaches . 15
2.4 Vanilla Policy Gradient . 16
2.5 Summary . 22

3 Mathematical Optimizations for Deep Learning 23
3.1 Introduction . 23
3.2 Pruning . 29
3.3 Quantization . 30
3.4 Parameter Sharing and Compression . 39
3.5 Model Distillation . 43
3.6 Filter Decomposition . 47
3.7 Summary . 52

4 RAPDARTS: Resource-Aware Progressive Differentiable Architecture
Search 54
4.1 Introduction . 54
4.2 Related Work . 57
4.3 Method . 60
4.4 Experiments and Results . 66
4.5 Summary . 71

x

5 Impacts of Mathematical Optimizations on Reinforcement Learning
Policy Performance 73
5.1 Introduction . 73
5.2 Results . 77
5.3 Summary . 86

6 Distillation Strategies for Proximal Policy Optimization 88
6.1 Introduction . 88
6.2 Background and Related Work . 90
6.3 Formulation . 95
6.4 Implementation Details . 96
6.5 Results . 99
6.6 Summary . 102

7 Neuromorphic Engineering 103
7.1 Introduction . 103
7.2 Memristors Learn to Play . 104
7.3 Benchmarking Event-Driven Neuromorphic Architectures 106
7.4 Event-Driven Neuromorphic Architectures 108
7.5 Metrics . 109
7.6 Summary . 117

8 Conclusion 119
8.1 Future Work . 124

Bibliography 126

xi

Chapter 1

Introduction

How do you become an expert at something? Most likely it is through a combination

of intense practice, instruction from a teacher, innate talent, and studying the work of

other experts. Similarly, reinforcement learning (RL) is a branch of machine learning

that attempts to create expert agents using various algorithmic approximations of the

previous strategies. RL is distinguished from other machine learning methods by its use

of a sequential decision-making agent that attempts to maximize the long-term collection

of rewards within an environment. RL agents learn which actions, in which contexts, lead

to the most rewards.

RL agents use a policy for action selection. In mammals, vision processing accounts

for a significant portion of neural activity. Likewise deep RL (DRL) policies often process

visual or spatial inputs with the bulk of the policy’s computational expense attributable

to the execution of convolutional neural networks (CNNs) or other types of deep neural

networks (DNNs).

As an example of how computationally expensive DRL can be, consider DeepMind’s

AlphaGo Zero (AGZ) reinforcement learning solution to the game of Go, which beat

the world’s top Go player in 2016 [1]. AGZ used a large CNN for its policy. Compu-

1

Introduction Chapter 1

tational cost was not clearly provided by DeepMind in the AGZ publication. However,

Facebook Artificial Intelligence Research (FAIR) duplicated the AGZ work and provided

a cost: 2,000 NVIDIA V100 GPUs running for 9 days [2]. Executing FAIR’s Go re-

implementation code on Google Cloud would currently cost [3]:

2, 000 GPUs× $2.48

GPU Hr
× 216 Hr ≈ $1, 071, 360. (1.1)

The bulk of AGZ’s computational cost, and therefore financial cost, is its CNN-based

policy which uses one input convolutional block followed by 19 residual blocks. The

convolutional block has the following structure:

• 3× 3 convolution with 256 channels and stride 1

• Batch normalization

• Rectified linear unit (ReLU)

The convolutional block output is input to a residual tower where each of the 19 residual

blocks have the following structure:

• 3× 3 convolution with 256 channels and stride 1

• Batch normalization

• ReLU

• 3× 3 convolution with 256 channels and stride 1

• Batch normalization

• Skip-connection that adds the input

• ReLU

Go is partially-observable (because of a no-repeat rule in the game and because the

current player is not indicated from the current board state) so the AGZ designers provide

2

Introduction Chapter 1

the CNN with a history of recent board positions as well as an indicator for the current

player. This is achieved by using 17 binary 19 × 19 (the game board size) channels as

input to the policy. The first eight channels capture empty/occupy intersections of the

current player’s stones for the last eight game states. The second eight channels capture

the opponent’s stone intersections for the last eight game states. The 17th channel is set

to all 1s, if it is black’s move, or all 0s, if it is white’s move.

Given AGZ’s network architecture and input tensor shape, approximately eight bil-

lion multiply-accumulate operations (MACs) per forward-pass are required. The AGZ

network is used for Monte-Carlo Tree Search (MCTS) during game play, using 1,600

game simulations to select each move. During each game simulation, the CNN is eval-

uated once. Therefore, over 12 trillion MACs are required for the AGZ agent to pick a

single move. This is why the AGZ network architecture is the primary contributor of the

computational and financial cost for training and then deploying AGZ.

The computational intensity of DRL will only increase as tasks become more challeng-

ing. Even now we are seeing DRL agents which receive as sensory input a mix of vision,

audio, and text input [4, 5]. In addition to being required to process multimodal sensory

inputs, agents must often perform in situations which require memory, because their in-

stantaneous sensory inputs do not contain complete information about the state of their

environment. Extending agents with complex memory capabilities further complicates

design and increases processing cost.

The high computational expense of deep reinforcement learning will limit

its application when constrained by power, memory, or latency. However, by

extending deep neural network efficiency techniques to deep reinforcement

learning, it is possible to both maintain agent performance and reduce the

computational expense of the agent’s decision-making.

DNNs are a type of directed acyclic graph, where each vertex in the graph is a

3

Introduction Chapter 1

primitive operation, e.g. one of the following operations: convolution, pooling, attention,

matrix-vector multiplication, recurrent operation, or nonlinearity operation. We refer to

a DNN’s specific set of primitive operations and the connectivity between operations as

the DNN’s architecture.

Similarly, we classify existing DNN optimizations into two categories: primitive op-

timizations and architectural optimizations. Primitive optimizations are low-level, and

they are concerned with obtaining the most benefit from the least amount of resources.

This would be analogous to the development of a construction brick which can sup-

port the most pressure and has the best insulation properties using the least amount of

material. There are five primary primitive optimization strategies:

• Pruning: reduces the number of parameters, which, in turn, reduces the total

number of MAC operations, amount of traffic required to transfer parameters, and

storage requirements.

• Quantization: lowers the number of bits of precision representing neural network

inputs, parameters, or activations, which lowers both memory requirements and

silicon required for processing elements.

• Weight Sharing and Compression: forces parameters to share values, thus decreas-

ing memory storage and traffic.

• Model Distillation: the training of a smaller network to mimic the behavior of

larger network, reducing the number of parameters and lowering latency.

• Filter Decomposition: modifies convolutional filter designs such that the number

of parameters and multiple-accumulate operations are reduced.

Architectural optimizations are concerned with the construction of DNNs, given spe-

cific primitive operations with which to build from. Using another construction analogy,

4

Introduction Chapter 1

the Passivhaus architectural standard achieves energy optimization through careful selec-

tion of which construction materials to use, HVAC flow, and the geographic orientation

of the building [6].

DNN architecture design has historically been a manual process, where various neu-

ral network architecture and primitive combinations were iteratively hand-selected and

tested on a dataset until something performed satisfactorily. Neural Architecture Search

(NAS) has recently started to take over hand-crafted architectural optimization.

NAS methods automate strategies for discovery of high performing neural architec-

tures. A DRL approach was the first post-AlexNet NAS method with state-of-the-art

performance on CIFAR-10 [7, 8]. The DRL approach was quickly followed by a high

performance Evolutionary Strategy (ES) based method [9]. While both the DRL and

ES methods discovered high performance architectures, their use came at the cost of

thousands of GPU hours.

Gradient-based NAS (GBNAS) methods have the benefit of being directly optimized

through gradient descent and consequently complete the search faster than other NAS

methods [10]. The search process alternates between temporarily fixing one set of param-

eters, i.e. assuming they are constant, and updating the other set of parameters. The

GBNAS approaches provide no convergence guarantees, but they work well in practice.

Both primitive and architectural optimizations have been pursued extensively in su-

pervised learning literature, but, to our knowledge, this dissertation represents the first

comprehensive investigation into their application for efficient DRL.

There are close similarities between supervised learning and DRL, but analyzing the

effect of optimizations on DRL should be considered explicitly. In both cases, image,

audio, text, or other modalities, are input into a DNN for feature extraction. The

resulting features are used for classification, in the context of supervised learning, action

selection, in the context of DRL, or regression, which is used by both supervised learning

5

Introduction Chapter 1

and DRL. The primary difference between supervised learning and DRL is the domain

of the inputs to the DNN.

In machine learning, the domain is the distribution over which the inputs to a func-

tion are valid. In supervised learning, the training set is ideally drawn from the same

distribution that the test set (or real-world examples) will be drawn from later. Extrap-

olation occurs when inputs are drawn from a distribution that is different from which

training has occurred.

DRL is more complex. In DRL, an agent may spend some time in one setting, e.g. a

room. Observations from that setting will be used for DNN training. Eventually the agent

may get to another setting, e.g. go outside. If the observational characteristics of the

new setting are from a new distribution, then the DNN-based policy experiences domain

shift, i.e. extrapolation occurs. Domain shift can cause collapse in agent performance.

The literature for DNN optimizations in supervised learning perform their evaluations

on common benchmarks, e.g. CIFAR-10, CIFAR-100, ImageNet, in the case of CNNs.

In that scenario, there is a known and fixed test set used by the community to compare

results. The test set is essentially a previously agreed upon “holdout” subset of the

training set. So research on primitive and architectural optimizations for supervised

learning when using benchmarks for evaluation benefits from stable distributions.

On the other hand, domain shift is guaranteed to occur in non-trivial DRL environ-

ments. A priori, it is unclear how primitive and architectural optimizations will react

under the presence of domain shift in the DRL setting. For this reason it is worthwhile

to specifically consider the impacts of DNN optimizations on the performance of DRL

agents.

The optimizations discussed thus far are essentially concerned with the co-design

of neural architectures and their constituent primitive operations to achieve efficient

performance on observations from a domain of interest. Ultimately, however, a neural

6

Introduction Chapter 1

architecture must be executed on a specific hardware platform. NVIDIA GPUs, and,

increasingly, Google’s TPUs, are dominant for training DNNs, because they can effi-

ciently perform high-precision tensor arithmetic over large training batches. However,

for decision-making (i.e. inference), a CPU, GPU, FPGA, or custom accelerator may be

preferable.

Taking hardware attributes and constraints into account is the next logical step when

considering methods for efficient DRL. For example, there is no reason to prune individual

convolutional filter parameters if hardware cannot take advantage of sparse convolution.

And, for example, there is no reason to quantize numbers to single-bit precision, if the

target processor’s ALU only supports a minimum of 8-bit arithmetic.

While this dissertation is primarily focused on DNN-based RL, we again point out that

RL is a family of algorithms that learn behavior to maximize long-term accumulation

of rewards. There is no requirement that RL algorithms use deep neural networks,

indeed deep learning did not exist when the fundamental algorithms of RL were created

[11, 12, 13]. However, before DNNs, the RL methods which used classical function

approximation were not able to process high-dimensional observations well.

DNNs are a subset of neuromorphic engineering which is concerned with biologically

plausible models of intelligence. To put things in perspective, DNNs are an advancement

over the McCulloch-Pitts neuron model which is essentially a dot-product and nonlinear-

ity function [14]. The McCulloch-Pitts model was created in 1943. Since then, the field

of neuroscience has advanced, and the field of computational neuroscience has appeared.

These fields have created new mathematical models of neural processing. Many of the

more biologically plausible neuromorphic computing models are based on spiking neuron

models, which incorporate time and amplitude, unlike DNNs which only use amplitude

[15].

Spiking neuron models are efficiently processed by event-driven architectures [16, 17,

7

Introduction Chapter 1

18]. These are architectures that only perform computation when certain events occur,

unlike common tensor processors which cannot benefit from sparse computations.

Thus far, the neuromorphic community has not found a training algorithm that trains

spiking neuron models to perform as well as backpropagation trains DNNs. Partly this

has to do with the fact that the deep learning community’s popular datasets are conducive

to DNN processing, while spiking algorithms would benefit from event-driven datasets

that are expensive to collect or generate. If and when the neuromorphic community is

able to train event-driven models as well as backpropagation trains DNNs, then there

will be opportunity to perform deep reinforcement learning at very low-power.

1.1 Dissertation Outline

• Chapter 2 introduces the basic mathematical concepts of Reinforcement Learning.

Using Microsoft’s AirSim, we also provide a case-study of reinforcement learning’s

application to drone flight control.

• Chapter 3 provides an overview of the central methods for primitive operation

optimization: pruning, quantization, weight sharing and compression, model dis-

tillation, and filter decomposition.

• Chapter 4 introduces a resource-aware neural architecture search technique. This

method enables the discovery of DNNs which meet predefined resource constraints.

As a use-case, we show how to discover CNN architectures requiring less than a

specified number of parameters.

• Chapter 5 investigates the application of primitive operation optimizations to re-

inforcement learning. In this chapter, we apply pruning, quantization, and com-

pression to reinforcement learning policies and study how robust they are to the

8

Introduction Chapter 1

optimizations.

• Chapter 6 develops a distillation algorithm for reinforcement learning which enables

agents with relatively small CNN-based policies to achieve performance on par with

agents using larger CNN-based policies.

• Chapter 7 considers neuromorphic hardware. In the first section, we analyze a

recent memristive reinforcement learning accelerator. In the second section, we

present an objective approach to the evaluation of neuromorphic hardware.

1.2 Permissions and Attributions

• The content of Chapter 2 is the result of a collaboration with Jieliang Luo, Peter

Feghali, George Legrady, and Çetin Kaya Koç. Part of the content previously

appeared in Cyber-Physical Systems Security, Ç. K. Koç, editor, pages 191–217,

Springer, 2018. It is reproduced here with permission from Springer.

• The content of Chapter 3 is the result of collaborations with Craig M. Vineyard,

and Çetin Kaya Koç. The content previously appeared in Cyber-Physical Systems

Security, Ç. K. Koç, editor, pages 69–92, Springer, 2018. It is reproduced here

with permission from Springer.

• The content of Chapter 4 is the result of collaborations with Craig M. Vineyard,

and Çetin Kaya Koç. It is currently in pre-publication.

• The content of Chapter 5 is the result of collaborations with Craig M. Vineyard,

and Çetin Kaya Koç. The content previously appeared at the International Joint

Conference on Neural Networks, Rio de Janeiro, Brazil, July 8–13, 2018. It is

reproduced here with permission from IEEE.

9

Introduction Chapter 1

• The content of Chapter 6 is the result of collaborations with Craig M. Vineyard,

and Çetin Kaya Koç. The content is currently in review with IEEE Transactions

on Neural Networks and Learning Systems. It is reproduced here with permission

from IEEE.

• The content of Chapter 7 is the result of collaborations with Craig M. Vineyard,

James B. Aimone, William Severa, and Çetin Kaya Koç. Part of the content pre-

viously appeared at International Conference on Neuromorphic Systems (ICONS),

Knoxville, Tennessee, July 23–25, 2019. It is reproduced here with permission from

the ACM. Part of the content previously appeared in Nature Electronics 2(3), 96,

March, 2019. It is reproduced here with permission from Springer Nature.

10

Chapter 2

Deep Reinforcement Learning

2.1 Introduction

Reinforcement learning (RL) is a family of control techniques that arose from a com-

bination of applying psychological models of operant conditioning with mathematical

techniques of dynamic programming [19]. In RL, there is an agent that uses a policy to

decide actions, given state observations and rewards from an environment.

The agent may be something physical, like a robot, or it could be more virtual,

like a program that chooses the advertisement to show a website visitor. Likewise, the

environment may be physical or virtual. In general, actions can be discrete or continuous,

Agent

Environment

state,
reward

action

Figure 2.1: The deep reinforcement learning environment-agent cycle. An environ-
ment provides state observations and rewards to an agent. State observations are
input to a neural network-based policy which decides actions. An agent then makes
an action with the goal of maneuvering into states with the highest rewards.

11

Deep Reinforcement Learning Chapter 2

depending on the agent’s capability. Rewards can be continuous or discrete and dense or

sparse. An example of dense reward would be distance from the agent to a target at any

given moment. An example of spare reward would be 0 at all time steps until some goal

is reached and then 1 for only that time step. Finally, state observations represent the

information an agent is able to detect from the environment. For example, a self-driving

car may receive observations from only a CCD camera on it’s front bumper, or it could

be surrounded by LIDAR, RADAR, CCD, and other sensors.

The agent’s policy π maps state observations to actions. The goal of all RL algorithms

is to find an optimal policy π∗ that maximizes the return, which is defined as the expected

sum of rewards over some sequence of state-action pairs. The environment provides state

observations and rewards. After receiving a new observation, the policy chooses which

action the agent should take. The policy must learn to make actions to maneuver the

agent into states with high rewards. An illustration of the agent-environment interaction

paradigm is shown in Fig. 2.1.

The optimal policy is then formally defined as:

π∗ = arg max
π

Eτ∼p
[∑

t

r(st, at)

]
(2.1)

where the rollout τ represents a sequence of states and actions, p is the trajectory distri-

bution, r is the reward function mapping states s and actions a to rewards, and subscript

t ranges across time steps in the rollout.

The basic methods of RL have been developed over the past several decades, but early

RL algorithms did not work very well for high dimensional observations, e.g. images.

Specifically, classical RL techniques using images for observations would require a table

with each entry in the table corresponding to exactly one configuration of the image’s

RGB values. For example, a 256× 256 8-bit RGB image has 256× 256× (28)3 ≈ 1× 1012

12

Deep Reinforcement Learning Chapter 2

Figure 2.2: In this chapter we train a drone to use its camera to perform path plan-
ning. Training is performed via reinforcement learning, and the goal is to learn cam-
era-to-action mappings that allow the drone to collect cubes.

possible unique values and would require a table with that many entries.

Function approximation can be used to map similar observations to similar actions.

However, function approximation-based RL did not work well until 2013, when DeepMind

developed new algorithms for using deep neural networks (DNNs) with RL. By doing so,

in their seminal Atari-dominating RL work, agents learned to play many Atari video

games at superhuman levels of performance [20]. Since then, there has been a regular

stream of deep RL (DRL) algorithm improvements [21, 22, 23, 24]. The application space

of DRL has naturally lagged behind theoretical results, and we expect to see further real-

world results in the future. Following results, there will be increasing interest in hardware

optimized for deep reinforcement learning.

In the remainder of this chapter, we introduce Markov Decision Processes, which are

mathematical abstractions of many real-world decision making tasks. Then we introduce

the Vanilla Policy Gradient (VPG) method, which is a foundational reinforcement learn-

ing algorithm. Finally, we apply VPG in the context of a physics-based simulator that

enables experimentation with self-driving and flight applications (Fig. 2.2).

2.2 Markov Decision Processes

Markov Decision Processes (MDPs) are the mathematical models that reinforcement

learning was developed to solve. MDPs have states in which an agent exists, and the out-

13

Deep Reinforcement Learning Chapter 2

comes of actions depend only on the current state, not on past states and actions; in this

sense MDPs are memoryless. The memoryless property is captured in the environment’s

state-transition and reward function notation:

p(st+1|st, at, st−1, at−1, . . . , s0, a0) = p(st+1|st, at),

r(st+1|st, at, st−1, at−1, . . . , s0, a0) = r(st+1|st, at).
(2.2)

The state-transition and reward functions in Eq. 2.2 specify that function outcomes

depend only on the current state and action, and are independent of past states and

actions.

A second defining feature of MDPs is that the state-transition and/or reward functions

could be stochastic, which means their return values are drawn from some underlying

probability distributions. In standard RL settings, these distributions must be stationary

which means the probabilities do not shift over time. Methods exist for using RL in

nonstationary environments. Investigating such advanced methods is critical for using

RL in safety-critical applications. For example, state-transition and reward distributions

may shift from what was observed during training in the event of an anomalous situation,

e.g. an emergency. In that case it could be disastrous were the agent to follow its policy

decisions blindly. For that reason, consider the methods introduced in this chapter as

an introduction to what is possible, but safety mechanisms should be put in place for

real-world RL applications.

Within an MDP, agents may observe their current state and make actions that at-

tempt to affect the future state. The agent’s objective is to maximize collection of

rewards. An example 3-state MDP1 is given in Fig. 2.3. In this example, the initial state

is s0, and the agent has two action options: a0 and a1. If the agent chooses action a0 it is

1In the notation for this example, the subscripts for actions a denote “options”, versus the usual
meaning, which is time in this chapter.

14

Deep Reinforcement Learning Chapter 2

Figure 2.3: Example Markov Decision Process. There are three states and two ac-
tions, a0 and a1. Unless otherwise indicated, the state transition probability is 1 and
reward is 0. Transition from s0 to s2 is the most interesting with r(s2|s0, a1) = 1 and
p(s2|s0, a1) = .75.

guaranteed to stay in state s0, denoted by p(s0|s0, a0) = 1. If the agent chooses action a1,

there is a 25% probability that it will transition to s1, denoted by p(s1|s0, a1) = .25, and

a 75% probability it will transition to s2, denoted by p(s2|s0, a1) = .75. The environment

returns reward of 0 for all state transitions except for s0 → s2, and in this case it returns

r(s2|s0, a1) = 1.

In the context of Fig. 2.3 the agent should always select action a1, as it is the only

action that leads to a non-zero reward. While we can see that is the solution, an RL

agent must learn it.

2.3 Reinforcement Learning Approaches

As illustrated in Fig. 2.4, the approaches for finding the optimal policy π∗ in Eq.

2.1 can be separated into three families of methods: value-based methods, policy-based

methods, and model-based methods. Value-based methods, e.g. Q-Learning, are closer to

RL’s historical roots in dynamic programming. They use the learned value of states and

actions to find a policy that will transfer the agent into states with more value [12, 25, 26].

Policy-based methods directly learn to optimize an action-making policy via maximizing

a reward function [24]. Model-based approaches require the agent have a representation

of the environment which provides a prediction of the reward the environment will yield

when a given action is taken [27]. This model of the environment enables learning the

15

Deep Reinforcement Learning Chapter 2

Value Function Policy

Model

Value-Based

Model-Free

Actor Critic

Model-Based

Policy-Based

Figure 2.4: Reinforcement learning taxonomy of approaches. Value-based methods
learn the long-term results of states or state-action pairs. Policy-based methods learn
to directly optimize a policy. Model-based methods leverage given or learned me-
chanics of the environment. This introductory chapter is focused on a policy-based
method.

optimal policy by providing a prediction of how the environment will behave so the best

actions to take may be identified. It is also possible to mix value-based, policy-based,

and model-based methods into hybrid RL algorithms [28, 29].

Because they serve as the basis for most deep RL approaches, we focus on policy-

based methods in this chapter, highlighted in gray in the figure, and described in more

detail next.

2.4 Vanilla Policy Gradient

In the context of reinforcement learning, our first-order objective was defined in

Eq. 2.1 as the sum of rewards, but here we will refine it. As stated in Section 2.2,

MDPs often have stochastic state transition and reward functions; for that reason the

objective J(θ) of the agent is actually to maximize the expected sum of rewards under

the trajectory distribution (defined in Eq. 2.8 below). This is achieved by discovering

16

Deep Reinforcement Learning Chapter 2

optimal policy (i.e. deep neural network) parameters θ? that maximize the objective

function J(θ):

θ? = arg max
θ

Eτ∼pθ
T−1∑
t=0

r(st, at) = arg max
θ

J(θ), (2.3)

where τ is the trajectory of state-action pairs (s0, a0, s1, a1, . . . , sT , aT) and pθ is the

trajectory distribution which is conditioned on the policy parameters.

The Vanilla Policy Gradient method uses gradient ascent to adjust the policy pa-

rameters in a direction that increases J(θ) [13]. For notation convenience let r(τ) =∑T−1
t=0 r(st, at), and by the definition of expectation, the objective can be written as:

J(θ) = Eτ∼pθ r(τ) =
∑
τ

pθ(τ)r(τ), (2.4)

where pθ(τ) is the probability of a specific trajectory, and there may be a finite or

countably infinite different number of trajectories τ . Taking the gradient of J(θ) with

respect to θ then gives:

∇θJ(θ) = ∇θ

∑
τ

pθ(τ)r(τ) =
∑
τ

∇θpθ(τ)r(τ). (2.5)

For reasons that will become clear, we recall the following identity:

∇θpθ(τ) = pθ(τ)
∇θpθ(τ)

pθ(τ)
= pθ(τ)∇θlog(pθ(τ)), (2.6)

allowing us to rewrite Eq. 2.5 as:

∇θJ(θ) =
∑
τ

pθ(τ)∇θlog(pθ(τ))r(τ),

= Eτ∼pθ ∇θlog(pθ(τ))r(τ).

(2.7)

We now explain why the identity in Eq. 2.6 was used. The probability of a sampled

17

Deep Reinforcement Learning Chapter 2

(i.e. experienced) trajectory τ has a probability that can be explicitly calculated only if

the underlying state-transition function is known:

pθ(τ) = p(s0)
T−1∏
t=0

πθ(at|st)p(st+1|st, at), (2.8)

where p(s0) is the probability of starting the trajectory in state s0 and is independent

of θ, and πθ(at|st) is the probability of the selected action given the state observation

st. To better understand the notation πθ(at|st), note that the policy is stochastic. In

other words, when the policy is given a state observation st, the output of πθ(st) is a

vector of probabilities derived from the softmax function2. In the discrete action-space

environments considered here, there is one output probability per possible action. A

random action is then drawn from the given probability distribution, and the probability

of the selected action is denoted πθ(at|st).

