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Abstract

Behavior of Machine Learning Algorithms in Adversarial Environments

by

Blaine Alan Nelson

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Anthony D. Joseph, Chair

Machine learning has become a prevalent tool in many computing applications and modern
enterprise systems stand to greatly benefit from learning algorithms. However, one concern
with learning algorithms is that they may introduce a security fault into the system. The
key strengths of learning approaches are their adaptability and ability to infer patterns that
can be used for predictions or decision making. However, these assets of learning can poten-
tially be subverted by adversarial manipulation of the learner’s environment, which exposes
applications that use machine learning techniques to a new class of security vulnerabilities.

I analyze the behavior of learning systems in adversarial environments. My thesis is that
learning algorithms are vulnerable to attacks that can transform the learner into a liability
for the system they are intended to aid, but by critically analyzing potential security threats,
the extent of these threat can be assessed, proper learning techniques can be selected to
minimize the adversary’s impact, and failures of system can be averted.

I present a systematic approach for identifying and analyzing threats against a machine
learning system. I examine real-world learning systems, assess their vulnerabilities, demon-
strate real-world attacks against their learning mechanism, and propose defenses that can
successful mitigate the effectiveness of such attacks. In doing so, I provide machine learn-
ing practitioners with a systematic methodology for assessing a learner’s vulnerability and
developing defenses to strengthen their system against such threats. Additionally, I also
examine and answer theoretical questions about the limits of adversarial contamination and
classifier evasion.
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6.1 Geometry of convex sets and ℓ1 balls. (a) If the positive set X+
f is convex,

finding an ℓ1 ball contained within X+
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Chapter 1

Introduction

Machine learning has become a prevalent tool in many computing applications. While
learning techniques are already common for tasks such as natural language processing [cf.,
Jurafsky and Martin, 2008], face detection [cf., Zhao et al., 2003], and handwriting recog-
nition [cf., Plamondon and Srihari, 2000], they also have potentially far-reaching utility
for many applications in security, networking, and large-scale systems as a vital tool for
data analysis and autonomic decision making. As suggested by Mitchell [2006], learning
approaches are particularly well-suited to domains where either the application i) is too
complex to be designed manually or ii) needs to dynamically evolve. Many of the chal-
lenges faced in modern enterprise systems meet these criteria and stand to benefit from
agile learning algorithms able to infer hidden patterns in large complicated datasets, adapt
to new behaviors, and provide statistical soundness to decision-making processes. Indeed,
learning components have been proposed for tasks such as performance modeling [e.g.,
Bod́ık et al., 2010, 2009, Xu et al., 2004], enterprise-level network fault diagnosis [e.g., Bahl
et al., 2007, Cheng et al., 2007, Kandula et al., 2008], and spam detection [e.g., Meyer and
Whateley, 2004, Segal et al., 2004] but generally adoption is not yet widespread.

One potential concern with learning algorithms is that they may introduce a security
fault into the system. The key strengths of learning approaches are their adaptability and
ability to infer patterns that can be used for predictions or decision making. However, these
assets of learning can potentially be subverted by adversarial manipulation of the learner’s
environment, which exposes applications that use machine learning techniques to a new
class of security vulnerabilities; i.e., learners are susceptible to a novel class of attacks that
can cause the learner to disrupt the system it was intended to improve. Here I analyze the
behavior of learning systems under duress in security-sensitive domains. My thesis is that
learning algorithms are vulnerable to a myriad of attacks that can transform the learner
into a liability for the system they are intended to aid, but by critically analyzing potential
security threats, the extent of these threats can be assessed, proper learning techniques can
be selected to minimize the adversary’s impact, and failures of system can be averted.

In this dissertation, I investigate both the practical and theoretical aspects of applying
machine learning to security domains and here I summarize the four components of my
dissertation project: a taxonomy for qualifying the security vulnerabilities of a learner, two
novel practical attack and defense scenarios, and a generalization of a paradigm for evading
detection of a classifier. I present a framework for identifying and analyzing threats to
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learners and use it to systematically explore the vulnerabilities of two learning systems. For
these systems, I identify real-world threats, analyze the potential impact of each, and study
learning techniques that significantly diminish their vulnerabilities. In doing so, I provide
practitioners with guidelines to identify potential vulnerabilities and demonstrate improved
learning techniques resilient to attacks. My research focuses on learning tasks in virus,
spam, and network anomaly detection, but also is broadly applicable across many systems
and security domains and has far-reaching implications for any system that incorporates
learning. In the remainder of this chapter, I further motivate the need for a security analysis
of machine learning algorithms and provide a brief history of the work that led me to this
research and the lessons learned from it.

1.1 Motivation and Methodology

Machine learning techniques are being applied to a growing number of systems and net-
working problems. Of particular interest to my research work is the problem of detecting
various types of anomalous system behavior; I refer to this area broadly as malfeasance
detection and it includes spam, fraud, intrusion, and virus detection. For such a problem
domain, machine learning techniques provide the ability for the system to respond more
readily to evolving real-world data, both hostile and benign, and learn to identify or even
possibly prevent undesirable behavior. As an example, network intrusion detection systems
(NIDS) monitor network traffic to detect abnormal activities such as attempts to infiltrate
or hijack hosts on the network. The traditional approach to designing a NIDS relied on an
expert codifying rules defining normal behavior and intrusions [e.g. Paxson, 1999]. Because
this approach often fails to detect novel intrusions, a variety of researchers have proposed
incorporating machine learning techniques into intrusion detection systems [e.g., Mahoney
and Chan, 2002, Lazarevic et al., 2003, Mukkamala et al., 2002, Eskin et al., 2002]. Machine
learning techniques offer the benefit that they can detect novel differences in traffic (which
presumably represent attack traffic) by being trained on examples of innocuous (known
good) and malicious (known bad) traffic. Learning approaches to malfeasance detection
have also played a prominent role in modern spam filtering [e.g., Meyer and Whateley,
2004, Segal et al., 2004] and also have been proposed as elements in virus and worm de-
tectors [e.g., Newsome et al., 2005, Stolfo et al., 2003, 2004], host-based intrusion detection
systems (HIDS) [e.g., Forrest et al., 1996, Hofmeyr et al., 1998, Mutz et al., 2006, Somayaji
and Forrest, 2000, Warrender et al., 1999], and other types of fraud detection [cf., Bolton
and Hand, 2002].

However, using machine learning techniques introduces the possibility of an adversary,
who maliciously exploits the unique vulnerabilities of a learning system. With growing fi-
nancial incentives of cybercrime inviting ever more sophisticated adversaries, attacks against
learners present a lucrative new means to disrupt the operations of or otherwise damage
enterprise systems. This makes assessing the vulnerability of learning systems an essen-
tial problem to address in order to make learning methods effective and trustworthy in
security-sensitive domains. An intelligent adversary can alter his approach based on knowl-
edge of the learner’s shortcomings or mislead it by cleverly crafting data to corrupt or de-
ceive the learning process; e.g., spammers have regularly adapted their messages to thwart
or evade spam detectors. In this way, malicious users can subvert the learning process to
disrupt a service or perhaps even compromise an entire system.
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The primary flaw in learners that attackers can exploit lies in the assumptions made
about the learner’s data. Many common learning algorithms are predicated on the as-
sumption that their training and evaluation data comes from a natural or well-behaved
distribution that remains stationary over time, or at worst, changes slowly in a benign way
(gradual drift). However, these assumptions are perilous in a security-sensitive domain—
an application domain where a patient adversary has a motive and the capability to alter
the data used by the learner for training or prediction. In such a domain, learners can be
manipulated by an intelligent adversary capable of cleverly violating the learner’s assump-
tions for their own gains making learning and adaptability into potential liabilities for the
system rather than benefits. I analyze how learners behave in these settings and alternative
methods that can bolster the system’s resilience to an adversary.

I consider several potential dangers posed to a learning system. The primary threat is
that an attacker can exploit the adaptive nature of a machine learning system to mis-train
it and cause it to fail. Here, failure consists of causing the learning system to produce
classification errors: if it misidentifies a hostile instance as benign, then the hostile instance
is erroneously permitted through the security barrier; if it misidentifies a benign instance as
hostile, then a permissible instance is erroneously rejected and normal user activity is inter-
rupted. The adversarial opponent has the ability to design training data that will cause the
learning system to produce rules that misidentify instances. If the system’s performance suf-
ficiently degrades, users will lose confidence in the system and abandon it or its failures may
significantly compromise the integrity of the system. This threat raises several questions:
What techniques can a patient adversary use to mis-train or evade a learning system? and
How can system designers assess the vulnerability of their system to vigilantly incorporate
trustworthy learning methods? I provide a framework for a system designer to thoroughly
assess these threats and demonstrate how it can be applied to evaluate real-world systems.

Developing robust learning and decision making processes is of interest in its own right,
but for security practitioners, it is especially important. To effectively apply machine learn-
ing as a general tool for reliable decision-making in computer systems, it is necessary to
investigate how these learning techniques perform when exposed to adversarial conditions.
Without an in-depth understanding of the performance of these algorithms in an adversarial
setting, the systems will not be trusted and will fail to garner wider adoption. Worse yet, a
vulnerable system could be exploited and disaffect practitioners from using learning systems
in the future. When a learning algorithm performs well under a realistic adversarial setting,
it is an algorithm for secure learning . Of course, whether an algorithm’s performance is
acceptable is a highly subjective judgement that depends both on the constraints placed
on the adversary and on the job the algorithm is tasked with performing. This raises two
fundamental questions: What are the relevant security criteria to evaluate the security of a
learner in a particular adversarial environment? and Are there machine learning techniques
capable of satisfying the security requirements of a given problem domain and how can such
a learner be designed or selected? I demonstrate how learning systems can be systematically
assessed and how learning techniques can be selected to diminish the potential impact of
an adversary.
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I now present three high-level examples that describe different attacks against a learning
system. Each of these are later comprehensively analyzed in Chapters 4, 5, and 6, but here I
summarize the setting of each to lay a foundation for the reader. In each synopsis I motivate
the learning task and the goal of the adversary. I then briefly describe plausible attacks
that align with these goals.
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Example 1.1 (Spam Filter and Data Sanitization)

Spam filtering is one of the most common applications of machine learning. In this
problem, a set of known good email (ham) and unwanted email (spam) are used to
train a spam filter. The learning algorithm identifies relevant characteristics that
distinguish spam from ham (e.g., tokens such as “Viagra”, “Cialis”, and “Rolex” or
envelope-based features) and constructs a classifier that combines observed evidence
of spam to make a decision about whether a newly received message is a spam or ham.

Spam filters have proven to be successful at correctly identifying and removing
spam messages from a user’s regular messages. This has inspired spammers to
regularly attempt to evade detection by obfuscating their spam messages to confuse
common filters. However, spammers can also corrupt the learning mechanism. As
pictured in the diagram above, a clever spammer can use information about the
email distribution to construct clever attack spam messages that, when trained
on, will cause the spam filter to misclassify the user’s desired messages as spam.
Ultimately, the spammers goal here is to cause the filter to become so unreliable that
the user can no longer trust that his filter has accurately classified the messages and
must sort through spam to ensure that important messages are not erroneously filtered.

In Chapter 4, I explore several variants of this attack based on different goals for
the spammer and different amounts of information available to him. This attack proves
to be quite effective: if a relatively small number of attack spam are trained on, the
accuracy of the filter is significantly reduced. However, I also show that a simple data
sanitization technique that was designed to detect deleterious messages is effective in
preventing many of these attacks. In this case, the attacker’s success depends primarily
on the scope of their goal to disrupt the user’s email.
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Example 1.2 (Network Anomaly Detector)

Machine learning techniques have also been proposed by Lakhina et al. [2004b] for
detecting network volume anomalies such as denial-of-service (DoS) attacks. Their
proposal uses a learning technique known as principal component analysis (PCA)
to estimate normal traffic patterns and identify anomalous activity in the network.
However, as with the spam filter in the previous example, this technique is also
susceptible to contamination.

As depicted in the above diagram, PCA extracts patterns from traffic observed
flowing over a backbone communications network to construct a normal model of
it. This model is subsequently used to detect DoS attacks. Thus, an adversary
determined to launch a DoS attack must first evade this detector. A crafty adversary
can successfully evade detection by mis-training the detector. He can systematically
inject chaff traffic into the network that is designed to make his target flow align
with the normal model—this chaff (depicted in red in the top-right figure) is added
along the target flow to increase variance. The resulting perturbed model (see the
bottom-right figure) is unable to detect DoS attacks along the target flow.

I explore attacks against the PCA-base detector in Chapter 5 again based on dif-
ferent sources of information available to the adversary. Attacks against PCA prove
to be effective—they successfully increase its rate of mis-detection eight to ten-fold. I
also explore an alternative detection approach called Antidote designed to be more
resilient to chaff. The evasion success rate for the same attacks against Antidote is
roughly halved compared to the PCA-based approach. However, resilience to poisoning
comes at a price—Antidote is less effective on non-poisoned data than the original
detector.
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Example 1.3 (Near-Optimal Evasion)

Malicious
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Subj: Cheap Online Pharmacy, Order
Prescription drugs online. Low
Price guaranteed, fast shipping.

FDA & CPA Approved Pharmacy site
FAST DELIVERY!

Viagra from $1.82
Cialis from $2.46
Viagra soft tabs from $2.25
Cialis soft tabs from $2.52

VeriSign secured payment site
We ship to all countries

Ready to boost your sex life? Positive?
It’s time to do it now!

Order above pills at unbelievable low price
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Cialis from $2.46
V1@gra soft tabs from $2.25
Cialis soft tabs from $2.52

VeriSign secured payment site
We ship to all countries

Ready to boost your sex life? Positive?
It’s time to do it now!

Order above pills at unbelievable low price

In addition to misleading learning algorithms, attackers also have an interest in evading
detectors by making their miscreant activity undetectable. As previously mentioned
in Example 1.1, this practice is already common in the spam filtering domain where
spammers attempt to evade the filter by i) obfuscating words indicative of spam to
human-recognizable misspellings; e.g., “Viagra” to“V1@gra” or “Cialis” to “Gia|is”,
ii) using clever HTML to make the content difficult to parse, iii) adding words or text
from other sources unrelated to the spam, and iv) embedding images that contains
the spam message. All of these techniques can be used to evade spam filters, but
they also are costly for the spammer—altering his spam can make the message less
profitable as the distortions reduce the message’s legibility or its accessibility. Thus,
in evading the filter, the spammer would like to minimally modify their messages,
but for a dynamically learned filter, the spammer does not know the learned filtering
rules. Instead, the spammer constructs test spams that he uses to probe the filter
and refine his modifications according to some cost on them. This raises the following
question: How difficult is it for the spammer to optimally evade the filter by querying it?

The near-optimal evasion problem, which I examine in Chapter 6, formalizes this
question in terms of the query complexity required by the spammer to evade a particular
family of classifiers. I study the family of convex-inducing classifiers and I show that
there are efficient algorithms for near-optimal evasion under certain ℓp cost functions.
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1.2 Guidelines from Computer Security

To assess the vulnerabilities of learning systems, I built on many principles established in
traditional computer security. The area of computer security is a broad field with many
facets and only a subset of them are pertinent to my work. In great generality, computer
security is concerned with quantifying, managing, and reducing the risks associated with
computer systems and their usage. Traditional topics in security include cryptography, au-
thentication, secure channels, covert channels, defensive programming practices, static code
analysis, network security, and operating system security and traditional (code-based) vul-
nerabilities include buffer overflows, format string vulnerabilities, cross application scripting,
code injection attacks, and privilege escalation. Unlike classical security settings, attacks
against a learning system exploit the adaptive nature of the learning system. Not only can
the adversary exploit existing flaws in the learner, he can also mislead the learner to create
new vulnerabilities. Nonetheless, classical security principles are also applicable for analyz-
ing machine learning algorithms. Particularly, the principles of proactively studying attacks,
Kerckhoffs’ Principle, conservative design, and formal threat modeling are the foundation
of my approach.

Proactive Analysis: The first guideline from computer security is to conduct proactive
studies to anticipate potential attacks before a system is deployed or widely used. Analysis
of and open debate about the security of a system provide a level of confidence in it and
identifying vulnerabilities before deployment can prevent costly patches, rewrites, or recalls
of flawed systems. My dissertation is a proactive study in the sense that I am exploring the
vulnerabilities of learning systems to identify threats before major systems are damaged
or compromised and, in exposing these vulnerabilities, I also offer alternative systems that
thwart or mitigate them. Further, I provide general guidelines to system designers to aid
them in analyzing the vulnerabilities of a proposed learning system so that learning can be
deployed as an effective and reliable component even in critical systems.

Kerckhoffs’ Principle: The second guideline often referred to as Kerckhoffs’ Principle
[Kerckhoffs, 1883] is that the security of a system should not rely on unrealistic expectations
of secrecy. Depending on secrets to provide security is a dangerous policy because if these
secrets are exposed the security of the system is immediately compromised. Ideally, secure
systems should make minimal assumptions about what can realistically be kept secret from
a potential attacker. The field of cryptography has embraced this general principle by
demanding open algorithms that only require a secret key to provide security or privacy.
I apply this principle to analyzing machine learning systems throughout this dissertation
primarily by assuming that the adversary is aware of the learning algorithm and can obtain
some degree of information about the data used to train the learner. However, determining
the appropriate degree of secrecy that is feasible for secure machine learning systems is a
difficult question, which I discuss further in Chapter 7. In each of the chapters of this thesis,
I consider various levels of information that the adversary potentially obtains, and I assess
how the adversary can best utilize this information to achieve their objective against the
learner. In doing so, I demonstrate the impact of different levels of threat and show the
value an adversary obtains from a particular source of information.
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Conservative Design: The third principle I employ is that security analysis of a system
should generally avoid placing unnecessary or unreasonable limitations on the adversary.
All too often, major security compromises occur because designers failed to anticipate how
powerful an adversary is or how well informed the adversary is. By assuming the adversary
has the broadest possible powers, one can understand the worst-case threat posed by an
adversary and users are less likely to be surprised by an attack by some unanticipated ad-
versary. Conversely, though, analyzing the capabilities of an omnipotent limitless adversary
reveals little about a learning system’s behavior against realistic attackers and may lead
to an unnecessarily bleak outlook on the feasibility of using learning at all. Instead, my
approach is to construct an appropriate threat model to quantify the relationship between
the adversary’s effort and their effect on the system under a variety of different levels of
threat including a worst-case adversary.

Threat Modeling: Finally, to analyze the vulnerabilities of machine learning systems, I
follow the typical security practice of constructing a formal (attacker-centric) threat model.
In most interesting settings, a completely secure system is infeasible and I do not attempt
to achieve complete security in my work. Instead, my approach quantifies the degree of
security—the level of security expected against an adversary with a certain set of objectives,
capabilities, and incentives based on a threat model . Building a threat model allows the
analyst to quantify the security of his system and design approaches to making the system
reasonably secure.

To construct a threat model for a particular learning system, first the analyst quantifies
the security setting and objectives of that system in order to develop criteria to measure
success and quantify the level of security offered. Formalizing the risks and objectives allows
the analyst to identify potential limitations of his system and potential attacks and focuses
the analysis on immediate threats so as to avoid wasting effort protecting against nonexistent
or ancillary threats. Next the analyst identifies potential adversarial goals, resources, and
limitations. By examining the nature of anticipated adversaries and their goals, the analyst
can quantify the effort required by the adversary to achieve their objectives. Based on
this threat model, the analyst can finally analyze the security of his system and construct
appropriate defenses against realistic forms of attack. Formal analysis provides a rigorous
approach to security. Additionally, by formalizing the threats and security of a system,
other analysts can critique the analyst’s assumptions and suggest potential flaws in his
design. This open process tends to improve a system’s security.

In this dissertation, I analyze three separate security problems for machine learning
systems. In each, I first specify the threat model posed and subsequently analyze the
threat’s impact and, where appropriate, I propose defenses against the threat. It is well-
established in computer security that evaluating a system involves a continual process of
first, determining classes of attacks on the system; second, evaluating the resilience of the
system against those attacks; and third, strengthening the system against those classes
of attacks. Throughout this dissertation, I follow exactly this model in evaluating the
vulnerabilities of learning algorithms.
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1.3 Historical Roadmap

Here I briefly summarize a series of projects that led me to study the adversarial machine
learning setting and the lessons I learned in this early work that molded my approach to
the topic. Prior to my dissertation project, I sought to use machine learning algorithms
in various novel application domains that had adversarial elements. The first of these
was a research project conducted at Duke University to detect anti-personnel landmines
by identifying their unique electromagnetic signatures. I explored an approach based on
neural networks trained to identify these devices based on readings from a metal detector.
However, at the time, I did not consider the adversarial nature of landmine design or its
potential impact on my detector. At Berkeley, I first explored applications of learning
algorithms to computer systems and pursued a learning approach for detecting computer
viruses, which was designed to capture requisite characteristics of viral behavior, but the
inherently adversarial and adaptive nature of computer viruses led me to question our
detector’s longevity and security. I began scrutinizing this subject with colleagues with
backgrounds in security, machine learning, and systems. This led us to design some of
the elements of the detector to be robust against changing viral behaviors, to construct a
theoretical model for analyzing the effect of contamination on hypersphere classifiers, and
ultimately led to my doctoral project described in this thesis. Here, I briefly summarize the
projects that proceeded my dissertation thus providing a chronology of the progression of
my investigation into the security of learning algorithms.

1.3.1 Landmine Detection System

My first foray into applied machine learning was a project that explored neural network
detectors for landmine detection and identification. This project extended research in ex-
isting signal analysis algorithms for landmine identification by examining a specific class of
objects called anti-personnel devices that contain only a small amount of asymmetrically
arranged metal causing their characteristic wide-band frequency responses to deviate sig-
nificantly with small changes in relative position between a sensor and the landmine. This
project explored methods to improve and extend the capabilities of existing algorithms by
quantifying the limitations of electromagnetic induction (EMI) sensors for such objects and
attempting to account for these deviations to properly identify anti-personnel devices when
the sensor is not precisely centered over a device.

For this purpose, I used a set of neural network classifiers to learn the EMI responses
characteristics that were unique for each type of anti-personnel device [Nelson et al., 2003].
The results of this effort met with limited success—while the neural net approach was
effective it was outperformed by other signal processing techniques in several circumstances.
Nonetheless, this project was my first attempt to use a learning algorithm in a security-
sensitive domain. In this case, landmine makers played the role of designing anti-personnel
devices to be difficult to detect using EMI sensors and undoubtedly, if these sensors coupled
with techniques from learning theory or signal processing were able to effectively detect
these landmines, the designers would further refine their designs to thwart these detectors
as well. Not realizing the adversarial nature of this problem at the time, I reasoned about
the neural network learner’s effectiveness by measuring their detection capability on known
landmine signatures without considering the potential for re-designs to evade detection—a
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mistake often made by machine learning practitioners working in adversarial environments.
Throughout this dissertation, I critique such oversights and both provide examples of how
adversaries can effectively thwart learning systems and how learning systems can be more
resilient to adversaries.

1.3.2 Virus Detection System

In my second learning-based application, I designed and implemented a dynamic virus de-
tection system in collaboration with Karl Chen, Steve Martin, Anil Sewani, and Anthony
Joseph [Martin, 2005, Sewani, 2005, Nelson, 2005]. In designing this system, my collabo-
rators and I sought to counter the proliferation of novel email-based viruses and protect
against obfuscation through polymorphisms. We demonstrated that this system could ef-
fectively detect a wide-variety of novel email-based viruses, because, unlike a rule-based
signature detector, our system’s learning component was able to quickly adapt to new
threats. Here, I briefly give an overview of that virus detection system and the design con-
siderations meant to remedy the fast spread of email viruses seen at that time. However,
in designing and evaluating our system, I realized that learning systems could themselves
become a significant vulnerability in a hostile environment—these considerations led to the
systematic evaluation of the security of machine learning systems that I present throughout
the rest of this work. Below, I briefly discuss the relevant details of this virus detection sys-
tem and then critique its design from a security perspective to further motivate the security
analysis described in the remainder of this dissertation.

The virus detection we designed was intended to counter the rapid proliferation of
novel mass-mailing viruses that had made traditional signature-generation-based approaches
untenable. The crux of this problem was the slow dissemination of the virus signature
updates required by traditional systems to effectively halt viral spread. Such signatures
were traditionally manually generated after samples of the novel virus were submitted to
the anti-virus company for analysis—a process that left vulnerable systems unprotected
to attack for hours or days whilst the virus spread. These response times were woefully
inadequate to prevent devastating viral epidemics that wasted or damaged valuable network
and computing resources by rapidly propagating as quickly as email could be sent.

Our detection strategy was a reactive approach; rather than detecting the incoming
viral messages, we attempted to detect infected machines disseminating mass-emails—i.e.,
an extrusion detection architecture as depicted in Figure 1.1(a). We chose an extrusion
detection approach because even an effective intrusion-based virus detection system can
fail (e.g., detection can be circumvented if an externally infected machine is inadvertently
brought behind the network’s defenses) and expose the network to damages wrought by the
virus from within. Further, we believed that the behavior of an infected machine was more
detectable than the inbound infection because, once an infection succeeds, the compromised
host tends to dramatically deviate from normal user behavior as the virus attempts to
quickly propagate. Our system was thus designed to mitigate the effect of an infection once
it occurs. By applying our approach at the network level, we hoped that quarantining based
on the behavior of an infected machine would reduce the damage to mail-servers caused by
an overwhelming stream of viral emails and isolate the infected hosts until they could be
disinfected. Ultimately, we sought to thwart or mitigate the rapid proliferation strategy of
email-based viruses.
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Figure 1.1: Diagrams of the virus detection system architecture described in Martin
[2005], Sewani [2005], Nelson [2005]. (a) The system was designed as an extrusion detector.
Messages sent from local hosts are routed to our detector by the mail server for analysis—
benign messages are subsequently sent whereas those identified as viral are quarantined for
review by an administrator. (b) Within the detector, messages pass through a classification
pipeline. After the message is vectorized, it is first analyzed by a one-class SVM novelty
detector. Messages flagged as ‘suspicious’ are then re-classified by a per-user naive Bayes
classifier. Finally, if the message is labeled as ‘viral’ a throttling module is used to determine
when a host should be quarantined.
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Our network solution to detecting viral activity in out-going email traffic used statistical
learning techniques to monitor for sufficient deviations from normal email behavior using
the architecture depicted in Figure 1.1(b). This design incorporated a set of features that
represented the current state of email behavior. Using feature selection techniques, we chose
a robust set of features that accurately distinguished normal behavior from viral behavior.
A novelty detection algorithm was then used as a filter to isolate the majority of normal
messages and a classification layer used past viral behavior to reduce false positives caused
by traditional novelty detection alone. The resulting system was capable of quarantining
hosts believed to be exhibiting viral behavior.

To detect mass-mailing viruses, we considered features that would best distinguish the
infected and normal email behavior based on the following observations of email viruses:
they must propagate the infection, they attempt to avoid detection, they have some degree
of repetition between emails, and they have traditionally sent email at extraordinarily fast
rates to propagate quickly. To capture these behaviors, we constructed two general types of
features: per-message features that describe characteristics of a single message and window-
based features that describe the behavior of the latest set of messages. These features are
listed in the table below.

Per-message Features Window-based Features

1. Whether or not the message is a reply or

forward

Frequency of emails sent in the window

2. Presence of HTML in the message Number of unique email recipients

3. Presence of HTML script tags or at-

tributes in the message

Number of unique sender addresses

4. Presence of embedded images in the mes-

sage

Average number of words in the subject

lines

5. Presence of hyperlinks in the message Average number of words in the bodies

6. MIME types of file attachments in the

message

Average number of characters in the sub-

ject lines

7. Presence of binary attachments Average number of characters in the bod-

ies

8. Presence of text attachments Average word length in the messages

9. The UNIX “magic number” of file attach-

ments

Variance in number of words in the subject

lines

10. Total size of the message including attach-

ments

Variance in number of words in the bodies

11. Total size of files attached to the email Variance in number of characters in the

subject lines

12. Number of files attached to the email Variance in number of characters in the

bodies

13. Number of words in the message’s subject

line

Variance in word length in the messages

14. Number of words in the message’s body Fraction of emails with attachments

15. Number of characters in the message’s

subject line

Fraction of emails with replies or forwards

16. Number of characters in the message’s

body
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To determine which of these features best distinguished viral and normal email behavior,
we used feature selection to choose a subset of these features which empirically were most
predictive of viruses. We employed a method discussed by Shawe-Taylor and Cristianini
[2004] that finds the directions (i.e., combinations of features) with maximal covariance with
the labels and we selected the dominant feature representative of that direction in a greedy
fashion. Using this feature selection, we winnowed the set of features used by our model
down to the following seven features which we used to construct our detector: i) presence
of HTML in the message, ii) number of files attached to the email, iii) presence of binary
attachments, iv) fraction of emails with attachments, v) frequency of emails sent in the
window, vi) average number of words in the message bodies, and vii) variance in the number
of words in the message bodies These features provide strong indicators for the behavior
of a mass-mailing virus primarily focusing on the presence of executable attachments, the
frequency of sending messages, and repetition in the email content, which aligned well with
our intuition about the characteristics of viruses. Based on these features, each message
was represented to our virus detection system as a seven-dimensional vector.

Our detector used a multi-tiered approach to identify compromised hosts attempting
to propagate their infection via email. The first stage in detection was a novelty detection
technique called a one-class support vector machine (SVM), which can identify messages
that significantly deviate from the normal data; i.e., anomalous messages that are unchar-
acteristic of the user’s normal behavior. Importantly, unlike the usual classification setting
(see Chapter 2.2.4), a novelty detector learns by only observing normal messages. This
property made the novelty detection paradigm well-suited to our setting since the normal
behavior for a user was assumed to be (semi)-stable and non-adversarial whereas the behav-
ior of different viruses may differ dramatically and future novel viruses could be designed
specifically to deviate from the viral characteristics learned by our model. However, a pure
novelty detection paradigm also has drawbacks—instead of learning specific viral charac-
teristics it is only able to identify anomalous ones, which may not entirely coincide. As
a result, we found that to have a reasonable detection rate, the one-class SVM had to
have an unreasonably high false positive rate for a practical filter; i.e., its ROC curve was
unacceptably low. This led us to add a second stage into our filter.

Instead of using pure novelty detection, we instead used the one-class SVM to detect
suspicious user behavior and then used a second layer of classification to determine whether
or not a suspicious message was viral. This two-stage architecture allowed us to employ an
extremely sensitive novelty detector with a low false negative rate (but high false positive
rate) then correct most of the false positives by classifying the suspicious messages it iden-
tified as either viral or innocuous with a (two-class) naive Bayes classifier. In contrast to
the novelty detector, the naive Bayes classifier was a per-user model capturing each indi-
vidual user’s email behavior. Thus, after an email was deemed suspicious by the novelty
detector, a personalized model compared the email’s characteristic to that user’s previous
behavior and to that of known viruses. We found the combined classification performance
of this two-stage detection architecture surpassed the accuracy of either detector by itself
as summarized in Table 1.1.

In the final stage of detection, messages deemed to be viral by our naive Bayes classifier
were used to make a quarantine decision building on strategies by Williamson [2002] to
throttle the spread of viruses. If sufficiently many messages in the recent past were deemed
to be viral the machine would be quarantined until an administrator could disinfect it. Our
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Experiment
‘Novel’ Email Virus Tested

BubbleBoy Bagle.F Netsky.D Mydoom.U Mydoom.M Sobig.F

SVM Only

Num. False Positives 198 219 219 215 222 222

Num. False Negatives 0 1 0 0 0 4

Num. Correctly Classified 1201 1179 1180 1184 1177 1173

% False Positives 16.50 18.25 18.25 17.92 18.50 18.50

% False Negatives 0.00 0.50 0.00 0.00 0.00 2.01

% Total Accuracy 85.85 84.27 84.35 84.63 84.13 83.85

Naive Bayes Only

Num. False Positives 33 17 17 17 20 17

Num. False Negatives 8 4 4 4 4 5

Num. Correctly Classified 1358 1378 1378 1378 1375 1377

% False Positives 2.75 1.42 1.42 1.42 1.67 1.42

% False Negatives 4.02 2.01 2.01 2.01 2.01 2.51

% Total Accuracy 97.07 98.50 98.50 98.50 98.28 98.43

Two-Layer Model

Num. False Positives 9 10 10 10 12 10

Num. False Negatives 8 4 4 4 4 5

Num. Correctly Classified 1382 1385 1385 1385 1383 1384

% False Positives 0.75 0.83 0.83 0.83 1.00 0.83

% False Negatives 4.02 2.01 2.01 2.01 2.01 2.51

% Total Accuracy 98.78 99.00 99.00 99.00 99.00 98.93

Table 1.1: Evaluation results of the accuracy of our virus detector against a number of
email-bourne viruses (see Nelson [2005] for a detailed explanation of these results). Each
experiment was repeated three times: first with only the one-class SVM, then using only
a naive Bayes parametric classifier, and finally with the two-stage system. We report the
number of false positives, false negatives, and correctly classified emails. The percentage of
false positives/negatives is the percent of the normal/viral email misclassified.
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thresholding module was designed to mitigate the effect of false positives but at the cost
of introducing some additional false negatives during the initial period of infection. Our
quarantine strategy applied a threshold to the percentage of emails classified as infected
over a sliding window of the last ten messages; if that threshold was exceeded, it would
be possible to report, with high confidence, that a machine was infected and quarantine it.
This approach allowed our detector to significantly reduce the virus’ ability to propagate
(and thus stymied their purpose) while further reducing the impact on normal users as is
detailed in Sewani [2005].

In designing our virus detection system, my colleagues and I attempted to anticipate and
prevent future virus outbreaks. By targeting the principal behaviors of fast-spreading email
viruses (need to propagate quickly, need to send executable attachments, etc.), our detection
system was designed to be robust against superfluous changes to viral behavior meant to
confuse the detector without altering the actual effect of the virus. Further, by using two-
stage classification, we hoped to make the detector more difficult to circumvent since an
evading virus would have to navigate successfully through two layers of detection. However,
while our system proved to be effective in detecting observed email virus outbreaks, it is
again unclear if this approach could have effectively detected viruses designed to thwart it.
Our hope was that a virus would have to significantly degrade its own objectives to evade
detection (e.g., a virus may slow its spread but, in doing so, it would defeat its own purpose)
but we were unable to verify how effectively a virus could evade our system. In designing
a two-layer detection system with a non-linear novelty detector, the resulting detector was
difficult to interpret; i.e., it was unclear what rules the detector had constructed to flag
viruses and whether those rules had blind spots. Further, our multi-stage architecture was
less robust than we had intended—rather than having to evade all the stages, a virus would
only need to evade any single one. In retrospect, a better design for multiple detectors
would be to treat each as an expert and aggregate their predictions as is discussed in
Chapter 3.6. Finally, in designing our system, we never considered that our training data
may be contaminated by malicious data—this oversight spawned my first project specifically
addressing adversarial learning .

1.3.3 Hypersphere Model

In continuing to explore virus detection, I began investigating how vulnerable our learning
algorithm was to adversarial contamination. The threat of an adversary systematically
misleading our outlier detector led me to construct a theoretical model for analyzing the
effect of contamination on our learning approach to virus detection. In my Master’s Thesis
[Nelson, 2005], I analyzed a simple algorithm for outlier detection based on bounding the
normal data in a mean-centered hypersphere of fixed radius as depicted in Figure 1.2(a).
I analyzed this detector instead of the one-class SVM primarily because the hypersphere
is easier to analyze and I hoped the analysis used on it could be extended to hyperplane
classifiers (like the one-class SVM) although these extensions have not yet been pursued.

In the hypersphere model, the novelty detector is a mean-centered hypersphere of fixed
radius R (possibly in a kernel-space). This novelty detector uses a bootstrapping retraining
policy—only adding points classified as normal to the training set while anomalous data
points are discarded. Further, the data points in the training set are never removed; i.e.,
there is no aging of data. I also made strong conservative assumptions about the attacker to
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Figure 1.2: Depictions of the concept of hypersphere outlier detection and the vulnera-
bility of naive approaches. (a) A bounding hypersphere centered at x̄mean of fixed radius
R is used to encapsulate the empirical support of a distribution by excluding outliers be-
yond its boundary. Samples from the ‘normal’ distribution are indicated by ∗’s with three
outliers on the exterior of the hypersphere. (b) How an attacker with knowledge about the
state of the outlier detector can shift the outlier detector toward the goal xA. It will take
several iterations of attacks to sufficiently shift the hypersphere before it encompasses xA

and classifies it as benign.

bound the minimal amount of effort he requires to be successful. I assumed the attacker is
omnipotent—he knows the state of the novelty detector, the policies of the novelty detector,
and how the novelty detector will change on retraining. I also assumed that the attacker
could control all training data once his attack commenced.

For this basic model for novelty detection, I analyzed a contamination scenario whereby
the attacker poisons the learning algorithm to pervert its ability to adapt into a tool the
adversary uses to accomplish his objective. The objective I considered was that the ad-
versary wants the novelty detector to misclassify a malicious target point xA as a normal
instance. However, the initial detector correctly classifies xA as malicious so the adversary
must manipulate the learner to achieve his objective. Initially, the attacker’s target point
xA is located a distance D radii from the side of the hypersphere (or a total distance of
R (D + 1) from its initial center), the initial hypersphere was trained using N initial be-
nign data points, and the adversary has M total attack points to use during the attack
which takes place over the course of T retraining iterations of the hypersphere model. The
purpose of studying this simple attack scenario was to quantify the relationship between
the attacker’s effort (i.e., M , the number of attack points required) and the attacker’s im-
pact (in terms of the number of radii D that the hypersphere is shifted) to gain a better
understanding of the effectiveness of data contamination on learning agents.

Based on the assumptions made about the attacker’s omnipotence and control of the
training data, constructing optimal attacks for this model was straightforward. The optimal
attacker can maximally displace the bounding hypersphere towards xA by inserting the
attacks points near the boundary along the line between the mean of the current hypersphere
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and xA; i.e., at the ℓ2-projection of xA onto the hypersphere. This attack strategy is
depicted in Figure 1.2(b). The only question that remained was how to allocate the M
attack points among the T retraining iterations, which I showed to be equivalent to a
center-of-mass problem where T blocks of length 2R are stacked to maximize their extent
beyond the edge of a precipice. Here the top t blocks have a total mass of Mt and the stack
has a total mass of M with an additional point mass N on the outer edge of the top block.
The optimal allocation of mass amongst these blocks must satisfy the following conditions:

M0 = N
Mt−1

Mt
=

Mt

Mt+1
∀ 1 ≤ t < T

MT = M + N .

By relaxing the integer constraints on the Mt, I showed that the optimal real-valued solution
is given by

M∗
t = N(T−t

T ) · (M + N)(
t
T ) .

This also yielded the following bound on the total number of attack points M required to
shift the hypersphere by a distance of D radii over T iterations:

M ≥ N

(

1− D

R · T

)−T

−N

≥ N

(

exp

(
D

R

)

− 1

)

.

This bound was a positive result in that it showed that trimmed means are hard to
poison as they accumulate training data in an online fashion. Thus, because of the bootstrap
retraining and the retention of all old data, the mean-centered hypersphere was shown to
be difficult to displace by large distances in that the required effort M is exponential in
the desired displacement D. However, this result also indicated that such a retraining
process becomes less adaptable to regular distributional shifts as more data accumulates,
which reduces the utility of such a model considerably. This model lacked a realistic policy
for retraining and makes the unrealistic assumption that the attacker controls all data
during the attack. Nonetheless, this work served as a foundation for analyzing repeated
contamination games in which the adversary attempts to poison a filter over many retraining
iterations and Kloft and Laskov [2010] extended this model by considering more realistic
retraining policies and a more realistic setting for the attack. Further, this early work
on contamination models heavily influenced my subsequent approach to the adversarial
learning framework that I describe in the remainder of this dissertation.

1.4 Dissertation Organization

The remainder of this dissertation is organized into three parts. In the first part, I present
the background and foundational materials for this work. In the next chapter, I present a
synopsis of machine learning and introduce my notation. Then in Chapter 3, I introduce a
framework for assessing the security properties of learning agents, I present the taxonomy
of attacks against learners, and I categorize and discuss the prior work within the context of
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this framework. I also apply the framework to motivate two studies of practical applications
of learning algorithms.

In the second part, I investigate two practical attacks against learning systems and cor-
responding defenses based on the framework. The first is a spam filter called SpamBayes
that I investigate in Chapter 4. I show that the SpamBayes filter is vulnerable to attack
messages that contaminate its training data causing it to subsequently misclassify normal
messages as spam, but I also demonstrate that a simple data sanitization technique can
effectively detect and remove attack messages with a minimal impact on the filter’s perfor-
mance. In Chapter 5, I study a class of data poisoning strategies against a second learning
system—a PCA-based anomaly detector designed to identify network-wide DoS attacks in
a backbone communication network. Again, I show that this class of algorithms is suscep-
tible to poisoning, but in this case, I show that an alternative algorithm based on a robust
variant of PCA is able to substantially mitigate the effect of the poisoning.

In the final part of the dissertation, I explore the near-optimal evasion problem for
the family of convex-inducing classifiers. I apply the framework to a theoretical model of
classifier evasion in Chapter 6. I generalize the near-optimal evasion framework of Lowd and
Meek [2005b] to the broader family of convex-inducing classifiers and explore algorithms
for evading these classifiers based on the family of ℓp costs. In the final chapter, Chapter 7,
I conclude with a summary of the contributions of this dissertation and discuss important
themes and open questions for the field of adversarial learning in security-sensitive domains.
Below, I outline the primary contributions I make in this dissertation.

1.4.1 Contributions

In this dissertation, I present a systematic approach for identifying and analyzing threats
against a machine learning system. I examine a number of real-world learning systems, as-
sess their vulnerabilities, demonstrate real-world attacks against their learning mechanism,
and propose defenses that can successfully mitigate the effectiveness of such attacks. In
doing so, I provide machine learning practitioners with a systematic methodology for as-
sessing a learner’s vulnerability and developing defenses to strengthen their system against
such threats. Additionally, I also examine and answer theoretical questions about the limits
of adversarial contamination and classifier evasion.

My first major contribution is a central framework for categorizing and describing po-
tential threats against a learning system (Chapter 3). This framework provides a taxonomy
of attacks, which divides threats along three axes. These axes describe the fundamental
characteristics of attacks that transcend domain-specific differences to elicit commonalities
among attacks in very different problem domains. I show that a security threat can also be
modeled as a game between the adversary and the learner, in which the characteristics of
the threat define the nature of the game. Each of these games engenders potential limits
on the adversary (and learner) and allow a security analyst to assess the learner’s vulnera-
bility. I identify plausible models for adversarial contamination and evasion of the learning
algorithm. Finally, the framework plays an essential role in motivating the practical attacks
on two realistic learning systems that are my next contribution.

The second principal contribution I make in this dissertation is a systematic investi-
gation of attacks on real-world learning systems—first a spam filter in Chapter 4 then a
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network anomaly detector in Chapter 5. For both of these system, I assess potential attacks
against the learner based on the framework. I identify plausible objectives for attackers,
construct a threat model, and investigate how effectively the attacker can achieve their
objective in several different scenarios, which provide different levels of information to the
adversary. By examining the adversary’s impact in these different settings, I quantified
attacks ranging from a worst-case omnipotent adversary to more realistic information and
resource constrained opponents. For both learning systems, I demonstrate that realistic
adversary’s can have a devastating impact on the performance of these systems by making
small adversarial alterations to the training data.

My third contribution is the design and analysis of defenses that I show can substantially
mitigate attacks on real-world learning systems. The first is a data sanitization technique
that I propose as a method of filtering contaminated training data for spam filtering (Chap-
ter 4.4). The technique I propose estimates the impact each message has on the filter and
excludes messages whose estimated impact is exceedingly damaging to the filter’s perfor-
mance. I show that this simple sanitization method is extraordinarily effective in preventing
some attacks against the learning algorithm. The second technique is an alternative learn-
ing method for the network anomaly detection setting. I adapt a technique from robust
statistics that was specifically designed to behave well under adversarial contamination.
I show that the alternative method successfully mitigates the effectiveness of the attacks
and outperforms the original detector under even small amounts of adversarial contamina-
tion. By constructing successful defenses against attacks, I establish methods for hardening
vulnerable learning systems against potential threats and assess the limits of these defenses.

Finally, my fourth contribution is a generalization of a theoretical framework for assess-
ing classifier vulnerability to evasion (Chapter 6). I build on the setting proposed by Lowd
and Meek [2005b] for quantifying the difficulty for an adversary to programmatically find
a classifier’s most desirable blind spots in terms of the query complexity required by the
adversary to find such an evading instance that is near-optimal according to some notion of
adversarial cost. In my investigation, I show that near-optimal classifier evasion is possible
for the family of convex-inducing classifiers with respect to weighted ℓ1 costs. In doing
so, I also demonstrate that the near-optimal evasion problem is generally computationally
easier than reverse-engineering a classifier. I also examine the broader family of ℓp costs
and present cases in which the convex-inducing classifiers cannot be efficiently evaded.
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Chapter 2

Background and Notation

In this section, I establish the general notation I use throughout the remainder of this
dissertation and introduce the basic foundation of machine learning that this dissertation
builds upon. Readers generally familiar with this field can read this section cursorily to
understand my notation. For a more thorough treatment of machine learning, the reader
should refer to a text such as Hastie et al. [2003] or Vapnik [1995].

2.1 Notation and Terminology

Throughout this dissertation, I consistently use the following mathematical notation.

First-Order Logic: The notation a ∧ b denotes the logical conjunction of a and b, a ∨ b
denotes the logical disjunction of a and b, and ¬a is the logical negation of a. I use
the symbols ∀ and ∃ for universal and existential quantification, respectively. I denote
predicates as functions such as p (·) which evaluates to true if and only if it’s input exhibits
the property represented by the predicate. The special identity predicate I [a] is true if and
only if a is true. Also, for convenience, I overload this notation for the indicator function,
which instead maps to {0, 1} rather than {false, true}.

Sets: A set , or a collection of objects, is denoted using blackboard bold characters such
as X; the set with no elements is the empty set , ∅. However, when referring to the entire
set or universe of a particular kind of object, I use calligraphic script characters such as
X to distinguish it from sets X ⊂ X . To group a collection of objects as a set I use
curly braces such as {a, b, c} . To specify set membership I use x ∈ X, and to explicitly
enumerate the elements of a set I use the notation X = {x1, x2, . . . , xN} for a finite set and
X = {x1, x2, . . .} for an infinite set. I use Y ⊂ X to denote that Y is a subset of X. For
finite sets, I use the notation |X| to denote the size of X. I use X ∪ Y to denote the union
of two sets, X ∩ Y to denote their intersection, and X \ Y , {x ∈ X ∧ x /∈ Y} to denote the
set difference of elements in X but not in Y. To qualify the elements within a set, I use the
notation X = {x | A (x) } to denote a set of objects that satisfy the predicate A (·). I also
use function IX [·] to denote the set indicator function for X; i.e., IX [x] , I [x ∈ X] (again I
overload this function to map to {0, 1} for convenience).
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Integers and reals: Common sets include the set of all integers Z and the set of all real
numbers ℜ. A special subset of the integers is the natural numbers ℵ = {z ∈ Z | z > 0}.
Similarly, special subsets of the reals are the positive reals ℜ+ = {r ∈ ℜ | r > 0} and the
non-negative reals ℜ0+ = {r ∈ ℜ | r ≥ 0}.

Indexed Sets: To order the elements of a set, I use an index set as a mapping to each

element. For a finite indexable set, I use the notation
{
x(i)
}N

i=1
so that the sequence of

N objects are indexed by {1, . . . , N} . More generally, a set indexed by the I is denoted
{
x(i)
}

i∈I
. An infinite set can be indexed by using ℵ or ℜ as the index set depending on its

cardinality.

Multi-dimensional sets: Sets can also be coupled to describe multi-dimensional objects
or tuples which I denote with a (lowercase) bold character such as x. An ordered pair
〈x, y〉 ∈ X × Y is a pair of objects x ∈ X and y ∈ Y. This ordered pair belongs to
the Cartesian product of the sets X and Y defined as the set of all such ordered pairs:
X × Y , { 〈x, y〉 | x ∈ X ∧ y ∈ Y}. A n-tuple is an ordered list of n objects from n sets:

〈x1, x2, . . . , xn〉 ∈ 
n

i=1 Xi where the generalized Cartesian product 
n

i=1 Xi , X1 × X2 ×
. . . × Xn = { 〈x1, x2, . . . , xn〉 | x1 ∈ X1 ∧ x2 ∈ X2 ∧ . . . ∧ xn ∈ Xn} is the set of all such
n-tuples. Here, the dimension of the space or the objects in it is n and the function dim (·)
returns the dimension of an object. When each element of a n-tuple belongs to a common set
X, the generalized Cartesian product is denoted with exponential notation as Xn ,

n

i=1 Xi;
e.g., the Euclidean space ℜn is the n-dimensional real-valued space.

Vectors: For my purposes vector is a special case of ordered n-tuple that I represent
as with a (usually lowercase) bold character such as v; unlike general tuples, vectors are
associated with an addition and a scalar multiplication operation. For an n-vector v with
elements in the set X, v ∈ Xn. The ith element (coordinate) of v is a scalar denoted
by vi ∈ X where i ∈ {1, 2, . . . , n}. Special real-valued vectors include the all ones vector
1 = 〈1, 1, · · · , 1〉, the all zeros vector 0 = 〈0, 0, · · · , 0〉, and the coordinate/basis vector
e(d) , 〈0, . . . , 1, . . . , 0〉 which has 1 only in its dth coordinate and 0 elsewhere.

Sequences of Objects: I differentiate sequenced objects from vectors by using the no-
tation x(t) to denote the tth object in a sequence. This is to avoid confusion in referring to
a sequence of multi-dimensional data. Here x(t) refers to the tth n-dimensional vector in a

sequence, x
(t)
i refers to the ith element of it, and xt

i is the tth power of xi.

Vector Spaces: A vector space is a set of vectors that can be added or multiplied by a
scalar; i.e., the space is closed under vector addition and scalar multiplication operations
that obey associativity, commutativity, and distributivity and has an additive and multi-
plicative identity as well as additive inverses. For example, the Euclidean space ℜn is a
vector space for any n ∈ ℵ. A convex set C ⊂ X is a subset of a vector space with the
property that ∀α ∈ [0, 1] x, y ∈ C ⇒ (1 − α)x + αy ∈ C; i.e., all convex combinations
of any x ∈ C and y ∈ C are also in C. A vector space X is a normed vector space if it
is associated with a norm function ‖·‖ : X → ℜ on the space such that i) there is a zero
element 0 that satisfies ‖x‖ = 0 ⇐⇒ x = 0, ii) for any scalar α, ‖αx‖ = |α| ‖x‖, and
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iii) the triangle inequality holds: ‖x + y‖ ≤ ‖x‖ + ‖y‖. A common family of norms are the
ℓp norms defined as

‖x‖p , p

√
√
√
√

n∑

i=1

|xi|p (2.1)

for p ∈ ℜ+.

Matrices: I represent matrices using a (usually uppercase) bold character such as A. A
matrix is a multi-dimensional object with two indices. For an M ×N -matrix with elements
in the set X, A ∈ XM×N , and I overload dim (·) to return the tuple 〈M, N〉; the number of
rows and columns of the matrix. The 〈i, j〉th element of A is denoted by Ai,j ∈ X where
i ∈ {1, 2, . . . , M} and j ∈ {1, 2, . . . , N}. The full matrix can then be expressed element-wise
using the bracket notation:

A =








A1,1 A1,2 · · · A1,N

A2,1 A2,2 · · · A2,N
...

...
. . .

...
AM,1 AM,2 · · · AM,N








.

As suggested by this notation, the first index of the matrix refers to its row and the second
refers to its column. Each row and each column are themselves vectors and are denoted
by Ai,• and A•,j respectively. I also use the bracket notation [·]i,j to refer to the 〈i, j〉th
element of a matrix-valued expression. Special matrices include the identity matrix I, with
1’s along its diagonal and 0’s elsewhere, and the zero matrix 0 with zero in every element.
The transpose of an M × N -matrix is an N ×M -matrix denoted as A⊤ and defined as
[
A⊤]

i,j
= Aj,i.

Vector/Matrix Multiplication: Here I consider vectors and matrices whose elements
belong to a set X with pairwise multiplication (e.g., Z, ℜ). For the purpose of matrix
multiplication, I represent an N -vector as an N × 1 matrix for convenience. The inner
product between two vectors v and w (dim (v) = dim (w)) is a scalar denoted by v⊤w =
∑N

i=1 vi · wi. The outer product between M -vector v and N -vector w is an M ×N -matrix
denoted by vw⊤ with elements

[
vw⊤]

i,j
= vi ·wj . The product between an M ×N -matrix

A and an N -vector w is denoted Aw and defined as the M -vector of inner products between
the ith row Ai,• and the vector w; i.e., 〈Aw〉i = A⊤

i,•w. It follows that v⊤Aw is a scalar

defined as v⊤Aw =
∑

i,j vi ·Ai,j · wj . The matrix product between an K ×M -matrix B

and an M ×N -matrix A is an K ×N -matrix denoted as BA whose 〈i, j〉th element is the
inner product between the ith row of B and the jth column of A; i.e., [BA]i,j = B⊤

i,•A•,j .

I also consider the Hadamard (element-wise) product of vectors and matrices which I
denote with the⊙ operator. The Hadamard product of vectors v and w (dim (v) = dim (w))
is a vector defined as 〈v ⊙w〉i , vi · wi. Similarly, the Hadamard product of matrices A
and B (dim (A) = dim (B)) is a matrix defined as [A⊙B]i,j , Ai,j ·Bi,j .

Functions: I denote a function using regular italic font; e.g., g . However, for special
named functions (such as log and sin) I use the non-italicized Roman font. A set is a
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mapping from its domain X to its codomain Y; g : X→ Y. To apply g to x, I use the usual
notation g (x); x ∈ X is the argument and g (x) ∈ Y is the value of g at x. I also use this
notation to refer to parameterized objects but it this case, I will name the object according
to the type of object. For instance, BC (g) , {x | g (x) < C} is a set parameterized by the
function f called the C-ball of g and so I call attention to the fact that this object is a set
by using the set notation B.

Families of functions: A family of functions is a set of functions, for which I ex-
tend the previous concept of multi-dimensional sets. Functions can be defined as tu-
ples of infinite length—instead of indexing the tuple with natural numbers, it is in-
dexed by the domain of the function; e.g., the reals. To represent the set of all such
functions, I use the generalized Cartesian product over an index set I as i∈I X where
X is the codomain of the functions. For instance the set of all real-valued functions
is G = x∈ℜℜ; i.e., every function g ∈ G is a mapping from the reals to the re-
als: g : ℜ → ℜ. I also consider special subsets such as the set of all continuous real-
valued functions G(continuous) = {g ∈ G | continuous (g) } or the set of all convex functions
G(convex) = {g ∈ G | ∀ t ∈ [0, 1] g (tx + (1− t) y) ≤ tg (x) + (1− t) g (y) }. Particularly, I
use the family of all classifiers in a D-dimensional space in Chapter 6. This family is the
set of functions mapping ℜD to the set {'−', '+'} and denoted by F ,x∈ℜD {'−', '+'}.

Optimization: Learning theory draws heavily from mathematical optimization. Opti-
mization typically is cast as finding the best object x from a set X in terms of finding a
minimizer of an objective function f : X → ℜ:

x∗ ∈ argmin
x∈X

[f (x)]

where argmin [·] is a mapping from the space of all objects X to a subset X′ ⊂ X which is
the set of all objects in X that minimize f (or equivalently maximize −f ). Optimizations
can also be restricted to obey a set of constraints. When specifying an optimization with
constraints, I use the following notation:

argminx∈X [f (x)]

s.t. C (x)

where f is the function being optimized and C represents the constraints that need to be
satisfied. Often there will be several constraints Ci that must be satisfied in the optimiza-
tion.

Probability and Statistics: I denote a probability distribution over the space X by
PX . It is a nonnegative function, which is defined on the subsets in a σ-field of X (i.e., a
set of subsets of X that is closed under complements and countable unions) and satisfies
(i) pX (A) ≥ 0, (ii) pX (X ) = 1, and (iii) for pairwise disjoint subsets A(1), A(2), . . . it
yields pX

(⋃

i A(i)
)

=
∑

i A(i) (for a more thorough treatment, refer to Billingsley [1995]). A
random variable drawn from distribution PX is denoted by X ∼ PX—notice that I do not
use a special notation for the random variable but I make it clear in the text that they are
random. The expected value of a random variable is denoted by EX∼PX

[X] =
∫

xdpX (x).
The family of all probability distributions on X is denoted by PX ; as above, this is a family
of functions.
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2.2 Statistical Machine Learning

Machine learning encompasses a vast field of techniques that extract information from data
as well as the theory and analysis relating to these algorithms. In describing the task of
machine learning, Mitchell [1997] wrote,

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks in T ,
as measured by P , improves with experience E

This definition encompasses a broad class of methods. Here, I present an overview of the
terminology and mechanisms for a particular notion of learning that is often referred to
as statistical machine learning. In particular, the notion of experience is cast as data,
the task is to choose an action (or make a prediction/decision) from a set of possible
actions/decisions, and the performance metric is a loss function that measures the cost
the learner incurs for a particular prediction/action compared to the best or correct one.
Figure 2.1 illustrates the data flow for learning in this setting: data D(train) drawn from
the distribution PZ is used by the learning procedure H (N) to produce a hypothesis (or
classifier) f . This classifier is a function that makes predictions on a new set of data D(eval)

(drawn from the same distribution) and is assessed according to the loss function L. The
instance space Z is discussed in more detail below, but generally instances z are drawn from
Z according to the distribution PZ and serve to train and evaluate the classifier f . Also,
Figure 2.1(a) additionally depicts the data collection phase of learning discussed briefly
below. While measurement and feature selection are important aspects of the security of a
learning algorithm, I do not focus on them in this dissertation.

Throughout, I only consider inductive learning methods, for which learning takes the
form of generalizing from prior experiences. The method of induction requires an inductive
bias, a set of (implicit) assumptions used to create generalizations from a set of observations.
An example of an inductive bias is Ockham’s Razor—preference for the simplest hypothesis
that is consistent with the observations. Usually, the inductive bias of these methods is an
implicit bias built into the learning procedure, but I do not discuss it further.

In this dissertation, I primarily focus on techniques from statistical machine learning
that can be described as empirical risk minimization procedures. Below, I summarize these
procedures and provide notation to describe them, but at a high level, empirical risk mini-
mization procedures attempt to minimize the total loss incurred for each prediction made
about the evaluation data, D(eval). Fundamentally, assuming stationarity in the data, mini-
mizing the expected loss (or risk) on the training data is a surrogate to minimize loss on the
evaluation data and, under the appropriate conditions, the error on the training data can
be used to bound the generalization error [cf., Vapnik, 1995, Chapter 1]. Underlying these
results is the assumption of stationarity that the training data and evaluation data are both
drawn from the same stationary distribution PZ as depicted in Figure 2.1. Subsequently,
I examine scenarios that violate this stationarity assumption and I evaluate the impact
these violations have on the performance of learning methods. However, while I study the
impact on performance of empirical risk minimizers, these violations would have similar
effects on any learner based on stationarity, and further I verify that these violations have
less of an impact on alternative empirical risk minimizers that were designed to be robust
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(a) The complete learning framework.
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(b) The learning framework with implicit data collection.

Figure 2.1: Diagrams depicting the flow of information through different phases of learn-
ing. (a) All major phases of the learning algorithm except for model selection. Here objects
drawn from PZ are parsed into measurements which then are used in the feature selector
FS. It selects a feature mapping φ which is used to create training and evaluation datasets,
D(train) and D(eval). The learning algorithm H (N) selects a hypothesis f based on the train-
ing data and its predictions are assessed on D(eval) according to the loss function L. (b)
The training and prediction phases of learning with implicit data collection phases. These
learning phases are the focus of this dissertation.
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against distributional deviations. Thus, vulnerabilities are neither unique to empirical risk
minimization procedures nor are they inherent to them, but rather guarding against these
exploits requires learners designed to be resilient against violations in their assumptions.
Of course, there is also a trade-off in this robustness and the effectiveness of the procedure,
which I highlight in each chapter.

2.2.1 Data

Real-world objects such as emails or network packets occur in a space Ω of all such objects.
Usually, applying a learning algorithm directly to real-world objects is difficult because the
learner cannot parse the objects’ structure or the objects may have extraneous elements
that are irrelevant to the learner’s task. Thus, these objects are transformed into a more
amenable representation by a mapping from real-world abstractions (e.g., objects or events)
into a set of representative observations—the process of measurement . In this process, each
real-world abstraction, ω ∈ Ω, is measured and represented to the learning algorithm as
a composite object x ∈ X . Typically there are D simple measurements of ω; the ith

measurement (or feature) xi is from a space Xi, and the composite representation (or data
point) x ∈ X is represented as a tuple 〈x1, x2, . . . , xD〉. The space of all such data points is
X , X1×X2× . . .×XD. Each feature is usually real-valued Xi = ℜ, integer-valued Xi = Z,
boolean Xi = {true, false}, or categorical Xi = {A1, A2, . . . , Ak}. Formally, I represent the
measurement process with the measurement map ξ : Ω 7→ X . It represents the learner’s
view of the world.

Data collection is the application of a measurement map ξ to a sequence of N objects

ω(1), ω(2), . . . , ω(N) resulting in an indexed set of N data points
{
x(i)
}N

i=1
⊂ XN , which I

refer to as a dataset and denote it by D. The dataset represents a sequence of observations
of the environment and serve as the basis for learner’s ability to generalize past experience
to future events or observations. Various assumptions are made about the structure of
the dataset, but most commonly, the learner assumes the data points are independent
and identically distributed. All the learning algorithms I investigate assume that the data
is independently sampled from an unknown stationary distribution although with various
degrees of dependence on this assumption.

Labels In many learning problems, the learner is tasked with learning to predict the un-
observed state of the world based on its observed state. Thus, observations are partitioned
into two sets. Those that are observed are the explanatory variables (also referred to as
the input, predictor, or controlled variables) and the unobserved quantities to be predicted
comprise the response variables (also referred to as the output or outcome variables). In the
context of this dissertation and my focus on classification, I refer to the observed indepen-
dent quantities as the data point (as discussed above) and to the dependent quantities as
its label . The learner is expected to be able to predict the label for a data point having seen
past instances of data points coupled with their labels. In this form, each datum consists of
two paired components: a data point x from an input space X and a label y from a response
space Y. These paired objects belong to the Cartesian product: Z , X ×Y. Instances are
drawn from a joint distribution PZ over this paired space.

In learning problems that include labels (e.g., supervised or semi-supervised learning),
the learner trains on a set of paired data from Z. In particular, a labeled dataset is an

27



indexed set of N instances from Z: D ,
{
z(1), z(2), . . . , z(N)

}
where z(i) ∈ Z is drawn from

PZ . The indexed set of just the data points is DX ,
{
x(1), x(2), . . . , x(N)

}
and the indexed

set of just the labels is DY ,
{
y(1), y(2), . . . , y(N)

}
. In the case that X = AD for some

numeric set A, the ith data point can be expressed as a D-vector x(i) and the data can be
expressed as a N × D matrix X defined by Xi,• = x(i). Similarly, when Y is a scalar set
(e.g., booleans, reals), y(i) is a scalar and the labels can be expressed as a simple N -vector
y.

Feature Selection Typically, measurement is only the first phase in the overall process
of data extraction. After a dataset is collected, it is often altered in a process of feature
selection. Feature selection is a mapping φ of the original measurements into a space X̂
of features1: φD : X 7→ X̂ . Unlike the data-independent measurement mapping ξ, the
feature selection map often is selected in a data-dependent fashion to extract aspects of
the data most relevant to the learning task. Further, measurement often is an irreversible
physical process whereas feature selection usually can be redone by reprocessing the original
measurements. In many settings, one can retroactively alter the feature selection process
by redefining the feature selection map and reapplying it to the measured data whereas
it is impossible to make retroactive measurements on the original objects unless they are
stored. However, for the purposes of this dissertation, I do not distinguish between the
feature selection and measurement phases because the attacks I study target other aspects
of learning. I merge them together into a single step and disregard X̂ except explicitly
in reference to feature selection. I further discuss potential roles for feature selection in
security-sensitive settings in Chapter 7.2.

2.2.2 Hypothesis Space

A learning algorithm is tasked with selecting a hypothesis that best supports the data.
Here I consider the hypothesis to be a function f mapping from the data space X to
the response space Y; i.e., f : X → Y. Of course there are many such hypotheses. I
assume f belongs to a family of all possible hypotheses F . The family of all possible
hypotheses (or hypothesis space) is most generally the set of all functions that map X onto
Y: F , {f | f : X → Y}. The hypothesis space F may be constrained by assumptions made
about the form of the hypotheses. For instance, learners often only consider the space of
generalized linear functions of the form f β

a,b (x) , β
(
a⊤x + b

)
where β : ℜ 7→ Y is some

mapping from the reals to the response space. For instance, in the case that Y = {0, 1}, the
function β (x) = I [x > 0] yields the family of all halfspaces on ℜD parameterized by 〈a, b〉 .
In the case that Y = ℜ the identity function β (x) = x defines the family of linear functions
on ℜD also parameterized by 〈a, b〉 .

2.2.3 The Learner

I describe the learner as a model that captures assumptions made about the observed
data—the model provides limitations on the space of hypotheses, and perhaps provides

1In the literature, feature selection chooses a subset of the measurements (X̂ ⊂ X ), and feature extraction
creates composite features from the original measurements. I do not differentiate between these two processes
and will refer to both as feature selection.
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prior knowledge or preferences on these hypotheses (e.g., a prior in a Bayesian setting or a
regularizer in a risk minimization setting). That is, the model is a set of assumptions about
the relationship between the observed data and the hypothesis space, but the model does not
specify how hypotheses are selected—that is done by the training procedure. For example,
consider a simple location estimation procedure for normally distributed data. The data
model specifies that the data points are independently drawn from a unit-variance Gaussian
distribution centered at an unknown parameter θ; i.e., X ∼ N (θ, 1). However, both the
mean and the median are procedures for estimating the location parameter θ both of which
are consistent with the model. By distinguishing the model and the training procedure one
can study different aspects of a learner’s vulnerabilities.

2.2.4 Supervised Learning

The primary focus of this work will be analyzing the task of prediction in supervised learning.
In the supervised learning framework, the observed data points are paired: D =

{〈
x(i), y(i)

〉}

where x(i) ∈ X and y(i) ∈ Y—a predictor (input) variable and its response (output) variable.
I assume the dataset is drawn from a joint distribution PZ over the space Z that may also
be denoted as PX×Y . The objective of prediction is to select an appropriate hypothesis;
i.e., a map f : X → Y predicting the response variable based on the observed predictor
variable. The learner selects the best hypothesis f † from a space of all possible hypotheses
F .

Given a hypothesis space, F , the goal is to learn a classification hypothesis (classifier)
f † ∈ F to minimize errors when predicting labels for new data, or if our model includes
a cost function over errors, to minimize the total cost of errors. The cost function assigns
a numeric cost to each combination of data instance, true label, and classifier label. The
defender chooses a procedure H (N), or learning algorithm, for selecting hypotheses.

The learner is a mapping from a dataset D ∈ ZN to a hypothesis f in the hypothesis
space: H (N) : ZN → F . I use H (N) : ZN → F to denote a training algorithm; that is, a
mapping from N training examples to some hypothesis f in the hypothesis space F . If the
algorithm has a randomized element I use the notation H (N) : ZN ×ℜ → F to capture that
fact that the hypothesis depends on a random element R ∼ Pℜ.

I also consider asymptotic procedures; that is, the hypothesis generated by a training
algorithm that takes an entire distribution PZ ∈ PZ as its input. An asymptotic procedure
is denoted by H : PZ → F . An asymptotic learning procedure is a mapping from an
entire distribution over Z to a function in the hypothesis space: H : PZ → F . The finite
sample version of the learner, H (N) can be viewed as the asymptotic procedure applied to
the empirical distribution function.

Training The process I describe here is batch training—the learner trains on a training set
D(train) and is evaluated on an evaluation set D(eval). This setting can be generalized to an
repeated process of online training , in which the learner continually re-trains on evaluation
data after obtaining its labels (I return to this setting in Chapter 3.6). In a pure online
setting, prediction and re-training occur every time a new data point is received. In the
batch training setting (or in a single ply of online learning), the learner forms a hypothesis f †

based on the collected data D(train)—the process known as training . A plethora of different
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training procedures have been used in the supervised learning setting for (regularized)
empirical risk minimization under a wide variety of settings. I will not detail these methods
further, but instead introduce the basic setting for classification.

In a classification problem the response space is a finite set of labels each of which
correspond to some subset of input space (although these subsets need not be disjoint).
The learning task is to construct a classifier that can correctly assign these labels to new
data points based on labeled training examples from each class. In a binary classification
setting there are only two labels, '−' and '+'; i.e., the response space is Y = {'−', '+'}.
Where mathematically convenient, I will use 0 and 1 in place of the labels '−' and '+'; i.e.,
I will implicitly redefine the label y to be I [y = '+']. In binary classification, I refer to the
two classes as the negative class (y = '−') and the positive class (y = '+'). The training
set D(train) consists of labeled instances from both classes. I primarily focus on binary
classification for security applications, in which a defender attempts to separate instances
(i.e., data points), some or all of which come from a malicious attacker , into harmful
and benign classes. This setting covers many interesting security applications, such as host
and network intrusion detection, virus and worm detection, and spam filtering. In detecting
malicious activity, the positive class (label '+') indicates malicious intrusion instances while
the negative class (label '−') indicates benign or innocuous normal instances. In Chapter 5,
I also consider the anomaly detection setting, in which the training set only contains normal
instances from the negative class.

Risk Minimization The goal of the learner is to find the best hypothesis f ∗ from the
hypothesis space F that best predicts the target concept (according to some measure of
correctness) on instances drawn according to the unknown distribution PZ . Ideally the
learner is able to distinguish f ∗ from any other hypothesis f ∈ F based on the observed
data D of data points drawn from PZ , but this is seldom realistic or even possible. Instead,
the learner should choose the best hypothesis in the space according to some criteria for
preferring one hypothesis over another—this is the performance measure. The measure can
be any assessment of a hypothesis; in statistical machine learning, a common procedure is
empirical risk minimization which is based on a loss function L : Y×Y 7→ ℜ0+. The learner
selects a hypothesis f † ∈ F that minimizes the expected loss, or risk , over all hypotheses
(f † ∈ argminf ∈F R (PZ , f )) where the risk is given by

R (PZ , f ) ,

∫

〈x,y〉∈Z
L (y, f (x)) dpZ (x, y) .

However, this minimization is also infeasible since the distribution PZ is unknown. In-
stead, in the empirical risk minimization framework, the learner selects f † to minimize the
empirical risk on the dataset D ∼ PZ defined as

R̃N (f ) =
1

N

∑

〈x,y〉∈D

L (y, f (x))

where N = |D|. The practice of minimizing this surrogate for the true risk is known as
empirical risk minimization [cf., Vapnik, 1995].

Regularization The learner also should restrict the space of hypotheses F . If the space
of hypotheses is too expressive, there will be a hypothesis that fits the empirical observations
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exactly, but it may not be able to make accurate predictions about unseen instances; e.g.,
consider constructing a lookup table from observed data points to their responses. This
phenomenon is known as overfitting to the training data. One possibility to avoid overfitting
is to only consider a small or restricted space of hypotheses; e.g., the space linear functions.
Alternatively, one could allow for a large space of hypotheses, but penalize the complexity
of a hypothesis—a practice known as regularization. Thus, the learner selects a hypothesis
f † that minimizes the modified objective

R̃N (f ) + λ · ρ (f ) (2.2)

where the function ρ : F → ℜ is a measure of the complexity of a hypothesis and λ ∈ ℜ+ is a
parameter that controls the trade-off between risk minimization and hypothesis complexity.

Prediction/Evaluation: Once trained on a dataset, the learned hypothesis is subse-
quently used to predict the response variables for a set of unlabeled data. I call this the
evaluation phase although it may also be referred to as the test or prediction phase. Ini-
tially, only the data point x is available to the predictor. The learned hypothesis f † predicts
a value ŷ = f † (x) in the space Y of all possible responses2. Finally, the actual label y is
revealed and the agent receives a loss L (ŷ, y) as an assessment of its performance. In the
classification setting, there are generally two types of classification mistakes: a false posi-
tive (FP) is a normal instance classified as positive and a false negative (FN) is a malicious
instance classified as negative. Selecting an appropriate trade-off between false positives
and false negatives is an application-specific task.

The performance of a learner is typically assessed on a held-out set of labeled evaluation

dataset, D(eval). Predictions are generated by f † for each data point x(i) ∈ D
(eval)
X in the

evaluation dataset and the losses incurred are aggregated into various performance measures.
In the classification setting, the typically performance measures are the false positive rate
(FPR), the fraction of negative instances classified as positive, and the false negative rate
(FNR), the fraction of positive instances classified as negatives. Often a classifier is tuned to
have a particular (empirical) false positive rate based on held-out training data (validation
dataset) and its resulting false negative rate is assessed at that FP-level.

2.2.5 Other Learning Paradigms

It is also interesting to consider cases where a classifier has more than two classes, or even
a real-valued output. Indeed, the spam filter SpamBayes, which I study in Chapter 4, uses
a third label, unsure, to allow the end-user to examine these potential spam more closely.
However, generalizing the analysis of errors to more than two classes is not straightforward,
and furthermore most systems in practice make a single fundamental distinction (for exam-
ple, regardless of the label applied by the spam filter, the end-user will ultimately decide
to treat each class as either junk messages or legitimate mail). For these reasons, and in
keeping with common practice in the literature, I limit my analysis to binary classification
and leave extensions to the multi-class or real-valued prediction as future work.

2The space of allowed predictions or actions A need not be the same as the space of allowed responses,
Y. This allows the learner to choose from a larger range of responses (hedging bets) or to restrict the learner
to some desired subset. However, unless explicitly stated, I will assume A = Y.

31



In Chapter 5, I also study an anomaly detection setting. Like binary classification,
anomaly detection consists of making one of two predictions: the data is normal ('−') or
the data is anomalous ('+'). Unlike the classification setting, training data usual only
consists of examples from the negative class. Because of this, it is common practice to
calibrate the detector to achieve a desired false positive rate on held-out training data.

There are other interesting learning paradigms to consider such as semi-supervised,
unsupervised, and reinforcement learning. However, as they do not directly impact my
dissertation, I will not discuss these frameworks. For a thorough discussion of different
learning settings refer to Hastie et al. [2003] or Mitchell [1997].
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Chapter 3

A Framework for Secure Learning

The study of learning in adversarial environments is a relatively new discipline at the
intersection between machine learning and computer security. I introduce a framework
for qualitatively assessing the security of a machine learning system that captures a broad
set of security characteristics common to a number of related adversarial learning settings.
There has been a rich set of work in recent years that examines the security of machine
learning systems, and here, I survey prior studies of learning in adversarial environments,
attacks against learning systems and proposals for making systems secure against attacks.
I identify different classes of attacks on machine learning systems (Section 3.3) and organize
these attacks in terms of a taxonomy and a secure learning game, demonstrating that this
framework captures the salient aspects of each attack.

While many researchers have considered particular attacks on machine learning systems,
this chapter presents a comprehensive view of attacks. I organize attacks against machine
learning systems based on a taxonomy that categorizes a threat in terms of three crucial
properties of such attacks. I also present secure learning as a game between an attacker
and a defender ; the taxonomy determines the structure of the game and its cost model.
Further, this taxonomy provides a basis for evaluating the resilience of the systems described
by analyzing threats against them to construct defenses. The development of defensive
learning techniques is more tentative, but I also discuss a variety of techniques that show
promise for defending against different types of attacks.

The work I present not only provides a common language for thinking and writing about
secure learning, but goes beyond that to show how the framework applies to both algorithm
design and the evaluation of real-world systems. Not only does the framework elicit common
themes in otherwise disparate domains, it has also motivated my study of practical machine
learning systems as presented in Chapters 4, 5, and 6. These foundational principals for
characterizing attacks against learning systems are an essential first step if secure machine
learning is to reach its potential as a tool for use in real systems in security-sensitive domains.

This work was first introduced in the paper Can Machine Learning be Secure? [Barreno
et al., 2006] that I wrote with my co-workers for ASIACCS’06. This work was later expanded
and used to categorize prior work in the secure learning field in our paper The Security of
Machine Learning published in Machine Learning [Barreno et al., 2010] and in Marco
Barreno’s dissertation [Barreno, 2008]. Here I use this framework as the central organizing
scheme for my dissertation, my methodology, and the prior work in this field.
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3.1 Analyzing Phases of Learning

Attacks can occur at each of the phases of the learning process that were outlined in
Chapter 2.2. Figure 2.1(a) depicts how data flows through each phase of learning. I briefly
outline how attacks against these phases differ.

The Measuring Phase With knowledge of the measurement process, an adversary can
design malicious instances to mimic the measurements of innocuous data. After a suc-
cessful attack against the measurement mechanism, the system may require expensive re-
instrumentation or redesign to accomplish its task.

The Feature Selection Phase The feature selection process can be attacked in the
same manner as the measuring phase except countermeasures and recovery are less costly
since feature selection is a dynamic process that can be more readily adapted. Potentially,
re-training could even be automated. However, feature selection can also be attacked in
the same manner as the training phase (below) if feature selection is based on training data
that may be contaminated.

Learning Model Selection Once the learning model is known, an adversary could ex-
ploit assumptions inherent in the model. Erroneous or unreasonable modeling assumptions
about the training data may be exploited by an adversary; e.g., if a model erroneously as-
sumes linear separability in the data, the adversary could use data that can not be separated
linearly to deceive the learner or make it perform poorly. It is essential to explicitly state
and critique the modeling assumptions to identify potential vulnerabilities since changing
the model may require that the system be redesigned.

The Training Phase By understanding how the learner trains, an adversary can design
data to fool the learner into choosing a poor hypothesis. Robust learning methods are
promising techniques to counter these attacks as discussed in Section 3.5.4.3. These methods
are resilient to adversarial contamination although there are inherent trade-offs between
their robustness and performance.

The Prediction Phase Once learned, an imperfect hypothesis can be exploited by an
adversary who discovers prediction errors made by the learner. Assessing how difficult it
is to discover such errors is an interesting question; e.g., the ACRE-learning framework of
Lowd and Meek [2005b] as discussed further in Chapter 3.4.4. An interesting avenue of
future research is detecting that an adversary is exploiting these errors and retraining to
counter the attack.

To better understand these different attacks, consider a spam filter: that (i) has some
simple set of measurements of email such as hasAttachment, subjectLength, bodyLength,
etc., (ii) selects the top-ten most frequently appearing features in spam, (iii) uses the naive
Bayes model, (iv) trains class frequencies by empirical counts, and (v) classifies email by
thresholding the model’s predicted class probabilities. An attack against the measurement
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(or feature selection) phase would consist of determining the features used (for classifica-
tion) and producing spams that are indistinguishable from normal email for those features.
An attack against the learning model would entail discovering a set of spams and hams
that could not be classified correctly due to the linearity of the naive Bayes boundary.
Further, the training system (or feature selection) could be attacked by injecting spams
with misleading spurious features causing it to learn the wrong hypothesis. Finally, the
prediction phase could be attacked by systematically probing the filter to find spams that
are misclassified as ham (false negatives).

Many learning methods make a stationarity assumption: training data and evaluation
data are drawn from the same distribution. Under this assumption minimizing the risk on
the training set is a surrogate for risk on the evaluation data. However, real-world sources
of data often are not stationary and, even worse, attackers can easily break the station-
arity assumption with some control of either training or evaluation instances. Analyzing
and strengthening learning methods to withstand or mitigate violations of the stationarity
assumption is the crux of the secure learning problem.

Qualifying the vulnerable components of the learning system is only the first step to
understanding the adversary. In the next section, I outline a framework my colleagues and
I designed to qualify the adversary’s goals.

3.2 Security Analysis

Security is concerned with protecting assets from attackers. Properly analyzing the security
of a system requires identifying the security goals and a threat model for the system. A
security goal is a requirement that, if violated, results in the partial or total compromise of
an asset. A threat model is a profile of attacker who wish to harm the system, describing
their motivation and capabilities. Here I describe the security goals and threat model for
machine learning systems.

In a security-sensitive domain, classifiers can be used to make distinctions that advance
the security goals of the system. For example, a virus detection system has the goal of
reducing susceptibility to virus infection, either by detecting the virus in transit prior to
infection or by detecting an extant infection to expunge. Another example is an intrusion
detection system (IDS), which has the goal of preventing harm from malicious intrusion,
either by identifying existing intrusions for removal or by detecting malicious traffic and
preventing it from reaching its intended target1. In this section, I describe security goals
and a threat model that are specific to machine learning systems.

3.2.1 Security Goals

In a security context the classifier’s purpose is to classify malicious events and prevent them
from interfering with system operations. We split this general learning goal into two goals:

• Integrity goal: To prevent attackers from reaching system assets.

1In the case of preventing intrusion, the whole system is more properly called an intrusion prevention

system (IPS). I have no need to distinguish between the two cases, so I use IDS to refer to both intrusion
detection systems and intrusion prevention systems.
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• Availability goal: To prevent attackers from interfering with normal operation.

There is a clear connection between false negatives and violation of the integrity goal:
malicious instances that pass through the classifier can wreak havoc. Likewise, false positives
tend to violate the availability goal because the learner itself denies benign instances.

3.2.2 Threat Model

Attacker goal and incentives. In general the attacker wants to access system assets
(typically with false negatives) or deny normal operation (usually with false positives). For
example, a virus author wants viruses to pass through the filter and take control of the
protected system (a false negative). On the other hand, an unscrupulous merchant may
want sales traffic to a competitor’s web store to be blocked as intrusions (false positives).

We assume that the attacker and defender each have a cost function that assigns a cost
to each labeling for any given instance. Cost can be positive or negative; a negative cost
is a benefit. It is usually the case that low cost for the attacker parallels high cost for the
defender and vice-versa; the attacker and defender would not be adversaries if their goals
aligned. Unless otherwise stated, for ease of exposition I assume that every cost for the
defender corresponds to a similar benefit for the attacker and vice-versa. This assumption
is not essential to this framework, which extends easily to arbitrary cost functions, but not
necessary for my exposition. In this chapter, I take the defender’s point of view and use
“high-cost” to mean high positive cost for the defender.

3.2.2.1 Attacker capabilities

I assume that the attacker has knowledge of the training algorithm, and in many cases partial
or complete information about the training set, such as its distribution. For example, the
attacker may have the ability to eavesdrop on all network traffic over the period of time
in which the learner gathers training data. I examine different degrees of the attacker’s
knowledge and assess how much he gains from different sources of potential information.

In general, I assume the attacker can generate arbitrary instances; however, many set-
tings do impose significant restrictions on the instances generated by the attacker. For
example, when the learner trains on data from the attacker, sometimes it is safe to assume
that the attacker cannot choose the label for training, such as when training data is care-
fully hand labeled. As another example, an attacker may have complete control over data
packets being sent from the attack source, but routers in transit may add to or alter the
packets as well as affect their timing and arrival order.

I assume the attacker has the ablity to modify or generate data used in training and
explore scenarios both when he has this capability and when he does not. When the attacker
controls training data, an important limitation to consider is what fraction of the training
data the attacker can control and to what extent. If the attacker has arbitrary control
over 100% of the training data, it is difficult to see how the learner can learn anything
useful; however, even in such cases there are learning strategies that can make the attacker’s
task more difficult (see Section 3.6). I examine intermediate cases and explore how much
influence is required for the attacker to defeat the learning procedure.
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Integrity Availability

Causative:

Targeted
Kearns and Li [1993], Newsome
et al. [2006]

Kearns and Li [1993], Newsome
et al. [2006], Chung and Mok
[2007], Nelson et al. [2008]

Indiscriminate
Kearns and Li [1993], Newsome
et al. [2006]

Kearns and Li [1993], Newsome
et al. [2006], Chung and Mok
[2007], Nelson et al. [2008]

Exploratory:

Targeted
Tan et al. [2002], Lowd and
Meek [2005a], Wittel and Wu
[2004], Lowd and Meek [2005b]

Moore et al. [2006]

Indiscriminate
Fogla and Lee [2006], Lowd and
Meek [2005a], Wittel and Wu
[2004]

Moore et al. [2006]

Table 3.1: Related work in the taxonomy.

3.3 Framework

The framework I describe here has three primary components: a taxonomy based on the
common characteristics of attacks against learning algorithms, a high-level description of
the elements of the game played between the attacker and defender (learner), and set of
common characteristics for an attacker’s capabilities. Each of these elements help organize
and assess the threat posed by an attacker.

3.3.1 Taxonomy

A great deal of the work that has been done within secure learning is the analysis of attack
and defense scenarios for particular learning applications. My colleagues and I developed
a qualitative taxonomy of attacks against machine learning systems which we used both
to categorize others research, to find commonalities between otherwise disparate domains,
and ultimately to frame our own research. Here, I present a taxonomy categorizing attacks
against learning systems along three axes. Each of these dimensions operates independently,
so we have at least eight distinct classes of attacks on machine learning system. This
taxonomy divides threats as follows:
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Influence

• Causative attacks influence learning with control over training data.
• Exploratory attacks exploit misclassifications but do not affect training.

Security violation

• Integrity attacks compromise assets via false negatives.
• Availability attacks cause denial of service, usually via false positives.

Specificity

• Targeted attacks focus on a particular instance.
• Indiscriminate attacks encompass a wide class of instances.

The first axis describes the capability of the attacker: whether (a) the attacker has the
ability to influence the training data that is used to construct the classifier (a Causative at-
tack) or (b) the attacker does not influence the learned classifier, but can send new instances
to the classifier and possibly observe its decisions on these carefully crafted instances (an
Exploratory attack).

The second axis indicates the type of security violation the attacker causes: either
(a) allowing harmful instances to slip through the filter as false negatives (an Integrity
violation); or (b) creating a denial of service event in which benign instances are incorrectly
filtered as false positives (an Availability violation).

The third axis refers to how specific the attacker’s intention is: whether (a) the attack
is highly Targeted to degrade the classifier’s performance on one particular instance or (b)
the attack aims to cause the classifier to fail in an Indiscriminate fashion on a broad class
of instances. Each axis, especially this one, can actually be a spectrum of choices, but for
simplicity, I will categorize attacks and defenses into these groupings.

These axes define the space of attacks against learners and aid in identifying unconven-
tional threats. By qualifying where an attack lies in this space, one can begin to quantify
the adversary’s capabilities and assess the risk posed by this threat. Laskov and Kloft
[2009] have since extended these basic principles to propose a framework for quantitatively
evaluating security threats.

3.3.2 The Adversarial Learning Game

I model the task of constructing a secure learning system as a game between an attacker
and a defender—the attacker manipulates data to mis-train or evade a learning algorithm
chosen by the defender to thwart the attacker’s objective. The characteristics specified
by the taxonomy’s axes also designate some aspects of this game. The influence axis
determines the structure of the game and the legal moves that each player can make. The
specificity and security violation axes of the taxonomy determine the general shape of
the cost function: an Integrity attack benefits the attacker on false negatives, and therefore
focuses high cost (to the defender) on false negatives, and an Availability attack focuses
high cost on false positives; a Targeted attack focuses high cost only on a small number of
instances, while an Indiscriminate attack spreads high cost over a broad range of instances.

I formalize the game as a series of moves, or steps. Each move either is a strategic choice
by one of the players or is a neutral move not controlled by either player. The choices and
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computations in a move depend on information produced by previous moves (when a game
is repeated, this includes previous iterations) and on domain-dependent constraints which I
highlight in discussing prior work. Generally, though, in an Exploratory attack, the attacker
chooses a procedure A(eval) that affects the evaluation data D(eval), and in a Causative attack,
the attacker also chooses a procedure A(train) to manipulate the training data D(train). In
either setting, the defender chooses a learning algorithm H (N). This formulation gives us a
theoretical basis for analyzing the interactions between attacker and defender.

3.3.3 Characteristics of Adversarial Capabilities

In this section I introduce three essential properties for constructing a model of an attack
against a learning algorithm that refine the game played between the learner and the adver-
sary as described by the taxonomy. These properties define a set of common domain-specific
adversarial limitations that allow a security analyst to formally describe the capabilities of
the adversary.

3.3.3.1 Corruption Models

The most important aspect of the adversary is how he can alter data to mislead or evade the
classifier. As previously stated, learning against an unlimited adversary is futile. Instead,
the security analysis I propose focuses on a limited adversary, but to do so, one must model
the restrictions on the adversary and justify these restrictions for a particular domain. Here,
I outline two common models for adversarial corruption, and I describe how the adversary
is limited within each.

Data Insertion Model: The first model assumes the adversary has unlimited control
of a small fraction of the data; i.e., the adversary is restricted to only modify a limited
amount of data but can alter those data points arbitrarily. I call this an insertion model
because, in this scenario, the adversary crafts a small number of attack instances and inserts
them into the dataset for training or evaluation (or perhaps replaces existing data points).
For example, in the example of a spam filter, the adversary (spammer) can create any
arbitrary message for their attack but he is limited in the number of attack messages he
can inject; thus, the spammer’s attack on the spam filter can be analyzed in terms of how
many messages are required for the attack to be effective. For this reason, I use this model
of corruption in analyzing attacks on the SpamBayes spam filter in Chapter 4 and show
that even with a relatively small number of attack messages, the adversarial spammer can
significantly mislead the filter.

Data Alteration Model: The second corruption model instead assumes that the adver-
sary can alter any (or all) of the data points in the data set but is limited in the degree
of alteration; i.e., a alteration model . For example, to attack a detector that is monitor-
ing network traffic volumes over windows of time, the adversary can add or remove traffic
within the network but only can make a limited degree of alteration. Such an adversary
cannot insert new data since each data point corresponds to a time slice and the adversary
cannot arbitrarily control any single data point since other actors are also creating traffic in
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the network. Here, the adversary is restricted by the total amount of alteration they make,
and so the effectiveness of his attack can be analyzed in terms of the size of alteration
required to achieve the attacker’s objective. This is the model I use for analyzing attacks
on a PCA-subspace detector for network anomaly detection in Chapter 5 and again I show
that with a relatively small degree of control, the adversary can dramatically degrade the
effectiveness of this detector using data alterations.

3.3.3.2 Class Limitations

A second limitation on attackers involves which parts of the data the adversary is allowed to
alter—the positive (malicious) class, the negative (benign) class, or both. Usually, attackers
external to the system are only able to create malicious data and so they are limited to only
manipulating positive instances. This is the model I use throughout dissertation. However,
there is also an alternative threat that insiders could attack a learning system by altering
negative instances. I do not analyze this threat in this thesis but return to the issue in the
discussion in Chapter 7.

3.3.3.3 Feature Limitations

The final type of adversarial limitation I consider are limits on how an adversary can alter
data points in terms of each feature. Features represent different aspects of the state of the
world and have various degrees of vulnerability to attack. Some features can be arbitrarily
changed by the adversary, but others may have stochastic aspects that the adversary cannot
completely control, and some features may not be alterable at all. For instance, in sending
an email, the adversary can completely control the content of the message but cannot
completely determine the routing of the message or its arrival time. Further, this adversary
has no control over meta-information that is added to the message by mail relays while the
message is en route. Providing an accurate description of the adversary’s control over the
features is essential.

3.3.4 Attacks

In the remainder of this chapter, I survey prior research, I discuss how attack and defense
strategies were developed in different domains, I reveal their common themes, and I highlight
important aspects of the secure learning game in the context of this taxonomy. The related
work discussed below is also presented in the taxonomy in Table 3.1. For an Exploratory
attack, I discuss realistic instances of the attacker’s choice for A(eval) in Sections 3.4.2
and 3.4.3. Similarly, in Sections 3.5.2 and 3.5.3, I discuss practical examples of the attacker’s
choices in the Causative game. Finally, in Section 3.7, I organize the remainder of my
dissertation within the context of this framework.

3.3.5 Defenses

The game between attacker and defender and the taxonomy also provide a foundation on
which to construct defense strategies against broad classes of attacks. I address Exploratory
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Figure 3.1: Diagram of an Exploratory attack against a learning system (see Figure 2.1).

and Causative attacks separately. For Exploratory attacks, I discuss the defender’s choice
for an algorithm H (N) in Section 3.4.4 and I discuss the defender’s strategies in a Causative
setting in Section 3.5.4. Finally, in Section 3.6, I discuss the broader setting of an iterated
game.

In all cases, defenses present a trade-off: changing the algorithms to make them more
robust against (worst-case) attacks will generally make them less effective on non-adversarial
data. Analyzing this trade-off is an important part of developing defenses.

3.4 Exploratory Attacks

Based on the Influence axis of the taxonomy, the first category of attacks that I discuss are
Exploratory attacks, which influence only the evaluation data as indicated in Figure 3.1. The
adversary’s transformation A(eval) alters the evaluation data either by defining a procedure
to change instances drawn from PZ or by changing PZ to an altogether different distribution

P
(eval)
Z chosen by the adversary. The adversary makes these changes based on (partial)

information gleaned about the training data D(train), the learning algorithm H (N), and the
classifier f . Further, the adversary’s transformation may evolve as the adversary learns
more about the classifier with each additional prediction it makes.

3.4.1 The Exploratory Game

First I present the formal version of the game for Exploratory attacks, and then explain it
in greater detail.
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1. Defender Choose procedure H (N) for selecting hypothesis

2. Attacker Choose procedure A(eval) for selecting an evaluation distribution

3. Evaluation:

• Reveal distribution P
(train)
Z

• Sample dataset D(train) from P
(train)
Z

• Compute f ← H (N)
(
D(train)

)

• Compute P
(eval)
Z ← A(eval)(D(train), f )

• Sample dataset D(eval) from P
(eval)
Z

• Assess total cost:
∑

〈x,y〉∈D(eval)

Lx (f (x), y)

The defender’s move is to choose a learning algorithm (procedure) H (N) for creating
hypotheses from datasets. Many procedures used in machine learning have the form of
Equation (2.2). For example, the defender may choose a support vector machine (SVM)
with a particular kernel, loss, regularization, and cross-validation plan. The attacker’s
move is then to choose a procedure A(eval) to produce a distribution on which to evaluate
the hypothesis that H (N) generates. (The degree of control the attacker has in generating
the dataset and the degree of information about D(train) and f that A(eval) has access to are
setting-specific.)

After the defender and attacker have both made their choices, the game is evaluated.
A training dataset D(train) is drawn from some fixed and possibly unknown distribution

P
(train)
Z , and training produces f = H (N)

(
D(train)

)
. The attacker’s procedure A(eval) pro-

duces distribution P
(eval)
Z , which is based in general on D(train) and f , and an evaluation

dataset D(eval) is drawn from P
(eval)
Z . Finally, the attacker and defender incur cost based

on the performance of f evaluated on D(eval) according to the loss function Lx (·, ·). Note
that, unlike in Chapter 2.2, here I allow the loss function to depend on the data point x.
This generalization allows this game to account for an adversary (or learner) with instance-
dependent costs [cf., Dalvi et al., 2004].

The procedure A(eval) generally depends on D(train) and f , but the amount of information
an attacker actually has is setting specific (in the least restrictive case the attacker knows
D(train) and f completely). The attacker may know a subset of D(train) or the family F of
f . However, the procedure A(eval) may also involve acquiring information dynamically. For
instance, in many cases, the procedure A(eval) can query the classifier, treating it as an oracle
that provides labels for query instances; this is one particular degree of information that
A(eval) can have about f . Attacks that use this technique are probing attack . Probing can
reveal information about the classifier. On the other hand, with sufficient prior knowledge
about the training data and algorithm, the attacker may be able to find high-cost instances
without probing.
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3.4.2 Exploratory Integrity Attacks

The most frequently studied attacks are Exploratory Integrity attacks in which the adversary
attempts to passively circumvent the learning mechanism to exploit blind spots in the
learner that allow miscreant activities to go undetected. In an Exploratory Integrity attack,
the attacker crafts intrusions so as to evade the classifier without direct influence over
the classifier itself. Instead, attacks of this sort often attempt to systematically make the
miscreant activity appear to be normal activity to the detector or obscure the miscreant
activity’s identifying characteristics. Some Exploratory Integrity attacks mimic statistical
properties of the normal traffic to camouflage intrusions; e.g., the attacker examines training
data and the classifier, then crafts intrusion data. In the Exploratory game, the attacker’s
move produces malicious instances in D(eval) that statistically resemble normal traffic in the
training data D(train).

Example 3.1 (The Shifty Intruder)
An attacker modifies and obfuscates intrusions, such as by changing network headers and
reordering or encrypting contents. If successful, these modifications prevent the IDS from
recognizing the altered intrusions as malicious, so it allows them into the system. In the
Targeted version of this attack, the attacker has a particular intrusion to get past the filter.
In the Indiscriminate version, the attacker has no particular preference and can search for
any intrusion that succeeds, such as by modifying a large number of different exploits to
see which modifications evade the filter.

3.4.2.1 Polymorphic blending attack

Fogla and Lee [2006] introduce polymorphic blending attacks that evade intrusion detectors
using encryption techniques to make attacks statistically indistinguishable from normal
traffic. They present a formalism for reasoning about and generating polymorphic blending
attack instances to evade intrusion detection systems. The technique is fairly general and
is Indiscriminate in which intrusion packets it modifies.

Feature deletion attacks instead specifically exclude high-value identifying features used
by the detector [Globerson and Roweis, 2006]; this form of attack stresses the importance of
proper feature selection as was also demonstrated empirically by Mahoney and Chan [2003]
in their study of the behavior of intrusion detection systems on the DARPA/Lincoln Lab
dataset.

3.4.2.2 Attacking a sequence-based IDS

Tan et al. [2002] describe a mimicry attack against the stide sequence-based intrusion
detection system (IDS) proposed by Forrest et al. [1996], Warrender et al. [1999]. They
modify exploits of the passwd and traceroute programs to accomplish the same ends us-
ing different sequences of system calls: the shortest subsequence in attack traffic that does
not appear in normal traffic is longer than the IDS window size. By exploiting the finite
window size of the detector, this technique makes attack traffic indistinguishable from nor-
mal traffic for the detector. This attack is more Targeted than polymorphic blending since
it modifies particular intrusions to look like normal traffic. In subsequent work Tan et al.
[2003] characterize their attacks as part of a larger class of information hiding techniques
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which they demonstrate can make exploits mimic either normal call sequences or the call
sequence of another less severe exploit.

Independently, Wagner and Soto [2002] have also developed mimicry attacks against a
sequence-based IDS called pH proposed by Somayaji and Forrest [2000]. Using the machin-
ery of finite automata, they construct a framework for testing whether an IDS is susceptible
to mimicry for a particular exploit. In doing so, they develop a tool for validating IDSs
on a wide-range of variants of a particular attack and suggest that similar tools should be
more broadly employed to identify the vulnerabilities of an IDS.

Overall, these mimicry attacks against sequence-based anomaly detection systems un-
derscore critical weaknesses in these systems that allow attackers to obfuscate the necessary
elements of their exploits to avoid detection by mimicking normal behaviors. Further they
highlight how an IDS may appear to perform well against a known exploit but, unless it
captures necessary elements of the intrusion, the exploit can easily be adapted to circumvent
the detector. See Section 3.4.4 for more discussion.

3.4.2.3 Good word attacks

Adding or changing words in a spam message can allow it to bypass the filter. Like the
attacks against an IDS above, these attacks all use both training data and information
about the classifier to generate instances intended to bypass the filter. They are somewhat
independent of the Targeted/Indiscriminate distinction, but the Exploratory game captures
the process used by all of these attacks.

Studying these techniques was first suggested by John Graham-Cumming. In a pre-
sentation How to Beat an Adaptive Spam Filter at the 2004 MIT Spam Conference, he
presented a Bayes vs. Bayes attack that uses a second statistical spam filter to find good
words based on feedback from the filter under attack. Several authors have further explored
evasion techniques used by spammers and demonstrated attacks against spam filters using
similar principles as those against IDSs as discussed above. Lowd and Meek [2005a] and
Wittel and Wu [2004] develop attacks against statistical spam filters that add good words,
or words the filter considers indicative of non-spam, to spam emails. This good word attack
makes spam emails appear innocuous to the filter, especially if the words are chosen to be
ones that appear often in non-spam email and rarely in spam email. Finally, obfuscation
of spam words (i.e., changing characters in the word or the spelling of the word so it no
longer recognized by the filter) is another popular technique for evading spam filters which
has been formalized by several authors (cf. Liu and Stamm [2007] and Sculley et al. [2006]).

3.4.2.4 Cost-based Evasion

Another vein of research focuses on the costs incurred due to the adversary’s evasive actions;
i.e., instances that evade detection may be less desirable to the adversary. In using costs, this
work explicitly casts evasion as a problem where the adversary wants to evade detection but
wants to do so using high-value instances (an assumption that was implicit in the other work
discussed in this section). Dalvi et al. [2004] exploit these costs to develop a cost-sensitive
game-theoretic classification defense that is able to successfully detect optimal evasion of the
original classifier. Using this game-theoretic approach, this technique preemptively patches
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the naive classifier’s blind spots by constructing a modified classifier designed to detect
optimally modified instances.

Subsequent game theoretic approaches to learning have extended this setting and solved
for an equilibrium for the game [Brückner and Scheffer, 2009, Kantarcioglu et al., 2009].
Further, Biggio et al. [2010] extend this game theoretic approach and propose hiding infor-
mation or randomization as additional defense mechanisms for this setting.

Cost models of the adversary also led to a theory for query-based near-optimal evasion
of classifiers first presented by Lowd and Meek [2005b] in which they cast the difficulty
of evading a classifier into a complexity problem. They give algorithms for an attacker
to reverse engineer a classifier. The attacker seeks the highest cost (lowest cost for the
attacker) instance that the classifier labels negative. In Near-Optimal Evasion of Convex-
Inducing Classifiers, I published an extension to this work with my colleagues [Nelson et al.,
2010a]. I generalized the theory of near-optimal evasion to a broader class of classifiers and
demonstrated that the problem is easier than reverse-engineering approaches; work that I
thoroughly explain in Chapter 6.

3.4.3 Exploratory Availability Attacks

In an Exploratory Availability attack, the attacker interferes with the normal behavior of a
learning system without influence over training. This type of attack against non-learning
systems abound in the literature: almost any denial-of-service (DoS) attack falls into this
category, such as those described by Moore et al. [2006]. However, Exploratory Availability
attacks against the learning components of systems are not common and I am not aware of
any studies of them. It seems the motivation for attacks of this variety is not as compelling
as other attacks against learners.

One possible attack is described in the example below: if a learning IDS has trained on
intrusion traffic and has the policy of blocking hosts that originate intrusions, an attacker
could send intrusions that appear to originate from a legitimate host, convincing the IDS
to block that host. Another possibility is to take advantage of a computationally expen-
sive learning component: for example, spam filters that use image processing to detect
advertisements in graphical attachments can take significantly more time than text-based
filtering [Dredze et al., 2007, Wang et al., 2007]. An attacker could exploit such overhead by
sending many emails with images, causing the expensive processing to delay and perhaps
even block messages.

Example 3.2 (The Mistaken Identity)
An attacker sends intrusions that appear to come from the IP address of a legitimate
machine. The IDS, which has learned to recognize intrusions, blocks that machine. In the
Targeted version, the attacker has a particular machine to target. In the Indiscriminate
version, the attacker may select any convenient machine or may switch IP addresses among
many machines to induce greater disruption.

3.4.4 Defending against Exploratory Attacks

Exploratory attacks do not corrupt the training data but attempt to find vulnerabilities in
the learned hypothesis. Through control over the evaluation data, the attacker can violate
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the assumption of stationarity. When producing the evaluation distribution, the attacker
attempts to construct an unfavorable evaluation distribution concentrating probability mass
on high-cost instances; in other words, the attacker’s procedure A(eval) constructs an evalu-

ation distribution P
(eval)
Z on which the learner predicts poorly (thus violating stationarity);

i.e., the attacker chooses P
(eval)
Z to maximize the cost computed in the last step of the

Exploratory game. This section examines defender strategies that make it difficult for the
attacker to construct such a distribution.

In the Exploratory game, the defender makes a move before observing contaminated
data; that is, here I do not consider scenarios where the defender is permitted to react to
the attack. The defender can impede the attacker’s ability to reverse engineer the classifier
by limiting access to information about the training procedure and data. With less informa-
tion, A(eval) has difficulty producing an unfavorable evaluation distribution. Nonetheless,
even with incomplete information, the attacker may be able to construct an unfavorable
evaluation distribution using a combination of prior knowledge and probing.

The defender’s task is to design data collection and learning techniques that make it
difficult for an attacker to reverse engineer the hypothesis. The primary task in analyzing
Exploratory attacks is quantifying the attacker’s ability to reverse engineer the learner.

3.4.4.1 Defenses against attacks without probing

Part of a security analysis involves identifying aspects of the system that should be kept
secret. In securing a learner, the defender can limit information to make it difficult for an
attacker to conduct their attack.

Training data: Preventing the attacker from knowing the training data limits the at-
tacker’s ability to reconstruct internal states of the classifier. There is a tension between
collecting training data that fairly represents the real world instances and keeping all as-
pects of that data secret. In most situations, it is difficult to use completely secret training
data, though the attacker may have only partial information about it.

Feature selection: The defender can also harden classifiers against attacks through at-
tention to features in the feature selection and learning steps (which are both internal steps
of the defender’s hypothesis selection procedure H (N)). Feature selection is the process of
choosing a feature map that transforms raw measurements into the feature space used by
the learning algorithm. In the learning step, the learning algorithm builds its model or
signature using particular features from the map’s feature space; this choice of features for
the model or signature is also sometimes referred to as feature selection, though I consider
it to be part of the learning process, after the feature map has been established. For ex-
ample, one feature map for email message bodies might transform each token to a Boolean
feature indicating its presence; another map might specify a real-valued feature indicating
the relative frequency of each word in the message compared to its frequency in natural
language; yet another map might count sequences of n characters and specify an integer
feature for each character n-gram indicating how many times it appears. In each of these
cases, a learner will construct a model or signature that uses certain features (tokens present
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or absent; relative frequency of words present; character n-gram counts) to decide whether
an instance is benign or malicious.

Obfuscation of spam-indicating words (an attack on the feature set) is a common Tar-
geted Exploratory Integrity attack. Sculley et al. [2006] use inexact string matching in
feature selection to defeat obfuscations of words in spam emails. They choose a feature
map based on character subsequences that are robust to character addition, deletion, and
substitution.

Globerson and Roweis [2006] present a feature-based learning defense for the feature
deletion attack ; an Exploratory attack on the evaluation data D(eval). In feature deletion,
features present in the training data, and perhaps highly predictive of an instance’s class, are
removed from the evaluation data by the attacker. For example, words present in training
emails may not occur in evaluation messages, and network packets in training data may
contain values for optional fields that are missing from future traffic. Globerson and Roweis
formulate a modified support vector machine classifier that is robust in its choice of features
against deletion of high-value features.

One particularly important consideration when the learner builds its model or signature
is to ensure that the learner uses features related to the intrusion itself. In their study of
the DARPA/Lincoln Laboratory intrusion dataset, Mahoney and Chan [2003] demonstrate
that spurious artifacts in training data can cause an IDS to learn to distinguish normal
from intrusion traffic based on those artifacts rather than relevant features. Ensuring that
the learner builds a model from features that describe the fundamental differences between
malicious and benign instances should mitigate the effects of mimicry attacks (Section 3.4.2)
and red herring attacks (Section 3.5.2).

Using spurious features in constructing a model or signature is especially problematic in
cases where any given intrusion attempt may cause harm only probabilistically or depending
on some internal state of the victim’s system. If the features relevant to the intrusion are
consistent for some set of instances but the actual cost of those instances varies widely, then
a learner risks attributing the variation to other nonessential features.

Hypothesis space/learning procedures: A complex hypothesis space may make it
difficult for the attacker to infer precise information about the learned hypothesis. How-
ever, hypothesis complexity must be balanced with capacity to generalize, such as through
regularization.

Wang et al. [2006] present Anagram, an anomaly detection system using n-gram models
of bytes to detect intrusions. They incorporate two techniques to defeat Exploratory attacks
that mimic normal traffic (mimicry attacks): i) they use high-order n-grams (with n typi-
cally between 3 and 7), which capture differences in intrusion traffic even when that traffic
has been crafted to mimic normal traffic on the single-byte level; and ii) they randomize
feature selection by randomly choosing several (possibly overlapping) subsequences of bytes
in the packet and testing them separately, so the attack will fail unless the attacker makes
not only the whole packet but also any subsequence mimic normal traffic.

Dalvi et al. [2004] develop a cost-sensitive game-theoretic classification defense to
counter Exploratory Integrity attacks. In their model, the attacker can alter natural in-
stance features in A(eval) but incurs a known cost for each change. The defender can
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measure each feature at a different known cost. Each has a known cost function over clas-
sification/true label pairs. The classifier H (N) is a cost-sensitive naive Bayes learner that
classifies instances to minimize his expected cost, while the attacker modifies features to
minimize its own expected cost. Their defense constructs an adversary-aware classifier by
altering the likelihood function of the learner to anticipate the attacker’s changes. They ad-
just the likelihood that an instance is malicious by considering that the observed instance
may be the result of an attacker’s optimal transformation of another instance. This de-
fense relies on two assumptions: i) the defender’s strategy is a step ahead of the attacker’s
strategy (i.e., their game differs from ours in that the attacker’s procedure A(eval) cannot
take f into account), and ii) the attacker plays optimally against the original cost-sensitive
classifier . It is worth noting that while their approach defends against optimal attacks, it
doesn’t account for non-optimal attacks. For example, if the attacker doesn’t modify any
data, the adversary-aware classifier misclassifies some instances that the original classifier
correctly classifies.

3.4.4.2 Defenses against probing attacks

In the game described above in Section 3.4.1, the attacker selects an evaluation distribu-

tion P
(eval)
Z for selecting the evaluation data D(eval) based on knowledge obtained from the

training data D(train) and/or the classifier f . However, the procedure A(eval) need not se-

lect a stationary distribution P
(eval)
Z . In fact, the attacker may incrementally change the

distribution based on the observed behavior of the classifier to each data point generated

from P
(eval)
Z —a probing or query-based adaptive attack. The ability for A(eval) to query

a classifier gives an attacker powerful additional attack options, which several researchers
have explored.

Analysis of reverse engineering: Lowd and Meek [2005b] observe that the attacker
need not model the classifier explicitly, but only find lowest-attacker-cost instances as in
the setting of Dalvi et al. [2004]. They formalize a notion of reverse engineering as the
adversarial classifier reverse engineering (ACRE) problem problem. Given an attacker cost
function, they analyze the complexity of finding a lowest-attacker-cost instance that the
classifier labels as negative. They assume no general knowledge of training data, though
the attacker does know the feature space and also must have one positive example and one
negative example. A classifier is ACRE-learnable if there exists a polynomial-query algo-
rithm that finds a lowest-attacker-cost negative instance. They show that linear classifiers
are ACRE-learnable with linear attacker cost functions and some other minor restrictions.

The ACRE-learning problem provides a means of qualifying how difficult it is to use
queries to reverse engineer a classifier from a particular hypothesis class using a particular
feature space. I now suggest defense techniques that can increase the difficulty of reverse
engineering a learner.

Randomization: A randomized hypothesis may decrease the value of feedback to an
attacker. Instead of choosing a hypothesis f : X → {0, 1}, I generalize to hypotheses that
predict a real value on [0, 1]. This generalized hypothesis returns a probability of classifying
x ∈ X as 1; i.e., a randomized classifier. By randomizing, the expected performance of the
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hypothesis may decrease on regular data drawn from a non-adversarial distribution, but it
also may decrease the value of the queries for the attacker.

Randomization in this fashion does not reduce the information available in principle to
the attacker, but merely requires more work from the attacker for the information. It is
likely that this defense is appropriate in only a small number of scenarios.

Limiting/misleading feedback: Another potential defense is to limit the feedback given
to an attacker. For example, common techniques in the spam domain include eliminating
bounce emails, delivery notices, remote image loading, and other limits on potential feedback
channels. In most settings, it is probably impossible to remove all feedback channels;
however, limiting feedback increases work for the attacker. In some settings, it may also
be possible to mislead the attacker by sending fraudulent feedback. Actively misleading
the attacker by fabricating feedback suggests an interesting battle of information between
attacker and defender. In some scenarios the defender may be able to give the attacker no
information via feedback, and in others the defender may even be able to return feedback
that causes the attacker to come to incorrect conclusions.

3.5 Causative Attacks

The second broad category of attacks from the taxonomy are Causative attacks, which influ-
ence the training data (as well as potentially subsequently modifying the evaluation data) as
indicated in Figure 3.2. Again, the adversary’s transformation A(eval) alters the evaluation
data either by defining a procedure to change instances drawn from PZ or by changing PZ
to an alternative distribution P

(eval)
Z chosen by the adversary (see Section 3.4). However,

in addition to changing evaluation data, Causative attacks also allow the adversary to alter
the training data with a second transformation A(train), which either transforms instances

drawn from PZ or changes PZ to an alternative distribution P
(train)
Z during training. Of

course, the adversary can synchronize A(train) and A(eval) to best achieve his desired objec-
tive, although in some Causative attacks, the adversary can only control the training data
(e.g., the attacker I describe in Chapter 4 can not control the non-spam messages sent dur-
ing evaluation). Also note that, since the game described here is batch training, an adaptive

procedure A(train) is unnecessary although the distribution P
(train)
Z can be non-stationary.

3.5.1 The Causative Game

The game for Causative attacks is similar to the game for Exploratory attacks with an
augmented move for the attacker.
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D(train)

D(eval)
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(eval)
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A(train)
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Figure 3.2: Diagram of a Causative attack against a learning system (see Figure 2.1).

1. Defender Choose procedure H (N) for selecting hypothesis

2. Attacker Choose procedures A(train) and A(eval) for selecting distributions

3. Evaluation:

• Compute P
(train)
Z ← A(train) (PZ ,H )

• Sample dataset D(train) from P
(train)
Z

• Compute f ← H (N)
(
D(train)

)

• Compute P
(eval)
Z ← A(eval)

(
D(train), f

)

• Sample dataset D(eval) from P
(eval)
Z

• Assess total cost:
∑

〈x,y〉∈D(eval)

Lx (f (x) , y)

This game is very similar to the Exploratory game, but the attacker can choose A(train)

to affect the training data D(train). The attacker may have various types of influence over
the data, ranging from arbitrary control over some fraction of instances to a small biasing
influence on some aspect of data production; details depend on the setting. Again, the loss
function Lx (·, ·) allows for instance-dependent costs.

Control over data used for training opens up new strategies to the attacker. Cost is
based on the interaction of f and D(eval). In the Exploratory game the attacker chooses
D(eval) while the defender controls f ; in the Causative game the attacker also has influence
on f . With this influence, the attacker can proactively cause the learner to produce bad
classifiers.

Contamination in PAC learning: Kearns and Li [1993] extend Valiant’s probably ap-
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proximately correct (PAC) learning framework (cf., Valiant [1984, 1985]) to prove bounds
for maliciously chosen errors in the training data. In PAC learning, an algorithm succeeds
if it can, with probability at least 1− δ, learn a hypothesis that has at most probability ǫ of
making an incorrect prediction on an example drawn from the same distribution. Kearns
and Li examine the case where an attacker has arbitrary control over some fraction β of the
training examples (this specifies the form that A(train) takes in our Causative game). They
prove that in general the attacker can prevent the learner from succeeding if β ≥ ǫ/(1 + ǫ),
and for some classes of learners they show this bound is tight.

This work provides an interesting and useful bound on the ability to succeed at PAC-
learning. The analysis broadly concerns both Integrity and Availability attacks as well as
both Targeted and Indiscriminate variants. However, not all learning systems fall into the
PAC-learning model.

3.5.2 Causative Integrity Attacks

In these attacks, the adversary actively attempts to corrupt the learning mechanism so
that miscreant activities can take place that would be otherwise disallowed. In a Causative
Integrity attack, the attacker uses control over training to cause intrusions to slip past the
classifier as false negatives.

Example 3.3 (The Intrusion Foretold)
An attacker wants the defender’s IDS not to flag a novel virus. The defender trains period-
ically on network traffic, so the attacker sends non-intrusion traffic that is carefully chosen
to look like the virus and mis-train the learner to fail to block it. This example would be
Targeted if the attacker already has a particular virus executable to send and needs to cause
the learner to miss that particular instance. It would be Indiscriminate, on the other hand,
if the attacker has a certain payload but could use any of a large number of existing exploit
mechanisms to transmit the payload, in which case the attack need only fool the learner on
any one of the malicious executables.

Red herring attack: Newsome et al. [2006] present Causative Integrity and Causative
Availability attacks against Polygraph [Newsome et al., 2005], a polymorphic virus detector
that learns virus signatures using both a conjunction learner and a naive-Bayes-like learner.
Their red herring attacks against conjunction learners exploit certain weaknesses not present
in other learning algorithms. The attack introduces spurious features along with their
payload; once the learner constructs a signature, the spurious features are discarded to

avoid subsequent detection. The idea is that the attacker transforms PZ into P
(train)
Z and

P
(eval)
Z to introduce spurious features into all malicious instances that the defender uses for

training. The malicious instances produced by P
(eval)
Z , however, lack the spurious features

and therefore bypass the filter, which erroneously generalized that the spurious features
were necessary elements of the malicious behavior. Venkataraman et al. [2008] also present
lower bounds for learning worm signatures based on red herring attacks.