In real-world problems, the environment’s state transition function p(st+1|st, at) is

not known, so pθ(τ) would be impossible to calculate. However:

log pθ(τ) = log
(
p(s0)

T−1∏
t=0

πθ(at|st)p(st+1|st, at)
)

= log p(s0) +
T−1∑
t=0

log πθ(at|st) + log p(st+1|st, at),

(2.9)

and replacing log pθ(τ) in Eq. 2.7 with its expanded form gives:

∇θJ(θ) = Eτ∼pθ ∇θ

[
log p(s0) +

T−1∑
t=0

logπθ(at|st) + log p(st+1|st, at)
]
r(τ),

= Eτ∼pθ
T−1∑
t=0

∇θlogπθ(at|st)r(τ).

(2.10)

2softmax(xi|x) := exp(xi)∑|x|
j=1 exp(xj)

, where x is a vector of reals.

18

Deep Reinforcement Learning Chapter 2

In this form, we are able to approximate the gradient. Recall that πθ is a neural network

(or some other differentiable function), so the gradient of its log may be calculated

explicitly given each at and st over the trajectory. Also, we know the sum of rewards

r(τ) for each trajectory. Finally, the outer expectation is approximated by performing

N episodes, i.e. experiencing multiple trajectories, and then averaging the sums giving:

∇θJ(θ) ≈ 1

N

N∑
n=1

T−1∑
t=0

∇θlog πθ(an,t|sn,t)r(τn). (2.11)

After having obtained an approximation of the objective’s gradient, we may use it to

update the neural network parameters with standard stochastic gradient ascent:

θ = θ + α∇θJ(θ), (2.12)

where α is the learning rate and whose appropriate value must be experimentally found.

The Vanilla Policy Gradient method works surprisingly well for a broad range of

problems, and there are many improvements that have been made to it to increase

its performance. Understanding the method presented here is a good foundation for

approaching current literature. The derivation of the Vanilla Policy Gradient method as

presented above is credited to [30].

2.4.1 Vanilla Policy Gradient Method in AirSim

We now apply the Vanilla Policy Gradient method to a cube collection task, illustrated

in Fig. 2.5. We have extended Microsoft’s AirSim simulator to support teaching a drone

how to autonomously navigate a sequence of visual waypoints. This is captured by

randomly distributing cubes in front of a drone at the start of each episode. The drone

receives a reward for each cube it reaches. In this environment, the drone has a discrete

19

Deep Reinforcement Learning Chapter 2

Figure 2.5: Example of our custom AirSim environment. After the environment is
reset, cubes are placed randomly in front of the drone. The drone has a camera that
provides input to a reinforcement learning agent. The agent contains a CNN-based
policy and learns how to use the camera input to infer control decisions for collection
of cubes.

action space of forward, left, and right. The observation space is continuous and is

derived from a camera mounted on the drone. The source code for these experiments is

available at https://github.com/RodgerLuo/CPS-Book-Chapter.

A convolutional neural network is used to represent the policy. We will refine the

objective (from Eq. 2.3) of finding network parameters that maximize the expected sum

of rewards across all time steps in the episode:

θ? = arg max
θ

Eτ∼pθ
T−1∑
t=0

r(st, at).

In the cube collection task, a reward of 1 is provided by the environment each time step

a cube is collected by the drone, and 0 reward when no cube is collected, so the objective

is to collect as many cubes as possible in each episode (i.e. during time step t = 0...T −1,

where T − 1 is the step when the last cube is collected or the drone has gone out of

20

https://github.com/RodgerLuo/CPS-Book-Chapter

Deep Reinforcement Learning Chapter 2

bounds). In the context of Vanilla Policy Gradient, this objective was discovered by

taking its gradient (from Eq. 2.11):

∇θJ(θ) ≈ 1

N

N∑
n=1

T−1∑
t=0

∇θlog πθ(an,t|sn,t)r(τn),

and then updating the neural network parameters based on the gradient. Recall that

πθ is the neural network, and, in the drone collection task, πθ(an,t|sn,t) is the output

probability3 of going left, right, or forward, given input pixels from the drone’s camera.

One weakness of Eq. 2.11 for our context is that the rewards are sparse, because

there are only three cubes total to collect in each trajectory. If the episode return r(τn)

is used directly as the reinforcing signal then entire trajectory probabilities are increased

or are unchanged. This results in high variance in performance between each episode. An

approach to get faster results in the cube collection task is to “smooth” the attribution of

rewards from later stages to earlier stages by applying a discounted return to the gradient

at each time step. The discounted return is defined as:

gt = rt+1 + γrt+2 + γ2rt+3 + · · ·+ γT−t−1rT−1 =
T−1∑
k=t

γk−trk, (2.13)

where γ ∈ [0, 1] is the discount rate. The resulting g vector of Eq. 2.13 is also normalized4

in the cube collection task. Using g we update Eq. 2.11 to give:

∇θJ(θ) ≈
T−1∑
t=0

∇θlogπθ(at|st)gt, (2.14)

where we are only collecting a single trajectory between applications of gradient ascent.

3Softmax of the network’s logits.
4Normalization is defined as g ← (g− µ(g))/σ(g), where scalar operations are applied element-wise

to the vector.

21

Deep Reinforcement Learning Chapter 2

There are much better approaches than using the discounted return, and our source code

example is parameterized to allow experimentation with other reward function alterna-

tives.

Algorithm 1: Vanilla Policy Gradient algorithm in the context of the AirSim
cube collection task.

Input: Old policy parameters θ, learning rate α, tuple of (observations s,
actions a, rewards r) from last cube collection episode

Output: Updated policy θ
1 Apply Eq. 2.13 to obtain discounted rewards g from a
2 Normalize g
3 Set sum of grads = 0
4 for t = 0 . . . T − 1 do
5 sum of grads = sum of grads+ gt∇θlogπθ(at|st)
6 end
7 θ = θ + αsum of grads
8 return θ

We summarize the use of the Vanilla Policy Gradient method in the context of our

AirSim cube collection task in Algorithm 1. This algorithm is implemented in the pro-

vided source code and will train a drone to collect cubes based on visual observations.

2.5 Summary

In this chapter we introduced the Markov Decision Process, which is the sequential

decision making mathematical model that reinforcement learning solves. We also intro-

duced the basic families of reinforcement learning: policy-based, value function-based,

and model-based. We then provided a derivation of the Vanilla Policy Gradient method,

which is the foundational policy-based algorithm. The VPG method was then used to

train a drone to collect cubes in Microsoft AirSim.

22

Chapter 3

Mathematical Optimizations for

Deep Learning

3.1 Introduction

Modern DNN architectures require billions of floating-point multiplications and ad-

ditions (MACs) for inference of a single input. Without careful design, this results in

high power consumption and high latency. Fossil-fuel powered vehicles, for example, can

support high energy demands, but efficient, battery powered systems cannot. Addition-

ally, modern large DNNs have high latency, but low latency is required for real-time

autonomous applications. This chapter provides a unified view of the leading methods

for mathematically-optimized deep learning inference. The methods introduced in this

chapter will be applied to deep RL algorithms and applications in following chapters.

To motivate the need for optimizations, it is helpful to consider first-order power and

silicon area requirements for DNN inference. Table 3.1 provides a list of energy and

die area required for various operator and operand sizes. Observe that a single 32-bit

floating-point multiplication (denoted “32b FP Mult”) requires 20 times more power and

23

Mathematical Optimizations for Deep Learning Chapter 3

Operation Energy (pJ) Area (um)
8b Add 0.03 36
16b Add 0.05 67
32b Add 0.1 137
16b FP Add 0.4 1360
32 FP Add 0.9 4184
8b Mult 0.2 282
32b Mult 3.1 3495
16b FP Mult 1.1 1640
32b FP Mult 3.7 7700
32b SRAM Read 5 N/A
32b DRAM Read 640 N/A

Table 3.1: Energy and die area costs for various operations (45nm) [31]. Quantized
operators and operands are preferred for low-power and low-resource applications. FP
stands for floating-point.

12 times more area than 8-bit integer multiplication (“8b Mult”). Also observe that the

power cost of a 32-bit DRAM read is more than 100 times the cost of floating-point

multiplication. For this reason, efficient DNN implementations should prioritize the

minimization of off-chip DRAM access first, followed by reducing operand and operator

sizes. Naturally these two approaches complement one another.

DNN optimizations are useful only during the inference operation. Currently, training

a DNN to reach state of the art performance requires the backpropagation algorithm,

which uses gradient descent to make many small adjustments to the neural network

parameters. These small adjustments must be calculated and stored using full-precision

accumulation. Therefore the optimizations discussed in this chapter are not primarily

aimed at making training more efficient, but they are intended to make inference more

efficient.

To further emphasize the need for inference efficiency, consider the number of opera-

tions required to evaluate various modern DNNs, given in Table 3.2. This table provides

a first-order estimate for MAC and memory costs for popular DNN architectures. Power

24

Mathematical Optimizations for Deep Learning Chapter 3

estimates assume 32-bit floating-point arithmetic and are derived from Table 3.1. MAC

costs capture the power requirement for each network to perform the necessary operations

for providing a single inference. The memory cost is best-case and assumes parameters

are read from DRAM only once per inference; actual memory costs will be higher if inter-

mediate results must be transferred back to DRAM during inference of the network. In

Table 3.2 note that even though the number of MACs are much greater than the number

of parameters, the high DRAM read cost results in the power consumed between the two

to be roughly equivalent.

Metrics
LeNet

5
AlexNet

Overfeat
fast

VGG
16

GoogLeNet
v1

ResNet
50

Parameters 60k 61M 146M 138M 7M 25.5M
Read Cost (8b) 10µJ 10mJ 23mJ 22mJ 1mJ 4mJ
Read Cost (32b) 38µJ 39mJ 93mJ 88mJ 4mJ 16mJ
MACs 341k 724M 2.8G 15.5G 1.43G 3.9G
MAC Cost (8b) .1µJ 167µJ 644µJ 3565µJ 329µJ 897µJ
MAC Cost (32b) 2µJ 3mJ 13mJ 71mJ 7mJ 18mJ

Table 3.2: Number and cost of parameters and MACs for popular deep neural
network architectures. Cost estimates are based on Table 3.1 and from archi-
tecture statistics provided in [32]. Note that memory costs are typically higher
than MAC costs.

The process of DNN training may be thought of as an exploration over a param-

eter space to find values which will solve an inference task. As will be expanded on,

the parameters found using standard training methods result in DNNs which are over-

parameterized, which means they have redundancy. When the DNN performs satisfacto-

rily during cross-validation, backpropagation is no longer needed, and optimizations may

be applied to decrease parameter redundancy. The goal of mathematical optimizations

for deep learning is to find the most compact network which performs satisfactorily at

25

Mathematical Optimizations for Deep Learning Chapter 3

its assigned real-world inference tasks.

DNN architectures are composed of various layer types: convolutional, fully-connected,

dropout, pooling, and others. Each layer type was developed to solve a particular weak-

ness and each classification problem is best solved by a different architecture, or combi-

nation of layers. Convolutional and fully-connected layers represent the greatest compu-

tational expense in DNN inference, and optimizing these layer types is the focus of this

chapter. Both convolutional and fully-connected layers require repeated multiplication

and addition, but they typically use different algorithmic steps. Adapting notation of

[33], we represent an L-layer DNN as 〈I,W ,O〉, where:

• Il ∈ Rcin×x×y and Wl ∈ Rcin×w×h×cout are layer l’s input tensors and parameter

tensors respectively. cin represents the number of input channels and cout represents

the number of output channels1. x and y are the width and height of each input

channel, and w and h are the width and height of each filter.

• Ol ∈ {∗, ·, other} specifies whether the layer’s operation type is convolution (∗),

fully-connected (·), or some other less computationally expensive type.

Convolutional layers convolve a Rcin×w×h×cout parameter filter tensor with a Rcin×x×y

input tensor, where (w,x) and (h,y) represent the widths and heights of the two respective

tensors and may be different sizes, and cin and cout represent the number of input and

output channels. In particular the (w, h) for parameter filters are often smaller than the

(x, y) for inputs. c is the number of channels in the given layer; this value is equal for

both the parameter filter tensor and input tensor. As illustrated in Figure 3.1 (top), each

step in the convolution requires a sum of products between elements of the parameter

filter and elements of the receptive field of the input filter.

1Also called input filter maps (ifmaps) and output filter maps (ofmaps) in literature.

26

Mathematical Optimizations for Deep Learning Chapter 3

}

}

}

} }

Figure 3.1: Convolutional layers convolve a parameter filter with an input. Filters
are usually 5×5, 3×3, or 1×1. Each step of the convolution involves multiplying and
accumulating elements of the parameter filter with a receptive field of the input. The
top illustration represents the basic convolution operation (∗). The lower illustration
represents cout, cin-channel filters which are convolved with a cin-channel input tensor,
which results in an cout-channel output tensor.

Figure 3.2: Fully-connected layers flatten the input tensor into a vector and multiply
by a parameter matrix with the same number of columns as the vector and as many
rows as desired.

Note that what is shown in Figure 3.1 (top) only depicts convolution of a single

channel. If there are multiple channels, then the summation is also over all channels.

Figure 3.1 (bottom) shows a higher-level view, where each cin-channel parameter filter is

convolved with the cin-channel input tensor. When multiple channels are included in the

convolution, each output of the convolution becomes the triple-sum across the channels.

The number of parameter filters in a layer equals the number of channels in the output

tensor: if there are cout parameter filters, there will be cout channels in the output tensor.

Computation for fully-connected layers requires a single matrix-vector product. The

input tensor Il ∈ Rcin×x×y is flattened to a vector ∈ Rcin·x·y. The parameter tensor is

denotedW ∈ Rw×h, where w = cin ·x·y (from the input tensor dimensions) and h is equal

27

Mathematical Optimizations for Deep Learning Chapter 3

to the number of desired output units from the fully-connected layer. An illustration of

a fully-connected layer is given in Fig. 3.2.

After a parameter filter W is convolved with an input I in a convolutional layer, or

the matrix-vector product between parameters and layer inputs is produced for a fully-

connected layer, the resulting matrix of vector entries are typically passed through a

nonlinearity function σ : R → R. A commonly used nonlinearity is the rectified-linear

unit (ReLU), which is defined as:

σReLU(x) =


x if x ≥ 0,

0 else.

(3.1)

But more extreme nonlinearities exist, such as the binarized activation function which

outputs only two values, −1 and 1:

σb(x) =


1 if x ≥ 0,

−1 else.

(3.2)

The choice of nonlinearity function influences the performance and computational

cost of inference. Specifically, using the binarized activation function can lead to the

elimination of floating-point and fixed-point arithmetic during inference, as detailed in

Subsection 3.3.2.

Both convolutional and fully-connected layers require many memory access and MAC

operations, but a variety of numerical optimizations may be applied to DNN inference.

Some optimizations reduce power and some optimizations reduce both power and latency.

Furthermore, it is possible to optimize a DNN and maintain classification accuracy, but

there also exist extreme optimization methods which result in unavoidable accuracy loss.

28

Mathematical Optimizations for Deep Learning Chapter 3

Depending on the application, decreased accuracy may be worth the reduction in power

and latency.

The remainder of this chapter provides an introduction to the common approaches

of DNN mathematical optimization: pruning, quantization, parameter sharing and com-

pression, model distillation, and filter decomposition.

3.2 Pruning

Pruning applies to fully-connected and convolutional layers and eliminates each layer’s

smallest parameters, which has the consequence of reducing the number of MAC oper-

ations, the amount of traffic required to transfer parameters, and storage requirements.

The typical procedure is to train the network until the desired accuracy is reached and

then to prune the smallest pth-percentile of parameters by setting them to zero. Pruning

is followed by fine-tuning the remaining parameters, which can be accomplished using

the same dataset as used during initial training.

In [35], the authors report 9× and 13× reduction in parameters for AlexNet and

VGG-16 with no impact on test accuracy. A histogram of the normalized frequency of

parameters is given in Fig. 3.3, where the smallest 50th-percentile is delineated with

two vertical lines. In practice, one would pick the percentile threshold for each layer

heuristically, that is, the percentile threshold would be a hyperparameter for each layer.

This process is represented in Algorithm 2.

After pruning, the resulting DNN will be sparse, with many parameters set to zero.

Standard architectures, like GPUs, are currently not designed to take advantage of spar-

sity and will perform multiplication regardless if one of the operands is zero. In order to

benefit from pruning, the architecture must be designed in such a way as to take advan-

tage of sparsity. This will add edge cases to standard logic design. For example, consider

29

Mathematical Optimizations for Deep Learning Chapter 3

0.04 0.02 0.00 0.02 0.04
Parameter

0

10

20

30

40

Re
la

tiv
e

fre
qu

en
cy

 (%
)

Parameter histogram of VGG-16 layer "classifier.1.weight"

Figure 3.3: Histogram of parameters of the first fully-connected layer in VGG-16.
The name “classifier.1.parameter” corresponds to the VGG-16 implementation found
in torchvision [34]. The two vertical lines correspond to thresholds of values smaller
than the 50th-percentile. These values may be pruned (permanently set to zero) and
the remaining values fine-tuned with no loss in accuracy [35]. The same procedure
may be applied to all other layers in the network.

a product summation tree, which can parallelize MAC operations. Even if the tree is

designed to ignore products with a zero operand, it must still take into account that the

zero product must be passed to the next tree level at the appropriate time. Recently,

architectures for handling sparse dataflows have been developed. One such architecture

reduces the amount of “wasted” logic required for ignoring zero-products by only passing

non-zero products to processing elements downstream [36].

3.3 Quantization

Before 2015, most DNNs were trained using 32-bit floating-point arithmetic. In this

section we summarize approaches for using reduced precision, or quantized, arithmetic

for DNN inference. Quantization reduces the amount of parameter data that must be

transferred from DRAM to processing elements. Additionally, quantized arithmetic is less

30

Mathematical Optimizations for Deep Learning Chapter 3

Algorithm 2: Pruning

Require: L-layer DNN 〈I,W ,O,P〉, where Il and Wl are layer l’s input tensors and
parameter tensors respectively, and Ol specifies whether the layer’s type is
convolutional, fully-connected, or some other type, and P is the pruning percentile
for each layer.

Ensure: Pruned and fine-tuned network parameters W .
1. Initial training:
Perform standard training of DNN until satisfactory performance is achieved.
2. Pruning:
For each layer l in 〈I,W ,O,P〉, eliminate parameters in Wl which are less than layer
l’s pth percentile, where p = Pl.
3. Fine-tuning:
Perform standard re-training of remaining parameters W , until maximum
performance is achieved.

expensive in terms of power and silicon area than full-precision arithmetic. Quantization

may be applied to parameters, activations, or both parameters and activations. We

emphasize that quantization techniques using <16-bits currently only provide efficiency

benefits during inference, because backpropagation requires accumulation of small values,

and therefore ≥16-bits.

It appears that 8-bit or 16-bit quantization is adequate for most DNN inference tasks.

For example, Google’s DNN accelerator, the Tensor Processing Unit (TPU), exclusively

uses 8-bit or 16-bit integer arithmetic [37]. The TPU (and the successor TPUv2) has

become a critical component of Google’s computing ecosystem. Additionally, NVIDIA’s

Pascal architecture was designed to support 16-bit floating-point and 8-bit integer arith-

metic.

In this section we focus on extreme quantization methods which binarize parameters

and activations. Binarization usually has a large negative impact on performance, but

we present techniques in Subsections 3.3.1 and 3.3.2 which reduce the impact.

Note that in this section we will sometimes use a unified notation which applies

31

Mathematical Optimizations for Deep Learning Chapter 3

to both convolutional and fully-connected layers. In a convolutional layer, a c-channel

parameter filter W ∈ Rc×w×h is convolved with an input I ∈ Rc×w×h. Convolution is

performed by W ∗ I. At a specific receptive field, the core operation may be interpreted

as the inner-products between vectors. In this section, we sometimes use the notation

W>I to denote the convolution of a filter with a specific receptive field. Simultaneously,

the W>I notation captures the partial calculation of a fully-connected layer.

3.3.1 Binary parameters

In 2015, BinaryConnect [38] was an early DNN quantization method, and exemplifies

the field’s approach to quantization. During inference, BinaryConnect quantizes full-

precision DNN parameters W to {−1, 1}, using the sign function:

w(b) =


+1 if w ≥ 0,

−1 else.

(3.3)

Equation 3.3 discards real-valued information, but, in doing so, it also eliminates the

need for floating-point multiplication during inference. Instead, signed floating-point

addition may be used for unit activation input calculations. During backpropagation,

the error caused by quantization is used to update the real-valued Ws. After training

is complete, full-precision parameters and arithmetic are no longer required and may

thereafter be discarded. From a hardware perspective, memory overhead is 32× less when

using BinaryConnect-derived parameters. However, this technique has an accuracy cost.

When using the AlexNet DNN architecture, BinaryConnect achieves 61% top-5 accuracy

on ImageNet, compared to 80.2% accuracy when using AlexNet with 32-bit full-precision

accuracy [33].

In Algorithm 3 we outline the steps of BinaryConnect. Note here that we separate the

32

Mathematical Optimizations for Deep Learning Chapter 3

bias terms fromW , where normally it is included in that tensor for notation convenience.

The reason here is that the bias is always added, even with full-precision arithmetic, so

there is no benefit to quantize it. Also note the clip function in Algorithm 3 limits the

full-precision parameters to between [−1, 1].

Algorithm 3: BinaryConnect [38]

Require: Inputs I, targets y, previous full-precision parameters W , biases b, learning
rate η, and objective function J .

Ensure: Updated {−1, 1}-valued parameters W(b) and real-valued bias b.
1. Forward propagation:
A0 = I
for l = 1 to L

for kth filter in lth layer
W(b)

lk ← binarize(Wlk) using Equation 3.3

Alk ←W(b)
l ∗ A(l−1)k + blk

2. Backward propagation:
Initialize output layer’s activation gradient ∂J

∂AL
using y, AL, and J

for l = L to 2
for kth filter in lth layer

Compute ∂J
∂A(l−1)k

knowing ∂J
∂Alk

and W(b)
lk

3. Update parameters:
Compute ∂J

∂Wlk
and ∂J

∂blk
, knowing ∂J

∂Alk
and A(l−1)k

W ← clip(W − η ∂J
∂W)

b← b− η ∂J
∂b

Not made explicit in Algorithm 3 is how the gradient signal passes through the bina-

rization function given in Equation 3.3. This is required for calculation of ∂J/∂W(b)
lk . We

cannot merely take the derivative of the binarization function, because it is 0 everywhere

except at W = 0, where the function is discontinuous. To handle this, the authors used

a variant of the Straight-Through Estimator (STE) during backpropagation [39]. The

33

Mathematical Optimizations for Deep Learning Chapter 3

modified STE is defined as:

STE(x) =


0 if x < −1,

1 if −1 ≤ x ≤ 1,

0 if x > 1.

(3.4)

During backpropagation, the derivative of the parameter binarization function (Eq.

3.3) is calculated with respect to each full-precision parameter:
dW(b)

lk

dWlk
. Because the pa-

rameter binarization function is discontinuous, its derivative must be estimated, which

is achieved by replacing it with the STE evaluated at the full-precision parameter. Multi-

plying by the STE during backpropagation has the effect of canceling the gradient when

the full-precision parameter’s magnitude is too large.

To summarize BinaryConnect, we take the sign of the real-valued parameters dur-

ing inference. During backpropagation, the errors caused by binarization may be very

small (with significant changes accumulating over many inputs) and we track those small

changes in full-precision versions of the parameters. After training is complete, the full-

precision parameters may be discarded, only keeping their sign information.

XNOR-Net [33] introduced a method which is almost identical to BinaryConnect, but

it performs binarization in a way which achieves higher accuracy. As with BinaryConnect,

parameters are binarized during inference, but then they are also scaled by a factor which

attempts to compensate for the binarization. Specifically, XNOR-Net introduced the

following approximation for the inner-product2:

W>I ≈ αW(b)>I, (3.5)

2Note that we consider W and I to be flattened.

34

Mathematical Optimizations for Deep Learning Chapter 3

where W(b) is the binarized version of W using Equation 3.3. This notation is slightly

different than that used in Algorithm 3, where we are able to binarize the entireW tensor

at once. But with XNOR-Net, each filter in each convolutional layer requires a separate

α. To keep the notation simple, separate filters are not denoted.

To find the optimal scaling factor α, we solve the following optimization problem:

J(α) =
∥∥W − αW(b)

∥∥2 ,
α∗ = arg min

α
J(α).

(3.6)

That is, we are seeking an α which minimizes the distance between W and αW(b). For

intuition, consider a scalar w and its binarized version w(b); in this case α = w/w(b)

perfectly minimizes the distance between w and w(b). Expanding the norm in Equation

3.6 gives:

J(α) = α2W(b)>W(b) − 2αW>W(b) +W>W . (3.7)

We now take the derivative of J(α) with respect to α, set it to zero, and solve for α:

dJ(α)

dα
= 2αW(b)>W(b) − 2W>W(b). (3.8)

Let n = W(b)>W(b), which is also equal to the number of parameters in the binarized

filter. Substituting n into Equation 3.8, setting it to zero, and solving for α gives α∗:

α∗ =
W(b)>W(b)

n
=
W(b)>sign(W)

n
=

∑
|W|
n

. (3.9)

New α∗s must be calculated every time W changes, i.e. each time backpropagation

is used to update the parameters, but, after the training is completed, α∗ may be saved

for use during inference.