Antidote: I also collaborated with colleagues at Berkeley and Intel Labs to explore the
vulnerability of network-wide traffic anomaly detectors based on principal component anal-
ysis (PCA) as introduced by Lakhina et al. [2004b]. Our work examines how an attacker
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can exploit the sensitivity of PCA to form Causative Integrity attacks [Rubinstein et al.,
2009a]. In anticipation of a DoS attack, the attacker systematically injects traffic to increase
variance along the links of their target flow and mislead the anomaly detection system. I
also studied how the projection pursuit-based robust PCA algorithm of Croux et al. [2007]
significantly reduces the impact of poisoning. I detail this work in Chapter 5.

3.5.3 Causative Availability Attacks

This less expected attack attempts to corrupt the learning system to cause normal traffic to
significantly be misclassified to disrupt normal system operation. In a Causative Availability
attack, the attacker uses control over training instances to interfere with operation of the
system, such as by blocking legitimate traffic.

Example 3.4 (The Rogue IDS)
An attacker uses an intrusion detection system (IDS) to disrupt operations on the defender’s
network. The attacker wants traffic to be blocked so the destination doesn’t receive it. The
attacker generates attack traffic similar to benign traffic when the defender is collecting
training data to train the IDS. When the learner re-trains on the attack data, the IDS will
start to filter away benign instances as if they were intrusions. This attack could be Targeted
at a particular protocol or destination. On the other hand, it might be Indiscriminate and
attempt to block a significant portion of all legitimate traffic.

Allergy attack: Chung and Mok [2006, 2007] present allergy attacks against the Auto-
graph worm signature generation system [Kim and Karp, 2004]. Autograph operates in
two phases. First, it identifies infected nodes based on behavioral patterns, in particular
scanning behavior. Second, it observes traffic from the identified nodes and infers blocking
rules based on observed patterns. Chung and Mok describe an attack that targets traffic
to a particular resource. In the first phase, an attack node convinces Autograph that it
is infected by scanning the network. In the second phase, the attack node sends crafted
packets mimicking targeted traffic, causing Autograph to learn rules that block legitimate
access and create a denial of service event.

In the context of the Causative game, the attacker’s choice of P
(train)
Z provides the traffic

for both phases of Autograph’s learning. When Autograph produces a hypothesis f that
depends on the carefully crafted traffic from the attacker, it will block access to legitimate

traffic from P
(eval)
Z that shares patterns with the malicious traffic.

Correlated outlier attack: Newsome et al. [2006] also suggest a correlated outlier at-
tack against the Polygraph virus detector [Newsome et al., 2005]. This attack targets the
naive-Bayes-like component of the detector by adding spurious features to positive training
instances, causing the filter to block benign traffic with those features. As with the red
herring attacks, these correlated outlier attacks fit neatly into the Causative game; this

time P
(train)
Z includes spurious features in malicious instances, causing H (N) to produce a f

that classifies many benign instances as malicious.

Attacking SpamBayes: In the spam filtering domain I also explored Causative Avail-
ability attacks against the SpamBayes statistical spam classifier [Nelson et al., 2008, 2009].
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In these attacks, I demonstrated that by sending emails containing entire dictionaries of
tokens, the attacker can cause a significant fraction of normal email to be misclassified as
spam with relatively little contamination (an Indiscriminate attack). Similarly, if an at-
tacker can anticipate a particular target message, the attacker can also poison the learner
to misclassify the target as spam (a Targeted attack). I also explored a principled defense
to counter these dictionary attacks: the reject on negative impact (RONI) defense. I discuss
this work in detail in Chapter 4.

3.5.4 Defending against Causative Attacks

Most defenses presented in the literature of secure learning combat Exploratory Integrity
attacks (as discussed above) while relatively few defenses have been presented to cope with
Causative attacks. In Causative attacks, the attacker has a degree of control over not
only the evaluation distribution but also the training distribution. Therefore the learning
procedures we consider must be resilient against contaminated training data, as well as to
the evaluation considerations discussed in Section 3.4.4.

Two general strategies for defense are to remove malicious data from the training set
and to harden the learning algorithm against malicious training data. I first present one
method for the former and then describe two approaches to the latter that appear in the
literature. The foundations of these approaches primarily lie in adapting game-theoretic
techniques to analyze and design resilient learning algorithms.

3.5.4.1 The RONI defense

Insidious Causative attacks make learning inherently more difficult. In many circumstances,
data sanitization may be the only realistic mechanism to achieve acceptable performance.
For example, Nelson et al. [2009] introduce such a sanitization technique called the Reject On
Negative Impact (RONI) defense, a technique that measures the empirical effect of adding
each training instance and discards instances that have a substantial negative impact on
classification accuracy. To determine whether a candidate training instance is malicious or
not, the defender trains a classifier on a base training set, then adds the candidate instance to
the training set and trains a second classifier. The defender applies both classifiers to a quiz
set of instances with known labels and measures the difference in accuracy between the two
classifiers. If adding the candidate instance to the training set causes the resulting classifier
to produce substantially more classification errors, the defender permanently removes the
instance as detrimental in its effect. I refine and explore the RONI defense experimentally
in Section 4.5.5.

3.5.4.2 Learning with Contaminated Data

Several approaches to learning under adversarial contamination have been studied in the
literature. The effect of adversarial contamination on the learner’s performance were incor-
porated into some existing learning frameworks. Kearns and Li [1993] extended Valiant’s
probably approximately correct (PAC) model to allow for adversarial noise within the train-
ing data and bounded the amount of contamination a learner could tolerate. Separately,
the field of robust statistics [see Huber, 1981, Hampel et al., 1986, Maronna et al., 2006]
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formalized adversarial contamination with a worst-case contamination model from which
analysts derived criteria for designing and comparing the robustness of statistical procedures
to adversarial noise. Recent research incorporated these robustness criteria with more tra-
ditional learning domains [Christmann and Steinwart, 2004, Wagner, 2004], but generally
these techniques have not been widely incorporated within machine learning. I discuss this
further in the next section.

Another model of adversarial learning is based on the online expert learning setting
[Cesa-Bianchi and Lugosi, 2006]. Rather than designing learners to be robust against ad-
versarial contamination, techniques here focus on regret minimization to construct aggre-
gate learners that adapt to adversarial conditions. The objective of regret minimization
techniques is to dynamically aggregate the decisions of several experts based on their past
performance so that the composite learner does well with respect to the best expert in
hindsight; a set of techniques that I further discuss in Section 3.6.

3.5.4.3 Robustness

The field of robust statistics explores procedures that limit the impact of a small fraction
of deviant (adversarial) training data. In the setting of robust statistics, it is assumed
that the bulk of the data is generated from a known well-behaved model, but a fraction of
the data comes from an unknown model—to bound the effect of this unknown source it is
assumed to be adversarial. There are a number of measures of a procedure’s robustness:
the breakdown point is the level of contamination required for the attacker to arbitrarily
manipulate the procedure and the influence function measures the impact of contamination
on the procedure. Robustness measures can be used to assess the susceptibility of an existing
system and to suggest alternatives that reduce or eliminate the vulnerability. Ideally one
would like to use a procedure with a high breakdown point and a bounded influence function.
These measures can be used to compare candidate procedures and to design procedures H (N)

that are optimally robust against adversarial contamination of the training data. Here I
summarize these concepts, but for a full treatment of these topics, refer to the books by
Huber [1981], Hampel et al. [1986], and Maronna et al. [2006].

To motivate applications of robust statistics for adversarial learning, recall the tra-
ditional learning framework presented in Chapter 2.2. Particularly, in Chapter 2.2.4, I
discussed selecting a hypothesis that minimizes the empirical risk. Unfortunately, in an
adversarial setting, assumptions of the learning model may be violated. Ideally, one would
hope that minor deviations from the modeling assumptions would not have a large impact
on the optimal procedures that were derived under those assumptions. Unfortunately, this
is not the case—small (adversarial) deviations from the assumptions can have a profound
impact on some learning procedures. As stated by Tukey [1960]:

A tacit hope in ignoring deviations from ideal models was that they would not
matter; that statistical procedures which were optimal under the strict model
would still be approximately optimal under the approximate model. Unfor-
tunately, it turned out that this hope was often drastically wrong; even mild
deviations often have much larger effects than were anticipated by most statis-
ticians.

These flaws can also be exploited by an adversary to mistrain a learning algorithm even
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when limited to a small amount of contamination. To avoid such vulnerabilities, one must
augment the notion of optimality to include some form of robustness to the assumptions of
the model; as defined by Huber [1981], “robustness signifies insensitivity to small deviations
from the assumptions.” There is, however, a fundamental trade-off between the efficiency
of a procedure and its robustness—this issue is addressed in the field of robust statistics.

The model used to assess the distributional robustness of a statistical estimator H is
known as the gross-error model , which is a mixture of the known distribution FZ and some
unknown distribution GZ parameterized by some the fraction of contamination ǫ,

Pǫ (FZ) , {(1− ǫ)FZ + ǫGZ | HZ ∈ PZ}

where PZ is the collection of all probability distributions on Z. This concept of a con-
tamination neighborhood provides for the minimax approach to robustness by considering
a worst-case distribution within the gross-error model. Historically, the minimax approach
yielded a robust class of estimators known as Huber estimators. Further it introduced the
concept of a breakdown point ǫ∗—intuitively, the smallest level of contamination where the
minimax asymptotic bias of an estimator becomes infinite.

An alternative approach is to consider the (scaled) change in the estimator H due to an
infinitesimal fraction of contamination. Again, consider the gross-error models and define
a derivative in the direction of an infinitesimal contamination localized at a single point z.
By analyzing the scaled change in the estimator due to the contamination, one can assess
the influence that adding contamination at point z has on the estimator. This gives rise to
a functional known as the influence function and is defined as

IF (z;H ,FZ) , lim
ǫ→0

H ((1− ǫ)FZ + ǫ∆z)−H (FZ)

ǫ

where ∆z is the distribution which has all its probability mass at the point z. This functional
was derived for a wide variety of estimators and gives rise to several (infinitesimal) notions
of robustness. The most prominent of these measures is the gross-error sensitivity defined
as

γ∗ (H ,FZ) , sup
z
|IF (z;H ,FZ)| .

Intuitively, a finite gross error sensitivity gives a notion of robustness to infinitesimal point
contamination.

Recent research has highlighted the importance of robust procedures in security and
learning tasks. Wagner [2004] observes that common sensor net aggregation procedures,
such as computing a mean, are not robust to adversarial point contamination, and he
identifies robust alternatives as a defense against malignant or failed sensors. Christmann
and Steinwart [2004] study robustness for a general family of learning methods. Their
results suggest that certain commonly used loss functions, along with proper regularization,
lead to robust procedures with a bounded influence function. These results suggest such
procedures have desirable properties for secure learning, which I return to in Chapter 7.1.

3.6 Repeated Learning Games

In Section 3.4.1 and 3.5.1, the learning games are one-shot games, in which the defender
and attacker minimize their cost when each move happens only once. Here, I generalize
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these games to an iterated game, in which the players make a series of moves to minimize
their total accumulated cost. I assume players have access to all information from previous
iterations of the game.

In this setting, the defender can dynamically adapt to the adversary in an online fash-
ion engendering a repeated game between the adversary and defender. The attacker has
unspecified (potentially arbitrary) control of the training data, but instead of attempting
to learn on this arbitrarily corrupted data, the online learner forms a composite prediction
based on the advice of a set of M experts (e.g., a set of classifiers each designed to provide
different security properties). The game now takes place over K repetitions of the iterated
Causative game. At each iteration, the experts provide advice (predictions) to the defender
who weighs the advice of the experts to produce a composite prediction; e.g., the aggre-
gate prediction could be a weighted majority of the experts’ predictions [Littlestone and
Warmuth, 1994]. Further, at the end of the iteration, the defender learns the true labels
for the predictions it made and it reweighs each expert based on the expert’s prediction
performance. No assumption is made about how the expert’s form their advice or about
their performance; in fact, their advice may be adversarial and may incur arbitrary loss.
Rather than evaluating the cost of the composite predictions directly, one instead com-
pares the cost incurred by the composite classifier relative to the cost of the best expert in
hindsight; i.e., we compute the regret that the composite classifier has for not heeding the
advice of the best expert in hindsight. By using algorithms with small regret, the compos-
ite predictor performs comparably to the best expert without knowing which one will be
best, a priori. Thus, by designing strategies that minimize regret, online learning provides
an elegant mechanism to combine several predictors, each designed to address the security
problem in a different way, into a single predictor that adapts relative to the performance of
its constituents. As a result, the attacker must design attacks that are uniformly successful
on the set of predictors rather than just on a single predictor because the composite learner
can perform almost as well as the best without knowing ahead of time which expert will be
best. A full description of this setting and several regret minimization learning algorithms
appear in Cesa-Bianchi and Lugosi [2006].

In this setting, the learner forms a prediction from the M expert predictions and adapts
its predictor h(k) based on their performance during K repetitions. At each step k of the
game, the defender receives a prediction ŷ(k,m) from the mth expert2 and make a composite
prediction ŷ(k) via h(k). After the defender’s prediction is made, the true label y(k) is revealed
and the defender evaluates the instantaneous regret for each expert; i.e., the difference in
the loss for the composite prediction and the loss for the mth expert’s prediction. More
formally, the kth round of the expert-based prediction game is3:

2An expert’s advice may be based on the data but the defender makes no assumption about how experts
form their advice.

3Here, I again assume that costs are symmetric for the defender and adversary and are represented by
loss function. Further, as in Chapter 2.2.4 I simplify the game to use ignore the surrogate loss function used
in place of 0/1 losses. Finally, this game is also easily generalized to the case where several instances/labels
are generated in each round of the game.
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1. Defender Update function h(k) : YM → Y

2. Attacker Choose distribution P
(k)
Z

3. Evaluation:

• Sample an instance
(
x(k), y(k)

)
∼ P

(k)
Z

• Compute expert advice
{
ŷ(k,m)

}M

m=1
; e.g., ŷ(k,m) = f (m)

(
x(k)

)

• Predict ŷ(k) = h(k)
(
ŷ(k,1), ŷ(k,2), . . . , ŷ(k,M)

)

• Compute instantaneous regret: r(k,m) = L
(
ŷ(k), y(k)

)
− L

(
ŷ(k,m), y(k)

)

for each expert m = 1 . . . M

This game has a slightly different structure from the games I presented in Section 3.4.1
and 3.5.1—here the defender chooses one strategy at the beginning of the game and then in
each iteration updates the function h(k) according to that strategy. Based only on the past
performance of each expert (i.e. the regrets observed over the previous k − 1 iterations of
the game), the defender chooses an online strategy for updating h(k) at the kth step of the
game to minimize regret [cf., Cesa-Bianchi and Lugosi, 2006]. The attacker, however, may
select a new strategy at each iteration and can control the subsequent predictions made by
each expert based on the defender’s choice for h(k).

Finally, at the end of the game, the defender is assessed in terms of the regret for the
predictions it made. At each iteration the defender would like to choose the best advice
given at that iteration, but that is not possible since, in the worst-case, the adversary is
assumed to choose the advice given by each expert. Instead, the overall performance of
the defender is compared to the overall performance of each expert through the defender’s
cumulative regret ; i.e., the cumulative difference between the loss of the composite learner
and the loss of the mth expert. The cumulative regret R(m) for the composite predictor
with respect to the mth expert and the worst-case regret over all experts are thus defined
as

R(m) ,

K∑

k=1

r(k,m) R∗ , max
m

R(m) (3.1)

If R∗ is small (relative to K), then the defender’s aggregation algorithm has performed
almost as well the best expert without knowing which expert would be best. Further, as
follows from the Equation (3.1) and the definition of instantaneous regret, the average regret
is simply the difference of the risk of h(k) and the risk of f (m). Thus, if the average worst-case
regret is small (i.e., approaches 0 as K goes to infinity) and the best expert has small risk,
the predictor h(k) also has a small risk. This motivates the study of regret minimization
procedures. A substantial body of research has explored strategies for choosing h(k) to
minimize regret in several settings.

Online expert-based prediction splits risk minimization into two subproblems: (i) min-
imizing the risk of each expert, and (ii) minimizing the average regret; that is, as if we had
known the best predictor f (∗) before the game started and had simply used its prediction
at every step of the game. The other defenses we have discussed approach the first prob-
lem. Regret minimization techniques address the second problem: the defender chooses a
strategy for updating h(k) to minimize regret based only on the expert’s past performance.
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For certain variants of the game, there exist composite predictors whose regret is o (K)—
that is, the average regret approaches 0 as K increases. Thus, the composite learner can
perform almost as well as the best expert without knowing ahead of time which expert is
best. Hence, if there is any single predictor that predicted well, the combined predictor
will predict nearly as well. This effectively allows the defender to use several strategies
simultaneously and forces the attacker to design attacks that do well against them all.

Importantly, regret minimization techniques allow the defender to adapt to an adversary
and force the adversary to design attack strategies that succeed against an entire set of
experts (each of which can have its own security design considerations and may use different
feature sets, different hypothesis spaces, or different training procedures). Thus, one can
incorporate several classifiers with desirable security properties into a composite approach.
Moreover, if a successful attack is discovered, one can design a new expert against the
identified vulnerability and add it to our set of experts to patch the exploit. This makes
online prediction well-suited to the ever-changing attack landscape.

3.7 Dissertation Organization

I partition the remainder of my dissertation work based on the framework presented in this
chapter. I divide my research into two parts. The first explores Causative attacks while
the second examines Exploratory attacks. Incidentally, the first part is primarily concerned
with analyzing the security of real systems while the second part deals with theoretical
questions of classifier evasion.

The next part of my dissertation investigates Causative attacks against two practical
learning systems. In the first, I analyze a spam filter called SpamBayes and show that it
is particularly vulnerable to Availability attacks through adversarial contamination of the
training data. The adversary’s contamination model uses data insertion to inject a number
of attack spam messages into the filter’s training set. I propose a data sanitization defense
that is able to successfully detect and remove attack messages based on the estimated
damage the message causes. The second learning system I analyze is a network anomaly
detection system based on a subspace estimation technique (principal component analysis).
For this system, the adversary instead undertakes Integrity attacks and the adversary uses
a data alteration model to contaminate the training set. Also, to combat attacks against
these detectors, I propose an alternate learning approach based on a technique from robust
statistics.

In the final part of my dissertation, I examine an important theoretical model for Ex-
ploratory attacks against a classifier. To find a classifier’s blind spots the adversary sys-
tematically issues membership queries and uses the classifier’s responses to glean important
structural information about its boundary. I generalize this framework, first presented by
Lowd and Meek [2005b], to a more diverse family of classifiers called the convex-inducing
classifiers and to a broader set of ℓp distances. Further, in investigating the near-optimal
evasion problem, I suggest a number of novel research directions to pursue within the Ex-
ploratory attack setting.
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Part I

Protecting against False Positives
and False Negatives in Causative

Attacks:

Two Case Studies of Availability
and Integrity Attacks
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Chapter 4

Availability Attack Case Study:
SpamBayes

Adversaries can launch Causative Availability attacks that result in classifiers that have
unacceptably high false positive rates; i.e., that misclassify benign input as potential attacks
causing undue interruption in legitimate activity. This chapter provides a case study of one
such attack on the SpamBayes spam detection system. I show that cleverly-crafted attack
messages—pernicious spam email that an uninformed human user would likely identify and
label as spam—can exploit SpamBayes’ learning algorithm causing the resulting classifier to
have an unreasonably high false positive rate1. I also show effective defenses against these
attacks and discuss the trade-offs required to prevent them.

I examine several attacks against the SpamBayes spam filter each of which embodies
a particular insight into the vulnerability of the underlying learning technique. In doing
so, I more broadly demonstrate attacks that could impact any system that uses a similar
learning algorithm. Most notably, the attacks I present in this chapter target the learning
algorithm used by the spam filter SpamBayes (spambayes.sourceforge.net), but several other
filters also use the same underlying learning algorithm; this includes BogoFilter (bogofil-
ter.sourceforge.net), the spam filter in Mozilla’s Thunderbird email client (mozilla.org), and
the machine learning component of SpamAssassin (spamassassin.apache.org). The primary
difference between the learning elements of these three filters is in their tokenization meth-
ods; i.e., the learning algorithm is fundamentally identical but each filter uses a different
set of features. I demonstrate the vulnerability of the underlying algorithm for SpamBayes
because it uses a pure machine learning method, it is familiar to the academic commu-
nity Meyer and Whateley [2004], and it is popular with over 700,000 downloads. Although
here I only analyze SpamBayes, the fact that these other systems use the same learning
algorithm suggests that other filters are also vulnerable to similar attacks. However, the
overall effectiveness of the attacks would depend on how each of the other filters incor-
porated the learned classifier into the final filtering decision. For instance, filters such as
SpamAssassin, only use learning as one of several components of a broader filtering engine
(the others are hand-crafted non-adapting rules), so attacks against it would degrade the
performance of the filter but perhaps the overall impact would be lessened or muted en-

1Chapter 5 also demonstrates Causative attacks that instead result in classifiers with an unreasonably
high false negative rate—these are Integrity attacks.
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tirely. In principle, though, it should be possible to replicate these results in these other
filters. Finally, beyond spam filtering, I highlight the vulnerabilities in SpamBayes’ learner
because these same attacks could also be employed against similar learning algorithms in
other domains. While the feasibility of these attacks, the attacker’s motivation, or the con-
tamination mechanism present in this chapter may not be appropriate in other domains, it
is nonetheless interesting to understand the vulnerability so that it can be similarly assessed
for other applications.

I organize my approach to studying the vulnerability of SpamBayes’ learning algorithm
based on the framework discussed in Chapter 3. Primarily, I investigated Causative Avail-
ability attacks on the filter as this type of attack was an interesting new facet to attacks
against a learner that could actually be deployed in real-world settings. The adversary I
studied has an additive contamination capability (i.e., the adversary has exclusive control
on some subset of the user’s training data) but limited to only altering the positive (spam)
class; I deemed this contamination model to be the most appropriate for a crafty spammer.
Novel contributions of my research include a set of successful principled attacks against
SpamBayes, an empirical study validating the effectiveness of the attacks in a realistic set-
ting, and a principled defense that empirically succeeds against several of the attacks. I
finally discuss the implications of the attack and defense strategies and the role that attacker
information plays in the effectiveness of their attacks.

Below, I discuss the background of the training model (see Section 4.1); I present three
new attacks on SpamBayes (see Section 4.3); I give experimental results (see Section 4.5);
and I present a defense against these attacks together with further experimental results (see
Section 4.4). This work appeared in the First USENIX Workshop on Large-Scale Exploits
and Emergent Threats (LEET) [Nelson et al., 2008] and was subsequently published as a
book chapter in Machine Learning in Cyber Trust: Security, Privacy, Reliability [Nelson
et al., 2009].

4.1 The SpamBayes Spam Filter

SpamBayes is a content-based statistical spam filter that classifies email using token counts
in a model proposed by Robinson [2003] as inspired by Graham [2002]. Meyer and Whateley
[2004] describe the system in detail. SpamBayes computes a spam score for each token in
the training corpus based on its occurrence in spam and non-spam emails; this score is
motivated as a smoothed estimate of the posterior probability that an email containing
that token is spam. The filter computes a message’s overall spam score based on the
assumption that the token scores are independent and then it applies Fisher’s method [see
Fisher, 1948] for combining significance tests to determine whether the email’s tokens are
sufficiently indicative of one class or the other. The message score is compared against two
thresholds to select the label spam, ham (i.e., non-spam), or unsure. In the remainder of
this section, I detail the statistical method SpamBayes uses to estimate and aggregate token
scores.
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4.1.1 SpamBayes’ Training Algorithm

SpamBayes is a content-based spam filter that classifies messages based on the tokens (in-
cluding header tokens) observed in an email. The spam classification model used by Spam-
Bayes was designed by Robinson [2003] and Meyer and Whateley [2004], based on ideas
by Graham [2002] together with Fisher’s method for combining independent significance
tests [Fisher, 1948]. Intuitively, SpamBayes learns how strongly each token indicates ham
or spam by counting the number of each type of email that token appears in. When clas-
sifying a new email, SpamBayes considers all the message’s tokens as evidence of whether
the message is spam or ham and uses a statistical test to decide whether they indicate one
label or the other with sufficient confidence; if not, SpamBayes returns unsure.

SpamBayes tokenizes each email X based on words, URL components, header elements,
and other character sequences that appear in X. Each is treated as a unique token of the
email independent of their order within the message and for convenience, I place an ordering
on the tokens to name a unique token as the ith token (among the entire alphabet of tokens).
Further, SpamBayes only records whether or not a token occurs in the message, not how
many times it occurs. Email X is represented as a binary (potentially infinite length) vector
x where

xi =

{

1 , if the ith token occurs in X

0 , otherwise
.

This message vector representation records which tokens occur in the message independent
of their order or multiplicity.

The training data used by SpamBayes is a dataset of message vector (representing each
training message) and label pairs: D(train) =

{〈
x(1), y(1)

〉
,
〈
x(2), y(2)

〉
, . . . ,

〈
x(N), y(N)

〉}

where x(i) ∈ {0, 1}D and y(i) ∈ {ham, spam}. As in Section 2.2.1, this training data can

be represented as a training matrix X =
[
x(1) x(2) . . . x(N)

]⊤ ∈ {0, 1}N×D along with

its label vector y =
[
y(1) y(2) . . . y(N)

]
∈ {ham, spam}N . Using the training matrix, the

token-counting statistics used by SpamBayes can be expressed as

n(s) , X⊤y

n(h) , X⊤ (1− y)

n , n(s) + n(h)

which are vectors containing the cumulative token counts for each token in all, spam, and
ham messages respectively. I also define N (s) , y⊤y as the total number of training spam
messages and N (h) , (1− y)⊤ (1− y) as the total number of training ham messages (and,
of course, N = N (s) + N (h)).

From these count statistics, SpamBayes computes a spam score for the ith token by
estimating the posterior Pr (X is spam|xi = 1). First, the likelihoods Pr (xi = 1|X is spam)
and Pr (xi = 1|X is ham) for observing the ith token in a spam/ham message are estimated

using the maximum likelihood estimators yielding the likelihood vectors L
(s)
i = 1

N(s) · n(s)

and L
(h)
i = 1

N(h) · n(h).

Second, using the likelihood estimates L(s) and L(h) and an estimate π(s) on the prior dis-

tribution Pr (X is spam), Bayes’ Rule is used to estimate the posteriors as P(s) ∝ π(s)

N(s) ·n(s)
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and P(h) ∝ 1−π(s)

N(h) ·n(h) along with the constraints P(s) +P(h) = 1. However, instead of us-

ing the usual naive Bayes maximum likelihood prior estimator π(s) = N(s)

N(s)+N(h) , SpamBayes

uses the agnostic prior π(s) = 1
2 ; a choice that gives their learner unusual properties which

I discuss further in Appendix B.2.1. Nonetheless, based on this choice of prior, SpamBayes
computes a spam score vector P(s) specified for the ith token as

P
(s)
i =

N (h)n
(s)
i

N (h)n
(s)
i + N (s)n

(h)
i

; (4.1)

i.e., an estimator of the posterior Pr (X is spam|xi = 1). An analogous token ham score is
given by P(h) = 1−P(s).

Robinson’s method Robinson [2003] smooths P
(s)
i through a convex combination with

a prior belief x (default value of x = 0.5), weighting the quantities by ni (the number of
training emails with the ith token) and s (chosen for strength of prior with a default of
s = 1), respectively:

qi =
s

s + ni
x +

ni

s + ni
P

(s)
i . (4.2)

Here, smoothing mitigates over estimation for rare tokens. For instance, if the token “floc-
cinaucinihilipilification” appears once in a spam and never in a ham in the training set,

the posterior estimate would be P
(s)
i = 1, which would make any future occurrence of this

word dominate the overall spam score. However, occurrence of the word only in spam could
have just been an artifact of the overall rarity of the word. In this case, smoothing is done
by adding a prior that the posterior for every token is x = 1

2 (i.e., an agnostic score). For
rare tokens, the posterior estimate is dominated by this prior. However, as more tokens are
observed, the smoothed score approaches the empirical estimate of the posterior in Equa-
tion (4.1) according to the strength given to the prior by s. An analogous smoothed ham
score is given by 1− q.

4.1.2 SpamBayes’ Prediction

After training, the filter computes the overall spam score I (x̂) of a new message X̂ us-
ing Fisher’s method [Fisher, 1948] for combining the scores of the tokens observed in X̂.
SpamBayes uses at most 150 tokens from X̂ with scores furthest from 0.5 and outside the
interval (0.4, 0.6) (see Appendix B.2.2 for more details). Let Tx̂ be the set of tokens that
SpamBayes incorporates into its spam score and let δ (x̂) be the indicator function for this
set. The token spam scores are combined into a message spam score for X̂ by

S (x̂) = 1− χ2
2τx̂

(

−2(log q)⊤δ (x̂)
)

, (4.3)

where τx̂ , |Tx̂| is the number of token from X̂ used by SpamBayes and χ2
2τx̂

(·) denotes the
cumulative distribution function of the chi-square distribution with 2τx̂ degrees of freedom.
A ham score H (x̂) is similarly defined by replacing q with 1−q in Equation (4.3). Finally,
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SpamBayes constructs an overall spam score for X̂ by averaging S (x̂) and 1−H (x̂) (both
being indicators of whether X̂ is spam) giving the final score

I (x̂) =
S (x̂) + 1−H (x̂)

2
(4.4)

for a message; a quantity between 0 (strong evidence of ham) and 1 (strong evidence of
spam). SpamBayes predicts by thresholding I (x̂) against two user-tunable thresholds θ(h)

and θ(s), with defaults θ(h) = 0.15 and θ(s) = 0.9. SpamBayes predicts ham, unsure, or
spam if I (x̂) falls into the interval

[
0, θ(h)

]
,
(
θ(h), θ(s)

]
, or

(
θ(s), 1

]
, respectively, and filters

the message accordingly.

The inclusion of an unsure label in addition to spam and ham prevents us from purely
using ham-as-spam and spam-as-ham misclassification rates (false positives and false neg-
atives, respectively) for evaluation. We must also consider spam-as-unsure and ham-as-
unsure misclassifications. Because of the practical effects on the user’s time and effort
discussed in Section 4.2.3, ham-as-unsure misclassifications are nearly as bad for the user
as ham-as-spam.

4.1.3 SpamBayes’ Model

Although the components of SpamBayes algorithm (token spam scores, smoothing, and chi-
squared test) were separately motivated, the resulting system can be described by a unified
probability model for discriminating ham from spam messages. While Robinson motivates
the SpamBayes classifier as a smoothed estimator of the posterior probability of spam, they
never explicitly specify the probabilistic model. Here, I specify a discriminative model and
show that the resulting estimation can be re-derived as using empirical risk minimization.
Doing so provides a better understanding of the modeling assumptions of the SpamBayes
classifier and its vulnerabilities.

In this model, there are three random variables of interest: the spam label yi of the
ith message (Here I use the convention that this label is a 1 to indicate spam or a 0 to
indicate ham), the indicator variable Xi,j of the jth token in the ith message, and the token
score qj of the jth token. In the discriminative setting, given Xi,• as a representation of
the tokens in the ith message and the token scores q, the message’s label yi is conditionally
independent of all other random variables in the model. The conditional probability of the
message label given the occurrence of a single token Xi,j is specified by

Pr (yi|Xi,j , qj) =
(

(qj)
yi · (1− qj)

1−yi

)Xi,j (1
2

)1−Xi,j , (4.5)

i.e., in the SpamBayes model, each token that occurs in the message is an indicator of its
label whereas tokens absent from the message have no impact on its label. Because Spam-
Bayes’ scores only incorporate tokens that occur in the message, traditional generative spam
models (e.g., Figure 4.1(b)) are awkward to construct, but the above discriminative condi-
tional probability captures this modeling nuance. Further, there is no prior for the token
indicators Xi,j but there is a prior on the token scores. Treating these as binomial param-
eters, each has a beta prior with common parameters α and β giving them a conditional
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yi

Xi,j

x s

qj

i ∈ {1, . . . , N}

(a) SpamBayes’ Discriminative Model

π(s)

yi

Xi,j

α β

qj

i ∈ {1, . . . , N}

j ∈ {1, . . . , D}

(b) Traditional Generative Model

Figure 4.1: Probabilistic graphical models for spam detection. (a) A probabilistic model
that depicts the dependency structure between random variables in SpamBayes for a single
token (SpamBayes models each token as a separate indicator of ham/spam and then com-
bines them together assuming each is an independent test). In this model, the label yi for
the ith email depends on the token score qj for the jth token if it occurs in the message; i.e.,
Xi,j = 1. The parameters s and x parameterize a beta prior on qj . (b) A more traditional
generative model for spam. The parameters π(s), α, and β parameterize the prior distribu-
tions for yi and qj . Each label yi for the ith email is drawn independently from a Bernoulli
distribution with π(s)as the probability of spam. Each token score for the jth token is drawn
independently from a beta distribution with parameters α and β. Finally, given the label
for a message and the token scores, Xi,j is drawn independently from a Bernoulli. Based
on the likelihood function for this model, the token scores qj computed by SpamBayes can
be viewed simply as the maximum likelihood estimators for the corresponding parameter
in the model.
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probability of

Pr (qj |α, β) =
1

B (α, β)
· (qj)

α−1 · (1− qj)
β−1 , (4.6)

where B (α, β) is the beta function. As earlier mentioned, Robinson instead use an equivalent
parameterization with a strength parameter s and prior parameter x, for which α = s ·x+1
and β = s (1− x) + 1. Using this parameterization, x specifies the mode of the prior
distribution. In SpamBayes, the prior parameters are fixed a priori rather than treated as
random hyper-parameters (by default, these take the values π(s) = 1

2 , x = 1
2 , and s = 1).

Together, the label’s probability conditioned on the jth token and the prior on the jth

token score are used to derive a spam score for the message (based only on the jth token).
However, unlike a maximum likelihood derivation, SpamBayes’ parameter estimation for qj

is not based on a joint probability model over all tokens. Instead, the score for each token is
computed separately by maximizing the labels’ likelihood within a per-token token model
as depicted in Figure 4.1(a); i.e., the model depicts a sequence of labels based solely on
the presence of the jth token. Based on the independence assumption of Figure 4.1(a), the
conditional distributions of Equation (4.5) combine together to make the following joint log
probability based on the jth token (for N messages):

log Pr (y,X•,j |α, β) = log Pr (qj |α, β) +
N∑

i=1

log Pr (yi|Xi,j , qj)

= − log (B (α, β)) + (α− 1) log (qj) + (β − 1) log (1− qj)

+
N∑

i=1

[yiXi,j log (qj) + (1− yi) Xi,j log (1− qj)]

Maximizing this joint distribution (nearly) achieves the token scores specified by Spam-
Bayes. To solve for maximum, differentiate the joint probability with respect to the jth

token score, qj , and set the derivative equal to 0. This yields

qj =

∑N
i=1 yiXi,j + α− 1

∑N
i=1 Xi,j + α− 1 + β − 1

=
α− 1

nj + α− 1 + β − 1
+

n
(s)
j

nj + α− 1 + β − 1
,

where the summations in the first equation are simplified to token counts based on the
definitions of yi and Xi,j . Using the equivalent beta parameterization with x and s and

the usual posterior token score P
(s)
i =

n
(s)
i

n
(s)
i +n

(h)
i

(which differs from the SpamBayes token

score used in Equation (4.1) unless N (s) = N (h)), this equation for the maximum-likelihood
estimator of qj is equivalent to the SpamBayes’ estimator in Equation (4.2).

The above per-token optimizations can also be viewed as a joint maximization proce-
dure by considering the overall spam and ham scores S (·) and H (·) for the messages in
the training set (see Equation 4.3). These overall scores are based on Fisher’s method for
combining independent p-values and assume that each token score is independent. In fact,
S (·) and H (·) are tests for the aggregated scores sq (·) and hq (·) defined by Equations (B.1)
and (B.2)—tests that monotonically increase with sq (·) and hq (·), respectively. Thus, from
the overall spam score I (·) defined by Equation (4.4), maximizing sq (·) for all spam and
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hq (·) for all ham is a surrogate for minimizing the prediction error of I (·); i.e., minimiz-
ing some loss for I (·). Hence, combining the individual tokens’ conditional distributions
(Equation 4.5) together to form

Q (yi,Xi,•,q) = − log
D∏

j=1

[

(qj)
yi · (1− qj)

1−yi

]Xi,j

,

can be viewed as the loss function for the score I (·) and the sum of the negative logarithm
of the token score priors given by Equation 4.6 can be viewed as its regularizer2. Moreover,
minimizing this regularized empirical loss again yields the SpamBayes’ token scores from
Equation (4.2). In this way, SpamBayes can be viewed as a regularized empirical risk
minimization technique.

Unfortunately, the loss function Q above is not a negative log-likelihood because the
product of the scores is unnormalized. When the proper normalizer is added to Q , the
resulting parameter estimates for qj no longer are equivalent to SpamBayes’ estimators.
In fact, SpamBayes’ parameter estimation procedure and its subsequent prediction rule do
not appear to be compatible with a traditional joint probability distribution over all labels,
tokens, and scores (or at least I was unable to derive a joint probability model that would
yield these estimates). It is unclear whether the SpamBayes loss function Q has a reasonable
motivation or whether it is an appropriate loss function to use for spam detection.

Nonetheless, by analyzing the model of SpamBayes, I can now identify its potential
vulnerabilities. First, by incorporating a prior on the token scores for smoothing, Robinson
prevented a simple attack. Without any smoothing on the token scores, all tokens that only
appear in ham would have token scores of 0. Since the overall score I (·) is computed with
products of the individual token scores, including any of these ham-only tokens would cause
spam to be misclassified as ham (and vice-versa for spam-only tokens), which the adversary
could clearly exploit. Similarly, using the censor function T helps prevent attacks in which
the adversary pads a spam with many hammy tokens to negate the effect of spammy tokens.
However, despite these design considerations, SpamBayes is still vulnerable to attacks. The
first vulnerability of SpamBayes comes from its assumption that the data and tokens are
independent, for which each token score is estimated based solely on the presence of that
token in ham and spam messages. The second vulnerability comes from its assumption that
only tokens that occur in a message contribute to its label. While there is some intuition
behind this assumption, in this model, it causes rare tokens to have little support so that
their scores can be easily changed. Ultimately, these two vulnerabilities lead to a family of
attacks that I call dictionary attacks that I present and evaluate in the rest of this chapter.

4.2 Threat Model for SpamBayes

In analyzing the vulnerabilities of SpamBayes, I was motivated by the taxonomy of attacks
(cf., Chapter 3.3). Known real-world attacks that spammers use against deployed spam
filters tend to be Exploratory Integrity attacks: either the spammer obfuscates the especially

2This interpretation ignores the censoring function T in which SpamBayes only uses the scores of the
most informative tokens when computing I (·) for a message. As discussed in Appendix B.1 this censoring
action makes I (·) non-monotonic in the token scores qj . Computing the token scores without considering T
can be viewed as a tractable relaxation of the true objective.
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spam-like content of a spam email or he includes content not indicative of spam. Both tactics
aim to get the modified message into the victim’s inbox. This category of attack has been
studied in detail in the literature [e.g., see Lowd and Meek, 2005a, Wittel and Wu, 2004,
Lowd and Meek, 2005b, Dalvi et al., 2004]. However, I found the study of Causative attacks
more compelling because they are unique to machine learning systems and potentially more
harmful.

In particular, a Causative Availability attack can create a powerful denial of service. For
example, if a spammer causes enough legitimate messages to be filtered by the user’s spam
filter, the user is likely to disable the filter and therefore see the spammer’s advertisements.
As another example, an unscrupulous business owner may wish to use spam filter denial
of service to prevent a competitor from receiving email orders from potential customers.
In this chapter, I present two novel Causative Availability attacks against SpamBayes: the
dictionary attack is Indiscriminate and the focused attack is Targeted.

4.2.1 Attacker Goals

I consider an attacker with one of two goals: expose the victim to an advertisement or
prevent the victim from seeing a legitimate message. The motivation for the first objective
is obviously the potential revenue gain for the spammer if their marketing campaign is widely
viewed. For the second objective, there are at least two motives for the attacker to cause
legitimate emails to be filtered as spam. First, a large number of misclassifications will make
the spam filter unreliable, causing users to abandon filtering and see more spam. Second,
causing legitimate messages to be mislabeled can cause users to miss important messages.
For example, an organization competing for a contract wants to prevent competing bids
from reaching their intended recipient to gain a competitive advantage; an unscrupulous
company can achieve this by causing their competitor’s messages to be filtered as spam.

Based on these considerations, we can further divide the attacker’s goals into four cat-
egories:

1. Cause the victim to disable the spam filter, thus letting all spam into the inbox

2. Cause the victim to miss a particular ham email filtered away as spam

3. Get a particular spam into the victim’s inbox

4. Get any spam into the victim’s inbox

4.2.2 Attacker Knowledge

An attacker may have detailed knowledge of a specific email the victim is likely to receive
in the future, or the attacker may know particular words or general information about the
victim’s word distribution. In many cases, the attacker may know nothing beyond which
language the emails are likely to use.

When an attacker wants the victim to see spam emails, a broad dictionary attack can
render the spam filter unusable, causing the victim to disable the filter (see Section 4.3.1.1).
With more information about the email distribution, the attacker can select a smaller
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dictionary of high-value features that are still effective. When an attacker wants to prevent
a victim from seeing particular emails and has some information about those emails, the
attacker can target them with a focused attack (see Section 4.3.1.2). Furthermore, if an
attacker can send email messages that the user will train as non-spam, a pseudospam attack
can cause the filter to accept spam messages into the user’s inbox (see Section 4.3.2).

These experimental results confirm that this class of attacks presents a serious concern
for statistical spam filters. A dictionary attack makes the spam filter unusable when con-
trolling just 1% of the messages in the training set, and a well-informed focused attack
removes the target email from the victim’s inbox over 90% of the time. The pseudospam
attack causes the victim to see almost 90% of the target spam messages with control of less
than 10% of the training data.

I demonstrate the potency of these attacks and present a potential defense—the Reject
On Negative Impact (RONI) defense tests the impact of each email on training and doesn’t
train on messages that have a large negative impact. I show that this defense is effective in
preventing some attacks from succeeding.

4.2.3 Training Model

SpamBayes produces a classifier from a training set of labeled examples of spam and non-
spam messages. This classifier (or filter) is subsequently used to label future email messages
as spam (bad, unsolicited email) or ham (good, legitimate email). SpamBayes also has a
third label—when it isn’t confident one way or the other, it returns unsure. I use the
following terminology: the true class of an email can be ham or spam, and a classifier
produces the labels ham, spam, and unsure.

There are three natural choices for how to treat unsure-labeled messages: they can be
placed in the spam folder, they can be left in the user’s inbox, or they can be put into a
third folder for separate review. Each choice can be problematic because the unsure label is
likely to appear on both ham and spam messages. If unsure messages are placed in the spam
folder, the user must sift through all spam periodically or risk missing legitimate messages.
If they remain in the inbox, the user will encounter an increased amount of spam messages
in their inbox. If they have their own “Unsure” folder, the user still must sift through an
increased number of unsure-labeled spam messages to locate unsure-labeled ham messages.
Too much unsure email is therefore almost as troublesome as too many false positives (ham
labeled as spam) or false negatives (spam labeled as ham). In the extreme case, if every
email is labeled unsure then the user must sift through every spam email to find the ham
emails and thus obtains no advantage from using the filter.

Consider an organization that uses SpamBayes to filter incoming email for multiple
users and periodically retrains on all received email, or an individual who uses SpamBayes
as a personal email filter and regularly retrains it with the latest spam and ham. These
scenarios serve as canonical usage examples. I use the terms user and victim interchangeably
for either the organization or individual who is the target of the attack; the meaning will
be clear from context.

I assume that the user retrains SpamBayes periodically (e.g., weekly); updating the filter
in this way is necessary to keep up with changing trends in the statistical characteristics of
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both legitimate and spam email. These attacks are not limited to any particular retraining
process; they only require the following assumption.

4.2.4 The Contamination Assumption

I assume that the attacker can send emails that the victim will use for training—the contam-
ination assumption—but incorporate two significant restrictions: 1) attackers may specify
arbitrary email bodies but cannot alter email headers; and 2) attack emails will always be
trained as spam, not ham. In the pseudospam attack, however, I investigate the conse-
quences of lifting the second restriction and allowing the attacker to have messages trained
as ham.

It is common practice in security research to assume the attacker has as much power
as possible, since a determined adversary may find unanticipated methods of attack—if a
vulnerability exists, I assume it may be exploited. It is clear that in some cases the at-
tacker can control training data. Here, I discuss realistic scenarios where the contamination
assumption is justified; in the later sections, I examine its implications.

Adaptive spam filters must be retrained periodically to cope with the changing nature
of both ham and spam. Many users simply train on all email received, using all spam-
labeled messages as spam training data and all ham-labeled messages as ham training data.
Generally the user will manually provide true labels for messages labeled unsure by the
filter, as well as for messages filtered incorrectly as ham (false negatives) or spam(false
positives). In this case, it is trivial for the attacker to control training data: any emails sent
to the user are used in training.

The fact that users may manually label emails does not protect against these attacks:
the attack messages are unsolicited emails from unknown sources and may contain normal
spam marketing content. The spam labels manually given to attack emails are correct and
yet allow the attack to proceed. When the attack emails can be trained as ham, a different
attack is possible; the pseudospam attack explores the case where attack emails are trained
as ham (see Section 4.3.2).

4.3 Causative Attacks against SpamBayes’ Learner

I present three novel Causative attacks against SpamBayes’ learning algorithm in the con-
text of the attack taxonomy from Chapter 4.2.1: one is an Indiscriminate Availability
attack, one is a Targeted Availability attack, and the third is a Targeted Integrity attack.

These Causative attacks against a learning spam filter proceed as follows:

1. The attacker determines the goal for the attack.

2. The attacker sends attack messages to include in the victim’s training set.

3. The victim (re-)trains the spam filter, resulting in a contaminated filter.

4. The filter’s classification performance degrades on incoming messages.
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In the remainder of this section, I describe attacks that achieve the objectives outlined
above in Section 4.2. Each of the attacks consists of inserting emails into the training set
that are drawn from a particular distribution (i.e., according to the attacker’s knowledge
as discussed in Section 4.2.2); the properties of these distributions, along with other pa-
rameters, determine the nature of the attack. The dictionary attack sends email messages
with tokens drawn from a broad distribution, essentially including every token with equal
probability. The focused attack focuses the distribution specifically on one message or a
narrow class of messages. If the attacker has the additional ability to send messages that
will be trained as ham, a pseudospam attack can cause spam messages to reach the user’s
inbox.

4.3.1 Causative Availability Attacks

I first focus on Causative Availability attacks, which manipulate the filter’s training data to
increase the number of ham messages misclassified. I consider both Indiscriminate and Tar-
geted attacks. In Indiscriminate attacks, enough false positives force the victim to disable
the filter or frequently search in spam/unsure folders for legitimate messages erroneously
filtered away. Hence, the victim is forced to view more spam. In Targeted attacks, the
attacker does not disable the filter but surreptitiously prevents the victim from receiving
certain messages.

Without loss of generality, consider the construction of a single attack message A. The
victim adds it to the training set, (re-)trains on the contaminated data, and subsequently
uses the tainted model to classify a new message X̂. The attacker also has some (perhaps
limited) knowledge of the next email the victim will receive. This knowledge can be rep-
resented as a distribution p—the vector of probabilities that each token will appear in the
next message.

The goal of the attacker is to choose the tokens for the attack message a to maximize
the expected spam score:

max
a

Ex̂∼p [Ia (x̂)] ; (4.7)

that is, the attack goal is to maximize the expectation of Ia (x̂) (Equation (4.4) with the
attack message a added to the spam training set) of the next legitimate email x̂ drawn
from distribution p. However, in analyzing this objective, it is shown in Appendix B.2
that the attacker can generally maximize the expected spam score of any future message by
including all possible tokens (words, symbols, misspellings, etc.) in attack emails, causing
SpamBayes to learn that all tokens are indicative of spam—I call this an Optimal attack3.

To describe the optimal attack under this criterion, I make two observations, which I
detail in Appendix B.2. First, for most tokens, Ia (·) is monotonically non-decreasing in qi.
Therefore, increasing the score of any token in the attack message will generally increase
Ia (x̂). Second, the token scores of distinct tokens do not interact; that is, adding the ith

token to the attack does not change the score qj of some different token j 6= i. Hence, the
attacker can simply choose which tokens will be most beneficial for their purpose. From

3As discussed in Appendix B.2 these attacks are optimal for a relaxed version of the optimization problem.
Generally, optimizing the problem given by Equation 4.7 requires exact knowledge about future messages x̂

and is a difficult combinatorial problem to solve.
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this, I motivate two attacks, the dictionary and focused attacks, as instances of a common
attack in which the attacker has different amounts of knowledge about the victim’s email.

For this, let us consider specific choices for the distribution p. First, if the attacker
has little knowledge about the tokens in target emails, we give equal probability to each
token in p. In this case, one can optimize the expected message spam score by including
all possible tokens in the attack email. Second, if the attacker has specific knowledge of a
target email, we can represent this by setting pi to 1 if and only if the ith token is in the
target email. This attack is also optimal with respect to the target message, but it is much
more compact.

In practice, the optimal attack requires intractably large attack messages, but the at-
tacker can exploit his knowledge about the victim (captured by p) to approximate the effect
of an optimal attack by instead using a large set of common words that the victim is likely
to use in the future such as a dictionary—hence these are dictionary attacks. If the attacker
has relatively little knowledge, such as knowledge that the victim’s primary language is En-
glish, the attack can include all words in an English dictionary. This reasoning yields the
dictionary attack (see Section 4.3.1.1). On the other hand, the attacker may know some of
the particular words to appear in a target email, though not all of the words. This scenario
is the focused attack (see Section 4.3.1.2). Between these levels of knowledge, an attacker
could use information about the distribution of words in English text to make the attack
more efficient, such as characteristic vocabulary or jargon typical of emails the victim re-
ceives. Any of these cases result in a distribution p over tokens in the victim’s email that is
more specific than an equal distribution over all tokens but less informative than the true
distribution of tokens in the next message. Below, I explore the details of the dictionary
and focused attacks, with some exploration of using an additional corpus of common tokens
to improve the dictionary attack.

4.3.1.1 Dictionary Attack

The dictionary attack, an Indiscriminate attack, makes the spam filter unusable by causing
it to misclassify a significant portion of ham emails (i.e., causing false positives) so that the
victim loses confidence in his filter. As a consequence either the victim disables his spam
filter, or at least must frequently search through spam/unsure folders to find legitimate
messages that were incorrectly classified. In either case, the victim loses confidence in the
filter and is forced to view more spam achieving the ultimate goal of the spammer: the
victim views desired spams while searching for legitimate mail. The result of this attack is
denial of service; i.e., a higher rate of ham misclassified as spam.

The dictionary attack is an approximation of the optimal attack suggested in Sec-
tion 4.3.1, in which the attacker maximizes the expected score by including all possible
tokens. Creating messages with every possible token is infeasible in practice. Nevertheless,
when the attacker lacks knowledge about the victim’s email, this optimal attack can be
approximated by the set of all tokens that the victim is likely to use such as a dictionary of
the victim’s native language—I call this a dictionary attack. The dictionary attack increases
the score of every token in a dictionary; i.e., it makes them more indicative of spam.

The central idea that underlies the dictionary attack is to send attack messages contain-
ing a large set of tokens—the attacker’s dictionary . The dictionary is selected as the set of
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tokens whose scores maximally increase the expected value of Ia (x̂) as in Equation (4.7).
Since the score of a token typically increases when included in an attack message (except
in unusual circumstances as described in Appendix B), the attacker can simply include any
tokens that are likely to occur in future legitimate messages according to the attacker’s
knowledge from the distribution p. In particular, if the victim’s language is known by the
attacker, he can use that language’s entire lexicon (or at least a large subset) as the attack
dictionary. After training on a set of dictionary messages, the victim’s spam filter will have
a higher spam score for every token in the dictionary, an effect which is amplified for rare
tokens. As a result, future legitimate email is more likely to be marked as spam since it will
contain many tokens from that lexicon.

A refinement of this attack instead uses a token source with a distribution closer to the
victim’s true email distribution. For example, a large pool of Usenet newsgroup postings
may have colloquialisms, misspellings, and other words not found in a proper dictionary.
Furthermore, using the most frequent tokens in such a corpus may allow the attacker to send
smaller emails without losing much effectiveness. However, there is an inherent trade-off in
choosing tokens. Rare tokens are the most vulnerable to attack since their scores will shift
more towards spam (a spam score of 1.0 given by the score in Equation (4.4)) with fewer
attack emails. However, the rare vulnerable tokens also are less likely to appear in future
messages, diluting their usefulness.

In my experiments (Section 4.5.2), I evaluate two variants of the dictionary attacks: the
first is based on the Aspell dictionary and the second on a dictionary compiled from the
most common tokens observed in a Usenet corpus. I refer to these as the Aspell and Usenet
dictionary attacks respectively.

4.3.1.2 Focused Attack

The second Causative Availability attack is a Targeted attack—the attacker has some knowl-
edge of a specific legitimate email he targets to be incorrectly filtered. If the attacker has
exact knowledge of the target email, placing all of its tokens in attack emails produces
an optimal targeted attack. Realistically, though, the attacker only has partial knowledge
about the target email and can guess only some of its tokens to include in attack emails.
I model this knowledge by letting the attacker know a certain fraction of tokens from the
target email, which are included in the attack message. The attacker constructs attack
email that contain words likely to occur in the target email; i.e., the tokens known by the
attacker. The attack email may also include additional tokens added by the attacker to ob-
fuscate the attack message’s intent since extraneous tokens do not impact the attack’s effect
on the targeted tokens. When SpamBayes trains on the resulting attack email, the spam
scores of the targeted tokens generally increase (see Appendix B), so the target message is
more likely to be filtered as spam. This is the focused attack.

For example, an unscrupulous company may wish to prevent its competitors from re-
ceiving email about a competitive bidding process and they know specific words that will
appear in the target email, obviating the need to include the entire dictionary in their at-
tacks. They attack by sending spam emails to the victim with tokens such as the names
of competing companies, their products, and their employees. Further, if the bid messages
follow a common template known to the malicious company, this further facilitates their at-
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tack. As a result of the attack, legitimate bid emails may be filtered away as spam, causing
the victim not to see it.

The focused attack is more concise than the dictionary attack because the attacker
has detailed knowledge of the target email and no reason to affect other messages. This
conciseness makes the attack both more efficient for the attacker and more difficult to detect
for the defender. Further, the focused attack can be more effective because the attacker
may know proper nouns and other non-word tokens common in the victim’s email that are
otherwise uncommon in typical English text.

An interesting side-effect of the focused attack is that repeatedly sending similar emails
tends to not only increase the spam score of tokens in the attack but also reduce the spam
score of tokens not in the attack. To understand why, recall the estimate of the token
posterior in Equation (4.1), and suppose that the jth token does not occur in the attack

email. Then N (s) increases with the addition of the attack email but n
(s)
j does not, so P

(S)
j

decreases and therefore so does qj . In Section 4.5.3, I observe empirically that the focused
attack can indeed reduce the spam score of tokens not included in the attack emails.

4.3.2 Causative Integrity Attacks—Pseudospam

I also study Causative Integrity attacks, which manipulate the filter’s training data to
increase false negatives; that is, spam messages misclassified as ham. In contrast to the
previous attacks, the pseudospam attack directly attempts to make the filter misclassify
spam messages. If the attacker can choose messages arbitrarily that are trained as ham, the
attack is similar to a focused attack with knowledge of 100% of the target email’s tokens.
However, there is no reason to believe a user would train on arbitrary messages as ham. I
introduce the concept of a pseudospam email—an email that does not look like spam but
that has characteristics (such as headers) that are typical of true spam emails. Not all users
consider benign-looking, non-commercial emails offensive enough to mark them as spam.

To create pseudospam emails, I take the message body text from newspaper articles,
journals, books, or a corpus of legitimate email. The idea is that in some cases, users
may mistake these messages as ham for training, or may not be diligent about correcting
false negatives before retraining, if the messages do not have marketing content. In this
way, an attacker might be able to gain control of ham training data. This motivation
is less compelling than the motivation for the dictionary and focused attacks, but in the
cases where it applies, the headers in the pseudospam messages will gain significant weight
indicating ham, so when future spam is sent with similar headers (i.e., by the same spammer)
it will arrive in the user’s inbox.

4.4 The Reject On Negative Impact (RONI) defense

In his Master’s thesis, Udam Saini studied two defense strategies for countering Causative
Availability attacks on SpamBayes [Saini, 2008]. The first was a mechanism to adapt
SpamBayes’ threshold parameters to mitigate the impact of an Availability attack called
the threshold defense. This defense did reduce the false positive rate of dictionary but at
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a cost of a higher false negative rate. He also discussed a preliminary version of the RONI
defense, which I elaborate on here.

In Chapter 3.5.4.1, I summarized the Reject On Negative Impact (RONI) defense. As
stated in that section, the RONI defense measures the empirical effect of each training
instance and eliminates from training those points that have a substantial negative impact
on classification accuracy. To determine whether a candidate training instance is malicious
or not, the defender trains a classifier on a base training set, then adds the candidate
instance to his training set and trains a second classifier with the candidate included. The
defender applies both classifiers to a quiz set of instances with known labels, measuring the
difference in accuracy between the two. If adding the candidate instance to the training
set causes the resulting classifier to produce substantially more classification errors, the
instance is rejected from the training set due to its detrimental effect.

More formally, I assume there is an initial training set D(train) and a set D(suspect) of
additional candidate training points to be added to the training set. The points in D(suspect)

are assessed as follows: first a calibration set C, which is a randomly chosen subset of D(train),
is set aside. Then several independent and potentially overlapping training/quiz set pairs
〈Ti, Qi〉 are sampled from the remaining portion of D(train), where the points within a pair of
sets are sampled without replacement. To assess the impact (empirical effect) of a data point
〈x, y〉 ∈ D(suspect), for each pair of sets (Ti, Qi) one constructs a before classifier fi trained on
Ti and an after classifier f̂ i trained on Ti + 〈x, y〉; i.e., the sampled training set with 〈x, y〉
concatenated. The RONI defense then compares the classification accuracy of fi and f̂ i on
the quiz set Qi, using the change in true positives and true negatives caused by adding
〈x, y〉 to Ti. If either change is significantly negative when averaged over training/quiz
set pairs, 〈x, y〉 is considered to be too detrimental, and it is excluded from D(train). To
determine the significance of a change, the shift in accuracy of the detector is compared to
the average shift caused by points in the calibration set C. Each point in C is evaluated in a
way analogous to evaluation of the points in D(suspect). The median and standard deviation
of their true positive and true negative changes is computed, and the significance threshold
is chosen to be the third standard deviation below the median.