35

Mathematical Optimizations for Deep Learning Chapter 3

Signed Multiplication

Inputs Output

Ii Wi Ii ×Wi

−1 −1 1
−1 1 −1
1 −1 −1
1 1 1

XNOR “Multiplication”

Inputs Output

Ii Wi Ii ⊕Wi

0 0 1
0 1 0
1 0 0
1 1 1

Table 3.3: The XNOR operation captures the behavior of signed multiplication.

Using the parameter binarization methods above, we may eliminate most multipli-

cations from inference3, and instead we only need signed addition. If we assume 32-bit

multiplication and addition, this results in 32× power reduction for parameter transfer

from DRAM and ∼ 3× power reduction for arithmetic. When using the AlexNet DNN

architecture, XNOR-Net (binary parameters, full-precision activations) achieves 79.4%

top-5 accuracy on ImageNet, compared to 80.2% accuracy when using AlexNet with 32-

bit full-precision accuracy [33]. We next consider operator optimizations which become

available when both parameters and inputs are binarized.

3.3.2 Binary parameters and Activations

If parameters and activations are binarized, then we are able to eliminate almost all

floating-point (and fixed-point) calculations, resulting in extreme energy savings. Specif-

ically, when parameters and inputs are binarized, the XNOR operation4 may be used to

calculate inner-products during inference [40]. The XNOR logic truth table is given on

the right in Table 3.3. The left-hand side provides the truth table for signed multiplica-

tion between scalar values Ii ∈ I and Wi ∈ W . Note that by mapping −1 to 0, the two

tables give identical output.

3Multiplication by α is still necessary when using the parameter binarization technique in XNOR-
Net.

4Not to be confused with XNOR-Net [33]. Here we are referring to the exclusive-NOR operation.

36

Mathematical Optimizations for Deep Learning Chapter 3

XNOR logic is simple and efficient to implement in hardware and may be used as the

multiplication operator for the calculation of inner-products during inference. To use the

XNOR “product” between I and W for the input into a unit’s nonlinearity function, we

first map all −1s to 0s, then calculate the XNOR values for both vectors. The Hamming

parameter5 (HW) of the XNOR vector result is then compared to #bits/2, where #bits

is the size of W and I. If the Hamming parameter is greater than or equal to #bits/2

then output 1, otherwise output 0. Note that after the initial mapping of −1 to 0, we no

longer need to map back to −1 during the remainder of the inference procedure.

BinaryNet [40] operates similarly to BinaryConnect, with the addition that activa-

tions are also binarized. When using BinaryNet, the activation inputs are summed,

as with BinaryConnect, and then the resulting sum is converted to [−1, 1] using the

sign function. This optimization eliminates all full-precision calculations and replaces

them with signed integer calculations. As with BinaryConnect, BinaryNet requires full-

precision gradient updates during training, and during backpropagation the STE function

(Eq. 3.4) is used for both the activation and parameters. BinaryNet achieves 50.42%

top-5 accuracy on AlexNet, compared to 80.2% accuracy when using the same DNN

topology and 32-bit full-precision accuracy [33].

XNOR-Net also has a version which binarizes both parameters and activations. Simi-

lar to XNOR-Net’s parameter-only binarization presented above, there is a scaling factor

α which may (optionally) be used to reduce the error between full-precision and binarized

dot products:

J(α) =
∥∥I>W − αI(b)>W(b)

∥∥2 ,
α∗ = arg min

α
J(α).

(3.10)

5Hamming parameter is defined as the number of 1s in a vector.

37

Mathematical Optimizations for Deep Learning Chapter 3

This is solved in the same manner as Equation 3.6, giving:

α∗ =

∑
|I(b)>W(b)|

n
=

∑
|I||W|
n

. (3.11)

Note that a separate scaling factor α∗ must be solved for each receptive field and pa-

rameter filter combination both during training and when using the neural network after

training. This high computational overhead limits the use of vanilla XNOR-Net. Fortu-

nately, in practice, the authors of BinaryNet found that the scaling factor for binarized

parameters was much more important than the scaling factor for binarized inputs, and

may therefore be ignored. We summarize the parameter-scaled version of XNOR-Net

with the following algorithm:

Algorithm 4: (parameter-scaled) XNOR-Net [40]

Require: Inputs I, targets y, previous full-precision parameters W , biases b, learning
rate η, and objective function J .

Ensure: Updated {−1, 1}-valued parameters W(b), parameter scaling factors α, and
real-valued bias b.
1. Forward propagation:
A0 = binarize(I0)
for l = 1 to L

for kth filter in lth layer
αlk = 1

n
||Wlk||`1

W(b)
lk ← binarize(Wlk) using Equation 3.3

A(b)
lk ← binarize

(
(αlkW(b)

lk) ∗ A(b)
(l−1)k + blk

)
using Equation 3.3

2. Backward propagation:
Initialize output layer’s activation gradient ∂J

∂AL
using y, AL, and J

for l = L to 2
for kth filter in lth layer

Compute ∂J

∂A
(b)
(l−1)k

knowing ∂J

∂A
(b)
lk

and Wlk

3. Update parameters:
Compute ∂J

∂W(b)
lk

and ∂J
∂blk

, knowing ∂J

∂A
(b)
lk

and A(l−1)k

W ← clip(W − η ∂J
∂W(b))

b← b− η ∂J
∂b

38

Mathematical Optimizations for Deep Learning Chapter 3

Similar to the calculation of ∂J/∂W(b)
lk in Algorithm 3, both partial-derivatives ∂J/∂W(b)

lk

and ∂J/∂A(b)
lk in Algorithm 4 are substituted with the STE function in Equation 3.4, where

the inputs to STE are the real-valued parameter and activation respectively.

XNOR-Net using binarized inputs and parameters achieves 69.2% accuracy on AlexNet,

compared to BinaryNet’s 50.42%, and full-precision accuracy of 80.2%. The XNOR-Net

and BinaryNet papers introduce other training tips for improved performance. The

aggregate contributions of the performance techniques introduced in XNOR-Net likely

account for its significant gain over BinaryNet.

3.4 Parameter Sharing and Compression

Top-performing neural networks use millions of parameters which are typically trans-

ferred from DRAM to processing elements for inference (see Table 3.2). When these

parameters are transferred, DRAM energy cost can surpass arithmetic cost for perform-

ing a single inference. Parameter sharing clusters parameters into shared values and is

applied after the network has reached peak performance. Once parameters have been

clustered, compression may be used to transmit cluster indices instead of full-precision

values. Parameter sharing coupled with data transfer compression is a method to retain

the high performance typically provided by large full-precision neural networks, while

simultaneously reducing the amount of data sent over DRAM [35].

3.4.1 Parameter Sharing

To apply parameter sharing, first, the DNN is trained to maximum performance using

standard training methods. After training, each layer’s parameters are grouped into

clusters, where the number of parameters in a layer is much greater than the number of

clusters. After assigning parameters to clusters, the network goes through a retraining

39

Mathematical Optimizations for Deep Learning Chapter 3

3

weights

gradient

0 2 1

3011

0

3 1 2 2

013

3:

2:

1:

0:

2.09 -0.98 1.48 0.09

2.12-1.08-0.140.05

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

-0.03 -0.01 0.03 0.02

-0.01 0.01 -0.02 0.12

0.010.040.02-0.01

-0.07 -0.02 0.01 -0.02

-0.03 0.12 0.02 -0.07

0.03 0.01 -0.02

0.02 -0.01 0.01 0.04 -0.02

-0.01 -0.02 -0.01 0.01

0.04

0.02

0.04

-0.03

2.00

1.50

0.00

-1.00

cluster index

cluster

group by reduce

centroids

1.96

1.48

-0.04

-0.97

fine-tuned
centroids

-

lr

Figure 3.4: After training, 16 parameters have been clustered into 4 centroids. From
that point on, clustered parameters are equal to their centroid. Partial derivatives
are calculated with respect to the parameter values, as usual, but the gradients are
accumulated and subtracted from the centroids [35].

phase.

For example, consider Fig. 3.4 which illustrates a 4×4 channel from some parameter

filter in W . Assume that the filter is part of a trained network. To apply parameter

sharing, we use k-means clustering [35], which assigns the parameters w ∈ W to m

cluster assignments C? = {c1, c2, · · · , cm}, such that the within-cluster sum of squares is

minimized:

C? = arg min
C

m∑
i=1

∑
w∈ci

|w − ci|2. (3.12)

After assignment to clusters, we calculate the centroids w̃i of each cluster ci by taking

the average value of each cluster:

w̃i =
1

|ci|
∑
w∈ci

w. (3.13)

In Fig. 3.4, m = 4, and the top portion of the plot illustrates 16 parameters and their

40

Mathematical Optimizations for Deep Learning Chapter 3

associated clusters and centroids.

After clustering, parameters in the original filter are replaced by their centroid value

(this is represented by the shading in Fig. 3.4). Next, the clustered parameters are fine-

tuned by reusing the original training data. The key difference between standard training

and the fine-tuning phase is how the parameters are updated during backpropagation. In

backpropagation each parameter is changed a small amount in the direction which will

improve an objective function, e.g.:

Wl,w =Wl,w − η
∂J(W)

∂Wl,w

. (3.14)

However, after clustering, we apply backpropagation to the centroid value of each param-

eter cluster. For example, suppose the centroid w̃i of parameter cluster ci is to be updated

using backpropagation. To update centroid w̃i we use the sum of partial derivatives with

respect to parameters assigned to that cluster:

w̃i = w̃i − η
∑
w∈ci

∂J(W)

∂w
. (3.15)

The lower portion and the subtraction in Fig. 3.4 illustrates the gradient descent step

of backpropagation when using clustering. After the fine-tuned centroids have been

calculated, they will replace the previous parameter values in each cluster. The update

given in Equation 3.15 is repeated until maximum performance is attained.

The steps for parameter sharing are provided in Algorithm 5. The algorithm is written

from the perspective of CNNs, but adapting it for other DNN designs only requires

clustering the appropriate values. For example the values in fully-connected layer could

be clustered.

After parameter values have been clustered and fine-tuned, there is an opportunity

41

Mathematical Optimizations for Deep Learning Chapter 3

Algorithm 5: parameter Sharing

Require: Inputs I, previously trained full-precision parameters W , number of clusters
m, learning rate η, objective function J .

Ensure: Clustered and fine-tuned parameters W
1. Cluster assignment:
for l = 1 to L

for kth filter in lth layer
Assign parameters in filter k to m clusters using Equation 3.12:
C? ← knn(Wlk,m)
Replace parameters in each cluster with centroid value using Equation 3.13:
Wlk ← centroid(Wlk, C

?)
2. Inference:
Perform standard inference using centroid-mapped parameters.
3. Fine-tuning:
Calculate standard partial derivatives with respect to parameters ∂J(W)

∂w
.

Update centroid values by summing partial derivatives in each cluster and using
gradient decent:
w̃i = w̃i − η

∑
w∈ci

∂J(W)
∂w

Replace parameters in each cluster with updated centroid values.
4. Optionally repeat:
Repeat steps 2 and 3 until objective function is optimized.

to decrease the storage and traffic requirements for loading the DNN parameters from

memory to an accelerator. This process is detailed in the following subsection.

3.4.2 Compression

Parameter sharing reduces the amount of data transmitted from DRAM by inten-

tionally creating redundancy in the form of a cluster index. For example, in Fig. 3.4 we

see that 16 original values are represented by 4 cluster values. Redundancy created by

parameter sharing is exploitable with compression methods [35].

If a network uses b-bits of precision, then a full-precision network with n parameters

requires nb-bits of transmission. After parameter sharing, only a single full-precision

value (the centroid) must be transmitted for each cluster, this results in mb-bits. The

42

Mathematical Optimizations for Deep Learning Chapter 3

indices for m clusters are represented with log2(m) bits, therefore transmitting n indices

requires nlog2(m) bits. In general, n parameters assigned to m clusters compresses the

parameters by a factor of:

nb

nlog2(m) +mb
. (3.16)

For example, referring to Fig. 3.4, and assuming 32-bit floating-point parameters, we see

that nb = 16 · 32 and nlog2(m) +mb = 16 · 2 + 4 · 32. Therefore, by using parameter

sharing and compression, we reduce the traffic by a factor of 352.

3.5 Model Distillation

Large neural networks have a tendency to generalize better than smaller networks.

Similarly, ensemble methods combine the predictions of multiple algorithms, e.g. DNNs,

random forests, SVMs, logistic regression, etc., and almost always outperform the pre-

dictions from an individual algorithm. Both large networks and ensemble methods are

attractive from an accuracy perspective, but many applications cannot support the time

or energy it takes to perform inference using such approaches. Model distillation is the

training of a smaller, more efficient, DNN to predict with the performance close to a

larger DNN or ensemble [41, 42].

When training a multiclass network, first, the softmax of network logits ai is used to

calculate class probabilities:

ŷi =
eai/T∑|C|
j=1 eaj/T

, (3.17)

where C is the set of classes which the network can identify, and T is the temperature and

is usually set to 1. Class probabilities are then used in the cross-entropy error function:

J(y, ŷ) = −
|C|∑
i=1

yi log ŷi, (3.18)

43

Mathematical Optimizations for Deep Learning Chapter 3

where y is the correct training label for a given input, and ŷ is the vector of class

prediction probabilities output from the network. Using standard supervised training, y

is a one-hot encoded vector, with 1 in the position of the correct label, and 0 everywhere

else. Therefore, when the correct class is i = k, Equation 3.18 simplifies to:

J(ŷ, k) = −log ŷk. (3.19)

Equation 3.19 contains the objective function typically differentiated during the training

of a large neural network.

The output probabilities of a previously trained large network capture rich informa-

tion not available in the original training set, which only contain input examples and the

correct label for each input. For example, assume a classification dataset which includes

cars, trucks, and other non-vehicle classes. During training, when learning instances of

car classes, only a single correct label (y, which is one-hot encoded) will be used. Once

trained, if presented with a previously unseen photo of a car, the car and truck class

probabilities will most likely both contain significant information regarding the correct

class, whereas the potato class probability would not contain as much information. Model

distillation uses all of this information.

There are various techniques to implement distillation. Initially, assume a large net-

work has been trained to high performance, and a smaller network is to be trained with

distillation. Additionally, assume we do not have access to the correct training labels. In

this case, we may input random images into the large network and use all of its prediction

probabilities ŷ as a soft target for the distilled network’s output ỹ:

J(ỹ, ŷ) = −
|C|∑
i=1

ŷi log ỹi. (3.20)

44

Mathematical Optimizations for Deep Learning Chapter 3

This is similar to Equation 3.18, except y = ŷ and we have class probabilities for each

entry in ŷ, so it does not simplify to Equation 3.19.

If training labels are also available, the objective function can be improved by sum-

ming Equations 3.18 and 3.20, giving:

J(y, ỹ, ŷ) = −
|C|∑
i=1

αŷi log ỹi + βyi log ỹi, (3.21)

where α is a hyperparameter which sets the relative importance for matching soft targets,

and β sets the relative performance for selecting the correct class. In practice [42] found

that α should be higher than β.

In addition to hyperparameters α and β, [42] also found that the temperature in Equa-

tion 3.17 impacts distillation performance. Higher temperatures make “softer” probabil-

ity distributions. To understand why this may be important, consider the logits [1, 2, 10],

which have a softmax with T = 1 of [1× 10−4, 3× 10−4, 9.995× 10−1]. The small proba-

bilities slow down learning during backpropagation. However, when T = 10 the softmax

becomes [.22, .24, .54], which has ranges that will cause learning to occur more quickly

with backpropagation. It can therefore be useful to use high T values for the softmax

of both the large network and distilled network during the distillation phase6. After

distillation is finished, T may be reset to 1.

Distillation is effective for transferring information from trained large networks to

untrained smaller networks. In [42], a large DNN was trained to classify MNIST, resulting

in 67 test errors. A smaller network, trained and tested with the sames sets as the larger

network, resulted in 146 errors. However, when the smaller network was trained with

distillation, it only made 74 test errors.

6The softmax layer is at the output and has no trainable parameters. It can therefore be replaced
in the larger network with a separate temperature, with no need for retraining.

45

Mathematical Optimizations for Deep Learning Chapter 3

1 2 4 8 16 32 64 128 256
Number of hidden units in distilled model

0.27

0.28

0.29

0.30

0.31

0.32

0.33

RM
SE

Average error across 8 tasks
Distilled model
Best single model
Ensemble selection

Figure 3.5: An ensemble of models was trained for eight classification tasks. Distilla-
tion was then used to train a neural network to behave like each ensemble. The plot
compares average performance between the ensemble of classifiers, the best individual
classifier in each ensemble, and the distilled classifiers. Once the distilled classifier has
enough capacity, its average approaches the ensemble average [41].

Thus far we have discussed how to distill a DNN into a smaller network. Similar

methods may be used to distill an ensemble of classifiers. In [41], eight binary classi-

fication problems were solved by an ensemble of methods, and then a neural network

was trained by distillation to capture the behavior of the ensemble. The average perfor-

mance of the small distilled model is given in Fig. 3.5. It can be seen that the average

performance of the distilled model was similar to a giant ensemble prediction derived

from SVMs, bagged trees, boosted trees, boosted stumps, simple decision trees, random

forests, neural nets, logistic regression, k-nearest neighbor, and naive Bayes.

A smaller distilled model is obviously guaranteed to be more efficient than a large

DNN or ensemble of models, and the distillation approaches presented in this section are

a promising avenue to achieving adequate performance, given hard resource constraints.

The steps for distillation are summarized in Algorithm 6.

46

Mathematical Optimizations for Deep Learning Chapter 3

Algorithm 6: Distillation

Require: Inputs I, optional targets y, previously trained high performance network
〈W ,O〉large, untrained distilled network 〈W ,O〉dist

Ensure: Trained distilled network 〈W ,O〉dist
1. Inference:
ŷ ← output probabilities of 〈I,W ,O〉large
ỹ ← output probabilities of 〈I,W ,O〉dist
2. Calculate loss:
if targets y are available
J(y, ỹ, ŷ) = −

∑|C|
i=1 ŷi log ỹi + yi log ỹi

else
J(ỹ, ŷ) = −

∑|C|
i=1 ŷi log ỹi

3. Update distilled model parameters:
Wdist ← Wdist − η∇Wdist

J
4. Optionally repeat:
Repeat steps 2 and 3 until objective function is optimized.

3.6 Filter Decomposition

AlexNet introduced the first popular high-performance convolutional neural network

(CNN) architecture, which has since been widely adopted and modified [43]. The AlexNet

architecture won fame by winning the 2012 ImageNet Challenge, which required classifica-

tion across 1,000 categories. AlexNet uses five convolutional layers, three fully-connected

layers, and other less computationally expensive layers. Modern CNNs use even more

convolutional layers, for example, Google’s GoogLeNet-v1 CNN architecture uses 57 con-

volutional layers, but only one fully-connected layer.

Fully connected-layers are expensive from a bandwidth perspective, because they

perform only one multiply-accumulate operation (MAC) per byte transferred over mem-

ory. Convolutional layers, however, are efficient from a bandwidth perspective, but they

are expensive computationally. For example, AlexNet’s three fully-connected layers re-

quire 58.6M MAC operations and 58.6M parameters, whereas AlexNet’s six convolutional

layers require 666M MAC operations and only 2.3M parameters. The total cost of a fully-

47

Mathematical Optimizations for Deep Learning Chapter 3

connected layer or convolutional layer is the total number of MACs plus total number of

bytes required for the layer7. The choices of filter sizes in convolutional layers has a large

impact on the bandwidth and computational costs of a CNN. In this section we analyze

the bandwidth and computational impacts of different convolutional filter designs.

We loosely base our discussion on AlexNet, because it is well understood and the

foundation of modern CNN designs. AlexNet convolutional layers use three filter shapes:

11×11, 5×5, or 3×3 and four channel depths: 96, 256, or 384. The shape of convolution

filters has a significant impact on computational cost. To calculate the MAC cost for

layer l’s convolution operations, we first recall the notation introduced in Section 3.1,

where layer l’s filter tensor is denoted Wl ∈ Rcin×w×h×cout and layer l’s input tensor is

denoted Il ∈ Rcin×x×y. When assuming valid padding and stride of one, the number of

MAC operations in a convolutional layer is found by8:

MAC cost = cardinality(Il)×
cardinality(Wl)

cin from Wl

, (3.22)

where cardinality() returns the number of elements in the input tensor. The band-

width required for a filter, assuming 32-bit floating-point parameters, is calculated as:

Byte cost = cin × w × h× cout × 4 bytes. (3.23)

The goal of efficient CNN design is to obtain the highest classification performance, using

the fewest number of MACs and parameters. Therefore from an efficiency perspective,

the cost of CNN inference is:

COST() = c1MAC cost + c2Byte cost + c3CNN errors, (3.24)

7First-order estimates of power costs can be calculated using Table 3.1.
8Our calculations assume there is no pooling layer after convolution, which is now commonly the

case.

48

Mathematical Optimizations for Deep Learning Chapter 3

convolution

Figure 3.6: Example calculation of MAC cost of the fifth convolution in AlexNet. For
intuition in understanding MAC cost, consider that each point in I6 is the result of
applying a 384×3×3 filter tensor to I5. Therefore the total number of MACs needed
to calculate I6 is 256 × 13 × 13 × 384 × 3 × 3. This is a different perspective on the
calculation than given in the main text.

Decompose

Two Apply sequentially

Figure 3.7: A “large” convolutional filter may be separated into two smaller filters,
which retain the feature detection capabilities of the larger filter. The outputs of the
smaller filters are summed. This approach is used to reduce the number of bytes
required to represent filters and to reduce the number of MAC operations.

where the coefficients c depend on the priorities and budget of the CNN’s designer.

To better understand Equation 3.22, consider the calculation of the number of MACs

in the fifth convolutional layer of AlexNet, illustrated in Fig. 3.6. In this case cardinality(I5) =

384 × 13 × 13 and cardinality(W5) = 384 × 3 × 3 × 256. So the the total number of

MAC operations for I5 ∗ W5 is 384 × 13 × 13 × 3 × 3 × 256 = 150M. Additionally, the

size of W5 is 384× 3× 3× 256 = 885k parameters.

As another example, assume that instead of 3 × 3 filters, 5 × 5 filters were used in

AlexNet’s fifth convolutional layer. 5× 5 filters cause the number of MAC operations to

increase to 415M and byte cost to increase to 2.5MB. A larger filter can capture more

detail, and suppose that switching to a 5× 5 filter increased classification accuracy, but

caused the total cost to exceed the time and energy budget allotted to the CNN. Perhaps

surprisingly, there are techniques to extract the benefit of 5×5 filters without using 5×5

filters.

The concept of filter decomposition was introduced in [44], where two smaller filters

49

Mathematical Optimizations for Deep Learning Chapter 3

Wl,1,Wl,2 were applied to the input tensor Il and then added (prior to the nonlinearity),

giving Il+1 = Il ∗ Wl,1 + Il ∗ Wl,2. As shown in Fig. 3.7, instead of using a single 5× 5

filter tensor in the previous case, two 3 × 3 tensors can be used. Specifically, instead

of performing 256 × 13 × 13 × 5 × 5 × 384 = 415M MAC operations (requiring 2.5M

parameters), 256× 13× 13× 3× 1× 384× 2 = 100 MACs are performed (requiring 295k

parameters). Similarly, a 5 × 1 and 1 × 5 filter may be used, requiring 256 × 13 × 13 ×

5× 1× 384× 2 = 166M MAC operations (requiring 983k parameters), which is close to

the original 150M MACs and 885k parameters required when using a single 3 × 3 filter

tensor.

Going even further, [45] introduced 1 × 1 convolutions, which are used to create

bottleneck layers, because they can shrink an input tensor. 1× 1 filters detect correlation

between corresponding parameters in each channel, which may be seen when considering

their full notation: cin×1×1×cout. For example, suppose we are given input Il ∈ Rcin×x×y,

then a filter Wl ∈ Rcin×1×1×cout may be chosen such that cout � cin. Convolving Wl with

Il gives Il+1 ∈ Rcout×x×y. The information from Il is not lost, even though Il+1 now has

fewer channels than Il. 1 × 1 convolutions capture channel correlations, compared to

larger filters which capture channel and spatial correlations.

Various filter schemes can be combined. For example, a 1 × 1 convolution may be

followed by a 3× 3 or 5× 5 convolution. The goal here is to extract channel correlations

using the 1 × 1 convolution and to extract spatial (and channel) correlations using the

3×3 or 5×5 filter. Going back to our original AlexNet example, we calculated the number

of MACs used for the convolution of I5 and W5 as 256× 13× 13× 3× 3× 384 = 150M

MACs and 885k parameters. We can reduce this by picking a smaller cout size for W ′5,

e.g. 64, giving 256×13×13×1×1×64 = 2.8M MACs and 16k parameters. We may then

add another convolution layer, using a 384 × 3 × 3 filter W ′6 and return to the original

shape of I6 using 384 × 13 × 13 × 3 × 3 × 64 = 37M MACs and 221k parameters. We

50

Mathematical Optimizations for Deep Learning Chapter 3

Input
Tensor

}c=192

1x1 CONV

1x1 CONV 3x3 MAX POOL

3x3 CONV 5x5 CONV 1x1 CONV

}c=256

1x1 CONV

Output
Tensor

c=64 c=128 c=32 c=32

c=64 c=64 c=192

Figure 3.8: Diagram of an Inception module. Layer inputs are passed through separate
1 × 1 bottleneck layers, then through standard convolutional layers. This technique
allows for the use of different filter sizes, without paying the computational or band-
width cost of normal convolutional layer implementations [46].

now have extracted both channel and spatial correlations, using 1 × 1 and 3 × 3 filters

and a total of 39.8M MACs and 237k parameters – much fewer than the original example

which used 150M MACs and 885k parameters. Bottleneck layers followed by convolution

has proven to be an effective way to increase efficiency without sacrificing accuracy.

Filter decomposition represents a fundamentally different way to improve DNN infer-

ence efficiency, compared to earlier sections. Specifically, by making careful architectural

choices, high performance can be maintained and fewer parameters and MAC opera-

tions can be used. The methods introduced here may also be combined. For example,

Inception is a modern CNN architecture, which combines bottleneck layers and various

filter shapes to capture the benefits of every possible combination [46]. Fig. 3.8 illus-

trates an Inception “module”, which combines many convolutional layers and outputs

each combination as stacks of sub-channels. Without the 1 × 1 bottleneck layers, such

an architecture would be much more expensive.

51

Mathematical Optimizations for Deep Learning Chapter 3

3.7 Summary

This chapter introduced various mathematical and algorithmic methods for optimized

DNN inference:

• Eliminating “small” parameters via pruning, which reduces the required number of

multiply-accumulate operations.

• Quantization, or reducing the precision, of layer inputs and/or parameters to reduce

computation and data transfer costs.

• Sharing parameters between layer units and therefore enabling data transmission

compression.

• Training small models to mimic larger models by distilling the information from

the larger models into the smaller models.

• Separating larger convolutional filters into smaller filters, while retaining the per-

formance of the larger filters.

These optimization methods may be used individually or may be combined for greater

optimization. Note that the methods are not equivalent and should be expected to affect

performance metrics in different ways.

Unfortunately most of the optimizations introduced here will result in an accuracy

loss when compared to a high-performance model which was designed with no regard to

computational efficiency. The trade-off between accuracy, redundancy, and precision is

depicted in Figure 3.9 [47]. In general, one may expect to obtain high accuracy when

using high-precision (e.g. floating-point) arithmetic (Pt. 2 in Figure 3.9), and lower

accuracy when using low-precision arithmetic (Pt. 4). But low-precision arithmetic may

be offset with redundancy (e.g. larger models) (Pt. 1). Likewise the errors caused

52

Mathematical Optimizations for Deep Learning Chapter 3

1 2

3 4

5

redundancy precision

accuracy

Figure 3.9: The notional trade-off between accuracy, redundancy, and precision. In
general, one may prioritize any two at the expense of the third [47]. There is currently
no formal proof for this plot, but most of the optimization papers referenced in this
chapter report metrics across the different axes and seem to generally follow the trend
of this plot.

by using low-redundancy (few parameters) models may be offset, to some extent, with

high-precision arithmetic.

Ultimately, it is the DNN architect’s task to find a design which achieves minimum

acceptable performance, given a particular resource (e.g. latency, silicon area, power)

budget. The methods introduced in this chapter facilitate this task.

53

Chapter 4

RAPDARTS: Resource-Aware

Progressive Differentiable

Architecture Search

4.1 Introduction

The optimal design of a neural architecture depends on 1) the target dataset, 2) the

set of available primitive operations, 3) how the primitive operations are composed into

a neural architecture and optimized, and 4) resource constraints like hardware cost, min-

imum accuracy, or maximum latency. In this chapter, we assume the target dataset has

been provided, and we provide guidelines and analysis for searching for neural architec-

tures under one or more hardware resource constraints.

Convolutional layers and fully-connected layers are parameter-heavy operations. Those,

along with other lighter primitive operations, like pooling layers or batch normalization,

may be composed into an endless variety of neural architectures. But what is the optimal

neural architecture for a given dataset? There is no existing closed-form solution to that

54

RAPDARTS: Resource-Aware Progressive Differentiable Architecture Search Chapter 4

"Locked"
Architecture
Parameters

"Locked"
Network

Parameters
Update

Architecture
Update
Network

Figure 4.1: Gradient-based Neural Architecture Search (GBNAS) methods maintain
two sets of parameters. Neural network parameters are represented by θ and archi-
tecture parameters are represented by α. GBNAS algorithms leverage differentiable
functions, parameterized by architecture parameters, to design deep neural networks,
which are parameterized by network parameters. First-order optimization alternates
between “locking” one set of parameters and updating the other.

question.

Historically, the highest performing neural architectures have been found by apply-

ing heuristics and a large amount of compute. Some well known examples of modern

hand-crafted architectures include AlexNet [43], VGG16 [48], ResNet [49], and the In-

ception series [46, 50, 51]. None of these examples consider hardware, and they pursue

classification performance at all cost.

Neural Architecture Search (NAS) methods automate strategies for discovery of high

performing neural architectures. A reinforcement learning-based approach was the first

post-AlexNet NAS method with state-of-the-art performance on CIFAR-10 [7, 8]. The

RL approach was quickly followed by a high performance Evolutionary Strategy (ES)

based method [9]. While both the RL and ES methods discovered high performance

architectures, their use came at the cost of thousands of GPU hours.

Gradient-based NAS (GBNAS) methods have the benefit of being directly optimized

through gradient descent and consequently complete the search faster than other NAS

methods. The basic idea of GBNAS is given in Fig. 4.1. The search process alternates

between temporarily fixing one set of parameters, i.e. assuming they are constants, and

updating the other set of parameters. This approach has no convergence guarantees, but

55

RAPDARTS: Resource-Aware Progressive Differentiable Architecture Search Chapter 4

it works well in practice.

Because neural models are now widely deployed on systems like edge devices, in cars,

and running in servers, available hardware resources also have an impact on what may be

considered an “optimal” neural architecture design. Hardware resource constraints are

often summarized as size, weight, and power (SWaP). Resource constraints could also

include maximum latency, minimum throughput, or a manufacturing budget which will

determine if a custom ASIC is an option, if a COTS device is sufficient, or if something

semi-custom, like an FPGA, is an option. For example, during the design of Google’s

TPUv1, architects were given a budget of 7 ms per inference (including server commu-

nication time) for user-facing workloads [37].

Recent efforts described below implement NAS strategies incorporating hardware

resource constraints into the search. GBNAS methods capture hardware resource con-

straints within a differentiable loss function. This approach enables the architecture

search to yield network architectures biased toward satisfying resource constraints.

In this chapter we have modified P-DARTS [52], which in-turn is based on another

popular gradient-based NAS algorithm, DARTS [10], to support resource costs. We use

our modified GBNAS algorithm to search for many neural architectures under various

resource consumption penalties. We then use our results and observations to answer the

following questions:

• What is the computational cost of searching for satisficing architectures?

• What heuristics can be used to guide the search and training process to reduce

compute time?

• How reproducible are search results under random initial conditions?

56

RAPDARTS: Resource-Aware Progressive Differentiable Architecture Search Chapter 4

Figure 4.2: The function of DARTS architecture parameters is to scale the output of
primitive operations. In this illustration the primitive operations include 3 × 3 and
5×5 convolutional filters parameterized by tensors θ1 and θ2 respectively. The output
feature maps of the primitive operations are element-wise scaled � by the softmax
(sm) of architecture parameters α1 and α2. The scaled output feature maps are then
added, thereby creating a mixed operation. This notional illustration shows a network
with only two primitive operations, followed by a nonlinearity, producing an output
prediction ŷ. In practice, there may be many mixed operations, each containing many
primitive operations, forming a deep network.

4.2 Related Work

The first competitive NAS approach applied to modern image classification tasks was

based on reinforcement learning (RL) [7]. In this chapter, an LSTM-based RL agent was

trained to output primitive operations which were then chained together into a directed

acyclic graph. After training and evaluating the graph, the agent was then encouraged

or discouraged, via a positive or negative reward derived from classification accuracy, to

generate similar graphs in the future or to explore and make new graphs.

The reinforcement learning NAS approach worked well and was able to achieve high

accuracy, but at unheard of computational expense. It required 3,150 GPU-days to

discover one of their published architectures.

Related approaches to sampling neural architectures include Markov chain Monte

Carlo methods [53], evolutionary strategies [54], and genetic algorithms [55]. Similar

to RL approaches, all of these optimization methods generate populations of neural

57

RAPDARTS: Resource-Aware Progressive Differentiable Architecture Search Chapter 4

+

+

+

+

+

+

+

+

Figure 4.3: The DARTS cell architecture has 14 mixed operations (represented by
Oi) distributed among four steps with skip-connections between each step. At each
step, the outputs of the mixed operations are element-wise added. The sum is then
passed as an input to a mixed operation in the next step. All element-wise sums are
concatenated as the cell output and fed forward to the next cell in the network.

architectures. The populations are then trained and a fitness value is derived from the

classifier’s final test performance. The fitness value is used to encourage or discourage

the design of the next population of architectures.

Reinforcement learning, Markov chain Monte Carlo methods, evolutionary strategies,

and genetic algorithms discover high-performance architectures, but they are incredibly

expensive. These methods often require 100× to 1000× more compute than gradient-

based methods [56].

Gradient-based neural architecture search has recently become popular because of its

efficiency [10, 57, 58, 52]. GBNAS methods maintain two sets of parameters: network

parameters θ and architecture parameter α. Previous GBNAS methods have introduced

various methods to optimize and use the two parameter sets. In the simplest case,

optimization is achieved by optimizing one set of parameters and then the other. This

first-order optimization approach is illustrated in Fig. 4.1.

Differentiable Architecture Search (DARTS) is a GBNAS technique that uses mixed

operations to compute multiple primitive operations in parallel, followed by element-wise

58

RAPDARTS: Resource-Aware Progressive Differentiable Architecture Search Chapter 4

summation [10]. The mixed operations are scaled by architecture parameters prior to

summation. For example, as illustrated in Fig. 4.2, a 3 × 3 convolutional filter and a

5× 5 convolutional filter can be designed such that both receive the same input feature

map and both generate additively conformable output feature maps.

Extending this technique, DARTS composes 14 mixed operations into a cell. Eight

cells are then chained to create the network. Each cell has the same connectivity and

architecture parameters (α) for mixed operations, but the network parameters (θ) are

learned independently in each primitive operation and in each cell. An illustration of the

DARTS cell connectivity is given in Fig. 4.3.

DARTS has a limitation which requires the entire neural network (i.e. all cells and all

mixed operations) to fit in GPU memory. This limits the depth of the neural network as

well as the batch size during training. Progressive Differentiable Architecture Search (P-

DARTS) mitigates the memory limitation of DARTS by 1) gradual growth in the depth

of the neural network, and simultaneously 2) gradual reduction in number of primitive

operations per mixed operation, thus reducing model size [52].

ProxylessNAS also extended DARTS [58]. ProxylessNAS treats the architecture pa-

rameters of each mixed operation as a probability distribution. ProxylessNAS stores a

large over-parameterized network in system memory, because the network is too large to

fit on a GPU. During evaluation, a subnetwork is sampled and transferred to the GPU

for evaluation. Gradients are calculated and used to update the shared-weights of the

over-parameterized network.

Addressing the need to search for architectures which not only strive for high accu-

racy, but also meet additional performance constraints, hardware-aware NAS techniques

have been pursued. ProxylessNAS is particularly relevant for hardware-aware GBNAS,

because it formalizes the approach to incorporating resource costs during the search. In

the context of classification, ProxylessNAS creates a loss function that incorporates both

59

RAPDARTS: Resource-Aware Progressive Differentiable Architecture Search Chapter 4

a cross-entropy loss for the classification accuracy as well as a resource loss for latency.

In this chapter we augment P-DARTS with a ProxylessNAS-style resource loss and

analyze its impact on architectures discovered during the search phase.

4.3 Method

4.3.1 Resource-Aware Differentiable Neural Architecture Search

When training a convolutional neural network for classification, the goal is to obtain a

model that best predicts labels from observations drawn from an underlying distribution

of interest. Fitting a neural model to an underlying distribution is achieved by finding

optimal network parameters θ∗ that minimize expected prediction error on an available

dataset:

θ∗ = arg min
θ

[
J(θ) = E(x,y)∼p̂dataL(f(x;θ), y)

]
, (4.1)

where J is the objective function, x are dataset observations, y are dataset labels, p̂data

is the empirical distribution, L is a prediction error loss function, and f is the neural

network parameterized by θ.

Gradient-based NAS methods introduce another set of architecture parameters α,

producing:

g(x;θ,α). (4.2)

We refer to g as a directed acyclic graph, or simply graph, to highlight that it is composed

of a neural network whose control flow is modified by other non-network architecture

parameters. Note the distinction between f used in Equation 4.1, which is only param-

eterized by network parameters, and g used in Equation 4.2, which is parameterized by

both network and architecture parameters.

60

RAPDARTS: Resource-Aware Progressive Differentiable Architecture Search Chapter 4

Architecture parameters, like network parameters, are scalar-valued tensors. Archi-

tecture parameters are used to control either the weight of primitive operations, as in

[10, 52], or the probability primitive operations will take place, as in [59, 58]. In both

cases, the scalar values are at least interpreted as one or more probability distributions

through processing by the softmax function. In our case, the probability distribution is

then used for evaluation of a mixed operation.

A mixed operation is illustrated in Fig. 4.2, and it is formalized as:

O(x) = E
[
o(x)

]
≈

N∑
i=1

exp(αi)∑
j exp(αj)

oi(x) =
N∑
i=1

pioi(x), (4.3)

where oi(x) is a primitive operation, and O(x) is equivalent to the expected value of the

primitive operations. This formalism extends the mixed operation to the inclusion of N

primitive operations that are evaluated in parallel and designed such that their outputs

are additively conformable. In practice many mixed operations are used, with unique

subsets of α and θ used for the calculation of each expected value, but we show only a

single mixed operation here for clarity.

The inclusion of architecture parameters implies there are now two objective functions

to be optimized:

J(θ) = E(x,y)∼p̂dataL1(g(x,α;θ), y),

J(α) = E(x,y)∼p̂dataL1(g(x,θ;α), y). (4.4)

The graph evaluations in Equation 4.4 are now denoted g(x,α;θ) and g(x,θ;α).

This notation highlights that in the case of J(θ) the graph is evaluated at input and

architecture parameter constants (x,α) and optimized using network parameters θ. In

the second case of J(α) the graph is evaluated at input and network parameter constants

61

RAPDARTS: Resource-Aware Progressive Differentiable Architecture Search Chapter 4

Figure 4.4: P-DARTS may be extended with the calculation of an expected resource
cost (C1) for each mixed operation. When the gradient of the expected resource cost
is calculated, the more expensive primitive operations are penalized more heavily than
the less expensive operations, but the penalty is balanced by how much the primitive
operation contributes to classification accuracy.

(x,θ) and optimized using architecture parameters α. Therefore the following bilevel

optimization must be solved:

θ∗ = arg min
θ

[
J(θ) = E(x,y)∼p̂dataL1(g(x,α∗;θ), y)

]
,

α∗ = arg min
α

[
J(α) = E(x,y)∼p̂dataL1(g(x,θ∗;α), y)

]
. (4.5)

When using first-order differentiable methods, this bilevel optimization is solved by alter-

natingly “locking” one set of parameters and updating the other with gradient descent.

Second-order optimization methods, which involve calculation of the Hessian, are also

possible and slightly better in terms of accuracy, but this comes at significant computa-

tional cost. However, it is possible to approximate the second-order optimization with

reduced computational cost [10].

Our method extends P-DARTS to discover neural architectures biased toward the

satisfaction of resource constraints. We do this by including one or more “expected

resource cost” loss terms. As mentioned previously, each of the primitive operations in

a mixed operation is associated with a unique architecture parameter. P-DARTS uses

62

RAPDARTS: Resource-Aware Progressive Differentiable Architecture Search Chapter 4

14 mixed operations in the search phase of cell architecture discovery, and there are

eight primitive operations per mixed operation, so there are 14 × 8 = 112 architecture

parameters total.

The expected value of a single mixed operation was given in Equation 4.3. We

temporarily make index values of the mixed operation explicit here for clarity:

Ok(xk) =
8∑
i=1

pk,i · ok,i(xk), (4.6)

where k is the mixed operation index. Note here that the probability distributions,

pk,i, are now tied to a particular mixed operation. This calculation is equivalent to the

addition node in Fig. 4.2.

As introduced in ProxylessNAS, the probabilities used in the mixed operation calcu-

lation are also conducive to calculation of the expected value of various resource costs.

For example, if there is a cost function that takes as input the description of each prim-

itive operation (including the input feature map dimension information) and outputs a

resource cost, it may be used for the calculation of an expected resource cost of the mixed

operation:

E
[
cost(Ok(xk))

]
≈

8∑
i=1

pk,i · cost(ok,i(xk)). (4.7)

The cost function may be an analytical function, e.g. number of bytes required by the

model, or the cost function could be based on a simulation or a surrogate model trained

from data collected from a physical device.

The expected cost of the mixed operation is differentiable with respect to the mixed

operation’s architecture parameters. Accordingly, the partial derivative of the expected

63

RAPDARTS: Resource-Aware Progressive Differentiable Architecture Search Chapter 4

resource cost with respect to architecture parameter αi is given as:

∂E
[
cost(O(x))

]
∂αi

≈
∂
[
p1c1 + p2c2 + · · ·+ p8c8

]
αi

,

=
8∑
l=1

∂
[

exp(αl)∑
j exp(αj)

· cl
]

∂αi
,

=
8∑
l=1

clpl(δi,l − pi). (4.8)

where we have abbreviated cost(oi(x)) as ci, δi,l = 1 if i equals l and 0 otherwise, and we

have dropped the mixed operation index k for brevity.

We denote the sum of expected mixed operation costs as:

Cm =
14∑
k=1

E
[
costm(Ok(xk))

]
, (4.9)

Note that unique m correspond to unique resource costs, e.g. C1 could be the sum of

expected mixed operation parameter sizes, and C2 could be the sum of expected mixed

operation latencies.

We denote the sum of the classification and resource losses as:

L = L1 +
M∑
m=1

λmCm, (4.10)

where M is the number of resource costs to satisfy, and λm is the resource-cost hyper-

parameter and controls how important the resource cost m is compared to accuracy as

well as other resource costs.

64

RAPDARTS: Resource-Aware Progressive Differentiable Architecture Search Chapter 4

10 10 10 9 10 8 10 7

1

2250000

2500000

2750000

3000000

3250000

3500000

3750000

4000000

4250000

Ar
ch

ite
ct

ur
e

pa
ra

m
et

er
 c

ou
nt

Effect of 1 on Parameter Count

Pub P-DARTS
Min P-DARTS
Limit

Figure 4.5: Coarse-search for resource expected parameter count hyperparameter λ1.
As λ1 grows beyond 10−7, RAPDARTS increasingly identifies architectures that re-
quire less than 3 M parameters. The publish P-DARTS architecture is marked with
the dashed line. The minimum P-DARTS architecture found by us is marked with
the dash-dot line. Our self-imposed budget is marked with the solid line.

10 62 × 10 7 3 × 10 7 4 × 10 7 6 × 10 7

1

2400000

2600000

2800000

3000000

3200000

3400000

3600000

3800000

4000000

Ar
ch

ite
ct

ur
e

pa
ra

m
et

er
 c

ou
nt

Effect of 1 on Parameter Count (zoomed)

Pub P-DARTS
Min P-DARTS
Limit

Figure 4.6: Fine-search focused 2 × 10−7 < λ1 < 10−6. At around λ1 = 6 × 10−6

architectures are frequently generated which meet the 3 M parameter constraint.

The bilevel optimization in Equation 4.5 may now be slightly rewritten as:

θ∗ = arg min
θ

[
J(θ) = E(x,y)∼p̂dataL(g(x,α∗;θ), y)

]
,

α∗ = arg min
α

[
J(α) = E(x,y)∼p̂dataL(g(x,θ∗;α), y)

]
, (4.11)

where only L1 has been replaced by L. As before, this may be optimized using first or

65

RAPDARTS: Resource-Aware Progressive Differentiable Architecture Search Chapter 4

second-order approaches. For intuition on the continued use of a single loss function L,

consider Fig. 4.4. Under the assumption that a change in network parameters θ creates

no change in cost (given a fixed input feature map and primitive operation), the gradient

of C1 with respect to θ is zero. On the other hand, a change in architecture parameters

α creates a change in both L1 and C1. So calculating the gradient of L = L1 +λ1C1 with

respect to both θ and α results in the correct values.

Using the method above, we created Resource-Aware P-DARTS (RAPDARTS). Prac-

tically, the modification to P-DARTS requires the total expected resource cost be returned

during the forward pass of an input tensor. To achieve this, during calculation of each

mixed operation (Equation 4.6), we also calculate the expected resource cost (Equation

4.7). The expected cost for all mixed operations is accumulated and added to the clas-

sification loss (Equation 4.9). If multiple costs are required, e.g. model size and latency,

each cost requires its own version of Equation 4.7, and must be accumulated individually

from other costs.

4.4 Experiments and Results

We use RAPDARTS to search for CIFAR-10 neural architectures. We follow the

architecture discovery algorithm of P-DARTS and search for cell architectures containing

the same primitive operations as used by DARTS and P-DARTS, namely:

• Zero*

• Skip-Connect*

• Avg-Pool 3× 3*

• Max-Pool 3× 3*

• Separable 3× 3 Conv.

• Separable 5× 5 Conv.

• Dilated 3× 3 Conv.

• Dilated 5× 5 Conv.

66

RAPDARTS: Resource-Aware Progressive Differentiable Architecture Search Chapter 4

All of the above primitive operations are standard convolutional layers except Zero

which allows a cell to learn not to pass information. Skip-connect is a parameter-free

operation which allows information to pass through the mixed operation without modi-

fication. Parameter-free primitive operations are marked with an asterisk.

In an effort to simulate a real-world constraint, we restrict ourselves such that discov-

ered CIFAR-10 architectures must have less than 3 × 106 parameters. This constrained

optimization problem may be captured as:

minimize
θ,α

L1(g(x;θ,α), y)

subject to Parameter count ≤ 3× 106.

(4.12)

We perform NAS adhering to this constraint using the RAPDARTS framework above.

For the purpose of baseline calculations, we first consider the unconstrained results

from P-DARTS. The authors of P-DARTS provided a reference architecture discovered

through their algorithm [60]. We trained and evaluated that architecture eight times

using the latest version of the P-DARTS code [61]. We then used the results from the

repeated training to obtain performance statistics of the published architecture.

The resulting trained models achieved 2.60± .13% error on the CIFAR-10 validation

dataset. Additionally, the published P-DARTS architecture requires 3.4×106 parameters.

We then executed the P-DARTS architecture search code four times to test the ability

to rediscover architectures with the performance of the published architecture. The

four searches resulted in nine architectures. However, per the P-DARTS algorithm, we

eliminated one architecture with more than two skip-connections in the normal cell (see

P-DARTS paper for details on the two cell types).

None of the eight valid architectures were the same as the official P-DARTS CIFAR-10

architecture, but this is not surprising, given the size of the P-DARTS architecture search

67

RAPDARTS: Resource-Aware Progressive Differentiable Architecture Search Chapter 4

2750000 2800000 2850000 2900000 2950000
Architecture parameter count

2.7

2.8

2.9

3.0

3.1

3.2

CI
FA

R-
10

 v
al

id
at

io
n

er
ro

r (
%

)

Parameter Count vs. CIFAR-10 Validation Error

Figure 4.7: Relationship between RAPDARTS model size and trained validation error
appears uncorrelated. Indicating that at this variation of model capacity, model size
is not a predictor of final classifier performance.

space. Because of this, we compare our results to the statistics of various architectures

discovered during our search, instead of the statistics of the single published architecture.

The resulting trained models achieved 2.72± .22% error on CIFAR-10. The architectures

required 3.9±.3 M parameters. The smallest P-DARTS model required 3.4 M parameters.

We now explore the impact of different hyperparameter values on the unconstrained

multi-objective version of Equation 4.12:

L = L1 + λ1C1, (4.13)

where C1 is the sum of expected number of parameters in the model. As introduced in

Equation 4.10, the λ1 scalar is a hyperparameter which determines the relative impor-

tance of the resource cost explicitly and the relative importance of the accuracy of the

network implicitly.