4.5 Experiments with SpamBayes

4.5.1 Experimental Method

Here I present an empirical evaluation of the impact of Causative Availability attacks on
SpamBayes’ spam classification accuracy.

4.5.1.1 Datasets

In these experiments, I use the Text Retrieval Conference (TREC) 2005 spam corpus as
described by Cormack and Lynam [2005], which is based on the Enron email corpus [Klimt
and Yang, 2004] and contains 92, 189 emails (52, 790 spam and 39, 399 ham). By sampling
from this dataset, I construct sample inboxes and measure the effect of injecting attacks
into them. This corpus has several strengths: it comes from a real-world source, it has
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a large number of emails, and its creators took care that the added spam does not have
obvious artifacts to differentiate it from the ham.

I use two sources of tokens for attacks. First, I use the GNU Aspell English dictionary
version 6.0-0, containing 98, 568 words. I also use a corpus of English Usenet postings to
generate tokens for the attacks. This corpus is a subset of a Usenet corpus of 140, 179
postings compiled by the University of Alberta’s Westbury Lab [Shaoul and Westbury,
2007]. An attacker can download such data and build a language model to use in attacks,
and I explore how effective this technique is. I build a primary Usenet dictionary by taking
the most frequent 90, 000 tokens in the corpus (Usenet-90k), and I also experiment with a
smaller dictionary of the most frequent 25, 000 tokens (Usenet-25k).

The overlap between the Aspell dictionary and the most frequent 90, 000 tokens in the
Usenet corpus is approximately 26, 800 tokens. The overlap between the Aspell dictionary
and the TREC corpus is about 16, 100 tokens, and the intersection of the TREC corpus
and Usenet-90k is around 26, 600 tokens.

4.5.1.2 Constructing Message Sets for Experiments

In constructing an experiment, I often need several non-repeating sequences of emails in the
form of mailboxes. When I require a mailbox, I sample messages without replacement from
the TREC corpus, stratifying the sampling to ensure the necessary proportions of ham and
spam. For subsequent messages needed in any part of the experiment (target messages,
headers for attack messages, and so on), I again sample emails without replacement from
the messages remaining in the TREC corpus. In this way, I ensure that no message is
repeated within the experiment.

I construct attack messages by splicing elements of several emails together to make
messages that are realistic under a particular model of the adversary’s control. I construct
the attack email bodies according to the specifications of the attack. I select the header
for each attack email by choosing a random spam email from TREC and using its headers,
taking care to ensure that the content-type and other Multipurpose Internet Mail Extensions
(MIME) headers correctly reflect the composition of the attack message body. Specifically,
I discard the entire existing multi- or single-part body and I set relevant headers (such as
Content-Type and Content-Transfer-Encoding) to indicate a single plain-text body.

The tokens used in each attack message are selected from the datasets according to the
attack method. For the dictionary attack, I use all tokens from the attack dictionary in
every attack message (98, 568 tokens for the Aspell dictionary and 90, 000 or 25, 000 tokens
for the Usenet dictionary). For the focused and the pseudospam attacks, I select tokens
for each attack message based on a fresh message sampled from the TREC dataset. The
number of tokens in attack messages for the focused and pseudospam attacks varies, but all
such messages are comparable in size to the messages in the TREC dataset.

Finally, to evaluate an attack, I create a control model by training SpamBayes once
on the base training set. I incrementally add attack emails to the training set and train
new models at each step, yielding a sequence of models tainted with increasing numbers
of attack messages. (Because SpamBayes is order-independent in its training, it arrives at
the same model whether training on all messages in one batch or training incrementally on
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Parameter Focused Attack PseudoSpam Attack RONI Defense
Training set size 2,000, 10,000 2,000, 10,000 2,000, 10,000

Test set size 200, 1,000 200, 1,000 N/A

Spam prevalence 0.50, 0.75, 0.90 0.50, 0.75, 0.90 0.50

Attack fraction 0.001, 0.005, 0.01,
0.02, 0.05, 0.10

0.001, 0.005, 0.01,
0.02, 0.05, 0.10

0.10

Folds of validation 10 10 N/A

Target Emails 20 N/A N/A

Table 4.1: Parameters used in the experiments on attacking SpamBayes.

each email in any order.) I evaluate the performance of these models on a fresh set of test
messages.

4.5.1.3 Attack Assessment Method

I measure the effect of each attack by randomly choosing an inbox according to the param-
eters in Table 4.1 and comparing classification performance of the control and compromised
filters using ten-fold cross-validation. In cross-validation, I partition the data into ten sub-
sets and perform ten train-test epochs. During the kth epoch, the kth subset is set aside
as a test set and the remaining subsets are combined into a training set. In this way, each
email from the sample inbox functions independently as both training and test data.

In the sequel, I demonstrate the effectiveness of attacks on test sets of held-out messages.
Because the dictionary and focused attacks are designed to cause ham to be misclassified,
I only show their effect on ham messages; I found that their effect on spam is marginal.
Likewise, for the pseudospam attack, I concentrate on the results for spam messages. Most
of my graphs do not include error bars since I observed that the variation in the tests was
small compared to the effect of the attacks (see Figure (b) and (d)). See Table 4.1 for the
parameters used in the experiments. I found that varying the size of the training set and
spam prevalence in the training set had minimal impact on the performance of the attacks
(for comparison, see Figure (a) and (c)), so I primarily present the results of 10, 000-message
training sets at 50% spam prevalence.

4.5.2 Dictionary Attack Results

I examine dictionary attacks as a function of the percent of attack messages in the training
set. Figures 4.2 show the misclassification rates of three dictionary attack variants averaging
over ten-fold cross-validation in two settings (Figures (a) and (b) have an initial training set
of 10, 000 messages with 50% spam while Figures (c) and (d) have an initial training set of
2, 000 messages with 75% spam). First, I analyze the optimal dictionary attack discussed in
Section 4.3.1 by simulating the effect of including every possible token in our attack emails.
As shown in the figures, this optimal attack quickly causes the filter to mislabel all ham
emails with only a minute fraction of control of the training set.

Dictionary attacks using tokens from the Aspell dictionary are also successful, though
not as successful as the optimal attack. Both the Usenet-90k and Usenet-25k dictionary
attacks cause more ham emails to be misclassified than the Aspell dictionary attack, since
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they contains common misspellings and slang terms that are not present in the Aspell
dictionary. All of these variations of the attack require relatively few attack emails to
significantly degrade SpamBayes’ accuracy. After 101 attack emails (1% of 10, 000), the
accuracy of the filter falls significantly for each attack variation. Overall misclassification
rates are 96% for optimal, 37% for Usenet-90k, 19% for Usenet-25k, and 18% for Aspell—at
this point most users will gain no advantage from continued use of the filter so the attack
has succeeded.

It is of significant interest that so few attack messages can degrade a common filtering
algorithm to such a degree. However, while the attack emails make up a small percentage
of the number of messages in a contaminated inbox, they make up a large percentage of
the number of tokens. For example, at 204 attack emails (2% of the training messages),
the Usenet-25k attack uses approximately 1.8 times as many tokens as the entire pre-attack
training dataset, and the Aspell attack includes 7 times as many tokens.

While it seems trivial to prevent dictionary attacks by filtering large messages out
of the training set, such strategies fail to completely address this vulnerability of Spam-
Bayes. First, while ham messages in TREC are relatively small (fewer than 1% exceeded
5, 000 tokens and fewer than 0.01% of messages exceeded 25, 000 tokens), this dataset has
been redacted to remove many attachments and hence may not be representative of actual
messages. Second, an attacker can circumvent size-based thresholds. By fragmenting the
dictionary, an attack can have a similar impact using more messages with fewer tokens per
message. Additionally, informed token selection methods can yield more effective dictio-
naries as I demonstrate with the two Usenet dictionaries. Thus, size-based defenses lead to
a trade-off between vulnerability to dictionary attacks and the effectiveness of training the
filter. In the next section, I present a defense that instead filters messages based directly
on their impact on the spam filter’s accuracy.

4.5.3 Focused Attack Results

In this section, I discuss experiments examining how accurate the attacker needs to be at
guessing target tokens, how many attack emails are required for the focused attack to be
effective, and what effect the focused attack has on the token scores of a targeted message.
For the focused attack, I randomly select 20 ham emails from the TREC corpus to serve as
the target emails before creating the clean training set. During each fold of cross-validation,
I executed 20 focused attacks, one for each email, so the results average over 200 different
trials.

These results differ from the focused attack experiments conducted in Nelson et al. [2008]
in two important ways. First, here I randomly select a fixed percentage of tokens known
by the attacker from each message instead of selecting each token with a fixed probability.
The later approach causes the percentage of tokens known by the attacker to fluctuate from
message to message. Second, I only select messages with more than 100 tokens to use as
target emails. With these changes, these results more accurately represent the behavior of
a focused attack. Furthermore, in this more accurate setting, the focused attack is even
more effective.

Figure 4.3 shows the effectiveness of the attack when the attacker has increasing knowl-
edge of the target email by simulating the process of the attacker guessing tokens from the
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(a) Training on 10,000 messages (50%
spam)
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(b) Attacks (with error bars)
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(c) Training on 2,000 messages (75% spam)
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(d) Attacks (with error bars)

Figure 4.2: Effect of three dictionary attacks on SpamBayes in two settings. Figure (a)
and (b) have an initial training set of 10,000 messages (50% spam) while Figure (c) and (d)
have an initial training set of 2,000 messages (75% spam). Figure (b) and (d) also depict
the standard errors in the experiments for both of the settings. I plot percent of ham
classified as spam (dashed lines) and as spam or unsure (solid lines) against the attack
as percent of the training set. I show the optimal attack (△), the Usenet-90k dictionary
attack (♦), the Usenet-25k dictionary attack (�), and the Aspell dictionary attack (©).
Each attack renders the filter unusable with adversarial control over as little as 1% of the
messages (101 messages).
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Figure 4.3: Effect of the focused attack as a function of the percentage of target tokens
known by the attacker. Each bar depicts the fraction of target emails classified as spam,
ham, and unsure after the attack. The initial inbox contains 10,000 emails (50% spam).

81



Percent control of training set

P
er

ce
n
t

ta
rg

et
h
a
m

m
is

cl
a
ss

ifi
ed

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Figure 4.4: Effect of the focused attack as a function of the number of attack emails
with a fixed fraction (F=0.5) of tokens known by the attacker. The dashed line shows the
percentage of target ham messages classified as spam after the attack, and the solid line the
percentage of targets that are spam or unsure after the attack. The initial inbox contains
10,000 emails (50% spam).
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target email. I assume that the attacker knows a fixed fraction F of the actual tokens in
the target email, with F ∈ {0.1, 0.3, 0.5, 0.9}—the x-axis of Figure 4.3. The y-axis shows
the percent of the 20 targets classified as ham, unsure and spam. As expected, the attack is
increasingly effective as F increases. If the attacker knows 50% of the tokens in the target,
classification changes to spam or unsure on all of the target emails, with a 75% rate of
classifying as spam.

Figure 4.4 shows the attack’s effect on misclassifications of the target emails as the
number of attack messages increases with the fraction of known tokens fixed at 50%. The
x-axis shows the number of messages in the attack as a fraction of the training set, and the
y-axis shows the fraction of target messages misclassified. With 101 attack emails inserted
into an initial mailbox size of 10, 000 (1%), the target email is misclassified as spam or
unsure over 90% of the time.

Figure 4.5 shows the attack’s effect on three representative emails. Each of the graphs in
the figure represents a single target email from each of three attack results: ham misclassified
as spam (Figure (a)), ham misclassified as unsure (Figure (b)), and ham correctly classified
as ham (Figure (c)). Each point represents a token in the email. The x-axis is the token’s
spam score (from Equation (4.2)) before the attack, and the y-axis is the token’s score after
the attack (0 indicates ham and 1 indicates spam). The ×’s are tokens included in the
attack (known by the attacker) and the ©’s are tokens not in the attack. The histograms
show the distribution of token scores before the attack (at bottom) and after the attack (at
right).

Any point above the line y = x is a token whose score increased due to the attack
and any point below is a decrease. These graphs demonstrate that the score of the tokens
included in the attack typically increase significantly while those not included decrease
slightly. Since the increase in score is more significant for included tokens than the decrease
in score for excluded tokens, the attack has substantial impact even when the attacker
has a low probability of guessing tokens, as seen in Figure 4.3. Further, the before/after
histograms in Figure 4.5 provide a direct indication of the attack’s success. In shifting most
token scores toward 1, the attack causes more misclassifications.

4.5.4 Pseudospam Attack Experiments

In contrast to the previous attacks, for the pseudospam attack, I created attack emails that
may be labeled as ham by a human as the emails are added into the training set. I setup
the experiment for the pseudospam attack by first randomly selecting a target spam header
to be used as the base header for the attack. I then create the set of attack emails that
look similar to ham emails (see Section 4.3.2). To create attack messages, I combine each
ham email with the target spam header. This is done so that the attack email has contents
similar to other legitimate email messages. Header fields that may modify the interpretation
of the body are taken from the ham email to make the attack realistic.

Figure 4.6 demonstrates the effectiveness of the pseudospam attack by plotting the
percent of attack messages in the training set (x-axis) against the misclassification rates on
the test spam email (y-axis). The solid line shows the fraction of target spam classified as
ham or unsure spam while the dashed line shows the fraction of spam classified as ham. In
the absence of attack, SpamBayes only misclassifies about 10% of the target spam emails
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(b) Misclassified as unsure
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(c) Correctly classified as ham

Figure 4.5: Effect of the focused attack on three representative emails—one graph for
each target. Each point is a token in the email. The x-axis is the token’s spam score in
Equation (4.2) before the attack (0 indicates ham and 1 indicates spam). The y-axis is the
token’s spam score after the attack. The ×’s are tokens that were included in the attack
and the ©’s are tokens that were not in the attack. The histograms show the distribution
of spam scores before the attack (at bottom) and after the attack (at right).
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Figure 4.6: Effect of the pseudospam attack when trained as ham as a function of the
number of attack emails. The dashed line shows the percentage of the adversary’s messages
classified as ham after the attack, and the solid line the percentage that are ham or unsure
after the attack. The initial inbox contains 10,000 emails (50% spam).
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Figure 4.7: Effect of the pseudospam attack when trained as spam, as a function of
the number of attack emails. The dashed line shows the percentage of the normal spam
messages classified as ham after the attack, and the solid line the percentage that are
unsure after the attack. Surprisingly, training the attack emails as ham causes an increase
in misclassification of normal spam messages. The initial inbox contains 10, 000 emails (50%
spam).

(including those labeled unsure). If the attacker can insert a few hundred attack emails
(1% of the training set), then SpamBayes misclassifies more than 80% of the target spam
emails.

Further, the attack has a minimal effect on regular ham and spam messages. Other
spam email messages are still correctly classified since they do not generally have the same
header fields as the adversary’s messages. In fact, ham messages may have lower spam
scores since they may contain tokens similar to those in the attack emails.

I also explore the scenario in which the pseudospam attack emails are labeled by the
user as spam to better understand the effect of these attacks if the pseudospam messages fail
to fool the user. The result is that, in general, SpamBayes classifies more spam messages
incorrectly. As Figure 4.7 indicates, this variant causes an increase in spams mislabeled
as either unsure or ham increases to nearly 15% as the number of attack emails increases.
Further, this version of the attack does not cause a substantial impact on normal ham
messages.
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4.5.5 RONI defense Results

Again to empirically evaluate the RONI defense, I sample inboxes from the TREC 2005 spam
corpus. In this assessment, I use 20-fold cross validation to get an initial training inbox
D(train) of about 1, 000 messages (50% spam) and a test set D(eval) of about 50 messages. I
also sample a separate set D(suspect) of 1, 000 additional messages from the TREC corpus
to test as a baseline. In each fold of cross validation, I run five separate trials of the RONI
defense. For each trial, I use a calibration set of 25 ham and 25 spam messages and sample
three training/quiz set pairs of 100 training and 100 quiz messages from the remaining 950
messages. I train two classifiers on each training set for each message in D(suspect), one with
and one without the message, measuring performance on the corresponding quiz set and
comparing it to the magnitude of change measured from the calibration set.

I perform the RONI defense evaluation for each message in D(suspect) as just described
to see the effect on non-attack emails. I find that the RONI defense (incorrectly) rejects
an average of 2.8% of the ham and 3.1% of the spam from D(suspect). To evaluate the
performance of the post-RONI defense filter, I train a classifier on all messages in D(suspect)

and a second classifier on the messages in D(suspect) not rejected by the RONI defense. When
trained on all 1, 000 messages, the resulting filter correctly classifies 98% of ham and 80%
of the spam. After removing the messages rejected by the RONI defense and training from
scratch, the resulting filter still correctly classifies 95% of ham and 87% of the spam. The
overall effect of the RONI defense on classification accuracy is shown in Figure 4.2.

Since the RONI defense removes non-attack emails in this test, and therefore removing
potentially useful information from the training data, SpamBayes’ classification accuracy
suffers. It is interesting to see that test performance on spam actually improves after
removing some emails from the training set. This result seems to indicate that some non-
attack emails confuse the filter more than they help when used in training, perhaps because
they happen to naturally fit some of the characteristics that attackers use in emails.

Next I evaluate the performance of the RONI defense where D(suspect) instead consists of
attack emails from the attacks described earlier in Sections 4.3. The RONI defense rejects
every single dictionary attack from any of the dictionaries (optimal, Aspell, and Usenet).
In fact, the degree of change in misclassification rates for each dictionary message is greater
than five standard deviations from the median, suggesting that these attacks are easily
eliminated with only minor impact on the performance of the filter. See Figure 4.3.

A similar experiment with attack emails from the focused attack shows that the RONI
defense is much less effective against focused attack messages. The likely explanation is
simple: Indiscriminate dictionary attacks broadly affect many different messages with their
wide scope of tokens, so its consequences are likely to be seen in the quiz sets. The focused
attack is instead targeted at a single future email, which may not bear any significant
similarity to the messages in the quiz sets. However, as the fraction of tokens correctly
guessed by the attacker increases, the RONI defense identifies increasingly many attack
messages: only 7% are removed when the attacker guesses 10% of the tokens but 25%
of the attacks are removed when the attacker guesses 100% of the tokens. This is likely
due to the fact that with more correctly guessed tokens, the overlap with other messages
increases sufficiently to trigger the RONI defense more frequently. However, the attack is
still successful in spite of the increased number of detections. See Figure 4.4.
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Before the RONI defense

Predicted Label
ham spam unsure

T
ru

th ham 97% 0.0% 2.5%
spam 2.6% 80% 18%

After the RONI defense

Predicted Label
ham spam unsure

T
ru

th ham 95% 0.3% 4.6%
spam 2.0% 87% 11%

Table 4.2: Effect of the RONI defense on the accuracy of SpamBayes in the absence of
attacks. Each confusion matrix shows the breakdown of SpamBayes’s predicted labels for
both ham and spam messages. Left: The average performance of SpamBayes on training
inboxes of about 1, 000 message (50% spam). Right: The average performance of Spam-
Bayes after the training inbox is censored using the RONI defense. On average, the RONI
defense removes 2.8% of ham and 3.1% of spam from the training sets. (Numbers may not
add up to 100% because of rounding error.)

Dictionary Attacks
(Before the RONI defense)

Predicted Label
ham spam unsure

Optimal

True Label
ham 4.6% 83% 12%

spam 0.0% 100% 0.0%
Aspell

True Label
ham 66% 12% 23%

spam 0.0% 98% 1.6%
Usenet

True Label
ham 47% 24% 29%

spam 0.0% 99% 0.9%

Dictionary Attacks
(After the RONI defense)

Predicted Label
ham spam unsure

Optimal

True Label
ham 95% 0.3% 4.6%

spam 2.0% 87% 11%
Aspell

True Label
ham 95% 0.3% 4.6%

spam 2.0% 87% 11%
Usenet

True Label
ham 95% 0.3% 4.6%

spam 2.0% 87% 11%

Table 4.3: I apply the RONI defense to dictionary attacks with 1% contamination of
training inboxes of about 1, 000 messages (50% spam) each. Left: The average effect
of optimal, Usenet, and Aspell attacks on the SpamBayes filter’s classification accuracy.
The confusion matrix shows the breakdown of SpamBayes’s predicted labels for both ham
and spam messages after the filter is contaminated by each dictionary attack. Right:
The average effect of the dictionary attacks on their targets after application of the RONI
defense. By using the RONI defense, all of these dictionary attacks are caught and removed
from the training set, which dramatically improves the accuracy of the filter.
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Focused Attacks
(Before the RONI defense)

Target Prediction
ham spam unsure

10% guessed 78% 0.0% 22%
30% guessed 30% 5.2% 65%
50% guessed 5.8% 23% 71%
90% guessed 0.0% 79% 21%
100% guessed 0.0% 86% 14%

Focused Attacks
(After the RONI defense)

Target Prediction
ham spam unsure

10% guessed 79% 2.7% 21%
30% guessed 36% 4.8% 59%
50% guessed 19% 20% 61%
90% guessed 20% 62% 19%
100% guessed 21% 66% 13%

Table 4.4: The RONI defense to focused attacks with 1% contamination of training inboxes
of about 1, 000 messages (50% spam) each. Left: The average effect of 35 focused attacks
on their targets when the attacker correctly guesses 10, 30, 50, 90, and 100% of the target’s
tokens. Right: The average effect of the focused attacks on their targets after application
of the RONI defense. By using the RONI defense, more of the target messages are correctly
classified as ham, but the focused attacks largely still succeed at misclassifying most targeted
messages.

4.6 Summary

Motivated by the taxonomy of attacks against learners, I designed real-world Causative
attacks against SpamBayes’ learner and demonstrated the effectiveness of these attacks
using realistic adversarial control over the training process of SpamBayes. Optimal attacks
against SpamBayes caused unusably high false positive rates using only a small amount
of control of the training process (more than 95% misclassification of ham messages when
only 1% of the training data is contaminated). Usenet dictionary attack also effectively
use a more realistically limited attack message to cause misclassification of 19% of ham
messages with only 1% control over the training messages, rendering SpamBayes unusable
in practice. I also show that an informed adversary can successfully target messages. The
focused attack changes the classification of the target message virtually 100% of the time
with knowledge of only 30% of the target’s tokens. Similarly, the pseudospam attack is able
to cause nearly 90% of the target spam messages to be labeled as either unsure or ham with
control of less than 10% of the training data.

To combat attacks against SpamBayes, I designed a data sanitization technique called
the Reject On Negative Impact (RONI) defense that expunges any message from the training
set if it has an undue negative impact on a calibrated test filter. The RONI defense is a
successful mechanism that thwarts a broad range of dictionary attacks—or more generally
Indiscriminate Causative Availability attacks. However, the RONI defense also has costs.
First, this defense yields a slight decrease in ham classification (from 98% to 95%). Second,
the RONI defense requires a substantial amount of computation—testing each message in
D(suspect) requires us to train and compare the performance of several classifiers. Finally,
the RONI defense may slow the learning process. For instance, when a user correctly labels
a new type of spam for training, the RONI defense may reject those instances because
the new spam may be very different from spam previously seen and more similar to some
non-spam messages in the training set.
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4.6.1 Future Work

In presenting attacks against token-based spam filtering, there is a danger that spammers
may use these attacks against real-world spam filters. Indeed, there is strong evidence that
some emails sent to my colleagues may be attacks on their filter. Examples of the contents
of such messages are included in Figure 4.8 (all personal information in these messages has
been removed to protect the privacy of the message recipients). However, these messages
were not observed at the scale required to poison a large commercial spam filter such as
GMail, Hotmail, or Yahoo! Mail. It is unclear what, if any, steps are being taken to prevent
poisoning attacks against common spam filters, but I hope that, in exposing the vulnerability
of existing techniques, designers of spam filters will harden their systems against attacks.
It is imperative to design the next generation of spam filters to anticipate attacks against
them and I believe that the work presented here will inform and guide these designs.

Although this work investigated so-called “Bayesian” approaches to spam detection,
there are other approaches that I would like to consider. One of the more popular open-
source filters, SpamAssassin, incorporates a set of hand-crafted rules in addition to its
token-based learning component. It assigns a score to each rule and tallies them into a
combined spam score for a message. Other approaches rely exclusively on envelope-based
aspects of an email to detect spam. For instance, the IP-based approach of Ramachandran
et al. [2007] uses a technique they call behavioral blacklisting to identify (and blacklist)
likely sources of spam. This diverse range of detection techniques require further study to
identify their vulnerabilities and how spammers exploit multi-faceted approaches to spam
detection. Further, there is a potential for developing advanced spam filtering methods
that combine these disparate detection techniques together; the online expert aggregation
setting discussed in Chapter 3.6 seems particularly well-suited for this task.

90



Date: Sat, 28 Oct 2006
Subj: favorites Opera

options building authors users. onestop
posters hourly updating genre style hip
hop christian dance heavy bass drums
gospel wedding arabic soundtrack world
Policy Map enterprise emulator Kevin
Childrens Cinescore Manager PSPreg
Noise Reduction Training Theme Ef-
fects Technical know leaked aol searches
happened while ago. Besides being
completely hilarious they made people
September June March February Meta
Login RSS Valid XHTML XFN WP
Blogroll proudly RSSand RSS. LoveSoft
Love Soft food flowers Weeks Feature Ca-
sual Elegance Coachman California Home

(a)

Date: Mon, 16 Jul 2007
Subj: commodious delouse corpsman

brocade crown bethought chimney. an-
gelo asphyxiate brad abase decompres-
sion codebreak. crankcase big conjunc-
ture chit contention acorn cpa bladder-
wort chick. cinematic agleam chemisorb
brothel choir conformance airfield.

(b)

Date: Sun, 22 Jul 2007
Subj: bradshaw deride countryside

calvert dawson blockage card. coercion
choreograph asparagine bonnet contrast
bloop. coextensive bodybuild bastion
chalkboard denominate clare churchgo
compote act. childhood ardent brethren
commercial complain concerto depressor

(c)

Date: Thu, Apr 29, 2010
Subj: my deal much the

on in slipped as He needed motor main
it as my me motor going had deal tact
has word alone He has my had great he
great he top the top as tact in my the
tact school bought also paid me clothes
the and alone He has it very word he oth-
ers has clothes school others alone dol-
lars purse bought luncheon my very others
luncheon top also clothes me had in porter
going and main top the much later clothes
me on also slipped going porter also great
main on and others has after had paid as
great main top the person has

(d)

Figure 4.8: Real email messages that are suspiciously similar to dictionary or focused
attacks. Messages (a), (b), and (c) all contain many unique rare words and training on
these messages would probably make these words into spam tokens. As with the other three
emails, message (d) contains no spam payload, but has fewer rare words and more repeated
words. Perhaps repetition of words is used to circumvent rules that filter messages with too
many unique words (e.g., the UNIQUE WORDS rule of SpamAssassin).
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Chapter 5

Integrity Attack Case Study:
PCA Detector

Adversaries can use Causative attacks to not only disrupt normal user activity (as I
showed in Chapter 4) but also to achieve evasion by causing the detector to have many
false negatives through an Integrity attack. In doing so, such adversaries can reduce the
risk that their malicious activities are detected. This chapter presents a case study of
the subspace anomaly detection methods introduced by Lakhina et al. [2004b] for detecting
network-wide anomalies such as denial-of-service (DoS) attacks based on the dimensionality
reduction technique commonly known as Principal Component Analysis (PCA) [Pearson,
1901]. I show that by injecting crafty chaff into the network during training, the PCA-based
detector can be poisoned so that it is unable to effectively detect a subsequent DoS attack.
I also demonstrate defenses against these attacks: by replacing the PCA-based subspace
estimation with a more robust alternative, I show that the resulting detector is resilient to
poisoning and maintains a significantly lower false positive rate when poisoned.

The PCA-based detector I analyze was first proposed by Lakhina et al. [2004b] as
method for identifying volume anomalies in a backbone network. This basic technique led
to a variety of extensions of the original method [e.g., Lakhina et al., 2004a, 2005a,b], and
related techniques to address the problem of diagnosing large-volume network anomalies
[e.g., Brauckhoff et al., 2009, Huang et al., 2007, Li et al., 2006, Ringberg et al., 2007,
Zhang et al., 2005]. While their subspace-based method is able to successfully detect DoS
attacks in the network traffic, it assumes the detector is trained on non-malicious data (in
an unsupervised fashion under the setting of anomaly detection). Instead, I consider an
adversary who knows that an ISP is using a subspace-based anomaly detector and attempts
to evade it by proactively poisoning its training data.

The goal of the adversary I consider is to circumvent detection by poisoning the training
data; i.e., an Integrity goal to increase the detector’s false negative rate, which corresponds
to the evasion success rate of the attacker’s subsequent DoS attack. When trained on this
poisoned data, the detector learns a distorted set of principal components that are unable
to effectively discern these DoS attacks—a Targeted attack. Because PCA estimates the
data’s principal subspace solely on the covariance of the link traffic, I explore poisoning
schemes that add chaff (additional traffic) into the network along the flow targeted by the
attacker to systematically increase the targeted flow’s variance; i.e., an additive contami-
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nation model. By increasing the targeted flow’s variance, the attacker causes the estimated
subspace to unduly shift toward the target flow making large-volume events along that flow
less detectable.

In this chapter, I explore attacks against and defenses for network anomaly detections.
In Section 5.1, I introduce the PCA-based method for detecting network volume anomalies
as first proposed by Lakhina et al. [2004b]. Section 5.2 proposes attacks against the detector
and Section 5.3 proposes a defense based on a robust estimator for the subspace. In Sec-
tion 5.4, I evaluate the effect of attacks on both the original PCA-based approach and the
proposed defense. I summarize the results of this study in Section 5.5. This work appeared
as an extended abstract at SIGMETRICS [Rubinstein et al., 2009b] and subsequently was
published at the Conference on Internet Measurement (IMC) [Rubinstein et al., 2009a].

Related Work Several earlier studies examined attacks on specific learning systems for
related applications. Ringberg, Soule, Rexford, and Diot [2007] performed a study of the
sensitivities of the PCA method that illustrates how the PCA method can be sensitive to
the number of principal components used to describe the normal subspace. This parameter
can limit PCA’s effectiveness if not properly configured. They also show that routing
outages can pollute the normal subspace; a kind of perturbation to the subspace that is not
adversarial but can still significantly degrade detection performance. This work differs in
two key ways. First, I investigate malicious data poisoning; i.e., adversarial perturbations
that are stealthy and subtle and are more challenging to circumvent than routing outages.
Second, Ringberg et al. focus on showing the variability in PCA’s performance to certain
sensitivities, and not on defenses. In this work, I propose a robust defense against a malicious
adversary and demonstrate its effectiveness. It is conceivable that this technique may limit
PCA’s sensitivity to routing outages, although such a study is beyond the scope of this work.
A study by Brauckhoff, Salamatian, and May [2009] showed that the sensitivities observed
by Ringberg et al. can be attributed to the inability of the PCA-based detector to capture
temporal correlations. They propose to replace PCA by a Karhunen-Loeve expansion. This
study indicates that it would be important to examine, in future work, the data poisoning
robustness of the proposal of Brauckhoff et al. to understand how it fares under adversarial
conditions.

Contributions: The first contribution of this chapter is a detailed analysis of how ad-
versaries subvert the learning process in these Causative Integrity attacks using additive
contamination. I explore a range of poisoning strategies in which the attacker’s knowledge
about the network traffic state varies, and in which the attacker’s time horizon (length
of poisoning episode) varies. Through theoretical analysis of global poisoning strategies, I
reveal simple and effective poisoning strategies for the adversary that can be used to suc-
cessfully exploit various levels of knowledge that the attacker has about the system. To
gain further insights as to why these attacks are successful, I demonstrate their impact on
the normal model built by the PCA detector.

The second contribution is to design a robust defense against this type of poisoning.
It is known that PCA can be strongly affected by outliers [Ringberg, Soule, Rexford, and
Diot, 2007]. However, instead of finding the principal components along directions that
maximize variance, alternative PCA-like techniques find more robust components by max-
imizing alternative dispersion measures with desirable robustness properties. Analogously
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in centroid estimation, the median is a more robust measure of location than the mean,
in that it is far less sensitive to the influence of outliers—this is a form of distributional
robustness [cf., Hampel et al., 1986]. This concept was also extended to design and evaluate
estimates of dispersion that are robust alternatives to variance (a non-robust estimate of
dispersion) such as the median absolute deviation (MAD), which is robust to outliers. PCA
too can be thought of as an estimator of underlying subspace of the data, which selects the
subspace which minimizes the sum of the square of the data’s residuals; i.e., the variance
of the data in the residual subspace. This sum-of-squares estimator also is non-robust and
is thus sensitive to outliers [cf., Maronna et al., 2006]. Over the past two decades a num-
ber of robust PCA algorithms have been developed that maximize alternative measures of
dispersion such as the MAD instead of variance. Recently, the PCA-Grid algorithm was
proposed by Croux et al. [2007] as an efficient method for estimating directions that maxi-
mize the MAD without under-estimating variance (a flaw identified in previous solutions).
I adapt PCA-Grid for anomaly detection by combining the method with a new robust
cutoff threshold. Instead of modeling the squared prediction error as Gaussian (as in the
original PCA method), I model the error using a Laplace distribution. The new threshold
was motivated from observations of the residual that show longer tails than exhibited by
Gaussian distributions. Together, I refer to the method that combines PCA-Grid with a
Laplace cutoff threshold as Antidote. Because it builds on robust subspace estimates, this
method substantially reduces the effect of outliers and is able to reject poisonous training
data as I demonstrate empirically in Section 5.4.4.

The third contribution is an evaluation and comparison of both Antidote and the
original PCA method when exposed to a variety of poisoning strategies and an assessment
of their susceptibility to poisoning in terms of several performance metrics. To do this,
I used traffic data from the Abilene Internet2 backbone network [Zhang, Ge, Greenberg,
and Roughan, 2005]; a public network traffic dataset used in prior studies of PCA-based
anomaly detection approaches. I show that the original PCA method can be easily compro-
mised by the poisoning schemes I present using only small volumes of chaff (i.e., fake traffic
used to poison the detector). In fact, for moderate amounts of chaff, the performance of the
PCA detector approaches that of a random detector. However, Antidote is dramatically
more robust to these attacks. It outperforms PCA in that it i) more effectively limits the
adversary’s ability to increase his evasion success; ii) can reject a larger portion of contam-
inated training data; and iii) provides robust protection for nearly all origin-destination
flows through the network. The gains of Antidote for these performance measures are
large, especially as the amount of poisoning increases. Most importantly, I demonstrate that
when there is no poisoning Antidote incurs an insignificant decrease in its false negative
and false positive performance, compared to PCA. However, when poisoning does occur,
Antidote incurs significantly less degradation than PCA with respect to both of these
performance measures. Fundamentally, the original PCA-based approach was not designed
to be robust, but these results show that it is possible to adapt the original technique to
bolster its performance under an adversarial setting by using robust alternatives.

Finally, I also summarize episodic poisoning and its effect on both the original PCA-
based detector and Antidote as further discussed in Rubinstein [2010]. Because the net-
work behaviors are non-stationary, the baseline models must be periodically retrained to
capture evolving trends in the underlying data, but a patient adversary can exploit the
periodic retraining to slowly poison the filter over many retraining periods. In previous
usage scenarios [Lakhina, Crovella, and Diot, 2004b, Soule, Salamatian, and Taft, 2005],
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the PCA detector is retrained regularly (e.g., weekly), meaning that attackers could poison
PCA slowly over long periods of time; thus poisoning PCA in a more stealthy fashion. By
perturbing the principal components gradually over several retraining epochs, the attacker
decreases the chance that the poisoning activity itself is detected—an episodic poisoning
scheme. As I show in Section 5.4.5, these poisoning schemes can boost the false negative
rate as high as the non-stealthy strategies, with almost unnoticeable increases in weekly
traffic volumes, albeit over a longer period of time.

5.1 PCA Method for Detecting Traffic Anomalies

To uncover anomalies, many network anomography detection techniques analyze the
network-wide flow traffic matrix (TM), which describes the traffic volume between all pairs
of Points-of-Presence (PoP) in a backbone network and contains the observed traffic volume
time series for each origin-destination (OD) flow. PCA-based techniques instead uncover
anomalies using the more readily available link traffic matrix. In this section, I define traffic
matrices and summarize the PCA anomaly detection method of Lakhina et al. [2004b] using
the notation introduced in Chapter 2.1.

5.1.1 Traffic Matrices and Volume Anomalies

I begin with a brief overview of the volume anomaly detection problem, in which a network
administrator wants to identify unusual traffic in origin-destination (OD) flows between
Points-of-Presence (PoP) nodes in a backbone network. The flow traffic is routed along
a network represented as an undirected graph (V, E) on V , |V| nodes and D , |E| uni-
directional links. There are Q , V 2 OD flows in this network (between every pair of
PoP nodes) and the amount of traffic transmitted along the qth flow during the tth time
slice is Qt,q. All OD flow traffic observed in T time intervals is summarized by the matrix
Q ∈ ℵT×Q. Ideally, one would like to identify a pair 〈t, q〉 as anomalous if the traffic along
flow q is unusually large at time t, but Q is not directly observable within the backbone
network. Instead what is observable is the network link traffic during the tth time slice.

More specifically, network link traffic is the superposition of all OD flows; i.e., the data
transmitted along the qth flow contributes to the overall observed link traffic along the links
traversed by the qth flow’s route from its origin to its destination. Here, consider a network
with Q OD flows and D links and measure traffic on this network over T time intervals.
The relationship between link traffic and OD flow traffic is concisely captured by the routing
matrix R. This matrix is an D × Q matrix such that Ri,j = 1 if the jth OD flow passes
over the ith link, and otherwise is zero. Thus, if Q is the T × Q traffic matrix containing
the time-series of all OD flows and X is the T ×D link TM containing the time-series of all
links, then X = QR⊤. I denote the tth row of X as x(t) = Xt,• (the vector of D link traffic

measurements at time t) and the traffic observed along a particular source link, s, by x
(t)
s .

I denote column q of routing matrix R by Rq; i.e., the indicator vector of the links used by
the qth flow.

I consider the problem of detecting OD flow volume anomalys across a top-tier network
by observing link traffic volumes. Anomalous flow volumes are unusual traffic load levels in
a network caused by anomalies such as DoS attacks, Distributed DoS (DDoS) attacks, flash
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(a) Links used for data poisoning
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(b) The Abilene network topology

Figure 5.1: Depictions of network topologies, which subspace-based detection methods
can be used as traffic anomaly monitors. (a) A simple four-node network with four edges.
Each node represents a PoP and each edge represents a bidirectional link between two PoPs.
Ingress links are shown at node D although all nodes have ingress links which carry traffic
from clients to the PoP. Similarly, egress links are shown at node B carrying traffic from the
PoP to its destination client. Finally, a flow from D to B is depicted flowing through C; this
is the route taken by traffic sent from PoP D to PoP B. (b) The Abilene backbone network
overlaid on a map of the United States representing the 12 PoP nodes in the network and
the 15 links between them. PoPs AM5 and A are actually co-located together in Atlanta but
the former is displayed south-east to highlight its connectivity.

crowds, device failures, misconfigured devices, and other abnormal network events. DoS
attacks serve as the canonical example of an attack throughout this chapter.

5.1.2 Subspace Method for Anomaly Detection

Here I briefly summarize the PCA-based anomaly detector introduced by Lakhina, Crovella,
and Diot [2004b]. They observed that the high degree of traffic aggregation on ISP back-
bone links often causes OD flow volume anomalies to become indistinct within normal traffic
patterns. They also observe that although the measured data has high dimensionality, D,
the normal traffic patterns lie in a subspace of low dimension K ≪ D; i.e., the majority of
normal traffic can be described using a smaller representation because of temporally static
correlations caused by the aggregation. Fundamentally, they found that the link data is
dominated by a small number of flows. Inferring this normal traffic subspace using PCA
(which finds the principal components within the traffic) facilitates the identification of vol-
ume anomalies in the residual (abnormal) subspace. For the Abilene (Internet2 backbone)
network, most variance can be captured by the first K = 4 principal components; i.e., the
link traffic of this network effectively resides in a (low) K-dimensional subspace of ℜD.

PCA is a dimensionality reduction technique that finds K orthogonal principal compo-
nents to define a K-dimensional subspace that captures the maximal amount of variance
from the data. First, PCA centers the data by replacing each data point x(t) with x(t)− ĉ
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where ĉ is the central location estimate, which in this case is the mean vector ĉ = 1
T X⊤1.

Let X̂ be the centered link traffic matrix; i.e., with each column of X translated to have
zero mean. Next, PCA estimates the principal subspace on which the mean-centered data
lies by computing its principal components. The kth principal component satisfies

v(k) ∈ argmax
w:‖w‖2=1

[∥
∥
∥
∥
∥
X̂

(

I−
k−1∑

i=1

v(i)(v(i))⊤
)

w

∥
∥
∥
∥
∥

2

]

. (5.1)

The resulting K-dimensional subspace spanned by the first K principal components is
represented by a D × K dimensional matrix V(K) = [v(1),v(2), . . . ,v(K)] that maps to

the normal traffic subspace Ṡ and has a projection matrix Ṗ = V(K)
(
V(K)

)⊤
into ℜD. The

residual (D −K)-dimensional subspace is spanned by the remaining principal components
W(K) =

[
v(K+1),v(K+2), . . . ,v(D)

]
. This matrix maps to the abnormal traffic subspace S̈

with a corresponding projection matrix P̈ = W(K)
(
W(K)

)⊤
= I− Ṗ onto ℜD.

Volume anomalies can be detected by decomposing the link traffic into normal and
abnormal components such that x(t) = ẋ(t)+ẍ(t)+ĉ where ẋ(t) , Ṗ

(
x(t) − ĉ

)
is the modeled

normal traffic and ẍ(t) , P̈
(
x(t) − ĉ

)
is the residual traffic, corresponding to projecting x(t)

onto Ṡ and S̈, respectively. A volume anomaly at time t typically results in a large change

to ẍ(t), which can be detected by thresholding the squared prediction error
∥
∥ẍ(t)

∥
∥

2

2
against

the threshold Qβ , which is chosen to be the Q-statistic at the 1−β confidence level [Jackson
and Mudholkar, 1979]. This PCA-based detector defines the following classifier:

f
(

x(t)
)

=







'+',
∥
∥
∥P̈
(
x(t) − ĉ

)
∥
∥
∥

2

2
> Qβ

'−', otherwise
(5.2)

for a link measurement vector, where '+' indicates that the tth time slice is anomalous and
'−' indicates it is innocuous. Due to the non-stationarity of normal network traffic (gradual
drift), periodic retraining is necessary. I assume the detector is retrained weekly.

5.2 Corrupting the PCA subspace

In this section, I survey a number of data poisoning schemes and discuss how each is designed
to impact the training phase of a PCA-based detector. Three general categories of attacks
are considered based on the attacker’s capabilities: uninformed attacks, locally-informed
attacks, and globally-informed attacks. Each of these reflect different levels of knowledge
and resources available to the attacker.

5.2.1 The Threat Model

The adversary’s goal is to launch a DoSattack on some victim and to have the attack traffic
successfully transit an ISP’s network without being detected en route. The DoS traffic
traverses the ISP from an ingress point-of-presence (PoP) node to an egress PoP of the
ISP. To avoid detection prior to the desired DoS attack, the attacker poisons the detector
during its periodic retraining phase by injecting additional traffic (chaff ) along the OD flow
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(i.e., from an ingress PoP to an egress PoP) that he eventually intends to attack. Based on
the anticipated threat against the PCA-based anomaly detector, the contamination model
I consider is a data alteration model where the adversary is limited to only alter the traffic
from a single source node. This poisoning is possible if the adversary gains control over
clients of an ingress PoP or if the adversary compromises a router (or set of routers) within
the ingress PoP. For a poisoning strategy, the attacker must decide how much chaff to add
and when to do so. These choices are guided by the degree of covertness required by the
attacker and the amount of information available to the attacker.

I consider poisoning strategies in which the attacker has various potential levels of
information at his disposal. The weakest attacker is one that knows nothing about the traffic
at the ingress PoP, and adds chaff randomly (called an uninformed attack). Alternatively,
a partially-informed attacker knows the current volume of traffic on the ingress link(s)
that he intends to inject chaff on. Because many networks export SNMP records, an
adversary might intercept this information, or possibly monitor it himself (i.e., in the case
of a compromised router). I call this type of poisoning a locally-informed attack because
this adversary only observes the local state of traffic at the ingress PoP of the attack. In
a third scenario, the attacker is globally-informed because his global view over the network
enables him to know the traffic levels on all network links and this attacker has knowledge
of all future traffic link levels. (Recall that in the locally-informed scheme, the attacker
only knows the current traffic volume of a link.) Although these attacker capabilities are
impossible to achieve, I study this scenario to better understand the limits of variance
injection poisoning schemes.

I assume the adversary does not have control over existing traffic (i.e., he cannot delay
or discard traffic). Similarly, the adversary cannot falsify SNMP reports to PCA. Such
approaches are more conspicuous because the inconsistencies in SNMP reporting from
neighboring PoPs could expose the compromised router. Stealth is a major goal of this
attacker—he does not want his DoS attack or his poisoning to be detected until the DoS
attack has successfully been executed.

I focused primarily on non-distributed poisoning of DoS detectors and on non-
distributed DoS attacks. Distributed poisoning that aims to evade a DoS detector is also
possible; the globally-informed poisoning strategy presented below is an example since this
adversary potentially can poison any network link. I leave the study of distributed forms
of poisoning to future work. Nonetheless, by demonstrating that poisoning can effectively
achieve evasion in the non-distributed setting, this work shows that distributing the poi-
soning is unnecessary although it certainly should result in even more powerful attacks.

For each of these scenarios of different poisoning strategies and the associated level of
knowledge available to the adversary, I now detail specific poisoning schemes. In each, the
adversary decides on the quantity of a(t) chaff to add to the target flow time series at a
time t and during the training period he sends a total volume of chaff A ,

∑T
t=1 a(t). Each

strategy has an attack parameter θ, which controls the intensity of the attack. Ultimately,
in each strategy, the attacker’s goal is to maximally increase traffic variance along the target
flow to mislead the PCA detector to give that flow undue representation in its subspace, but
each strategy differs in the degree of information the attacker has to achieve his objective.
For each scenario, I present only one representative poisoning scheme, although others were
studied in prior work [Rubinstein et al., 2008].
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5.2.2 Uninformed Chaff Selection

In this setting, the adversary has no knowledge about the network and randomly injects
chaff traffic. At each time t, the adversary decides whether or not to inject chaff according
to a Bernoulli random variable. If he decides to inject chaff, the amount of chaff added is of
size θ, i.e., a(t) = θ. This method is independent of the network traffic since this attacker
is uninformed—I call it the Random poisoning scheme.

5.2.3 Locally-Informed Chaff Selection

In the locally-informed scenario, the attacker observes the volume of traffic in the ingress

link he controls at each point in time, x
(t)
s . Hence this attacker only adds chaff when the

current traffic volume is already reasonably large. In particular, he adds chaff when the
traffic volume on the link exceeds a threshold parameter α (typically the mean of the overall

flow’s traffic). The amount of chaff added is then a(t) =
(

max
{

0, x
(t)
s − α

})θ
. In other

words, if the difference between the observed link traffic and a parameter α is non-negative,
the chaff volume is that difference to the power θ; otherwise, no chaff is added during the
interval. In this scheme (called Add-More-If-Bigger), the further the traffic is from the
mean link traffic, the larger the deviation of chaff inserted.

5.2.4 Globally-Informed Chaff Selection

The globally-informed scheme captures an omnipotent adversary with full knowledge of X,
R and the future measurements x̃, and who is capable of injecting chaff into any network
flow during training. This latter point is important. In previous poisoning schemes the
adversary can only inject chaff along their compromised link, whereas in this scenario, the
adversary can inject chaff into any link. For each link n and each time t, the adversary
must select the amount of chaff At,n. I cast this process into an optimization problem that
the adversary solves to maximally increase his chance of a DoS evasion along the target
flow q. Although these capabilities are unrealistic, I study the globally-informed poisoning
strategy to understand the limits of variance injection methods.

The PCA Evasion Problem considers an adversary wishing to launch an undetected DoS
attack of volume δ along the qth target flow at the tth time window. If the vector of link
volumes at future time t is x̃, where the tilde distinguishes this future measurement from
past training data X̂, then the vectors of anomalous DoS volumes are given by x̃ (δ, q) =
x̃+δ ·Rq. Denote by A the matrix of link traffic injected into the network by the adversary
during training. Then the PCA-based anomaly detector is trained on altered link traffic
matrix X̂ + A to produce the mean traffic vector µ, the top K eigenvectors V(K), and the
squared prediction error threshold Qβ . The adversary’s objective is to enable as large a DoS
attack as possible (maximizing δ) by optimizing A accordingly. The PCA Evasion Problem
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corresponds to solving the following:

max
δ∈ℜ, A∈ℜT×Q

δ

s.t. (µ,V, Qβ) = PCA(X + A, K)
∥
∥
∥P̈(x̃ (δ, q)− µ)

∥
∥
∥

2
≤ Qβ

‖A‖1 ≤ θ ∀t, q At,q ≥ 0 ,

where θ is a constant constraining total chaff and the matrix 1-norm is here defined as
‖A‖1 ,

∑

t,q |At,q|. The second constraint guarantees evasion by requiring that the con-
taminated link volumes at time t are classified as innocuous according to Equation 5.2. The
remaining constraints upper-bound the total chaff volume by θ and constrain the chaff to
be non-negative.

Unfortunately, this optimization is difficult to solve analytically. Thus I construct a
relaxed approximation to obtain a tractable analytic solution. I make a few assumptions and
derivations1, and show that the above objective seeks to maximize the attack direction Rq’s

projected length in the normal subspace maxA∈ℜT×Q

∥
∥
∥

(
V(K)

)⊤
Rq

∥
∥
∥

2
. Next, I restrict our

focus to traffic processes that generate spherical k-rank link traffic covariance matrices2.
This property implies that the eigen-spectrum consists of K ones followed by all zeroes.
Such an eigen-spectrum allows us to approximate the top eigenvectors V(K) in the objective,
with the matrix of all eigenvectors weighted by their corresponding eigenvalues ΣV. This
transforms the PCA evasion problem into the following relaxed optimization:

max
A∈ℜT×Q

∥
∥
∥(X̂ + A)Rq

∥
∥
∥

2
(5.3)

s.t. ‖A‖1 ≤ θ

∀t, q At,q ≥ 0 .

Solutions to this optimization are obtained by a standard Projection Pursuit method from
optimization: iteratively take a step in the direction of the objective’s gradient and then
project onto the feasible set.

These solutions yield an interesting insight. Recall that the Globally-Informed adversary
is capable of injecting chaff along any flow. One could imagine that it might be useful to
inject chaff along an OD flow whose traffic dominates the choice of principal components
(i.e., an elephant flow), and then send the DoS traffic along a different flow (that possibly
shares a subset of links with the poisoned OD flow). However the solutions of Equation (5.3)
indicates that the best strategy to evade detection is to inject chaff only along the links
Rq associated with the target flow q. This follows from the form of the initializer A(0) ∝
X̂RqR

⊤
q (obtained from an L2 relaxation) as well as the form of the projection and gradient

steps. In particular, all these objects preserve the property that the solution only injects
chaff along the target flow. In fact, the only difference between this globally-informed
solution and the locally-informed scheme is that the former uses information about the
entire traffic matrix X to determine chaff allocation along the flow whereas the latter use
only local information.

1The full proof is omitted due to space constraints.
2While the spherical assumption does not hold in practice, the assumption of low-rank traffic matrices is

met by published datasets Lakhina et al. [2004b].
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5.2.5 Boiling Frog Attacks

In the above attacks, chaff was designed to impact a single period (one week) in the training
cycle of the detector, but here I consider the possibility of episodic poisoning which are car-
ried out over multiple weeks of retraining the subspace detector to adapt to changing traffic
trends. As with previous studies, I assume that the PCA-subspace method is retrained on
a weekly basis using the traffic observed in the previous week to retrain the detector at the
beginning of the new week; i.e., the detector for the mth week is learned from the traffic of
week m− 1. Further, as with the outlier model briefly discussed in Chapter 1.3.3, I sanitize
the data from the prior week before retraining so that all detected anomalies are removed
from the data. This sort of poisoning could be used by a realistic adversary, who plans to
execute a DoS attack in advance; e.g., to lead up to a special event like the Super Bowl or
an election.

Multi-week poisoning strategies vary the attack according to the time horizon over which
they are carried out. As with single-week attacks, during each week the adversary inserts
chaff along the target OD flow throughout the training period according to his poisoning
strategy. However, in the multi-week attack the adversary increases the total amount of
chaff used during each subsequent week according to a poisoning schedule. This poisons
the model over several weeks by initially adding small amounts of chaff and increasing
the chaff quantities each week so that the detector is gradually acclimated to chaff and
fails to adequately identify the eventually large amount of poisoning—this is analogous to
the attacks against the hypersphere detector in Chapter 1.3.3. I call this type of episodic
poisoning the Boiling Frog poisoning method after the folk tale that one can boil a frog by
slowly increasing the water temperature over time3.

Boiling Frog poisoning can use any of the preceding chaff schemes to select a(t) during
each week of poisoning; the only week-to-week change is in the total volume of chaff used,
which increases as follows. During the first week, the subspace-based detector is trained on
un-poisoned data. In the second week, an initial total volume of chaff is A(1) is selected, and
the target flow is injected with chaff generated using a parameter θ1 to achieve the desired
total chaff volume. After classifying the traffic from the new week, PCA is retrained on that
week’s sanitized data with any detected anomalies removed. During each subsequent week,
the poisoning is increased according to its schedule; the schedules I considered increase the
total chaff volumes geometrically as A(t) = κA(t−1) where κ the rate of weekly increase. The
goal of Boiling Frog poisoning is to slowly rotate the normal subspace, injecting low levels of
chaff relative to the previous week’s traffic levels so that PCA’s rejection rates stay low and
a large portion of the present week’s poisoned traffic matrix is trained on. Although PCA is
retrained each week, the training data will include some events not caught by the previous
week’s detector. Thus, more malicious training data will accumulate each successive week
as the PCA subspace is gradually shifted. This process continues until the week of the DoS
attack, when the adversary stops injecting chaff and executes their desired DoS; again I
measure the success rate of that final attack. Episodic poisoning is considered more fully
in Rubinstein [2010] but I summarize the results of this poisoning scheme on subspace
detectors in Section 5.4.5.

3Note that there is nothing inherent in the choice of a one-week poisoning period. For a general learning
algorithm, our strategies would correspond to poisoning over one training period (whatever its length) or
multiple training periods.
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Figure 5.2: In these figures, the Abilene data was projected into the 2D space spanned by
the 1st principal component and the direction of the attack flow #118. (a) The 1st principal
component learned by PCA and PCA-Grid on clean data (represented by small gray dots).
(b) The effect on the 1st principal components of PCA and PCA-Grid is shown under a
globally informed attack (represented by ◦’s). Note that some contaminated points were
too far from the main cloud of data to include in the plot.

5.3 Corruption-Resilient Detectors

I propose using techniques from robust statistics to defend against Causative Integrity at-
tacks on subspace-based anomaly detection and demonstrate their efficacy in that role.
Robust methods are designed to be less sensitive to outliers, and are consequently ideal
defenses against variance injection schemes that perturb data to increase variance along
the target flow. There have been two general approaches to make PCA robust: the first
computes the principal components as the eigen-spectrum of a robust estimate of the co-
variance matrix [Devlin et al., 1981], while the second approach searches for directions that
maximize a robust scale estimate of the data projection. I propose using one of the latter
methods as a defense against poisoning. After describing the method, I also propose a
new threshold statistic that can be used for any subspace-based method including robust
PCA and better fits their residuals. Robust PCA and the new robust Laplace threshold
together form a new network-wide traffic anomaly detection method, Antidote, that is
less sensitive to poisoning attacks.

5.3.1 Intuition

Fundamentally, to mitigate the effect of poisoning attacks, the learning algorithm must
be stable despite data contamination; i.e., a small amount of data contamination should
not dramatically change the model produced by our algorithm. This concept of stability
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has been studied in the field of Robust Statistics in which robust is the formal term used
to qualify a related notion of stability often referred to as distributional robustness (cf.,
Section 3.5.4.3). There have been several approaches to developing robust PCA algorithms
that construct a low dimensional subspace that captures most of the data’s dispersion4 and
are stable under data contamination [Croux et al., 2007, Croux and Ruiz-Gazen, 2005,
Devlin et al., 1981, Li and Chen, 1985, Maronna, 2005]. As stated above, the approach I
selected finds a subspace that maximizes an alternative dispersion measure instead of the
usual variance.

The robust PCA algorithms search for a unit direction v whose projections maximize
some univariate dispersion measure S {·} after centering the data according to the location
estimator ĉ {·}; that is5,

v ∈ argmax
‖w=1‖2

[

S
{

w⊤
(

x(t) − ĉ
{

x(t)
})}]

. (5.4)

The standard deviation is the dispersion measure used by PCA; i.e., SSD
{
r(1), . . . , r(T )

}
=

(
1

T−1

∑T
t=1

(
r(t) − r̄

)2
) 1

2
where r̄ is the mean of the values

{
r(t)
}

. However, it is well

known that the standard deviation is sensitive to outliers [cf., Hampel et al., 1986, Chapter
2], making PCA non-robust to contamination. Robust PCA algorithms instead use measures
of dispersion based on the concept of robust projection pursuit (RPP) estimators [Li and
Chen, 1985]. As is shown by Li and Chen, RPP estimators achieve the same breakdown
points as their dispersion measure (recall that the breakdown point is the (asymptotic)
fraction of the data an adversary must control in order to arbitrarily change an estimator
and is a common measure of statistical robustness) as well as being qualitatively robust;
i.e., the estimators are stable.

However, unlike the eigenvector solutions that arise in PCA, there is generally no ef-
ficiently computable solution for robust dispersion measures and so these estimators must
be approximated. Below, I describe the PCA-Grid algorithm, a successful method for
approximating robust PCA subspaces developed by Croux et al. [2007]. Among several
other projection pursuit techniques [Croux and Ruiz-Gazen, 2005, Maronna, 2005], PCA-

Grid proved to be most resilient to our poisoning attacks. It is worth emphasizing that
the procedure described in the next section is simply a technique for approximating a pro-
jection pursuit estimator and does not itself contribute to the algorithm’s robustness—that
robustness comes from the definition of the projection pursuit estimator in Equation (5.4).