As stated in this section’s introduction, our self-imposed resource budget is 3 M

parameters. The default P-DARTS search does not generate models that small, however,

by using RAPDARTS we are able to satisfy this constraint. To achieve this, we need to

68

RAPDARTS: Resource-Aware Progressive Differentiable Architecture Search Chapter 4

C10 Test Err (%)
Architecture Best Avg Params (M) Search Cost Method
AmoebaNet [62] N/A 2.55 ± 0.05 2.8 3150 evolution
ASHA [63] 2.85 3.03± 0.13 2.2 9 random
DARTS [10] 2.94 N/A 2.9 .4 gradient
DSO-NAS [64] N/A 2.84± 0.07 3.0 1 gradient
SNAS [57] 2.85 N/A 2.3 1.5 gradient
RAPDARTS (ours) 2.68 2.83± 0.05 2.8 12 gradient

Table 4.1: RAPDARTS CIFAR-10 error rate versus others for models with less than
3×106 parameters. We also include NAS results from randomly searched architectures
[63]. Search Cost is measured in GPU-days. For RAPDARTS, search cost includes
actual cost for all experiments for finding the 2.68% model. In total, the search and
train phases required 26 GPU-days.

discover a λ1 value to guide the architecture search. That is accomplished by finding a

coarse range of suitable λ1s and then identifying a refined λ1.

The coarse λ1 is identified by performing various architecture searches with λ1s sam-

pled randomly from a uniform distribution U([10−11, 10−6]). Each search requires .3

GPU-days.

Results from the coarse-search are shown in Fig. 4.5. At approximately λ1 > 10−7,

architectures begin to be generated which meet the 3× 106 parameter count constraint.

Parameter counts reduce dramatically as λ1 approaches 10−6, but we have observed that

models with higher capacity tend to perform better than models with lower capacity, so

it is unlikely that architectures derived from λ1 > 10−6 are preferred over those closer to

the 3 M parameter threshold.

Fig. 4.6 “zooms in” on the previous figure, focusing on λ1 sampled uniformly from

U [(2 × 10−7, 10−6)]. Near λ1 = 6 × 10−7 ≈ 1 × 10−6.2, architectures are generated that

often require less than 3 M parameters.

One final search is then performed on λ1 sampled uniformly from U([10−6.24, 10−6.2]).

This test resulted in 48 valid architectures with resulting models between 2.1 M and 2.96

M parameters. We then trained the 16 largest resulting architectures. The resulting best

69

RAPDARTS: Resource-Aware Progressive Differentiable Architecture Search Chapter 4

model achieved 2.68% CIFAR-10 validation error and required 2.8 M parameters. The

results for all 16 trained models are plotted in Fig. 4.7. As can be seen, there is no

linear relationship at this scale between parameter count and CIFAR-10 accuracy. For

statistical confidence, we retrained the best model eight times with different seeds and

obtained 2.83%± .05 validation error.

The discovered cells corresponding to the 2.68% CIFAR-10 validation are shown in

Fig. 4.8. The DARTS-based algorithms use two cell types: a “normal” cell, which main-

tains input and output feature map dimensionality, and a “reduce” cell, which decrease

the output feature maps dimensionality.

The cell architectures discovered by RAPDARTS are noteworthy in several respects.

First, the normal cell has discovered a “deep” design, similar to that discovered by P-

DARTS, but only light-weight convolutional operations are used. Second, all pooling

operations have been moved to the reduce cells.

Table 4.1 compares the RAPDARTS architecture with the performance of recent

architectures with parameter counts less than 3 M. RAPDARTS competes favorably

with the others.

We report the actual number of hours spent searching for our winning architecture,

not merely the search time for a single architecture. Including both the coarse and fine-

search phases, 40 different λ1 values were used. This took a total of 12 GPU-days to

compute.

We trained 16 of the fine-search phase models to completion. Each model required

less than 20 hours to train, so the 16 fine-search models took less than 14 GPU-days

total to train. All experiments were performed using an NVIDIA V100 GPU.

70

RAPDARTS: Resource-Aware Progressive Differentiable Architecture Search Chapter 4

4.5 Summary

Classification accuracy achieved by neural architecture search methods now surpass

hand-designed neural models. First-generation NAS methods include those based on

evolutionary search and reinforcement learning. Second generation NAS methods use

gradient-based optimization. In this chapter we present RAPDARTS, which augments a

popular gradient-based NAS method with the ability to target neural architectures meet-

ing specified resource constraints. We use RAPDARTS to identify a neural architecture

achieving 2.68% test error on CIFAR-10. This is competitive with other existing results

for models with less than 3 M parameters.

We believe third-generation methods will be gradient-based and attempt to make

more aspects of the search differentiable. For example, the P-DARTS (and RAPDARTS)

search begins with five cells, then grows the search network to 11 cells, and finally 17

cells. At the same time, as the network grows, less important primitive operations are

dropped. The “gradual” adjustments introduced by this technique enable architecture

parameters learned by gradient-descent in one phase to be useful in another. It would

be preferable to make these changes even more gradually. We leave that for future work.

In conclusion, we have presented an example that optimizes two objectives: mini-

mizing accuracy loss while keeping the number of model parameters below a resource

constraint threshold. A limitation of our method is that the number of parameters re-

quired by our discovered models may not optimize other constraints, e.g. minimum

latency. To address this concern, future work will focus on multiple resource constraints

guided by more hardware-specific costs.

71

RAPDARTS: Resource-Aware Progressive Differentiable Architecture Search Chapter 4

c_{k-2}

0

skip_connect 1
sep_conv_3x3

2
sep_conv_3x3 3

skip_connect

c_{k-1}

dil_conv_3x3

dil_conv_3x3

dil_conv_3x3

c_{k}

dil_conv_3x3

(a) Normal Cell

c_{k-2}
0

max_pool_3x3

1
avg_pool_3x3

2

avg_pool_3x3 3

avg_pool_3x3

c_{k-1}

max_pool_3x3

avg_pool_3x3

max_pool_3x3

avg_pool_3x3 c_{k}

(b) Reduce Cell

Figure 4.8: Cells found by RAPDARTS achieving 2.68% CIFAR-10 validation error.
All primitive operations are low-cost operations.

72

Chapter 5

Impacts of Mathematical

Optimizations on Reinforcement

Learning Policy Performance

5.1 Introduction

In this chapter we study the effects of adapting pruning, quantization, and com-

pression methods to policies trained using the Vanilla Policy Gradient (VPG) method.

This section introduces the primitive optimizations in the context of reinforcement learn-

ing. The following section presents the results of their application to the Vanilla Policy

Gradient method.

5.1.1 Quantization

In 2015, BinaryConnect (BC) [38] was an early DNN quantization method, and it ex-

emplifies the field’s approach to quantization. During forward-propagation, BC quantizes

full-precision DNN parameters to {−1, 1}, using the sign function:

73

Impacts of Mathematical Optimizations on Reinforcement Learning Policy Performance Chapter 5

θb =


+1 if θ ≥ 0,

−1 else.

(5.1)

Equation 5.1 discards real-valued information, but, in doing so, it also eliminates the

need for floating-point MACs during forward-propagation. Instead, signed floating-point

addition may be used for neuron pre-activation calculations. During backpropagation,

the error caused by quantization is used to update the real-valued θs. From a hardware

perspective, when configured for AlexNet, memory overhead is 32× less when using

BC-derived parameters. However, there is a performance loss when using quantization;

with the AlexNet topology, BinaryConnect achieves 61% top-5 accuracy on ImageNet,

compared to 80.2% accuracy when using the same DNN topology and 32-bit full-precision

accuracy [33].

Applied to RL, BinaryConnect may be used with Vanilla Policy Gradient. VPG

minimizes the cost1:

C = − 1

T

T∑
t=1

logπθ(at|st)Ât (5.2)

where Ât is the advantage at time t. Optimal calculation of Ât is a focus of RL re-

search, but VPG sets At equal to the expected sum of trajectory rewards. The cost

function in Eq. 5.2 can be combined with the BinaryConnect optimization to create the

BinaryConnect+VPG method as given in Algorithm 7.

In addition to BinaryConnect, we consider BinaryNet [40], which operates similarly,

with the addition that activations are also binarized. When using BinaryNet, the activa-

tion inputs are summed, as with BinaryConnect, and then the resulting sum is converted

to [−1, 1] using the sign function. This optimization eliminates all full-precision cal-

culations and replaces them with signed integer calculations. As with BinaryConnect,

1Minimizing cost and maximizing reward are equivalent, if cost equals the negative of reward.

74

Impacts of Mathematical Optimizations on Reinforcement Learning Policy Performance Chapter 5

Algorithm 7: BinaryConnect+VPG

Require: A state observation, selected action, advantage, previous parameters θt−1
(parameters) and bt−1 (biases), and learning rate η.

Ensure: Updated {−1, 1}-valued parameters θt and real-valued bias bt.
1. Forward propagation:
θb ← binarize(θt−1)
For k = 1 to L− 1, compute activation ak, knowing ak−1, θb and bt−1
Compute output probability of selected action using softmax
2. Backward propagation:
Initialize output layer’s activations gradient ∂C

∂aL

For k = L to 2, compute ∂C
∂ak−1

knowing ∂C
∂ak

and θb
3. Parameter update:
Compute ∂C

∂θb
and ∂C

∂bt−1
knowing ∂C

∂ak
and ak−1

θt → clip(θt−1 − η ∂C∂θb)
bt → bt−1 − η ∂C

∂bt−1

BinaryNet requires full-precision gradient updates during training. As an example of the

impact BinaryNet quantization has on performance, it achieves 50.42% top-5 accuracy

on AlexNet [33]. BinaryNet may also be combined with VPG.

5.1.2 Compression

Many DNN models require over 500MB of model parameters to be transferred from

memory to the accelerator [65]. Compression methods reduce the amount of data to be

transferred, thereby reducing the most expensive power operation.

We now consider a compression method that clusters parameters in each layer [35].

First, a full-precision version of the network is trained using VPG. Next, the n b-bit

parameters of each layer are clustered into k groups using an arbitrary clustering algo-

rithm, e.g. K-Means. Finally, the network is fine-tuned. During the fine-tuning stage, in

forward-propagation, each cluster is locked to the same value. During backpropagation,

the individual gradients for each cluster are summed by their respective group. The sum

of the gradients are then applied to the appropriate cluster parameters.

75

Impacts of Mathematical Optimizations on Reinforcement Learning Policy Performance Chapter 5

Algorithm 8: Compression+VPG

Require: Full-precision policy network parameterized by θall, learning rate η, and
number of clusters k.

Ensure: Fine-tuned network incorporating real-valued clustered parameters θk for each
layer.
1. Full-precision training:
For each state observation perform full-precision (FP32) network evaluation. Select
actions from resulting output distributions.
At episode end, update all FP32 parameters θall using standard VPG and η. Repeat
until maximum performance is achieved.
2. Compression:
For each layer, cluster parameters into k groups using K-Means algorithm, resulting
in θk.
3. Fine-tuning:
For each state observation perform network evaluation using θk. Select actions from
resulting output distribution.
Calculate gradient as usual.
Perform modified backpropagation: in each layer, sum partial derivatives associated
with respective cluster.
Update θk using summed partial derivatives and η. Repeat Step 3 until maximum
performance is achieved.

After training, when evaluating each layer, only the cluster indices must be transmit-

ted, resulting in a compression rate of:

r =
nb

nlog2(k) + kb
. (5.3)

Complete steps for combining VPG with compression are provided in Algorithm 8.

5.1.3 Pruning

Pruning is the process of eliminating neurons or parameters. This is the oldest op-

timization considered by our study and dates back to LeCun, et al., 1989 [66]. In this

chapter, we prune parameters with “small” absolute values, after the policy has been

trained. The method is similar to that presented in the previous section, where, initially,

76

Impacts of Mathematical Optimizations on Reinforcement Learning Policy Performance Chapter 5

the full-precision network is trained. Then parameters with an absolute value less than

the pth percentile are set permanently to zero. Finally, the network is fine-tuned to com-

pensate for the missing data. In [35], pruning resulted in a 9×–13× reduction in network

size, while still maintaining high accuracy. See Algorithm 9 for more details.

Algorithm 9: Pruning+VPG

Require: Full-precision policy network parameterized by θall, learning rate η, and
pruning threshold parameter p.

Ensure: Fine-tuned network incorporating real-valued pruned parameters θp for each
layer.
1. Full-precision training:
For each state observation perform full-precision (FP32) network evaluation. Select
actions from resulting output distribution.
Update all FP32 parameters θall using standard VPG and η. Repeat until maximum
FP32 performance is achieved.
2. Pruning:
For each layer, eliminate parameters less than the layer’s pth percentile, resulting in
θp.
3. Fine-tuning:
For each state observation perform network evaluation using θp. Select actions from
resulting output distributions.
Use VPG to update θp. Repeat Step 3 until maximum performance is achieved.

5.2 Results

We have implemented the optimizations described above using PyTorch [67] and the

popular reinforcement learning benchmark suite OpenAI Gym [68]. In particular, we have

used the optimization methods on three discrete action-space environments: CartPole-

v0, Acrobot-v1, and Atari Pong. We compare the optimized results to full-precision VPG

(FP+VPG). While the CartPole-v0 and Acrobot-v1 are deterministic control problems,

it has been shown that if an RL algorithm performs successfully on those, it is a good

indication that it will perform well on a more difficult problem. This heuristic holds

77

Impacts of Mathematical Optimizations on Reinforcement Learning Policy Performance Chapter 5

true, for example, when using the Compression+VPG optimization method, as discussed

below.

The CartPole-v0 benchmark is a finite-horizon, simulated physics control challenge in

which a pole is attached to an un-actuated joint and balanced vertically upon a cart. The

cart moves laterally along a track, and the goal is to apply force to the cart to keep the

pole balanced. The agent is provided with state observations consisting of: cart position,

angle of the pole, cart velocity, and rate of change of the angle. In OpenAI Gym, the

agent may apply a force of +1 or -1 to the cart at each time step, and a reward of +1

is returned at each step that the cart is balanced. The environment returns the “done”

signal when the pole moves more than 15 degrees from vertical, or the cart moves more

than 2.4 units from the starting position, or if the pole is kept balanced for more than

200 time steps. The environment is considered solved when the agent collects an average

reward of 195 over 100 episodes.

Acrobot-v1 is a two-link pendulum finite-horizon environment where only the joint

between links is actuated. Initially the arm is pointed down, and it must be swung up

and balanced. The agent’s task is to apply joint torques such that the lower link is

swung up and kept balanced. The state observations include sine and cosine of the joint

angles, as well as joint velocities. In OpenAI Gym the torques may be +1, 0, or -1.

The environment returns -1 reward at each step and ends in failure after 500 steps or in

success if the distant link is elevated beyond a threshold before 500 steps.

The OpenAI Gym Atari environment is a wrapper for the Arcade Learning Envi-

ronment and includes over 50 games. We learned agents for the classic Pong game, in

which it competes against Pong’s original AI agent. The state observation is game pixels,

and the available actions are move up, move down, and no move. In OpenAI Gym, the

environment terminates the game after either player reaches 21 points.

A single hidden layer neural network was selected as the neural architecture for all

78

Impacts of Mathematical Optimizations on Reinforcement Learning Policy Performance Chapter 5

Figure 5.1: BinaryConnect+VPG (BC) performed poorly on the Acrobot-v1 task,
compared to full-precision VPG (FP). When using 16 units in the hidden layer (the
smallest version of BC) some learning takes place.

experiments. The input layer and output layer sizes varied depending on the state and

action-spaces of the environment being solved. We varied the number of units in the

hidden layer from 256 down to 16 for the CartPole-v0 and Acrobot-v1 tasks. For the

Pong-v0 task we used 256 and 128 units in the hidden layer. In the given plots, perfor-

mance is reported as the mean of ten separately trained policies. Standard deviation of

each policy is also plotted.

Agent policies were initialized from the neural network topology described above,

after which pruning (Pruning+VPG), quantization (BinaryConnect+VPG and Bina-

ryNet+VPG), and compression (Compression+VPG) methods were applied as described

in the algorithms above. In addition to the mathematically optimized methods, a full-

precision policy (FP+VPG) was trained on each problem to provide a baseline. Agents

were tasked with learning each of the previously listed environments. As can be ob-

served in the broader RL literature, no single agent dominated all tasks. In our study

79

Impacts of Mathematical Optimizations on Reinforcement Learning Policy Performance Chapter 5

Figure 5.2: BinaryConnect+VPG (BC) with 16 and 32 hidden units performs favor-
ably on CartPole-v0 compared to full-precision VPG (FP) with 128 hidden units.

we see that BinaryNet+VPG and BinaryConnect+VPG demonstrate erratic behavior

on each task, with times of high and low performance, and overall they do not perform

well. Pruning+VPG and Compression+VPG showed excellent performance on the con-

trol tasks. Compression+VPG dominated at the Pong task and seems to be the most

generally useful of the methods considered here.

5.2.1 Impact of Quantization

BinaryConnect+VPG performed poorly on CartPole-v0, but it performed well on

Acrobot-v1, as shown in Fig. 5.1. However, it can be observed in Fig. 5.2 that Bina-

ryConnect+VPG with 16 hidden units dominates all other variations. This may indicate

that the other policies have too many parameters for this simple task. Less convincingly,

as seen in Fig. 5.1, BinaryConnect+VPG shows random spikes of marginal performance

on Acrobot-v1, and it never competes with FP+VPG. On the Acrobot-v1 task, the Bi-

naryConnect+VPG models may not have the necessary capacity to perform consistently.

80

Impacts of Mathematical Optimizations on Reinforcement Learning Policy Performance Chapter 5

Figure 5.3: BinaryNet+VPG (BN) shows erratic behavior on CartPole-V0, but the
16 hidden unit version achieves continuous stretch of high returns around episodes
500–3,000, surpassing FP+VPG (FP).

Figure 5.4: BinaryNet+VPG (BN) with 16 and 32 hidden units appear to be competi-
tive to FP+VPG results. Initial performance indicates incompatibility with the simple
update method used by VPG could be the cause of eventual performance degradation.

81

Impacts of Mathematical Optimizations on Reinforcement Learning Policy Performance Chapter 5

Figure 5.5: Compression+VPG (Comp) performs better than FP+VPG (FP) on
CartPole-v0. Compression occurs at dotted line, after which performance of Com-
pression+VPG increases.

In Figs. 5.3 and 5.4, it is shown that BinaryNet+VPG is a more interesting pol-

icy, with times of peak performance on both CartPole-v0 and Acrobot-v1. Its perfor-

mance in Acrobot-v1 is particularly interesting and shows similar behavior to Bina-

ryConnect+VPG, with a period of stability followed by increasing instability. Perhaps a

different update strategy could prevent the instabilities.

5.2.2 Impact of Compression

Compression+VPG performed the most robustly among the mathematical optimiza-

tion methods discussed in this paper. The results for Acrobot-v1, CartPole-v0, and Pong

are given in Figs. 5.5, 5.6, and 5.7. As described in Algorithm 8, Compression+VPG uses

a policy function which has an identical topology to the full-precision version for the first

half of the episodes. After the halfway point, Step 2 of Algorithm 8 is used to compress

the parameters. For our experiments, k was set to 8, which limits all parameters in each

82

Impacts of Mathematical Optimizations on Reinforcement Learning Policy Performance Chapter 5

Figure 5.6: Compression+VPG performs better than FP+VPG on Acrobot-v1. Note
that unlike the top and bottom plots, there is no discernible change in performance
after compression for the Acrobot-v1 task.

Figure 5.7: Compression+VPG applied to Pong-v0 environment shows stronger results
than FP+VPG after tuning.

83

Impacts of Mathematical Optimizations on Reinforcement Learning Policy Performance Chapter 5

Figure 5.8: Pruning+VPG achieves equal performance to FP+VPG on CartPole-v0.
Policy networks are pruned at the midpoint.

layer to 8 possible 32-bit floating-point values.

During the first half of all three figures, Compression+VPG performs the same as the

baseline full-precision network, as it should, because during that time it is also a full-

precision network. However, after compression takes place, we see a startling reduction

in variance in one case and as well as improved returns in all cases.

5.2.3 Impact of Pruning

Pruning+VPG also exhibited excellent performance on CartPole-v0, with results

shown in Figs. 5.8, 5.9, and 5.10. As with Compression+VPG, a full-precision pol-

icy is trained during the first half of each experiment, then, as described in Algorithm 9,

the lower pth percentile of network parameters are eliminated. In Fig. 5.8, 5.9, and 5.10

it is very promising that Pruning+VPG fully recovers after 50% of its parameters have

been removed.

84

Impacts of Mathematical Optimizations on Reinforcement Learning Policy Performance Chapter 5

Figure 5.9: Pruning+VPG achieves equal performance to FP+VPG on Acrobot-v1.
Policy networks are pruned at the midpoint.

Figure 5.10: Pruning+VPG achieves equal performance to FP+VPG on Pong-v0.
Policy networks are pruned at the midpoint.

85

Impacts of Mathematical Optimizations on Reinforcement Learning Policy Performance Chapter 5

5.3 Summary

To alleviate the immense computational requirements of deep neural networks it is

desirable to employ optimized versions with comparable performance by taking advantage

of mathematical simplifications. A suite of such mathematical optimizations has been

pursued for deep neural networks and applied to domains such as image processing. Such

optimization include binarization of parameters and inputs, clustering of parameters,

and pruning parameters. However, it was previously unknown whether the existing

optimization techniques can be readily applied to deep RL as well, without impacting

the performance of the learned policy.

In this chapter, we have shown initial results indicating the strong performance that

may still be achieved by deep RL, even under extreme optimization. In fact, the Com-

pression+VPG method, which locked all parameters in each layer to 8 shared values, sur-

passed full-precision VPG on each environment (Figs. 5.5, 5.6, 5.7). And Pruning+VPG

performed equally to VPG after fine-tuning (Figs. 5.8, 5.9, and 5.10). However, Bi-

naryConnect+VPG and BinaryNet+VPG show promising, but very unstable behavior,

which is most likely a result of the extreme quantization used for those methods. As is

the case for reinforcement learning algorithms in general, we also observed that different

optimizations are better suited than others for different problem domains. Furthermore it

is still an open problem in RL to determine exactly how much model capacity is required

for a particular task a priori.

VPG is a good baseline algorithm for optimized RL. It allows for experimentation with

optimization methods, without confounding factors which would be included by more

advanced policy-gradient based algorithms. However, VPG is notorious for exhibiting

high variance, and therefore erratic collection of rewards, between policy updates. More

advanced methods ensure lower variance and are also faster to train. As future work, we

86

Impacts of Mathematical Optimizations on Reinforcement Learning Policy Performance Chapter 5

will explore the interactions between more sophisticated RL algorithms combined with a

broader array of mathematical optimizations.

Additionally, further experiments are needed to understand the trade-offs associated

with applying various optimizations to different problem domains such as continuous

versus discrete action-space tasks. The neural network architecture itself is also critically

important and directly affects the impact various optimizations may have. For example,

an over-parameterized neural network with more latent capacity than a given problem

minimally needs will respond differently to the application of different optimization tech-

niques than a minimal network for which optimizations may have a stronger impact.

And, beyond assessing performance, more sophisticated implementation metrics can be

analyzed such as: the number of multiplications and additions per policy action, size of

policy parameters, and estimated power consumption.

In conclusion, the AI/ML communities have made great strides in the development

of accurate and robust DNNs. The RL community is now incorporating such DNNs to

an increasing degree and is showing results across a broad range of domains. Just as

the architecture community has shown interest in DNN accelerator design, there will be

increasing efforts toward deep RL accelerator design. However, because of the added

complexity of RL, it is important to first understand the limitations of mathematical

optimization for deep RL, before moving to the design of deep RL accelerators. This

chapter shows that such a transition will be possible but future studies are required. The

outcome of these studies will serve as a foundation for making architectural decisions for

building RL accelerators and related neuromorphic processors.

87

Chapter 6

Distillation Strategies for Proximal

Policy Optimization

6.1 Introduction

As introduced in Chapter 3.5, distillation is a method to transfer information learned

by a high capacity, high parameter-count teacher neural network into a relatively low

capacity, low parameter-count student neural network [42]. When using distillation, all

teacher output probabilities are used as a training signal for the student, versus the single

label that is normally used during training. Distillation leverages the fact that trained

teacher class probabilities contain more information than a single label. For example,

if an apple is presented to a classifier successfully trained to recognize images of food,

then the classifier’s class probabilities for apple, pear, peach, and orange most likely have

some significant value compared to non-round foods. Furthermore, the low probabilities

for other non-round classes provide information about what the input is unlikely to be.

The results presented in this chapter extend the work of [69] which used distillation to

train a student neural network to match the deep Q-network (DQN) of a teacher trained

88

Distillation Strategies for Proximal Policy Optimization Chapter 6

d

Figure 6.1: RL distillation has three phases: 1) teacher training, using standard RL
algorithms, 2) using the trained teacher to interact with the environment and saving
state observations and teacher’s action probabilities into a replay buffer, and 3) the
transfer of information stored in the replay buffer into student(s).

through the Deep Q-Learning algorithm. We refer to that technique as DQN distillation.

A noteworthy feature of DQN distillation, and any variety of RL distillation in general, is

that only the teacher is required to experience the environment. Once trained, the teacher

may pass its knowledge to students, without the students being required to experience

the environment as well, Fig. 6.1. Excellent results were obtained in [69], with the

student DQNs often matching or exceeding the performance of the teacher DQNs on all

tasks.

Actor-critic algorithms constitute a popular family of high performance deep RL

algorithms. In the context of deep RL, actor-critic algorithms are typically composed

of two networks: an actor network, which also serves as the agent’s policy, and a critic

network, which serves as a value function during policy improvement. DQN only uses

a value function, which is queried during run-time. In this chapter, we reexamine DQN

distillation in the context of the Proximal Policy Optimization algorithm, which was

developed more recently than DQN and subsequently has many improvements [24]. PPO

89

Distillation Strategies for Proximal Policy Optimization Chapter 6

was selected as our actor-critic algorithm because it is simple to implement and is widely

used for a broad range of RL applications [70, 71, 72, 73].

As RL becomes appropriate for real-world applications, various “costs” to execute

neural network forward-propagation becomes critical. Action latency, power consump-

tion, silicon area requirements, and other design factors must be reconciled with the fact

that relatively large neural networks typically provide state of the art results. RL distil-

lation techniques will be broadly useful for neural architecture design. In particular, RL

distillation will allow a machine learning engineer to 1) design the best policy, given their

hardware constraints, or 2) identify minimum hardware requirements, given a satisficing

agent performance metric. RL distillation methods provide the following benefits:

• Rapid student model exploration is enabled by the use of an experience replay

buffer. RL distillation keeps a large replay buffer, which is populated with high

quality state observations, actions, and action probabilities recorded by the teacher

after its training is complete.

• Faster training times via high capacity teachers. It has been shown that high

capacity agents decrease training time for both deep learning and deep RL [69, 74].

• Expensive environments, e.g. accurate physics simulations or physical systems,

may only need to be experienced once by the teacher. The teacher’s replay buffer

may then be repeatedly used for offline actor distillation at a later date.

6.2 Background and Related Work

Distillation was proposed in [42] as a method to transfer knowledge from a trained

teacher classifier neural network into an untrained student network. There are various

techniques to implement neural network distillation, and here we review the version

90

Distillation Strategies for Proximal Policy Optimization Chapter 6

Beamrider Riverraid Q*bert Freeway Space Invaders

Ms.Pacman Pong Seaquest Enduro Breakout

Episode

Sc
or

e

Figure 6.2: Qualitative analysis of effect of policy capacity on learning rate. Solid line
() is high capacity, Dash-dot line () is medium capacity, and dotted line () is
low capacity. In general, high capacity policies achieved higher performance, faster
than low capacity policies. Y-axis is game score, x-axis is number of games played.
Total number of steps was fixed across all games to 75× 106 time steps. As detailed
in the Results section, distillation allows for higher performing low capacity policies,
compared to what they may achieve through environmental interaction alone.

most relevant to RL. Initially, assume a high capacity teacher classifier network has been

trained to high performance, and a smaller network is to be trained with distillation.

Additionally, assume access to the training inputs X used for teacher training, but no

access to class C training labels y ∈ C. In this case, we may derive a loss function for the

student network by providing training inputs x ∈ X to the teacher network and using

its class probability distribution pt(x) ∈ R|C| as a soft target for the student network’s

output probability distribution pθ(x) ∈ R|C|, where the student is parameterized by θ.

The student’s loss is defined as the distance between distributions pt(x) and pθ(x) and

may be measured using a standard metric, such as Kullback-Leibler divergence:

L(pθ(x)|pt(x)) =

|C|∑
i=1

pt,i(x) log
pt,i(x)

pθ,i(x)
, (6.1)

91

Distillation Strategies for Proximal Policy Optimization Chapter 6

where pt,i(x) and pθ,i(x) represent the probability for class i, given input x. The gradient

of L may then be taken with respect to the student’s parameters, which may then be

updated using gradient descent.

As introduced by [69], distillation without labels maps to the RL setting. In the

context of value-based algorithms like DQN, the output of the teacher Q-network is a

vector of state-action values qt(s) ∈ R|A|, where s is a state observation and A is a

discrete action space. A probability distribution pt(s) may be obtained from the teacher

by taking the softmax of qt(s). The state observations are then also provided to the

untrained student network parameterized by θ, and its (originally random) state-action

values may be interpreted as a probability vector by taking the softmax of its output,

giving pθ(s). The trained teacher Q-network is then distilled into a student network using

the Kullback-Leibler divergence metric for the loss:

L(pθ(s)|pt(s)) =

|A|∑
i=1

pt,i(s) log
pt,i(s)

pθ,i(s)
, (6.2)

where pt,i(s) and pθ,i(s) represent the probability for action i, given state observation s.

Eq. 6.2 would lead to low agent performance if used as given for DQN distillation.

Recall that Q-values represent the expected return from state s, given that action a is

taken, and the policy is followed thereafter. After training is complete, an agent makes

its decisions by taking the action with the highest Q-value. By taking the softmax of the

DQN, we are interpreting the Q-values as a probability distribution. This distribution

may be relatively uniform, and because of the noise introduced during distillation, values

in the student may not relatively match that of the teacher. Specifically, the Q-value for

a suboptimal action in the teacher may become the highest Q-value in the student, and

this would lead to degraded agent performance. The authors of [69] minimized the chance

of this error by dividing all teacher Q-values by a temperature parameter τ = .01, prior

92

Distillation Strategies for Proximal Policy Optimization Chapter 6

DQN PPO Teacher PPO Medium PPO Low
Beamrider 8672.4 7500 7018 6958
Breakout 303.9 277 166 187

Enduro 475.6 722 827 948
Freeway 25.8 34 33 34

Ms.Pacman 763.5 3410 4544 2085
Pong 16.2 21 21 21

Q*bert 4589.8 28367 11646 18502
Riverraid 4065.3 13916 15601 9408
Seaquest 2793.3 2471 1908 2315

S. Invaders 1449.7 1653 1624 1312

% of DQN 100% 169% 150% 141%

Table 6.1: Comparisons of policies trained by DQN and PPO. DQN results are taken
from [69]. PPO Teacher, PPO Medium, and PPO Low refer to agents trained using
PPO with high, medium and low capacity policies respectively. Policy details are given
in the Implementation Details section. All PPO policies were trained for 75 × 106

environment time steps and evaluated for 1 × 106 time steps. “% of DQN” is the
geometric mean of the column divided by the geometric mean of the DQN column.
DQN and PPO Teacher have the same architecture. Medium and low capacities have
25% and 7% of the parameters as DQN and PPO Teacher. Note that PPO Low has
a geometric mean 41% higher than DQN, and that higher capacity PPO policies tend
to have higher performance than lower capacity PPO policies.

93

Distillation Strategies for Proximal Policy Optimization Chapter 6

to calculating the softmax. This has the effect of “sharpening” the teacher’s probability

distribution in pt(s), such that the highest probability is much greater than the next to

highest.

After the teacher has been fully trained, a distillation training set is collected from

the teacher into a replay buffer. The authors of [69] showed excellent distilled student

performance across a variety of classic Atari 2600 games. Most significantly, a low ca-

pacity student network, with 7% of the parameters relative to their teacher network,

performed at least as well as the teacher network.

PPO is an actor-critic algorithm which has stood out as being simple to implement

and high-performance [24]. PPO is now established as a popular baseline with which to

compare other RL algorithms and as a preferred algorithm for applying RL to new tasks

and for applications outside RL algorithm research [75, 71]. Because of the popularity

and performance of PPO, it was selected as our actor-critic algorithm.

In general, PPO learns more efficiently than the seminal DQN algorithm. Table 6.1

compares agents trained with DQN and PPO. Significantly, PPO agents with much

smaller capacity (7%) achieved 41% higher than a high capacity DQN agent, when com-

paring geometric means.

A motivating factor for policy distillation is that it may be used to increase the

sample efficiency and optimize the performance of a low capacity policy. In [69] it was

speculated that a larger network accelerates learning. In [74] it was observed that high

capacity policies are generally able to learn a task better and faster than low capacity

policies. In the context of this chapter, the results in Fig. 6.2 also show that high capacity

policies have performance advantages. In this figure, the average scores for agents using

three different policy architectures are tracked during training for 75 × 106 time steps.

All PPO agents were trained using Proximal Policy Optimization, as described in the

Implementation Details section.

94

Distillation Strategies for Proximal Policy Optimization Chapter 6

Distillation has also proven to be useful for neuromorphic hardware design. For ex-

ample, the benefits of better sample efficiency and higher student performance through

distillation were combined in [76] for efficient RL policy development. In this chapter,

a high capacity policy trained with Double DQN, and represented by a standard convo-

lutional neural network (CNN), was distilled into a student policy represented by a low

precision spiking neural network to be executed on IBM’s TrueNorth architecture. As

TrueNorth has special restrictions, e.g. binary activations and ternary weights, it does

not use a standard SGD algorithm. Instead TrueNorth uses the Energy-Efficient Deep

Networks algorithm [77] to train a student to match a teacher’s Q-values. Importantly,

[76] demonstrates the viability of training a teacher policy once, using one type of algo-

rithm, and distilling that policy into an arbitrary number of student policies, using the

best training algorithm for each respective student.

6.3 Formulation

Actor distillation (AD) is an offline technique closest in formulation to DQN distilla-

tion, with the difference being that AD distills the teacher’s true actor probabilities, i.e.

the teacher’s policy, πt into the student πθ, which are both functions of state observation

s. Whereas DQN distillation transfers a proxy of the teacher’s value function into the

student.

AD proceeds as follows: a teacher policy πt is trained to maximum performance on the

environment. After training, the trained teacher interacts with the environment during a

collection phase which records the teacher’s state observations and action probabilities to

a replay buffer. An uninitialized student network πθ is then trained to mimic the teacher

95

Distillation Strategies for Proximal Policy Optimization Chapter 6

with mini-batch SGD using the replay buffer and a loss similar to Eq. 6.2:

L(πθ(s)|πt(s)) =

|A|∑
i=1

πt(ai|s) log
πt(ai|s)
πθ(ai|s)

, (6.3)

where s and πt(·|s) are stored in the replay buffer.

πt and πθ are obtained by taking the softmax of a policy network logits vector. [69]

obtained better results by dividing the teacher logits by .01, prior to taking the softmax.

This has the effect of sharpening the teacher’s probabilities. This was necessary because

Q-values, which are learned using an ε-greedy explore-exploit strategy, have undefined

behavior when converted to a distribution. AD does not require sharpening, because the

teacher policy is stochastic anyway.

Optionally, after distillation is complete, the student may be fine-tuned by allowing

it to interact directly with the environment and using a standard actor-critic algorithm.

6.4 Implementation Details

In this chapter, actor distillation was used to train students on 10 different Atari

environments. We analyze the effect of AD on student performance, compared to agents

with the same policy architecture as the student but trained directly on the environment

with no distillation. We also analyze the effect of capacity on student performance,

relative to agents with the same capacity but trained directly in the environment. Finally,

we study the impact of allowing a distilled student to fine-tune on the environment

after distillation is complete. Our environments are provided by the Arcade Learning

Environment [78] and are interfaced with OpenAI Gym [68]. Additionally, we used PPO

and distillation reference codes from [79] and [80].

Our PPO architectures use a single convolutional neural network body, followed by

96

Distillation Strategies for Proximal Policy Optimization Chapter 6

2000

4000

6000

8000

Beamrider

400

500

600

700

800
Enduro

10 25 50 10
0

20
0

40
0

0

100

200

300

400
Breakout

10 25 50 10
0

20
0

40
0

5000

10000

15000

Riverraid

Epochs

Sc
or

e

Figure 6.3: Effects of capacity on distilled performance. Student policies were distilled
from between 10 and 400 epochs and then evaluated for 1 × 106 time steps. Circle
represents medium capacity policies and triangle H represents low capacity policies.
Policies were reinitialized and distilled for each data point. Medium capacity policies
have an advantage over low capacity policies when fewer epochs are used, but the
advantage is often reduced as distillation progresses. As epochs increase, policies
converge to maximum scores.

97

Distillation Strategies for Proximal Policy Optimization Chapter 6

Capacity Layer Channels Shape Stride
High Conv 1 32 8 4

Conv 2 64 4 2
Conv 3 64 3 1
FC 1 n/a 512 n/a

Medium Conv 1 16 8 4
Conv 2 32 4 3
Conv 3 32 3 1
FC 1 n/a 256 n/a

Low Conv 1 8 8 4
Conv 2 16 4 2
Conv 3 16 3 1
FC 1 n/a 128 n/a

Table 6.2: Architecture details of policy feature extraction layers. High, medium,
and low capacity agents were trained to play Atari. All architectures had three con-
volutional layers with inputs of 84 × 84 × 4, followed by two fully connected layers
(FC 1), followed by separate “heads”: a fully-connected policy layer (π) with 3–18
units, depending on the environment, and a critic (V) unit with 512 units. The high,
medium, and low capacity architectures had “bodies” with 1683456, 422912 (25%),
and 106752 (6%) parameters, respectively.

two separate “heads”: one for the actor and one for the critic. Two student capacities

were investigated: one with medium capacity and one with low capacity, both relative to

the teacher’s high capacity network. In order to make a fair comparison, student network

architectures were chosen to match those used for the DQN Distillation results. Network

architecture details are given in Table 6.2.

For distillation and architecture baseline comparisons, the high (teacher), medium,

and low capacity agents were trained for 75× 106 time steps on each Atari environment.

16 agents ran in parallel with 2048 environment steps on each agent between each PPO

update. Generalized Advantage Estimation was used to calculate returns with γ = .99

and τ = .95. Within PPO, 10 epochs were used with batch sizes of 32 and clipping

parameter set to .1. Adam was used with the stepsize set to 3× 10−4. Unlike [69], we do

not divide teacher probabilities by a temperature and therefore directly use Eq. 6.3 for

distillation. Tuning experiments on Beamrider, Enduro, Breakout, and Riverraid were

98

Distillation Strategies for Proximal Policy Optimization Chapter 6

used for final hyperparameter selection.

6.5 Results

6.5.1 Distillation Results

After training or distillation, all agents were evaluated for 1× 106 time steps of game

play. Depending on the agent and game, 1× 106 time steps resulted in 4 to 56 episodes

per game. Results are given in Table 6.3. The bottom two rows of the table provide

the geometric mean of the student versus the geometric mean of the PPO-based teacher

and the geometric mean of DQN-based teacher scores reported in [69]. PPO is a more

advanced algorithm than DQN, and even our low capacity PPO-trained agent obtain

scores much higher than the DQN teacher.

The capacity of a student has an impact on how much information is transferred to a

student. The medium capacity students obtain a geometric mean of 94% relative to the

teacher, and the low capacity students obtain 85%. In general, then, it is beneficial to

use larger capacity students.

Critically, as given in the Medium vs. Medium AD and Low vs. Low AD columns

in Table 6.3, distilled students significantly exceed or meet the performance of equal-

capacity agents which were trained directly on the environment. Recall from Table 6.2

that higher capacity policy networks typically reach higher performance, faster than lower

capacity networks. By using distillation we may exploit this fact and not be penalized

by it.

99

Distillation Strategies for Proximal Policy Optimization Chapter 6

T
ea

ch
er

M
ed

iu
m

M
ed

iu
m

A
D

M
ed

iu
m

A
D

tu
n

ed
L

ow
L

ow
A

D
L

ow
A

D
tu

n
ed

B
ea

m
ri

d
er

15
54

8
7
5
0
0
±
2
3
2
2

12
46

4
70

18
±

21
8
3

(4
0
0
)

1
1
7
2
0

6
2
8
4±

1
7
9
0

1
0
2
7
8

5
4
4
7
±

1
8
6
7

1
2
1
7
4

6
9
5
8±

1
9
9
7

(4
0
0
)

1
0
9
7
4

5
4
8
9±

2
3
1
3

9
7
4
4

5
5
4
8±

1
9
7
3

B
re

ak
ou

t
44

2
27

7
±

11
5

39
5

16
6
±

12
3

(2
0
0
)

4
2
5

2
4
8
±

1
3
6

4
3
4

3
0
9
±
1
2
7

3
7
2

1
8
7
±

6
9

(2
0
0
)

4
1
4

2
0
1
±

1
4
2

3
9
7

1
5
9
±

1
0
3

E
n

d
u

ro
98

3
72

2
±

11
0

12
88

82
7
±

22
3

(5
0
)

9
6
7

6
5
6
±

1
3
3

1
0
6
2

7
3
3
±

2
1
7

1
3
8
6

9
4
8
±

1
8
1

(4
0
0
)

7
9
1

6
1
1
±

1
4
1

1
3
7
6

1
0
1
3
±
1
6
2

F
re

ew
ay

34
34
±

1
33

33
±

0
(1

0
)

3
4

3
4
±

1
3
2

3
2±

0
3
4

3
4
±
0

(1
0
)

3
4

3
3
±

1
3
3

3
3
±

0

M
s.

P
ac

m
an

39
40

34
10
±

33
3

81
40

45
44
±

87
5

(2
0
0
)

4
9
2
0

3
4
1
3±

3
5
5

6
5
0
0

5
0
4
1
±
1
2
6
3

2
0
9
0

2
0
8
5±

6
7

(1
0
0
)

4
8
3
0

3
3
9
0±

4
0
7

5
4
5
0

3
4
8
3
±

3
0
2

P
on

g
21

21
±

2
21

21
±

1
(1

0
)

2
1

2
0
±

3
2
1

1
9±

7
2
1

2
1
±
0

(1
0
)

2
1

1
9
±

7
2
1

2
1
±
0

Q
*b

er
t

30
07

5
28

36
7
±

36
51

11
67

5
11

64
6
±

37
7

(1
0
)

2
9
9
7
5

2
8
5
5
4
±
3
3
0
1

2
2
1
0
0

2
0
5
7
2±

2
2
0
9

2
0
7
7
5

1
8
5
0
2
±

2
5
6
3

(1
0
)

2
9
6
5
0

2
3
0
1
9
±

9
1
9
0

1
5
3
7
5

1
2
1
5
2
±

1
2
0
8

R
iv

er
ra

id
18

98
0

13
91

6
±

35
52

20
96

0
1
5
6
0
1
±
3
1
8
9

(2
0
0
)

1
8
8
3
0

1
3
0
8
0
±

3
5
1
7

1
8
6
4
0

1
3
7
1
6±

2
8
7
4

9
9
1
0

9
4
0
8
±

2
1
7

(4
0
0
)

1
8
6
3
0

1
1
2
5
6
±

3
7
2
1

1
8
4
3
0

1
5
5
9
3
±

2
6
7
4

S
ea

q
u

es
t

45
80

24
71
±

45
2

19
80

19
08
±

56
(1

0
)

4
9
8
0

2
5
7
2±

5
8
0

6
0
6
0

3
7
0
8
±
1
1
4
4

2
4
8
0

2
3
1
5
±

1
0
3

(1
0
)

4
1
0
0

2
2
1
9±

4
6
5

5
9
4
0

3
5
5
0±

1
0
5
5

S
p

ac
e

In
va

d
er

s
27

75
1
6
5
3
±
4
5
1

30
25

16
24
±

59
6

(2
0
0
)

2
5
5
0

1
4
3
2±

4
6
9

2
5
5
0

1
5
6
9±

3
7
5

2
3
2
5

1
3
1
2
±

3
3
6

(2
0
0
)

2
4
0
5

1
3
8
2±

3
4
3

2
2
0
5

1
2
8
8
±

2
6
3

%
of

T
ea

ch
er

10
0%

88
%

9
4
%

1
0
0
%

8
4
%

8
5
%

8
9
%

%
of

D
Q

N
16

9%
15

0%
1
6
0
%

1
6
9
%

1
4
1
%

1
4
4
%

1
5
1
%

T
a
b

le
6
.3

:
G

a
m

e
sc

or
es

ov
er

1
×

1
06

ti
m

e
st

ep
s

u
si

n
g

d
ir

ec
tl

y
-t

ra
in

ed
(T

ea
ch

er
,

M
ed

iu
m

,
L

ow
co

lu
m

n
s)

,
d

is
ti

ll
ed

(M
ed

iu
m

A
D

,
L

ow
A

D
),

a
n

d
d

is
ti

ll
ed

-t
h

en
-t

u
n

ed
ag

en
ts

(M
ed

iu
m

A
D

tu
n

ed
,

L
ow

A
D

tu
n

ed
).

T
ea

ch
er

s
u

se
h

ig
h

ca
p

a
ci

ty
ar

ch
it

ec
tu

re
tr

ai
n

ed
w

it
h

P
P

O
fo

r
75
×

10
6

ti
m

e
st

ep
s.

M
ed

iu
m

an
d

L
ow

re
p

re
se

n
t

m
ed

iu
m

an
d

lo
w

ca
p

ac
it

y
a
rc

h
it

ec
tu

re
s.

A
D

re
p

re
se

n
ts

ac
to

r
d

is
ti

ll
at

io
n

as
d

es
cr

ib
ed

in
Im

p
le

m
en

ta
ti

on
D

et
ai

ls
se

ct
io

n
.

T
h

e
to

p
ro

w
in

ea
ch

ce
ll

is
ag

en
t’

s
h

ig
h

sc
o
re

ov
er

a
ll

ga
m

es
.

T
h

e
b

ot
to

m
ro

w
in

ea
ch

ce
ll

p
ro

v
id

es
m

ea
n

ga
m

e
sc

or
e
±

st
an

d
ar

d
d

ev
ia

ti
on

.
P

a
re

n
th

es
es

in
A

D
co

lu
m

n
s

p
ro

v
id

e
n
u

m
b

er
of

ep
o
ch

s
u

se
d

fo
r

st
u

d
en

t
d

is
ti

ll
at

io
n

.
“%

of
T

ea
ch

er
”

co
lu

m
n

s
ar

e
th

e
g
eo

m
et

ri
c

m
ea

n
o
f

co
lu

m
n

m
ea

n
d

iv
id

ed
b
y

ge
om

et
ri

c
m

ea
n

of
te

ac
h

er
.

“%
of

D
Q

N
”

p
ro

v
id

es
ge

om
et

ri
c

m
ea

n
s

of
st

u
d

en
ts

ve
rs

u
s

th
o
se

o
b

ta
in

ed
th

ro
u

gh
D

Q
N

d
is

ti
ll

at
io

n
[6

9]
.

O
f

n
ot

e,
m

ed
iu

m
ca

p
ac

it
y

d
is

ti
ll

ed
st

u
d

en
t

ac
h

ie
ve

d
9
4%

of
P

P
O

-b
as

ed
te

a
ch

er
,

a
n

d
1
60

%
of

D
Q

N
-b

as
ed

te
ac

h
er

re
su

lt
s,

w
h

ic
h

w
er

e,
in

tu
rn

,
of

te
n

h
ig

h
er

th
an

h
u

m
an

p
la

ye
r

sc
o
re

s
[2

0
].

M
ed

iu
m

ca
p

ac
it

y
st

u
d

en
ts

d
is

ti
ll

ed
fo

r
10

ep
o
ch

s
an

d
th

en
al

lo
w

ed
to

tr
ai

n
u

si
n

g
P

P
O

d
ir

ec
tl

y
o
n

th
e

en
v
ir

on
m

en
t

fo
r

2
0
×

1
06

ti
m

e
st

ep
s

(“
M

ed
iu

m
A

D
tu

n
ed

”)
ac

h
ie

v
ed

T
ea

ch
er

’s
le

ve
l

of
p

er
fo

rm
an

ce
.

S
im

il
ar

a
n

a
ly

si
s

ap
p

li
es

to
lo

w
ca

p
a
ci

ty
st

u
d

en
ts

.

100

Distillation Strategies for Proximal Policy Optimization Chapter 6

6.5.2 Effect of Distillation Epochs

The optimal number of epochs used for distillation depends on the environment.

Some games, e.g. Pong and Freeway, required 10 epochs of distillation to reach teacher

performance. Others, e.g. Breakout and Ms.Pacman, required hundreds of epochs. The

effects of increasing the number of distillation epochs on student evaluation performance

for four games is given in Fig. 6.3. In general, higher capacity policies distill with higher

final evaluation performance than lower capacity policies, but the performance difference

diminishes as the number of epochs increase.

Each data point in Fig. 6.3 was created by initializing a new student policy (with

random weights) and then distilling from between 10 and 400 epochs1, and then finally

evaluating the distilled student for 1×106 time steps in the environment. For the sake of

sample efficiency, it would be preferable to have access to a proxy metric to know when

further distillation is unnecessary, but we leave that for future work.

6.5.3 Fine-Tuning Results

We also studied the impact of allowing distilled students to learn in the environment,

using standard PPO, after the distillation phase. Students were distilled for 10 epochs

and then fine-tuned for 20×106 time steps, which is 27% of the number of time steps used

to directly train the medium and low capacity policies. Notably, fine-tuning elevated the

performance of the medium capacity distilled student to the performance of the teacher.

In Table 6.3, the “Medium AD tuned” and “Low AD tuned” students have geometric

means significantly higher than the students which were only distilled and not fine-tuned.

1Beamrider, Breakout, Enduro, and Riverraid were the only students distilled for 400 epochs.

101

Distillation Strategies for Proximal Policy Optimization Chapter 6

6.6 Summary

Distillation is a robust and generally applicable optimization method. In this chapter

we show that distillation may be used successfully in conjunction with Proximal Pol-

icy Optimization, a popular actor-critic reinforcement learning algorithm. The method

presented here can be used during architecture search for efficient hardware and policy

co-design.

Specifically, a high capacity trained teacher may be used to collect a replay buffer of

state observations from the environment. Then the replay buffer and teacher probabilities

may be used repeatedly to experiment with different student architectures. This method

trains a low capacity reinforcement learning policy to achieve higher performance than

it would have through direct interaction with the environment.