First, to better understand the efficacy of a robust PCA algorithm, I demonstrate the
effect our poisoning techniques have on the PCA algorithm and contrast them with the effect
on the PCA-Grid algorithm. Figure 5.2 shows an example of the impact that a globally-
informed poisoning attack has on both algorithms. As demonstrated in Figure 5.2(a),
initially the data was approximately clustered in an ellipse, and both algorithms construct
reasonable estimates for the center and first principal component for this data. However,
Figure 5.2(b) shows that a large amount of poisoning dramatically perturbs some of the
data in the direction of the target flow, and as a result, the PCA subspace is dramatically

4Dispersion is an alternative term for variation since the later is often associated with statistical variation.
A dispersion measure is a statistic that measures the variability or spread of a variable according to a
particular notion of dispersion.

5Here I use the notation g{r(1), . . . , r(T )} to indicate that the function g acts on an enumerated set of
objects. This notation simplifies the notation g({r(1), . . . , r(T )}) to a more legible form.
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shifted toward the target flow’s direction (y-axis). Due to this shift, DoS attacks along the
target flow will be less detectable. Meanwhile, the subspace of PCA-Grid is considerably
less affected by the poisoning and only rotates slightly toward the direction of the target
flow.

5.3.2 PCA-GRID

The PCA-Grid algorithm introduced by Croux et al. [2007] is a projection pursuit tech-
nique as described above in Equation 5.4. It finds a K-dimensional subspace that approxi-
mately maximizes S {·}, a robust measure of dispersion, for the data X as in Equation (5.4).
The robust measure of dispersion used by Croux et al. and also incorporated into Antidote

is the well-known MAD estimator because of its high degree of distributional robustness—
it attains the highest achievable breakdown point of ǫ∗ = 50% and is the most robust
M-estimator of dispersion [cf., Hampel et al., 1986, Chapter 2]. For scalars r(1), . . . , r(T )

the MAD is defined as

MAD
{

r(1), . . . , r(T )
}

= median
{∣
∣
∣r(i) −median

{

r(1), . . . , r(T )
}∣
∣
∣

}

(5.5)

SMAD
{

r(1), . . . , r(T )
}

= ω ·MAD
{

r(1), . . . , r(T )
}

,

where the coefficient ω = 1
Φ−1(3/4)

≈ 1.4826 rescales the MAD so that SMAD {·} is an esti-

mator of the standard deviation that is asymptotically consistent for normal distributions.

The next step requires choosing an estimate of the data’s central location. In PCA, this
estimate is simply the mean of the data. However, the mean is also not a robust estimator,
so we center the data using the spatial median instead:

ĉ
{

x(t)
}

∈ argmin
µ∈ℜD

T∑

t=1

∥
∥
∥x(t) − µ

∥
∥
∥

2
,

which is a convex optimization that can be efficiently solved using techniques developed by
Hössjer and Croux [1995].

After centering the data based on the location estimate ĉ
{
x(t)
}

obtained above, PCA-

Grid finds a unitary direction v that is an approximate solution to Equation (5.4) for the
scaled MAD dispersion measure. The PCA-Grid algorithm uses a grid-search for this task.
To motivate this search procedure, suppose one wants to find the best candidate between
some pair of unit vectors w(1) and w(2) (a 2D search space). The search space is the unit
circle parameterized by φ as w (φ) = cos (φ)w(1) + sin (φ)w(2) with φ ∈

[
−π

2 , π
2

]
. The grid

search splits the domain of φ into a mesh of G+1 candidates φ(k) = π
2

(
2k
G − 1

)
, k = 0, . . . , G.

Each candidate vector w
(
φ(k)

)
is assessed and the one that maximizes S

{(
x(t)
)⊤

w
(
φ(k)

)}

is selected as the approximate maximizer ŵ.

To search a more general D-dimensional space, the search iteratively refines its current
best candidate ŵ by performing a grid search between ŵ and each of the unit directions e(j)

with j ∈ 1 . . . D. With each iteration, the range of angles considered progressively narrows
around ŵ to better explore its neighborhood. This procedure (outlined in Algorithm 5.1)
approximates the direction of maximal dispersion analogous to an eigenvector in PCA.
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Algorithm 5.1. Grid-Search (X)

Require: X is a T ×D matrix
v̂← e(1)

for i = 1 to C do begin
for j = 1 to D do begin

for k = 0 to G do begin
φ(k) ← π

2i

(
2k
G − 1

)

w
(
φ(k)

)
← cos

(
φ(k)

)
ŵ + sin

(
φ(k)

)
e(j)

if S
{(

x(t)
)⊤

w
(
φ(k)

)}

> S
{(

x(t)
)⊤

v̂
}

then v̂← w
(
φ(k)

)

end for
end for

end for
return: v̂

Algorithm 5.2. PCA-Grid(X, K)

Center X: X← X− ĉ
{
x(t)
}

for i = 1 to K do begin
v(k) ← Grid-Search (X)
X← projection of X onto the complement of v(k)

end for
Return subspace centered at ĉ

{
x(t)
}

with principal directions
{
v(k)

}K

k=1

To find the K-dimensional subspace
{
v(k)

∣
∣ ∀j = 1, . . . , K (v(k))⊤v(j) = δk,j

}
that max-

imizes the dispersion measure, the Grid-Search is repeated K-times. After each repeti-
tion, the data is deflated to remove the dispersion captured by the last direction from the
data. This process is detailed in Algorithm 5.2.

5.3.3 Robust Laplace Threshold

In addition to the robust PCA-Grid algorithm, I also design a robust estimate for its
residual threshold that replaces of the Q-statistic described in Section 5.1.2. The use of
the Q-statistic as a threshold by Lakhina et al. was implicitly motivated by an assumption
of normally distributed residuals [Jackson and Mudholkar, 1979]. However, I found that
the residuals for both the PCA and PCA-Grid subspaces were empirically non-normal
leading me to conclude that the Q-statistic is a poor choice for a detection threshold. The
non-normality of the residuals was also observed by Brauckhoff et al. [2009]. Instead, to
account for the outliers and heavy-tailed behavior I observed from our method’s residuals, I
choose the threshold as the 1− β quantile of a Laplace distribution fit with robust location
and scale parameters. The alternative subspace-based anomaly detector, Antidote, is the
combination of the PCA-Grid algorithm for normal-subspace estimation and the Laplace
threshold to estimate the threshold for flagging anomalies.

As with the Q-statistic described in Section 5.1.2, I construct the Laplace threshold
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QL,β as the 1 − β quantile of a parametric distribution fit to the residuals in the training
data. However, instead of the normal distribution assumed by the Q-statistic, I use the
quantiles of a Laplace distribution specified by a location parameter c and a scale parameter
b. Critically, though, instead of using the mean and standard deviation, I robustly fit the

distribution’s parameters. I estimate c and b from the squared residuals
{∥
∥ẍ(t)

∥
∥

2

2

}

using

robust consistent estimates ĉ and b̂ of location (median) and scale (MAD), respectively

ĉ = median

{∥
∥
∥ẍ(t)

∥
∥
∥

2

2

}

b̂ =
1√

2P−1(0.75)
MAD

{∥
∥
∥ẍ(t)

∥
∥
∥

2

2

}

where P−1(q) is the qth quantile of the standard Laplace distribution. The Laplace quantile
function has the form P−1

c,b (q) = c + b · kL (q) for the function kLaplace that is independent

of the location and shape parameters of the distribution6. Thus, the Laplace threshold
only depends linearly on the (robust) estimates ĉ and b̂ making the threshold itself robust.
This form is also shared by the normal quantiles (differing only in its standard quantile
function kNormal), but because non-robust estimates for c and b are implicitly used by the
Q-statistic, it is not robust. Further, by choosing the heavy-tailed Laplace distribution, the
quantiles are more appropriate for the observed heavy-tailed behavior, but the robustness
of this threshold is due to robust parameter estimation.

Empirically, the Laplace threshold also proved to be better suited for thresholding the
residuals for Antidote than the Q-statistic. Figure 5.3(a) shows that both the Q-statistic
and the Laplace threshold produce a reasonable threshold on the residuals of the PCA algo-
rithm but, as seen in Figure 5.3(b), the Laplace threshold produces a reasonable threshold
for the residuals of the PCA-Grid algorithm; the Q-statistic vastly underestimates the
spread of the residuals. In the experiments described in the next section, the Laplace
threshold is consistently more reliable than the Q-statistic.

5.4 Empirical Evaluation

Here, I evaluate how the performance of PCA-based methods is affected by the poison-
ing strategies described in Section 5.2. I compare the original PCA-based detector and
the alternative Antidote detector under these adversarial conditions using a variety of
performance metrics.

5.4.1 Setup

To assess the effect of poisoning, I test their performance for a variety of poisoning con-
ditions. Here I describe the data used for that evaluation, the method used to test the
detectors, and the different types of poisoning scenarios used in their evaluation.

6For the Laplace distribution, this function is given by kL (q) , sign
`

q − 1
2

´

· ln
`

1 − 2
˛

˛q − 1
2

˛

˛

´

.
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Figure 5.3: A comparison of the Q-statistic and the Laplace threshold for choosing an
anomalous cutoff threshold for the residuals from an estimated subspace. (a) Histograms
of the residuals for the original PCA algorithm and (b) of the PCA-Grid algorithm (the
largest residual is excluded as an outlier). Red and blue vertical lines demarcate the thresh-
old selected using the Q-statistic and the Laplace threshold, respectively. For the original
PCA method, both methods choose nearly the same reasonable threshold to the right of
the majority of the residuals. However, for the residuals of the PCA-Grid subspace, the
Laplace threshold is reasonable whereas the Q-statistic is not; it would misclassify too much
of the normal data to be an acceptable choice.
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5.4.1.1 Traffic Data

The dataset I use for evaluation is OD flow data collected from the Abilene (Internet2
backbone) network to simulate attacks on PCA-based anomaly detection. This data was
collected over an almost continuous 6 month period from March 1, 2004 through September
10, 2004 [Zhang, Ge, Greenberg, and Roughan, 2005]. Each week of data consists of 2016
measurements across all 144 network OD flows binned into 5 minute intervals. At the time
of collection the network consisted of 12 PoPs and 15 inter-PoP links. 54 virtual links are
present in the data corresponding to two directions for each inter-PoP link and an ingress
and egress link for each PoP.

5.4.1.2 Validation

Although there are a total of 24 weeks of data in the dataset, these experiments are primarily
based on the 20th and 21st weeks which span the period from August 7th, 2004 to August
20th, 2004. These weeks were selected because PCA achieved the lowest FNRs on these
during testing and thus this data was most ideal for the detector. To evaluate a detector,
it is trained on the 20th week’s traffic and tested on the data from the 21st week during
which DoS attacks are injected to measure how often the attacker can evade detection.
To simulate the Single-Training Period attacks, the training traffic from week 21 is first
poisoned by the attacker.

To evaluate the impact of poisoning on the original PCA-subspace method and Anti-

dote in terms of their ability to detect DoS attacks, two consecutive weeks of data are
used (again, the subsequent results use the 20th and 21st weeks)—the first for training
and the second for testing. The poisoning occurs throughout the training phase, while
the DoS attack occurs during the test week. An alternate evaluation method (described
in detail below) is needed for the Boiling Frog scheme where training and poisoning occur
over multiple weeks. The success of the poisoning strategies is measured by their impact
on the subspace-based detector’s false negative rate (FNR). The FNR is the ratio of the
number of successful evasions to the total number of attacks (i.e., the attacker’s success
rate is PCA’s FNR rate). I also use Receiver Operating Characteristic (ROC) curves to
visualize a detection method’s trade-off between true positive rate (TPR) and false positive
rate (FPR).

To compute the FNRs and FPRs, synthetic anomalies are generated according to the
method of Lakhina et al. [2004b] and are injected into the Abilene data. While there are
disadvantages to this method, such as the conservative assumption that a single volume size
is anomalous for all flows, it is convenient for the purposes of relative comparison between
PCA and Robust PCA, to measure relative effects of poisoning, and for consistency with
prior studies. The training sets used in these experiments consist of week-long traffic traces,
which is a sufficiently long time scale to capture weekday and weekend cyclic trends [Ring-
berg et al., 2007] and it is also the same time scale used in previous studies [Lakhina et al.,
2004b]. Because the data is binned into five minute windows (corresponding to the re-
porting interval of SNMP), a decision about whether or not an anomaly occurred can be
made at the end of each window; thus attacks can be detected within five minutes of their
occurrence.

Unfortunately, computing the false positive rate of a detector is difficult since there may
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be actual anomalous events in the Abilene data. To estimate the FPR, negative examples
(benign OD flows) are generated as follows. The data is fit to an EWMA model that is
intended to capture the main trends of the data with little noise. This model is used to
select points in the Abilene flow’s time series to use as negative examples. The actual data
is then compared to the EWMA model; if the difference is small (not in the flow’s top one
percentile) for a particular flow at a particular time, Qt,q, then the element Qt,q is labeled as
benign. This process is repeated across all flows. The FPR of a detector is finally estimated
based on the (false) alarms raised on the time slots that were deemed to be benign.

DoS attacks are simulated by selecting a target flow, q, and time window, t, and injecting
a traffic spike along this target flow during the time window. Starting with the flow traffic
matrix Q for the test week, a positive example (i.e., an anomalous flow event) is generated
by setting the qth flow’s volume at the tth time window, Qt,q, to be a large value known to
correspond to an anomalous flow (replacing the original traffic volume in this time slot).
This value was defined by Lakhina et al. [2004b] to be 1.5 times a cutoff of 8× 107. After
multiplying by the routing matrix R, the link volume measurement at time t is anomalous.
This process is repeated for each time t (i.e., each five minute window) in the test week to
generate 2016 anomalous samples for the qth target flow.

A DoS attack is simulated along every flow at every time and the detector’s alarms are
recorded for each such attack. The FNR is estimated by averaging over all 144 flows and all
2016 time slots. When reporting the effect of an attack on traffic volumes, we first average
over links within each flow then over flows. Furthermore, we generally report average
volumes relative to the pre-attack average volumes. Thus, a single poisoning experiment
was based on one week of poisoning with FNRs computed during the test week that includes
144 × 2016 samples coming from the different flows and time slots. Because the poisoning
is deterministic in Add-More-If-Bigger this experiment was run once for that scheme. In
contrast, for the Random poisoning scheme, we ran 20 independent repetitions of poisoning
experiments data because the poisoning is random.

The squared prediction errors produced by the detection methods (based on the anoma-
lous and normal examples from the test set) are used to produce ROC curves. By varying
the method’s threshold from −∞ to ∞ a curve of possible 〈FPR, TPR〉 pairs is produced
from the set of squared prediction errors; the Q-statistic and Laplace threshold, each cor-
respond to one such point in ROC space. We adopt the Area Under Curve (AUC ) statistic
to directly compare ROC curves. The ideal detector has an AUC of 1, while the random
predictor achieves an AUC of 1

2 .

5.4.2 Identifying Vulnerable Flows

There are two ways that a flow can be vulnerable. A flow is considered vulnerable to DoS
attack (unpoisoned scenario) if a DoS attack along it is likely to be undetected when the
resulting traffic data is projected onto the abnormal subspace. Vulnerability to poisoning
means that if the flow is first poisoned, then the subsequent DoS attack is likely to un-
detected because the resulting projection in abnormal space is no longer significant. To
examine the vulnerability of flows, I define the residual rate statistic, which measures the
change in the size of the residual (i.e., ∆ ‖ẍ‖2) caused by adding a single unit of traffic
volume along a particular target flow. This statistic assesses how vulnerable a detector is to
a DoS attack as it measures how rapidly the residual grows as the size of the DoS increases
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(a) Residual Rates for PCA
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(b) Residual Rates for PCA-Grid

Figure 5.4: Comparison of the original PCA subspace and PCA-Grid subspace in terms
of their residual rates. Shown here are box plots of the 24 weekly residual rates for each
flow to demonstrate the variation in residual rate for the two methods. (a) Distribution
of the per-flow residual rates for the original PCA method and (b) for PCA-Grid. For
PCA, flows 32 and 87 (the flows connecting Chicago and Los Angeles in Figure 5.1(b))
have consistently low residual rates making PCA susceptible to evasion along these flows.
Both methods also have a moderate susceptibility along flow 144 (the ingress/egress link
for Washington). Otherwise, PCA-Grid has overall high residual rates along all flows
indicating little vulnerability to evasion.

111



and thus is an indicator of whether a large DoS attack will be undetected along a target
flow. Injecting a unit volume along the qth target flow causes an additive increase to the
link measurement vector Rq and also increases the residual by

ν
(

q; P̈
)

,
∥
∥
∥P̈Rq

∥
∥
∥

2
.

The residual rate measures how well a flow aligns with normal subspace. If the flow aligns
perfectly with the normal subspace, its residual rate will be 0 since changes along the
directions of the subspace do not change the residual component of the traffic at all. More
generally, a low residual rate indicates that (per unit of traffic sent) a DoS attack will not
significantly impact the squared prediction error. Thus, for a detector to be effective, the
residual rate must be high for most flows, otherwise the attacker will be able to execute
large undetected DoS attacks.

By running PCA on each week of the Abilene data, I computed the residual rate of
each flow for each week’s model and estimated the spread in their residual rates. Figure 5.4
displays box plots of the residual rates for each flow over the 24 weeks of data. These plots
show that when trained on uncontaminated data 99% of the flows have a median residual
rate above 1.0; i.e., for every unit of traffic added to any of these flows in a DoS attack,
the residual component of the traffic increases by at least 1.0 unit and for many flows the
increase is higher7. This result indicates that PCA trained on clean data is not vulnerable
to DoS attacks on the majority of flows since each unit of traffic used in the attack increases
the residual by at least one unit. However, PCA is very vulnerable to DoS attacks along
flows 32 and 87 because their residual rates are small even without poisoning.

All of this is good news from the point of view of the attacker. Without poisoning, an
attacker might only succeed if he were lucky enough to be attacking along the two highly
vulnerable flows. However, after poisoning, it is clear that whatever the attack’s target
might be, the flow he chooses to attack, on average, is likely to be vulnerable.

5.4.3 Evaluation of Attacks

In this section, I present experimental validation that adversarial poisoning can have a
significant detrimental impact on the PCA-based anomaly detector. I evaluate the effec-
tiveness of the three data poisoning schemes from Section 5.2 for Single-Training Period
attacks. During the testing week, the attacker launches a DoS attack in each 5 minute time
window. The results of these attacks are displayed in Figure 5.5(a). Although the objective
of these poisoning schemes is to add variance along the target flow, the mean of the target
OD flow being poisoned increases as well, increasing the means of all links over which the
OD flow traverses. The x-axis in Figure 5.5fig:week-long-fnr indicates the relative increase
in the mean rate. The y-axis is the average FNR for that level of poisoning (i.e., averaged
over all OD flows).

As expected the increase in evasion success is smallest for the uninformed strategy,
intermediate for the locally-informed scheme, and largest for the globally-informed poison-
ing scheme. A locally-informed attacker can use the Add-More-If-Bigger scheme to raise

7Many flows have residual rates well above 1 because these flow traverse many links and thus adding a
single unit of traffic along the flow adds many units in link space. On average, flows in the Abilene dataset
have 4.5 links per flow.
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Figure 5.5: Effect of Single-Training Period poisoning attacks on the original PCA-based
detector. (a) Evasion success of PCA versus relative chaff volume under Single-Training
Period poisoning attacks using three chaff methods: uninformed (dotted black line) locally-
informed (dashed blue line) and globally-informed (solid red line). (b). Comparison of
the ROC curves of PCA for different volumes of chaff (using Add-More-If-Bigger chaff).
Also depicted are the points on the ROC curves selected by the Q-statistic and Laplace
threshold, respectively.
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his evasion success to 28% from the baseline FNR of 3.67% via a 10% average increase
in the mean link rates due to chaff; i.e., the attacker’s rate of successful evasion increases
nearly eight-fold from the rate of the unpoisoned PCA detector. With a Globally-Informed
strategy, a 10% average increase in the mean link rates causes the unpoisoned FNR to
increase by a factor of 10 to 38% success and eventually to over 90% FNR as the size of
attack increases. The primary difference between the performance of the locally-informed
and globally-informed attacker is intuitive to understand. Recall that the globally-informed
attacker is privy to the traffic on all links for the entire training period while the locally-
informed attacker only knows the traffic status of a single ingress link. Considering this
information disparity, the locally-informed adversary is quite successful with only a small
view of the network. An adversary is unlikely to be able to acquire, in practice, the capabil-
ities used in the globally-informed poisoning attack. Moreover, adding 30% chaff, in order
to obtain a 90% evasion success is dangerous in that the poisoning activity itself is likely
to be detected. Therefore Add-More-If-Bigger offers a nice trade-off, from the adversary’s
point-of-view, in terms of poisoning effectiveness, and the attacker’s capabilities and risks.

I also evaluate the PCA detection algorithm on both anomalous and normal data,
as described in Section 5.4.1.2, to produce the Receiver Operating Characteristic (ROC)
curves in Figure 5.5(b). I produce a series of ROC curves (as shown) by first training a
PCA model on the unpoisoned data from the 20th week and then training on data poisoned
by progressively larger Add-More-If-Bigger attacks.

To validate PCA-based detection on poisoned training data, each flow is poisoned sep-
arately in different trials of the experiment as dictated by the threat model. Thus, for
relative chaff volumes ranging from 5% to 50%, Add-More-If-Bigger chaff is added to each
flow separately to construct 144 separate training sets and 144 corresponding ROC curves
for the given level of poisoning. The poisoned curves in Figure 5.5(b) display the averages
of these ROC curves; i.e., the average TPR over the 144 flows for each FPR.

The sequence of ROC curves show that the Add-More-If-Bigger poisoning scheme cre-
ates an unacceptable trade-off between false positives and false negatives of the PCA de-
tector: the detection and false alarm rates drop together rapidly as the level of chaff is
increased. At 10% relative chaff volume performance degrades significantly from the ideal
ROC curve (lines from (0, 0) to (0, 1) to (1, 1)) and at 20% the PCA’s mean ROC curve is
already close to that of a random detector (the y = x line with an AUC of 1

2).

5.4.4 Evaluation of Antidote

Here, I assess the effect poisoning attacks on Antidote performance during a single training
period. As with the PCA-based detector, I evaluate the success of this detector with each
of the different poisoning schemes and compute ROC curves using the Add-More-If-Bigger
poisoning scheme to compare to the original PCA-subspace method.

Figure 5.6(a) depicts Antidote’s FNR for various levels of average poisoning that oc-
cur in a Single-Training Period attack compared to the results depicted in Figure 5.5(a)
using the same metric for the original PCA detector. Comparing these results, the evasion
success of the attack is dramatically reduced for Antidote. For any particular level of
chaff, the evasion success rate of Antidote is approximately half that of the original PCA
approach. Interestingly, the most effective poisoning scheme on PCA, Globally-Informed,

114



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Single Poisoning Period: Evading ANTIDOTE

Mean chaff volume

E
va

si
on

 s
uc

ce
ss

 (
F

N
R

)

0% 10% 20% 30% 40% 50%

Uninformed
Locally−informed
Globally−informed

misclassified

(a) Impact of Chaff on FNR

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Single Poisoning Period: ROC Curves

False Alarm Rate (FPR)

D
oS

 D
et

ec
tio

n 
R

at
e 

(T
P

R
)

PCA − unpoisoned
PCA − 10% chaff
ANTIDOTE − unpoisoned
ANTIDOTE − 10% chaff
Random detector
Q−statistic
Laplace threshold

(b) Impact of Chaff on ROC curves

Figure 5.6: Effect of Single-Training Period poisoning attacks on the Antidote detec-
tor. (a) Evasion success of Antidote versus relative chaff volume under Single-Training
Period poisoning attacks using three chaff methods: uninformed (dotted black line) locally-
informed (dashed blue line) and globally-informed (solid red line). (b) Comparison of the
ROC curves of Antidote and the original PCA detector when unpoisoned and under 10%
chaff (using Add-More-If-Bigger chaff). The PCA detector and Antidote detector have
similar performance when unpoisoned but PCA’s ROC curve is significantly degraded with
chaff whereas Antidote’s is only slightly affected.
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Figure 5.7: Comparison of the original PCA detector in terms of the area under their
(ROC) curves (AUC s). (a) The AUC for the PCA detector and the Antidote detector
under 10% Add-More-If-Bigger chaff for each of the 144 target flows. Each point in this
scatter plot is a single target flow; its x-coordinate is the AUC of PCA and its y-coordinate
is the AUC of Antidote. Points above the line y = x represent flows where Antidote

has a better AUC than the PCA detector and those below y = x represent flows for which
PCA outperforms Antidote. The mean AUC for both methods is the red point. (b) The
mean AUC of each detector versus the mean chaff level of an Add-More-If-Bigger poisoning
attack for increasing levels of relative chaff. The methods compared are a random detector
(dotted black line), the PCA detector (solid red line), and Antidote (dashed blue line).
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is the least effective poisoning scheme against Antidote. The Globally-Informed scheme
was designed in an approximately optimal fashion to circumvent PCA but for the alterna-
tive detector, Globally-Informed chaff is not optimized and empirically has little effect on
PCA-Grid. For this detector, Random remains equally effective because constant shifts in
a large subset of the data create a bimodality that is difficult for any subspace method to
reconcile—since roughly half the data shifts by a constant amount, it is difficult to distin-
guish between the original and shifted subspaces. However, this effect is still small compared
to the dramatic success of locally-informed and Globally-Informed chaff strategies against
the original detector.

Since poisoning distorts the detector, it affects both the false negative and false positive
rates. Figure 5.6(b) provides a comparison of the ROC curves for both Antidote and
PCA when the training data is both unpoisoned and poisoned. For the poisoned training
scenario, each point on the curve is the average over 144 poisoning scenarios in which
the training data is poisoned along one of the 144 possible flows using the Add-More-If-
Bigger strategy. While Antidote performs very similarly to PCA on unpoisoned training
data, PCA’s performance is significantly degraded by poisoning while Antidote remains
relatively unaffected. With a moderate mean chaff volume of 10%, Antidote’s average
ROC curve remains close to optimal while PCA’s curve considerably shifts towards the
y = x curve of the random detector. This means that under a moderate level of poisoning,
PCA cannot achieve a reasonable trade-off between false positives and false negatives while
Antidote retains a good operating point for these two common performance measures.
In summary, in terms of false positives and false negatives, Antidote incurs insignificant
performance shifts when no poisoning occurs, but is resilient against poisoning and provides
enormous performance gains compared to PCA when poisoning attacks do occur.

Given Figures 5.6(a) and 5.6(b) alone, it is conceivable that Antidote outperforms
PCA only on average, and not on all flows targeted for poisoning. In place of plotting all
144 poisoned ROC curves, Figure 5.7(a) compares the AUC s for the two detection methods
under 10% chaff. Not only is average performance much better for robust PCA, but it in fact
outperforms PCA on most flows and by a decidedly large amount. Although PCA indeed
performs slightly better for some flows, in these cases both methods have excellent detection
performance (because their AUC s are close to 1), and hence the distinction between the
two is insignificant for those specific flows.

Figure 5.7(b) plots the mean AUC (averaged from the 144 ROC curves’ AUC s where
flows are poisoned separately) achieved by the detectors for an increasing level of poisoning.
Antidote behaves comparably to albeit slightly worse than PCA under no chaff conditions,
yet its performance remains relatively stable as the amount of contamination increases while
PCA’s performance rapidly degrades. In fact, with as little as 5% poisoning, Antidote

already exceeds the performance of PCA and the gap only widens with increasing con-
tamination. As PCA’s performance drops, it approaches a random detector (equivalently,
AUC = 1

2), for amounts of poisoning exceeding 20%. As these experiments demonstrate,
Antidote is an effective defense and dramatically outperforms a solution that was not
designed to be robust. This is strong evidence that the robust techniques are a promising
instrument for designing machine learning algorithms used in security-sensitive domains.
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5.4.5 Empirical Evaluation of Boiling Frog

5.4.5.1 Experimental Methodology for Episodic Poisoning

To test the Boiling Frog attacks, several weeks of traffic data are simulated using a gen-
erative model inspired by Lakhina, Crovella, and Diot [2004b]. These simulations produce
multiple weeks of data generated from a stationary distribution. While such data is unreal-
istic in practice, stationary data is the ideal dataset for PCA to produce a reliable detector.
Anomaly detection under non-stationary conditions is more difficult due to the learner’s in-
ability to distinguish between benign data drift and anomalous conditions. By showing that
PCA is susceptibility to episodic poisoning even in this stationary case, these experiments
suggest that the method can also be compromised in more realistic settings. Further, the
six month Abilene dataset of Zhang et al. [2005] proved to be too non-stationary for PCA
to consistently operate well from one week to the next—PCA often performed poorly even
without poisoning. It is unclear whether the non-stationarity observed in this data is preva-
lent in general or whether it is an artifact of the dataset, but nonetheless, these experiments
show PCA is susceptible to poisoning even when the underlying data is well-behaved.

To synthesize a stationary multi-week dataset of OD flow traffic matrices, a three step
generative procedure is used to model each OD flow separately. First the underlying daily
cycle of the qth OD flow’s time series is modeled by a sinusoidal approximation. Then
the times at which the flow is experiencing an anomaly are modeled by a Binomial arrival
process with inter-arrival times distributed according to the geometric distribution. Finally
Gaussian white noise is added to the base sinusoidal model during times of benign OD flow
traffic; and exponential traffic is added to the base model during times of anomalous traffic.

In the first step, the underlying cyclic trends are captured by fitting the coefficients
for Fourier basis functions. Following the model proposed by Lakhina et al. [2004b], the
basis functions are sinusoids of periods of 7, 5 and 3 days, and 24, 12, 6, 3 and 1.5 hours,
as well as a constant function. For each OD flow, the Fourier coefficients are estimated
by projecting the flow onto this basis. The portion of the traffic modeled by this Fourier
forecaster is removed and the remaining residual traffic is modeled with two processes—
a zero-mean Gaussian noise process captures short-term benign traffic variance and an
exponential distribution is used to model non-malicious volume anomalies.

In the second step, one of the two noise processes is selected for each time interval. After
computing the Fourier model’s residuals (the difference between the observed and predicted
traffic) the smallest negative residual value −m is recorded. We assume that residuals in the
interval [−m, m] correspond to benign traffic and that residuals exceeding m correspond to
traffic anomalies (this is an approximation but it works reasonably well for most OD flows).
Periods of benign variation and anomalies are then modeled separately since these effects
behave quite differently. Upon classifying residual traffic as benign or anomalous, anomaly
arrival times are modeled as a Bernoulli arrival process and the inter-anomaly arrival times
are geometrically distributed. Further, since we consider only spatial PCA methods, the
temporal placement of anomalies is unimportant.

In the third and final step, the parameters for the two residual traffic volume and the
inter-anomaly arrival processes are inferred from the residual traffic using the maximum
likelihood estimates of the Gaussian’s variance and exponential and geometric rates respec-
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Figure 5.8: Effect of Boiling Frog poisoning attacks on the original PCA-subspace detector
(see Figure 5.9 for comparison with the PCA-based detector). (a) Evasion success of PCA
under Boiling Frog poisoning attacks in terms of the average FNR after each successive
week of poisoning for four different poisoning schedules (i.e., a weekly geometric increase in
the size of the poisoning by factors 1.01, 1.02, 1.05, and 1.15 respectively). More aggressive
schedules (e.g., growth rates of 1.05 and 1.15) significantly increase the FNR within a few
weeks while less aggressive schedules take many weeks to achieve the same result but are
more stealthy in doing so. (b) Weekly chaff rejection rates by the PCA-based detector for
the Boiling Frog poisoning attacks from Figure (a). The detector only detects a significant
amount of the chaff during the first weeks of the most aggressive schedule (growth rate of
1.15); subsequently, the detector is too contaminated to accurately detect the chaff.

tively. Positive goodness-of-fit results (Q-Q plots not shown) have been obtained for small,
medium and large flows.

In the synthesis, all link volumes are constrained to respect the link capacities in the
Abilene network: 10gbps for all but one link that operates at one fourth of this rate. We
also cap chaff that would cause traffic to exceed the link capacities.

5.4.5.2 Effect of Episodic Poisoning on the PCA Detector

I now evaluate the effectiveness of the Boiling Frog strategy, that contaminates the training
data over multiple training periods. Figure 5.8(a) plots the FNRs against the poisoning
duration for the PCA detector for four different poisoning schedules with growth rates of
1.01, 1.02, 1.05 and 1.15 respectively. The schedule’s growth rate corresponds to the rate
of increase in the attacked links’ average traffic from week to week. The attack strength
parameter θ (cf., Section 5.2) is selected to achieve this goal. We see that the FNR dramat-
ically increases for all four schedules as the poison duration increases. With a 15% growth
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rate the FNR is increased from 3.67% to more than 70% over three weeks of poisoning;
even with a 5% growth rate the FNR is increased to 50% over 3 weeks. Thus Boiling Frog
attacks are effective even when the amount of poisoned data increases rather slowly. Fur-
ther, in comparing Figure 5.5(a) for Single-Training Period to Figure 5.8(a), the success
of Boiling Frog attacks becomes clear. For the Single-Training Period attack, to raise the
FNR to 50%, an immediate increase in mean traffic of roughly 18% is required, whereas
in the Boiling Frog attack the same result can be achieved with only a 5% average traffic
increase spread across three weeks.

Recall that the two methods are retrained every week using the data collected from the
previous week. However, the data from the previous week is also filtered by the detector itself
and any time window flagged as anomalous, the training data is thrown out. Figure 5.8(b)
shows the proportion of chaff rejected each week by PCA (chaff rejection rate) for the
Boiling Frog strategy. The three slower schedules enjoy a relatively small constant rejection
rate close to 5%. The 15% schedule begins with a relatively high rejection rate, but after
a month sufficient amounts of poisoned traffic mis-train PCA after which point the rates
drop to the level of the slower schedules. Thus, the Boiling Frog strategy with a moderate
growth rate of 2–5% can significantly poison PCA, dramatically increasing its FNR while
still going unnoticed by the detector.

5.4.5.3 Effect of Episodic Poisoning on Antidote

I now evaluate effectiveness of Antidote against the Boiling Frog strategy that occurs over
multiple successive training periods. Figure 5.9(a) shows the FNRs for Antidote with the
four different poisoning schedules (recall from Section 5.4.5.2 that each is the weekly growth
factor for the increase in size of a Add-More-If-Bigger poisoning strategy). First, for the two
most stealthy poisoning strategies (1.01 and 1.02), Antidote shows remarkable resistance
in that the evasion success increases very slowly, e.g., after ten training periods it is still
below 20% evasion success. This is in stark contrast to PCA (see Figure 5.8(a)); for example,
after ten weeks the evasion success against PCA exceeds 50% for the 1.02 poisoning growth
rate scenario.

Second, under PCA the evasion success consistently increases with each additional week.
However, with Antidote, the evasion success of these more aggressive schedules actually
decreases after several weeks. The reason is that as the chaff levels rise, Antidote in-
creasingly is able to identify the chaff as abnormal and then reject enough of it from the
subsequent training data that the poisoning strategy loses its effectiveness.

Figure 5.9(b) shows the proportion of chaff rejected by Antidote under episodic poi-
soning. The two slower schedules almost have a constant rejection rate close to 9% (which
is higher than PCA’s rejection rate of around 5%). For the more aggressive growth sched-
ules (5% and 15%), however, Antidote rejects an increasing amount of the poison data.
This reflects a good target behavior for any robust detector—to reject more training data
as the contamination grows. Overall, these experiments provide empirical evidence that the
combination of techniques used by Antidote, namely a subspace-based detector designed
with robust subspace estimator combined with a Laplace-based cutoff threshold, maintains a
good balance between false negative and false positive rates throughout a variety of poison-
ing scenarios (different amounts of poisoning, on different OD flows, and on different time
horizons) and thus provides a resilient alternative to the original PCA-based detector.
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Figure 5.9: Effect of Boiling Frog poisoning attacks on the Antidote detector (see
Figure 5.8 for comparison with the PCA-based detector). (a) Evasion success of Antidote

under Boiling Frog poisoning attacks in terms of the average FNR after each successive week
of poisoning for four different poisoning schedules (i.e., a weekly geometric increase in the
size of the poisoning by factors 1.01, 1.02, 1.05, and 1.15 respectively). Unlike the weekly
FNRs for the Boiling Frog poisoning in Figure 5.8(a), the more aggressive schedules (e.g.,
growth rates of 1.05 and 1.15) reach their peak FNR after only a few weeks of poisoning
after which their effect declines (as the detector successfully rejects increasing amounts
of chaff). The less aggressive schedules (with growth rates of 1.01 and 1.02) still have
gradually increasing FNRs, but also seem to eventually plateau. (b) Weekly chaff rejection
rates by the Antidote detector for the Boiling Frog poisoning attacks from Figure (a).
Unlike PCA (see Figure 5.8(b)), Antidote rejects increasingly more chaff from the Boiling
Frog attack. For all poisoning schedules, Antidote has a higher baseline rejection rate
(around 10%) than the PCA detector (around 5%) and it rejects most of the chaff from
aggressive schedules within a few weeks. This suggests that, unlike PCA, Antidote is not
progressively poisoned by increasing week-to-week chaff volumes.

121



5.5 Summary

To subvert the PCA-based detector proposed by Lakhina et al. [2004b], I studied Causative
Integrity attacks that poison the training data by adding malicious chaff; i.e., spurious
traffic sent across the network by compromised nodes that reside within it. This chaff
is designed to interfere with PCA’s subspace estimation procedure. Based on a relaxed
objection function, I demonstrated how an adversary can approximate optimal noise using
a global view of the traffic patterns in the network. Empirically, I found that by increasing
the mean link rate by 10% with Globally-Informed chaff traffic, the FNR increased from
3.67% to 38%—a ten-fold increase in misclassification of DoS attacks. Similarly, by only
using local link information the attacker is able to mount a more realistic Add-More-If-Bigger
attack. For this attack, increasing the mean link rate by 10% with Add-More-If-Bigger chaff
traffic, the FNR increased from 3.67% to 28%—an eight-fold increase in misclassification
of DoS attacks. These attacks demonstrate that with sufficient information about network
patterns, attacks can mount attacks against the PCA detector that severely compromises
its ability to detect future DoS attacks traversing the networking it is monitoring.

I also demonstrated that an alternative robust method for subspace estimation could be
used instead to make the resulting DoS detector less susceptible to poisoning attacks. The
alternative detector was constructed using a subspace method for robust PCA developed
by Croux et al. and a more robust method for estimating the residual cutoff threshold. The
resulting Antidote detector is impacted by poisoning but its performance degrades more
gracefully. Under non-poisoned traffic, Antidote performs nearly as well as PCA, but
for all levels of contamination using Add-More-If-Bigger chaff traffic, the misclassification
rate of Antidote is approximately half the FNR of the PCA-based solution. Moreover, the
average performance of Antidote is much better than the original detector; it outperforms
ordinary PCA for more flows and by a large amount. For multi-week Boiling Frog attacks,
Antidote also outperformed PCA and would catch progressively more attack traffic in
each subsequent week.

5.5.1 Future Work

Several important questions about subspace detection methods remain unanswered. While
I have demonstrated that Antidote is resilient to poisoning attacks, it is not yet known
if there are alternative poisoning schemes that significantly reduce Antidote’s detection
performance. Because Antidote is founded on robust estimators, it is unlikely that there
is a poisoning strategy that completely degrades its performance. However, to better under-
stand the limits of attacks and defenses, it is imperative to continue investigating worst-case
attacks against the next generation of defenders; in this case, Antidote.

Question 5.1 What are the worst-case poisoning attacks against the Antidote-
subspace detector for large-volume network anomalies? What are game-theoretic
equilibrium strategies for the attacker and defender in this setting? How does
Antidote’s performance compare to these strategies?

There are also several other approaches for developing effective anomaly detectors for
large volume anomalies [e.g., Brauckhoff et al., 2009]. To compare these alternatives to
Antidote, one must first identify their vulnerabilities and assess their performance when
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under attack. More importantly though, I think detectors could be substantially improved
by combining them together.

Question 5.2 Can subspace-based detection approaches be adapted to incorpo-
rate the alternative approaches? Can they find both temporal and spatial cor-
relations and use both to detect anomalies? Can subspace-based approaches be
adapted to incorporate domain-specific information such as the topology of the
network?

Developing the next generation of network anomaly detectors is a critical task that
perhaps can incorporate several of the themes I promote in this dissertation to create secure
learners.
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Part II

Partial Reverse-Engineering of
Classifiers through Near-Optimal

Evasion
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Chapter 6

Near-Optimal Evasion of Classifiers

In this chapter, I explore a theoretical model for quantifying the difficulty of Exploratory
attacks against a trained classifier. Unlike the previous work, since the classifier has already
been trained, the adversary can no longer exploit vulnerabilities in the learning algorithm to
mis-train the classifier as I demonstrated in the first part of this dissertation. Instead, the
adversary must exploit vulnerabilities that the classifier accidently acquired from training
on benign data (or at least data not controlled by the adversary in question). Most non-
trivial classification tasks will lead to some form of vulnerability in the classifier. All known
detection techniques are susceptible to blind spots (i.e., classes of miscreant activity that fail
to be detected), but simply knowing that they exist is insufficient. The principle question
is how difficult it is for an adversary to discover a blind spot that is most advantageous for
the adversary. In this chapter, I explore a framework for quantifying how difficult it is for
the adversary to search for this type of vulnerability in a classifier.

At first, it may appear that the ultimate goal of these Exploratory attacks is to reverse-
engineer the learned parameters, internal state, or the entire boundary of a classifier to
discover its blind spots. However, in this work, I adopt a more refined strategy; I demon-
strate successful Exploratory attacks that only partially reverse-engineer the classifier. My
techniques find blind spots using only a small number of queries and yield near-optimal
strategies for the adversary. They discover data points that the classifier will classify as
benign and that are close to the adversary’s desired attack instance.

While learning algorithms allow the detection algorithm to adapt over time, real-world
constraints on the learning algorithm typically allow an adversary to programmatically find
blind spots in the classifier. I consider how an adversary can systematically discover blind
spots by querying the filter to find a low cost (for some cost function) instance that evades
the filter. Consider, for example, a spammer who wishes to minimally modify a spam
message so it is not classified as a spam (here cost is a measure of how much the spam must
be modified). By observing the responses of the spam detector1, the spammer can search
for a modification while using few queries.

The problem of near-optimal evasion (i.e., finding a low cost negative instance with few
queries) was introduced by Lowd and Meek [2005b]. I continue studying this problem by

1There are a variety of domain specific mechanisms an adversary can use to observe the classifier’s
response to a query; e.g., the spam filter of a public email system can be observed by creating a test account
on that system and sending the queries to that account. In this paper, I assume the filter is queryable.
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generalizing it to the family of convex-inducing classifiers—classifiers that partition their
instance space into two sets one of which is convex. The family of convex-inducing classifiers
is a particularly important and natural set of classifiers to examine which includes the family
of linear classifiers studied by Lowd and Meek as well as anomaly detection classifiers using
bounded PCA [Lakhina et al., 2004b], anomaly detection algorithms that use hyper-sphere
boundaries Bishop [2006], one-class classifiers that predict anomalies by thresholding the
log-likelihood of a log-concave (or uni-modal) density function, and quadratic classifiers of
the form x⊤Ax + b⊤x + c ≥ 0 if A is semidefinite [see Boyd and Vandenberghe, 2004,
Chapter 3], to name a few. The family of convex-inducing classifiers also includes more
complicated bodies such as the countable intersection of halfspaces, cones, or balls.

I further show that near-optimal evasion does not require complete reverse-engineering
of the classifier’s internal state or decision boundary, but instead, only partial knowledge
about its general structure. The algorithm of Lowd and Meek [2005b] for evading linear
classifiers reverse-engineers the decision boundary by estimating the parameters of their
separating hyperplane. The algorithms I present for evading convex-inducing classifiers do
not require fully estimating the classifier’s boundary (which is hard in the case of general
convex bodies; see Rademacher and Goyal, 2009) or the classifier’s parameters (internal
state). Instead, these algorithms directly search for a minimal cost-evading instance. These
search algorithms require only polynomial-many queries, with one algorithm solving the
linear case with better query complexity than the previously-published reverse-engineering
technique. Finally, I also extend near-optimal evasion to general ℓp costs. I show that the
algorithms for ℓ1 costs can also be extended to near-optimal evasion on ℓp costs, but are
generally not efficient. However, in the cases when these algorithms are not efficient, I show
that there is no efficient query-based algorithm.

The results presented in this chapter were previously published as the report Query
Strategies for Evading convex-inducing classifiers [Nelson et al., 2010b] that extends an
earlier paper I published with my colleagues [Nelson et al., 2010a]. Also, many of the
open questions suggested at the end of this chapter first appeared in Classifier Evasion:
Models and Open Problems [Nelson et al., 2010c]. The rest of this chapter is organized
as follows. I first present an overview of the prior work most closely related to the near-
optimal evasion problem in the remainder of this section (see Chapter 3 for additional related
work). In Section 6.1 I formalize the near-optimal evasion problem, and review Lowd and
Meek’s definitions and results. I present algorithms for evasion that are near-optimal under
weighted ℓ1 costs in Section 6.2 and I provide results for minimizing general ℓp costs in
Section 6.3.

Related Work Lowd and Meek [2005b] first explored near-optimal evasion, and devel-
oped a method that reverse-engineered linear classifiers as discussed in Chapter 3.4.2.4
and 3.4.4. The theory I present here generalizes their original results and provides three
significant improvements:

• This analysis considers a more general family of classifiers: the family of
convex-inducing classifiers that partition the space of instances into two sets one
of which is convex. This family subsumes the family of linear classifiers considered
by Lowd and Meek.

• The approach I present does not fully estimate the classifier’s decision boundary
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(which is generally hard for arbitrary convex bodies Rademacher and Goyal, 2009)
or reverse-engineer the classifier’s state. Instead, the algorithms search directly for
an instance that the classifier labels as negative that is close to the desired attack
instance; i.e., an evading instance of near-minimal cost.

• Despite being able to evade a more general family of classifiers, these algorithms still
only use a limited number of queries: they require only a number of queries polynomial
in the dimension of the instance space and the desired accuracy of the approximation.
Moreover, the K-step MultiLineSearch (Algorithm 6.4) solves the linear case
with asymptotically fewer queries than the previously-published reverse-engineering
technique for this case.

Further, as summarized in Chapter 3.4.2.4, Dalvi et al., Brückner and Scheffer, and
Kantarcioglu et al. studied cost-sensitive game theoretic approaches to preemptively patch
a classifier’s blind spots and developed techniques for computing an equilibrium for their
games. This work is complementary to query-based evasion problems; the near-optimal eva-
sion problem studies how an adversary can use queries to find blind spots of a classifier that
is unknown but queryable whereas their game-theoretic approaches assume the adversary
knows the classifier and can optimize their evasion accordingly at each step of an iterated
game. Thus, the near-optimal evasion setting studies how difficult it is for an adversary to
optimize their evasion strategy only by querying and cost-sensitive game-theoretic learning
studies how the adversary and learner can optimally play and adapt in the evasion game
given knowledge of each other: two separate aspects of evasion.

A number of authors also studied evading sequence-based IDSs as discussed in Chap-
ter 3.4.2.2 [see Tan et al., 2002, 2003, Wagner and Soto, 2002]. In exploring mimicry
attacks, these authors used offline analysis of the IDSs to construct their modifications; by
contrast, the adversary in near-optimal evasion constructs optimized modifications designed
by querying the classifier.

The field of active learning also studies a form of query based optimization [Schohn
and Cohn, 2000, e.g., see]. While both active learning and near-optimal evasion explore
optimal querying strategies, the objectives for these two settings are quite different (see
Chapter 6.1.2 for further discussion on these differences).

6.1 Characterizing Near-Optimal Evasion

I begin by introducing the assumptions made for this problem. First, I assume that feature
space X for the learner is a real-valued D-dimensional Euclidean space; i.e., X = ℜD.
(Lowd and Meek also consider integer and Boolean valued instance spaces and provide
interesting results for several classes of Boolean-valued learners, but these spaces are not
compatible with the family of convex-inducing classifiers I study in this chapter.) I assume
that the feature space representation is known to the adversary and there are no restrictions
on the adversary’s queries; i.e., any point in feature space X can be queried by the adversary.
These assumptions may not be true in every real-world setting, but allow us to consider a
worst-case adversary.

As in Chapter 2.2.4, I assume the target classifier f is a member of a family of classifiers
F—the adversary does not know f but knows the family F . (This knowledge is congruous
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with the security assumption that the adversary knows the learning algorithm but not the
training set or parameters used to tune the learner.) I also restrict my attention to binary
classifiers and use Y = {'−', '+'}. I assume the adversary’s attack will be against a fixed f
so the learning method and the training data used to select f are irrelevant for this problem.
Further, I assume f ∈ F is deterministic and so it partitions X into 2 sets—the positive
class X+

f = {x ∈ X | f (x) = '+'} and the negative class X−
f = {x ∈ X | f (x) = '−'}. As

before, I take the negative set to be normal instances where the sought after blind spots
reside. I assume that the adversary is aware of at least one instance in each class, x− ∈ X−

f

and xA ∈ X+
f , and can observe the class for any x by issuing a membership query : f (x).

6.1.1 Adversarial Cost

I assume the adversary has a notion of utility over the instance space which I quantify with
a cost function A : X 7→ ℜ0+. The adversary wishes to optimize A over the negative class,
X−

f ; e.g., a spammer wants to send spam that will be classified as normal email ('−') rather

than as spam ('+'). I assume this cost function is a distance to some instance xA ∈ X+
f that

is most desirable to the adversary; e.g., for a spammer this could be the string edit distance
required to change xA to a different message. I focus on the general class of weighted ℓp

(0 < p ≤ ∞) cost functions relative to xA defined in terms of the ℓp norm ‖·‖p as:

A(c)
p (x) =

∥
∥c⊙

(
x− xA

)∥
∥

p
=

(
D∑

d=1

cp
d

∣
∣xd − xA

d

∣
∣
p

)1/p

, (6.1)

where 0 < cd < ∞ is the relative cost the adversary associates with the dth feature. In
Section 6.2.1.3, I also consider the special cases when some features have cd = 0 (the
adversary doesn’t care about the dth feature) or cd = ∞ (the adversary requires the dth

feature to match xA
d ), but otherwise, the weights are on the interval (0,∞). Weighted ℓ1

costs are particularly appropriate for many adversarial problems since costs are assessed
based on the degree to which a feature is altered and the adversary typically is interested in
some features more than others. The ℓ1-norm is a natural measure of edit distance for email
spam, while larger weights can model tokens that are more costly to remove (e.g., a payload
URL). As with Lowd and Meek, I focus primarily on weighted ℓ1 costs in Chapter 6.2 then
explore general ℓp costs in Chapter 6.3. I use BC (A) to denote the C-cost ball (or sublevel
set) with cost no more than C; i.e., BC (A) = {x ∈ X | A (x) ≤ C}. For instance, BC (A1)
is the set of instances that do not exceed an ℓ1 cost of C from the target xA.

Lowd and Meek [2005b] define minimal adversarial cost (MAC ) of a classifier f to be
the value

MAC (f ,A) , inf
x∈X−

f

[A (x)] ; (6.2)

i.e., the greatest lower bound on the cost obtained by any negative instance. They further
define a data point to be an ǫ-approximate instance of minimal adversarial cost (ǫ-IMAC)
if it is a negative instance with a cost no more than a factor (1 + ǫ) of the MAC ; i.e., every
ǫ-IMAC is a member of the set2

ǫ-IMAC (f ,A) ,
{

x ∈ X−
f

∣
∣
∣ A (x) ≤ (1 + ǫ) ·MAC (f ,A)

}

. (6.3)

2I use the term ǫ-IMAC to refer both to this set and members of it. The usage will be clear from the
context.
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Alternatively, this set can be characterized as the intersection of the negative class and
the ball of A of costs within a factor (1 + ǫ) of MAC (f ,A) (i.e., ǫ-IMAC (f ,A) = X−

f ∩
B(1+ǫ)·MAC (A)); a fact I exploit in Chapter 6.2.2. The adversary’s goal is to find an ǫ-IMAC
efficiently, while issuing as few queries as possible. In the next section, I introduce formal
notions to quantify how effectively an adversary can achieve this objective.

6.1.2 Near-Optimal Evasion

Lowd and Meek [2005b] introduce the concept of adversarial classifier reverse engineering
(ACRE) learnability to quantify the difficulty of find an ǫ-IMAC instance for a particular
family of classifiers, F , and a family of adversarial costs, A. Using my notation, their
definition of ACRE ǫ-learnable is

A set of classifiers F is ACRE ǫ-learnable under a set of cost functions A if
an algorithm exists such that for all f ∈ F and A ∈ A, it can find a x ∈
ǫ-IMAC (f ,A) using only polynomially many membership queries in D, the

encoded size of f , and the encoded size of x+ and x−.

In generalizing their result, I use a slightly altered definition of query complexity. First,
to quantify query complexity, I only use the dimension D and the number of steps Lǫ

required by a unidirectional binary search to narrow the gap to within a factor 1 + ǫ, the
desired accuracy3. Second, I assume the adversary only has two initial points x− ∈ X−

f

and xA ∈ X+
f (the original setting required a third x+ ∈ X+

f ); this yields simpler search

procedures4. Finally, my algorithms do not reverse engineer so ACRE would be a misnomer.
Instead, I call the overall problem near-optimal evasion and replace ACRE ǫ-learnable with
the following definition of ǫ-IMAC searchable.

A family of classifiers F is ǫ-IMAC searchable under a family of cost functions
A if for all f ∈ F and A ∈ A, there is an algorithm that finds x ∈ ǫ-IMAC (f ,A)
using polynomially many membership queries in D and Lǫ. I will refer to such
an algorithm as efficient .

Near-optimal evasion is only a partial reverse-engineering strategy. Unlike Lowd and
Meek’s approach, I introduce algorithms that construct queries to provably find an ǫ-IMAC

3Using the encoded sizes of f , x+, and x
− in defining ǫ-IMAC searchable is problematic. For my purposes,

it is clear that the encoded size of both x
+ and x

− is D so it is unnecessary to include additional terms for
their size. Further I allow for families of non-parametric classifiers for which the notion of encoding size is
ill-defined but is also unnecessary for the algorithms I present. In extending beyond linear and parametric
family of classifiers, it is not straightforward to define the encoding size of a classifier f . One could use
notions such as the VC-dimension of F or its covering number but it is unclear why size of the classifier
is important in quantifying the complexity of ǫ-IMAC search. Moreover, as I demonstrate in this chapter,
there are families of classifiers for which ǫ-IMAC search is polynomial in D and Lǫ alone.

4As is apparent in the algorithms I demonstrate, using x
+ = x

A makes the attacker less covert since it
is significantly easier to infer the attacker’s intentions based on their queries. Covertness is not an explicit
goal in ǫ-IMAC search but it would be a requirement of many real-world attackers. However, since the goal
of the near-optimal evasion problem is not to design real attacks but rather analyze the best possible attack
so as to understand a classifier’s vulnerabilities, I exclude any covertness requirement but return to the issue
in Section 6.4.2.1.
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without fully reverse-engineering the classifier; i.e., reconstructing it or estimating the pa-
rameters that specify it. Efficient query-based reverse-engineering for f ∈ F is sufficient for
minimizing A over the estimated negative space. However, generally reverse engineering is
an expensive approach for near-optimal evasion, requiring query complexity that is expo-
nential in the feature space dimension D for general convex classes [Rademacher and Goyal,
2009], while finding an ǫ-IMAC need not be—the requirements for finding an ǫ-IMAC differ
significantly from the objectives of reverse engineering approaches such as active learning.
Both approaches use queries to reduce the size of version space F̂ ⊂ F ; i.e., the set of clas-
sifiers consistent with the adversary’s membership queries. Reverse engineering approaches
minimize the expected number of disagreements between members of F̂ . In contrast, to
find an ǫ-IMAC , the adversary only needs to provide a single instance x† ∈ ǫ-IMAC (f ,A)
for all f ∈ F̂ , while leaving the classifier largely unspecified; i.e.

⋂

f ∈F̂

ǫ-IMAC (f ,A) 6= ∅ .

This objective allows the classifier to be unspecified over much of X . I present algorithms
for ǫ-IMAC search on a family of classifiers that generally cannot be efficiently reverse
engineered—the queries necessarily only elicit an ǫ-IMAC ; the classifier itself will be un-
derspecified in large regions of X so these techniques do not reverse engineer the classifier’s
parameters or decision boundary except in a shrinking region near an ǫ-IMAC .

6.1.3 Search Terminology

The notion of near-optimality introduced in Equation (6.3) and the overall near-optimal
evasion problem in the previous section is that of ǫ-multiplicative optimality ; i.e., an ǫ-
IMAC must have a cost within a factor of (1 + ǫ) of the MAC . However, the results of this
paper can also be immediately adopted for η-additive optimality in which the adversary
seeks instances with cost no more than η > 0 greater than the MAC . To differentiate
between these notions of optimality, I will use the notation ǫ-IMAC (∗) to refer to the set in
Equation (6.3) and define an analogous set η-IMAC (+) for additive optimality as

η-IMAC (+) (f ,A) ,
{

x ∈ X−
f

∣
∣
∣ A (x) ≤ η + MAC (f ,A)

}

. (6.4)

I use the terms ǫ-IMAC (∗) and η-IMAC (+) to refer both to the sets defined in Equation (6.3)
and (6.4) as well as the members of them—the usage will be clear from the context.

I consider algorithms that achieve either additive or multiplicative optimality of the
family of convex-inducing classifiers. For either notion of optimality one can efficiently
use bounds on the MAC to find an ǫ-IMAC (∗) or an η-IMAC (+). If there is a negative
instance, x−, with cost C− and all instances with cost no more than C+ are positive; i.e.,
C− is an upper bound and C+ is a lower bound on the MAC ; i.e., C+ ≤ MAC (f ,A) ≤ C−.
The negative instance x− is ǫ-multiplicatively optimal if C−

0 /C+
0 ≤ (1 + ǫ) whereas it is

η-additively optimal if C−
0 −C+

0 ≤ η. I consider algorithms that can achieve either additive
or multiplicative optimality via binary search. Namely, if the adversary can determine
whether an intermediate cost establishes a new upper or lower bound on the MAC , then
binary search strategies can iteratively reduce the tth gap between C−

t and C+
t with the

fewest steps. I now provide common terminology for the binary search and in Section 6.2 I
use convexity to establish a new bound at the tth iteration.
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Remark If an algorithm can provide bounds C+ ≤ MAC (f ,A) ≤ C−, then this algorithm

has achieved (C− − C+)-additive optimality and (C−

C+ − 1)-multiplicative optimality.

In the tth iteration of an additive binary search, the additive gap between the tth bounds

is given by G
(+)
t = C−

t − C+
t with G

(+)
0 defined accordingly by the initial bounds C−

0 and

C+
0 . The search uses a proposal step of Ct =

C−
t +C+

t

2 , a stopping criterion of G
(+)
t ≤ η and

achieves η-additive optimality in

L(+)
η =

⌈

log2

(

G
(+)
0

η

)⌉

(6.5)

steps. Binary search has the best worst-case query complexity for achieving the η-additive
stopping criterion for a unidirectional search (e.g., search along a ray).