Furthermore, if it is possible for the student to also learn within the environment,

we show that it is beneficial to first perform distillation followed by fine-tuning of the

student.

Distillation of policies was originally in the context of a neural network trained to

approximate Q-values. A limitation of Q-values is the inability to represent action values

for continuous action spaces. Actor-critic methods have no such limitation. Future work

can extend the ideas here to continuous action spaces.

The field of deep learning has a training heuristic called early stopping, which can

be used to prevent overfitting. Early stopping monitors error on the training set, rela-

tive to error on a test dataset. As epochs increase, training error will always decrease,

however test error will reach a minimum, before increasing again. Early stopping may

be beneficial for distillation, but it is not clear. As may be seen in Fig. 6.3, distilled

student performance is plateauing, but generally not dropping as epochs increase. We

leave further investigation into this question for future work.

102

Chapter 7

Neuromorphic Engineering

7.1 Introduction

Neuromorphic engineering encompasses algorithms and architectures taking inspira-

tion from the brain to perform computation. Neuromorphic algorithms may be executed

on both von Neumann architectures (VA) and non-von Neumann architectures (NVA),

or a combination of the two. NVAs have the potential to be more efficient than VAs at

brain-inspired computations. This is due to NVAs closer similarity to biological neural

architectures, often being highly connected and parallel, potentially low-power, and col-

locating memory and processing. Furthermore, both VAs and NVAs can be implemented

in digital, analog, or mixed-signal hardware, with each implementation having different

practical and theoretical trade-offs.

Currently the most popular route for building efficient DNN hardware is through

digital implementations of NVAs, but there are alternative paths with potential efficiency

gains. In this chapter, we analyze a recent analog NVA-based approach to deep RL,

in Section 7.2, and we outline a benchmarking strategy for the field of neuromorphic

engineering, in Section 7.3.

103

Neuromorphic Engineering Chapter 7

7.2 Memristors Learn to Play

In recent years there has been a race to leverage brain-inspired neuromorphic hard-

ware to address the growing computational costs of deep learning. Analog arrays, partic-

ularly those consisting of programmable memristors, have been of interest because they

natively and efficiently solve vector matrix multiplications (VMMs), which are the domi-

nant operation of DNNs. While it has been shown that basic analog DNNs are tractable

on memristor systems [81], an open question has been whether analog neural networks

(ANNs) are suitable for more sophisticated algorithms like RL. In a recent issue of Nature

Electronics, J. Joshua Yang and colleagues describe a hybrid digital-analog system that

effectively solves classic control problems with RL [82].

The key piece of the system developed by Yang and team was a one-transistor, one

resistor (1T1R) memristor crossbar of sufficient scale to fully encapsulate a 3-layer neural

network capable of effectively learning control policies. Using Deep Q-Learning, the

authors trained a neural network to approximate Q-values, which represent the expected

future sum of rewards for given state-action pairs. Through many trial runs, where

the agent can interact directly with the environment, the memristor network can be

progressively trained with Deep Q-Learning to become an expert at its task.

Yang and colleagues demonstrated their hybrid RL system’s ability to learn two

classic RL control problems: Cart-Pole, where a cart must learn a policy to keep an

unstable pole vertical by accelerating in different directions, and Mountain Car, where

a car accelerates out of a valley by moving back and forth to obtain an escape velocity.

There is a long way to go between these tasks and AlphaGo-level game learning; however,

these early steps illustrate the long-term potential for neuromorphic implementations for

solving harder problems. Many of the largest RL challenges of today can be viewed as

scaled up versions of the simpler control problems solved here.

104

Neuromorphic Engineering Chapter 7

While promising, one of the apparent limitations of memristor crossbars is that their

benefits are derived from physically instantiating VMMs; any operations that are not

easily represented in that matrix form must be computed separately. For this reason,

in their paper, Yang and colleagues leveraged conventional digital electronics to perform

any calculations not directly leveraging the neural network weights. From a complex-

ity perspective, they show that these digital calculations are far less costly than the

memristor-optimized linear algebra; however, in practice it may be ideal to move entirely

away from conventional electronics.

Can fully neuromorphic RL agents be achieved that leverage this approach? No-

tably, in addition to analog synapse arrays; radically lowered energy costs can also be

achieved through event-driven “spiking” communication. Spiking hardware, so far pri-

marily through digital CMOS, has been advanced by IBM TrueNorth [16], Intel Loihi

[17], and others; and spiking algorithms can be developed for precise numerical tasks

[83]. Often these spiking algorithms may not provide the blanket asymptotic scaling

advantage described in Yang and colleagues’ analysis of analog crossbars, but they can

reduce the need for converting back and forth to conventional digital processors while

offering low-power solutions to practical tasks.

The spiking and memristor communities have had limited interaction to date, however

these approaches should be complementary in the long-run. For instance, it is possible to

train DNNs, such as the RL network used by Yang and colleagues, to be compatible with

spiking hardware; and such spiking networks are often compatible with lower precision

synaptic weights [84]. This suggests that with only limited modifications, a spiking-

analog hybrid approach could benefit from both analog synaptic operations and event-

driven communication. As each of these approaches promise orders-of-magnitude lower

power, the combination could be game changing.

Of course, there is much to do. The theoretical benefits of neural algorithms are

105

Neuromorphic Engineering Chapter 7

not fully understood, the implications of reduced precision need to be clarified, and

there are engineering challenges ahead in scaling neuromorphic hardware. Furthermore,

the appeal of achieving human capabilities by implementing brain-like algorithms still

eludes the neuromorphic community, and AI broadly for that matter. However, the RL

approach described here, while not a biologically-realistic model of decision learning, has

many similarities with circuits in the brain, such as different time-scales of learning and

feedback loops. Thus, the demonstration of memristor-enabled RL is an exciting step

forward in seeing brain-inspired hardware reach its potential.

7.3 Benchmarking Event-Driven Neuromorphic Ar-

chitectures

7.3.1 Introduction

In this section, we focus on a specific type of NVA: event-driven architectures, e.g.

based on spiking neural networks, which are more biologically plausible than other main-

stream NVAs, like digital deep neural network accelerators [85].

From an applications perspective, the focus on digital-systolic DNN architectures

at most recent VLSI conferences seems justifiable, as the performance of contemporary

DNNs is now sufficiently good that they are being used in safety-critical applications

like autonomous driving, and they are computationally taxing on traditional VA’s, moti-

vating a need for alternative neuromorphic approaches. However, DNNs have only loose

biological plausibility and they are only good at a narrow range of cognitive tasks. Atten-

tion [86] and Capsule Networks [87] are two recent examples which attempt to augment

DNNs with greater biological plausibility, and we expect to see more examples in the

future.

106

Neuromorphic Engineering Chapter 7

Given that the number and variety of possible neuromorphic approaches is unbounded,

how are architecture design decisions to be made? Rigorous benchmarking has been

foundational in advancing traditional computer architecture, however, as NVAs employ

alternative paradigms from VAs, it is challenging if not meaningless to try and compare

these architectures using solely the same metrics. Different architectural approaches

are optimized for different benefits, so appropriate metrics are necessary to provide full

understanding of the trade-offs and advantages each affords.

The mainstream DNN community has begun developing strong benchmarking efforts

to highlight their advantages1. It is the intention of this work to outline benchmarking

goals for the neuromorphic community. Our focus is on event-driven architectures, but

the guidelines presented here may be applied to neuromorphic architecture evaluation

in general. Highlighted by Fig. 7.1, we propose more extensive architectural evaluation

metrics, analogous to how modern nutrition understanding has progressed to include

more than just calorie counts. For example, rather than looking at single metrics like

operation counts, a more complete understanding of micro-nutrients enables a greater

nutritional understanding. Similarly, a more advanced understanding of multiple fac-

tors of architecture operation are needed to compare the strengths and weaknesses of

computational architectures.

In the remainder of the paper, we expand on why we are focused on benchmarking

event-driven architectures, intrinsic and extrinsic metrics, and benchmark candidates for

neuromorphic processors.

1https://mlperf.org/

107

https://mlperf.org/

Neuromorphic Engineering Chapter 7

Benchmark Facts Benchmark Facts

Traditional Approach New Approach

Operations A lot

Total Power A lot

Executed on CPU, GPU

With I/O Without I/O

Operations

Executed on Neuromorphic
Digital, fixed point, LIF architecture

Computations:
Stack of images benchmark

Computations:
Cognitive Workloads

Many Less

Roofline: Performance

Operational
Intensity

Performance

Operational
Intensity

Total Power

Latency

Accuracy
Throughput

Idle
Max

ß Ʊ

€ ¥

§ œ

Total Memory
Synaptic

Γ Ψ

Ђ Ю

б Щ

ж э

й Ѫ

Figure 7.1: Illustration of traditional and proposed approaches to architectural bench-
marking.

7.4 Event-Driven Neuromorphic Architectures

Event-driven neuromorphic architectures (EDNA), often modeled on spiking neuron

models, are more biologically plausible than DNNs and offer the promise of higher effi-

ciency for certain applications. These architectures are often able to take advantage of

sparse connectivity and communication. Industry research platforms and academically

available ASIC implementations of event-driven architectures currently include IBM’s

TrueNorth [?], University of Manchester’s SpiNNaker [18], the Human Brain Project’s

BrainScaleS [88], and Intel’s Loihi [17]. There are other ASIC and FPGA implementa-

108

Neuromorphic Engineering Chapter 7

tions, and many architectures that have yet to be physically realized [89].

7.5 Metrics

Evaluating a neuromorphic processor is nuanced. For example, the literature (or

advertising material) for a processor may report “low power”, but it may not report

benchmarks for a dataset or a task of interest. Furthermore, other published architecture

details may lack information required to compare a potential processor to its alternatives.

Due to this nuance, we suggest two high-level categories of metrics: extrinsic metrics and

intrinsic metrics, with a metric’s category dependent on whether or not a workload must

be processed to measure the metric. In this work, we provide recommendations for a

variety of extrinsic and intrinsic metrics. These metrics may be used to compare and

improve architecture designs.

7.5.1 Intrinsic Metrics

Intrinsic metrics may be measured without executing a workload on a processor.

These metrics are simple to collect or may be gathered directly from technical manu-

als or publications, however, they do not provide sufficient information for a researcher

to understand workload-dependent performance comparisons. They may not even indi-

cate whether the architecture is likely to meet minimum specifications or performance

requirements on tasks of interest.

Intrinsic metrics include hardware metrics, e.g. maximum power, idle power, sili-

con area, process size, clock speed, package dimensions, weight, memory, and time to

reconfigure; architecture metrics, e.g. connectivity limits, communication limitations, re-

configurability, bit-precision options, IP protection (e.g. encryption), on-device learning

availability, and built-in algorithm support; and metadata metrics, e.g. maturity, country

109

Neuromorphic Engineering Chapter 7

of origin, access to design files, programming support, and manufacturer.

7.5.2 Extrinsic Metrics

Extrinsic metrics require a specific workload to be executed on an architecture. By

“workload”, we are referring to the combination of a specific algorithm processing a

specific set of data. If the input data changes, this may lead to different processing flows,

and therefore to different extrinsic metrics. Extrinsic metrics include power, latency,

throughput, accuracy, and roofline analysis.

The workload used to generate extrinsic metrics would ideally be matched to the

type of workload for which the architecture was designed. For example, the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) benchmark is a popular data set

for workloads in the DNN community, but it may be an incongruous workload for most

EDNAs [90]. Ideally, the neuromorphic community should have access to a suite of

benchmarks which represent different brain-inspired tasks. This would allow researchers

to select tasks tailored to their design, and also compare how their design performs

relative to other designs on the same workload. We recognize that benchmarking event-

driven systems could require hardware or datasets which are not yet widely available.

Roofline Analysis

Roofline plots are visual aids to understand performance of a workload on a particu-

lar architecture. This tool was developed for analysis of the interaction between system

memory, processor performance, and application efficiency in high-performance comput-

ing (HPC) [91]. Roofline plots are espoused by a popular computer architecture book

and were recently used for analysing systolic and dataflow DNN accelerators [92, 37, 93].

These plots are similarly useful for EDNAs.

110

Neuromorphic Engineering Chapter 7

operations/byte transferred

op
er

at
io

n
s/

se
co

n
d

μ1

μ2

op
er

at
io

n
s/

s/
en

er
g
y

performance gap does not
take energy into account

performance gap does
take energy into account

Figure 7.2: Illustrative roofline plots of two exemplar architectures (µ1 and µ2) com-
paring how various workloads utilize computational resources under two evaluation
criteria. The bottom figure does not normalize for energy, but the top figure does. By
normalizing for energy we can get a more accurate understanding of efficiency.

Illustrated in Fig. 7.2, the “roof” of the roofline plot is the maximum theoretical

throughput at which a processor can perform some operation. The definition of “oper-

ation” is flexible. The HPC community uses floating-point operations (FLOPs). The

DNN community may use multiply-accumulate operations (MACs). The neuromorphic

community could use events (such as synapticops). Also, higher order operations may

be defined, e.g. FLOPs/Watt.

A processor receives data from memory (or directly from a sensor). Memory (or

sensor) bandwidth can be saturated if a processor demands too much data, too often.

The slope of the roofline indicates memory saturation at various workload intensities,

where “intensity” is from the perspective of a processor. A low intensity workload would

finish quickly and require data quickly.

Generating a roofline plot requires a specific workload. Creating a roofline plot for an

DNN would require the DNN and all of the training data. After a workload is selected, it

111

Neuromorphic Engineering Chapter 7

can be analyzed: how many operations are required, how many bytes of data for all the

code and data, how long does it actually take to run on the hardware. This information

is then plotted on the roofline plot.

Roofline analysis can indicate whether a workload is processor or memory-bound or

if the workload’s implementation is suboptimal for the architecture. In other words, it

explains how efficiently a particular workload executes on a particular piece of hardware.

A roofline plot may thus be used to compare the efficiency of two architectures for

processing equivalent workloads, and it may be used to understand how a system should

be optimized to increase performance.

Accordingly, roofline analysis not only illustrates how well workloads are implemented

on and suitable for an architecture, but, by specifying the metric(s) of interest consti-

tuting an “operation”, they can also provide greater insight into the function of the

architecture. Amdahl et al., in their foundational paper which first specified the notion

of a computer architecture, observed that the utility of an architecture comes from prob-

lems solved rather than bits-per-microsecond [94]. This premise is demonstrated by the

mathematical optimization of DNNs showing comparable performance can be achieved

with computationally simpler models using fewer computations. Next we describe work-

loads which we propose provide greater insight into the advantages of EDNA processing

than singular metrics such as FLOPs often used to measure VAs.

7.5.3 Cognitive Workloads

In the following subsections we outline high-level cognitive applications we expect to

see more brain-inspired neuromorphic systems attempting to solve in the near future.

The application areas are drawn from [95] and range from basic sensory processing and

pattern recognition to long-term planning at multiple timescales. We model our approach

112

Neuromorphic Engineering Chapter 7

after the Seven Motifs of Scientific Computing [96], which delineates the seven basic ker-

nels of scientific computing: structured grids, unstructured grids, dense linear algebra,

sparse linear algebra, fast Fourier transforms, particles, and Monte Carlo. Each of these

core algorithms have different hardware and memory access patterns, and they are in-

stantiated in a number of open source benchmark packages. Similarly [97] identifies six

kernels ubiquitous in space applications: matrix addition, fast Fourier transforms, matrix

multiplication, matrix convolution, Jacobi transformation, and Kronecker product.

Realistic and interesting workloads should be processed in order to exercise a system

for generation of extrinsic metrics. To understand this claim, observe that an EDNA

processes potentially sparse graphs. Assuming even a deterministic architecture, a single

event change in an input may lead to numerous different downstream events. And while

it is possible to generate arbitrary inputs and algorithms to stress specific aspects of

an architecture, we consider it to be more meaningful if such tests are tied to problems

which the community is interested in solving.

Similar to how scientific software is usually composed of multiple kernels discussed

above, future cognitive systems will most likely combine two or more of the following.

Feed-Forward Sensory Processing

Cognitive systems need to perform pattern classification and regression from poten-

tially multimodal sensory inputs. Modes may include vision, audio, tactile, sonar, radar,

or other more abstract data like sales transaction information. Basic, but high accuracy,

classification of static images began the current trend in DNN popularity and remains a

mainstay of machine learning systems [98, 49].

113

Neuromorphic Engineering Chapter 7

Recurrent Sensory Processing

Success at feed-forward sensory processing implies that the current observation con-

tains all the information needed for prediction. However, for systems with temporal

dynamics or other time-dependent behavior, some type of memory is needed for accurate

prediction. Simple memory is often achieved through network recurrency, where interme-

diate information is retained locally and processed alongside new information, allowing

temporal dependencies to be learned. See [99, 86, 100] for examples.

Top-Down Processing

DNNs gradually build up features in a bottom-up approach. For example, filters

from early layers in convolutional neural network learn to detect edges, while later layers

learn to detect entire shapes. This is not how mammalian brains process sensory data in

general. A more biologically plausible approach at feature extraction allows higher-level

processing to affect lower-level processing. This top-down approach may be modeled

with Bayesian algorithms. For some efforts in this direction, please see [101, 102, 103].

Dynamical Memory and Control Algorithms

Biological neurons, and groups of neurons, and various regions of the brain can be

modeled as multiple dynamical systems. This is something that neither DNNs nor current

EDNA architectures commonly do. The neuromorphic architecture community must wait

for tractable models to become available before tackling problems in this space. One

existing effort along these lines is [104].

114

Neuromorphic Engineering Chapter 7

Cognitive Inference Algorithms, Self-Organizing Algorithms and Beyond

The frontal and subcortical parts of the brain are responsible for long-term planning

from earlier processed information. Popular reinforcement learning methods represent

a simple example of long-term decision making. As progress continues with more ca-

pable feed-forward sensory processing, recurrent sensory processing, Bayesian neural al-

gorithms, and dynamical memory and control, we expect to also see progress in their

consolidation in the form of powerful long-term planning algorithms. This, as well as us-

ing these subsystems for life-long learning across multiple timescales, will represent much

of the future effort for the neuromorphic algorithm community. For some interesting

concepts on these and other ideas, refer to [105, 95, 106].

7.5.4 The Roles of Simulation and Emulation

In the previous section, we outlined five high-level cognitive application areas. Each

of these areas are currently being studied across the neuromorphic computing spectrum.

The DNN community has an advantage in the space, as backpropagation performs so

well in so many problem areas that these systems have become useful for commercial,

scientific, military, and medical applications. The DNN community arrived at this point

by applying massive amounts of compute to massive amounts of data. On the other hand,

despite having theoretically computational benefit, there are no training algorithms which

have yet given event-driven systems the type of workload performance as has been seen

in the DNN community.

In order to show progress according to some metric (e.g. power) it must be possi-

ble to processes some meaningful workload with high performance. Unfortunately it is

expensive, in terms of dollars and time, to generate large amounts of event-driven I/O

for sensory data – an area where EDNA architectures should excel at processing. We

115

Neuromorphic Engineering Chapter 7

propose the development of a physics-based simulation system designed to benchmark

and compare DNN, EDNA, and other neuromorphic systems. The simulation system

would have the following basic characteristics:

• Ability to generate multimodal physics simulations in both the standard spatial

domain for DNNs and spatiotemporal domain for EDNAs. For example, both an

RGB and DVS camera could be modeled by the simulator. To accurately account

for full operation costs, the simulator needs to account of differences such as in

bandwidth/transmission rates or power consumption associated with the different

paradigms.

• If the neuromorphic hardware has an emulator then it may be used for training

directly from the simulator outputs. This approach would allow for massive par-

allelization for the development of neuromorphic algorithms and the collection of

many extrinsic metrics, e.g. spiking events per workload.

• If the neuromorphic hardware is a low-power physical system, a simulator inter-

face board could be developed. The interface board would translate I/O between

the simulator and the neuromorphic hardware. The I/O could include both ana-

log and digital channels. Additionally, the interface board could be designed to

provide power to the low-power system, thus it would be possible to measure the

neuromorphic system’s power consumption.

• If the neuromorphic hardware is actually a cluster, e.g. SpiNNaker and Brain-

Scales, then the simulator’s interface board would only communicate with the neu-

romorphic hardware, without measuring power. If the cluster has the ability to be

partitioned, then multiple simulators could be connected.

Widely available access to appropriate workloads and computational resources is cur-

116

Neuromorphic Engineering Chapter 7

rently preventing both accurate comparisons between various DNNs and EDNAs, as well

as participation from a wider community. Our simulation proposal aims to create a rich,

flexible, physics-based environment. Once such an environment is available, then var-

ious challenge workloads may be created, e.g. controlling an autonomous vehicle with

event-based sensors or performing robotic manipulation with event-based tactile input.

Once appropriate workloads are created, algorithms and architectures may be developed

and applied using either hardware emulation or domain appropriate I/O. Execution of

the attempted solutions will then enable collection of extrinsic metrics, which will enable

benchmarking for design improvement and comparison.

7.6 Summary

In this chapter, we analyzed a memristive non-von Neumann architecture that was

used for deep RL. We then turned our attention to event-driven neurophic architectures,

where we defined various metrics which may be used to evaluate EDNA performance.

Taking inspiration from techniques employed by conventional computer architecture, we

present how roofline analysis may be used in conjunction with other advanced perfor-

mance measures to develop an understanding of the strengths and weaknesses of different

architectures on common workloads.

Our approach emphasizes the importance of the algorithms and data being processed

for the collection of meaningful and actionable metrics. Additionally, we motivate a need

for the development of cognitive workloads, inspired by the motifs of scientific comput-

ing. Such cognitive workloads will include datasets to process, but they offer more than a

simple data science challenge, as their combination with a task creates a computational

requirement which stresses the architectures and articulates their merits, rather than

simply providing a one-dimensional metric like floating-point operation counts. To ad-

117

Neuromorphic Engineering Chapter 7

dress these needs, we also propose a simulation framework that may be used to efficiently

train and evaluate EDNAs on cognitive tasks.

118

Chapter 8

Conclusion

Let’s step back and consider the cause for deep reinforcement learning’s current popu-

larity. The deep RL algorithms now being deployed do not differ significantly from RL

algorithms developed decades ago [107, 13, 12]. The reason for the current excitement

is that only now are we easily and robustly able to perform high-dimensional function

approximation, thanks to deep neural networks.

Before taking any given action, an RL agent must answer the following question: “In

the past, in scenarios similar to the one I am in now, what did I do that eventually led

to the best return?” Without function approximation, each observation-action pair must

have a unique entry in a lookup table in order to track the expected return associated

with the pair. This becomes infeasible for even moderately sized problems.

When applied to RL, DNNs serve as function approximators to provide expected

returns or to directly recommend actions. Just as DNNs can learn to recognize cats from

different angles, so too can they learn to recognize similar environment configurations

from different perspectives.

Paradoxically, while DNNs have been fundamental to recent progress in RL, their

computational costs are limiting both real-world application and research progress. For

119

Conclusion Chapter 8

example, we recall the computational cost of the DNN used by AlphaGo Zero: approxi-

mately eight billion MAC operations per inference and over 12 trillion MAC operations

per move. RL solutions with costs like this may prevent deployment in the presence of

resource constraints.

During the past few years, explosive academic and commercial interest in DNNs has

triggered a resurgence in the computer architecture community for designing efficient

neural network accelerators. Complimentary to this, the DNN algorithm community has

made strides in developing efficient neural architectures. This dissertation explores some

of the ways deep RL can benefit from these recent advances in DNN efficiency with a

concentration on developing co-design algorithms to retain RL agent performance while

minimizing computational and resource costs.

In Chapter 2, we introduced Markov Decision Processes. MDPs are an abstraction

in which an agent moves from state to state by making actions. Rewards may be given

to the agent during state transitions. In general, the state transition function and re-

ward function may be deterministic or stochastic and unknown to the agent. The MDP

framework is general and can model many real-world problems. RL algorithms learn

which actions in which states have historically led to the greatest long-term collection

of rewards. Deep RL works by using function approximators to associate states with

actions or value estimates. Function approximation is the only way to effectively solve

MDPs with a continuous state space, e.g. for sensor-based driving, or when there are

many possible discrete states, e.g. the possible board positions in the game of Go.

Chapter 2 also introduced the basic math behind Policy Gradient algorithms. PG

algorithms use neural networks to directly map state observations to actions, similar to

how a classifier learns to map features to labels. During training, an agent interacts

with an MDP. The rewards an agent collects during MPD interactions are then used

during policy updates, which are based on gradient-ascent. If the rewards were good,

120

Conclusion Chapter 8

the agent’s action decisions will be strengthened the next time it encounters similar state

observations. Otherwise the action probabilities will be weakened. PG methods are the

foundation for many modern RL algorithms and understanding the material in Chapter

2 prepares the reader to approach current literature.

Chapter 3 provided a unified introduction to five methods of optimizing DNNs. Prun-

ing eliminates parameters with small magnitudes from a DNN. This can reduce model

size and reduce the number of MACs needed for inference. Quantization reduces the

precision of parameters and activations, thereby reducing model sizes and hardware logic

complexity. Parameter sharing replaces parameters that are close to each other with a

common value, thus enabling compression to be applied before parameter transfer. Model

distillation trains a large teacher network and then uses that teacher to train a lower-

capacity student network, thereby allowing the student to reach higher performance than

it would otherwise. Finally, filter decomposition turns a single square convolutional filter

into two vector filters: a horizontal filter and vertical filter; this leads to fewer MAC op-

erations. Many of the optimizations introduced in this chapter can by applied to DNNs

with no, or only minor, impact on predictive performance.

Chapter 3 made it clear that there are many paths toward building more efficient

DNNs. Automatically exploring different DNN designs is referred to as neural architec-

ture search, and this approach is beginning to replace hand-crafted designs. Chapter 4

introduced a NAS approach, called RAPDARTS, that takes into account both accuracy

and resource use. The algorithm works by learning a cell architecture that is then con-

nected in a chain to form a standard DNN. The contribution of RAPDARTS is that while

most resource-aware NAS techniques require thousands of GPU hours to complete the

search, our technique only requires hundreds of GPU hours. As an example application,

we use RAPDARTS to search for neural architectures which require less than 3 × 106

parameters for use on the CIFAR-10 dataset. (This is a small number of parameters

121

Conclusion Chapter 8

relative to most reported CIFAR-10 NAS results.) Our results are only outperformed by

a method that used thousands of GPU days for their search.

Chapter 5 studied the impact of quantization, pruning, and weight sharing on RL

DNN policies for several OpenAI Gym tasks. Significantly, we presented an RL algorithm

that binarizes parameters to eliminate multiplications. In the CartPole environment,

several agents were able to achieve good performance with this optimization. Similarly,

an algorithm that binarized weights and activations (reducing neuron calculations to

signed integer addition) achieved impressive performance on Cartpole and Acrobot. The

binarized optimizations are exciting for the efficiency gains, however our algorithms for

pruning and weight sharing showed no reduction in performance. When using the pruning

algorithm, 50% of the parameters were removed. The weight sharing algorithm restricted

all parameters to eight possible 32-bit floating-point values.

In Chapter 6, we trained large teacher policies to learn many different OpenAI Gym

Atari games using the PPO RL algorithm. After the teacher was finished training, one

million game images were recorded from teacher game play. We then used the recorded

game images and our distillation algorithm to transfer the teacher policies into smaller

student policies. The distillation process involved evaluation of the student and teacher

policy networks at each recorded game image. The teacher’s policy output was then

used to provide an error signal for the student. In general, when trained directly on

the games, larger, high-capacity policy networks were able to outperform low-capacity

policies. However, we showed that on average low-capacity distilled students were able to

outperform low-capacity policies that were directly trained on the games. Students often

achieved teacher performance when they were allowed to be fine-tuned by playing the

games directly. If environment interaction is expensive, these results show that teacher

observations can be used for later training of students.

Chapter 7 considered neuromorphic engineering, which encompasses both DNNs and

122

Conclusion Chapter 8

other more biologically plausible approaches to intelligent algorithms and hardware. We

first analyzed recent literature which fabricated part of a neural network accelerator using

memristors. Crossbar arrays of memristor can be used to leverage Kirchhoff’s Voltage and

Current Laws to almost instantaneously perform vector matrix multiplication (VMM) at

low energy cost and low latency. This provides substantial savings because VMM is the

most computationally intense operation when computing a fully-connected layer (i.e. one

layer of a multilayer perceptron) or when computing convolution as matrix multiplication.

The memristor VMM was incorporated into a hybrid digital-analog system and used to

solve two OpenAI Gym classic control tasks. The cost of analog-to-digital conversion in

this approach outweighs the savings from analog VMM calculation, but the results prove

there are opportunities for fast and efficient memristor-accelerated RL.

Chapter 7 also considered event-driven architectures which are favored by the neu-

romorphic engineering community. Event-driven architectures have a computational ad-

vantage in that their processing elements only compute when neuron firing thresholds

are exceeded, in contrast to standard DNN processor arrays which must compute con-

tinuously to maximize throughput. While event-driven architectures offer theoretically

superior performance for neuromorphic applications, the field has yet to develop algo-

rithms which are as compelling as deep learning. Part of the problem is that there are

no established benchmarks for the neuromorphic community. In this chapter, we pro-

posed an initial path for benchmarking these promising systems. Our proposal draws

on the idea of kernels from the computer architecture community. A kernel is defined

as the combination of an algorithm and the data it processes. Kernels are often used

when generating roofline plots, which allow computer and software engineers to measure

efficiency and to identify bottlenecks. The neuromorphic community should clearly de-

fine a hierarchy of tasks, beginning with simple feed-forward processing and ending with

long-term planning. They should then treat these tasks as kernels which may then be

123

Conclusion Chapter 8

used for common evaluation of algorithms and hardware.

8.1 Future Work

8.1.1 Integrating Multiple Optimization Methods

The primary contribution of this dissertation is the development of DNN-based RL

policy optimizations. Experimentally we have considered, in isolation, the effects of

pruning, quantization, parameter sharing, and model distillation on policy performance.

We have also presented a new neural architecture search algorithm for the automatic

design of DNN architectures that have high performance and meet resource constraints.

The next step is to integrate these approaches.

For example, policy distillation lends itself well to neural architecture search. During

policy distillation, all state observations may be recorded for later distillation into a stu-

dent. The student’s neural architecture will impact how well it absorbs the distillation. It

would be simple to use NAS to search for student architectures optimized for distillation.

Furthermore, our resource-aware NAS algorithm can be used in scenarios where student

architectures must meet latency or other constraints.

Furthermore, NAS, as it is described here, and as used in the majority of the literature,

does not yet incorporate pruning, quantization, or parameter sharing into the search

process. These primitive optimizations could be applied to the student model after the

search, but this is probably not optimal. For example, if a resource constraint exists for

the number of parameters in the model, then the NAS algorithm should deal with that

directly, and apply pruning or other applicable methods during the search itself, and not

as an afterthought. Our RAPDARTS algorithm can be extended to support primitive

optimizations during the search phase.

124

8.1.2 Multimodal Reinforcement Learning

The DNNs used in this dissertation were either multilayer perceptrons or convolu-

tional neural networks. No memory [99, 108], autoencoders [109], attention or transformer

layers [86], or other architecture types were studied. Optimizing these other architecture

types is important because they are recently being incorporated in multimodal RL.

Multimodal agents receive two or more sensor steams, e.g. visual, acoustic, text,

joint torque, pressure, RADAR, or LIDAR [5, 110, 111]. The existing efforts that have

considered multimodal agents focus on how to solve the technical challenges of integrating

multiple sensors – they do not consider the computational cost or how to optimize the

multimodal policy’s neural architecture. The methods presented in this dissertation

should be able to discover high performing and efficient multimodal neural architectures,

with or without resource constraints.

8.1.3 Neuromorphic Engineering

Finally, the field of neuromorphic engineering has developed neural models, often

event-driven, which are relatively more complex than current deep learning models [112].

The more-biologically-plausible models from neuromorphic engineering do yet compete

with DNN-based learning, but when they do, we expect they will be used for RL. Perhaps

the methods introduced here will be inspiration for optimizing event-driven neuromorphic

RL agents too.

125

Bibliography

[1] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-
bert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den
Driessche, T. Graepel, and D. Hassabis, “Mastering the game of Go without human
knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, Oct. 2017.

[2] Y. Tian, J. Ma, Q. Gong, S. Sengupta, Z. Chen, J. Pinkerton, and L. Zitnick, “ELF
opengo: an analysis and open reimplementation of alphazero,” in International
Conference on Machine Learning, 2019, pp. 6244–6253.

[3] “Google cloud gpu pricing,” 2019. [Online]. Available: https://cloud.google.com/
compute/gpus-pricing

[4] Y. Aytar, T. Pfaff, D. Budden, T. Paine, Z. Wang, and N. de Freitas, “Playing
hard exploration games by watching youtube,” in Advances in Neural Information
Processing Systems, 2018, pp. 2930–2941.

[5] G. Wayne, C.-C. Hung, D. Amos, M. Mirza, A. Ahuja, A. Grabska-Barwinska,
J. Rae, P. Mirowski, J. Z. Leibo, A. Santoro et al., “Unsupervised predictive mem-
ory in a goal-directed agent,” arXiv:1803.10760, 2018.

[6] “Passive house,” 2019. [Online]. Available: https://en.wikipedia.org/wiki/
Passive house

[7] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,”
in International Conference on Learning Representations, 2017.

[8] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute for advanced
research).” [Online]. Available: http://www.cs.toronto.edu/∼kriz/cifar.html

[9] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and
A. Kurakin, “Large-scale evolution of image classifiers,” in International Conference
on Machine Learning, 2017, pp. 2902–2911.

[10] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture search,” in
International Conference on Learning Representations, 2019.

126

https://cloud.google.com/compute/gpus-pricing
https://cloud.google.com/compute/gpus-pricing
https://en.wikipedia.org/wiki/Passive_house
https://en.wikipedia.org/wiki/Passive_house
http://www.cs.toronto.edu/~kriz/cifar.html

[11] M. Minsky, “A neural-analogue calculator based upon a probability model of re-
inforcement.” Harvard University Psychological Laboratories, Cambridge, Mas-
sachusetts, Jan. 1952.

[12] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp.
279–292, 1992.

[13] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in Advances in
Neural Information Processing Systems, 2000, pp. 1057–1063.

[14] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[15] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane cur-
rent and its application to conduction and excitation in nerve,” The Journal of
physiology, vol. 117, no. 4, pp. 500–544, 1952.

[16] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan,
B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser,
R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar,
and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable
communication network and interface,” Science, vol. 345, no. 6197, pp. 668–673,
2014.

[17] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou,
P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic manycore processor with
on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[18] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker project,”
Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, 2014.

[19] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press Cambridge, 1998, vol. 1.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hass-
abis, “Human-level control through deep reinforcement learning,” Nature, vol. 518,
no. 7540, pp. 529–533, Feb. 2015.

[21] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust region
policy optimization,” in International Conference on Machine Learning, 2015.

[22] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” in Interna-
tional Conference on Learning Representations, 2016.

127

[23] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in
International Conference on Machine Learning, 2016.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv:1707.06347, 2017.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv:1312.5602,
2013.

[26] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Hor-
gan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining improvements in deep
reinforcement learning,” in AAAI Conference on Artificial Intelligence, 2018.

[27] M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. Johnson, and S. Levine, “Solar:
Deep structured representations for model-based reinforcement learning,” in Inter-
national Conference on Machine Learning, 2019, pp. 7444–7453.

[28] D. Ha and J. Schmidhuber, “Recurrent world models facilitate policy evolution,”
in Advances in Neural Information Processing Systems 31, 2018, pp. 2451–2463.

[29] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson,
“Learning latent dynamics for planning from pixels,” in International Conference
on Machine Learning, 2019, pp. 2555–2565.

[30] S. Levine, “Lecture notes in deep reinforcement learning, cs 285.” University of
California, Berkeley, Jan. 2018.

[31] M. Horowitz, “Computing’s energy problem (and what we can do about it),” in
IEEE International Solid-State Circuits Conference, 2014, pp. 10–14.

[32] W. Dally, “High-performance hardware for machine learning,” in Advances in Neu-
ral Information Processing Systems, 2015.

[33] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet clas-
sification using binary convolutional neural networks,” in European Conference on
Computer Vision. Springer, 2016, pp. 525–542.

[34] S. Marcel and Y. Rodriguez, “Torchvision the machine-vision package of torch,” in
International Conference on Multimedia. ACM, 2010, pp. 1485–1488.

[35] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” in International
Conference on Learning Representations, 2016.

128

[36] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany,
J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An accelerator for compressed-
sparse convolutional neural networks,” in International Symposium on Computer
Architecture. ACM, 2017, pp. 27–40.

[37] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Got-
tipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt,
D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Kille-
brew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu,
K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagara-
jan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snel-
ham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma,
E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-
datacenter performance analysis of a tensor processing unit,” in International Sym-
posium on Computer Architecture. ACM, 2017, pp. 1–12.

[38] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep neural
networks with binary weights during propagations,” in Advances in Neural Infor-
mation Processing Systems, 2015.

[39] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a run-
ning average of its recent magnitude,” COURSERA: Neural networks for machine
learning, vol. 4, no. 2, pp. 26–31, 2012.

[40] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized
neural networks,” in Advances in Neural Information Processing Systems, 2016,
pp. 4107–4115.

[41] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, “Model compression,” in Inter-
national Conference on Knowledge Discovery and Data Mining. ACM, 2006, pp.
535–541.

[42] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
Stat, vol. 1050, p. 9, 2015.

[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing Sys-
tems, 2012, pp. 1097–1105.

[44] R. Rigamonti, A. Sironi, V. Lepetit, and P. Fua, “Learning separable filters,” in
IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2013, pp.
2754–2761.

129

[45] M. Lin, Q. Chen, and S. Yan, “Network in network,” in International Conference
on Learning Representations, 2014.

[46] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 1–9.

[47] D. Strukov, “Lecture notes in neuromorphic engineering, ece 594bb.” University
of California, Santa Barbara, Mar. 2018.

[48] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” in International Conference on Learning Representations, 2015.

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” in IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.
770–778.

[50] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the incep-
tion architecture for computer vision,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 2818–2826.

[51] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-
resnet and the impact of residual connections on learning,” in AAAI Conference
on Artificial Intelligence, 2017.

[52] X. Chen, L. Xie, J. Wu, and Q. Tian, “Progressive differentiable architecture search:
Bridging the depth gap between search and evaluation,” in International Confer-
ence on Computer Vision, 2019.

[53] S. C. Smithson, G. Yang, W. J. Gross, and B. H. Meyer, “Neural networks designing
neural networks: multi-objective hyper-parameter optimization,” in International
Conference on Computer-Aided Design. ACM, 2016, p. 104.

[54] T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-objective neural archi-
tecture search via lamarckian evolution,” in International Conference on Learning
Representations, 2019.

[55] Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and W. Banzhaf,
“Nsga-net: neural architecture search using multi-objective genetic algorithm,” in
Proceedings of the Genetic and Evolutionary Computation Conference. ACM,
2019, pp. 419–427.

[56] M. Wistuba, A. Rawat, and T. Pedapati, “A survey on neural architecture search,”
arXiv:1905.01392, 2019.

[57] S. Xie, H. Zheng, C. Liu, and L. Lin, “Snas: stochastic neural architecture search,”
in International Conference on Learning Representations, 2019.

130

[58] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture search on tar-
get task and hardware,” in International Conference on Learning Representations,
2019.

[59] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun, “Single path one-
shot neural architecture search with uniform sampling,” Submitted to International
Conference on Learning Representations, 2020, under review.

[60] X. Chen, L. Xie, J. Wu, and Q. Tian, “P-darts published cifar-10
genotype,” 2019. [Online]. Available: https://github.com/chenxin061/pdarts/
blob/b1575e101aedb7396a89d8a7f74d0318877a1156/genotypes.py

[61] X. Chen, L. Xie, J. Wu, and Q. Tian, “P-darts source
code,” 2019. [Online]. Available: https://github.com/chenxin061/pdarts/tree/
05addf3489b26edcf004fc4005bbc110b56e0075

[62] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for im-
age classifier architecture search,” in AAAI Conference on Artificial Intelligence,
vol. 33, 2019, pp. 4780–4789.

[63] L. Li and A. Talwalkar, “Random search and reproducibility for neural architecture
search,” in Conference on Uncertainty in Artificial Intelligence, 2019.

[64] X. Zhang, Z. Huang, and N. Wang, “You only search once: Single shot neural
architecture search via direct sparse optimization,” arXiv:1811.01567, 2018.

[65] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neural
networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12, pp.
2295–2329, 2017.

[66] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in Advances in
Neural Information Processing Systems, 1990, pp. 598–605.

[67] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmai-
son, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in Advances
in Neural Information Processing Systems, Autodiff Workshop, 2017.

[68] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” arXiv:1606.01540, 2016.

[69] A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick, R. Pas-
canu, V. Mnih, K. Kavukcuoglu, and R. Hadsell, “Policy distillation,” in Interna-
tional Conference on Learning Representations, 2016.

[70] P. Long, T. Fanl, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards optimally
decentralized multi-robot collision avoidance via deep reinforcement learning,” in
IEEE International Conference on Robotics and Automation, 2018, pp. 6252–6259.

131

https://github.com/chenxin061/pdarts/blob/b1575e101aedb7396a89d8a7f74d0318877a1156/genotypes.py
https://github.com/chenxin061/pdarts/blob/b1575e101aedb7396a89d8a7f74d0318877a1156/genotypes.py
https://github.com/chenxin061/pdarts/tree/05addf3489b26edcf004fc4005bbc110b56e0075
https://github.com/chenxin061/pdarts/tree/05addf3489b26edcf004fc4005bbc110b56e0075

[71] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and
S. Levine, “Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations,” Robotics: science and systems XIV, Jun. 2018.

[72] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architec-
tures for scalable image recognition,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 8697–8710.

[73] Y. Wang, H. Lee, and L. Lee, “Segmental audio word2vec: Representing utter-
ances as sequences of vectors with applications in spoken term detection,” in IEEE
International Conference on Acoustics, Speech and Signal Processing, 2018, pp.
6269–6273.

[74] S. Green, C. M. Vineyard, and Ç. K. Koç, “Impacts of mathematical optimizations
on reinforcement learning policy performance,” in International Joint Conference
on Neural Networks. IEEE, 2018.

[75] J. Zhang, L. Tai, P. Yun, Y. Xiong, M. Liu, J. Boedecker, and W. Burgard, “Vr-
goggles for robots: Real-to-sim domain adaptation for visual control,” in IEEE
Robotics and Automation Letters, vol. 4, no. 2. IEEE, 2019, pp. 1148–1155.

[76] J. L. Mckinstry, D. R. Barch, D. Bablani, M. V. Debole, S. K. Esser, J. A. Kusnitz,
J. V. Arthur, and D. S. Modha, “Low precision policy distillation with application
to low-power, real-time sensation-cognition-action loop with neuromorphic com-
puting,” arXiv:1809.09260, 2018.

[77] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy, A. An-
dreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch, C. di Nolfo,
P. Datta, A. Amir, B. Taba, M. D. Flickner, and D. S. Modha, “Convolutional
networks for fast, energy-efficient neuromorphic computing,” National Academy of
Sciences, vol. 113, no. 41, pp. 11 441–11 446, 2016.

[78] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning
environment: An evaluation platform for general agents,” Journal of artificial in-
telligence research, vol. 47, pp. 253–279, Jun. 2013.

[79] I. Kostrikov, “Pytorch implementations of reinforcement learning al-
gorithms,” 2018. [Online]. Available: https://github.com/ikostrikov/
pytorch-a2c-ppo-acktr-gail

[80] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via distillation and
quantization,” in International Conference on Learning Representations, 2018.

[81] M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. C. Adam, K. K. Likharev, and D. B.
Strukov, “Training and operation of an integrated neuromorphic network based on
metal-oxide memristors,” Nature, vol. 521, no. 7550, p. 61, 2015.

132

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail

[82] Z. Wang, C. Li, W. Song, M. Rao, D. Belkin, Y. Li, P. Yan, H. Jiang, P. Lin,
M. Hu et al., “Reinforcement learning with analogue memristor arrays,” Nature
electronics, vol. 2, no. 3, p. 115, 2019.

[83] S. J. Verzi, C. M. Vineyard, E. D. Vugrin, M. Galiardi, C. D. James, and J. B.
Aimone, “Optimization-based computation with spiking neurons,” in International
Joint Conference on Neural Networks. IEEE, 2017, pp. 2015–2022.

[84] W. Severa, C. M. Vineyard, R. Dellana, S. J. Verzi, and J. B. Aimone, “Train-
ing deep neural networks for binary communication with the whetstone method,”
Nature Machine Intelligence, vol. 1, no. 2, p. 86, 2019.

[85] J. L. Krichmar, W. Severa, M. S. Khan, and J. L. Olds, “Making bread: Biomimetic
strategies for artificial intelligence now and in the future,” Frontiers in neuro-
science, vol. 13, p. 666, 2019.

[86] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information
Processing Systems, 2017, pp. 5998–6008.

[87] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” in
Advances in Neural Information Processing Systems, 2017, pp. 3856–3866.

[88] S. Schmitt, J. Klähn, G. Bellec, A. Grübl, M. Guettler, A. Hartel, S. Hartmann,
D. Husmann, K. Husmann, S. Jeltsch et al., “Neuromorphic hardware in the loop:
Training a deep spiking network on the brainscales wafer-scale system,” in Inter-
national Joint Conference on Neural Networks. IEEE, 2017, pp. 2227–2234.

[89] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean, G. S.
Rose, and J. S. Plank, “A survey of neuromorphic computing and neural networks
in hardware,” arXiv:1705.06963, 2017.

[90] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, and et al., “Imagenet large scale visual recognition
challenge,” in International Journal of Computer Vision, vol. 115, no. 3. Springer
Nature, Apr. 2015, p. 211–252.

[91] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful visual per-
formance model for floating-point programs and multicore architectures,” Lawrence
Berkeley National Lab, Berkeley, California, United Sates, Tech. Rep., 2009.

[92] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative ap-
proach. Morgan Kaufmann, 2017.

[93] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible accelerator
for emerging deep neural networks on mobile devices,” IEEE journal on emerging
and selected topics in circuits and systems, 2019.

133

[94] G. M. Amdahl, G. A. Blaauw, and F. Brooks, “Architecture of the ibm sys-
tem/360,” IBM journal of research and development, vol. 8, no. 2, pp. 87–101,
1964.

[95] J. B. Aimone, “Neural algorithms and computing beyond moore’s law,” Commu-
nications of the ACM, vol. 62, no. 4, p. 110, Apr. 2019.

[96] P. Colella, “Defining software requirements for scientific computing,” 2004.

[97] T. M. Lovelly and A. D. George, “Comparative analysis of present and future space-
grade processors with device metrics,” Journal of aerospace information systems,
vol. 14, no. 3, pp. 184–197, 2017.

[98] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[99] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[100] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Gated feedback recurrent neural
networks,” in International Conference on Machine Learning, 2015, pp. 2067–2075.

[101] S. Ahmad and J. Hawkins, “Properties of sparse distributed representations and
their application to hierarchical temporal memory,” arXiv:1503.07469, 2015.

[102] J. B. Tenenbaum and F. Xu, “Word learning as bayesian inference,” Proceedings
of the Annual Meeting of the Cognitive Science Society, vol. 22, no. 22, 2000.

[103] Y. Tian, A. Luo, X. Sun, K. Ellis, W. T. Freeman, J. B. Tenenbaum, and J. Wu,
“Learning to infer and execute 3d shape programs,” in International Conference
on Learning Representations, 2019.

[104] C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. DeWolf, Y. Tang, and D. Ras-
mussen, “A large-scale model of the functioning brain,” Science, vol. 338, no. 6111,
pp. 1202–1205, 2012.

[105] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman, “Building
machines that learn and think like people,” Behavioral and brain sciences, vol. 40,
2017.

[106] P. Taylor, J. Hobbs, J. Burroni, and H. Siegelmann, “The global landscape of
cognition: hierarchical aggregation as an organizational principle of human cortical
networks and functions,” Scientific reports, vol. 5, p. 18112, 2015.

[107] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Ma-
chine learning, vol. 3, no. 1, pp. 9–44, 1988.

134

[108] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwińska,
S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou et al., “Hybrid com-
puting using a neural network with dynamic external memory,” Nature, vol. 538,
no. 7626, p. 471, 2016.

[109] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” International
Conference on Learning Representations, 2013.

[110] H. Huang, V. Jain, H. Mehta, J. Baldridge, and E. Ie, “Multi-modal discriminative
model for vision-and-language navigation,” arXiv:1905.13358, 2019.

[111] X. Wang, Q. Huang, A. Celikyilmaz, J. Gao, D. Shen, Y.-F. Wang, W. Yang Wang,
and L. Zhang, “Reinforced cross-modal matching and self-supervised imitation
learning for vision-language navigation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 6629–6638.

[112] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J. M. Bower, M. Dies-
mann, A. Morrison, P. H. Goodman, F. C. Harris et al., “Simulation of networks
of spiking neurons: a review of tools and strategies,” Journal of computational
neuroscience, vol. 23, no. 3, pp. 349–398, 2007.

135

	Curriculum Vitae
	Abstract
	Introduction
	Dissertation Outline
	Permissions and Attributions

	Deep Reinforcement Learning
	Introduction
	Markov Decision Processes
	Reinforcement Learning Approaches
	Vanilla Policy Gradient
	Summary

	Mathematical Optimizations for Deep Learning
	Introduction
	Pruning
	Quantization
	Parameter Sharing and Compression
	Model Distillation
	Filter Decomposition
	Summary

	RAPDARTS: Resource-Aware Progressive Differentiable Architecture Search
	Introduction
	Related Work
	Method
	Experiments and Results
	Summary

	Impacts of Mathematical Optimizations on Reinforcement Learning Policy Performance
	Introduction
	Results
	Summary

	Distillation Strategies for Proximal Policy Optimization
	Introduction
	Background and Related Work
	Formulation
	Implementation Details
	Results
	Summary

	Neuromorphic Engineering
	Introduction
	Memristors Learn to Play
	Benchmarking Event-Driven Neuromorphic Architectures
	Event-Driven Neuromorphic Architectures
	Metrics
	Summary

	Conclusion
	Future Work

	Bibliography