Binary search can also be used for multiplicative optimality by searching in exponential
space. By rewriting the upper and lower bounds as C− = 2a and C+ = 2b, the multiplicative
optimality condition becomes a − b ≤ log2 (1 + ǫ); i.e., an additive optimality condition.
Thus, binary search on the exponent achieves ǫ-multiplicative optimality and does so with
the best worst-case query complexity (again in a unidirectional search). The multiplicative

gap of the tth iteration is G
(∗)
t = C−

t /C+
t with G

(∗)
0 defined accordingly by the initial bounds

C−
0 and C+

0 . The tth query is Ct =
√

C−
t · C+

t , the stopping criterion is G
(∗)
t ≤ 1 + ǫ and

achieves ǫ-multiplicative optimality in

L(∗)
ǫ =







log2




log2

(

G
(∗)
0

)

log2 (1 + ǫ)











(6.6)

steps. Notice that multiplicative optimality only makes sense when both C−
0 and C+

0 are
strictly positive.

It is also worth noting that both L
(+)
ǫ and L

(∗)
ǫ can be instead replaced by log

(
1
ǫ

)

for asymptotic analysis. As pointed out by Rubinstein [2010], the near-optimal evasion
problem is concerned with the difficulty of making accurate estimates of the MAC , and

this difficulty increases as ǫ ↓ 0. In this sense, clearly L
(+)
ǫ and log

(
1
ǫ

)
are asymptotically

equivalent. Similarly, comparing L
(∗)
ǫ and log

(
1
ǫ

)
as ǫ ↓ 0, the limit of their ratio (by

application of L’Hôpital’s rule) is

lim
ǫ↓0

L
(∗)
ǫ

log
(

1
ǫ

) = 1 ;

i.e., they are also asymptotically equivalent. Thus, in the following asymptotic results, L
(∗)
ǫ

can be replaced by log
(

1
ǫ

)
.

Binary searches for additive and multiplicative optimality differ in their proposal step
and their stopping criterion. For additive optimality, the proposal is the arithmetic mean

Ct =
C−

t +C+
t

2 and search stops when G
(+)
t ≤ η, whereas for multiplicative optimality, the

proposal is the geometric mean Ct =
√

C−
t · C+

t and search stops when G
(∗)
t ≤ 1+ ǫ. In the
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remainder of this chapter, I will use the fact that binary search is optimal for unidirectional
search to search the cost space. At each step in the search, I will use several probes in the
instance space X to determine if the proposed cost is a new upper or lower bound and then
continue the binary search accordingly.

6.1.4 Multiplicative vs. Additive Optimality

Additive and multiplicative optimality are intrinsically related by the fact that the opti-
mality condition for multiplicative optimality C−

t /C+
t ≤ 1 + ǫ can be rewritten as additive

optimality condition log2

(
C−

t

)
− log2

(
C+

t

)
≤ log2 (1 + ǫ). From this equivalence one can

take η = log2 (1 + ǫ) and utilize additive optimality criterion on the logarithm of the cost.
However, this equivalence also highlights two differences between these notions of optimality.

First, multiplicative optimality only makes sense when both C+
0 is strictly positive (I

use this assumption in my algorithms) whereas additive optimality can still be achieved if
C+

0 = 0. In this special case, there is no ǫ-IMAC (∗) for any ǫ > 0 unless there is some
point x∗ ∈ X−

f that has 0 cost. Practically speaking though, this is a minor hindrance—as I
demonstrate in Section 6.2.1.3, there is an algorithm that can efficiently establish any lower
bound C+

0 for any ℓp cost if such a lower bound exists.

Second, the additive optimality criterion is not scale invariant (i.e., any instance x† that
satisfies the optimality criterion for cost A also satisfies it for A′ (x) = s·A (x) for any s > 0)
whereas multiplicative optimality is scale invariant. Additive optimality is, however, shift
invariant (i.e., any instance x† that satisfies the optimality criterion for cost A also satisfies
it for A′ (x) = s + A (x) for any s ≥ 0) whereas multiplicative optimality is not. Scale
invariance is typically more salient because if the cost function is also scale invariant (all
proper norms are) then the optimality condition is invariant to a rescaling of the underlying
feature space; e.g., a change in units for all features. Thus, multiplicative optimality is a
unit-less notion of optimality whereas additive optimality is not. The following result is a
consequence of additive optimality’s lack of scale invariance.

Theorem 6.1. If for some hypothesis space F , cost function A, and any initial bounds
0 < C+

0 < C−
0 on the MAC (f ,A) for some f ∈ F , there exists some ǭ > 0 such that no

efficient query-based algorithm can find an ǫ-IMAC (∗) for any 0 < ǫ ≤ ǭ, then there is no
efficient query-based algorithm that can find a η-IMAC (+) for any 0 < η ≤ ǭ · C−

0 . As a
consequence, if there is ǭ > 0 as stated above, then there is generally no efficient query-based
algorithm that can find a η-IMAC (+) for any η ≥ 0 since C−

0 could be arbitrarily large.

Proof. By contraposition. If there is an efficient query-based algorithm that can find a
x ∈ η-IMAC (+) for some 0 < η ≤ ǭ · C−

0 , then, by definition of η-IMAC (+), A (x) ≤
η + MAC (f ,A). Equivalently, by taking η = ǫ ·MAC (f ,A) for some ǫ > 0, this algorithm
achieved A (x) ≤ (1 + ǫ)MAC (f ,A); i.e., x ∈ ǫ-IMAC (∗). Moreover, since MAC (f ,A) ≤
C−

0 , this efficient algorithm is able to find a ǫ-IMAC (∗) for some ǫ ≤ ǭ. The last remark
follows directly from the fact that there is no efficient query-based algorithm for any 0 <
η ≤ ǭ · C−

0 and C−
0 could generally be arbitrarily large.

This theorem demonstrates that additive optimality in near-optimal evasion is an awk-
ward notion. If there is a cost function A for which some family of classifiers F cannot
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be efficiently evaded within any accuracy 0 < ǫ ≤ ǭ, then the question of whether effi-
cient additive optimality can be achieved for some η > 0 depends on the scale of the cost
function. That is, if η-additive optimality can be efficiently achieved for A, the feature
space could rescaled to make η-additive optimality no longer generally efficiently since the
rescaling could be chosen to make C−

0 large. This highlights the limitation of the lack of
scale invariance in additive optimality: the units of the cost determine whether a particular
level of additive accuracy can be achieved whereas multiplicative optimality is unit-less. For
(weighted) ℓ1 costs, this is not an issue since, as Section 6.2 shows, there is an efficient
algorithm for ǫ-multiplicative optimality for any ǫ > 0. However, as I will demonstrate in
Section 6.3, there are ℓp costs where this becomes problematic.

For the remainder of this paper, I primarily only address ǫ-multiplicative optimality for

an ǫ-IMAC (except where explicitly noted) and define Gt = G
(∗)
t , Ct =

√

C−
t · C+

t , and

Lǫ = L
(∗)
ǫ . Nonetheless, the algorithms I present can be immediately adapted to additive

optimality by simply changing the proposal step, stopping condition, and the definitions of

L
(∗)
ǫ and Gt, although they may not be generally efficient as discussed above.

6.1.5 The Family of convex-inducing classifiers

Here, I introduce the family of convex-inducing classifiers, Fconvex; i.e., the set of classifiers
that partition the feature space X into a positive and negative class, one of which is convex.
The convex-inducing classifiers include the linear classifiers studied by Lowd and Meek as
well as anomaly detection classifiers using bounded PCA [Lakhina et al., 2004b], anomaly
detection algorithms that use hyper-sphere boundaries Bishop [2006], one-class classifiers
that predict anomalies by thresholding the log-likelihood of a log-concave (or uni-modal)
density function, and quadratic classifiers of the form x⊤Ax+b⊤x+c ≥ 0 if A is semidefinite
[see Boyd and Vandenberghe, 2004, Chapter 3]. The convex-inducing classifiers also include
complicated bodies such as any intersections of a countable number of halfspaces, cones, or
balls.

There is a correspondence between the family of convex-inducing classifiers and the set of
all convex sets; i.e., C = {X | convex (X) }. By definition of the convex-inducing classifiers,
every classifier f ∈ Fconvex corresponds to some convex set in C. Further, for any convex
set X ∈ C, there are at least two trivial classifier that creates that set; namely the classifiers
f '+'

X
(x) = I [x ∈ X] and f '−'

X
(x) = I [x /∈ X]. Thus, in the remainder of this chapter, I

will use the existence of particular convex sets to prove results about the convex-inducing
classifiers since there is always a corresponding classifier.

It is also worth mentioning the following alternative characterization of the near-optimal
evasion problem on the convex-inducing classifiers. For any convex set C with a non-empty
interior let x(c) be a point in its interior and define the Minkowski metric (recentered at
x(c)) as mC (x) = inf

{
λ
∣
∣ (x− x(c)) ∈ λ(C− x(c))

}
. This function is convex, non-negative,

and satisfies mC (x) ≤ 1 if and only if x ∈ C. Thus, I can rewrite the definition of the MAC
of a classifier in terms of the Minkowski metric—if X+

f is convex I require mX+
f

(x) > 1 and

if X−
f is convex I require mX−

f
(x) ≤ 1. In this way, the near optimal evasion problem (for
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Figure 6.1: Geometry of convex sets and ℓ1 balls. (a) If the positive set X+
f is convex,

finding an ℓ1 ball contained within X+
f establishes a lower bound on the cost, otherwise at

least one of the ℓ1 ball’s corners witnesses an upper bound. (b) If the negative set X−
f is

convex, the adversary can establish upper and lower bounds on the cost by determining
whether or not an ℓ1 ball intersects with X−

f , but this intersection need not include any
corner of the ball.

X−
f convex) can be rewritten as

argminx∈X [A (x)] (6.7)

s.t. mX−
f

(x) ≤ 1

If A is convex, the fact that mC (·) is convex makes this a convex program which can be
solved by optimizing its Lagrangian

argmin
x∈X ,γ∈ℜ0+

[

A (x) + γ
(

1−mX−
f

(x)
)]

.

In cases where mX−
f

(·) has a closed form, this optimization may have a closed form solution,

but generally this approach seems difficult. Instead, I use the special structure of the ℓ1

cost function to construct efficient search over the family of convex-inducing classifiers.

6.2 Evasion of Convex Classes for ℓ1 Costs

I generalize ǫ-IMAC searchability to the family of convex-inducing classifiers. Restricting F
to be the family of convex-inducing classifiers simplifies ǫ-IMAC search. When the negative
class X−

f is convex, the problem reduces to minimizing a (convex) function A constrained

to a convex set—if X−
f were known to the adversary, this problem reduces simply to solving

a convex optimization program [cf., Boyd and Vandenberghe, 2004, Chapter 4]. When the
positive class X+

f is convex, however, the problem becomes minimizing a (convex) function
A outside of a convex set; this is generally a hard problem (cf. Section 6.3.1.4 where I
show that minimizing ℓ2 cost can require exponential query complexity). Nonetheless for
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certain cost functions A, it is easy to determine whether a particular cost ball BC (A) is
completely contained within a convex set. This leads to efficient approximation algorithms
that I present in this section.

I construct efficient algorithms for query-based optimization of the (weighted) ℓ1 cost
of Equation (6.1) for the convex-inducing classifiers. There is an asymmetry depending
on whether the positive or negative class is convex as illustrated in Figure 6.1. When

the positive set is convex, determining whether an ℓ1 ball BC
(

A
(c)
1

)

⊂ X+
f only requires

querying the vertices of the ball as depicted in Figure 6.1(a). When the negative set is

convex, determining whether or not BC
(

A
(c)
1

)

∩X−
f = ∅ is non-trivial since the intersection

need not occur at a vertex as depicted in Figure 6.1(b). I present an efficient algorithm for
optimizing a (weighted) ℓ1 cost when X+

f is convex and a polynomial random algorithm for

optimizing any convex cost when X−
f is convex.

The algorithms I present achieve multiplicative optimality via binary search. I use
Equation (6.6) to define Lǫ as the number of phases required by binary search5 to reduce

the multiplicative gap to less than 1 + ǫ. I also use C−
0 = A

(c)
1 (x−) as an initial upper

bound on the MAC and assume there is some C+
0 > 0 that lower bounds the MAC (i.e.,

xA ∈ int
(

X+
f

)

) . This condition eliminates the case where xA is on the boundary of X+
f

for which MAC (f ,A) = 0 and ǫ-IMAC (f ,A) = ∅—in this degenerate case, no algorithm
can find an ǫ-IMAC since there are negative instances arbitrarily close to xA.

6.2.1 ǫ-IMAC Search for a Convex X+
f

Solving the ǫ-IMAC Search problem when X+
f is hard for the general case of optimizing a

convex cost A . I demonstrate algorithms for the (weighted) ℓ1 cost of Equation (6.1) that
solve the problem as a binary search. Namely, given initial costs C+

0 and C−
0 that bound the

MAC , I introduce an algorithm that efficiently determines whether BCt (A1) ⊂ X+
f for any

intermediate cost C+
t < Ct < C−

t . If the ℓ1 ball is contained in X+
f , then Ct becomes the new

lower bound C+
t+1. Otherwise Ct becomes the new upper bound C−

t+1. Since the objective

in Equation (6.3) is to obtain multiplicative optimality, the steps will be Ct =
√

C+
t · C−

t

(for additive optimality, see Section 6.1.3).

The existence of an efficient query algorithm relies on three facts: (1) xA ∈ X+
f ; (2)

every weighted ℓ1 cost C-ball centered at xA intersects with X−
f only if at least one of its

vertices is in X−
f ; and (3) C-balls of weighted ℓ1 costs only have 2 ·D vertices. The vertices

of the weighted ℓ1 ball BC (A1) are axis-aligned instances differing from xA in exactly one
feature (e.g., the dth feature) and can be expressed in the form

xA ± C

cd
e(d) (6.8)

which belongs to the C-ball of the weighted ℓ1 cost (the coefficient C
cd

normalizes for the

weight cd on the dth feature). The second fact is formalized as the following lemma:

5As noted in Section 6.1.3, the results of this section can be replicated for additive optimality by using
Equation (6.5) for Lǫ and by using regular binary search proposal and stopping criterion.
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Figure 6.2: The geometry of search. (a) Weighted ℓ1 balls are centered around the target
xA and have 2 · D vertices; (b) Search directions in multi-line search radiate from xA to
probe specific costs; (c) In general, the adversary leverages convexity of the cost function
when searching to evade. By probing all search directions at a specific cost, the convex hull
of the positive queries bounds the ℓ1 cost ball contained within it.

Lemma 6.2. For all C > 0, if there exists some x ∈ X−
f that achieves a cost of C =

A
(c)
1 (x), then there is some feature d such that a vertex of the form of Equation (6.8) is in
X−

f (and also achieves cost C by Equation 6.1).

Proof. Suppose not; then there is some x ∈ X−
f such that A

(c)
1 (x) = C and x has M ≥ 2

features that differ from xA (if x differs in one or fewer features it would be of the form
of Equation 6.8). Let {d1, . . . , dM} be the differing features and let bdi

= sign
(
xdi
− xA

di

)

be the sign of the difference between x and xA along the di
th feature. For each di, let

wdi
= xA + C

cdi

· bdi
·e(di) be a vertex of the form of Equation (6.8) which has a cost C (from

Equation 6.1). The M vertices wdi
form an M -dimensional equi-cost simplex of cost C on

which x lies; i.e., x =
∑M

i=1 αiwdi
for some 0 ≤ αi ≤ 1. If all wdi

∈ X+
f , then the convexity

of X+
f implies that all points in their simplex are in X+

f and so x ∈ X+
f which violates the

premise. Thus, if any instance in X−
f achieves cost C, there is always a vertex of the form

Equation (6.8) in X−
f that also achieves cost C.

As a consequence, if all such vertices of any C ball BC (A1) are positive, then all x with

A
(c)
1 x ≤ C are positive thus establishing C as a lower bound on the MAC . Conversely,

if any of the vertices of BC (A1) are negative, then C is an upper bound on MAC . Thus,
by simultaneously querying all 2 · D equi-cost vertices of BC (A1), the adversary either
establishes C as a new lower or upper bound on the MAC . By performing a binary search
on C the adversary iteratively halves the multiplicative gap until it is within a factor of
1 + ǫ. This yields an ǫ-IMAC of the form of Equation (6.8).

A general form of this multi-line search procedure is presented as Algorithm 6.1 and
depicted in Figure 6.2. MultiLineSearch simultaneously searches along all unit-cost
search directions in the set W which contains search directions that radiate from their
origin at xA and are unit vectors for their cost; i.e., A (w) = 1 for any w ∈ W. Of
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course, any set of non-normalized search vectors {v} can be transformed into unit search
vectors simply by applying a normalization constant of A (v)−1 to each. At each step,
MultiLineSearch (Algorithm 6.1) issues at most |W| queries to construct a bounding
shell (i.e., the convex hull of these queries will either form an upper or lower bound on the
MAC ) to determine whether BC (A1) ⊂ X+

f . Once a negative instance is found at cost C,
the adversary ceases further queries at cost C since a single negative instance is sufficient to
establish a lower bound. I call this policy lazy querying6. Further, when an upper bound is
established for a cost C (i.e., a negative vertex is found), the algorithm prunes all directions
that were positive at cost C. This pruning is sound; by the convexity assumption these
pruned directions are positive for all costs less than the new upper bound C on the MAC so
no further queries will be required along such a direction. Finally, by performing a binary
search on the cost, MultiLineSearch finds an ǫ-IMAC with no more than |W| ·Lǫ queries
but at least |W| + Lǫ queries. Thus, this algorithm has a best-case query complexity of
O (|W| · Lǫ) and a worst case query complexity of O (|W| · Lǫ).

It is worth noting that, in its present form, MultiLineSearch has two implicit as-
sumptions. First, I assume all search directions radiate from a common origin, xA, and
A
(
xA
)

= 0. Without this assumption, the ray-constrained cost function A
(
xA + s ·w

)
is

still convex in s ≥ 0 but not necessarily monotonic as required for binary search. Second, I
assume the cost function A is a positive homogeneous function along any ray from xA; i.e.
A
(
xA + s ·w

)
= |s| · A

(
xA + w

)
. This assumption allows MultiLineSearch to scale its

unit search vectors to achieve the same scaling of their cost. Although the algorithm could
be adapted to eliminate these assumptions, the cost functions in Equation (6.1) satisfy both
assumptions since they are norms recentered at xA.

Algorithm 6.2 uses MultiLineSearch for (weighted) ℓ1 costs by making W be the
vertices of the unit-cost ℓ1 ball centered at xA. In this case, the search issues at most
2 ·D queries to determine whether BC (A1) ⊂ X+

f and thus is O (Lǫ ·D). However, Mul-

tiLineSearch does not rely on its directions being vertices of the ℓ1 ball although those
vertices are sufficient to span the ℓ1 ball. Generally, MultiLineSearch is agnostic to the
configuration of its search directions and can be adapted for any set of directions that can
provide a bound on the cost using the convexity of X+

f . However, as I show in Section 6.3,
the number of search directions required to bound an ℓp for p > 1 can be exponential in D.

6.2.1.1 K-step Multi-Line Search

Here I present a variant of the multi-line search algorithm that better exploits pruning to
reduce the query complexity of Algorithm 6.1. The original MultiLineSearch algorithm
is 2 · |W| simultaneous binary searches (i.e., a breadth-first search simultaneously along
all search directions). This strategy prunes directions most effectively when the convex
body is assymetrically elongated relative to xA but fails to prune for symmetrically round
bodies. Instead, the algorithm could search sequentially (i.e., a depth-first search of Lǫ

steps along each direction sequentially). This alternative search strategy also obtains a

6The search algorithm could continue to query at any distance B− where there is a known negative
instance as it may expedite the pruning of additional search directions early in the search. However, in
analyzing the malicious classifier, these additional queries will not lead to further pruning but instead will
prevent improvements on the worst-case query complexity as will be demonstrated in Section 6.2.1.1. Thus,
the algorithms I present only use lazy querying and only queries at costs below the upper bound C−

t on the
MAC .
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Algorithm 6.1. Multi-line Search

MLS
(
W,xA,x−, C+

0 , C−
0 , ǫ
)

x∗ ← x−

t← 0
while C−

t /C+
t > 1 + ǫ do begin

Ct ←
√

C+
t · C−

t

for all w ∈W do begin
Query: f t

w ← f
(
xA + Ct ·w

)

if f t
w = '−' then begin

x∗ ← xA + Ct ·w
Prune i from W if f t

i = '+'

break for-loop
end if

end for
C+

t+1 ← C+
t and C−

t+1 ← C−
t

if ∀w ∈ W f t
w = '+' then C+

t+1 ←
Ct

else C−
t+1 ← Ct

t← t + 1
end while
return: x∗

Algorithm 6.2. Convex X+
f

Search

ConvexSearch
(
W,xA,x−, ǫ, C+

)

C− ← A (x−)
W← ∅
for i = 1 to D do begin

wi ← 1
ci
· e(i)

W←W ∪
{
±wi

}

end for
return: MLS

(
W,xA,x−, C+, C−, ǫ

)

Algorithm 6.3. Linear X+
f Search

LinearSearch
(
W,xA,x−, ǫ, C+

)

C− ← A (x−)
W← ∅
for i = 1 to D do begin

wi ← 1
ci
· e(i)

bi ← sign
(
x−

i − xA
i

)

if bi = 0 then W←W ∪
{
±wi

}

else W←W ∪
{
biw

i
}

end for
return: MLS

(
W,xA,x−, C+, C−, ǫ

)
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best case of O (Lǫ + |W|) queries (for a body that is symmetrically round about xA, it
uses Lǫ queries along the first direction to establish an upper and lower bound within a
factor of 1 + ǫ, then D queries to verify the lower bound) and worst case of O (Lǫ · |W|)
queries (for asymmetrically elongated bodies, in the worst case, the strategy would require
Lǫ queries along each of the D search directions). Surprisingly, these two alternatives have
opposite best-case and worst-case convex bodies, which inspired a hybrid approach called
K-step MultiLineSearch. This algorithm mixes simultaneous and sequential strategies
to achieve a better worst-case query complexity than either pure search strategy7.

At each phase, the K-step MultiLineSearch (Algorithm 6.4) chooses a single direc-
tion w and queries it for K steps to generate candidate bounds B− and B+ on the MAC .
The algorithm makes substantial progress towards reducing Gt without querying other di-
rections (depth-first). It then iteratively queries all remaining directions at the candidate
lower bound B+ (breadth-first). Again, I use lazy querying and stop as soon as a negative
instance is found since B+ is then no longer a viable lower bound. In this case, although the
candidate bound is invalidated, the algorithm can still prune all directions that were posi-
tive at B+ (there will always be at least one such direction). Thus, in every iteration, either
the gap is decreased or at least one search direction is pruned. I show that for K = ⌈√Lǫ⌉,
the algorithm achieves a delicate balance between breadth-first and depth-first approaches
to attain a better worst-case complexity than either.

Theorem 6.3. Algorithm 6.4 will find an ǫ-IMAC with at most O
(
Lǫ +

√
Lǫ |W|

)
queries

when K = ⌈√Lǫ⌉.

The proof of this theorem appears in Appendix C.1. As a consequence of Theorem 6.3,
finding an ǫ-IMAC with Algorithm 6.4 for a (weighted) ℓ1 cost requires O

(
Lǫ +

√
LǫD

)

queries. Further, both Algorithms 6.2 and 6.3 can incorporate K-step MultiLineSearch

directly by replacing their function call to MultiLineSearch to K-step MultiLine-

Search and using K = ⌈√Lǫ⌉.

6.2.1.2 Lower Bound

Here I find lower bounds on the number of queries required by any algorithm to find an
ǫ-IMAC when X+

f is convex for any convex cost function; e.g., Equation (6.1) for p ≥ 1.
Below, I present two theorems, one for both additive and multiplicative optimality. Notably,
since an ǫ-IMAC uses multiplicative optimality, I incorporate a lower bound C+

0 > 0 on the
MAC into the theorem statement.

Theorem 6.4. For any D > 0, any positive convex function A : ℜD 7→ ℜ+, any initial
bounds 0 ≤ C+

0 < C−
0 on the MAC, and 0 < η < C−

0 − C+
0 , all algorithms must submit

at least max{D, L
(+)
η } membership queries in the worst case to be η-additive optimal on

Fconvex,'+'.

Theorem 6.5. For any D > 0, any positive convex function A : ℜD 7→ ℜ+, any initial

bounds 0 < C+
0 < C−

0 on the MAC, and 0 < ǫ <
C−

0

C+
0

− 1, all algorithms must submit at

least max{D, L
(∗)
ǫ } membership queries in the worst case to be ǫ-multiplicatively optimal on

Fconvex,'+'.
7K-step MultiLineSearch also has a best case of O (Lǫ + |W|)
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Algorithm 6.4. K-Step Multi-line Search

KMLS
(
W,xA,x−, C+

0 , C−
0 , ǫ, K

)

x∗ ← x−

t← 0
while C−

t /C+
t > 1 + ǫ do begin

Choose a direction w ∈W
B+ ← C+

t

B− ← C−
t

for K steps do begin
B ←

√
B+ ·B−

Query: fw ← f
(
xA + B ·w

)

if fw = '+' then B+ ← B
else B− ← B and x∗ ← xA + B ·w

end for
for all i ∈W \ {w} do begin

Query: f t
i ← f

(
xA + (B+) · i

)

if f t
i = '−' then begin

x∗ ← xA + (B+) · i
Prune k from W if f t

k = '+'

break for-loop
end if

end for
C−

t+1 ← B−

if ∀i ∈W f t
i = '+' then C+

t+1 ← B+

else C−
t+1 ← B+

t← t + 1
end while
return: x∗
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The proof of both of these theorems is in Appendix C.2. Notice, these theorems only

apply to η ∈
(
0, C−

0 − C+
0

)
and ǫ ∈

(

0,
C−

0

C+
0

− 1
)

respectively. In fact, outside of these

intervals the query strategies are trivial. For either η = 0 or ǫ = 0 no approximation

algorithm will terminate. Similarly, for η ≥ C−
0 − C+

0 or ǫ ≥ C−
0

C+
0

− 1, x− is an IMAC since

it has a cost A (x−) = C−
0 , so no queries are required.

Theorems 6.4 and 6.5 show that η-additive and ǫ-multiplicative optimality require

Ω
(

L
(+)
η + D

)

and Ω
(

L
(∗)
ǫ + D

)

queries respectively. Thus, the K-step MultiLine-

Search algorithm (Algorithm 6.4) has close to the optimal query complexity for weighted
ℓ1-costs with its O

(
Lǫ +

√
LǫD

)
queries. These bounds also apply to any ℓp cost with p > 1,

but in Section 6.3, I present tighter lower bounds for p > 1 that substantially exceed these
results for some ranges of ǫ and any range of η.

6.2.1.3 Special Cases

Here I present a number of special cases that require minor modifications to Algorithms 6.1
and 6.4 by adding preprocessing steps.

Revisiting Linear Classifiers: Lowd and Meek originally developed a method for re-
verse engineering linear classifiers for a (weighted) ℓ1 cost. First their method isolates a
sequence of points from x− to xA that cross the classifier’s boundary and then it estimates
the hyperplane’s parameters using D local line searches. However, as a consequence of the
ability to efficiently minimize our objective when X+

f is convex, we immediately have an
alternative method for linear classifiers (i.e., half-spaces). In fact, for this special case, as
many as half of the search directions can be eliminated using the initial orientation of the
hyperplane separating xA and x−. Intuitively, the minimizer in the negative halfspace can
only occur along one of the axes of the orthants that contain x−. This algorithm is presented
as Algorithm 6.3. Moreover, because linear classifiers are a special case of convex-inducing
classifiers, the K-step MultiLineSearch algorithm improves on the reverse-engineering
technique’s O (Lǫ ·D) queries and applies to a broader family.

Extending MultiLineSearch Algorithms to cd = ∞ or cd = 0 Weights: In Algo-
rithms 6.2 and 6.3, we reweighted the dth axis-aligned directions by a factor 1

cd
to make unit

cost vectors by implicitly assuming cd ∈ (0,∞). The case where cd = ∞ (e.g. immutable
features) is dealt with by simply removing those features from the set of search directions W
used in the MultiLineSearch. In the case when cd = 0 (e.g. useless features), MultiLi-

neSearch-like algorithms no longer ensure near-optimality because they implicitly assume
that cost balls are bounded sets. If cd = 0, B0 (A) is no longer a bounded set and a 0-cost
could be achieved if X−

f anywhere intersects the subspace spanned by the 0-cost features—
this makes near-optimality unachievable unless a negative 0-cost instance can be found. In
the worst case, such an instance could be arbitrarily far in any direction within the 0-cost
subspace making search for such an instance intractable. Nonetheless, one possible search
strategy is to assign all 0-cost features a non-zero weight that decays quickly toward 0 (e.g.
cd = 2−t in the tth iteration) as we repeatedly rerun an MultiLineSearch on the altered
objective for T iterations. The algorithm will either find a negative instance that only alters
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0-cost features (and hence is a 0-IMAC ), or it will terminate assuming no such instance
exists. This algorithm does not ensure near-optimality but may find a suitable instance
with only T runs of a MultiLineSearch.

Lack of an Initial Lower Bound: Thus far, to find a ǫ-IMAC the algorithms I presented
searched between initial bounds C+

0 and C−
0 , but, in general, C+

0 may not be known to a
real-world adversary. I now present an algorithm called SpiralSearch that can efficiently
establish a lower bound on the MAC if one exists. This algorithm performs a halving
search on the exponent along a single direction to find a positive example, then queries the
remaining directions at that cost. Either the lower bound is verified or directions that were
positive can be pruned for the remainder of the search.

Algorithm 6.5. Spiral Search

spiral
(
W,xA,x−, C−

0 , ǫ
)

t← 0 and V← ∅
repeat

Choose a direction w ∈W
Remove w from W and V← V ∪ {w}
Query: fw ← f

(

xA + (C−
0 )2−2t

w
)

if fw = '−' then begin
W←W ∪ {w} and V← ∅
t← t + 1

end if
until W = ∅
C+

0 ← C−
0 · 2−2t

return: (V,C+
0 ,C−

0 )

At the tth iteration of SpiralSearch a direction is selected and queried at the current
lower bound of (C−

0 )2−2t
. If the query is positive, that direction is added to the set V of

directions consistent with the lower bound. Otherwise, all directions in V are discarded and
the lower bound is lowered with an exponentially decreasing exponent. Thus, given that
some lower bound C+

0 > 0 does exist, one will be found in O (Lǫ + D) queries and this
algorithm can be used as a precursor to any of the previous searches8 and can be adopted to
additive optimality by halving the lower bound instead of the exponent (see Section 6.1.3).
Further, the search directions pruned by SprialSearch are also invalid for the subsequent
MultiLineSearch so the set V returned by SprialSearch will be used as the set W for
the subsequent search.

Lack of a Negative Example: The MultiLineSearch algorithms can also naturally be
adapted to the case when the adversary has no negative example x−. This is accomplished
by querying ℓ1 balls of doubly exponentially increasing cost until a negative instance is
found. During the tth iteration, the adversary probes along every search direction at a cost
(C+

0 )22t
; either all probes are positive (a new lower bound) or at least one is negative (a

8If no lower bound on the cost exists, no algorithm can find a ǫ-IMAC . As presented, this algorithm
would not terminate but in practice, the search would be terminated after sufficiently many iterations.
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Algorithm 6.6. Intersect Search

IntersectSearch
(
P(0), Q =

{
x(j) ∈ P(0)

}
, C
)

for s = 1 to T do begin

(1) Generate 2N samples
{
x(j)

}2N

j=1
Choose x from Q
x(j) ← HitRun

(
P(s−1), Q,x(j)

)

(2) If any x(j), A
(
x(j)

)
≤ C terminate the

for-loop
(3) Put samples into 2 sets of size N

R←
{
x(j)

}N

j=1
and S←

{
x(j)

}2N

j=N+1

(4) z(s) ← 1
N

∑

x(j)∈R
x(j)

(5) Compute H(h(z(s)),z(s)) using Equa-
tion (6.10)

(6) P(s) ← P(s−1) ∩H(h(z),z(s))

(7) Keep samples in P(s)

Q← S ∩ P(s)

end for
Return: the found [x(j), P(s), Q]; or No Inter-
sect

Algorithm 6.7. Hit-and-Run

Sampling

HitRun
(
P,
{
y(j)

}
,x(0)

)

for i = 1 to K do begin
(1) Choose a random direction:

νj ∼ N (0, 1)
v←∑

j νj · y(j)

(2) Sample uniformly along v us-
ing rejection sampling:

Choose ω̂ s.t. x(i−1) + ω̂ ·v /∈ P
repeat

ω ∼ Unif (0, ω̂)
x(i) ← x(i−1) + ω · v
ω̂ ← ω

until x(i) ∈ P
end for
Return: x(K)

new upper bound) and search can terminate. Once a negative example is located (having

probed for T iterations), we must have (C+
0 )22T−1

< MAC (f ,A) ≤ (C+
0 )22T

; thus, T =
⌈

log2 log2

(
MAC (f ,A)

C+
0

)⌉

. After this preprocessing, the adversary can subsequently perform

MultiLineSearch with C+
0 = 22T−1

and C−
0 = 22T

; i.e. log2 (G0) = 2T−1. This precursor
step requires at most |W| · T queries to initialize the MultiLineSearch algorithm with a

gap such that Lǫ =
⌈

(T − 1) + log2

(
1

log2(1+ǫ)

)⌉

according to Equation (6.6).

If there is neither an initial upper bound or lower bound, the adversary can proceed by
probing each search direction at unit cost using an additional |W| queries—this will either
establish an upper or lower bound and the adversary can then proceed accordingly.

6.2.2 ǫ-IMAC Learning for a Convex X−
f

In this section, I consider minimizing a convex cost function A (I again focus on weighted
ℓ1 costs in Equation 6.1) when the feasible set X−

f is convex. Any convex function can
be efficiently minimized within a known convex set (e.g., using an ellipsoid method or
interior point method; Boyd and Vandenberghe 2004). However, in the near-optimal evasion
problem the convex set is only accessible via membership queries. I use a randomized
polynomial algorithm from Bertsimas and Vempala [2004] to minimize the cost function A
given an initial point x− ∈ X−

f . For any fixed cost Ct I use their algorithm to determine

(with high probability) whether X−
f intersects with BCt

(A); i.e., whether Ct is a new lower
or upper bound on the MAC . With high probability, I find an ǫ-IMAC in no more than Lǫ

repetitions using binary search. I now focus only on weighted ℓ1 costs (Equation 6.1) and
return to more general cases in Section 6.3.2.
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6.2.2.1 Intersection of Convex Sets

I now outline Bertsimas and Vempala’s query-based procedure for determining whether two
convex sets (e.g., X−

f and BCt
(A1)) intersect. Their IntersectSearch procedure (which I

present as Algorithm 6.6) is a randomized ellipsoid method for determining whether there is
an intersection between two bounded convex sets: P is only accessible through membership
queries and B provides a separating hyperplane for any point not in B. They use efficient
query-based approaches to uniformly sample from P to obtain sufficiently many samples
such that cutting P through the centroid of these samples with a separating hyperplane
from B will significantly reduce the volume of P with high probability. Their technique thus
constructs a sequence of progressively smaller feasible sets P(s) ⊂ P(s−1) until either the
algorithm finds a point in P ∩Q or it is highly likely that the intersection is empty.

As noted earlier, the cost optimization problem reduces to finding the intersection be-
tween X−

f and BCt
(A1). Though X−

f may be unbounded, we are minimizing a cost with

bounded equi-cost balls, so we can instead use the set P(0) = X−
f ∩ B2R (A1;x

−) (where

R = A (x−) > Ct) which is a (convex) subset of X−
f that envelops all of BCt

(A1) and thus

the intersection X−
f ∩BCt

(A1) if it exists. I also assume that there is some r > 0 such that

there is an r-ball contained in the convex set X−
f ; i.e., there exists y ∈ X−

f such that the

ball Br (A1) centered at y is a subset of X−
f . I now detail this IntersectSearch procedure

(Algorithm 6.6).

The foundation of the algorithm is the ability to sample uniformly from an unknown
but bounded convex body by means of the hit-and-run random walk technique introduced
by Smith [1996] (Algorithm 6.7). Given an instance x(j) ∈ P(s−1), hit-and-run selects a
random direction v through x(j) (I revisit the selection of v in Section 6.2.2.2). Since P(s−1)

is a bounded convex set, the set W =
{
ω ≥ 0

∣
∣ x(j) + ωv ∈ P(s−1)

}
is a bounded interval

(i.e., there is some ω̂ ≥ 0 such that W ⊂ [0, ω̂]) which indexes all feasible points along
direction v through x(j). Sampling ω uniformly from W yields the next step of the random
walk: x(j) + ωv. Even though ω̂ is generally unknown, it can be upper bounded and ω can
be sampled using rejection sampling along the interval as demonstrated in Algorithm 6.7.
Under the appropriate conditions (see Section 6.2.2.2), the hit-and-run random walk gen-
erates a sample uniformly from the convex body after O∗ (D3

)
steps9 [Lovász and Vempala,

2004].

Randomized Ellipsoid Method: I use hit-and-run to obtain 2N samples
{
x(j)

}
from

P(s−1) ⊂ X−
f for a single phase of the randomized ellipsoid method. If any satisfy the con-

dition A
(
x(j)

)
≤ Ct, then x(j) is in the intersection of X−

f and BCt
(A1) and the procedure

is complete. Otherwise, the search algorithm must significantly reduce the size of P(s−1)

without excluding any of BCt
(A1) so that sampling concentrates toward the desired inter-

section (if it exists)—for this we need a separating hyperplane for BCt
(A1). For any point

y /∈ BCt
(A1), the (sub)gradient denoted as h (y) of the weighted ℓ1 cost given by

〈h (y)〉f = cf · sign
(
yf − xA

f

)
. (6.9)

9O∗ (·) denotes the standard complexity notation O (·) without logarithmic terms.
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and thus the hyperplane specified by
{

x
∣
∣
∣ (x− y)⊤ h (y)

}

is a separating hyperplane for

y and BCt
(A1).

To achieve sufficient progress, the algorithm chooses a point z ∈ P(s−1) so that cutting
P(s−1) through z with the hyperplane h (z) eliminates a significant fraction of P(s−1). To
do so, z must be centrally located within P(s−1). We use the empirical centroid of the half
of the samples in R: z = 1

N

∑

x∈R
x (the other half will be used in Section 6.2.2.2). We cut

P(s−1) with the hyperplane h (z) through z; i.e., P(s) = P(s−1) ∩H(h(z),z) where H(h(z),z) is
the halfspace

H(h(z),z) =
{

x
∣
∣
∣ x⊤h (z) < z⊤h (z)

}

. (6.10)

As shown by Bertsimas and Vempala, this cut achieves vol
(
P(s)

)
≤ 2

3vol
(
P(s−1)

)
with high

probability if N = O∗ (D) and P(s−1) is near-isotropic (see Section 6.2.2.2). Since the ratio

of volumes between the initial circumscribing and inscribed balls of the feasible set is
(

R
r

)D
,

the algorithm can terminate after T = O
(
D log

(
R
r

))
unsuccessful iterations with a high

probability that the intersection is empty.

Because every iteration in Algorithm 6.6 requires N = O∗ (D) samples, each of which
need K = O∗ (D3

)
random walk steps, and there are O∗ (D) iterations, the total number

of membership queries required by Algorithm 6.6 is O∗ (D5
)
.

6.2.2.2 Sampling from a Queryable Convex Body

In the randomized ellipsoid method, random samples are used for two purposes: estimating
the convex body’s centroid and maintaining the conditions required for the hit-and-run

sampler to efficiently generate points uniformly from a sequence of shrinking convex bodies.
Until now, I assumed the hit-and-run random walk efficiently produces uniformly random
samples from any bounded convex body P using K = O∗ (D3

)
membership queries. How-

ever, if the body is asymmetrically elongated, randomly selected directions will rarely align
with the long axis of the body and the random walk will take small steps (relative to the
long axis) and mix slowly in P. For the sampler to mix effectively, the convex body P has
to be sufficiently round, or more formally near-isotropic; i.e., for any unit vector v,

1

2
vol (P) ≤ Ex∼P

[(

v⊤ (x− Ex∼P [x])
)2
]

≤ 3

2
vol (P) . (6.11)

If the body is not near-isotropic, X can be rescaled with an appropriate affine transfor-
mation T so the resulting body P′ = {Tx | x ∈ P} is near-isotropic. With sufficiently many
samples from P we can estimate T as their empirical covariance matrix. Instead, we rescale
X implicitly using a technique described by Bertsimas and Vempala [2004]. We maintain
a set Q of sufficiently many uniform samples from the body P(s) and in the hit-and-run

algorithm (Algorithm 6.7) we sample the direction v based on this set. Intuitively, because
the samples in Q are distributed uniformly in P(s), the directions we sample based on the
points in Q implicitly reflect the covariance structure of P(s). This is equivalent to sampling
the direction v from a normal distribution with zero mean and covariance of P.

Further, the set Q must retain sufficiently many samples from P(s) after each cut: P(s) ←
P(s−1)∩H(h(z(s)),z(s)). To do so, we initially resample 2N points from P(s−1) using hit-and-

run—half of these, R, are used to estimate the centroid z(s) for the cut and the other half,
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S, are used to repopulate Q after the cut. Because S contains independent uniform samples
from P(s−1), those in P(s) after the cut constitute independent uniform samples from P(s)

(i.e., rejection sampling). By choosing N sufficiently large, the cut will be sufficiently deep
and there will be sufficiently many points to resample P(s) after the cut.

Finally, the algorithm also re-queries an initial set Q of uniform samples from P(0) but,
in the near-optimal evasion problem, only a single point x− ∈ X−

f is known. Fortunately,

there is an iterative procedure for putting the initial convex set P(0) into a near-isotropic
position from which we obtain Q. The RoundingBody algorithm described in Lovász
and Vempala [2003] uses O∗ (D4

)
membership queries to transforms the convex body into

a near-isotropic position. We use this as a preprocessing step for Algorithms 6.6 and 6.8;
that is, given X−

f and x− ∈ X−
f we make P(0) = X−

f ∩ B2R (A1;x
−) and then use the

RoundingBody algorithm to produce an initial uniform sample Q =
{
x(j) ∈ P(0)

}
. These

sets are then the inputs to the search algorithms.

6.2.2.3 Optimization over ℓ1 Balls

I now revisit the outermost optimization loop (for searching the minimum feasible cost)
of the algorithm to optimize the naive approach which repeats the intersection search at
each step of the binary search over cost balls. First, since xA, x− and Q are the same for
every iteration of the optimization procedure, we only need to run the RoundingBody

procedure once as a preprocessing step rather than running it as a preprocessing step every
time IntersectSearch is invoked. The set of samples Q =

{
x(j) ∈ P(0)

}
produced by

RoundingBody are sufficient to initialize the IntersectSearch at each stage of the
binary search over Ct. Second, the separating hyperplane h (y) given by Equation (6.9)
does not depend on the target cost Ct but only on xA, the common center of all the ℓ1

balls. In fact, this separating hyperplane through the point y is valid for all weighted ℓ1-
balls of cost C < A (y). Further, if C < Ct, then BC (A1) ⊂ BCt

(A1). Thus, the final state
from a successful call to IntersectSearch for the Ct-ball can be used as the starting
state for any subsequent call to IntersectSearch for all C < Ct. These improvements
are reflected in the final procedure SetSearch in Algorithm 6.8 (as with previous binary
search procedures, this algorithm can be trivially adapted for η-additive optimality simply
by changing it’s stopping criterion and proposal step as explained in Section 6.1.3)—the
total number of queries required is also O∗ (D5

)
since the algorithm only takes Lǫ binary

search steps.

6.3 Evasion for General ℓp Costs

Here I further extend ǫ-IMAC searchability over the family of convex-inducing classifiers
to the full family of ℓp costs for any 0 < p ≤ ∞. As I demonstrate in this section, many ℓp

costs are not generally ǫ-IMAC searchable for all ǫ > 0 over the family of convex-inducing
classifiers (i.e., I show that finding an ǫ-IMAC for this family can require exponentially
many queries in D and Lǫ). In fact, only the weighted ℓ1 costs have known (randomized)
polynomial query strategies when either the positive or negative set is convex.
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Algorithm 6.8. Convex X−
f Set Search

SetSearch
(
P, Q =

{
x(j) ∈ P

}
, C−

0 , C+
0 , ǫ
)

x∗ ← x− and t← 0
while C−

t /C+
t > 1 + ǫ do begin

Ct ←
√

C−
t · C+

t

[x∗, P′, Q′]← IntersectSearch (P, Q, C)
if intersection found then begin

C−
t+1 ← A (x∗) and C+

t+1 ← C+
t

P← P′ and Q← Q′

else
C−

t+1 ← C−
t and C+

t+1 ← Ct

end if
t← t + 1

end while
Return: x∗

6.3.1 Convex Positive Set

Here, I explore the ability of the MultiLineSearch and K-step MultiLineSearch

algorithms presented in Section 6.2.1 to find solutions to the near-optimal evasion problem
for ℓp cost functions with p 6= 1. Particularly for p > 1 I explore the consequences of using
the MultiLineSearch algorithms using more search directions than just the 2 · D axis-
aligned directions. Figure 6.3 demonstrates how queries can be used to construct upper
and lower bounds on general ℓp costs. The following lemma also summarizes well-known
bounds on general ℓp costs using an ℓ1 cost.

Lemma 6.6. The largest ℓp (p > 1) ball enclosed within a C-cost ℓ1 ball has a cost of

C ·D
1−p

p and for p =∞ the cost is C ·D−1.

Proof. By symmetry, the point x∗ on the simplex
{

x ∈ ℜD
∣
∣
∣
∑D

i=1 xi = 1, xi ≥ 0∀i
}

that

minimizes the ℓp norm for any p > 1 is

x∗ =
1

D
(1, 1, . . . , 1) .

The ℓp norm (cost) of the minimizer is

‖x∗‖p =
1

D

(
D∑

i=1

1p

)1/p

=
1

D
D1/p

= D
1−p

p
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Figure 6.3: Convex hull for a set of queries and the resulting bounding balls for several
ℓp costs. Each row represents a unique set of positive (red '+' points) and negative (green
'−' points) queries and each column shows the implied upper bound (in green) and lower
bound (in blue) for a different ℓp cost. In the first row, the body is defined by a random
set of 7 queries, in the second, the queries are along the coordinate axes, and in the third,
the queries are around a circle.

for p ∈ (1,∞) and is otherwise

‖x∗‖∞ = max

[
1

D
,

1

D
, . . . ,

1

D

]

= D−1 .

6.3.1.1 Bounding ℓp Balls

In general, suppose one probes along some set of M unit directions and eventually there
is at least one negative point supporting an upper bound of C−

0 and M positive points
supporting at a cost of C+

0 . However, the lower bound provided by those M positive points

150



is the cost of the largest ℓp cost ball that fits entirely within their convex hull; let’s say this
cost is C† ≤ C+

0 . To achieve ǫ-multiplicative optimality, we need

C−
0

C† ≤ 1 + ǫ ,

which can be rewritten as (
C−

0

C+
0

)(
C+

0

C†

)

≤ 1 + ǫ .

This divides the problem into two parts. The first ratio C−
0 /C+

0 is controlled solely by the
accuracy ǫ achieved by running the MultiLineSearch algorithm for Lǫ steps whereas the
second ratio C+

0 /C† depends only on how well the ℓp ball is approximated by the convex
hull of the M search directions. These two ratios separate the search task into choosing M
and Lǫ sufficiently so that their product is less than 1+ ǫ. First we select parameters α ≥ 0
and β ≥ 0 such that (1 + α)(1 + β) ≤ 1 + ǫ. Then we choose M so that

C+
0

C† = 1 + β

and use Lα steps so that MultiLineSearch with M directions will achieve

C−
0

C+
0

= 1 + α .

This process describes a generalized MultiLineSearch that achieves ǫ-multiplicative op-
timality for costs whose cost-balls are not spanned by the hull of equi-cost probes along the
M search directions.

In the case of p = 1, I demonstrated in Section 6.2.1 that choosing the M = 2 · D
axis-aligned directions

{
±e(d)

}
spans the ℓ1 ball so that C+

0 /C† = 1 (i.e., β = 0). Thus,
choosing α = ǫ, recovers the original multi-line search result.

I now address costs where β > 0. For a MultiLineSearch algorithm to be efficient, it

is necessary that
C+

0

C† = 1 + β can be achieved with polynomially-many search directions (in
D and Lǫ) for some β ≤ ǫ; otherwise, (1 + α)(1 + β) > 1 + ǫ and the MultiLineSearch

approach cannot succeed. Thus, I quantify how many search directions (or queries) are
required to achieve

C+
0

C† ≤ 1 + ǫ .

Note that this ratio is independent of the relative size of these costs, so without loss of
generality I will only consider bounds for unit-cost balls. Thus, I compute the largest value
of C† that can be achieved for the unit-cost ℓp ball (i.e., let C+

0 = 1) within the convex hull
of M queries. In particular, I will quantify how many queries are required to achieve

C† ≥ 1

1 + ǫ
. (6.12)

If this can be achieved with only polynomially-many queries, then the generalized Multi-

LineSearch approach is efficient. More generally,
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Lemma 6.7. If there exists a configuration of M unit search directions with a convex hull
that yields a bound C† for the cost function A, then MultiLineSearch algorithms can use
those search directions to achieve ǫ-multiplicative optimality with a query complexity that is

polynomial in M and L
(∗)
ǫ for any

ǫ >
1

C† − 1 .

Moreover, if the M search directions yield C† = 1 for the cost function A, then MultiLi-

neSearch algorithms can achieve ǫ-multiplicative optimality with a query complexity that

is polynomial in M and L
(∗)
ǫ for any ǫ > 0.

Notice that this lemma also reaffirms that for p = 1 using the M = 2 ·D axis-aligned
directions allows MultiLineSearch algorithms to achieve ǫ-multiplicative optimality for

any ǫ > 0 with a query complexity that is polynomial in M and L
(∗)
ǫ since in this case C† = 1.

Also recall that as a consequence of Theorem 6.1, if a particular multiplicative accuracy
ǫ cannot be efficiently achieved, then additive optimality cannot be generally achieved for
any additive accuracy η > 0.

6.3.1.2 Multi-line Search for 0 < p < 1

A simple result holds here. Namely, since the unit ℓ1 ball bounds any unit ℓp balls with
0 < p < 1 one can achieve C+

0 /C† = 1 using only the 2 ·D axis-aligned search directions.
Thus, evasion is efficient for every 0 < p < 1 for any value of ǫ > 0. Whether or not any ℓp

(0 < p < 1) cost function can be efficiently searched with fewer search directions is an open
question.

6.3.1.3 Multi-line Search for p > 1

For this case, one can trivially use the ℓ1 bound on ℓp balls as summarized by the following
corollary.

Corollary 6.8. For 1 < p < ∞ and ǫ ∈
(

D
p−1

p − 1,∞
)

any multi-line search algorithm

can achieve ǫ-multiplicative optimality on Ap using M = 2 ·D search directions. Similarly
for ǫ ∈ (D − 1,∞) any multi-line search algorithm can achieve ǫ-multiplicative optimality
on A∞.

Proof. From Lemma 6.6, the largest co-centered ℓp ball contained within the unit ℓ1 ball

has radius D
1−p

p cost (or D for p =∞). The bounds on ǫ then follow from Lemma 6.7.

Unfortunately, this result only applies for a range of ǫ that grows with D, which is insuf-
ficient for ǫ-IMAC searchability. In fact, for some fixed values of ǫ, there is no query-based
strategy that can bound ℓp costs using polynomially-many queries in D as the following
result shows.

Theorem 6.9. For p > 1, D > 0, any initial bounds 0 < C+
0 < C−

0 on the MAC,

and ǫ ∈
(

0, 2
p−1

p − 1
)

(or ǫ ∈ (0, 1) for p = ∞), all algorithms must submit at least αD
p,ǫ

membership queries (for some constant αp,ǫ > 1) in the worst case to be ǫ-multiplicatively
optimal on Fconvex,'+' for ℓp costs.
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The proof of this theorem is provided in Appendix C.3 and the definitions of αp,ǫ and
α∞,ǫ are provided by Equations (C.7) and (C.8), respectively. A consequence of this result
is that there is no query-based algorithm that can efficiently find an ǫ-IMAC of any ℓp cost

(p > 1) for any 0 < ǫ < 2
p−1

p (or 0 < ǫ < 1 for p = ∞) on the family Fconvex,'+'. However,
from Theorem 6.8 and Lemma 6.7, multi-line search type algorithms efficiently find the

ǫ-IMAC of any ℓp cost (p > 1) for any ǫ ∈
(

D
p−1

p − 1,∞
)

(or D − 1 < ǫ <∞ for p =∞).

It is generally unclear if efficient algorithms exist for any values of ǫ between these intervals,
but in the following section, I derive a stronger bound for the case p = 2.

6.3.1.4 Multi-line Search for p = 2

Theorem 6.10. For any D > 1, any initial bounds 0 < C+
0 < C−

0 on the MAC, and

0 < ǫ <
C−

0

C+
0

− 1, all algorithms must submit at least α
D−2

2
ǫ membership queries (where

αǫ = (1+ǫ)2

(1+ǫ)2−1
> 1) in the worst case to be ǫ-multiplicatively optimal on Fconvex,'+' for ℓ2

costs.

The proof of this result is in Appendix C.4.

This result says that there is no algorithm can generally achieve ǫ-multiplicative opti-
mality for ℓ2 costs for any fixed ǫ > 0 using only polynomially-many queries in D since the

ratio
C−

0

C+
0

could be arbitrarily large. It may appear that Theorem 6.10 contradicts Corol-

lary 6.8. However, Corollary 6.8 only applies for a range of ǫ that depends on D; i.e.,
ǫ >
√

D − 1. Interestingly, by substituting this lower bound on ǫ into the bound given by
Theorem 6.10, the number of required queries for ǫ >

√
D − 1 need only be

M ≥
(

(1 + ǫ)2

(1 + ǫ)2 − 1

)D−2
2

=

(
D

D − 1

)D−2
2

,

which is a monotonically increasing function in D that asymptotes at
√

e ≈ 1.64. Thus,
Theorem 6.10 and Corollary 6.8 are in agreement since for ǫ >

√
D − 1, the former only

requires at least 2 queries, which is a trivial bound for all D.

A Tighter Bound: The bound derived for Lemma A.1 was sufficient to demonstrate that
there is no algorithm can generally achieve ǫ-multiplicative optimality for ℓ2 costs for any
fixed ǫ > 0. It is, however, possible to construct a tighter lower bound on the number of
queries required for ℓ2 costs although it is not easy to express this result as an exponential
in D. A straightforward way to construct a better lower bound is to make a tighter upper
bound on the integral

∫ φ
0 sinD (t) dt as is suggested in Appendix A.1. Namely, the result

given in Equation (A.3) upper bounds this integral by

sinD+1 (φ)

(D + 1) cos (φ)
,

which is tighter for large D and φ < π
2 . Applying this bound to the covering number result

of Theorem 6.10 achieves the following bound on the number of queries required to achieve
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multiplicative optimality.

M ≥
√

π

1 + ǫ
· D · Γ

(
D+1

2

)

Γ
(
1 + D

2

)

(
(1 + ǫ)2

(1 + ǫ)2 − 1

)D−1
2

. (6.13)

While not as obvious as the result presented in Appendix C.4, this bound is also exponential
in D for any ǫ. Also, as with the previous result, this bound does not contradict the
polynomial result for ǫ ≥

√
D − 1. For D = 1 Equation 6.13 requires exactly 2 queries (in

exact agreement with the number of queries required to bound an ℓ2 ball in 1-dimension),
for D = 2 it requires more than π queries (whereas at least 4 queries are actually required)
and for D > 2 the bound asymptotes at

√
2eπ ≈ 4.13 queries. Again, this tighter bound

does not contradict the efficient result achieved by bounding ℓ2 balls with ℓ1 balls.

6.3.2 Convex Negative Set

Algorithm 6.8 generalizes immediately to all weighted ℓp costs (p ≥ 1) centered at xA since
these costs are convex. For these costs an equivalent separating hyperplane for y can be
used in place of Equation (6.9). They are given by the equivalent (sub)-gradients for ℓp cost
balls:

h
(y)
p,d = cd sign

(
yd − xA

d

)
·
(

|yd − xA
d |

A
(c)
p (y)

)p−1

,

h
(y)
∞,d = cd sign

(
yd − xA

d

)
· I
[

|yd − xA
d | = A(c)

p (y)
]

.

By only changing the cost function A and the separating hyperplane h (y) used for the
halfspace cut in Algorithms 6.6 and 6.8, the randomized ellipsoid method can be applied

for any weighted ℓp cost A
(c)
p .

For more general convex costs A, every C-cost ball is a convex set (i.e., the sublevel
set of a convex function is a convex set; Boyd and Vandenberghe see 2004, Chapter 3) and
thus has a separating hyperplane. Further, since for any D > C, BC (A) ⊂ BD (A), the
separating hyperplane of the D-cost ball is also a separating hyperplane of the C cost ball
and can be re-used in Algorithm 6.8. Thus, this procedure is applicable for any convex cost
function A so long as one can compute the separating hyperplanes of any cost ball of A for
any point y not in the cost ball.

For non-convex costs A such as weighted ℓp costs with 0 < p < 1, minimization over
a convex set X−

f is generally hard. However, there may be special cases when minimizing
such a cost can be accomplished efficiently.

6.4 Summary and Future Work

Here, I primarily studied membership query algorithms that efficiently accomplish ǫ-IMAC
search for convex-inducing classifiers with weighted ℓ1 costs. When the positive class is
convex, I demonstrate efficient techniques that outperform the previous reverse-engineering
approaches for linear classifiers. When the negative class is convex, I apply the randomized
ellipsoid method introduced by Bertsimas and Vempala to achieve efficient ǫ-IMAC search.
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If the adversary is unaware of which set is convex, he can trivially run both searches to
discover an ǫ-IMAC with a combined polynomial query complexity; thus, for ℓ1 costs, the
family of convex-inducing classifiers can be efficiently evaded by an adversary; i.e., this
family is ǫ-IMAC searchable.

Further, I also extended the study of convex-inducing classifiers to general ℓp costs. I
showed that Fconvex is only ǫ-IMAC searchable for both positive and negative convexity
for any ǫ > 0 if p = 1. For 0 < p < 1, the MultiLineSearch algorithms of Section 6.2.1
achieve identical results when the positive set is convex, but the non-convexity of these
ℓp costs precludes the use of the randomized ellipsoid method when the negative class is
convex. The ellipsoid method does provide an efficient solution for convex negative sets
when p > 1 (since these costs are convex). However, for convex positive sets, I show that
for p > 1 there is no algorithm that can efficiently find an ǫ-IMAC for all ǫ > 0. Moreover,
for p = 2, I prove that there is no efficient algorithm for finding an ǫ-IMAC for any fixed
value of ǫ.

6.4.1 Open Problems in Near-Optimal Evasion

By investigating near-optimal evasion for the convex-inducing classifiers and ℓ1 costs, I
have significantly expanded the extent of the framework established by Lowd and Meek,
but there are still a number of interesting unanswered questions about the near-optimal
evasion problem. Here I summarize the problems I think are most important and suggest
potential directions for pursuing them.

As I shown in this chapter, the current upper bound on the query complexity to achieve
near-optimal evasion for the convex positive class is O

(
Lǫ +

√
LǫD

)
queries, but the tightest

known lower bound is O (Lǫ + D). Similarly, for the case of convex negative class, the upper
bound is given by the randomized ellipsoid approach of Bertsimas and Vempala that finds
a near-optimal instance with high probability using O∗ (D5

)
queries (ignoring logarithmic

terms). In both cases, there is a gap between the upper and lower bound.

Question 6.1 Can we find matching upper and lower bounds for evasion algo-
rithms? Is there a deterministic strategy with polynomial query complexity for all
convex-inducing classifiers?

The algorithms I present in this chapter built on the machinery of convex optimization
over convex sets, which relies on family of classifiers inducing a convex set. However, many
interesting classifiers are not convex-inducing classifiers. Currently, the only known result
for non-convex-inducing classifiers is due to Lowd and Meek is that linear classifiers on
Boolean instance space are 2-IMAC searchable for unweighted ℓ1 costs. In this case, the
classifiers are linear but the integer-valued domains do not have a usual notion of convexity.
This raises questions about the extent to which near-optimal evasion is efficient.

Question 6.2 Are there families larger than the convex-inducing classifiers that
are ǫ-IMAC searchable? Are there families outside of the convex-inducing classi-
fiers for which near-optimal evasion is efficient?

A particularly interesting family of classifiers to investigate is the family of support
vector machines (SVMs) defined by a particular non-linear kernel. This popular learning
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technique can induce non-convex positive and negative sets (depending on its kernel), but
it also has a great deal of structure. An SVM classifier can be non-convex in its input
space X , but it is always linear in its kernel’s Reproducing Kernel Hilbert Space (RKHS).
However, optimization within the RKHS is complicated because mapping the cost-balls
into the RKHS destroys their structure and querying in the RKHS is non-trivial. However,
SVMs also have additional structure that may facilitate near-optimal evasion. For instance,
the usual SVM formulation encourages a sparse representation that could be exploited; i.e.,
in classifiers with few support vectors, the adversary would only need to find these instances
to reconstruct the classifier

Question 6.3 Is some family of SVMs (e.g., with a known kernel) ǫ-IMAC
searchable for some ǫ? Can an adversary incorporate the structure of a non-convex
classifier into the ǫ-IMAC search?

In addition to studying particular families of classifiers, it is also of interest to further
characterize general properties of a family that lead to efficient search algorithms or pre-
clude their existence. As I showed in this chapter, convexity of the induced sets allows for
efficient search for some ℓp-costs but not others. Aside from convexity, other properties
that describe the shape of the induced sets X+

f and X−
f could be explored. For instance,

one could investigate the family of contiguous-inducing classifiers (i.e., classifiers for which
either X+

f or X−
f is a contiguous, or connected, set). However, it appears that this family is

not generally ǫ-IMAC searchable since this family includes induced sets with many locally
minimal cost regions, which rule out global optimization procedures like the MultiLine-
Search or the randomized ellipsoid search. More generally, for families of classifiers that
can induce non-contiguous bodies, ǫ-IMAC searchability seems impossible to achieve (dis-
connected components could be arbitrarily close to xA) unless the classifiers’ structure can
be exploited. However, even if near-optimal evasion is generally not possible in these cases,
perhaps there are subsets of these families that are ǫ-IMAC searchable; e.g., as we discuss
for SVMs above. Hence, it is important to identify what characteristics make near-optimal
evasion inefficient.

Question 6.4 Are there characteristics of non-convex, contiguous bodies that are
indicative of the hardness of the body for near-optimal evasion? Similarly, are there
characteristics of non-contiguous bodies that describe their query complexity?

Finally, as discussed in Section 6.1.2, reverse-engineering a classifier (i.e., using mem-
bership queries to estimate its decision boundary) is a strictly more difficult problem than
the near-optimal evasion problem. Reverse-engineering is sufficient for solving the evasion
problem but I show that it is not necessary. Lowd and Meek showed that reverse-engineering
linear classifiers is efficient, but here I show that reverse-engineering is strictly more difficult
than evasion for convex-inducing classifiers. It is unknown whether there exists a class in
between linear and convex-inducing classifiers on which the two tasks are efficient.

Question 6.5 For what classes of classifiers is reverse-engineering as easy as eva-
sion?
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6.4.2 Alternative Evasion Criteria

Here, I suggest variants of near-optimal evasion that generalize or reformulate the problem
investigated in this chapter to capture additional aspects of the overall challenge.

6.4.2.1 Incorporating a Covertness Criteria

As mentioned in Section 6.1.2, the near-optimal evasion problem does not require the at-
tacker to be covert in his actions. The primary concern for the adversary is that a defender
may detect the probing attack and make it ineffectual. For instance, the MultiLineSearch

algorithms I present in Section 6.2 are very overt about the attacker’s true intention; i.e.,
because the queries are issued in ℓp shells about xA, it is trivial to infer xA. The queries
issued by the randomized ellipsoid approach in Section 6.2.2 are less overt due to the ran-
dom walks, but still the queries occur in shrinking cost-balls centered around xA. The
reverse engineering approach of Lowd and Meek [2005b], however, is quite covert. In their
approach, all queries are based only on the features of x− and a third x+ ∈ X+

f —xA is not
used until a ǫ-IMAC is discovered.

Question 6.6 What covertness criteria are appropriate for a near-optimal evasion
problem? Can a defender detect non-discreet probing attacks against a classifier?
Can the defender effectively mislead a probing attack by falsely answering sus-
pected queries?

Misleading an adversary is an especially promising direction for future exploration. If
probing attacks can be detected, a defender could frustrate the attacker by falsely respond-
ing to suspected queries. However, if too many benign points are incorrectly identified as
queries, such a defense could degrade the classifier’s performance. Thus, strategies to mis-
lead could backfire if an adversary fooled the defender to misclassify legitimate data—yet
another security game between the adversary and defender.

6.4.2.2 Additional Information about Training Data Distribution

Consider an adversary that knows the training algorithm and obtains samples drawn from
a natural distribution. A few interesting settings include scenarios where the adversary’s
samples are i) a subset of the training data, ii) from the same distribution PZ as the training
data, or iii) from a perturbation of the training distribution. With these forms of additional
information, the adversary could estimate their own classifier f̃ and analyze it offline. Open
questions about this variant include:

Question 6.7 What can be learned from f̃ about f ? How can f̃ best be used to
guide search? Can the sample data be directly incorporated into ǫ-IMAC -search
without f̃ ?

Relationships between between f and f̃ can build on existing results in learning the-
ory. One possibility is to establish bounds on the difference between MAC (f ,A) and
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MAC
(

f̃ ,A
)

in one of the above settings. If, with high probability, the difference is suffi-

ciently small, then a search for an ǫ-IMAC could use MAC
(

f̃ ,A
)

to initially lower bound

MAC (f ,A). This should reduce search complexity since lower bounds on the MAC are
typically harder to obtain than upper bounds.

6.4.2.3 Beyond the Membership Oracle

In this scenario, the adversary receives more from the classifier than just a '+'/'−' label. For
instance, suppose the classifier is defined as f (x) = I [g (x) > 0] for some real-valued function
g (as is the case for SVMs) and the adversary receives g (x) for every query instead of f (x).
If g is linear, the adversary can use D + 1 queries and solve a linear regression problem to
reverse engineer g . This additional information may also be useful for approximating the
support of an SVM.

Question 6.8 What types of additional feedback may be available to the adversary
and how do they impact the query complexity of ǫ-IMAC -search?

6.4.2.4 Evading Randomized Classifiers

In this variant of near-optimal evasion, I consider randomized classifiers that generate ran-
dom responses from a distribution conditioned on the query x. To analyze the query
complexity of such a classifier, I first generalize the concept of the MAC to randomized
classifiers. I propose the following generalization:

RMAC (f ,A) = inf
x∈X
{A (x) + λP (f (x) = '−')} .

Instead of the unknown set X−
f in the near-optimal evasion setting, the objective function

here contains the term P (f (x) = '−') that the adversary does not know and must approx-
imate. If f is deterministic , P (f (x) = '−') = I [f (x) = '−'], this definition is equivalent
to Equation (6.2) only if λ ≥ MAC (f ,A) (e.g., λ = A

(
xA
)

+ 1 is sufficient); otherwise, a
trivial minimizer is xA. For a randomized classifier, λ balances the cost of an instance with
its probability of successful evasion.

Question 6.9 Given access to the membership oracle only, how difficult is near-
optimal evasion of randomized classifiers? Are there families of randomized clas-
sifiers that are ǫ-IMAC searchable?

Potential randomized families include classifiers i) with fuzzy boundary of width δ
around a deterministic boundary, and ii) based on the class-conditional densities for a
pair of Gaussians, a logistic regression model, or other members of the exponential family.
Generally, evasion of randomized classifiers seems to be more difficult than for determin-
istic classifiers as each query provides limited information about the query probabilities.
Based on this argument, Biggio et al. [2010] promote randomized classifiers as a defense
against evasion. However, it is not known if randomized classifiers have provable worse
query complexities.
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6.4.2.5 Evading an Adaptive Classifier

Finally, I consider a classifier that periodically retrains on queries. This variant is a multi-
fold game between the attacker and learner, with the adversary now able to issue queries
that degrade the learner’s performance. Techniques from game-theoretic online learning
should be well-suited to this setting [Cesa-Bianchi and Lugosi, 2006].

Question 6.10 Given a set of adversarial queries (and possibly additional in-
nocuous data) will the learning algorithm converge to the true boundary or can
the adversary deceive the learner and evade it simultaneously? If the algorithm
does converge, at what rate?

To properly analyze retraining, it is important to have an oracle that labels the points
sent by the adversary. If all points sent by the adversary are labeled '+', the classifier may
prevent effective evasion, but with a large numbers of false positives due to the adversary
queries in X−

f ; this itself constitutes an attack against the learner [Barreno et al., 2010].

6.4.3 Real-World Evasion

While the cost-centric evasion framework presented by Lowd and Meek formalizes the near-
optimal evasion problem, it fails to capture some aspects of reality. From the theory of near-
optimal evasion, certain classes of learners have been shown to be easy to evade whereas
others require a practically infeasible number of queries for evasion to be successful, but real-
world adversaries often do not require near-optimal cost evasive instances to be successful;
it would suffice if they could find any low-cost instance able to evade the detector. Real-
world evasion differs from the near-optimal evasion problem in several ways. Understanding
query strategies and the query complexity for a real-world adversary requires overcoming a
number of obstacles that were relaxed or ignored in the theoretical version of this problem.
Here, I summarize the challenges for real-world evasion.

Real-world near-optimal evasion is harder (i.e., requires more queries) than is suggested
by the theory because the theory simplifies the problem faced by the adversary. Even
assuming that a real-world adversary can obtain query responses from the classifier, he
cannot directly query it in the feature space X . Real-world adversaries must make their
queries in the form of real-world objects like email the are subsequently mapped into X via
a feature map. Even if this mapping is known by the adversary, designing an object that
maps to a desired query in X is itself a difficult problem—there may be many objects that
map to a single query (e.g., permuting the order of words in a message yields the same
unigram representation), and certain portions of X may not correspond to any real-world
object (e.g., for the mapping x 7→

〈
x, x2

〉
no point x can map to 〈1, 7〉).

Question 6.11 How can the feature mapping be inverted to design real-world
instances to map to desired queries? How can query algorithms be adapted for
approximate querying?

To adapt to these challenges, I propose an realistic evasion problem that weakens several
of the assumptions of the theoretical near-optimal evasion problem for studying real-world
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evasion techniques. I still assume the adversary does not know f and may not even know
the family F ; I only assume that the classifier is a deterministic classifier that uniquely
maps each instance in X to {'+', negLbl}. For a real-world adversary, I require that the
adversary send queries that are representable as actual objects in Ω; e.g., emails cannot have
1.7 occurrences of the word “viagra” in a message and IP addresses must have 4 integers
between 0−−255. However, I no longer assume that the adversary knows the feature space
of the classifier or its feature mapping.

Real-world evasion also differs dramatically from the near-optimal evasion setting in
defining an efficient classifier. For a real-world adversary, even polynomially-many queries
in the dimensionality of the feature space may not reasonable. For instance, if the dimen-
sionality of the feature space is large (e.g., hundreds of thousands of words in unigram
models) the adversary may require the number of queries to be sub-linear, o (D), but in
the near-optimal evasion problem this is not even possible for linear classifiers. However,
real-world adversaries do not need to be provably near-optimal. Near-optimality is a sur-
rogate for adversary’s true evasion objective: to use a small number of queries to find a
negative instance with acceptably low-cost; i.e., below some maximum cost threshold. This
corresponds to an alternative cost function A′ (x) = max [A (x, δ)] where δ is the maximum
allowable cost. Clearly, if a ǫ-IMAC is obtained, either it satisfies this condition or the
adversary can cease searching. Thus, ǫ-IMAC searchability is sufficient to achieve the ad-
versary’s goal, but the near-optimal evasion problem ignores the maximum cost threshold
even though it may allow for the adversary to terminate their search using far fewer queries.
To accurately capture real-world evasion with sub-linearly many queries, query algorithms
must efficiently use every query to glean essential information about the classifier. Instead
of quantifying the query complexity required for a family of classifiers, perhaps it is more
important to quantify the query performance of an evasion algorithm for a fixed number of
queries based on a target cost.

Question 6.12 In the real-world evasion setting, what is the worst-case or ex-
pected reduction in cost for a query algorithm after making M queries to a classi-
fier f ∈ F? What is the expected value of each query to the adversary and what
is the best query strategy for a fixed number of queries?

The final challenge for real-world evasion is to design algorithms that can thwart at-
tempts to evade the classifier. Promising potential defensive techniques include randomizing
the classifier and identifying queries and sending misleading responses to the adversary. I
discuss these and other defensive techniques in Chapter 7.1.2.
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Chapter 7

Conclusion

Machine learning algorithms are a great potential asset to application developers in
enterprise systems, networks, and security domains because these techniques provide the
ability to quickly adapt and to find patterns in large diverse data sources. Their potential
utility makes analyzing the security implications of these tools a critical task for machine
learning researchers and practitioners alike and has spawned a new subfield of research into
adversarial learning for security-sensitive domains. The work I have presented in this dis-
sertation significantly advanced the state-of-the-art in this field of study with four primary
contributions: a taxonomy for qualifying the security vulnerabilities of a learner, two novel
practical attack/defense scenarios for learning in real-world settings, and a generalization
of a theoretical paradigm for evading detection of a classifier. However, research in this
nascent field has only begun to address obstacles faced in this complex problem domain—
many challenges remain. These challenges suggest several new directions for research within
both fields of machine learning and computer security. Based on what I have learned in this
dissertation, I now provide my outlook on the future of adversarial and secure learning.

Before discussing future directions, I first review the contributions of my dissertation.
Above all, I investigated both the practical and theoretical aspects of applying machine
learning in security domains. I analyzed the vulnerability of learning systems to adversarial
malfeasance; I studied both attacks designed to optimally impact the learning system and
attacks constrained by real-world limitations on the adversary’s capabilities and informa-
tion. I further designed defense strategies, which I showed significantly diminish the effect of
these attacks. My research focused on learning tasks in virus, spam, and network anomaly
detection, but also is broadly applicable across many systems and security domains and
has far-reaching implications to any system that incorporates learning. Below, I summarize
the contributions of each component of my dissertation followed by a discussion of open
problems, lessons learned, and future directions for research.

Framework for Secure Learning The first contribution of my dissertation is a frame-
work for assessing security risks to a learner within a particular context. The basis for this
work is a taxonomy of the characteristics of potential attacks, which I jointly developed
with my colleagues. From this taxonomy, I developed security games between an attacker
and defender which were tailored to the particular type of threat posed by the attacker.
The structure of the game was primarily determined by whether or not the attacker could
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influence the training data; i.e., either a Causative or Exploratory attack. The goal of
the attacker also contributed to the game by generically specifying the attack function;
i.e., whether the attack was an Integrity or an Availability specified which class of data
points are desirable for the adversary and whether the attack is Targeted or Indiscriminate
specifies how broadly the attacker’s cost function is concentrated.

Beyond the security games, I also augmented the taxonomy by further exploring the
contamination mechanism used by the attacker. I propose a variety of different possible
contamination models for an attacker and the role these models play in prior work. Each
of these models is appropriate in different scenarios and it is important for an analyst to
identify the most appropriate contamination model in their threat assessment. I further
demonstrated the use of different contamination models in my subsequent investigation of
practical systems.

Causative Attacks against Real-World Learners The second major contribution of
my thesis was a practical and theoretical evaluation of two risk minimization procedures in
two separate security domains under different contamination models. Within these settings
I not only analyzed attacks against real-world systems, I also suggested defense strategies
that substantially mitigate the impact of these attacks.

The first system I analyzed in Chapter 4 was the spam filter SpamBayes’ learning algo-
rithm. This algorithm is based on a simple probabilistic model for spam and is also used by
other spam filtering systems (BogoFilter, Thunderbird’s spam filter, and the learning com-
ponent of SpamAssassin) so the attacks I developed should also be effective against other
spam filters but may also be effective against similar learning algorithms used in different
domains. Indeed, I demonstrated that the vulnerability of SpamBayes emanates from its
modeling assumptions that a message’s label depends only on the tokens present in the mes-
sage and that the tokens are conditionally independent. While these modeling assumptions
are not an inherent vulnerability, in this setting conditional independence coupled with the
rarity of most tokens and the ability of the adversary to poison large numbers of vulner-
able tokens with every attack message makes SpamBayes’ learner extremely vulnerable to
malicious contamination.

Motivated by the taxonomy of attacks against learners, I designed real-world Causative
attacks against SpamBayes’ learner and demonstrated the effectiveness of these attacks
using realistic adversarial control over the training process of SpamBayes. Optimal attacks
against SpamBayes caused unreasonably high false positive rates using only a small amount
of control of the training process (more than 95% misclassification of ham messages when
only 1% of the training data is contaminated). Usenet dictionary attack also effectively
use a more realistically limited attack message to cause misclassification of 19% of ham
messages with only 1% control over the training messages, rendering SpamBayes unusable
in practice. I also show that an informed adversary can successfully target messages. The
focused attack changes the classification of the target message virtually 100% of the time
with knowledge of only 30% of the target’s tokens. Similarly, the pseudospam attack is able
to cause nearly 90% of the target spam messages to be labeled as either unsure or ham with
control of less than 10% of the training data.

To combat attacks against SpamBayes, I designed a data sanitization technique called
the Reject On Negative Impact (RONI) defense that expunges any message from the training
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set if it has an undue negative impact on a calibrated test filter. This technique is a successful
defense against dictionary attacks that removed all the variants I tested. However, the
RONI defense also has costs: it causes a slight decrease in ham classification, it requires a
substantial amount of computation, and it may slow the learning process. Nonetheless, this
defense demonstrates that attacks against learners can be detected and prevented.

The second system I presented in Chapter 5 was a PCA-based classifier for detecting
anomalous traffic in a backbone network using only volume measurements. This anomaly
detection system inherited the vulnerabilities of the underlying PCA algorithm; namely,
I demonstrated that PCA’s sensitivity to outliers can be exploited by contaminating the
training data allowing the adversary to dramatically decrease the detection rate for DoS
attacks along a particular target flow.

To counter the PCA-based detector, I studied Causative Integrity attacks that poison
the training data by adding malicious noise; i.e., spurious traffic sent across the network
by compromised nodes that reside within it. This malicious noise is designed to inter-
fere with PCA’s subspace estimation procedure. Based on a relaxed objection function,
I demonstrated how an adversary can approximate optimal noise using a global view of
the traffic patterns in the network. Empirically, I found that by increasing the mean link
rate by 10% with Globally-Informed chaff traffic, the FNR increased from 3.67% to 38%—
a ten-fold increase in misclassification of DoS attacks. Similarly, by only using local link
information the attacker is able to mount a more realistic Add-More-If-Bigger attack. For
this attack, increasing the mean link rate by 10% with Add-More-If-Bigger chaff traffic, the
FNR increased from 3.67% to 28%—an eight-fold increase in misclassification of DoS at-
tacks. These attacks demonstrate that with sufficient information about network patterns,
attacks can mount attacks against the PCA detector that severely compromises its ability
to detect future DoS attacks traversing the networking it is monitoring.

I also demonstrated that an alternative robust method for subspace estimation could be
used instead to make the resulting DoS detector less susceptible to poisoning attacks. The
alternative detector was constructed using a subspace method for robust PCA developed
by Croux et al. and a more robust method for estimating the residual cutoff threshold. The
resulting Antidote detector is impacted by poisoning but its performance degrades more
gracefully. Under non-poisoned traffic, Antidote performs nearly as well as PCA, but
for all levels of contamination using Add-More-If-Bigger chaff traffic, the misclassification
rate of Antidote is approximately half the FNR of the PCA-based solution. Moreover, the
average performance of Antidote is much better than the original detector; it outperforms
ordinary PCA for more flows and by a large amount. For multi-week Boiling Frog attacks,
Antidote also outperformed PCA and would catch progressively more attack traffic in
each subsequent week.

Evasion Attacks The final contribution of my thesis was a generalization of Lowd and
Meek’s near-optimal evasion framework for quantifying query complexity of classifier evasion
to the family of convex-inducing classifiers; i.e., classifiers that partition space into two
regions one of which is convex. For the ℓp costs, I demonstrated algorithms that can
efficiently use polynomially-many queries to find a near-optimal evading instance for any
classifier in the convex-inducing classifiers and I showed that for some ℓp costs efficient
near-optimal evasion cannot be achieved generally for this family of classifiers. Further, the
algorithms I present achieve near-optimal evasion without reverse-engineering the classifier
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boundary and, in some cases, achieve better asymptotic query complexity than reverse
engineering approaches. Further, I show that the near-optimal evasion problem is generally
easier than reverse-engineering the classifier’s boundary.

My primary contribution from this work is a study of membership query algorithms
that efficiently accomplish ǫ-IMAC search for convex-inducing classifiers with weighted ℓ1

costs (cf., Chapter 6.2). When the positive class is convex, I demonstrate efficient techniques
that outperform the previous reverse-engineering approaches for linear classifiers. When the
negative class is convex, I apply the randomized ellipsoid method introduced by Bertsimas
and Vempala to achieve efficient ǫ-IMAC search. If the adversary is unaware of which
set is convex, he can trivially run both searches to discover an ǫ-IMAC with a combined
polynomial query complexity; thus, for ℓ1 costs, the family of convex-inducing classifiers
can be efficiently evaded by an adversary; i.e., this family is ǫ-IMAC searchable.

Further, I also extended the study of convex-inducing classifiers to general ℓp costs
(cf., Chapter 6.3). I showed that Fconvex is only ǫ-IMAC searchable for both positive
and negative convexity for any ǫ > 0 if p = 1. For 0 < p < 1, the MultiLineSearch

algorithms of Section 6.2.1 achieve identical results when the positive set is convex, but
the non-convexity of these ℓp costs precludes the use of the randomized ellipsoid method.
The ellipsoid method does provide an efficient solution for convex negative sets when p > 1
(since these costs are convex). However, for convex positive sets, I show that for p > 1 there
is no algorithm that can efficiently find an ǫ-IMAC for all ǫ > 0. Moreover, for p = 2, I
prove that there is no efficient algorithm for finding an ǫ-IMAC for any fixed value of ǫ.

7.1 Discussion and Open Problems

In the course of my research, I have encountered many challenges and learned important
lessons that have given me some insight into the future of the field of adversarial learning in
security-sensitive domains. Here I suggest several intriguing research directions for pursuing
secure learning. I organize these directions into two topics: i) unexplored components of
the adversarial game, and ii) directions for defensive technologies. Finally, I conclude by
enumerating the open problems I suggested throughout this dissertation.

7.1.1 Unexplored Components of the Adversarial Game

As suggested by Chapter 3, adversarial learning and attacks against learning algorithms have
recently received a great deal of attention. While many types of attacks have been explored,
there are still many elements of this security problem that are relatively unexplored. Here,
I summarize the most promising ones for future research.
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Research Direction 7.1 (The Role of Measurement and Feature Selection)

As discussed in Chapter 2.2.1, the measurement process and feature selection play
an important role in machine learning algorithms that I have ignored in this thesis.
However, as suggested in Chapter 3.1, these components of a learning algorithm are
also susceptible to attacks. Some prior work has suggested vulnerabilities based on the
features used by a learner [e.g., Mahoney and Chan, 2003, Venkataraman et al., 2008,
Wagner and Soto, 2002] and others have suggested defenses to particular attacks on
the feature set [e.g., Globerson and Roweis, 2006, Sculley et al., 2006], but the role of
feature selection remains largely unexplored.

Selecting a set of measurements, is a critical decision in a security-sensitive domain.
As has been repeatedly demonstrated [e.g., Wagner and Soto, 2002], irrelevant features
can be leveraged by the adversary to cripple the learner’s ability to detect malicious
instances with little cost to the attacker. For example, in Chapter 4, I showed that
tokens unrelated to the spam concept can be used to poison a spam filter. These
vulnerabilities require a concerted effort to construct tamper-resistant features, to
identify and eliminate features that have been corrupted, and to establish guidelines
for practitioners to meet these needs.

Further, feature selection, particularly, may play a pivotal role in the future of
secure learning. As discussed in Direction 7.2, these methods can provide secrecy
for the learning algorithm and can eliminate irrelevant features. In doing so, feature
selection methods may provide a means to gain an advantage against adversaries, but
feature selection methods may also be attacked. Exploring these possibilities remains
a lucrative research challenge.
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Research Direction 7.2 (Secrecy in Learning)

Determining the appropriate degree of secrecy that is feasible for secure machine learn-
ing systems is a difficult question but may be critical to providing any strong notion
of security. Although, complete transparency seems unreasonable for learning systems
if some elements can be effectively kept secret, the source and validity of such secrets
remains open to debate:

Question 7.1 In a learning system, what components of the learning system
can be effectively kept secret from an adversary and can keeping these elements
secret increase the security of the learner?

Perhaps the most obvious secret is the training data used to create the learned
hypothesis. However, in the settings discussed throughout this dissertation, the
adversary controls at least some fraction of the input. Further, because learning
algorithms generally find patterns in their training data, it is not necessary to exactly
reproduce the training data to divulge secrets about the learned hypothesis. In many
cases, to approximate the learned hypothesis, the adversary need only have access to
a similar dataset.

In Chapter 1.2, I proposed that adversarial learning should adhere to Kerckhoffs’
Principle and should assume the adversary is aware of the learning algorithm. This
is true, of course, for any open-source or otherwise public software such as the
SpamBayes filter I presented in Chapter 4. However, in some settings, keeping the
learning algorithm secret may be possible and perhaps prudent. However, even when
the algorithm is never revealed, the degree of security provided by algorithmic secrecy
is unclear. The adversary may be able to intuit the secret learner; there are a limited
number of widespread learning algorithms and only a subset of those are well-suited
for a particular task. More importantly, though, the adversary may learn the relevant
properties of the learner without knowing the algorithm. As in the near-optimal
evasion framework in Chapter 6, the adversary can procure a great deal of information
about the learned hypothesis with little information about the training algorithm and
hypothesis space.

Instead of keeping the learning algorithm secret, it may be more feasible to hide
implementation details such as tuning parameters, kernels (i.e., for SVMs), or the
structural model (e.g., for a Bayesian or neural network). Practically speaking, these
elements of the algorithm may be easier to hide, but there remains a concern that the
adversary does not need to exactly know the algorithm to accomplish his task. These
components may themselves be inferred or obviated using techniques such as querying.

Feature selection (as presented in Chapter 2.2.1) could potentially play a role in
defending against an adversary by allowing the defender to use dynamic feature selec-
tion. In many cases, the goal of the adversary is to construct malicious data instances
that are inseparable from innocuous data from the perspective of the learner. However,
as the attack occurs, dynamic feature selection could be employed to estimate a new
feature mapping φ′

D
that would allow the classifier to continue to separate the classes

in spite of the adversary’s alterations.
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Research Direction 7.3 (Insider Threats in Learning)
I focused exclusively on an external adversary, but an equally potent and often more
worrisome threat comes from an internal adversary; i.e., an insider threat. Such an
adversary can wield far greater powers over the system although they are also often
constrained by the greater risk of being exposed by their deeds (and punished for
them). Insider threats are a classic concern for traditional computer security, but I
am not aware of any research on them in adversarial learning.

Question 7.2 What threats do a malicious insider pose for a learning system?
How do they differ from other threats against the learner and what can the
system designer do to prevent them? Can an insider who attacks a learning
algorithm be detected and identified?

In the worst-case, an insider adversary with complete control over the learning
system can completely destroy the system, but also should be easily identified. More
interesting scenarios involve a covert insider. Unlike an external attacker, an insider
has access to more privileged information for implementing their attacks. This makes
attacks like the focused spam attacks discussed in Chapter 4.3.1.2 more feasible. It
also can serve as additional motivation for some of the alternative evasion scenarios
discussed in Chapter 6.4.1.

Insiders can also attack by introducing unnatural data directly into the system.
For instance, an insider could potentially introduce malicious data points directly into
the system rather than having to create real-world data that maps to their desired
data points. This capability obviates some of the constraints on real-world attackers
discussed in Chapter 6.4.3. An insider could also circumvent other mechanisms meant
to protect the learner such as the Reject On Negative Impact (RONI) defense discussed
in Chapter 4.4.

Finally, insiders may also possess the capability to introduce data from either the
positive or negative class or to change the labels of instances. These capabilities allow
an insider to mount attacks that would be otherwise infeasible for an external attacker.
For instance, in the spam detection domain, an insider could introduce poison non-
spam mail by maliciously mis-labeling training instances. Such an adversary requires
a very different threat model than the one used in Chapter 4.2.
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7.1.2 Development of Defensive Technologies

The most important challenge remaining for learning in security-sensitive domains is to
develop general-purpose secure learning technologies. In Section 3.3.5, I suggested several
promising approaches to defend against learning attacks and several secure learners have
been proposed [e.g., Dalvi et al., 2004, Globerson and Roweis, 2006, Wang et al., 2006].
However, the development of defenses will inevitably create an arms race, so successful
defenses must anticipate potential counterattacks and demonstrate that they are resilient
against reasonable threats. With this in mind, the next step is to explore general defenses
against larger classes of attack to exemplify trustworthy secure learning.

Research Direction 7.4 (Game-Theoretic Approaches to Secure Learning)

Since suggested by Dalvi et al. [2004], the game-theoretic approach to designing defen-
sive classifiers has rapidly proliferated inspiring several extensions [e.g., Brückner and
Scheffer, 2009, Kantarcioglu et al., 2009]. The Dalvi et al. game-theoretic approach is
particularly appealing for secure learning because it incorporates the adversary’s ob-
jective and limitations directly into the classifier’s design through an adversarial cost
function. However, this cost function is difficult to specify for a real-world adversary
and using an inaccurate cost function may again lead to inadvertent blind spots in the
classifier. This raises interesting questions:

Question 7.3 How can a machine learning practitioner design an accurate cost
function for a game-theoretic cost-sensitive learning algorithm? How sensitive
are these learners to the adversarial cost? Can the cost itself be learned based
on observed mistakes?

Game-theoretic learning approaches are especially interesting because they directly
incorporate the adversary as part of the learning process. In doing so, they make a
number of assumptions about the adversary and his capabilities, but the most dan-
gerous assumption made is that the adversary behaves rationally according to their
interests. While this assumption seems reasonable, it can cause the learning algorithm
to be overly reliant on its model of the adversary. For instance, the original adversary-
aware classifier proposed by Dalvi et al. attempts to preemptively detect evasive data
but will classify data points as benign if a rational adversary would have altered them;
i.e., in this case, the adversary can evade this classifier by simply not changing their
behavior. Such strange properties are an undesirable side-effect of the assumption that
the adversary is rational, which raises another question:

Question 7.4 How reliant are adversary-aware classifiers on the assump-
tion that the adversary will behave rationally? Are there game-theoretic ap-
proaches that are less dependent on this assumption?
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Research Direction 7.5 (Broader Incorporation of Robust Methods)

Currently, choosing a learning method for a particular task is usually based on the
structure of application data, the speed of the algorithm in training and prediction,
and expected accuracy (often assessed on a static dataset). However, as my research
has demonstrated, understanding how an algorithm’s performance can change in
security-sensitive domains is critical for its success and for widespread adoption in
these domains. Designing algorithms to be resilient in these settings is a critical
challenge.

Generally, competing against an adversary is a difficult problem and can be
computationally intractable. However, the framework of robust statistics as outlined
in Chapter 3.5.4.3 addresses the problem of adversarial contamination in training data.
This framework provides a number of tools and techniques to construct learners robust
against security threats from adversarial contamination. Many classical statistical
methods often make strong assumptions that their data is generated by a stationary
distribution, but adversaries can defy that assumption. For instance, in Chapter 5, I
demonstrated that a robust subspace estimation technique significantly out-performed
the original PCA method under adversarial contamination.

Robust statistics augments classical techniques by instead assuming that the data
comes from two sources: a known distribution and an unknown adversarial distribu-
tion. Under this setting, robust variants exist for parameter estimation, testing, linear
models, and other classic statistical techniques. Further, the breakdown point and in-
fluence function provide quantitative measurements of robustness, which designers of
learning systems can use to evaluate the vulnerability of learners in security-sensitive
tasks and select an appropriate algorithm accordingly. However, relatively few learn-
ing systems are currently designed explicitly with statistical robustness in mind. I
believe, though, that as the field of adversarial learning grows, robustness considera-
tions and techniques will become an increasingly prevalent part of practical learning
design. The challenge remains to broadly integrate robust procedures into learning for
security-sensitive domains and use them to design learning systems resilient to attacks.
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Research Direction 7.6 (Online Learning)

An alternative complementary direction for developing defenses in security-sensitive
settings is addressed by the game-theoretic expert aggregation setting described in
Chapter 3.6. Recall that in this setting, the learner receives advice from a set of
experts and makes a prediction by weighing the experts’ advice based on their past
performance. Techniques for learning within this framework have been developed to
perform well with respect to the best expert in hindsight. A challenge that remains is
designing sets of experts that together can better meet a security objective. Namely,

Question 7.5 How can one design a set of experts (learners) so that their
aggregate is resilient to attacks in the online learning framework?

Ideally, even if the experts may be individually vulnerable, they are difficult to
attack as a group. I informally refer to such a set of experts as being orthogonal.
Orthogonal learners have several advantages in a security sensitive environment. They
allow us to combine learners designed to capture different aspects of the task. These
learners may use different feature sets and different learning algorithms to reduce
common vulnerabilities; e.g., making them more difficult to reverse engineer. Finally,
online expert aggregation techniques are flexible: existing experts can be altered or
new ones can be added to the system whenever new vulnerabilities in the system are
identified.

To properly design a system of orthogonal experts for secure learning, the designer
must first assess the vulnerability of several candidate learners. With that analysis,
he should then choose a base set of learners and sets of features for them to learn on.
Finally, as the aggregate predictor matures, the security analyst should identify new
security threats and patch the learners appropriately. This patching could be done by
adjusting the algorithms, changing their feature sets, or even adding new learners to
the aggregate. Perhaps this process could itself be automated or learned.
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7.2 Review of Open Problems

Many exciting challenges remain in the field of adversarial learning in security-sensitive
domains. Here I recount the open questions I suggested throughout this dissertation.

Problems from Chapter 5

5.1 What are the worst-case poisoning attacks against the Antidote-subspace
detector for large-volume network anomalies? What are game-theoretic equi-
librium strategies for the attacker and defender in this setting? How does
Antidote’s performance compare to these strategies? . . . . . . . . . . 122

5.2 Can subspace-based detection approaches be adapted to incorporate the alter-
native approaches? Can they find both temporal and spatial correlations and
use both to detect anomalies? Can subspace-based approaches be adapted to
incorporate domain-specific information such as the topology of the network?123

Problems from Chapter 6

6.1 Can we find matching upper and lower bounds for evasion algorithms? Is
there a deterministic strategy with polynomial query complexity for all convex-
inducing classifiers? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2 Are there families larger than the convex-inducing classifiers that are ǫ-IMAC
searchable? Are there families outside of the convex-inducing classifiers for
which near-optimal evasion is efficient? . . . . . . . . . . . . . . . . . . . 155

6.3 Is some family of SVMs (e.g., with a known kernel) ǫ-IMAC searchable for
some ǫ? Can an adversary incorporate the structure of a non-convex classifier
into the ǫ-IMAC search? . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.4 Are there characteristics of non-convex, contiguous bodies that are indicative
of the hardness of the body for near-optimal evasion? Similarly, are there char-
acteristics of non-contiguous bodies that describe their query complexity? 156

6.5 For what classes of classifiers is reverse-engineering as easy as evasion? . 156

6.6 What covertness criteria are appropriate for a near-optimal evasion problem?
Can a defender detect non-discreet probing attacks against a classifier? Can
the defender effectively mislead a probing attack by falsely answering suspected
queries? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.7 What can be learned from f̃ about f ? How can f̃ best be used to guide search?
Can the sample data be directly incorporated into ǫ-IMAC -search without f̃ ?157

6.8 What types of additional feedback may be available to the adversary and how
do they impact the query complexity of ǫ-IMAC -search? . . . . . . . . . 158

6.9 Given access to the membership oracle only, how difficult is near-optimal eva-
sion of randomized classifiers? Are there families of randomized classifiers that
are ǫ-IMAC searchable? . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
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6.10 Given a set of adversarial queries (and possibly additional innocuous data)
will the learning algorithm converge to the true boundary or can the adversary
deceive the learner and evade it simultaneously? If the algorithm does converge,
at what rate? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.11 How can the feature mapping be inverted to design real-world instances to map
to desired queries? How can query algorithms be adapted for approximate
querying? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.12 In the real-world evasion setting, what is the worst-case or expected reduction
in cost for a query algorithm after making M queries to a classifier f ∈ F?
What is the expected value of each query to the adversary and what is the best
query strategy for a fixed number of queries? . . . . . . . . . . . . . . . 160

Problems from Chapter 7

7.1 In a learning system, what components of the learning system can be effectively
kept secret from an adversary and can keeping these elements secret increase
the security of the learner? . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.2 What threats do a malicious insider pose for a learning system? How do they
differ from other threats against the learner and what can the system designer
do to prevent them? Can an insider who attacks a learning algorithm be
detected and identified? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.3 How can a machine learning practitioner design an accurate cost function for
a game-theoretic cost-sensitive learning algorithm? How sensitive are these
learners to the adversarial cost? Can the cost itself be learned based on ob-
served mistakes? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.4 How reliant are adversary-aware classifiers on the assumption that the adver-
sary will behave rationally? Are there game-theoretic approaches that are less
dependent on this assumption? . . . . . . . . . . . . . . . . . . . . . . . . 168

7.5 How can one design a set of experts (learners) so that their aggregate is resilient
to attacks in the online learning framework? . . . . . . . . . . . . . . . . 170

7.3 Concluding Remarks

The field of adversarial learning in security-sensitive domains is a new and rapidly expand-
ing sub-discipline that holds a number of interesting research topics for researchers in both
machine learning and computer security. My dissertation research has both significantly im-
pacted this community and highlighted several important lessons. First, to design effective
learning systems, practitioners must follow the principle of proactive design as discussed
in Chapter 1.2. To avoid security pitfalls, designers must develop reasonable threat mod-
els for potential adversaries and develop learning systems to meet their desired security
requirements. At the same time, machine learning designers should promote the security
properties of their algorithms in addition to other traditional metrics of performance.

A second lesson that has re-emerged throughout this dissertation is that there are inher-
ent trade-offs between a learner’s performance on regular data and its resilience to attacks.
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Understanding these trade-offs is important not only for security applications but also for
understanding how learners behave in any non-ideal setting.

Finally, throughout this dissertation, I suggested a number of promising approaches
toward secure learning, but a clear picture of what is required for secure learning has yet to
emerge. Each of the approaches I discussed are founded in game theory but have different
benefits: the adversary-aware classifiers directly incorporate the threat model into their
learning procedure, the robust statistics framework provides procedures that are generally
resilient against any form of contamination, and the expert aggregation setting constructs
classifiers that can do nearly as well as the best expert in hindsight. However, by themselves,
none of these form a complete solution for secure learning. Integrating these different
approaches or developing a new approach remains as the most important challenge for this
field.
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Glossary

ACRE-learnable The original framework proposed by Lowd and Meek [2005b] for quan-
tifying the query complexity of a family of classifiers; see also, near-optimal evasion
problem. 48

action In the context of a learning algorithm, a response or decision made by the learner
based on its predicted state of the system. 25

additive gap (G(+)) The additive difference between the estimated optimum Ĉ and the
global optimum C∗ as measured by the difference between these two quantities:
Ĉ − C∗. When the global optimum is not known, this gap refers to the difference
between the estimated optimum and a lower bound on the global optimum. 133

additive optimality A form of approximate optimality where the estimated optimum Ĉ is
compared to global optimum C∗ using the difference Ĉ−C∗; η-additive optimality
is achieved when this difference is less than or equal to η. 132

adversarial learning Any learning problem where the learning agent faces an adversarial
opponent who wants the learner to fail in some way. Specifically, in this dissertation,
I consider adversarial learning in security-sensitive domains. 16, 18, 19, 54

anomaly detection The task of identifying anomalies within a set of data. 30, 32, 93
attacker In the learning games introduced in Chapter 3, the attacker is the malicious player

who is trying to defeat the learner. 30, 38

batch training Training in which all training data is examined in batch by the learning
algorithm to select its hypothesis, f . 29, 49

beta distribution A continuous probability distribution with support on (0, 1) parame-
terized by α ∈ ℜ+ and β ∈ ℜ+ that has a probability density function given by
xα−1(1−x)β−1

B(α,β) . 65

beta function (B (α, β)) A two-parameter function defined by the definite integral
B (α, β) =

∫ 1
0 tα−1 (1− t)β−1 dt for parameters α > 0 and β > 0. 67

blind spot a class of miscreant activity that fails to be correctly detected by a detector;
i.e., false positives. 16, 20, 58, 127, 183

breakdown point (ǫ∗) Non-formally, it is the largest fraction of malicious data that an
estimator can tolerate before the adversary can use the malicious data to arbitrarily
change the estimator. The breakdown point of a procedure is one measure of its
robustness. 54, 55, 104, 169

classification A learning problem in which the learner is tasked with predicting a response
in its response space Y given an input x from its input space X . In a classification
problem, the learned hypothesis is referred to as a classifier. The common case
when the response case is boolean or {0, 1} is referred to as binary classification.
27, 30, 180, 185
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binary classification A classification learning problem where the response space Y is
a set of only two elements; e.g., Y = {0, 1} or Y = {'+', '−'}. 30, 31, 179, 185

classifier (f ) A function f : X → Y that predicts a response variable based on a data
point x ∈ X . In classification, the classifier is selected from the space F based on
a labeled dataset D(train); e.g., in the empirical risk minimization framework. 30,
175, 179, 180

convex combination A linear combination
∑

i αi · x(i) of the vectors
{
x(i)
}

where the
coefficients satisfy αi ≥ 0 and

∑

i αi = 1. 22
convex optimization program A mathematical optimization problem in which a convex

function is minimized over a convex set. 136
convex set A set A is convex if for any pair of objects a, b ∈ A, all convex combinations of

a and b are also in A; i.e., αa + (1− α) b ∈ A for all α ∈ [0, 1]. 22
convex-inducing classifier A binary classifier f for which either X+

f or X−
f is a convex

set. 7, 19, 20, 58, 128, 129, 132, 135–137, 143, 148, 154, 155, 163, 164, 220, 221
cost function A function that describes the cost incurred in a game by a player (the

adversary or learner) for their actions. In this dissertation, the cost for the learner
is a loss function based solely on the learners predictions whereas the cost for the
adversary may also be data dependent. 36

covering number The minimum number of balls need to cover an object and hence, a
measure of the objects complexity. 131

data A set of observations about the state of a system. 25
data collection The process of collecting a set of observations about the system that

comprise a dataset. 27, 46, 181
data point (x) An element of a dataset that is a member of X . 16, 27, 28, 30, 31, 176,

180, 181, 183
data sanitization The process of removing anomalous data from a dataset prior to training

on it. 19, 58
dataset (D) An indexed set of data points denoted by D. 27, 29, 30, 175, 180, 182
defender In the learning games introduced in Chapter 3, the defender is learning agent

who plays against an attacker. If the learning agent is able to achieve its security
goals in the game, it has achieved secure learning. 30, 38

degree of security the level of security expected against an adversary with a certain set
of objectives, capabilities, and incentives based on a threat model. 9

denial-of-service attack (DoS) An attack that disrupts normal activity within a system.
6, 19, 45, 52, 93, 96–102, 105, 109, 110, 112, 122, 163

dictionary attack A Causative Availability attack against SpamBayes, in which attack
messages contain an entire dictionary of tokens to be corrupted. 68, 69

dispersion The notion of the spread or variance of a random variable (also known as
the scale or deviation). Common estimators of dispersion include the standard
deviation and the median absolute deviation. 94, 95, 104–106

distributional robustness A notion of robustness against deviations from the distribution
assumed by a statistical model; e.g., outliers. 95

empirical risk minimization The learning principle of selecting a hypothesis that mini-
mizes the empirical risk over the training data. 30, 180

empty set The set containing no objects. 21
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expert An agent that can make predictions or give advice that is used to create a composite
predictor based on the advice received from a set of experts. 56

explanatory variable An observed quantity that is used to predict an unobservable re-
sponse variable. 27

false negative An erroneous prediction that a positive instance is negative. 31, 35, 93
false negative rate The frequency at which a predictor makes false negatives. In ma-

chine learning and statistics, this is a common performance measure for assessing
a predictor along with the false positive rate. 31, 61, 93, 109, 181, 186

false positive An erroneous prediction that a negative instance is positive. 31, 179
false positive rate The frequency at which a predictor makes false positives. In ma-

chine learning and statistics, this is a common performance measure for assessing
a predictor along with the false negative rate. 31, 61, 93, 109, 181

feature An element of a data point; typically a particular measurement of the overall object
that the data point represents. 27

feature deletion attack An attack proposed by Globerson and Roweis [2006] in which the
adversary first causes a learning agent to associate intrusion instances with irrele-
vant features and subsequently removes these spurious features from his intrusion
instances to evade detection. 47

feature selection The second phase of data collection in which the data are mapped to an
alternative space X̂ to select the most relevant representation of the data for the
learning task. This dissertation does not distinguish between the feature selection
and measurement phases; instead they are considered to be a single step and X is
used in place of X̂ . 28, 181

feature selection map (φ) The (data-dependent) function used by feature selection to
map from the original input space X to a second feature space X̂ of the features
most relevant for the subsequent learning task. 28, 46, 159

Gaussian distribution (N (µ, σ)) A continuous probability distribution with support on
ℜ parameterized by a center µ ∈ ℜ and a scale σ ∈ ℜ+ that has a probability

density function given by 1√
2πσ

exp
(

− (x−µ)2

2σ2

)

. 29

good word attack A spam attack studied by Wittel and Wu [2004] and Lowd and Meek
[2005a], in which the spammer adds words associated with non-spam messages to
their spam in order to evade a spam filter. More generally, any attack where an
adversary adds features to make intrusion instances appear to be normal instances.
44

gross-error model (Pǫ (FZ)) A family of distributions about the known distribution FZ
parameterized by the fraction of contamination ǫ that combine FZ with a fraction
ǫ of contamination from distributions HZ ∈ PZ . 55

gross-error sensitivity The supremum, or smallest upper bound, on the magnitude of
the influence function for an estimator; this serves as a quantitative measure of a
procedure or estimator. 55

hypothesis (f ) A function f mapping from the data space X to the response space Y. The
task for a learner is to select a hypothesis from its hypothesis space to best predict
the response variables based on the input variables. 25, 28–31, 179, 181, 184, 185

hypothesis space (F) The set of all possible hypotheses, f , that are supported by the
learning model. While this space is often infinite, it is indexed by a parameter θ

that maps to each hypothesis in the space. 28–30, 181, 185
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index set A set I that is used as an index to the members of another set X such that there
is a mapping from each element of I to a unique element of X. 22

indicator function The function I [·] that is 1 when its argument is true and is 0 otherwise.
21

inductive bias A set of (implicit) assumptions used in inductive learning to bias general-
izations from a set of observations. 25

inductive learning A task where the learner generalizes a pattern from training examples;
e.g., finding a linear combination of features that empirically discriminates between
positive and negative data points. 25

influence function (IF (z;H ,FZ)) A functional used extensively in robust statistics that
quantifies the impact of an infinitesimal point contamination at z on an asymptotic
estimator H on distribution FZ ; see Chapter 3.5.4.3. 54, 55, 169, 181

input space (X ) The space of all data points. 27, 176, 177, 179
intrusion detection system A detector that is designed to identify suspicious activity

that is indicative of illegitimate intrusions. Typically these systems are either host-
based or network-based detectors. 35

intrusion instance A data point that corresponds to an illegitimate activity. The goal of
malfeasance detection is to properly identify normal and intrusion instances and
prevent the intrusion instances from achieving their intended objective. 30, 181,
184

intrusion prevention system A system tasked with detecting intrusions and taking au-
tomatic actions to prevent detected intrusions from succeeding. 35

iterated game In game theory, a game in which players choose moves in a series of repe-
titions of the game. 56, 184

label A special aspect of the world that is to be predicted in a classification problem or
past examples of this quantity associated with a set of data points that are jointly
used to train the predictor. 27, 30, 177

labeled dataset A dataset in which each data point has an associated label. 27, 180
learner An agent or algorithm that performs actions or makes predictions based on past

experiences or examples of how to properly perform its task. When presented with
new examples, the learner should adapt according to a measure of its performance.
28, 181

learning algorithm Any algorithm that adapts to a task based on past experiences of the
task and a performance measure to assess its mistakes. 29

loss function A function, commonly used in statistical learning, that assesses the penalty
incurred by a learner for making a particular prediction/action compared to the
best or correct one according to the true state of the world; e.g., the squared loss
for real-valued prediction is given by L (y, ŷ) , (ŷ − y)2. 25, 30, 180

machine learning A scientific discipline that investigates algorithms that adapt their
behavior based on past experiences and observations. As stated by Mitchell [1997],
“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks in T , as
measured by P , improves with experience E”. 25

malfeasance detection The task of detecting some particular form of illegitimate activity;
e.g., virus, spam, intrusion, or fraud detection. 2, 182
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measurement An object mapped from the space of real-world object to the data repre-
sentation used by a learning algorithm. 27

measurement map A description of the process that creates a measurement based on the
observations and properties of a real world object. 27

median absolute deviation A robust estimator for dispersion defined by Equation (5.5),
which attains the highest possible breakdown point of 50% and is the most robust
M-estimator for dispersion. 95

membership query A query sent to an oracle to determine set membership for some set
defined by the oracle’s responses. 130, 154

mimicry attack An attack where the attacker tries to disguise malicious activity to appear
to be normal. 47

minimal adversarial cost (MAC ) The smallest adversarial cost A that can be obtained
for instances in the negative class X−

f of a deterministic classifier f . 130
Minkowski metric A distance metric for the convex set C which is defined relative to a

point x(c) in the interior of the set. 135, 176
multiplicative gap (G(∗)) The multiplicative difference between the estimated optimum Ĉ

and the global optimum C∗ as measured by the ratio between these two quantities:
Ĉ
C∗ . When the global optimum is not known, this gap refers to the ratio between
the estimated optimum and a lower bound on the global optimum. 133

multiplicative optimality A form of approximate optimality where the estimated op-

timum Ĉ is compared to global optimum C∗ using the ratio Ĉ
C∗ ; ǫ-multiplicative

optimality is achieved when this ratio is less than or equal to 1 + ǫ. 132

near-isotropic A set or body that is nearly round as defined by Equation 6.11. 147, 148
near-optimal evasion problem A framework for measuring the difficulty for an adver-

sary to find blind spots in a classifier using a probing attack with few queries. A
family of classifiers is considered difficult to evade if there is no efficient query-based
algorithm for finding near-optimal instances; see Chapter 6. 7, 48, 127, 131, 179,
184

negative class The set of data points that are classified as negative by the classifier f
(denoted by X−

f ). 30, 135–137, 148, 154, 155, 177, 183
norm (‖·‖) A non-negative function on a vector space X that is zero only for the zero

vector 0 ∈ X , is positive homogeneous, and obeys the triangle inequality. 22, 176
normal instance A data point that represents normal (allowable) activity such as a regular

email message. 30, 181, 184

obfuscation Any method used by adversaries (particularly spammers) to conceal their
malfeasance. 5, 7, 11, 43, 44, 47, 68, 74

Ockham’s Razor An assumption that the simplest hypothesis is probably the correct one.
25

OD flow volume anomaly An unusual traffic pattern in an OD flow between two points-
of-presence (PoPs) in a communication network; e.g., a DoS attack. 96

one-class support vector machine A formulation of the support vector machine used
for anomaly detection. 14

one-shot game In game theory, any game in which players each make only a single move.
55

online training Training in which data points from the training dataset arrive sequentially.
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Often, online training consists of sequential prediction followed by re-training as
described in Chapter 3.6. 29

overfitting A phenomenon in which a learned hypothesis fails to generalize to test data;
i.e., it poorly predicts new data items drawn from the same distribution. Typically
this occurs because the model has too much complexity for its training data and
captures random fluctuations in it rather than the underlying relationships. Note,
this phenomenon is distinct from non-stationarity; e.g., distribution shift. 31, 184

PCA Evasion Problem A problem discussed in Chapter 5 in which the attacker attempts
to send DoS attacks that evade detection by a PCA subspace-based detector as
proposed by Lakhina et al. [2004b]. 100

performance measure A function used to assess the predictions made by or actions taken
by a learning agent. 30, 181, 182, 185

polymorphic blending attack Attacks proposed by Fogla and Lee [2006] that use encryp-
tion techniques to make intrusion instances indistinguishable from normal instances.
43

positive class (X+
f ) The set of data points that are classified as positive by the classifier

f (denoted by X+
f ). 30, 130, 135–137, 148, 154, 177, 220–222, 225

positive homogeneous function Any function p on a vector space X that satisfies
p (ax) = |a| p (x) for all a ∈ ℜ and x ∈ X . 139, 176, 183

prediction The task of predicting an unobserved quantity about the state of a system
based on observable information about the system’s state and past experience. 29

prior distribution A distribution on the parameters of a model that reflects information
or assumptions about the model formed before obtaining empirical data about it.
63, 210

probably approximately correct A learning framework introduced by Valiant [1984] in
which the goal of the learner is to select a hypothesis that achieve a low training
error with high probability. 53

probing attack An attack which uses queries to discern hidden information about a system
that could expose its weaknesses; see near-optimal evasion problem. 42, 183

query A questionb posed to an oracle; in an adversarial learning setting, queries can be
used to infer hidden information about a learning agent. 42, 45, 48, 128, 129,
131–134, 136, 137, 139, 141, 143, 144, 146, 148, 152, 153, 155, 158–160

regret The difference in loss incurred by a composite predictor and the loss of an expert
used by the composite in forming its predictions. 56, 57

cumulative regret (R(m)) The total regret received for the mth expert over the course
of K rounds of an iterated game. 57, 184

instantaneous regret (r(k,m)) The difference in loss between the composite predictor
and the mth expert in the kth round of the game. 56

worst-case regret (R∗) The maximum cumulative regret for a set of M experts. 57,
184

regret minimization procedure A learning paradigm in which the learner dynamically
re-weighs advice from a set of experts based on their past performance so that the
resulting combined predictor has a small worst-case regret; i.e., it predicts almost
as well as the best expert in hindsight. 57

regularization The process of providing additional information or constraints in a learning
problem to solve an ill-posed problem or to prevent overfitting, typically by penal-
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izing hypothesis complexity or introducing a prior distribution. Regularization
techniques include smoothness constraints, bounds on the norm of the hypothesis,
‖f ‖, and prior distributions on parameters. 31

residual rate A statistic which measures the change in the size of the residual caused by
adding a single unit of traffic volume into the network along a particular OD flow.
Alternatively, it can be thought of as a measure of how closely a subspace aligns
with the flow’s vector. 110

response space (Y) The space of values for the response variables; in classification this
is a finite set of categories and in binary classification it is {'+', '−'}. 27, 30, 177,
179, 180

response variable An unobserved quantity that is to be predicted based on observable
explanatory variables. 27, 180, 185

risk (R (PZ , f )) The expected loss of a decision procedure f with respect to data drawn
from the distribution PZ . 30

robust statistics The study and design of statistical procedures that are resilient to small
deviations from the assumed underlying statistical model; e.g., outliers. 53

scale invariant A property that does not change when the space is scaled by a constant
factor. 134

secure learning The ability of a learning agent to achieve its security goals in spite of the
presence of an adversary who tries to prevent it from doing so. 3, 180

security goal Any objective that a system needs to achieve to ensure the security of the
system and/or its users. 35

security-sensitive domain A task or problem domain in which malicious entities have a
motivation and a means to disrupt the normal operation of system. In the context
of glsadversarial learning, these are problems where and adversary wants to mislead
or evade a learning algorithm. 1–3, 33, 35

set A group of objects. 21
set indicator function The function IX [·] associated with the set X that is 1 for any x ∈ X

and is 0 otherwise. 21
shift invariant A property that does not change when the space is shifted by a constant

amount. 134
stationarity A stochastic process in which a sequence of observations are all drawn from

the same distribution. Also, in machine learning, it is often assumed that the
training and evaluation data are both drawn from the same distribution—I refer
to this as an assumption of stationarity. 25, 35

support vector machine A family of (non-linear) learning algorithms that find a maxi-
mally separating hyperplane in a high-dimensional space known as its Reproducing
Kernel Hilbert Space (RKHS). The kernel function allows the SVM to compute
inner products in that space without explicitly mapping the data into the RKHS..
42

threat model A description of an adversary’s incentives, capabilities and limitations. 9,
35, 180

training The process of using a training dataset D(train) to choose a hypothesis f from
among a hypothesis space, F . 29, 179, 183

training algorithm (H (N)) An algorithm that selects a classifier to optimize a performance
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measure for a training dataset; also known as an estimating procedure or learning
algorithm. 29

true positive rate The frequency for which a predictor correctly classifies positive in-
stances. This is a common measure of a predictor’s performance and is one minus
the false negative rate. 109

unfavorable evaluation distribution A distribution introduced by the adversary during
the evaluation phase to defeat the learner’s ability to make correct predictions; this
is also referred to as distributional drift . 46

VC-dimension The VC or Vapnik-Chervonenkis dimension is a measure of the complexity
of a family of classifiers, which is defined as the cardinality of the largest set of data
points that can be shattered by the classifiers. 131

vector An element in a vector space for which vector addition and scalar multiplication
are defined. 22, 186

vector space A set of objects (vectors) that can be added or multiplied by a scalar;
i.e., the space is closed under vector addition and scalar multiplication operations
that obey associativity, commutativity, and distributivity and has an additive and
multiplicative identity as well as additive inverses. 22, 176, 183, 184, 186

virus detection system A detector tasked with identifying potential computer viruses.
35
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László Lovász and Santosh Vempala. Hit-and-run from a corner. In Proceedings of the
Thirty-Sixth Annual ACM Symposium on Theory of Computing (STOC), pages 310–314,
2004.
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Appendix A

Background

A.1 Covering Hyperspheres

Here I summarize the properties of hyperspheres and spherical caps and a covering number
result provided by Wyner [1965], Shannon [1959]. This covering result will be used to bound
the number of queries required by any algorithm for ℓ2 costs in Appendix C.4.

A D-dimensional hypersphere is simply the set of all points with ℓ2 distance less than or
equal to its radius R for its centroid (here: xA); i.e.; the ball BR (A2). Any D-dimensional
hypersphere of radius R ,SR, has volume

vol
(
SR
)

=
π

D
2

Γ
(
1 + D

2

) ·RD (A.1)

and surface area

surf
(
SR
)

=
D · π D

2

Γ
(
1 + D

2

) ·RD−1 .

A D-dimensional spherical cap is the region formed by the intersection of a halfspace and
a hypersphere facing away from the center of the hypersphere as depicted in Figure A.1(a).
The cap has a height of h which represents the maximum length between the plane and
the spherical arc. A cap of height h on a D-dimensional hypersphere of radius R will be
denoted by CR

h and has a volume

vol
(
CR

h

)
=

π
D−1

2 RD

Γ
(

D+1
2

)

∫ arccos(R−h
R )

0
sinD (t) dt

and a surface area

surf
(
CR

h

)
=

(D − 1) · π D−1
2 RD−1

Γ
(

D+1
2

)

∫ arccos(R−h
R )

0
sinD−2 (t) dt .

Alternatively, the cap can be parameterized in terms of the hypersphere’s radius R and the
half-angle φ about a central radius (through the peak of the cap) as in Figure A.1(b). A cap
of half angle φ forms the right triangle depicted in the figure, for which R − h = R cos (φ)
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h

(a) A Spherical Cap on a Circle

h

R
− h

R

√

h(2R−
h)

φ

(b) An Angular Cap on a Circle

Figure A.1: This figure shows various depictions of spherical caps. (a) A depiction of
a spherical cap of height h that is created by a halfspace that passes through the sphere.
The green region represents the area of the cap. (b) The geometry of the spherical cap;
the intersecting halfspace forms a right triangle with the centroid of the hypersphere. The
length of the side of this triangle adjacent to the centroid is R−h, its hypotenuse has length
R, and the side opposite the centroid has length

√

h(2R− h). The half angle φ given by

sin (φ) =

√
h(2R−h)

R of the right circular cone can also be used to parameterize the cap.
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so that h can be expressed in terms of R and φ as h = R ∗ (1 − cos φ). Substituting this
expression for h into the above formulas yields the volume of the cap as

vol
(
CR

φ

)
=

π
D−1

2 RD

Γ
(

D+1
2

)

∫ φ

0
sinD (t) dt (A.2)

and its surface area as

surf
(
CR

φ

)
=

(D − 1) · π D−1
2 RD−1

Γ
(

D+1
2

)

∫ φ

0
sinD−2 (t) dt .

Based on these formulas, I now bound the number of spherical caps of half-angle φ re-
quired to cover the sphere mirroring the result in Wyner [1965]; Capabilities of Bounded
Discrepancy Decoding.

Lemma A.1. (Result based on Wyner [1965]) Covering the surface of D-dimensional
hypersphere of radius R, SR, requires at least

(
1

sin (φ)

)D−2

spherical caps of half-angle φ.

Proof. Suppose there are M caps that cover the hypersphere. The total surface area of the
M caps must be at least the surface area of the hypersphere. Thus,

M ≥ surf
(
SR
)

surf
(

CR
φ

)

≥
D·π

D
2

Γ(1+ D
2 )
·RD−1

(D−1)·π
D−1

2 RD−1

Γ(D+1
2 )

∫ φ
0 sinD−2 (t) dt

≥ D
√

πΓ
(

D+1
2

)

(D − 1)Γ
(
1 + D

2

)

[∫ φ

0
sinD−2 (t) dt

]−1

,

which is the result derived by Wyner (although applied as a bound on the packing number
rather than the covering number). I continue by lower bounding the above integral. As

demonstrated above, integrals of the form
∫ φ
0 sinD (t) dt arise in computing the volume or

surface area of a spherical cap. To upper bound the volume of such a cap, note that
i) the spherical cap is defined by a hypersphere and a hyperplane, ii) their intersection
form a (D − 1)-dimensional hypersphere as the base of the cap, iii) the projection of the
center of the first hypersphere onto the hyperplane is the center of the (D− 1)-dimensional
hyperspherical intersection, iv) the distance between these centers is R − h, and v) this
projected point achieves the maximum height of the cap; i.e., continuing along the radial
line achieves the remaining distance h—the height of the cap. I use these facts to upper
bound the volume of the cap by enclosing the cap within a D-dimensional hypersphere.
As seen in Figure A.1(b), the center of the (D− 1)-dimensional hyperspherical intersection
forms a right triangle with the original hypersphere’s center and the edge of the intersecting
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spherical region (by symmetry, all such edge points are equivalent). That right triangle
has one side of length R − h and a hypotenuse of R. Hence, the other side has length
s =

√

h(2R− h) = R sin (φ). Moreover, R ≥ h implies s ≥ h. Thus, a D-dimensional
hypersphere of radius s encloses the cap and its volume from Equation (A.1) bounds the
volume of the cap as

vol
(
CR

φ

)
≤ vol (Ss) =

π
D
2

Γ
(
1 + D

2

) · (R sin (φ))D .

Applying this bound to the formula for the volume of the cap in Equation A.2 then yields
the following bound on the integral:

π
D−1

2 RD

Γ
(

D+1
2

)

∫ φ

0
sinD (t) dt ≤ π

D
2

Γ
(
1 + D

2

) · (R sin (φ))D

∫ φ

0
sinD (t) dt ≤

√
πΓ
(

D+1
2

)

Γ
(
1 + D

2

) · sinD (φ) .

Using this bound on the integral, the bound on the size of the covering from Wyner reduces
to the following (weaker) bound

M ≥ D
√

πΓ
(

D+1
2

)

(D − 1)Γ
(
1 + D

2

)

[√
πΓ
(

D−1
2

)

Γ
(

D
2

) · sinD−2 (φ)

]−1

.

Finally, using properties of the gamma function, it can be shown that
Γ(D+1

2 )Γ(D
2 )

Γ(1+ D
2 )Γ(D−1

2 )
= D−1

D

which simplifies the above expression to

M ≥
(

1

sin (φ)

)D−2

.

It is worth noting that by further bounding the integral
∫ φ
0 sinD (t) dt, the bound in

Lemma A.1 is weaker than the original bound on the covering derived in Wyner [1965].
However, the bound provided by the lemma is more useful for later results because it is
expressed in a closed form (see the proof for Theorem 6.10 in Appendix C.4).

Of course, there are other tighter bounds on the power-of-sine integral. In Lemma A.1,
this quantity was bounded using a bound on the volume of a spherical cap, but here I
instead bound the integral directly. A naive bound can be accomplished by observing that
all the terms in the integral are less than the final term, which yields

∫ φ

0
sinD (t) dt ≤ φ · sinD (φ) ,

but this bound is looser than the bound achieved in the lemma. However, by first performing
a variable substitution, a tighter bound on the integral can be obtained. The variable
substitution is given by letting p = sin2 (t), t = arcsin

(√
p
)
, and dt = dp

2
√

1−p
√

p
. This yields

∫ φ

0
sinD (t) dt =

1

2

∫ sin2(φ)

0

p
D−1

2√
1− p

dp .
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Within the integral, the denominator is monotonically decreasing in p since, for the interval
of integration, p ≤ 1. Thus it achieves its minimum value at the upper limit p = sin2 (φ).
Fixing the denominator at this value therefore results in the following upper bound on the
integral:

∫ φ

0
sinD (t) dt ≤ 1

2 cos (φ)

∫ sin2(φ)

0
p

D−1
2 dp =

sinD+1 (φ)

(D + 1) cos (φ)
. (A.3)

This bound is not strictly tighter than the bound applied in Lemma A.1, but for large D
and φ < π

2 , this result does achieve a tighter bound. I apply this bound for additional
analysis in Chapter 6.3.1.4.

A.2 Covering Hypercubes

Here I introduce results for covering a D-dimensional hypercube graphs—a collection of 2D

nodes of the form 〈±1,±1, . . . ,±1〉 where each node has an edge to every other node that is
Hamming distance 1 from it. The following lemma summarizes coverings of a hypersphere
and is utilized in Appendix C.3 for a general query complexity result for ℓp distances:

Lemma A.2. For any 0 < δ < 1
2 , to cover a D-dimensional hypercube graph so that every

vertex has a Hamming distance of at most ⌊δD⌋ to some vertex in the covering, the number
of vertices in the covering must be

Q (D, h) ≥ 2D(1−H(δ)) ,

where H (δ) = −δ log2 (δ)− (1− δ) log2 (1− δ) is the entropy of δ.

Proof. There are 2D vertices in the D-dimensional hypercube graph. Each vertex in the
covering is within a Hamming distance of at most h for exactly

∑h
k=0

(
D
k

)
vertices. Thus,

one needs at least 2D/
(
∑h

k=0

(
D
k

))

to cover the hypercube graph. Now I apply the bound

⌊δD⌋
∑

k=0

(
D

k

)

≤ 2H(δ)D

to the denominator, which is valid for any 0 < δ < 1
2 .

Lemma A.3. The minimizer of the ℓp cost function Ap to any target xA on the halfspace
H(w,b) =

{
x
∣
∣ x⊤w ≥ b⊤w

}
can be expressed in terms of the equivalent hyperplane x⊤w ≥

d parameterized by a normal vector w and displacement d =
(
b− xA

)⊤
w as

{

d · ‖w‖−1
p

p−1
, if d > 0

0 , otherwise
(A.4)

for all 1 < p <∞ and is {

d · ‖w‖−1
1 , if d > 0

0 , otherwise
(A.5)

for p =∞.
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Proof. For 1 < p < ∞, minimizing Ap on the halfspace H(w,b) is equivalent to finding a
minimizer for

min
x

1

p

D∑

i=1

|xi|p s.t. x⊤w ≤ d .

Clearly, if d ≤ 0 then the vector 0 (corresponding to xA in the transformed space) trivially
satisfies the constraint and minimizes the cost function with cost 0 which yields the second
case of Equation (A.4). For the case d > 0, I construct the Lagrangian

L (x, λ) ,
1

p

D∑

i=1

|xi|p − λ
(

x⊤w − d
)

.

Differentiating this with respect to x and setting that partial derivative equal to zero yields

x∗
i = sign (wi) (λ|wi|)

1
p−1 .

Plugging this back into the Lagrangian yields

L (x∗, λ) =
1− p

p
λ

p
p−1

D∑

i=1

|wi|
p

p−1 + λd ,

which I differentiate with respect to λ and set the derivative equal to zero to yield

λ∗ =

(

d
∑D

i=1 |wi|
p

p−1

)p−1

.

Plugging this solution into the formula for x∗ yields the solution

x∗
i = sign (wi)

(

d
∑D

i=1 |wi|
p

p−1

)

|wi|
1

p−1 .

The ℓp cost of this optimal solution is given by

Ap (x∗) = d · ‖w‖−1
p

p−1
,

which is the first case of Equation (A.4).

For p = ∞, once again if d ≤ 0 then the vector 0 trivially satisfies the constraint and
minimizes the cost function with cost 0 which yields the second case of Equation (A.5). For
the case d > 0, I use the geometry of hypercubes (the equi-cost balls of a ℓ∞ cost function)
to derive the second case of Equation (A.5). Any optimal solution must occur at a point
where the hyperplane given by x⊤w = b⊤w is tangent to a hypercube about xA—this can
either occur along a side (face) of the hypercube or at a corner. However, if the plane is
tangent along a side (face) it is also tangent at a corner of the hypercube. Hence, there is
always an optimal solution at some corner of optimal cost hypercube.

The corner of the hypercube has the following property:

|x∗
1| = |x∗

2| = . . . = |x∗
D| ;
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that is, the magnitude of all coordinates of this optimal solution is the same value. Further,
the sign of the optimal solution’s ith coordinate must agree with the sign of the hyperplane’s
ith coordinate, wi. These constraints, along with the hyperplane constraint, lead to the
following formula for an optimal solution:

xi = d · sign (wi) ‖w‖−1
1 .

The ℓ∞ cost of these solutions is simply d · ‖w‖−1
1 .
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Appendix B

Analysis of SpamBayes

In this appendix, I analyze the effect of attack messages on SpamBayes. This analysis
serves as the motivation for the attacks presented in Chapter 4.3.

B.1 SpamBayes’ I (·) Message Score

As mentioned in Chapter 4.1.1, the SpamBayes I (·) function used to estimate spaminess
of a message, is the average between its score S (·) and one minus its score H (·). Both
of these scores are expressed in terms of the chi-squared cumulative distribution function
(CDF): χ2

2n (·). In both these score functions, the argument to the CDF is an inner product
between the logarithm of a scores vector and the indicator vector δ (x̂) as in Equation (4.3).
These terms can be re-arranged to rewrite these functions as S (x̂) = 1−χ2

2n (−2 log sq (x̂))
and H (x̂) = 1− χ2

2n (−2 log hq (x̂)) where sq (·) and hq (·) are scalar functions that map x̂
onto [0, 1] defined as

sq (x̂) ,
∏

i

q
δ(x̂)i

i (B.1)

hq (x̂) ,
∏

i

(1− qi)
δ(x̂)i . (B.2)

I further explore these functions in the next section, but first I expound on the properties
of χ2

k (·).
The χ2

k (·) CDF can be written out exactly using gamma functions. For k ∈ ℵ and
x ∈ ℜ0+ it is simply

χ2
k (x) =

γ (k/2, x/2)

Γ (k/2)

where the lower-incomplete gamma function is γ (k, y) =
∫ y
0 tk−1e−tdt, the upper-

incomplete gamma function is Γ (k, y) =
∫∞
y tk−1e−tdt, and the gamma function is Γ (k) =

∫∞
0 tk−1e−tdt. By these definitions, it follows that for any k and y, the gamma functions

are related by Γ (k) = γ (k, x) + Γ (k, x). Also note that for k ∈ ℵ

Γ (k, y) = (k − 1)! e−y
k−1∑

j=0

yj

j!
Γ (k) = (k − 1)! .
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Based on these properties, the S (·) score can be rewritten as

S (x̂) =
Γ (n,− log sq (x̂))

Γ (n)
= sq (x̂)

n−1∑

j=0

(− log sq (x̂))j

j!

H (x̂) =
Γ (n,− log hq (x̂))

Γ (n)
= hq (x̂)

n−1∑

j=0

(− log hq (x̂))j

j!
.

It is easy shown that both these functions are monotonically non-decreasing in sq (x̂) and
hq (x̂) respectively. For either of these functions, the following derivative can be taken (with
respect to sq (x̂) or hq (x̂)):

d

dx



x
n−1∑

j=0

(− log x)j

j!



 =
1

(n− 1)!
(− log x)n−1 ,

which is non-negative for 0 ≤ x ≤ 1.

B.2 Constructing Optimal Attacks on SpamBayes

As indicated by Equation (4.7) in Chapter 4.3.1, an attacker with objectives described in
Chapter 4.2.1 would like to have the maximal (deleterious) impact on the performance of
SpamBayes. In this section, I analyze SpamBayes’ decision function I (·) to optimize the
attacks’ impact. Here I show that the attacks proposed in Chapter 4.3.1 are (nearly) optimal
strategies for designing a single attack message that maximally increases I (·).

In the attack scenario described in Chapter 4.3.1.1, the attacker will send a series of

attack messages which will increase N (s) and n
(s)
j for the tokens that are included in the

attacks. I will show how I (·) changes as the token counts n
(s)
j are increased to understand

which tokens the attacker should choose to maximize the impact per message. This analysis
separates into two parts based on the following observation.

Remark Given a fixed number of attack spam messages, qj is independent of the number
of those messages containing the kth token for all k 6= j.

This remark follows from the fact that the inclusion of the jth token in attack spams

affects n
(s)
j and nj but not n

(h)
k , N (s), N (h), n

(s)
k , n

(h)
k , or nk for all k 6= j (see Equations (4.1)

and (4.2) in Chapter 4.1.1).

After an attack consisting of a fixed number of attack spam messages, the score I (x̂)
of an incoming test message x̂ can be maximized by maximizing each qj separately. This
motivates dictionary attacks and focused attacks—intuitively, the attacker would like to
maximally increase the qj of tokens appearing (or most likely to appear) in x̂ depending on
the information the attacker has about future messages.

Thus, I first analyze the effect of increasing n
(s)
j on its score qi in Section B.2.1. Based

on this, I subsequently analyze the change in I (x̂) that is caused altering the token score qi

in Section B.2.2. As one might expect, since increasing the number of occurrences of the jth
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token in spam should increase the posterior probability that a message with the jth token
is spam, I show that including the jth token in an attack message generally increases the
corresponding score qj more than not including that token (except in unusual situations
which I identify below). Similarly, I show that increasing qj generally increases the overall
spam score I (·) of a message containing the jth token. Based on these results, I motivate
the attack strategies presented in Chapter 4.3.1.

B.2.1 Effect of Poisoning on Token Scores

In this section, I establish how token spam scores change as the result of attack messages
in the training set. Intuitively, one might expect that the jth score qj should increase when
the jth token is added to the attack email. This would be the case, in fact, if the token
score in Equation (4.1) were computed according to Bayes’ Rule. However, as noted Chap-
ter 4.1, the score in Equation (4.1) is derived by applying Bayes’ Rule with an additional
assumption that the prior of spam and ham is equal. As a result, there are circumstances in
which the spam score qj can decrease when the jth token is included in the attack email—
specifically when the assumption is violated. Here, I show that this occurs when there is
an extraordinary imbalance between the number of ham and spam in the training set.

As in Chapter 4.3, I consider an attacker whose attack messages are composed a single
set of attack tokens; i.e., each token is either included in all attack messages or none. In
this fashion, the attacker creates a set of k attack messages used in the retraining of the
filter, after which the counts become

N (s) 7→ N (s) + k

N (h) 7→ N (h)

n
(s)
j 7→

{

n
(s)
j + k , if aj = 1

n
(s)
j , otherwise

n
(h)
j 7→ n

(h)
j .

Using these count transformations, I compute the difference in the smoothed SpamBayes
score qj between training on an attack spam message a that contains the jth token and an
attack spam that does not contain it. If the jth token is included in the attack (i.e., aj = 1),
then the new score for the jth token (from Equation 4.1) is

P
(s,k)
j ,

N (h)
(

n
(s)
j + k

)

N (h)
(

n
(s)
j + k

)

+
(
N (s) + k

)
n

(h)
j

.

If the token is not included in the attack (i.e., aj = 0), then the new token score is

P
(s,0)
j ,

N (h)n
(s)
j

N (h)n
(s)
j +

(
N (s) + k

)
n

(h)
j

.

Similarly, I use q
(k)
j and q

(0)
j to denote the smoothed spam score after the attack depending

on whether or not the jth token was used in the attack message. I will analyze the quantity

∆(k)qj , q
(k)
j − q

(0)
j .
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One might reasonably expect this difference to always be non-negative, but here I show
that there are some scenarios in which ∆(k)qj < 0. This unusual behavior is a direct result
of the assumption made by SpamBayes that N (h) = N (s) rather than using a proper prior
distribution. In fact, it can be shown that the usual spam model depicted in Figure 4.1(b)
does not exhibit these irregularities. Below, I will show how SpamBayes’ assumption can
lead to situations where ∆(k)qj < 0 but also that these irregularities only occur when there
is many more spam messages than ham messages in the training dataset. By expanding
∆(k)qj and rearranging terms, the difference can be expressed as:

∆(k)qj =
s · k

(s + nj + k) (s + nj)

(

P
(s,k)
j − x

)

+
k ·N (h) · nj

(s + nj)
(

N (h) · n(s)
j +

(
N (s) + k

)
n

(h)
j

)P
(h,k)
j ,

where P
(h,k)
j = 1 − P

(s,k)
j is the altered ham score of the jth token. The difference can be

rewritten as

∆(k)qj =
k

(s + nj + k) (s + nj)
· αj

αj , s (1− x)

+P
(h,k)
j ·

N (h) · nj (nj + k) + s ·N (h) · n(h)
j − s

(
N (s) + k

)
n

(h)
j

N (h) · n(s)
j +

(
N (s) + k

)
n

(h)
j

.

The first factor k
(s+nj+k)(s+nj)

in the above expression is non-negative so only αj can make

∆(k)qj negative. From this, it is easy to show that N (s) + k must be greater that N (h) for
∆(k)qj to be negative, but I demonstrate stronger conditions. Generally, I demonstrate that
for ∆(k)qj to be negative there must be a large disparity between the number of spams after
the attack, N (s) + numAttacks, and the number of hams, N (h). This reflects the effect of
violating the implicit assumption made by SpamBayes that N (h) = N (s).

Expanding the expression for αj , the following condition is necessary for ∆(k)qj to be
negative:

s
(
N (s) + k

)
n

(h)
j x

N (h)
>

s(1−x)
“

n
(s)
j +k

”

n
(h)
j (N(s)+k)

[(
N (s) + k

)
n

(h)
j + N (h) · n(s)

j

]

+ nj (nj + k) + sn
(s)
j (1− x) + s · n(h)

j

.

Because 1 − x ≥ 0 (since x ≤ 1) and nj = n
(s)
j + n

(h)
j , the right-hand side of the above

expression is strictly increasing in n
(s)
j while the left-hand side is constant in n

(s)
j . Thus,

the weakest condition to make ∆(k)qj negative occurs when n
(s)
j = 0; i.e., tokens that were

not observed in any spam prior to the attack are most susceptible to having ∆(k)qj < 0
while tokens that were observed more frequently in spam prior to the attack require an
increasingly larger disparity between N (h) and N (s) for ∆(k)qj < 0 to occur. Here I analyze

the case when n
(s)
j = 0 and, using the previous constraints that s > 0 and n

(h)
j > 0, I arrive

210



at the weakest condition for which ∆(k)qj can be negative. This condition can be expressed
succinctly as the following condition on xfor the attack to cause a token’s score to decrease1:

x >
N (h)

(

n
(h)
j + s

)(

n
(h)
j + k

)

s
(

n
(h)
j

(
N (s) + k

)
+ kN (h)

) .

First, notice that the right-hand side is always positive; i.e., there will always be some
non-trivial threshold on the value of x to allow for ∆(k)qj to be negative. Further, when
the right-hand side of this bound is at least one, there are no tokens that have a negative

∆(k)qj since the parameter x ∈ [0, 1]. For instance, this occurs when n
(h)
j = 0 or when

N (h) ≥ N (s) + k (as previously noted).

Reorganizing the terms, the bound on the number of spams can be expressed as,

N (s) + k > N (h) ·

(

n
(h)
j

)2
+ (s + k)n

(h)
j + s (1− x) k

sn
(h)
j x

.

This bound shows that the number of spam after the attack, N (s) + k, must be larger than
a multiple of total number of ham, N (h), to have any token with ∆(k)qj < 0. The factor in

this multiple is always greater than one, but depends on the n
(h)
j of the jth token. In fact,

the factor is strictly increasing in n
(h)
j ; thus, the weakest bound occurs when n

(h)
j = 1 (recall

that when n
(h)
j = 0, ∆(k)qj is always non-negative). When we examine SpamBayes’ default

values of s = 1 and x = 1
2 , the weakest bound (for tokens with n

(h)
j = 1 and n

(s)
j = 0) is

N (s) + k > N (h) · (4 + 3k)

Thus, when the number of spam after the attack, N (s) + k, is sufficiently larger than the
number of ham, N (h), it is possible that the score of a token will be lower if it is included
in the attack message than if it were excluded. This is a direct result of the assumption
made by SpamBayes that N (s) = N (h). I have shown that such aberrations will occur most

readily in tokens with low initial values of n
(h)
j and n

(s)
j ; i.e., those seen infrequently in the

dataset. However, for any significant number of attacks, k, the disparity between N (s) + k
and N (s) must be tremendous for such aberrations to occur. Under the default SpamBayes
settings, there would have to be at least 7 times as many spam as ham with only a single
attack message. For more attack messages (k > 1), this bound is even greater. Thus, in
designing attacks against SpamBayes, I ignore the extreme cases outlined here and I assume
that ∆(k)qj always increases if the jth token is included in the attack. Further, none of the
experiments presented in Chapter 4.5 meet the criteria required to have ∆(k)qj < 0.

B.2.2 Effect of Poisoning on I (·)

The key to understanding effect of attacks and constructing optimal attacks against Spam-
Bayes is characterizing conditions under which SpamBayes’ score I (x̂) increases when the

1In the case that n
(s)
j > 0, the condition is stronger but the expression is more complicated.
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Figure B.1: Plot of the aggregation statistic sq (·) relative to a single token score qi; on
the x-axis is qi and on the y-axis is sq (·). Here I consider a scenario where τ=0.14 and
without the ith token sq (x̂ \ {i}) = 0.2. The red dotted line is the value of δ (x̂)i, the blue
dotted line is the value of qi

∏

j 6=i qj (i.e., sq (x̂) without including δ (x̂)), and the blue solid
line is the value of sq (x̂) as qi varies.

training corpus is injected with attack spam messages. To do this, I dissect the method
used by SpamBayes to aggregate token scores.

The statistics sq (x̂) and hq (x̂) from Equation (B.1) and (B.2) are measures of the
spaminess and haminess of the message represented by x̂, respectively. Both assume that
each token in the message presents an assessment of the spaminess of the message—the
score qi is the evidence for spam given by observing the ith token. Further, by assuming
independence, sq (x̂) and hq (x̂) aggregate this evidence into a measure of the overall mes-
sage’s spaminess. For instance, if all tokens have qi = 1, sq (x̂) = 1 indicates that the
message is very spammy and 1−hq (x̂) = 1 concurs. Similarly, when all tokens have qi = 0,
both scores indicate that the message is ham.

These statistics also are (almost) nicely behaved. If we instead consider the ordinary
product of the scores of all tokens in the message x̂, s̃q (x̂) ,

∏

i:x̂i=1 qi, it is a linear function

with respect to each qi, and is monotonically non-decreasing. Similarly, the product h̃q (x̂) ,
∏

i:x̂i=1 (1− qi) is linear with respect to each qi and is monotonically non-increasing. Thus,
if we increase any score qi, the first product will not decrease and the second will not
increase, as expected2. In fact, by redefining the scores I (·), S (·), and H (·) in terms of the
simple products s̃q (x̂) and h̃q (x̂) (which I refer to as Ĩ (·), S̃ (·), and H̃ (·), respectively),
the following lemma shows that Ĩ (·) is non decreasing in qi.

Lemma B.1. The modified Ĩ (x̂) score is non-decreasing in qi for all tokens (indexed by i).

2These statistics do behave oddly in another sense; adding an additional token will always decrease both
products and removing a token will always increase both products. Applying the chi-squared distribution
rectifies this effect.
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Proof. I show that the derivative of Ĩ (x̂) with respect to qk is non-negative for all k. By
rewriting, Equation (4.3) in terms of s̃q (x̂) as S̃ (x̂) = 1 − χ2

2n (−2 log (̃sq (x̂))), the chain
rule can be applied as follows:

∂

∂qk
S̃ (x̂) =

d

ds̃q (x̂)

[
1− χ2

2n (−2 log (̃sq (x̂)))
]
· ∂

∂qk
s̃q (x̂)

d

ds̃q (x̂)

[
1− χ2

2n (−2 log (̃sq (x̂)))
]

=
1

(n− 1)!
(− log (̃sq (x̂)))n−1 .

The second derivative is non-negative since 0 ≤ s̃q (x̂) ≤ 1. Further, the partial derivative
of s̃q (x̂) with respect to qk is simply ∂

∂qk
s̃q (x̂) =

∏

i6=k:x̂i=1 qi ≥ 0. Thus, for all k,

∂

∂qk
S̃ (x̂) ≥ 0 .

By an analogous derivation, replacing qi by 1− qi,

∂

∂qk
H̃ (x̂) ≤ 0 .

The final result is then give by

∂

∂qk
Ĩ (x̂) =

1

2

∂

∂qk
S̃ (x̂)− 1

2

∂

∂qk
H̃ (x̂) ≥ 0 .

However, unlike the simple products, the statistics sq (·) and hq (·) have unusual behavior
because the function δ (·) sanitizes the token scores. Namely, δ (·) is the indicator function
of the set Tx̂. Membership in this set is determined by absolute distance of a token’s score
from the agnostic score of 1

2 ; i.e., by the value gi ,
∣
∣qi − 1

2

∣
∣. The ith token belongs to Tx̂ if

i) x̂i = 1 ii) gi ≥ Q (by default Q = 0.1 so all tokens in (0.4, 0.6) are excluded) and iii) of
the remaining tokens, the token has among the largest T values of gi (by default T = 150).

For my purposes, for every message x̂, there is some value τx̂ < 1
2 that defines an interval

(
1
2 − τx̂, 1

2 + τx̂
)

to exclude tokens. That is

δ (x̂)i = x̂i ·
{

0 if qi ∈
(

1
2 − τx̂, 1

2 + τx̂
)

1 otherwise
.

Clearly, for tokens in x̂, δ (x̂)i steps from 1 to 0 and back to 1 as qi increases. This
causes sq (x̂) to have two discontinuities with respect to qi: it increases linearly on the
intervals

[
0, 1

2 − τx̂
]

and
[

1
2 + τx̂, 1

]
, but on the middle interval

(
1
2 − τx̂, 1

2 + τx̂
)

it jumps
discontinuously to its maximum value. This behavior of is depicted in Figure B.1. Similarly,
hq (x̂) decreases linearly except on the middle interval

(
1
2 − τx̂, 1

2 + τx̂
)

where it also jumps
to its maximum value. Thus, neither sq (x̂) or hq (x̂) have monotonic behavior on the
interval [0, 1].

To better understand how I (x̂) behaves when qi increases given that neither sq (x̂) or
hq (x̂) are monotonic, I analyze its behavior on a case by case basis. For this purpose, I
refer to the three intervals

[
0, 1

2 − τx̂
]
,
(

1
2 − τx̂, 1

2 + τx̂
)
, and

[
1
2 + τx̂, 1

]
as A, B, and C,
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respectively. Clearly, if qi increases but stays within the same interval, I (x̂) also increases.
This follows from Lemma B.1 and the fact that I (x̂) will not change if qi remains within
interval B. Similarly, I (x̂) also increases if qi increases from interval A to interval C; this
too follows from Lemma B.1. The only cases when I (x̂) may decrease when qi increases
occur when either qi transitions from interval A to B or qi transitions from interval B to C,
but in these cases, the behavior of I (x̂) depends heavily on the scores for the other tokens
in x̂ and the value of qi before it increases as depicted by Figure B.2. It is also worth noting
that I (x̂) in fact will never decrease if x̂ has more than 150 tokens outside the interval
(0.4, 0.6), since in this case increasing qi either into or out of B also corresponds to either
adding or removing a second token score qj . The effect in this case is that I (x̂) always
increases.

The attacks against SpamBayes that I introduce in Chapter 4.3 ignore the fact that
I (x̂) may decrease when increasing some token scores. In this sense, these attacks are not
truly optimal. However, determining which set of tokens will optimally increase the overall
I (·) of a set of future messages {x̂} is a combinatorial problem that seems infeasible for a
real-world adversary. Instead, I consider attacks that are optimal for the relaxed version of
the problem that incorporates all tokens from x̂ in computing I (x̂). Further, in Chapter 4.5,
I show that these approximate techniques are extraordinarily effective against SpamBayes
in spite of the fact some non-optimal tokens are included in the attack messages.
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Change in I (·)-score with 1 additional token
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Change in I (·)-score with 3 additional tokens
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Change in I (·)-score with 5 additional tokens
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Figure B.2: The effect of the δ (·) function on I (·) as the score of the ith token, qi, increases
causing qi to move into or out of the region (0.4, 0.6) where all tokens are ignored. In each
plot, the x-axis is the value of qi before it’s removal and the y-axis is the change in I (·)
due to the removal; note that the scale on the y-axis decreases from top to bottom. For the
top-most row of plots there is 1 unchanged token scores in addition to the changing one, for
the middle row there are 3 additional unchanged token scores, and for the bottom row there
are 5 additional unchanged token scores. The plots in the left-most column demonstrate
the effect of removing the ith token when initially qi ∈ (0, 0.4); the scores of the additional
unchanging tokens are all fixed to the same value of 0.02 (dark red), 0.04, 0.06, 0.08, 0.10,
or 0.12 (light red). The plots in the right-most column demonstrate the effect of adding the
ith token when initially qi ∈ (0.4, 0.6); the scores of the additional unchanging tokens are
all fixed to the same value of 0.88 (dark blue), 0.90, 0.92, 0.94, 0.96, or 0.98 (light blue).

215



216



Appendix C

Proofs for Near-Optimal Evasion

In this appendix, I give proofs for the theorems from Chapter 6. First, I show that the
query complexity of K-step MultiLineSearch is O

(
Lǫ +

√
Lǫ|W|

)
when K = ⌈√Lǫ⌉.

Second, I show three lower bounds for different cost functions. Each of the lower bound
proofs follow a similar argument: I use classifiers based on the cost-ball and classifiers
based on the convex hull of the queries to construct two alternative classifiers with different
ǫ-IMAC s. This allows me to show results on the minimal number of queries required.

C.1 Proof of K-step MultiLineSearch Theorem

To analyze the worst case of K-step MultiLineSearch (Algorithm 6.4), I analyze the
malicious classifier that maximizes the number of queries. I refer to the querier as the
adversary .

Proof of Theorem 6.3. At each each iteration of Algorithm 6.4, the adversary chooses some
direction, e not yet eliminated from W. Every direction in W is feasible (i.e., could yield
an ǫ-IMAC ) and the malicious classifier, by definition, will make this choice as costly as
possible. During the K steps of binary search along this direction, regardless of which
direction e is selected or how the malicious classifier responds, the candidate multiplicative
gap (see Section 6.1.3) along e will shrink by an exponent of 2−K ; i.e.,

B−

B+
=

(
C−

C+

)2−K

(C.1)

log
(
G′

t+1

)
= log (Gt) · 2−K (C.2)

The primary decision for the malicious classifier occurs when the adversary begins querying
other directions beside e. At iteration t, the malicious classifier has 2 options:

Case 1 (t ∈ C1): Respond with '+' for all remaining directions. Here the bound
candidates B+ and B− are verified and thus the new gap is reduced by an
exponent of 2−K ; however, no directions are eliminated from the search.
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Case 2 (t ∈ C2): Choose at least 1 direction to respond with '−'. Here since
only the value of C− changes, the malicious classifier can choose to respond
to the first K queries so that the gap decreases by a negligible amount (by
always responding with '+' during the first K queries along e, the gap only
decreases by an exponent of (1 − 2−K)). However, the malicious classifier
must chose some number Et ≥ 1 of directions that will be eliminated.

By conservatively assuming the gap only decreases in case 1, the total number of queries
is bounded for both cases independent of the order in which the malicious classifier applies
them.

At the tth iteration, the malicious classifier can either decide to be in case 1 (t ∈ C1)
or case 2 (t ∈ C2). I assume that the gap only decreases in the case 1. That is, I define

G0 = C−
0 /C+

0 so that if t ∈ C1, then Gt = G2−K

t−1 whereas if t ∈ C2, then Gt = Gt−1.
This assumption yields an upper bound on the algorithm’s performance and decouples the
analysis of the queries for C1 and C2. From it, I derive the following upper bound on the
number of case 1 iterations that must occur before our algorithm terminates; simply stated,
there must be a total of at least Lǫ binary search steps made during the case 1 iterations
and every case 1 iteration makes exactly K steps. More formally, each case 1 iteration
reduces the gap by an exponent of 2−K and our termination condition is GT ≤ 1 + ǫ. Since
our algorithm will terminate as soon as the gap GT ≤ 1 + ǫ, iteration T must be a case 1
iteration and GT−1 > 1 + ǫ (otherwise the algorithm would have terminated earlier). From
this the total number of iterations must satisfy

log2 (GT−1) > log2 (1 + ǫ)

log2 (G0)
∏

i∈C1∧i<T

2−K

︸ ︷︷ ︸

by Equation (C.2)

> log2 (1 + ǫ)

2−
P

i∈C1∧i<T K >
log2 (1 + ǫ)

log2 (G0)
∑

i∈C1∧i<T

K > log2

log2 (G0)

log2 (1 + ǫ)
︸ ︷︷ ︸

=Lǫ by Equation (6.6)

(|C1| − 1)K < Lǫ

where the factor (|C1| − 1) comes as a result of excluding the last case 1 iteration, T . A
similar derivation for GT ≤ 1 + ǫ yields |C1| · K ≥ Lǫ and the only integer that satisfies
both these conditions is:

|C1| =
⌈

Lǫ

K

⌉

. (C.3)

Now, at every case 1 iteration, the adversary make exactly K + |Wt| − 1 queries where
Wt is the set of feasible directions remaining at the tth iteration. While Wt is controlled
by the malicious classifier, it is bounded by |Wt| ≤ |W|. Using this and the relation from
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Equation (C.3), I bound the number of queries Q1 used in case 1 by

Q1 =
∑

t∈C1

(K + |Wt| − 1)

≤
∑

t∈C1

(K + |W| − 1)

=

⌈
Lǫ

K

⌉

· (K + |W| − 1)

≤
(

Lǫ

K
+ 1

)

·K +

⌈
Lǫ

K

⌉

· (|W| − 1)

= Lǫ + K +

⌈
Lǫ

K

⌉

· (|W| − 1) .

For each case 2 iteration, the adversary makes exactly K + Et queries and this causes
the elimination of Et ≥ 1 directions; hence, |Wt+1| = |Wt| − Et. The malicious classifier
will always make Et = 1 in every case 2 instance since that maximally limits how much the
adversary gains. Nevertheless, since case 2 requires the elimination of at least 1 direction,
the following bound applies: |C2| ≤ |W| − 1. Moreover, regardless of the choice of Et,
∑

t∈C2
Et ≤ |W| − 1 since each direction can be eliminated no more than once. Thus,

Q2 =
∑

i∈C2

(K + Et)

≤ |C2| ·K + |W| − 1

≤ (|W| − 1) (K + 1) .

The total number of queries used by Algorithm 6.4

Q = Q1 + Q2 ≤ Lǫ + K +

⌈
Lǫ

K

⌉

· (|W| − 1) + (|W| − 1) (K + 1)

= Lǫ +

⌈
Lǫ

K

⌉

· |W|+ K · |W|+ |W| −
⌈

Lǫ

K

⌉

− 1

= Lǫ +

(⌈
Lǫ

K

⌉

+ K + 1

)

|W|

Finally, choosing K = ⌈√Lǫ⌉ minimizes this expression. By substituting this K into
Q’s bound and using the bound Lǫ/⌈

√
Lǫ⌉ ≤

√
Lǫ, yields

Q ≤ Lǫ +
(

2⌈
√

Lǫ⌉+ 1
)

|W|

so Q = O
(
Lǫ +

√
Lǫ|W|

)
.

C.2 Proof of Lower Bounds

Here I give proofs for the lower bound theorems in Section 6.2.1.2 first giving the proof for
the more complicated multiplicative case followed by a similar proof sketch for the additive
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case. For these lower bounds, D is the dimension of the space, A : ℜD 7→ ℜ+ is any positive
convex function, 0 < C+

0 < C−
0 are initial upper and lower bounds on the MAC , and

F̂convex,'+' ⊂ Fconvex,'+' is the set of classifiers consistent with the constraints on the MAC ;
i.e., for f ∈ F̂convex,'+' the set X+

f is convex, BC+
0 (A) ⊂ X+

f and BC−
0 (A) 6⊂ X+

f .

Proof of Theorem 6.5 and 6.4. Suppose a query-based algorithm submits N < D +1 mem-
bership queries x(1), . . . ,x(N) ∈ ℜD to the classifier. For the algorithm to be ǫ-optimal, these
queries must constrain all consistent classifiers is the family F̂convex,'+' to have a common
point among their ǫ-IMAC sets. Suppose that the responses to the queries are consistent
with the classifier f defined as:

f (x) =

{

+1 , if A (x) < C−
0

−1 , otherwise
. (C.4)

For this classifier, X+
f is convex since A is a convex function, BC+

0 (A) ⊂ X+
f since C+

0 < C−
0 ,

and BC−
0 (A) 6⊂ X+

f since X+
f is the open C−

0 -ball whereas BC−
0 (A) is the closed C−

0 -

ball. Moreover, since X+
f is the open C−

0 -ball, ∄ x ∈ X−
f suchthat A (x) < C−

0 therefore

MAC (f ,A) = C−
0 , and any ǫ-optimal points x′ ∈ ǫ-IMAC (∗) (f ,A) must satisfy C−

0 ≤
A (x′) ≤ (1 + ǫ)C−

0 . Similarly, any η-optimal points x′ ∈ η-IMAC (+) (f ,A) must satisfy
C−

0 ≤ A (x′) ≤ C−
0 + η.

Consider an alternative classifier g that responds identically to f for x(1), . . . ,x(N) but
has a different convex positive set X+

g . Without loss of generality, suppose the first M ≤ N

queries are positive and the remaining are negative. Let G = conv
(
x(1), . . . ,x(M)

)
; that

is, the convex hull of the M positive queries. Now let X+
g be the convex hull of G and

the C+
0 -ball of A: X+

g = conv
(

G ∪ BC+
0 (A)

)

. Since G contains all positive queries and

C+
0 < C−

0 , the convex set X+
g is consistent with the observed responses, BC+

0 (A) ⊂ X+
g

by definition, and BC−
0 (A) 6⊂ X+

g since the positive queries are all inside the open C−
0 -

sublevel set. Further, since M ≤ N < D + 1, G is contained in a proper linear subspace
of ℜD and hence int (G) = ∅. Hence, there is always some point from BC+

0 (A) that is

on the boundary of X+
g ; i.e., BC+

0 (A) 6⊂ int (G) because int (G) = ∅ , hence, there must

be at least one point from BC+
0 (A) on the boundary of the convex hull of BC+

0 (A) and

G . Hence, MAC (g ,A) = inf
x∈X−

g
[A (x)] = C+

0 . Since the accuracy ǫ <
C−

0

C+
0

− 1, any

x ∈ ǫ-IMAC (∗) (g ,A) must have

A (x) ≤ (1 + ǫ)C+
0 <

C−
0

C+
0

C+
0 = C−

0

whereas any y ∈ ǫ-IMAC (∗) (f ,A) must have A (y) ≥ C−
0 . Thus, ǫ-IMAC (∗) (f ,A) ∩

ǫ-IMAC (∗) (g ,A) = ∅ and we have constructed two convex-inducing classifiers f and g
both consistent with the query responses with no common ǫ-IMAC (∗). Similarly, since
η < C−

0 − C+
0 , any x ∈ η-IMAC (+) (g ,A) must have

A (x) ≤ η + C+
0 < C−

0 − C+
0 + C+

0 = C−
0

whereas any y ∈ η-IMAC (+) (f ,A) must have A (y) ≥ C−
0 . Thus, η-IMAC (+) (f ,A) ∩

η-IMAC (+) (g ,A) = ∅ and so the two convex-inducing classifiers f and g also have no
common η-IMAC (+).
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Suppose instead that a query-based algorithm submits N < L
(∗)
ǫ membership queries

(or N < L
(+)
η for the additive case). Recall our definitions: C−

0 is the initial upper bound

on the MAC , C+
0 is the initial lower bound on the MAC , and G

(∗)
t = C−

t /C+
t is the gap

between the upper bound and lower bound at iteration t (G
(+)
t = C−

t −C+
t for the additive

case). Here, the malicious classifier f responds with

f
(

x(t)
)

=

{

+1 , if A
(
x(t)
)
≤
√

C−
t−1 · C+

t−1

−1 , otherwise
. (C.5)

When the classifier responds with '+', C+
t increases to no more than

√

C−
t−1 · C+

t−1 and

so Gt ≥
√

Gt−1. Similarly when this classifier responds with '−', C−
t decreases to no less

than
√

C−
t−1 · C+

t−1 and so again Gt ≥
√

Gt−1. Thus, these responses ensure that at each

iteration Gt ≥
√

Gt−1 and since the algorithm can not terminate until GN ≤ 1 + ǫ, which

yields N ≥ L
(∗)
ǫ from Equation (6.6) (or in the additive case N ≥ L

(+)
η from Equation (6.5)).

Again, I have constructed two convex-inducing classifiers with consistent query responses
but with no common ǫ-IMAC . The first classifier’s positive set is the smallest cost-ball
enclosing all positive queries, while the second classifier’s positive set is the largest cost-ball
enclosing all positive queries but no negatives. The MAC values of these sets differ by more

than a factor of (1 + ǫ) if N < L
(∗)
ǫ (or, for the additive case, by a difference of more than

η if N < L
(+)
η ), so they have no common ǫ-IMAC . .

C.3 Proof of Theorem 6.9

For the proof of Theorem 6.9, I use the orthants (centered at xA)—i.e., an orthant is the
D-dimensional generalization of a quadrant in 2-dimensions. There are 2D orthants in a
D-dimensional space. I represent each orthant by it’s canonical representation which is a
vector of D positive or negative ones; i.e. the orthant represented by a = 〈±1,±1, . . . ,±1〉
contains the point xA + a and is the set of all points x satisfying:

xi ∈
{

[0, +∞] , if ai = +1

[−∞, 0] , if ai = −1
.

Now based on Lemma A.2 from Appendix A.2, I give the required proof of Theorem 6.9:

Proof of Theorem 6.9. Suppose a query-based algorithm submits N membership queries
x(1), . . . ,x(N) ∈ ℜD to the classifier. Again, for the algorithm to be ǫ-optimal, these queries
must constrain all consistent classifiers in the family F̂convex,'+' to have a common point
among their ǫ-IMAC sets. The responses described above are consistent with the classifier
f defined as

f (x) =

{

+1 , if Ap (x) < C−
0

−1 , otherwise
.

For this classifier, X+
f is convex since Ap is a convex function for p ≥ 1, BC+

0 (Ap) ⊂ X+
f

since C+
0 < C−

0 , and BC−
0 (Ap) 6⊂ X+

f since X+
f is the open C−

0 -ball whereas BC−
0 (Ap) is the
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closed C−
0 -ball. Moreover, since X+

f is the open C−
0 -ball, ∄ x ∈ X−

f suchthat Ap (x) < C−
0

therefore MAC (f ,Ap) = C−
0 , and any ǫ-optimal points x′ ∈ ǫ-IMAC (∗) (f ,Ap) must satisfy

C−
0 ≤ Ap (x′) ≤ (1 + ǫ)C−

0 .

Now consider an alternative classifier g that responds identically to f for x(1), . . . ,x(N)

but has a different convex positive set X+
g . Without loss of generality suppose the first

M ≤ N queries are positive and the remaining are negative. Here, consider a set which is
a convex hull of the orthants of all M positive queries; that is,

G = conv
(

orth
(

x(1)
)

∩ X+
f , orth

(

x(2)
)

∩ X+
f , . . . , orth

(

x(M)
)

∩ X+
f

)

(C.6)

where orth (x) is some orthant that x lies with in relative to xA (a data point may lie within
more than one orthant but it is only necessary to select one of the orthants that contains
it to cover it). By intersecting each data point’s orthant with the set X+

f and taking the

convex hull of these regions, G is convex , contains xA and is a subset of X+
f that is also

consistent with all the query responses of f ; i.e., each of the M positive queries are in X+
g

and all the negative queries are in X−
g . Moreover, G is a superset of the convex hull of the

M positive queries. Thus, the largest enclosed ℓp ball within the G is an upper bound on
MAC (g ,Ap), so I bound the size of this ℓp ball instead.

I now represent each orthant as a vertex in a D-dimensional hypercube graph—the
Hamming distance between any pair of orthants is the number of different coordinates in
their canonical representations and two orthants are adjacent in the graph if and only if they
have Hamming distance of one. Using this notion of Hamming distance, I find a K-covering
of the hypercube. I refer to the orthants used to construct G in Equation C.6 as covering
orthants because they cover the M positive queries. The vertices corresponding to these
covering orthants form a covering of the hypercube. Suppose the M covering orthants are
sufficient for a K covering but not K − 1 covering; then there must be at least one vertex
not in the covering that has at least a K Hamming distance to every vertex in the covering.
This vertex corresponds to an empty orthant that differs from all covered orthants in at
least K coordinates of their canonical vertices. Without loss of generality, suppose this
uncovered orthant has the canonical vertex of all positive ones which is scaled to C−

0 1.
Now, consider the hyperplane with normal vector w = 1 and displacement

d =

{

C−
0 (D −K)

p−1
p if 1 < p <∞

C−
0 (D −K) if p =∞

that specifies the discriminant function s (x) = x⊤w−d =
∑D

i=1 xi−d. For this hyperplane,
the vertex C−

0 1 yields

s
(
C−

0 1
)

= C−
0 D − d

= C−
0 D −

(
C−

0 D −K
) p−1

p

> C−
0 D −

(
C−

0 D −K
)

> 0 .

Also for any orthant a with Hamming distance at least K from this uncovered orthant, all
points x ∈ orth (a)∩X+

f yield the following valuation of the function s, by definition of the
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orthant and X+
f :

s (x) =
D∑

i=1

xi − d

=
∑

{i | ai=+1}
xi
︸︷︷︸

≥0

+
∑

{i | ai=−1}
xi
︸︷︷︸

≤0

− d .

Since all the terms in the second summation are non-positive, the second sum is at most 0.
Thus, maximizing the first summation upper bounds s (x). The summation

∑

{i | ai=+1} xi

(with the constraint that ‖x‖p < C−
0 which is necessary for x to be in X+

f ) has at most

D−K terms and is maximized by xi = C−
0 (D−K)−1/p (or xi = C−

0 for p =∞) for which

the first summation is upper bounded by C−
0 (D −K)

p−1
p or C−

0 (D −K) for p =∞; i.e. it
is upper bounded by d and so s (x) ≤ 0. Thus, this hyperplane separates the scaled vertex
C−

0 1 from each set orth (a) ∩ X+
f where a is the canonical representation of any orthant

with a Hamming distance of at least K from the positive orthant represented by 1. This
hyperplane also separates the scaled vertex from G by the properties of the convex hull.
Since the displacement d defined above is greater than 0, by applying Lemma A.3, this
separating hyperplane upper bounds the cost of the largest ℓp ball enclosed in G as

MAC (g ,Ap) ≤ C−
0 (D −K)

p−1
p · ‖1‖−1

p
p−1

= C−
0

(
D −K

D

) p−1
p

for 1 < p <∞ and

MAC (g ,Ap) ≤ C−
0 (D −K) · ‖1‖−1

1 = C−
0

D −K

D

for p = ∞. Based on this upper bound on the MAC of g and the MAC of f (i.e., C−
0 ), if

there is a common ǫ-IMAC between these classifiers, it must satisfy

(1 + ǫ) ≥







(
D

D−K

) p−1
p

, if 1 < p <∞
D

D−K , if p =∞
.

Solving for the value of K required to achieve a desired accuracy of 1 + ǫ yields

K ≤







(1+ǫ)
p

p−1 −1

(1+ǫ)
p

p−1
D , if 1 < p <∞

ǫ
1+ǫD , if p =∞

,

which bounds the size of the covering required to achieve the desired multiplicative accuracy
ǫ.

For the case 1 < p <∞, Lemma A.2 shows there must be

M ≥ exp
{

ln(2) ·D
(

1−H
(

1− (1 + ǫ)
p

1−p

))}

vertices of the hypercube in the covering to achieve any desired accuracy 0 < ǫ < 2
p−1

p − 1,
for which

δ =
(1 + ǫ)

p
p−1 − 1

(1 + ǫ)
p

p−1

<
1

2
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to satisfy the condition required by the lemma. Thus, this theorem is applicable for any ǫ
that satisfies,

ǫ < 2
p−1

p − 1 .

For example, for p = 2, the theorem is applicable for any ǫ <
√

2 − 1. Moreover, since
0 < H (δ) < 1 for any 0 < δ < 1,

αp,ǫ = exp

{

ln(2)

(

1−H

(

(1 + ǫ)
p

p−1 − 1

(1 + ǫ)
p

p−1

))}

> 1

and
M > αD

p,ǫ .

Similarly for p =∞, applying Lemma A.2 requires

M ≥ 2D(1−H( ǫ
1+ǫ))

to achieve any desired accuracy 0 < ǫ < 1 (for which ǫ/(1 + ǫ) < 1/2 as required by the

lemma). Again, by the properties of entropy the constant α∞,ǫ = 2(1−H( ǫ
1+ǫ)) > 1 for any

0 < ǫ < 1 and M > αD
∞,ǫ.

It is worth noting that the constants αp,ǫ and α∞,ǫ required by Theorem 6.9 can be
expressed in a more concise form by expanding the entropy function (H (δ) = −δ log2 (δ)−
(1− δ) log2 (1− δ)). For 1 < p <∞ the constant is given by

αp,ǫ = 2 ·
(

1− (1 + ǫ)
p

1−p

)

· exp

(

ln

(

−1

1− (1 + ǫ)
p

p−1

)

· (1 + ǫ)
p

1−p

)

. (C.7)

In this form, it is difficult to directly see that αp,ǫ > 1 for ǫ < 2
p−1

p − 1, but using the
entropy form in the proof above shows that this is indeed the case. Similarly, for p = ∞
the more concise form of the constant is given by

α∞,ǫ =
2

1 + ǫ
exp

(

ln (ǫ) ·
(

ǫ

1 + ǫ

))

. (C.8)

Again, as shown in the proof above, α∞,ǫ > 1 for ǫ < 1.

C.4 Proof of Theorem 6.10

For this proof, I build on previous results for covering hyperspheres. The proof is based on
a covering number result from Wyner [1965] that first appeared in Shannon [1959]. This
result bounds the minimum number of spherical caps required to cover the surface of a
hypersphere and is summarized in Appendix A.1.

Proof of Theorem 6.10. Suppose a query-based algorithm submits N < D +1 membership
queries x(1), . . . ,x(N) ∈ ℜD to the classifier. For the algorithm to be ǫ-optimal, these queries
must constrain all consistent classifiers in the family F̂convex,'+' to have a common point
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among their ǫ-IMAC sets. Suppose that all the responses are consistent with the classifier
f defined as

f (x) =

{

+1 , if A2 (x) < C−
0

−1 , otherwise
; (C.9)

For this classifier, X+
f is convex since A2 is a convex function, BC+

0 (A2) ⊂ X+
f since C+

0 <

C−
0 , and BC−

0 (A2) 6⊂ X+
f since X+

f is the open C−
0 -ball whereas BC−

0 (A2) is the closed

C−
0 -ball. Moreover, since X+

f is the open C−
0 -ball, ∄ x ∈ X−

f suchthat A2 (x) < C−
0

therefore MAC (f ,A2) = C−
0 , and any ǫ-optimal points x′ ∈ ǫ-IMAC (∗) (f ,A2) must satisfy

C−
0 ≤ A2 (x′) ≤ (1 + ǫ)C−

0 .

Now consider an alternative classifier g that responds identically to f for x(1), . . . ,x(N)

but has a different convex positive set X+
g . Without loss of generality suppose the first

M ≤ N queries are positive and the remaining are negative. Let G = conv
(
x(1), . . . ,x(M)

)
;

that is, the convex hull of the M positive queries. I assume xA ∈ G since if it is not,
then malicious classifier can construct the set X+

g as in the proof for Theorems 6.5 and 6.4

above and achieve MAC (f ,A2) = C+
0 thereby showing the desired result. Otherwise when

xA ∈ G, consider the points z(i) = C−
0

x(i)

A2(x(i))
; i.e., the projection of each of the positive

queries onto the surface of the ℓ2 ball BC−
0 (A2). Since each positive query lies along the

line between xA and its projection z(i), by convexity and the fact that xA ∈ G, the set G is
a subset of conv

(
z(1), z(2), . . . , z(M)

)
. I refer to this enlarged hull as Ĝ. These M projected

points
{
z(i)
}M

i=1
must form a covering of the C−

0 -hypersphere as the loci of caps of half-angle

φ∗ = arccos
(

1
1+ǫ

)

. If not, then there exists some point on the surface of this hypersphere

that is at least an angle φ∗ from all z(i) points and the resulting φ∗-cap centered at this
uncovered point is not in Ĝ (since a cap is defined as the intersection of the hypersphere
and a halfspace). Moreover, by definition of the φ∗-cap, it achieves a minimal ℓ2 cost of
C−

0 cos φ∗. Thus, if the adversary fails to achieve a φ∗-covering of the C−
0 -hypersphere, the

alternative classifier g has MAC (g ,A2) < C−
0 cos φ∗ =

C−
0

1+ǫ and any x ∈ ǫ-IMAC (∗) (g ,A2)
must have

A2 (x) ≤ (1 + ǫ)MAC < (1 + ǫ)
C−

0

1 + ǫ
= C−

0

whereas any y ∈ ǫ-IMAC (∗) (f ,A) must have A (y) ≥ C−
0 . Thus, there are no com-

mon points in the ǫ-IMAC (∗) sets of these consistent classifiers (i.e., ǫ-IMAC (∗) (f ,A) ∩
ǫ-IMAC (∗) (g ,A) = ∅) and so the adversary would have failed to ensure ǫ-multiplicative
optimality. Thus, an φ∗-covering is necessary for ǫ-multiplicative optimality for ℓ2 costs.
However, from Lemma A.1, to achieve an φ∗-covering requires at least

M ≥
(

1

sinφ∗

)D−2

queries. Using the trigonometric identity sin (arccos(x)) =
√

1− x2 and substituting for
φ∗ yields the following bound on the number of queries required for a given multiplicative
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accuracy ǫ:

M ≥




1

sin
(

arccos
(

1
1+ǫ

))





D−2

≥
(

(1 + ǫ)2

(1 + ǫ)2 − 1

)D−2
2

.
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